futex: Fix potential use-after-free in FUTEX_REQUEUE_PI
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/seccomp.h>
38 #include <linux/swap.h>
39 #include <linux/syscalls.h>
40 #include <linux/jiffies.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/kthread.h>
44 #include <linux/task_io_accounting_ops.h>
45 #include <linux/rcupdate.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/audit.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/proc_fs.h>
52 #include <linux/profile.h>
53 #include <linux/rmap.h>
54 #include <linux/ksm.h>
55 #include <linux/acct.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/freezer.h>
59 #include <linux/delayacct.h>
60 #include <linux/taskstats_kern.h>
61 #include <linux/random.h>
62 #include <linux/tty.h>
63 #include <linux/blkdev.h>
64 #include <linux/fs_struct.h>
65 #include <linux/magic.h>
66 #include <linux/perf_event.h>
67 #include <linux/posix-timers.h>
68 #include <linux/user-return-notifier.h>
69 #include <linux/oom.h>
70 #include <linux/khugepaged.h>
71 #include <linux/signalfd.h>
72 #include <linux/uprobes.h>
73 #include <linux/aio.h>
74
75 #include <asm/pgtable.h>
76 #include <asm/pgalloc.h>
77 #include <asm/uaccess.h>
78 #include <asm/mmu_context.h>
79 #include <asm/cacheflush.h>
80 #include <asm/tlbflush.h>
81
82 #include <trace/events/sched.h>
83
84 #define CREATE_TRACE_POINTS
85 #include <trace/events/task.h>
86
87 /*
88 * Protected counters by write_lock_irq(&tasklist_lock)
89 */
90 unsigned long total_forks; /* Handle normal Linux uptimes. */
91 int nr_threads; /* The idle threads do not count.. */
92
93 int max_threads; /* tunable limit on nr_threads */
94
95 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
96
97 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
98
99 #ifdef CONFIG_PROVE_RCU
100 int lockdep_tasklist_lock_is_held(void)
101 {
102 return lockdep_is_held(&tasklist_lock);
103 }
104 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
105 #endif /* #ifdef CONFIG_PROVE_RCU */
106
107 int nr_processes(void)
108 {
109 int cpu;
110 int total = 0;
111
112 for_each_possible_cpu(cpu)
113 total += per_cpu(process_counts, cpu);
114
115 return total;
116 }
117
118 void __weak arch_release_task_struct(struct task_struct *tsk)
119 {
120 }
121
122 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
123 static struct kmem_cache *task_struct_cachep;
124
125 static inline struct task_struct *alloc_task_struct_node(int node)
126 {
127 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
128 }
129
130 static inline void free_task_struct(struct task_struct *tsk)
131 {
132 kmem_cache_free(task_struct_cachep, tsk);
133 }
134 #endif
135
136 void __weak arch_release_thread_info(struct thread_info *ti)
137 {
138 }
139
140 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
141
142 /*
143 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
144 * kmemcache based allocator.
145 */
146 # if THREAD_SIZE >= PAGE_SIZE
147 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
148 int node)
149 {
150 struct page *page = alloc_pages_node(node, THREADINFO_GFP_ACCOUNTED,
151 THREAD_SIZE_ORDER);
152
153 return page ? page_address(page) : NULL;
154 }
155
156 static inline void free_thread_info(struct thread_info *ti)
157 {
158 free_memcg_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER);
159 }
160 # else
161 static struct kmem_cache *thread_info_cache;
162
163 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
164 int node)
165 {
166 return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
167 }
168
169 static void free_thread_info(struct thread_info *ti)
170 {
171 kmem_cache_free(thread_info_cache, ti);
172 }
173
174 void thread_info_cache_init(void)
175 {
176 thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
177 THREAD_SIZE, 0, NULL);
178 BUG_ON(thread_info_cache == NULL);
179 }
180 # endif
181 #endif
182
183 /* SLAB cache for signal_struct structures (tsk->signal) */
184 static struct kmem_cache *signal_cachep;
185
186 /* SLAB cache for sighand_struct structures (tsk->sighand) */
187 struct kmem_cache *sighand_cachep;
188
189 /* SLAB cache for files_struct structures (tsk->files) */
190 struct kmem_cache *files_cachep;
191
192 /* SLAB cache for fs_struct structures (tsk->fs) */
193 struct kmem_cache *fs_cachep;
194
195 /* SLAB cache for vm_area_struct structures */
196 struct kmem_cache *vm_area_cachep;
197
198 /* SLAB cache for mm_struct structures (tsk->mm) */
199 static struct kmem_cache *mm_cachep;
200
201 static void account_kernel_stack(struct thread_info *ti, int account)
202 {
203 struct zone *zone = page_zone(virt_to_page(ti));
204
205 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
206 }
207
208 void free_task(struct task_struct *tsk)
209 {
210 account_kernel_stack(tsk->stack, -1);
211 arch_release_thread_info(tsk->stack);
212 free_thread_info(tsk->stack);
213 rt_mutex_debug_task_free(tsk);
214 ftrace_graph_exit_task(tsk);
215 put_seccomp_filter(tsk);
216 arch_release_task_struct(tsk);
217 free_task_struct(tsk);
218 }
219 EXPORT_SYMBOL(free_task);
220
221 static inline void free_signal_struct(struct signal_struct *sig)
222 {
223 taskstats_tgid_free(sig);
224 sched_autogroup_exit(sig);
225 kmem_cache_free(signal_cachep, sig);
226 }
227
228 static inline void put_signal_struct(struct signal_struct *sig)
229 {
230 if (atomic_dec_and_test(&sig->sigcnt))
231 free_signal_struct(sig);
232 }
233
234 void __put_task_struct(struct task_struct *tsk)
235 {
236 WARN_ON(!tsk->exit_state);
237 WARN_ON(atomic_read(&tsk->usage));
238 WARN_ON(tsk == current);
239
240 security_task_free(tsk);
241 exit_creds(tsk);
242 delayacct_tsk_free(tsk);
243 put_signal_struct(tsk->signal);
244
245 if (!profile_handoff_task(tsk))
246 free_task(tsk);
247 }
248 EXPORT_SYMBOL_GPL(__put_task_struct);
249
250 void __init __weak arch_task_cache_init(void) { }
251
252 void __init fork_init(unsigned long mempages)
253 {
254 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
255 #ifndef ARCH_MIN_TASKALIGN
256 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
257 #endif
258 /* create a slab on which task_structs can be allocated */
259 task_struct_cachep =
260 kmem_cache_create("task_struct", sizeof(struct task_struct),
261 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
262 #endif
263
264 /* do the arch specific task caches init */
265 arch_task_cache_init();
266
267 /*
268 * The default maximum number of threads is set to a safe
269 * value: the thread structures can take up at most half
270 * of memory.
