memcg: rename config variables
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/seccomp.h>
38 #include <linux/swap.h>
39 #include <linux/syscalls.h>
40 #include <linux/jiffies.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/kthread.h>
44 #include <linux/task_io_accounting_ops.h>
45 #include <linux/rcupdate.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/audit.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/proc_fs.h>
52 #include <linux/profile.h>
53 #include <linux/rmap.h>
54 #include <linux/ksm.h>
55 #include <linux/acct.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/freezer.h>
59 #include <linux/delayacct.h>
60 #include <linux/taskstats_kern.h>
61 #include <linux/random.h>
62 #include <linux/tty.h>
63 #include <linux/blkdev.h>
64 #include <linux/fs_struct.h>
65 #include <linux/magic.h>
66 #include <linux/perf_event.h>
67 #include <linux/posix-timers.h>
68 #include <linux/user-return-notifier.h>
69 #include <linux/oom.h>
70 #include <linux/khugepaged.h>
71 #include <linux/signalfd.h>
72 #include <linux/uprobes.h>
73
74 #include <asm/pgtable.h>
75 #include <asm/pgalloc.h>
76 #include <asm/uaccess.h>
77 #include <asm/mmu_context.h>
78 #include <asm/cacheflush.h>
79 #include <asm/tlbflush.h>
80
81 #include <trace/events/sched.h>
82
83 #define CREATE_TRACE_POINTS
84 #include <trace/events/task.h>
85
86 /*
87 * Protected counters by write_lock_irq(&tasklist_lock)
88 */
89 unsigned long total_forks; /* Handle normal Linux uptimes. */
90 int nr_threads; /* The idle threads do not count.. */
91
92 int max_threads; /* tunable limit on nr_threads */
93
94 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
95
96 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
97
98 #ifdef CONFIG_PROVE_RCU
99 int lockdep_tasklist_lock_is_held(void)
100 {
101 return lockdep_is_held(&tasklist_lock);
102 }
103 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
104 #endif /* #ifdef CONFIG_PROVE_RCU */
105
106 int nr_processes(void)
107 {
108 int cpu;
109 int total = 0;
110
111 for_each_possible_cpu(cpu)
112 total += per_cpu(process_counts, cpu);
113
114 return total;
115 }
116
117 void __weak arch_release_task_struct(struct task_struct *tsk)
118 {
119 }
120
121 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
122 static struct kmem_cache *task_struct_cachep;
123
124 static inline struct task_struct *alloc_task_struct_node(int node)
125 {
126 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
127 }
128
129 static inline void free_task_struct(struct task_struct *tsk)
130 {
131 kmem_cache_free(task_struct_cachep, tsk);
132 }
133 #endif
134
135 void __weak arch_release_thread_info(struct thread_info *ti)
136 {
137 }
138
139 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
140
141 /*
142 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
143 * kmemcache based allocator.
144 */
145 # if THREAD_SIZE >= PAGE_SIZE
146 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
147 int node)
148 {
149 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
150 THREAD_SIZE_ORDER);
151
152 return page ? page_address(page) : NULL;
153 }
154
155 static inline void free_thread_info(struct thread_info *ti)
156 {
157 free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
158 }
159 # else
160 static struct kmem_cache *thread_info_cache;
161
162 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
163 int node)
164 {
165 return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
166 }
167
168 static void free_thread_info(struct thread_info *ti)
169 {
170 kmem_cache_free(thread_info_cache, ti);
171 }
172
173 void thread_info_cache_init(void)
174 {
175 thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
176 THREAD_SIZE, 0, NULL);
177 BUG_ON(thread_info_cache == NULL);
178 }
179 # endif
180 #endif
181
182 /* SLAB cache for signal_struct structures (tsk->signal) */
183 static struct kmem_cache *signal_cachep;
184
185 /* SLAB cache for sighand_struct structures (tsk->sighand) */
186 struct kmem_cache *sighand_cachep;
187
188 /* SLAB cache for files_struct structures (tsk->files) */
189 struct kmem_cache *files_cachep;
190
191 /* SLAB cache for fs_struct structures (tsk->fs) */
192 struct kmem_cache *fs_cachep;
193
194 /* SLAB cache for vm_area_struct structures */
195 struct kmem_cache *vm_area_cachep;
196
197 /* SLAB cache for mm_struct structures (tsk->mm) */
198 static struct kmem_cache *mm_cachep;
199
200 static void account_kernel_stack(struct thread_info *ti, int account)
201 {
202 struct zone *zone = page_zone(virt_to_page(ti));
203
204 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
205 }
206
207 void free_task(struct task_struct *tsk)
208 {
209 account_kernel_stack(tsk->stack, -1);
210 arch_release_thread_info(tsk->stack);
211 free_thread_info(tsk->stack);
212 rt_mutex_debug_task_free(tsk);
213 ftrace_graph_exit_task(tsk);
214 put_seccomp_filter(tsk);
215 arch_release_task_struct(tsk);
216 free_task_struct(tsk);
217 }
218 EXPORT_SYMBOL(free_task);
219
220 static inline void free_signal_struct(struct signal_struct *sig)
221 {
222 taskstats_tgid_free(sig);
223 sched_autogroup_exit(sig);
224 kmem_cache_free(signal_cachep, sig);
225 }
226
227 static inline void put_signal_struct(struct signal_struct *sig)
228 {
229 if (atomic_dec_and_test(&sig->sigcnt))
230 free_signal_struct(sig);
231 }
232
233 void __put_task_struct(struct task_struct *tsk)
234 {
235 WARN_ON(!tsk->exit_state);
236 WARN_ON(atomic_read(&tsk->usage));
237 WARN_ON(tsk == current);
238
239 security_task_free(tsk);
240 exit_creds(tsk);
241 delayacct_tsk_free(tsk);
242 put_signal_struct(tsk->signal);
243
244 if (!profile_handoff_task(tsk))
245 free_task(tsk);
246 }
247 EXPORT_SYMBOL_GPL(__put_task_struct);
248
249 void __init __weak arch_task_cache_init(void) { }
250
251 void __init fork_init(unsigned long mempages)
252 {
253 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
254 #ifndef ARCH_MIN_TASKALIGN
255 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
256 #endif
257 /* create a slab on which task_structs can be allocated */
258 task_struct_cachep =
259 kmem_cache_create("task_struct", sizeof(struct task_struct),
260 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
261 #endif
262
263 /* do the arch specific task caches init */
264 arch_task_cache_init();
265
266 /*
267 * The default maximum number of threads is set to a safe
268 * value: the thread structures can take up at most half
269 * of memory.
