Merge commit 'v2.6.38-rc3' into next
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / exit.c
1 /*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/binfmts.h>
24 #include <linux/nsproxy.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/ptrace.h>
27 #include <linux/profile.h>
28 #include <linux/mount.h>
29 #include <linux/proc_fs.h>
30 #include <linux/kthread.h>
31 #include <linux/mempolicy.h>
32 #include <linux/taskstats_kern.h>
33 #include <linux/delayacct.h>
34 #include <linux/freezer.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h>
54
55 #include <asm/uaccess.h>
56 #include <asm/unistd.h>
57 #include <asm/pgtable.h>
58 #include <asm/mmu_context.h>
59
60 static void exit_mm(struct task_struct * tsk);
61
62 static void __unhash_process(struct task_struct *p, bool group_dead)
63 {
64 nr_threads--;
65 detach_pid(p, PIDTYPE_PID);
66 if (group_dead) {
67 detach_pid(p, PIDTYPE_PGID);
68 detach_pid(p, PIDTYPE_SID);
69
70 list_del_rcu(&p->tasks);
71 list_del_init(&p->sibling);
72 __this_cpu_dec(process_counts);
73 }
74 list_del_rcu(&p->thread_group);
75 }
76
77 /*
78 * This function expects the tasklist_lock write-locked.
79 */
80 static void __exit_signal(struct task_struct *tsk)
81 {
82 struct signal_struct *sig = tsk->signal;
83 bool group_dead = thread_group_leader(tsk);
84 struct sighand_struct *sighand;
85 struct tty_struct *uninitialized_var(tty);
86
87 sighand = rcu_dereference_check(tsk->sighand,
88 rcu_read_lock_held() ||
89 lockdep_tasklist_lock_is_held());
90 spin_lock(&sighand->siglock);
91
92 posix_cpu_timers_exit(tsk);
93 if (group_dead) {
94 posix_cpu_timers_exit_group(tsk);
95 tty = sig->tty;
96 sig->tty = NULL;
97 } else {
98 /*
99 * This can only happen if the caller is de_thread().
100 * FIXME: this is the temporary hack, we should teach
101 * posix-cpu-timers to handle this case correctly.
102 */
103 if (unlikely(has_group_leader_pid(tsk)))
104 posix_cpu_timers_exit_group(tsk);
105
106 /*
107 * If there is any task waiting for the group exit
108 * then notify it:
109 */
110 if (sig->notify_count > 0 && !--sig->notify_count)
111 wake_up_process(sig->group_exit_task);
112
113 if (tsk == sig->curr_target)
114 sig->curr_target = next_thread(tsk);
115 /*
116 * Accumulate here the counters for all threads but the
117 * group leader as they die, so they can be added into
118 * the process-wide totals when those are taken.
119 * The group leader stays around as a zombie as long
120 * as there are other threads. When it gets reaped,
121 * the exit.c code will add its counts into these totals.
122 * We won't ever get here for the group leader, since it
123 * will have been the last reference on the signal_struct.
124 */
125 sig->utime = cputime_add(sig->utime, tsk->utime);
126 sig->stime = cputime_add(sig->stime, tsk->stime);
127 sig->gtime = cputime_add(sig->gtime, tsk->gtime);
128 sig->min_flt += tsk->min_flt;
129 sig->maj_flt += tsk->maj_flt;
130 sig->nvcsw += tsk->nvcsw;
131 sig->nivcsw += tsk->nivcsw;
132 sig->inblock += task_io_get_inblock(tsk);
133 sig->oublock += task_io_get_oublock(tsk);
134 task_io_accounting_add(&sig->ioac, &tsk->ioac);
135 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
136 }
137
138 sig->nr_threads--;
139 __unhash_process(tsk, group_dead);
140
141 /*
142 * Do this under ->siglock, we can race with another thread
143 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
144 */
145 flush_sigqueue(&tsk->pending);
146 tsk->sighand = NULL;
147 spin_unlock(&sighand->siglock);
148
149 __cleanup_sighand(sighand);
150 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
151 if (group_dead) {
152 flush_sigqueue(&sig->shared_pending);
153 tty_kref_put(tty);
154 }
155 }
156
157 static void delayed_put_task_struct(struct rcu_head *rhp)
158 {
159 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
160
161 perf_event_delayed_put(tsk);
162 trace_sched_process_free(tsk);
163 put_task_struct(tsk);
164 }
165
166
167 void release_task(struct task_struct * p)
168 {
169 struct task_struct *leader;
170 int zap_leader;
171 repeat:
172 tracehook_prepare_release_task(p);
173 /* don't need to get the RCU readlock here - the process is dead and
174 * can't be modifying its own credentials. But shut RCU-lockdep up */
175 rcu_read_lock();
176 atomic_dec(&__task_cred(p)->user->processes);
177 rcu_read_unlock();
178
179 proc_flush_task(p);
180
181 write_lock_irq(&tasklist_lock);
182 tracehook_finish_release_task(p);
183 __exit_signal(p);
184
185 /*
186 * If we are the last non-leader member of the thread
187 * group, and the leader is zombie, then notify the
188 * group leader's parent process. (if it wants notification.)