271 */
272 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
273
274 /*
275 * we need to allow at least 20 threads to boot a system
276 */
277 if (max_threads < 20)
278 max_threads = 20;
279
280 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
281 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
282 init_task.signal->rlim[RLIMIT_SIGPENDING] =
283 init_task.signal->rlim[RLIMIT_NPROC];
284 }
285
286 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
287 struct task_struct *src)
288 {
289 *dst = *src;
290 return 0;
291 }
292
293 static struct task_struct *dup_task_struct(struct task_struct *orig)
294 {
295 struct task_struct *tsk;
296 struct thread_info *ti;
297 unsigned long *stackend;
298 int node = tsk_fork_get_node(orig);
299 int err;
300
301 tsk = alloc_task_struct_node(node);
302 if (!tsk)
303 return NULL;
304
305 ti = alloc_thread_info_node(tsk, node);
306 if (!ti)
307 goto free_tsk;
308
309 err = arch_dup_task_struct(tsk, orig);
310 if (err)
311 goto free_ti;
312
313 tsk->stack = ti;
314
315 setup_thread_stack(tsk, orig);
316 clear_user_return_notifier(tsk);
317 clear_tsk_need_resched(tsk);
318 stackend = end_of_stack(tsk);
319 *stackend = STACK_END_MAGIC; /* for overflow detection */
320
321 #ifdef CONFIG_CC_STACKPROTECTOR
322 tsk->stack_canary = get_random_int();
323 #endif
324
325 /*
326 * One for us, one for whoever does the "release_task()" (usually
327 * parent)
328 */
329 atomic_set(&tsk->usage, 2);
330 #ifdef CONFIG_BLK_DEV_IO_TRACE
331 tsk->btrace_seq = 0;
332 #endif
333 tsk->splice_pipe = NULL;
334 tsk->task_frag.page = NULL;
335
336 account_kernel_stack(ti, 1);
337
338 return tsk;
339
340 free_ti:
341 free_thread_info(ti);
342 free_tsk:
343 free_task_struct(tsk);
344 return NULL;
345 }
346
347 #ifdef CONFIG_MMU
348 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
349 {
350 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
351 struct rb_node **rb_link, *rb_parent;
352 int retval;
353 unsigned long charge;
354 struct mempolicy *pol;
355
356 uprobe_start_dup_mmap();
357 down_write(&oldmm->mmap_sem);
358 flush_cache_dup_mm(oldmm);
359 uprobe_dup_mmap(oldmm, mm);
360 /*
361 * Not linked in yet - no deadlock potential:
362 */
363 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
364
365 mm->locked_vm = 0;
366 mm->mmap = NULL;
367 mm->mmap_cache = NULL;
368 mm->free_area_cache = oldmm->mmap_base;
369 mm->cached_hole_size = ~0UL;
370 mm->map_count = 0;
371 cpumask_clear(mm_cpumask(mm));
372 mm->mm_rb = RB_ROOT;
373 rb_link = &mm->mm_rb.rb_node;
374 rb_parent = NULL;
375 pprev = &mm->mmap;
376 retval = ksm_fork(mm, oldmm);
377 if (retval)
378 goto out;
379 retval = khugepaged_fork(mm, oldmm);
380 if (retval)
381 goto out;
382
383 prev = NULL;
384 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
385 struct file *file;
386
387 if (mpnt->vm_flags & VM_DONTCOPY) {
388 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
389 -vma_pages(mpnt));
390 continue;
391 }
392 charge = 0;
393 if (mpnt->vm_flags & VM_ACCOUNT) {
394 unsigned long len = vma_pages(mpnt);
395
396 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
397 goto fail_nomem;
398 charge = len;
399 }
400 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
401 if (!tmp)
402 goto fail_nomem;
403 *tmp = *mpnt;
404 INIT_LIST_HEAD(&tmp->anon_vma_chain);
405 pol = mpol_dup(vma_policy(mpnt));
406 retval = PTR_ERR(pol);
407 if (IS_ERR(pol))
408 goto fail_nomem_policy;
409 vma_set_policy(tmp, pol);
410 tmp->vm_mm = mm;
411 if (anon_vma_fork(tmp, mpnt))
412 goto fail_nomem_anon_vma_fork;
413 tmp->vm_flags &= ~VM_LOCKED;
414 tmp->vm_next = tmp->vm_prev = NULL;
415 file = tmp->vm_file;
416 if (file) {
417 struct inode *inode = file_inode(file);
418 struct address_space *mapping = file->f_mapping;
419
420 get_file(file);
421 if (tmp->vm_flags & VM_DENYWRITE)
422 atomic_dec(&inode->i_writecount);
423 mutex_lock(&mapping->i_mmap_mutex);
424 if (tmp->vm_flags & VM_SHARED)
425 mapping->i_mmap_writable++;
426 flush_dcache_mmap_lock(mapping);
427 /* insert tmp into the share list, just after mpnt */
428 if (unlikely(tmp->vm_flags & VM_NONLINEAR))
429 vma_nonlinear_insert(tmp,
430 &mapping->i_mmap_nonlinear);
431 else
432 vma_interval_tree_insert_after(tmp, mpnt,
433 &mapping->i_mmap);
434 flush_dcache_mmap_unlock(mapping);
435 mutex_unlock(&mapping->i_mmap_mutex);
436 }
437
438 /*
439 * Clear hugetlb-related page reserves for children. This only
440 * affects MAP_PRIVATE mappings. Faults generated by the child
441 * are not guaranteed to succeed, even if read-only
442 */
443 if (is_vm_hugetlb_page(tmp))
444 reset_vma_resv_huge_pages(tmp);
445
446 /*
447 * Link in the new vma and copy the page table entries.
448 */
449 *pprev = tmp;
450 pprev = &tmp->vm_next;
451 tmp->vm_prev = prev;
452 prev = tmp;
453
454 __vma_link_rb(mm, tmp, rb_link, rb_parent);
455 rb_link = &tmp->vm_rb.rb_right;
456 rb_parent = &tmp->vm_rb;
457
458 mm->map_count++;
459 retval = copy_page_range(mm, oldmm, mpnt);
460
461 if (tmp->vm_ops && tmp->vm_ops->open)
462 tmp->vm_ops->open(tmp);
463
464 if (retval)
465 goto out;
466 }
467 /* a new mm has just been created */
468 arch_dup_mmap(oldmm, mm);
469 retval = 0;
470 out:
471 up_write(&mm->mmap_sem);
472 flush_tlb_mm(oldmm);
473 up_write(&oldmm->mmap_sem);
474 uprobe_end_dup_mmap();
475 return retval;
476 fail_nomem_anon_vma_fork:
477 mpol_put(pol);
478 fail_nomem_policy:
479 kmem_cache_free(vm_area_cachep, tmp);
480 fail_nomem:
481 retval = -ENOMEM;
482 vm_unacct_memory(charge);
483 goto out;
484 }
485
486 static inline int mm_alloc_pgd(struct mm_struct *mm)
487 {
488 mm->pgd = pgd_alloc(mm);
489 if (unlikely(!mm->pgd))
490 return -ENOMEM;
491 return 0;
492 }
493
494 static inline void mm_free_pgd(struct mm_struct *mm)
495 {
496 pgd_free(mm, mm->pgd);
497 }
498 #else
499 #define dup_mmap(mm, oldmm) (0)
500 #define mm_alloc_pgd(mm) (0)
501 #define mm_free_pgd(mm)
502 #endif /* CONFIG_MMU */
503
504 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
505
506 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
507 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
508
509 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
510
511 static int __init coredump_filter_setup(char *s)
512 {
513 default_dump_filter =
514 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
515 MMF_DUMP_FILTER_MASK;
516 return 1;
517 }
518
519 __setup("coredump_filter=", coredump_filter_setup);
520
521 #include <linux/init_task.h>
522
523 static void mm_init_aio(struct mm_struct *mm)
524 {
525 #ifdef CONFIG_AIO
526 spin_lock_init(&mm->ioctx_lock);
527 INIT_HLIST_HEAD(&mm->ioctx_list);
528 #endif
529 }
530
531 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
532 {
533 atomic_set(&mm->mm_users, 1);
534 atomic_set(&mm->mm_count, 1);
535 init_rwsem(&mm->mmap_sem);
536 INIT_LIST_HEAD(&mm->mmlist);
537 mm->flags = (current->mm) ?