270 */
271 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
272
273 /*
274 * we need to allow at least 20 threads to boot a system
275 */
276 if (max_threads < 20)
277 max_threads = 20;
278
279 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
280 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
281 init_task.signal->rlim[RLIMIT_SIGPENDING] =
282 init_task.signal->rlim[RLIMIT_NPROC];
283 }
284
285 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
286 struct task_struct *src)
287 {
288 *dst = *src;
289 return 0;
290 }
291
292 static struct task_struct *dup_task_struct(struct task_struct *orig)
293 {
294 struct task_struct *tsk;
295 struct thread_info *ti;
296 unsigned long *stackend;
297 int node = tsk_fork_get_node(orig);
298 int err;
299
300 tsk = alloc_task_struct_node(node);
301 if (!tsk)
302 return NULL;
303
304 ti = alloc_thread_info_node(tsk, node);
305 if (!ti)
306 goto free_tsk;
307
308 err = arch_dup_task_struct(tsk, orig);
309 if (err)
310 goto free_ti;
311
312 tsk->stack = ti;
313
314 setup_thread_stack(tsk, orig);
315 clear_user_return_notifier(tsk);
316 clear_tsk_need_resched(tsk);
317 stackend = end_of_stack(tsk);
318 *stackend = STACK_END_MAGIC; /* for overflow detection */
319
320 #ifdef CONFIG_CC_STACKPROTECTOR
321 tsk->stack_canary = get_random_int();
322 #endif
323
324 /*
325 * One for us, one for whoever does the "release_task()" (usually
326 * parent)
327 */
328 atomic_set(&tsk->usage, 2);
329 #ifdef CONFIG_BLK_DEV_IO_TRACE
330 tsk->btrace_seq = 0;
331 #endif
332 tsk->splice_pipe = NULL;
333
334 account_kernel_stack(ti, 1);
335
336 return tsk;
337
338 free_ti:
339 free_thread_info(ti);
340 free_tsk:
341 free_task_struct(tsk);
342 return NULL;
343 }
344
345 #ifdef CONFIG_MMU
346 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
347 {
348 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
349 struct rb_node **rb_link, *rb_parent;
350 int retval;
351 unsigned long charge;
352 struct mempolicy *pol;
353
354 down_write(&oldmm->mmap_sem);
355 flush_cache_dup_mm(oldmm);
356 /*
357 * Not linked in yet - no deadlock potential:
358 */
359 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
360
361 mm->locked_vm = 0;
362 mm->mmap = NULL;
363 mm->mmap_cache = NULL;
364 mm->free_area_cache = oldmm->mmap_base;
365 mm->cached_hole_size = ~0UL;
366 mm->map_count = 0;
367 cpumask_clear(mm_cpumask(mm));
368 mm->mm_rb = RB_ROOT;
369 rb_link = &mm->mm_rb.rb_node;
370 rb_parent = NULL;
371 pprev = &mm->mmap;
372 retval = ksm_fork(mm, oldmm);
373 if (retval)
374 goto out;
375 retval = khugepaged_fork(mm, oldmm);
376 if (retval)
377 goto out;
378
379 prev = NULL;
380 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
381 struct file *file;
382
383 if (mpnt->vm_flags & VM_DONTCOPY) {
384 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
385 -vma_pages(mpnt));
386 continue;
387 }
388 charge = 0;
389 if (mpnt->vm_flags & VM_ACCOUNT) {
390 unsigned long len = vma_pages(mpnt);
391
392 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
393 goto fail_nomem;
394 charge = len;
395 }
396 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
397 if (!tmp)
398 goto fail_nomem;
399 *tmp = *mpnt;
400 INIT_LIST_HEAD(&tmp->anon_vma_chain);
401 pol = mpol_dup(vma_policy(mpnt));
402 retval = PTR_ERR(pol);
403 if (IS_ERR(pol))
404 goto fail_nomem_policy;
405 vma_set_policy(tmp, pol);
406 tmp->vm_mm = mm;
407 if (anon_vma_fork(tmp, mpnt))
408 goto fail_nomem_anon_vma_fork;
409 tmp->vm_flags &= ~VM_LOCKED;
410 tmp->vm_next = tmp->vm_prev = NULL;
411 file = tmp->vm_file;
412 if (file) {
413 struct inode *inode = file->f_path.dentry->d_inode;
414 struct address_space *mapping = file->f_mapping;
415
416 get_file(file);
417 if (tmp->vm_flags & VM_DENYWRITE)
418 atomic_dec(&inode->i_writecount);
419 mutex_lock(&mapping->i_mmap_mutex);
420 if (tmp->vm_flags & VM_SHARED)
421 mapping->i_mmap_writable++;
422 flush_dcache_mmap_lock(mapping);
423 /* insert tmp into the share list, just after mpnt */
424 vma_prio_tree_add(tmp, mpnt);
425 flush_dcache_mmap_unlock(mapping);
426 mutex_unlock(&mapping->i_mmap_mutex);
427 }
428
429 /*
430 * Clear hugetlb-related page reserves for children. This only
431 * affects MAP_PRIVATE mappings. Faults generated by the child
432 * are not guaranteed to succeed, even if read-only
433 */
434 if (is_vm_hugetlb_page(tmp))
435 reset_vma_resv_huge_pages(tmp);
436
437 /*
438 * Link in the new vma and copy the page table entries.
439 */
440 *pprev = tmp;
441 pprev = &tmp->vm_next;
442 tmp->vm_prev = prev;
443 prev = tmp;
444
445 __vma_link_rb(mm, tmp, rb_link, rb_parent);
446 rb_link = &tmp->vm_rb.rb_right;
447 rb_parent = &tmp->vm_rb;
448
449 mm->map_count++;
450 retval = copy_page_range(mm, oldmm, mpnt);
451
452 if (tmp->vm_ops && tmp->vm_ops->open)
453 tmp->vm_ops->open(tmp);
454
455 if (retval)
456 goto out;
457
458 if (file && uprobe_mmap(tmp))
459 goto out;
460 }
461 /* a new mm has just been created */
462 arch_dup_mmap(oldmm, mm);
463 retval = 0;
464 out:
465 up_write(&mm->mmap_sem);
466 flush_tlb_mm(oldmm);
467 up_write(&oldmm->mmap_sem);
468 return retval;
469 fail_nomem_anon_vma_fork:
470 mpol_put(pol);
471 fail_nomem_policy:
472 kmem_cache_free(vm_area_cachep, tmp);
473 fail_nomem:
474 retval = -ENOMEM;
475 vm_unacct_memory(charge);
476 goto out;
477 }
478
479 static inline int mm_alloc_pgd(struct mm_struct *mm)
480 {
481 mm->pgd = pgd_alloc(mm);
482 if (unlikely(!mm->pgd))
483 return -ENOMEM;
484 return 0;
485 }
486
487 static inline void mm_free_pgd(struct mm_struct *mm)
488 {
489 pgd_free(mm, mm->pgd);
490 }
491 #else
492 #define dup_mmap(mm, oldmm) (0)
493 #define mm_alloc_pgd(mm) (0)
494 #define mm_free_pgd(mm)
495 #endif /* CONFIG_MMU */
496
497 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
498
499 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
500 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
501
502 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
503
504 static int __init coredump_filter_setup(char *s)
505 {
506 default_dump_filter =
507 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
508 MMF_DUMP_FILTER_MASK;
509 return 1;
510 }
511
512 __setup("coredump_filter=", coredump_filter_setup);
513
514 #include <linux/init_task.h>
515
516 static void mm_init_aio(struct mm_struct *mm)
517 {
518 #ifdef CONFIG_AIO
519 spin_lock_init(&mm->ioctx_lock);
520 INIT_HLIST_HEAD(&mm->ioctx_list);
521 #endif
522 }
523
524 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
525 {
526 atomic_set(&mm->mm_users, 1);
527 atomic_set(&mm->mm_count, 1);
528 init_rwsem(&mm->mmap_sem);
529 INIT_LIST_HEAD(&mm->mmlist);
530 mm->flags = (current->mm) ?