538 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
539 mm->core_state = NULL;
540 mm->nr_ptes = 0;
541 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
542 spin_lock_init(&mm->page_table_lock);
543 mm->free_area_cache = TASK_UNMAPPED_BASE;
544 mm->cached_hole_size = ~0UL;
545 mm_init_aio(mm);
546 mm_init_owner(mm, p);
547 clear_tlb_flush_pending(mm);
548
549 if (likely(!mm_alloc_pgd(mm))) {
550 mm->def_flags = 0;
551 mmu_notifier_mm_init(mm);
552 return mm;
553 }
554
555 free_mm(mm);
556 return NULL;
557 }
558
559 static void check_mm(struct mm_struct *mm)
560 {
561 int i;
562
563 for (i = 0; i < NR_MM_COUNTERS; i++) {
564 long x = atomic_long_read(&mm->rss_stat.count[i]);
565
566 if (unlikely(x))
567 printk(KERN_ALERT "BUG: Bad rss-counter state "
568 "mm:%p idx:%d val:%ld\n", mm, i, x);
569 }
570
571 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
572 VM_BUG_ON(mm->pmd_huge_pte);
573 #endif
574 }
575
576 /*
577 * Allocate and initialize an mm_struct.
578 */
579 struct mm_struct *mm_alloc(void)
580 {
581 struct mm_struct *mm;
582
583 mm = allocate_mm();
584 if (!mm)
585 return NULL;
586
587 memset(mm, 0, sizeof(*mm));
588 mm_init_cpumask(mm);
589 return mm_init(mm, current);
590 }
591
592 /*
593 * Called when the last reference to the mm
594 * is dropped: either by a lazy thread or by
595 * mmput. Free the page directory and the mm.
596 */
597 void __mmdrop(struct mm_struct *mm)
598 {
599 BUG_ON(mm == &init_mm);
600 mm_free_pgd(mm);
601 destroy_context(mm);
602 mmu_notifier_mm_destroy(mm);
603 check_mm(mm);
604 free_mm(mm);
605 }
606 EXPORT_SYMBOL_GPL(__mmdrop);
607
608 /*
609 * Decrement the use count and release all resources for an mm.
610 */
611 void mmput(struct mm_struct *mm)
612 {
613 might_sleep();
614
615 if (atomic_dec_and_test(&mm->mm_users)) {
616 uprobe_clear_state(mm);
617 exit_aio(mm);
618 ksm_exit(mm);
619 khugepaged_exit(mm); /* must run before exit_mmap */
620 exit_mmap(mm);
621 set_mm_exe_file(mm, NULL);
622 if (!list_empty(&mm->mmlist)) {
623 spin_lock(&mmlist_lock);
624 list_del(&mm->mmlist);
625 spin_unlock(&mmlist_lock);
626 }
627 if (mm->binfmt)
628 module_put(mm->binfmt->module);
629 mmdrop(mm);
630 }
631 }
632 EXPORT_SYMBOL_GPL(mmput);
633
634 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
635 {
636 if (new_exe_file)
637 get_file(new_exe_file);
638 if (mm->exe_file)
639 fput(mm->exe_file);
640 mm->exe_file = new_exe_file;
641 }
642
643 struct file *get_mm_exe_file(struct mm_struct *mm)
644 {
645 struct file *exe_file;
646
647 /* We need mmap_sem to protect against races with removal of exe_file */
648 down_read(&mm->mmap_sem);
649 exe_file = mm->exe_file;
650 if (exe_file)
651 get_file(exe_file);
652 up_read(&mm->mmap_sem);
653 return exe_file;
654 }
655
656 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
657 {
658 /* It's safe to write the exe_file pointer without exe_file_lock because
659 * this is called during fork when the task is not yet in /proc */
660 newmm->exe_file = get_mm_exe_file(oldmm);
661 }
662
663 /**
664 * get_task_mm - acquire a reference to the task's mm
665 *
666 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
667 * this kernel workthread has transiently adopted a user mm with use_mm,
668 * to do its AIO) is not set and if so returns a reference to it, after
669 * bumping up the use count. User must release the mm via mmput()
670 * after use. Typically used by /proc and ptrace.
671 */
672 struct mm_struct *get_task_mm(struct task_struct *task)
673 {
674 struct mm_struct *mm;
675
676 task_lock(task);
677 mm = task->mm;
678 if (mm) {
679 if (task->flags & PF_KTHREAD)
680 mm = NULL;
681 else
682 atomic_inc(&mm->mm_users);
683 }
684 task_unlock(task);
685 return mm;
686 }
687 EXPORT_SYMBOL_GPL(get_task_mm);
688
689 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
690 {
691 struct mm_struct *mm;
692 int err;
693
694 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
695 if (err)
696 return ERR_PTR(err);
697
698 mm = get_task_mm(task);
699 if (mm && mm != current->mm &&
700 !ptrace_may_access(task, mode)) {
701 mmput(mm);
702 mm = ERR_PTR(-EACCES);
703 }
704 mutex_unlock(&task->signal->cred_guard_mutex);
705
706 return mm;
707 }
708
709 static void complete_vfork_done(struct task_struct *tsk)
710 {
711 struct completion *vfork;
712
713 task_lock(tsk);
714 vfork = tsk->vfork_done;
715 if (likely(vfork)) {
716 tsk->vfork_done = NULL;
717 complete(vfork);
718 }
719 task_unlock(tsk);
720 }
721
722 static int wait_for_vfork_done(struct task_struct *child,
723 struct completion *vfork)
724 {
725 int killed;
726
727 freezer_do_not_count();
728 killed = wait_for_completion_killable(vfork);
729 freezer_count();
730
731 if (killed) {
732 task_lock(child);
733 child->vfork_done = NULL;
734 task_unlock(child);
735 }
736
737 put_task_struct(child);
738 return killed;
739 }
740
741 /* Please note the differences between mmput and mm_release.
742 * mmput is called whenever we stop holding onto a mm_struct,
743 * error success whatever.
744 *
745 * mm_release is called after a mm_struct has been removed
746 * from the current process.
747 *
748 * This difference is important for error handling, when we
749 * only half set up a mm_struct for a new process and need to restore
750 * the old one. Because we mmput the new mm_struct before
751 * restoring the old one. . .
752 * Eric Biederman 10 January 1998
753 */
754 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
755 {
756 /* Get rid of any futexes when releasing the mm */
757 #ifdef CONFIG_FUTEX
758 if (unlikely(tsk->robust_list)) {
759 exit_robust_list(tsk);
760 tsk->robust_list = NULL;
761 }
762 #ifdef CONFIG_COMPAT
763 if (unlikely(tsk->compat_robust_list)) {
764 compat_exit_robust_list(tsk);
765 tsk->compat_robust_list = NULL;
766 }
767 #endif
768 if (unlikely(!list_empty(&tsk->pi_state_list)))
769 exit_pi_state_list(tsk);
770 #endif
771
772 uprobe_free_utask(tsk);
773
774 /* Get rid of any cached register state */
775 deactivate_mm(tsk, mm);
776
777 /*
778 * Signal userspace if we're not exiting with a core dump
779 * because we want to leave the value intact for debugging
780 * purposes.
781 */
782 if (tsk->clear_child_tid) {
783 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
784 atomic_read(&mm->mm_users) > 1) {
785 /*
786 * We don't check the error code - if userspace has
787 * not set up a proper pointer then tough luck.
788 */
789 put_user(0, tsk->clear_child_tid);
790 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
791 1, NULL, NULL, 0);
792 }
793 tsk->clear_child_tid = NULL;
794 }
795
796 /*
797 * All done, finally we can wake up parent and return this mm to him.
798 * Also kthread_stop() uses this completion for synchronization.
799 */
800 if (tsk->vfork_done)
801 complete_vfork_done(tsk);
802 }
803
804 /*
805 * Allocate a new mm structure and copy contents from the
806 * mm structure of the passed in task structure.
807 */
808 struct mm_struct *dup_mm(struct task_struct *tsk)
809 {
810 struct mm_struct *mm, *oldmm = current->mm;
811 int err;
812
813 if (!oldmm)
814 return NULL;
815
816 mm = allocate_mm();
817 if (!mm)
818 goto fail_nomem;
819
820 memcpy(mm, oldmm, sizeof(*mm));
821 mm_init_cpumask(mm);
822
823 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
824 mm->pmd_huge_pte = NULL;
825 #endif
826 #ifdef CONFIG_NUMA_BALANCING
827 mm->first_nid = NUMA_PTE_SCAN_INIT;
828 #endif
829 if (!mm_init(mm, tsk))
830 goto fail_nomem;
831
832 if (init_new_context(tsk, mm))
833 goto fail_nocontext;
834
835 dup_mm_exe_file(oldmm, mm);
836
837 err = dup_mmap(mm, oldmm);
838 if (err)
839 goto free_pt;
840
841 mm->hiwater_rss = get_mm_rss(mm);
842 mm->hiwater_vm = mm->total_vm;
843
844 if (mm->binfmt && !try_module_get(mm->binfmt->module))
845 goto free_pt;
846
847 return mm;
848
849 free_pt:
850 /* don't put binfmt in mmput, we haven't got module yet */
851 mm->binfmt = NULL;
852 mmput(mm);
853
854 fail_nomem:
855 return NULL;
856
857 fail_nocontext:
858 /*
859 * If init_new_context() failed, we cannot use mmput() to free the mm
860 * because it calls destroy_context()
861 */
862 mm_free_pgd(mm);
863 free_mm(mm);
864 return NULL;
865 }
866
867 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
868 {
869 struct mm_struct *mm, *oldmm;
870 int retval;
871
872 tsk->min_flt = tsk->maj_flt = 0;
873 tsk->nvcsw = tsk->nivcsw = 0;
874 #ifdef CONFIG_DETECT_HUNG_TASK
875 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
876 #endif
877
878 tsk->mm = NULL;
879 tsk->active_mm = NULL;
880
881 /*
882 * Are we cloning a kernel thread?
883 *
884 * We need to steal a active VM for that..
885 */
886 oldmm = current->mm;
887 if (!oldmm)
888 return 0;
889
890 if (clone_flags & CLONE_VM) {
891 atomic_inc(&oldmm->mm_users);
892 mm = oldmm;
893 goto good_mm;
894 }
895
896 retval = -ENOMEM;
897 mm = dup_mm(tsk);
898 if (!mm)
899 goto fail_nomem;
900
901 good_mm:
902 tsk->mm = mm;
903 tsk->active_mm = mm;
904 return 0;
905
906 fail_nomem:
907 return retval;
908 }
909
910 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
911 {
912 struct fs_struct *fs = current->fs;
913 if (clone_flags & CLONE_FS) {
914 /* tsk->fs is already what we want */
915 spin_lock(&fs->lock);
916 if (fs->in_exec) {
917 spin_unlock(&fs->lock);
918 return -EAGAIN;
919 }
920 fs->users++;
921 spin_unlock(&fs->lock);
922 return 0;
923 }
924 tsk->fs = copy_fs_struct(fs);
925 if (!tsk->fs)
926 return -ENOMEM;
927 return 0;
928 }
929
930 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
931 {
932 struct files_struct *oldf, *newf;
933 int error = 0;
934
935 /*
936 * A background process may not have any files ...
937 */
938 oldf = current->files;
939 if (!oldf)
940 goto out;
941
942 if (clone_flags & CLONE_FILES) {
943 atomic_inc(&oldf->count);
944 goto out;
945 }
946
947 newf = dup_fd(oldf, &error);
948 if (!newf)
949 goto out;
950
951 tsk->files = newf;
952 error = 0;
953 out:
954 return error;
955 }
956
957 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
958 {
959 #ifdef CONFIG_BLOCK
960 struct io_context *ioc = current->io_context;
961 struct io_context *new_ioc;
962
963 if (!ioc)
964 return 0;
965 /*
966 * Share io context with parent, if CLONE_IO is set
967 */
968 if (clone_flags & CLONE_IO) {
969 ioc_task_link(ioc);
970 tsk->io_context = ioc;
971 } else if (ioprio_valid(ioc->ioprio)) {
972 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
973 if (unlikely(!new_ioc))
974 return -ENOMEM;
975
976 new_ioc->ioprio = ioc->ioprio;
977 put_io_context(new_ioc);
978 }
979 #endif
980 return 0;
981 }
982
983 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
984 {
985 struct sighand_struct *sig;
986
987 if (clone_flags & CLONE_SIGHAND) {
988 atomic_inc(&current->sighand->count);
989 return 0;
990 }
991 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
992 rcu_assign_pointer(tsk->sighand, sig);
993 if (!sig)
994 return -ENOMEM;
995 atomic_set(&sig->count, 1);
996 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
997 return 0;
998 }
999
1000 void __cleanup_sighand(struct sighand_struct *sighand)
1001 {
1002 if (atomic_dec_and_test(&sighand->count)) {
1003 signalfd_cleanup(sighand);
1004 kmem_cache_free(sighand_cachep, sighand);
1005 }
1006 }
1007
1008
1009 /*
1010 * Initialize POSIX timer handling for a thread group.
1011 */
1012 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1013 {
1014 unsigned long cpu_limit;
1015
1016 /* Thread group counters. */
1017 thread_group_cputime_init(sig);
1018
1019 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1020 if (cpu_limit != RLIM_INFINITY) {
1021 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1022 sig->cputimer.running = 1;
1023 }
1024
1025 /* The timer lists. */
1026 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1027 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1028 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1029 }
1030
1031 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1032 {
1033 struct signal_struct *sig;
1034
1035 if (clone_flags & CLONE_THREAD)
1036 return 0;
1037
1038 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1039 tsk->signal = sig;
1040 if (!sig)
1041 return -ENOMEM;
1042
1043 sig->nr_threads = 1;
1044 atomic_set(&sig->live, 1);
1045 atomic_set(&sig->sigcnt, 1);
1046
1047 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1048 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1049 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1050
1051 init_waitqueue_head(&sig->wait_chldexit);
1052 sig->curr_target = tsk;
1053 init_sigpending(&sig->shared_pending);
1054 INIT_LIST_HEAD(&sig->posix_timers);
1055
1056 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1057 sig->real_timer.function = it_real_fn;
1058
1059 task_lock(current->group_leader);
1060 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1061 task_unlock(current->group_leader);
1062
1063 posix_cpu_timers_init_group(sig);
1064
1065 tty_audit_fork(sig);
1066 sched_autogroup_fork(sig);
1067
1068 #ifdef CONFIG_CGROUPS
1069 init_rwsem(&sig->group_rwsem);
1070 #endif
1071
1072 sig->oom_score_adj = current->signal->oom_score_adj;
1073 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1074
1075 sig->has_child_subreaper = current->signal->has_child_subreaper ||
1076 current->signal->is_child_subreaper;
1077
1078 mutex_init(&sig->cred_guard_mutex);
1079
1080 return 0;
1081 }
1082
1083 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
1084 {
1085 unsigned long new_flags = p->flags;
1086
1087 new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1088 new_flags |= PF_FORKNOEXEC;
1089 p->flags = new_flags;
1090 }
1091
1092 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1093 {
1094 current->clear_child_tid = tidptr;
1095
1096 return task_pid_vnr(current);
1097 }
1098
1099 static void rt_mutex_init_task(struct task_struct *p)
1100 {
1101 raw_spin_lock_init(&p->pi_lock);
1102 #ifdef CONFIG_RT_MUTEXES
1103 plist_head_init(&p->pi_waiters);
1104 p->pi_blocked_on = NULL;
1105 #endif
1106 }
1107
1108 #ifdef CONFIG_MM_OWNER
1109 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1110 {
1111 mm->owner = p;
1112 }
1113 #endif /* CONFIG_MM_OWNER */
1114
1115 /*
1116 * Initialize POSIX timer handling for a single task.