531 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
532 mm->core_state = NULL;
533 mm->nr_ptes = 0;
534 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
535 spin_lock_init(&mm->page_table_lock);
536 mm->free_area_cache = TASK_UNMAPPED_BASE;
537 mm->cached_hole_size = ~0UL;
538 mm_init_aio(mm);
539 mm_init_owner(mm, p);
540
541 if (likely(!mm_alloc_pgd(mm))) {
542 mm->def_flags = 0;
543 mmu_notifier_mm_init(mm);
544 return mm;
545 }
546
547 free_mm(mm);
548 return NULL;
549 }
550
551 static void check_mm(struct mm_struct *mm)
552 {
553 int i;
554
555 for (i = 0; i < NR_MM_COUNTERS; i++) {
556 long x = atomic_long_read(&mm->rss_stat.count[i]);
557
558 if (unlikely(x))
559 printk(KERN_ALERT "BUG: Bad rss-counter state "
560 "mm:%p idx:%d val:%ld\n", mm, i, x);
561 }
562
563 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
564 VM_BUG_ON(mm->pmd_huge_pte);
565 #endif
566 }
567
568 /*
569 * Allocate and initialize an mm_struct.
570 */
571 struct mm_struct *mm_alloc(void)
572 {
573 struct mm_struct *mm;
574
575 mm = allocate_mm();
576 if (!mm)
577 return NULL;
578
579 memset(mm, 0, sizeof(*mm));
580 mm_init_cpumask(mm);
581 return mm_init(mm, current);
582 }
583
584 /*
585 * Called when the last reference to the mm
586 * is dropped: either by a lazy thread or by
587 * mmput. Free the page directory and the mm.
588 */
589 void __mmdrop(struct mm_struct *mm)
590 {
591 BUG_ON(mm == &init_mm);
592 mm_free_pgd(mm);
593 destroy_context(mm);
594 mmu_notifier_mm_destroy(mm);
595 check_mm(mm);
596 free_mm(mm);
597 }
598 EXPORT_SYMBOL_GPL(__mmdrop);
599
600 /*
601 * Decrement the use count and release all resources for an mm.
602 */
603 void mmput(struct mm_struct *mm)
604 {
605 might_sleep();
606
607 if (atomic_dec_and_test(&mm->mm_users)) {
608 uprobe_clear_state(mm);
609 exit_aio(mm);
610 ksm_exit(mm);
611 khugepaged_exit(mm); /* must run before exit_mmap */
612 exit_mmap(mm);
613 set_mm_exe_file(mm, NULL);
614 if (!list_empty(&mm->mmlist)) {
615 spin_lock(&mmlist_lock);
616 list_del(&mm->mmlist);
617 spin_unlock(&mmlist_lock);
618 }
619 if (mm->binfmt)
620 module_put(mm->binfmt->module);
621 mmdrop(mm);
622 }
623 }
624 EXPORT_SYMBOL_GPL(mmput);
625
626 /*
627 * We added or removed a vma mapping the executable. The vmas are only mapped
628 * during exec and are not mapped with the mmap system call.
629 * Callers must hold down_write() on the mm's mmap_sem for these
630 */
631 void added_exe_file_vma(struct mm_struct *mm)
632 {
633 mm->num_exe_file_vmas++;
634 }
635
636 void removed_exe_file_vma(struct mm_struct *mm)
637 {
638 mm->num_exe_file_vmas--;
639 if ((mm->num_exe_file_vmas == 0) && mm->exe_file) {
640 fput(mm->exe_file);
641 mm->exe_file = NULL;
642 }
643
644 }
645
646 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
647 {
648 if (new_exe_file)
649 get_file(new_exe_file);
650 if (mm->exe_file)
651 fput(mm->exe_file);
652 mm->exe_file = new_exe_file;
653 mm->num_exe_file_vmas = 0;
654 }
655
656 struct file *get_mm_exe_file(struct mm_struct *mm)
657 {
658 struct file *exe_file;
659
660 /* We need mmap_sem to protect against races with removal of
661 * VM_EXECUTABLE vmas */
662 down_read(&mm->mmap_sem);
663 exe_file = mm->exe_file;
664 if (exe_file)
665 get_file(exe_file);
666 up_read(&mm->mmap_sem);
667 return exe_file;
668 }
669
670 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
671 {
672 /* It's safe to write the exe_file pointer without exe_file_lock because
673 * this is called during fork when the task is not yet in /proc */
674 newmm->exe_file = get_mm_exe_file(oldmm);
675 }
676
677 /**
678 * get_task_mm - acquire a reference to the task's mm
679 *
680 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
681 * this kernel workthread has transiently adopted a user mm with use_mm,
682 * to do its AIO) is not set and if so returns a reference to it, after
683 * bumping up the use count. User must release the mm via mmput()
684 * after use. Typically used by /proc and ptrace.
685 */
686 struct mm_struct *get_task_mm(struct task_struct *task)
687 {
688 struct mm_struct *mm;
689
690 task_lock(task);
691 mm = task->mm;
692 if (mm) {
693 if (task->flags & PF_KTHREAD)
694 mm = NULL;
695 else
696 atomic_inc(&mm->mm_users);
697 }
698 task_unlock(task);
699 return mm;
700 }
701 EXPORT_SYMBOL_GPL(get_task_mm);
702
703 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
704 {
705 struct mm_struct *mm;
706 int err;
707
708 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
709 if (err)
710 return ERR_PTR(err);
711
712 mm = get_task_mm(task);
713 if (mm && mm != current->mm &&
714 !ptrace_may_access(task, mode)) {
715 mmput(mm);
716 mm = ERR_PTR(-EACCES);
717 }
718 mutex_unlock(&task->signal->cred_guard_mutex);
719
720 return mm;
721 }
722
723 static void complete_vfork_done(struct task_struct *tsk)
724 {
725 struct completion *vfork;
726
727 task_lock(tsk);
728 vfork = tsk->vfork_done;
729 if (likely(vfork)) {
730 tsk->vfork_done = NULL;
731 complete(vfork);
732 }
733 task_unlock(tsk);
734 }
735
736 static int wait_for_vfork_done(struct task_struct *child,
737 struct completion *vfork)
738 {
739 int killed;
740
741 freezer_do_not_count();
742 killed = wait_for_completion_killable(vfork);
743 freezer_count();
744
745 if (killed) {
746 task_lock(child);
747 child->vfork_done = NULL;
748 task_unlock(child);
749 }
750
751 put_task_struct(child);
752 return killed;
753 }
754
755 /* Please note the differences between mmput and mm_release.
756 * mmput is called whenever we stop holding onto a mm_struct,
757 * error success whatever.