1117 */
1118 static void posix_cpu_timers_init(struct task_struct *tsk)
1119 {
1120 tsk->cputime_expires.prof_exp = 0;
1121 tsk->cputime_expires.virt_exp = 0;
1122 tsk->cputime_expires.sched_exp = 0;
1123 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1124 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1125 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1126 }
1127
1128 /*
1129 * This creates a new process as a copy of the old one,
1130 * but does not actually start it yet.
1131 *
1132 * It copies the registers, and all the appropriate
1133 * parts of the process environment (as per the clone
1134 * flags). The actual kick-off is left to the caller.
1135 */
1136 static struct task_struct *copy_process(unsigned long clone_flags,
1137 unsigned long stack_start,
1138 unsigned long stack_size,
1139 int __user *child_tidptr,
1140 struct pid *pid,
1141 int trace)
1142 {
1143 int retval;
1144 struct task_struct *p;
1145
1146 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1147 return ERR_PTR(-EINVAL);
1148
1149 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1150 return ERR_PTR(-EINVAL);
1151
1152 /*
1153 * Thread groups must share signals as well, and detached threads
1154 * can only be started up within the thread group.
1155 */
1156 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1157 return ERR_PTR(-EINVAL);
1158
1159 /*
1160 * Shared signal handlers imply shared VM. By way of the above,
1161 * thread groups also imply shared VM. Blocking this case allows
1162 * for various simplifications in other code.
1163 */
1164 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1165 return ERR_PTR(-EINVAL);
1166
1167 /*
1168 * Siblings of global init remain as zombies on exit since they are
1169 * not reaped by their parent (swapper). To solve this and to avoid
1170 * multi-rooted process trees, prevent global and container-inits
1171 * from creating siblings.
1172 */
1173 if ((clone_flags & CLONE_PARENT) &&
1174 current->signal->flags & SIGNAL_UNKILLABLE)
1175 return ERR_PTR(-EINVAL);
1176
1177 /*
1178 * If the new process will be in a different pid namespace don't
1179 * allow it to share a thread group or signal handlers with the
1180 * forking task.
1181 */
1182 if ((clone_flags & (CLONE_SIGHAND | CLONE_NEWPID)) &&
1183 (task_active_pid_ns(current) != current->nsproxy->pid_ns))
1184 return ERR_PTR(-EINVAL);
1185
1186 retval = security_task_create(clone_flags);
1187 if (retval)
1188 goto fork_out;
1189
1190 retval = -ENOMEM;
1191 p = dup_task_struct(current);
1192 if (!p)
1193 goto fork_out;
1194
1195 ftrace_graph_init_task(p);
1196 get_seccomp_filter(p);
1197
1198 rt_mutex_init_task(p);
1199
1200 #ifdef CONFIG_PROVE_LOCKING
1201 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1202 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1203 #endif
1204 retval = -EAGAIN;
1205 if (atomic_read(&p->real_cred->user->processes) >=
1206 task_rlimit(p, RLIMIT_NPROC)) {
1207 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1208 p->real_cred->user != INIT_USER)
1209 goto bad_fork_free;
1210 }
1211 current->flags &= ~PF_NPROC_EXCEEDED;
1212
1213 retval = copy_creds(p, clone_flags);
1214 if (retval < 0)
1215 goto bad_fork_free;
1216
1217 /*
1218 * If multiple threads are within copy_process(), then this check
1219 * triggers too late. This doesn't hurt, the check is only there
1220 * to stop root fork bombs.
1221 */
1222 retval = -EAGAIN;
1223 if (nr_threads >= max_threads)
1224 goto bad_fork_cleanup_count;
1225
1226 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1227 goto bad_fork_cleanup_count;
1228
1229 p->did_exec = 0;
1230 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1231 copy_flags(clone_flags, p);
1232 INIT_LIST_HEAD(&p->children);
1233 INIT_LIST_HEAD(&p->sibling);
1234 rcu_copy_process(p);
1235 p->vfork_done = NULL;
1236 spin_lock_init(&p->alloc_lock);
1237
1238 init_sigpending(&p->pending);
1239
1240 p->utime = p->stime = p->gtime = 0;
1241 p->utimescaled = p->stimescaled = 0;
1242 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1243 p->prev_cputime.utime = p->prev_cputime.stime = 0;
1244 #endif
1245 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1246 seqlock_init(&p->vtime_seqlock);
1247 p->vtime_snap = 0;
1248 p->vtime_snap_whence = VTIME_SLEEPING;
1249 #endif
1250
1251 #if defined(SPLIT_RSS_COUNTING)
1252 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1253 #endif
1254
1255 p->default_timer_slack_ns = current->timer_slack_ns;
1256
1257 task_io_accounting_init(&p->ioac);
1258 acct_clear_integrals(p);
1259
1260 posix_cpu_timers_init(p);
1261
1262 do_posix_clock_monotonic_gettime(&p->start_time);
1263 p->real_start_time = p->start_time;
1264 monotonic_to_bootbased(&p->real_start_time);
1265 p->io_context = NULL;
1266 p->audit_context = NULL;
1267 if (clone_flags & CLONE_THREAD)
1268 threadgroup_change_begin(current);
1269 cgroup_fork(p);
1270 #ifdef CONFIG_NUMA
1271 p->mempolicy = mpol_dup(p->mempolicy);
1272 if (IS_ERR(p->mempolicy)) {
1273 retval = PTR_ERR(p->mempolicy);
1274 p->mempolicy = NULL;
1275 goto bad_fork_cleanup_cgroup;
1276 }