758 *
759 * mm_release is called after a mm_struct has been removed
760 * from the current process.
761 *
762 * This difference is important for error handling, when we
763 * only half set up a mm_struct for a new process and need to restore
764 * the old one. Because we mmput the new mm_struct before
765 * restoring the old one. . .
766 * Eric Biederman 10 January 1998
767 */
768 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
769 {
770 /* Get rid of any futexes when releasing the mm */
771 #ifdef CONFIG_FUTEX
772 if (unlikely(tsk->robust_list)) {
773 exit_robust_list(tsk);
774 tsk->robust_list = NULL;
775 }
776 #ifdef CONFIG_COMPAT
777 if (unlikely(tsk->compat_robust_list)) {
778 compat_exit_robust_list(tsk);
779 tsk->compat_robust_list = NULL;
780 }
781 #endif
782 if (unlikely(!list_empty(&tsk->pi_state_list)))
783 exit_pi_state_list(tsk);
784 #endif
785
786 uprobe_free_utask(tsk);
787
788 /* Get rid of any cached register state */
789 deactivate_mm(tsk, mm);
790
791 /*
792 * If we're exiting normally, clear a user-space tid field if
793 * requested. We leave this alone when dying by signal, to leave
794 * the value intact in a core dump, and to save the unnecessary
795 * trouble, say, a killed vfork parent shouldn't touch this mm.
796 * Userland only wants this done for a sys_exit.
797 */
798 if (tsk->clear_child_tid) {
799 if (!(tsk->flags & PF_SIGNALED) &&
800 atomic_read(&mm->mm_users) > 1) {
801 /*
802 * We don't check the error code - if userspace has
803 * not set up a proper pointer then tough luck.
804 */
805 put_user(0, tsk->clear_child_tid);
806 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
807 1, NULL, NULL, 0);
808 }
809 tsk->clear_child_tid = NULL;
810 }
811
812 /*
813 * All done, finally we can wake up parent and return this mm to him.
814 * Also kthread_stop() uses this completion for synchronization.
815 */
816 if (tsk->vfork_done)
817 complete_vfork_done(tsk);
818 }
819
820 /*
821 * Allocate a new mm structure and copy contents from the
822 * mm structure of the passed in task structure.
823 */
824 struct mm_struct *dup_mm(struct task_struct *tsk)
825 {
826 struct mm_struct *mm, *oldmm = current->mm;
827 int err;
828
829 if (!oldmm)
830 return NULL;
831
832 mm = allocate_mm();
833 if (!mm)
834 goto fail_nomem;
835
836 memcpy(mm, oldmm, sizeof(*mm));
837 mm_init_cpumask(mm);
838
839 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
840 mm->pmd_huge_pte = NULL;
841 #endif
842 uprobe_reset_state(mm);
843
844 if (!mm_init(mm, tsk))
845 goto fail_nomem;
846
847 if (init_new_context(tsk, mm))
848 goto fail_nocontext;
849
850 dup_mm_exe_file(oldmm, mm);
851
852 err = dup_mmap(mm, oldmm);
853 if (err)
854 goto free_pt;
855
856 mm->hiwater_rss = get_mm_rss(mm);
857 mm->hiwater_vm = mm->total_vm;
858
859 if (mm->binfmt && !try_module_get(mm->binfmt->module))
860 goto free_pt;
861
862 return mm;
863
864 free_pt:
865 /* don't put binfmt in mmput, we haven't got module yet */
866 mm->binfmt = NULL;
867 mmput(mm);
868
869 fail_nomem:
870 return NULL;
871
872 fail_nocontext:
873 /*
874 * If init_new_context() failed, we cannot use mmput() to free the mm
875 * because it calls destroy_context()
876 */
877 mm_free_pgd(mm);
878 free_mm(mm);
879 return NULL;
880 }
881
882 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
883 {
884 struct mm_struct *mm, *oldmm;
885 int retval;
886
887 tsk->min_flt = tsk->maj_flt = 0;
888 tsk->nvcsw = tsk->nivcsw = 0;
889 #ifdef CONFIG_DETECT_HUNG_TASK
890 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
891 #endif
892
893 tsk->mm = NULL;
894 tsk->active_mm = NULL;
895
896 /*
897 * Are we cloning a kernel thread?
898 *
899 * We need to steal a active VM for that..
900 */
901 oldmm = current->mm;
902 if (!oldmm)
903 return 0;
904
905 if (clone_flags & CLONE_VM) {
906 atomic_inc(&oldmm->mm_users);
907 mm = oldmm;
908 goto good_mm;
909 }
910
911 retval = -ENOMEM;
912 mm = dup_mm(tsk);
913 if (!mm)
914 goto fail_nomem;
915
916 good_mm:
917 tsk->mm = mm;
918 tsk->active_mm = mm;
919 return 0;
920
921 fail_nomem:
922 return retval;
923 }
924
925 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
926 {
927 struct fs_struct *fs = current->fs;
928 if (clone_flags & CLONE_FS) {
929 /* tsk->fs is already what we want */
930 spin_lock(&fs->lock);
931 if (fs->in_exec) {
932 spin_unlock(&fs->lock);
933 return -EAGAIN;
934 }
935 fs->users++;
936 spin_unlock(&fs->lock);
937 return 0;
938 }
939 tsk->fs = copy_fs_struct(fs);
940 if (!tsk->fs)
941 return -ENOMEM;
942 return 0;
943 }
944
945 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
946 {
947 struct files_struct *oldf, *newf;
948 int error = 0;
949
950 /*
951 * A background process may not have any files ...
952 */
953 oldf = current->files;
954 if (!oldf)
955 goto out;
956
957 if (clone_flags & CLONE_FILES) {
958 atomic_inc(&oldf->count);
959 goto out;
960 }
961
962 newf = dup_fd(oldf, &error);
963 if (!newf)
964 goto out;
965
966 tsk->files = newf;
967 error = 0;
968 out:
969 return error;
970 }
971
972 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
973 {
974 #ifdef CONFIG_BLOCK
975 struct io_context *ioc = current->io_context;
976 struct io_context *new_ioc;
977
978 if (!ioc)
979 return 0;
980 /*
981 * Share io context with parent, if CLONE_IO is set
982 */
983 if (clone_flags & CLONE_IO) {
984 ioc_task_link(ioc);
985 tsk->io_context = ioc;
986 } else if (ioprio_valid(ioc->ioprio)) {
987 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
988 if (unlikely(!new_ioc))
989 return -ENOMEM;
990
991 new_ioc->ioprio = ioc->ioprio;
992 put_io_context(new_ioc);
993 }
994 #endif
995 return 0;
996 }
997
998 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
999 {
1000 struct sighand_struct *sig;
1001
1002 if (clone_flags & CLONE_SIGHAND) {
1003 atomic_inc(&current->sighand->count);
1004 return 0;
1005 }
1006 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1007 rcu_assign_pointer(tsk->sighand, sig);
1008 if (!sig)
1009 return -ENOMEM;
1010 atomic_set(&sig->count, 1);
1011 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1012 return 0;
1013 }
1014
1015 void __cleanup_sighand(struct sighand_struct *sighand)
1016 {
1017 if (atomic_dec_and_test(&sighand->count)) {
1018 signalfd_cleanup(sighand);
1019 kmem_cache_free(sighand_cachep, sighand);
1020 }
1021 }
1022
1023
1024 /*
1025 * Initialize POSIX timer handling for a thread group.
1026 */
1027 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1028 {
1029 unsigned long cpu_limit;
1030
1031 /* Thread group counters. */
1032 thread_group_cputime_init(sig);
1033
1034 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1035 if (cpu_limit != RLIM_INFINITY) {
1036 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1037 sig->cputimer.running = 1;
1038 }
1039
1040 /* The timer lists. */
1041 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1042 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1043 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1044 }
1045
1046 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1047 {
1048 struct signal_struct *sig;
1049
1050 if (clone_flags & CLONE_THREAD)
1051 return 0;
1052
1053 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1054 tsk->signal = sig;
1055 if (!sig)
1056 return -ENOMEM;
1057
1058 sig->nr_threads = 1;
1059 atomic_set(&sig->live, 1);
1060 atomic_set(&sig->sigcnt, 1);
1061 init_waitqueue_head(&sig->wait_chldexit);
1062 if (clone_flags & CLONE_NEWPID)
1063 sig->flags |= SIGNAL_UNKILLABLE;
1064 sig->curr_target = tsk;
1065 init_sigpending(&sig->shared_pending);
1066 INIT_LIST_HEAD(&sig->posix_timers);
1067
1068 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1069 sig->real_timer.function = it_real_fn;
1070
1071 task_lock(current->group_leader);
1072 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1073 task_unlock(current->group_leader);
1074
1075 posix_cpu_timers_init_group(sig);
1076
1077 tty_audit_fork(sig);
1078 sched_autogroup_fork(sig);
1079
1080 #ifdef CONFIG_CGROUPS
1081 init_rwsem(&sig->group_rwsem);
1082 #endif
1083
1084 sig->oom_adj = current->signal->oom_adj;
1085 sig->oom_score_adj = current->signal->oom_score_adj;
1086 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1087
1088 sig->has_child_subreaper = current->signal->has_child_subreaper ||
1089 current->signal->is_child_subreaper;
1090
1091 mutex_init(&sig->cred_guard_mutex);
1092
1093 return 0;
1094 }
1095
1096 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
1097 {
1098 unsigned long new_flags = p->flags;
1099
1100 new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1101 new_flags |= PF_FORKNOEXEC;
1102 p->flags = new_flags;
1103 }
1104
1105 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1106 {
1107 current->clear_child_tid = tidptr;
1108
1109 return task_pid_vnr(current);
1110 }
1111
1112 static void rt_mutex_init_task(struct task_struct *p)
1113 {
1114 raw_spin_lock_init(&p->pi_lock);
1115 #ifdef CONFIG_RT_MUTEXES
1116 plist_head_init(&p->pi_waiters);
1117 p->pi_blocked_on = NULL;
1118 #endif
1119 }
1120
1121 #ifdef CONFIG_MM_OWNER
1122 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1123 {
1124 mm->owner = p;
1125 }
1126 #endif /* CONFIG_MM_OWNER */
1127
1128 /*
1129 * Initialize POSIX timer handling for a single task.
1130 */
1131 static void posix_cpu_timers_init(struct task_struct *tsk)
1132 {
1133 tsk->cputime_expires.prof_exp = 0;
1134 tsk->cputime_expires.virt_exp = 0;
1135 tsk->cputime_expires.sched_exp = 0;
1136 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1137 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1138 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1139 }
1140
1141 /*
1142 * This creates a new process as a copy of the old one,
1143 * but does not actually start it yet.
1144 *
1145 * It copies the registers, and all the appropriate
1146 * parts of the process environment (as per the clone
1147 * flags). The actual kick-off is left to the caller.
1148 */
1149 static struct task_struct *copy_process(unsigned long clone_flags,
1150 unsigned long stack_start,
1151 struct pt_regs *regs,
1152 unsigned long stack_size,
1153 int __user *child_tidptr,
1154 struct pid *pid,
1155 int trace)
1156 {
1157 int retval;
1158 struct task_struct *p;
1159 int cgroup_callbacks_done = 0;
1160
1161 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1162 return ERR_PTR(-EINVAL);
1163
1164 /*
1165 * Thread groups must share signals as well, and detached threads
1166 * can only be started up within the thread group.
1167 */
1168 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1169 return ERR_PTR(-EINVAL);
1170
1171 /*
1172 * Shared signal handlers imply shared VM. By way of the above,
1173 * thread groups also imply shared VM. Blocking this case allows
1174 * for various simplifications in other code.
1175 */
1176 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1177 return ERR_PTR(-EINVAL);
1178
1179 /*
1180 * Siblings of global init remain as zombies on exit since they are
1181 * not reaped by their parent (swapper). To solve this and to avoid
1182 * multi-rooted process trees, prevent global and container-inits
1183 * from creating siblings.
1184 */
1185 if ((clone_flags & CLONE_PARENT) &&
1186 current->signal->flags & SIGNAL_UNKILLABLE)
1187 return ERR_PTR(-EINVAL);
1188
1189 retval = security_task_create(clone_flags);
1190 if (retval)
1191 goto fork_out;
1192
1193 retval = -ENOMEM;
1194 p = dup_task_struct(current);
1195 if (!p)
1196 goto fork_out;
1197
1198 ftrace_graph_init_task(p);
1199 get_seccomp_filter(p);
1200
1201 rt_mutex_init_task(p);
1202
1203 #ifdef CONFIG_PROVE_LOCKING
1204 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1205 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1206 #endif
1207 retval = -EAGAIN;
1208 if (atomic_read(&p->real_cred->user->processes) >=
1209 task_rlimit(p, RLIMIT_NPROC)) {
1210 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1211 p->real_cred->user != INIT_USER)
1212 goto bad_fork_free;
1213 }
1214 current->flags &= ~PF_NPROC_EXCEEDED;
1215
1216 retval = copy_creds(p, clone_flags);
1217 if (retval < 0)
1218 goto bad_fork_free;
1219
1220 /*
1221 * If multiple threads are within copy_process(), then this check
1222 * triggers too late. This doesn't hurt, the check is only there
1223 * to stop root fork bombs.