1277 mpol_fix_fork_child_flag(p);
1278 #endif
1279 #ifdef CONFIG_CPUSETS
1280 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1281 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1282 seqcount_init(&p->mems_allowed_seq);
1283 #endif
1284 #ifdef CONFIG_TRACE_IRQFLAGS
1285 p->irq_events = 0;
1286 p->hardirqs_enabled = 0;
1287 p->hardirq_enable_ip = 0;
1288 p->hardirq_enable_event = 0;
1289 p->hardirq_disable_ip = _THIS_IP_;
1290 p->hardirq_disable_event = 0;
1291 p->softirqs_enabled = 1;
1292 p->softirq_enable_ip = _THIS_IP_;
1293 p->softirq_enable_event = 0;
1294 p->softirq_disable_ip = 0;
1295 p->softirq_disable_event = 0;
1296 p->hardirq_context = 0;
1297 p->softirq_context = 0;
1298 #endif
1299 #ifdef CONFIG_LOCKDEP
1300 p->lockdep_depth = 0; /* no locks held yet */
1301 p->curr_chain_key = 0;
1302 p->lockdep_recursion = 0;
1303 #endif
1304
1305 #ifdef CONFIG_DEBUG_MUTEXES
1306 p->blocked_on = NULL; /* not blocked yet */
1307 #endif
1308 #ifdef CONFIG_MEMCG
1309 p->memcg_batch.do_batch = 0;
1310 p->memcg_batch.memcg = NULL;
1311 #endif
1312 #ifdef CONFIG_BCACHE
1313 p->sequential_io = 0;
1314 p->sequential_io_avg = 0;
1315 #endif
1316
1317 /* Perform scheduler related setup. Assign this task to a CPU. */
1318 sched_fork(p);
1319
1320 retval = perf_event_init_task(p);
1321 if (retval)
1322 goto bad_fork_cleanup_policy;
1323 retval = audit_alloc(p);
1324 if (retval)
1325 goto bad_fork_cleanup_perf;
1326 /* copy all the process information */
1327 retval = copy_semundo(clone_flags, p);
1328 if (retval)
1329 goto bad_fork_cleanup_audit;
1330 retval = copy_files(clone_flags, p);
1331 if (retval)
1332 goto bad_fork_cleanup_semundo;
1333 retval = copy_fs(clone_flags, p);
1334 if (retval)
1335 goto bad_fork_cleanup_files;
1336 retval = copy_sighand(clone_flags, p);
1337 if (retval)
1338 goto bad_fork_cleanup_fs;
1339 retval = copy_signal(clone_flags, p);
1340 if (retval)
1341 goto bad_fork_cleanup_sighand;
1342 retval = copy_mm(clone_flags, p);
1343 if (retval)
1344 goto bad_fork_cleanup_signal;
1345 retval = copy_namespaces(clone_flags, p);
1346 if (retval)
1347 goto bad_fork_cleanup_mm;
1348 retval = copy_io(clone_flags, p);
1349 if (retval)
1350 goto bad_fork_cleanup_namespaces;
1351 retval = copy_thread(clone_flags, stack_start, stack_size, p);
1352 if (retval)
1353 goto bad_fork_cleanup_io;
1354
1355 if (pid != &init_struct_pid) {
1356 retval = -ENOMEM;
1357 pid = alloc_pid(p->nsproxy->pid_ns);
1358 if (!pid)
1359 goto bad_fork_cleanup_io;
1360 }
1361
1362 p->pid = pid_nr(pid);
1363 p->tgid = p->pid;
1364 if (clone_flags & CLONE_THREAD)
1365 p->tgid = current->tgid;
1366
1367 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1368 /*
1369 * Clear TID on mm_release()?
1370 */
1371 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1372 #ifdef CONFIG_BLOCK
1373 p->plug = NULL;
1374 #endif
1375 #ifdef CONFIG_FUTEX
1376 p->robust_list = NULL;
1377 #ifdef CONFIG_COMPAT
1378 p->compat_robust_list = NULL;
1379 #endif
1380 INIT_LIST_HEAD(&p->pi_state_list);
1381 p->pi_state_cache = NULL;
1382 #endif
1383 uprobe_copy_process(p);
1384 /*
1385 * sigaltstack should be cleared when sharing the same VM
1386 */
1387 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1388 p->sas_ss_sp = p->sas_ss_size = 0;
1389
1390 /*
1391 * Syscall tracing and stepping should be turned off in the
1392 * child regardless of CLONE_PTRACE.
1393 */
1394 user_disable_single_step(p);
1395 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1396 #ifdef TIF_SYSCALL_EMU
1397 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1398 #endif
1399 clear_all_latency_tracing(p);
1400
1401 /* ok, now we should be set up.. */
1402 if (clone_flags & CLONE_THREAD)
1403 p->exit_signal = -1;
1404 else if (clone_flags & CLONE_PARENT)
1405 p->exit_signal = current->group_leader->exit_signal;
1406 else
1407 p->exit_signal = (clone_flags & CSIGNAL);
1408
1409 p->pdeath_signal = 0;
1410 p->exit_state = 0;
1411
1412 p->nr_dirtied = 0;
1413 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1414 p->dirty_paused_when = 0;
1415
1416 /*
1417 * Ok, make it visible to the rest of the system.
1418 * We dont wake it up yet.
1419 */
1420 p->group_leader = p;
1421 INIT_LIST_HEAD(&p->thread_group);
1422 p->task_works = NULL;
1423
1424 /* Need tasklist lock for parent etc handling! */
1425 write_lock_irq(&tasklist_lock);
1426
1427 /* CLONE_PARENT re-uses the old parent */
1428 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1429 p->real_parent = current->real_parent;
1430 p->parent_exec_id = current->parent_exec_id;
1431 } else {
1432 p->real_parent = current;
1433 p->parent_exec_id = current->self_exec_id;
1434 }
1435
1436 spin_lock(&current->sighand->siglock);
1437
1438 /*
1439 * Process group and session signals need to be delivered to just the
1440 * parent before the fork or both the parent and the child after the
1441 * fork. Restart if a signal comes in before we add the new process to
1442 * it's process group.
1443 * A fatal signal pending means that current will exit, so the new
1444 * thread can't slip out of an OOM kill (or normal SIGKILL).