1224 */
1225 retval = -EAGAIN;
1226 if (nr_threads >= max_threads)
1227 goto bad_fork_cleanup_count;
1228
1229 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1230 goto bad_fork_cleanup_count;
1231
1232 p->did_exec = 0;
1233 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1234 copy_flags(clone_flags, p);
1235 INIT_LIST_HEAD(&p->children);
1236 INIT_LIST_HEAD(&p->sibling);
1237 rcu_copy_process(p);
1238 p->vfork_done = NULL;
1239 spin_lock_init(&p->alloc_lock);
1240
1241 init_sigpending(&p->pending);
1242
1243 p->utime = p->stime = p->gtime = 0;
1244 p->utimescaled = p->stimescaled = 0;
1245 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1246 p->prev_utime = p->prev_stime = 0;
1247 #endif
1248 #if defined(SPLIT_RSS_COUNTING)
1249 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1250 #endif
1251
1252 p->default_timer_slack_ns = current->timer_slack_ns;
1253
1254 task_io_accounting_init(&p->ioac);
1255 acct_clear_integrals(p);
1256
1257 posix_cpu_timers_init(p);
1258
1259 do_posix_clock_monotonic_gettime(&p->start_time);
1260 p->real_start_time = p->start_time;
1261 monotonic_to_bootbased(&p->real_start_time);
1262 p->io_context = NULL;
1263 p->audit_context = NULL;
1264 if (clone_flags & CLONE_THREAD)
1265 threadgroup_change_begin(current);
1266 cgroup_fork(p);
1267 #ifdef CONFIG_NUMA
1268 p->mempolicy = mpol_dup(p->mempolicy);
1269 if (IS_ERR(p->mempolicy)) {
1270 retval = PTR_ERR(p->mempolicy);
1271 p->mempolicy = NULL;
1272 goto bad_fork_cleanup_cgroup;
1273 }
1274 mpol_fix_fork_child_flag(p);
1275 #endif
1276 #ifdef CONFIG_CPUSETS
1277 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1278 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1279 seqcount_init(&p->mems_allowed_seq);
1280 #endif
1281 #ifdef CONFIG_TRACE_IRQFLAGS
1282 p->irq_events = 0;
1283 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1284 p->hardirqs_enabled = 1;
1285 #else
1286 p->hardirqs_enabled = 0;
1287 #endif
1288 p->hardirq_enable_ip = 0;
1289 p->hardirq_enable_event = 0;
1290 p->hardirq_disable_ip = _THIS_IP_;
1291 p->hardirq_disable_event = 0;
1292 p->softirqs_enabled = 1;
1293 p->softirq_enable_ip = _THIS_IP_;
1294 p->softirq_enable_event = 0;
1295 p->softirq_disable_ip = 0;
1296 p->softirq_disable_event = 0;
1297 p->hardirq_context = 0;
1298 p->softirq_context = 0;
1299 #endif
1300 #ifdef CONFIG_LOCKDEP
1301 p->lockdep_depth = 0; /* no locks held yet */
1302 p->curr_chain_key = 0;
1303 p->lockdep_recursion = 0;
1304 #endif
1305
1306 #ifdef CONFIG_DEBUG_MUTEXES
1307 p->blocked_on = NULL; /* not blocked yet */
1308 #endif
1309 #ifdef CONFIG_MEMCG
1310 p->memcg_batch.do_batch = 0;
1311 p->memcg_batch.memcg = NULL;
1312 #endif
1313
1314 /* Perform scheduler related setup. Assign this task to a CPU. */
1315 sched_fork(p);
1316
1317 retval = perf_event_init_task(p);
1318 if (retval)
1319 goto bad_fork_cleanup_policy;
1320 retval = audit_alloc(p);
1321 if (retval)
1322 goto bad_fork_cleanup_policy;
1323 /* copy all the process information */
1324 retval = copy_semundo(clone_flags, p);
1325 if (retval)
1326 goto bad_fork_cleanup_audit;
1327 retval = copy_files(clone_flags, p);
1328 if (retval)
1329 goto bad_fork_cleanup_semundo;
1330 retval = copy_fs(clone_flags, p);
1331 if (retval)
1332 goto bad_fork_cleanup_files;
1333 retval = copy_sighand(clone_flags, p);
1334 if (retval)
1335 goto bad_fork_cleanup_fs;
1336 retval = copy_signal(clone_flags, p);
1337 if (retval)
1338 goto bad_fork_cleanup_sighand;
1339 retval = copy_mm(clone_flags, p);
1340 if (retval)
1341 goto bad_fork_cleanup_signal;
1342 retval = copy_namespaces(clone_flags, p);
1343 if (retval)
1344 goto bad_fork_cleanup_mm;
1345 retval = copy_io(clone_flags, p);
1346 if (retval)
1347 goto bad_fork_cleanup_namespaces;
1348 retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1349 if (retval)
1350 goto bad_fork_cleanup_io;
1351
1352 if (pid != &init_struct_pid) {
1353 retval = -ENOMEM;
1354 pid = alloc_pid(p->nsproxy->pid_ns);
1355 if (!pid)
1356 goto bad_fork_cleanup_io;
1357 }
1358
1359 p->pid = pid_nr(pid);
1360 p->tgid = p->pid;
1361 if (clone_flags & CLONE_THREAD)
1362 p->tgid = current->tgid;
1363
1364 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1365 /*
1366 * Clear TID on mm_release()?
1367 */
1368 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1369 #ifdef CONFIG_BLOCK
1370 p->plug = NULL;
1371 #endif
1372 #ifdef CONFIG_FUTEX
1373 p->robust_list = NULL;
1374 #ifdef CONFIG_COMPAT
1375 p->compat_robust_list = NULL;
1376 #endif
1377 INIT_LIST_HEAD(&p->pi_state_list);
1378 p->pi_state_cache = NULL;
1379 #endif
1380 uprobe_copy_process(p);
1381 /*
1382 * sigaltstack should be cleared when sharing the same VM
1383 */
1384 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1385 p->sas_ss_sp = p->sas_ss_size = 0;
1386
1387 /*
1388 * Syscall tracing and stepping should be turned off in the
1389 * child regardless of CLONE_PTRACE.
1390 */
1391 user_disable_single_step(p);
1392 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1393 #ifdef TIF_SYSCALL_EMU
1394 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1395 #endif
1396 clear_all_latency_tracing(p);
1397
1398 /* ok, now we should be set up.. */
1399 if (clone_flags & CLONE_THREAD)
1400 p->exit_signal = -1;
1401 else if (clone_flags & CLONE_PARENT)
1402 p->exit_signal = current->group_leader->exit_signal;
1403 else
1404 p->exit_signal = (clone_flags & CSIGNAL);
1405
1406 p->pdeath_signal = 0;
1407 p->exit_state = 0;
1408
1409 p->nr_dirtied = 0;
1410 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1411 p->dirty_paused_when = 0;
1412
1413 /*
1414 * Ok, make it visible to the rest of the system.
1415 * We dont wake it up yet.
1416 */
1417 p->group_leader = p;
1418 INIT_LIST_HEAD(&p->thread_group);
1419 p->task_works = NULL;
1420
1421 /* Now that the task is set up, run cgroup callbacks if
1422 * necessary. We need to run them before the task is visible
1423 * on the tasklist. */
1424 cgroup_fork_callbacks(p);
1425 cgroup_callbacks_done = 1;
1426
1427 /* Need tasklist lock for parent etc handling! */
1428 write_lock_irq(&tasklist_lock);
1429
1430 /* CLONE_PARENT re-uses the old parent */
1431 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1432 p->real_parent = current->real_parent;
1433 p->parent_exec_id = current->parent_exec_id;
1434 } else {
1435 p->real_parent = current;
1436 p->parent_exec_id = current->self_exec_id;
1437 }
1438
1439 spin_lock(&current->sighand->siglock);
1440
1441 /*
1442 * Process group and session signals need to be delivered to just the
1443 * parent before the fork or both the parent and the child after the
1444 * fork. Restart if a signal comes in before we add the new process to
1445 * it's process group.
1446 * A fatal signal pending means that current will exit, so the new
1447 * thread can't slip out of an OOM kill (or normal SIGKILL).
1448 */
1449 recalc_sigpending();
1450 if (signal_pending(current)) {
1451 spin_unlock(&current->sighand->siglock);
1452 write_unlock_irq(&tasklist_lock);
1453 retval = -ERESTARTNOINTR;
1454 goto bad_fork_free_pid;
1455 }
1456
1457 if (clone_flags & CLONE_THREAD) {
1458 current->signal->nr_threads++;
1459 atomic_inc(&current->signal->live);
1460 atomic_inc(&current->signal->sigcnt);
1461 p->group_leader = current->group_leader;
1462 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1463 }
1464
1465 if (likely(p->pid)) {
1466 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1467
1468 if (thread_group_leader(p)) {
1469 if (is_child_reaper(pid))
1470 p->nsproxy->pid_ns->child_reaper = p;
1471
1472 p->signal->leader_pid = pid;
1473 p->signal->tty = tty_kref_get(current->signal->tty);
1474 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1475 attach_pid(p, PIDTYPE_SID, task_session(current));
1476 list_add_tail(&p->sibling, &p->real_parent->children);
1477 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1478 __this_cpu_inc(process_counts);
1479 }
1480 attach_pid(p, PIDTYPE_PID, pid);
1481 nr_threads++;
1482 }
1483
1484 total_forks++;
1485 spin_unlock(&current->sighand->siglock);
1486 write_unlock_irq(&tasklist_lock);
1487 proc_fork_connector(p);
1488 cgroup_post_fork(p);
1489 if (clone_flags & CLONE_THREAD)
1490 threadgroup_change_end(current);
1491 perf_event_fork(p);
1492
1493 trace_task_newtask(p, clone_flags);
1494
1495 return p;
1496
1497 bad_fork_free_pid:
1498 if (pid != &init_struct_pid)
1499 free_pid(pid);
1500 bad_fork_cleanup_io:
1501 if (p->io_context)
1502 exit_io_context(p);
1503 bad_fork_cleanup_namespaces:
1504 if (unlikely(clone_flags & CLONE_NEWPID))
1505 pid_ns_release_proc(p->nsproxy->pid_ns);
1506 exit_task_namespaces(p);
1507 bad_fork_cleanup_mm:
1508 if (p->mm)
1509 mmput(p->mm);
1510 bad_fork_cleanup_signal:
1511 if (!(clone_flags & CLONE_THREAD))
1512 free_signal_struct(p->signal);
1513 bad_fork_cleanup_sighand:
1514 __cleanup_sighand(p->sighand);
1515 bad_fork_cleanup_fs:
1516 exit_fs(p); /* blocking */
1517 bad_fork_cleanup_files:
1518 exit_files(p); /* blocking */
1519 bad_fork_cleanup_semundo:
1520 exit_sem(p);
1521 bad_fork_cleanup_audit:
1522 audit_free(p);
1523 bad_fork_cleanup_policy:
1524 perf_event_free_task(p);
1525 #ifdef CONFIG_NUMA
1526 mpol_put(p->mempolicy);
1527 bad_fork_cleanup_cgroup:
1528 #endif
1529 if (clone_flags & CLONE_THREAD)
1530 threadgroup_change_end(current);
1531 cgroup_exit(p, cgroup_callbacks_done);
1532 delayacct_tsk_free(p);
1533 module_put(task_thread_info(p)->exec_domain->module);
1534 bad_fork_cleanup_count:
1535 atomic_dec(&p->cred->user->processes);
1536 exit_creds(p);
1537 bad_fork_free:
1538 free_task(p);
1539 fork_out:
1540 return ERR_PTR(retval);
1541 }
1542
1543 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1544 {
1545 memset(regs, 0, sizeof(struct pt_regs));
1546 return regs;
1547 }
1548
1549 static inline void init_idle_pids(struct pid_link *links)
1550 {
1551 enum pid_type type;
1552
1553 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1554 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1555 links[type].pid = &init_struct_pid;
1556 }
1557 }
1558
1559 struct task_struct * __cpuinit fork_idle(int cpu)
1560 {
1561 struct task_struct *task;
1562 struct pt_regs regs;
1563
1564 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1565 &init_struct_pid, 0);
1566 if (!IS_ERR(task)) {
1567 init_idle_pids(task->pids);
1568 init_idle(task, cpu);
1569 }
1570
1571 return task;
1572 }
1573
1574 /*
1575 * Ok, this is the main fork-routine.
1576 *
1577 * It copies the process, and if successful kick-starts
1578 * it and waits for it to finish using the VM if required.
1579 */
1580 long do_fork(unsigned long clone_flags,
1581 unsigned long stack_start,
1582 struct pt_regs *regs,
1583 unsigned long stack_size,
1584 int __user *parent_tidptr,
1585 int __user *child_tidptr)
1586 {
1587 struct task_struct *p;
1588 int trace = 0;
1589 long nr;
1590
1591 /*
1592 * Do some preliminary argument and permissions checking before we
1593 * actually start allocating stuff
1594 */
1595 if (clone_flags & CLONE_NEWUSER) {
1596 if (clone_flags & CLONE_THREAD)
1597 return -EINVAL;
1598 /* hopefully this check will go away when userns support is
1599 * complete
1600 */
1601 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1602 !capable(CAP_SETGID))
1603 return -EPERM;
1604 }
1605
1606 /*
1607 * Determine whether and which event to report to ptracer. When
1608 * called from kernel_thread or CLONE_UNTRACED is explicitly
1609 * requested, no event is reported; otherwise, report if the event
1610 * for the type of forking is enabled.
1611 */
1612 if (likely(user_mode(regs)) && !(clone_flags & CLONE_UNTRACED)) {
1613 if (clone_flags & CLONE_VFORK)
1614 trace = PTRACE_EVENT_VFORK;
1615 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1616 trace = PTRACE_EVENT_CLONE;
1617 else
1618 trace = PTRACE_EVENT_FORK;
1619
1620 if (likely(!ptrace_event_enabled(current, trace)))
1621 trace = 0;
1622 }
1623
1624 p = copy_process(clone_flags, stack_start, regs, stack_size,
1625 child_tidptr, NULL, trace);
1626 /*
1627 * Do this prior waking up the new thread - the thread pointer
1628 * might get invalid after that point, if the thread exits quickly.