1445 */
1446 recalc_sigpending();
1447 if (signal_pending(current)) {
1448 spin_unlock(&current->sighand->siglock);
1449 write_unlock_irq(&tasklist_lock);
1450 retval = -ERESTARTNOINTR;
1451 goto bad_fork_free_pid;
1452 }
1453
1454 if (likely(p->pid)) {
1455 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1456
1457 if (thread_group_leader(p)) {
1458 if (is_child_reaper(pid)) {
1459 ns_of_pid(pid)->child_reaper = p;
1460 p->signal->flags |= SIGNAL_UNKILLABLE;
1461 }
1462
1463 p->signal->leader_pid = pid;
1464 p->signal->tty = tty_kref_get(current->signal->tty);
1465 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1466 attach_pid(p, PIDTYPE_SID, task_session(current));
1467 list_add_tail(&p->sibling, &p->real_parent->children);
1468 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1469 __this_cpu_inc(process_counts);
1470 } else {
1471 current->signal->nr_threads++;
1472 atomic_inc(&current->signal->live);
1473 atomic_inc(&current->signal->sigcnt);
1474 p->group_leader = current->group_leader;
1475 list_add_tail_rcu(&p->thread_group,
1476 &p->group_leader->thread_group);
1477 list_add_tail_rcu(&p->thread_node,
1478 &p->signal->thread_head);
1479 }
1480 attach_pid(p, PIDTYPE_PID, pid);
1481 nr_threads++;
1482 }
1483
1484 total_forks++;
1485 spin_unlock(&current->sighand->siglock);
1486 syscall_tracepoint_update(p);
1487 write_unlock_irq(&tasklist_lock);
1488
1489 proc_fork_connector(p);
1490 cgroup_post_fork(p);
1491 if (clone_flags & CLONE_THREAD)
1492 threadgroup_change_end(current);
1493 perf_event_fork(p);
1494
1495 trace_task_newtask(p, clone_flags);
1496
1497 return p;
1498
1499 bad_fork_free_pid:
1500 if (pid != &init_struct_pid)
1501 free_pid(pid);
1502 bad_fork_cleanup_io:
1503 if (p->io_context)
1504 exit_io_context(p);
1505 bad_fork_cleanup_namespaces:
1506 exit_task_namespaces(p);
1507 bad_fork_cleanup_mm:
1508 if (p->mm)
1509 mmput(p->mm);
1510 bad_fork_cleanup_signal:
1511 if (!(clone_flags & CLONE_THREAD))
1512 free_signal_struct(p->signal);
1513 bad_fork_cleanup_sighand:
1514 __cleanup_sighand(p->sighand);
1515 bad_fork_cleanup_fs:
1516 exit_fs(p); /* blocking */
1517 bad_fork_cleanup_files:
1518 exit_files(p); /* blocking */
1519 bad_fork_cleanup_semundo:
1520 exit_sem(p);
1521 bad_fork_cleanup_audit:
1522 audit_free(p);
1523 bad_fork_cleanup_perf:
1524 perf_event_free_task(p);
1525 bad_fork_cleanup_policy:
1526 #ifdef CONFIG_NUMA
1527 mpol_put(p->mempolicy);
1528 bad_fork_cleanup_cgroup:
1529 #endif
1530 if (clone_flags & CLONE_THREAD)
1531 threadgroup_change_end(current);
1532 cgroup_exit(p, 0);
1533 delayacct_tsk_free(p);
1534 module_put(task_thread_info(p)->exec_domain->module);
1535 bad_fork_cleanup_count:
1536 atomic_dec(&p->cred->user->processes);
1537 exit_creds(p);
1538 bad_fork_free:
1539 free_task(p);
1540 fork_out:
1541 return ERR_PTR(retval);
1542 }
1543
1544 static inline void init_idle_pids(struct pid_link *links)
1545 {
1546 enum pid_type type;
1547
1548 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1549 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1550 links[type].pid = &init_struct_pid;
1551 }
1552 }
1553
1554 struct task_struct * __cpuinit fork_idle(int cpu)
1555 {
1556 struct task_struct *task;
1557 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0);
1558 if (!IS_ERR(task)) {
1559 init_idle_pids(task->pids);
1560 init_idle(task, cpu);
1561 }
1562
1563 return task;
1564 }
1565
1566 /*
1567 * Ok, this is the main fork-routine.
1568 *
1569 * It copies the process, and if successful kick-starts
1570 * it and waits for it to finish using the VM if required.
1571 */
1572 long do_fork(unsigned long clone_flags,
1573 unsigned long stack_start,
1574 unsigned long stack_size,
1575 int __user *parent_tidptr,
1576 int __user *child_tidptr)
1577 {
1578 struct task_struct *p;
1579 int trace = 0;
1580 long nr;
1581
1582 /*
1583 * Do some preliminary argument and permissions checking before we
1584 * actually start allocating stuff
1585 */
1586 if (clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) {
1587 if (clone_flags & (CLONE_THREAD|CLONE_PARENT))
1588 return -EINVAL;
1589 }
1590
1591 /*
1592 * Determine whether and which event to report to ptracer. When
1593 * called from kernel_thread or CLONE_UNTRACED is explicitly
1594 * requested, no event is reported; otherwise, report if the event
1595 * for the type of forking is enabled.
1596 */
1597 if (!(clone_flags & CLONE_UNTRACED)) {
1598 if (clone_flags & CLONE_VFORK)
1599 trace = PTRACE_EVENT_VFORK;
1600 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1601 trace = PTRACE_EVENT_CLONE;
1602 else
1603 trace = PTRACE_EVENT_FORK;
1604
1605 if (likely(!ptrace_event_enabled(current, trace)))
1606 trace = 0;
1607 }
1608
1609 p = copy_process(clone_flags, stack_start, stack_size,
1610 child_tidptr, NULL, trace);
1611 /*
1612 * Do this prior waking up the new thread - the thread pointer
1613 * might get invalid after that point, if the thread exits quickly.
1614 */
1615 if (!IS_ERR(p)) {
1616 struct completion vfork;
1617 struct pid *pid;
1618
1619 trace_sched_process_fork(current, p);
1620
1621 pid = get_task_pid(p, PIDTYPE_PID);
1622 nr = pid_vnr(pid);
1623
1624 if (clone_flags & CLONE_PARENT_SETTID)
1625 put_user(nr, parent_tidptr);
1626
1627 if (clone_flags & CLONE_VFORK) {
1628 p->vfork_done = &vfork;
1629 init_completion(&vfork);
1630 get_task_struct(p);
1631 }
1632
1633 wake_up_new_task(p);
1634
1635 /* forking complete and child started to run, tell ptracer */
1636 if (unlikely(trace))
1637 ptrace_event_pid(trace, pid);
1638
1639 if (clone_flags & CLONE_VFORK) {
1640 if (!wait_for_vfork_done(p, &vfork))
1641 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1642 }
1643
1644 put_pid(pid);
1645 } else {
1646 nr = PTR_ERR(p);
1647 }
1648 return nr;
1649 }
1650
1651 /*
1652 * Create a kernel thread.
1653 */
1654 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1655 {
1656 return do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1657 (unsigned long)arg, NULL, NULL);
1658 }
1659
1660 #ifdef __ARCH_WANT_SYS_FORK
1661 SYSCALL_DEFINE0(fork)
1662 {
1663 #ifdef CONFIG_MMU
1664 return do_fork(SIGCHLD, 0, 0, NULL, NULL);
1665 #else
1666 /* can not support in nommu mode */
1667 return(-EINVAL);
1668 #endif
1669 }
1670 #endif
1671
1672 #ifdef __ARCH_WANT_SYS_VFORK
1673 SYSCALL_DEFINE0(vfork)
1674 {
1675 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1676 0, NULL, NULL);
1677 }
1678 #endif
1679
1680 #ifdef __ARCH_WANT_SYS_CLONE
1681 #ifdef CONFIG_CLONE_BACKWARDS
1682 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1683 int __user *, parent_tidptr,
1684 int, tls_val,
1685 int __user *, child_tidptr)
1686 #elif defined(CONFIG_CLONE_BACKWARDS2)
1687 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1688 int __user *, parent_tidptr,
1689 int __user *, child_tidptr,
1690 int, tls_val)
1691 #elif defined(CONFIG_CLONE_BACKWARDS3)
1692 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
1693 int, stack_size,
1694 int __user *, parent_tidptr,
1695 int __user *, child_tidptr,
1696 int, tls_val)
1697 #else
1698 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1699 int __user *, parent_tidptr,
1700 int __user *, child_tidptr,
1701 int, tls_val)
1702 #endif
1703 {
1704 return do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr);
1705 }
1706 #endif
1707
1708 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1709 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1710 #endif
1711
1712 static void sighand_ctor(void *data)
1713 {
1714 struct sighand_struct *sighand = data;
1715
1716 spin_lock_init(&sighand->siglock);
1717 init_waitqueue_head(&sighand->signalfd_wqh);
1718 }
1719
1720 void __init proc_caches_init(void)
1721 {
1722 sighand_cachep = kmem_cache_create("sighand_cache",
1723 sizeof(struct sighand_struct), 0,
1724 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1725 SLAB_NOTRACK, sighand_ctor);
1726 signal_cachep = kmem_cache_create("signal_cache",
1727 sizeof(struct signal_struct), 0,
1728 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1729 files_cachep = kmem_cache_create("files_cache",
1730 sizeof(struct files_struct), 0,
1731 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1732 fs_cachep = kmem_cache_create("fs_cache",
1733 sizeof(struct fs_struct), 0,
1734 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1735 /*
1736 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1737 * whole struct cpumask for the OFFSTACK case. We could change
1738 * this to *only* allocate as much of it as required by the
1739 * maximum number of CPU's we can ever have. The cpumask_allocation
1740 * is at the end of the structure, exactly for that reason.