1629 */
1630 if (!IS_ERR(p)) {
1631 struct completion vfork;
1632
1633 trace_sched_process_fork(current, p);
1634
1635 nr = task_pid_vnr(p);
1636
1637 if (clone_flags & CLONE_PARENT_SETTID)
1638 put_user(nr, parent_tidptr);
1639
1640 if (clone_flags & CLONE_VFORK) {
1641 p->vfork_done = &vfork;
1642 init_completion(&vfork);
1643 get_task_struct(p);
1644 }
1645
1646 wake_up_new_task(p);
1647
1648 /* forking complete and child started to run, tell ptracer */
1649 if (unlikely(trace))
1650 ptrace_event(trace, nr);
1651
1652 if (clone_flags & CLONE_VFORK) {
1653 if (!wait_for_vfork_done(p, &vfork))
1654 ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
1655 }
1656 } else {
1657 nr = PTR_ERR(p);
1658 }
1659 return nr;
1660 }
1661
1662 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1663 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1664 #endif
1665
1666 static void sighand_ctor(void *data)
1667 {
1668 struct sighand_struct *sighand = data;
1669
1670 spin_lock_init(&sighand->siglock);
1671 init_waitqueue_head(&sighand->signalfd_wqh);
1672 }
1673
1674 void __init proc_caches_init(void)
1675 {
1676 sighand_cachep = kmem_cache_create("sighand_cache",
1677 sizeof(struct sighand_struct), 0,
1678 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1679 SLAB_NOTRACK, sighand_ctor);
1680 signal_cachep = kmem_cache_create("signal_cache",
1681 sizeof(struct signal_struct), 0,
1682 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1683 files_cachep = kmem_cache_create("files_cache",
1684 sizeof(struct files_struct), 0,
1685 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1686 fs_cachep = kmem_cache_create("fs_cache",
1687 sizeof(struct fs_struct), 0,
1688 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1689 /*
1690 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1691 * whole struct cpumask for the OFFSTACK case. We could change
1692 * this to *only* allocate as much of it as required by the
1693 * maximum number of CPU's we can ever have. The cpumask_allocation
1694 * is at the end of the structure, exactly for that reason.
1695 */
1696 mm_cachep = kmem_cache_create("mm_struct",
1697 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1698 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1699 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1700 mmap_init();
1701 nsproxy_cache_init();
1702 }
1703
1704 /*
1705 * Check constraints on flags passed to the unshare system call.
1706 */
1707 static int check_unshare_flags(unsigned long unshare_flags)
1708 {
1709 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1710 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1711 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1712 return -EINVAL;
1713 /*
1714 * Not implemented, but pretend it works if there is nothing to
1715 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1716 * needs to unshare vm.
1717 */
1718 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1719 /* FIXME: get_task_mm() increments ->mm_users */
1720 if (atomic_read(&current->mm->mm_users) > 1)
1721 return -EINVAL;
1722 }
1723
1724 return 0;
1725 }
1726
1727 /*
1728 * Unshare the filesystem structure if it is being shared
1729 */
1730 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1731 {
1732 struct fs_struct *fs = current->fs;
1733
1734 if (!(unshare_flags & CLONE_FS) || !fs)
1735 return 0;
1736
1737 /* don't need lock here; in the worst case we'll do useless copy */
1738 if (fs->users == 1)
1739 return 0;
1740
1741 *new_fsp = copy_fs_struct(fs);
1742 if (!*new_fsp)
1743 return -ENOMEM;
1744
1745 return 0;
1746 }
1747
1748 /*
1749 * Unshare file descriptor table if it is being shared
1750 */
1751 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1752 {
1753 struct files_struct *fd = current->files;
1754 int error = 0;
1755
1756 if ((unshare_flags & CLONE_FILES) &&
1757 (fd && atomic_read(&fd->count) > 1)) {
1758 *new_fdp = dup_fd(fd, &error);
1759 if (!*new_fdp)
1760 return error;
1761 }
1762
1763 return 0;
1764 }
1765
1766 /*
1767 * unshare allows a process to 'unshare' part of the process
1768 * context which was originally shared using clone. copy_*
1769 * functions used by do_fork() cannot be used here directly
1770 * because they modify an inactive task_struct that is being
1771 * constructed. Here we are modifying the current, active,
1772 * task_struct.
1773 */
1774 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1775 {
1776 struct fs_struct *fs, *new_fs = NULL;
1777 struct files_struct *fd, *new_fd = NULL;
1778 struct nsproxy *new_nsproxy = NULL;
1779 int do_sysvsem = 0;
1780 int err;
1781
1782 err = check_unshare_flags(unshare_flags);
1783 if (err)
1784 goto bad_unshare_out;
1785
1786 /*
1787 * If unsharing namespace, must also unshare filesystem information.
1788 */
1789 if (unshare_flags & CLONE_NEWNS)
1790 unshare_flags |= CLONE_FS;
1791 /*
1792 * CLONE_NEWIPC must also detach from the undolist: after switching
1793 * to a new ipc namespace, the semaphore arrays from the old
1794 * namespace are unreachable.
1795 */
1796 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1797 do_sysvsem = 1;
1798 err = unshare_fs(unshare_flags, &new_fs);
1799 if (err)
1800 goto bad_unshare_out;
1801 err = unshare_fd(unshare_flags, &new_fd);
1802 if (err)
1803 goto bad_unshare_cleanup_fs;
1804 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, new_fs);
1805 if (err)
1806 goto bad_unshare_cleanup_fd;
1807
1808 if (new_fs || new_fd || do_sysvsem || new_nsproxy) {
1809 if (do_sysvsem) {
1810 /*
1811 * CLONE_SYSVSEM is equivalent to sys_exit().
1812 */
1813 exit_sem(current);
1814 }
1815
1816 if (new_nsproxy) {
1817 switch_task_namespaces(current, new_nsproxy);
1818 new_nsproxy = NULL;
1819 }
1820
1821 task_lock(current);
1822
1823 if (new_fs) {
1824 fs = current->fs;
1825 spin_lock(&fs->lock);
1826 current->fs = new_fs;
1827 if (--fs->users)
1828 new_fs = NULL;
1829 else
1830 new_fs = fs;
1831 spin_unlock(&fs->lock);
1832 }
1833
1834 if (new_fd) {
1835 fd = current->files;
1836 current->files = new_fd;
1837 new_fd = fd;
1838 }
1839
1840 task_unlock(current);
1841 }
1842
1843 if (new_nsproxy)
1844 put_nsproxy(new_nsproxy);
1845
1846 bad_unshare_cleanup_fd:
1847 if (new_fd)
1848 put_files_struct(new_fd);
1849
1850 bad_unshare_cleanup_fs:
1851 if (new_fs)
1852 free_fs_struct(new_fs);
1853
1854 bad_unshare_out:
1855 return err;
1856 }
1857
1858 /*
1859 * Helper to unshare the files of the current task.
1860 * We don't want to expose copy_files internals to
1861 * the exec layer of the kernel.
1862 */
1863
1864 int unshare_files(struct files_struct **displaced)
1865 {
1866 struct task_struct *task = current;
1867 struct files_struct *copy = NULL;
1868 int error;
1869
1870 error = unshare_fd(CLONE_FILES, &copy);
1871 if (error || !copy) {
1872 *displaced = NULL;
1873 return error;
1874 }
1875 *displaced = task->files;
1876 task_lock(task);
1877 task->files = copy;
1878 task_unlock(task);
1879 return 0;
1880 }