1741 */
1742 mm_cachep = kmem_cache_create("mm_struct",
1743 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1744 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1745 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1746 mmap_init();
1747 nsproxy_cache_init();
1748 }
1749
1750 /*
1751 * Check constraints on flags passed to the unshare system call.
1752 */
1753 static int check_unshare_flags(unsigned long unshare_flags)
1754 {
1755 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1756 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1757 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1758 CLONE_NEWUSER|CLONE_NEWPID))
1759 return -EINVAL;
1760 /*
1761 * Not implemented, but pretend it works if there is nothing
1762 * to unshare. Note that unsharing the address space or the
1763 * signal handlers also need to unshare the signal queues (aka
1764 * CLONE_THREAD).
1765 */
1766 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1767 if (!thread_group_empty(current))
1768 return -EINVAL;
1769 }
1770 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
1771 if (atomic_read(&current->sighand->count) > 1)
1772 return -EINVAL;
1773 }
1774 if (unshare_flags & CLONE_VM) {
1775 if (!current_is_single_threaded())
1776 return -EINVAL;
1777 }
1778
1779 return 0;
1780 }
1781
1782 /*
1783 * Unshare the filesystem structure if it is being shared
1784 */
1785 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1786 {
1787 struct fs_struct *fs = current->fs;
1788
1789 if (!(unshare_flags & CLONE_FS) || !fs)
1790 return 0;
1791
1792 /* don't need lock here; in the worst case we'll do useless copy */
1793 if (fs->users == 1)
1794 return 0;
1795
1796 *new_fsp = copy_fs_struct(fs);
1797 if (!*new_fsp)
1798 return -ENOMEM;
1799
1800 return 0;
1801 }
1802
1803 /*
1804 * Unshare file descriptor table if it is being shared
1805 */
1806 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1807 {
1808 struct files_struct *fd = current->files;
1809 int error = 0;
1810
1811 if ((unshare_flags & CLONE_FILES) &&
1812 (fd && atomic_read(&fd->count) > 1)) {
1813 *new_fdp = dup_fd(fd, &error);
1814 if (!*new_fdp)
1815 return error;
1816 }
1817
1818 return 0;
1819 }
1820
1821 /*
1822 * unshare allows a process to 'unshare' part of the process
1823 * context which was originally shared using clone. copy_*
1824 * functions used by do_fork() cannot be used here directly
1825 * because they modify an inactive task_struct that is being
1826 * constructed. Here we are modifying the current, active,
1827 * task_struct.
1828 */
1829 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1830 {
1831 struct fs_struct *fs, *new_fs = NULL;
1832 struct files_struct *fd, *new_fd = NULL;
1833 struct cred *new_cred = NULL;
1834 struct nsproxy *new_nsproxy = NULL;
1835 int do_sysvsem = 0;
1836 int err;
1837
1838 /*
1839 * If unsharing a user namespace must also unshare the thread.
1840 */
1841 if (unshare_flags & CLONE_NEWUSER)
1842 unshare_flags |= CLONE_THREAD | CLONE_FS;
1843 /*
1844 * If unsharing a pid namespace must also unshare the thread.
1845 */
1846 if (unshare_flags & CLONE_NEWPID)
1847 unshare_flags |= CLONE_THREAD;
1848 /*
1849 * If unsharing vm, must also unshare signal handlers.
1850 */
1851 if (unshare_flags & CLONE_VM)
1852 unshare_flags |= CLONE_SIGHAND;
1853 /*
1854 * If unsharing a signal handlers, must also unshare the signal queues.
1855 */
1856 if (unshare_flags & CLONE_SIGHAND)
1857 unshare_flags |= CLONE_THREAD;
1858 /*
1859 * If unsharing namespace, must also unshare filesystem information.
1860 */
1861 if (unshare_flags & CLONE_NEWNS)
1862 unshare_flags |= CLONE_FS;
1863
1864 err = check_unshare_flags(unshare_flags);
1865 if (err)
1866 goto bad_unshare_out;
1867 /*
1868 * CLONE_NEWIPC must also detach from the undolist: after switching
1869 * to a new ipc namespace, the semaphore arrays from the old
1870 * namespace are unreachable.
1871 */
1872 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1873 do_sysvsem = 1;
1874 err = unshare_fs(unshare_flags, &new_fs);
1875 if (err)
1876 goto bad_unshare_out;
1877 err = unshare_fd(unshare_flags, &new_fd);
1878 if (err)
1879 goto bad_unshare_cleanup_fs;
1880 err = unshare_userns(unshare_flags, &new_cred);
1881 if (err)
1882 goto bad_unshare_cleanup_fd;
1883 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1884 new_cred, new_fs);
1885 if (err)
1886 goto bad_unshare_cleanup_cred;
1887
1888 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
1889 if (do_sysvsem) {
1890 /*
1891 * CLONE_SYSVSEM is equivalent to sys_exit().
1892 */
1893 exit_sem(current);
1894 }
1895
1896 if (new_nsproxy)
1897 switch_task_namespaces(current, new_nsproxy);
1898
1899 task_lock(current);
1900
1901 if (new_fs) {
1902 fs = current->fs;
1903 spin_lock(&fs->lock);
1904 current->fs = new_fs;
1905 if (--fs->users)
1906 new_fs = NULL;
1907 else
1908 new_fs = fs;
1909 spin_unlock(&fs->lock);
1910 }
1911
1912 if (new_fd) {
1913 fd = current->files;
1914 current->files = new_fd;
1915 new_fd = fd;
1916 }
1917
1918 task_unlock(current);
1919
1920 if (new_cred) {
1921 /* Install the new user namespace */
1922 commit_creds(new_cred);
1923 new_cred = NULL;
1924 }
1925 }
1926
1927 bad_unshare_cleanup_cred:
1928 if (new_cred)
1929 put_cred(new_cred);
1930 bad_unshare_cleanup_fd:
1931 if (new_fd)
1932 put_files_struct(new_fd);
1933
1934 bad_unshare_cleanup_fs:
1935 if (new_fs)
1936 free_fs_struct(new_fs);
1937
1938 bad_unshare_out:
1939 return err;
1940 }
1941
1942 /*
1943 * Helper to unshare the files of the current task.
1944 * We don't want to expose copy_files internals to
1945 * the exec layer of the kernel.
1946 */
1947
1948 int unshare_files(struct files_struct **displaced)
1949 {
1950 struct task_struct *task = current;
1951 struct files_struct *copy = NULL;
1952 int error;
1953
1954 error = unshare_fd(CLONE_FILES, &copy);
1955 if (error || !copy) {
1956 *displaced = NULL;
1957 return error;
1958 }
1959 *displaced = task->files;
1960 task_lock(task);
1961 task->files = copy;
1962 task_unlock(task);
1963 return 0;
1964 }