189 */
190 zap_leader = 0;
191 leader = p->group_leader;
192 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
193 BUG_ON(task_detached(leader));
194 do_notify_parent(leader, leader->exit_signal);
195 /*
196 * If we were the last child thread and the leader has
197 * exited already, and the leader's parent ignores SIGCHLD,
198 * then we are the one who should release the leader.
199 *
200 * do_notify_parent() will have marked it self-reaping in
201 * that case.
202 */
203 zap_leader = task_detached(leader);
204
205 /*
206 * This maintains the invariant that release_task()
207 * only runs on a task in EXIT_DEAD, just for sanity.
208 */
209 if (zap_leader)
210 leader->exit_state = EXIT_DEAD;
211 }
212
213 write_unlock_irq(&tasklist_lock);
214 release_thread(p);
215 call_rcu(&p->rcu, delayed_put_task_struct);
216
217 p = leader;
218 if (unlikely(zap_leader))
219 goto repeat;
220 }
221
222 /*
223 * This checks not only the pgrp, but falls back on the pid if no
224 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
225 * without this...
226 *
227 * The caller must hold rcu lock or the tasklist lock.
228 */
229 struct pid *session_of_pgrp(struct pid *pgrp)
230 {
231 struct task_struct *p;
232 struct pid *sid = NULL;
233
234 p = pid_task(pgrp, PIDTYPE_PGID);
235 if (p == NULL)
236 p = pid_task(pgrp, PIDTYPE_PID);
237 if (p != NULL)
238 sid = task_session(p);
239
240 return sid;
241 }
242
243 /*
244 * Determine if a process group is "orphaned", according to the POSIX
245 * definition in 2.2.2.52. Orphaned process groups are not to be affected
246 * by terminal-generated stop signals. Newly orphaned process groups are
247 * to receive a SIGHUP and a SIGCONT.
248 *
249 * "I ask you, have you ever known what it is to be an orphan?"
250 */
251 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
252 {
253 struct task_struct *p;
254
255 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
256 if ((p == ignored_task) ||
257 (p->exit_state && thread_group_empty(p)) ||
258 is_global_init(p->real_parent))
259 continue;
260
261 if (task_pgrp(p->real_parent) != pgrp &&
262 task_session(p->real_parent) == task_session(p))
263 return 0;
264 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
265
266 return 1;
267 }
268
269 int is_current_pgrp_orphaned(void)
270 {
271 int retval;
272
273 read_lock(&tasklist_lock);
274 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
275 read_unlock(&tasklist_lock);
276
277 return retval;
278 }
279
280 static int has_stopped_jobs(struct pid *pgrp)
281 {
282 int retval = 0;
283 struct task_struct *p;
284
285 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
286 if (!task_is_stopped(p))
287 continue;
288 retval = 1;
289 break;
290 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
291 return retval;
292 }
293
294 /*
295 * Check to see if any process groups have become orphaned as
296 * a result of our exiting, and if they have any stopped jobs,
297 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
298 */
299 static void
300 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
301 {
302 struct pid *pgrp = task_pgrp(tsk);
303 struct task_struct *ignored_task = tsk;
304
305 if (!parent)
306 /* exit: our father is in a different pgrp than
307 * we are and we were the only connection outside.
308 */
309 parent = tsk->real_parent;
310 else
311 /* reparent: our child is in a different pgrp than
312 * we are, and it was the only connection outside.
313 */
314 ignored_task = NULL;
315
316 if (task_pgrp(parent) != pgrp &&
317 task_session(parent) == task_session(tsk) &&
318 will_become_orphaned_pgrp(pgrp, ignored_task) &&
319 has_stopped_jobs(pgrp)) {
320 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
321 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
322 }
323 }
324
325 /**
326 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
327 *
328 * If a kernel thread is launched as a result of a system call, or if
329 * it ever exits, it should generally reparent itself to kthreadd so it
330 * isn't in the way of other processes and is correctly cleaned up on exit.
331 *
332 * The various task state such as scheduling policy and priority may have
333 * been inherited from a user process, so we reset them to sane values here.
334 *
335 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
336 */
337 static void reparent_to_kthreadd(void)
338 {
339 write_lock_irq(&tasklist_lock);
340
341 ptrace_unlink(current);
342 /* Reparent to init */
343 current->real_parent = current->parent = kthreadd_task;
344 list_move_tail(&current->sibling, &current->real_parent->children);
345
346 /* Set the exit signal to SIGCHLD so we signal init on exit */
347 current->exit_signal = SIGCHLD;
348
349 if (task_nice(current) < 0)
350 set_user_nice(current, 0);
351 /* cpus_allowed? */
352 /* rt_priority? */
353 /* signals? */
354 memcpy(current->signal->rlim, init_task.signal->rlim,
355 sizeof(current->signal->rlim));
356
357 atomic_inc(&init_cred.usage);
358 commit_creds(&init_cred);
359 write_unlock_irq(&tasklist_lock);
360 }
361
362 void __set_special_pids(struct pid *pid)
363 {
364 struct task_struct *curr = current->group_leader;
365
366 if (task_session(curr) != pid)
367 change_pid(curr, PIDTYPE_SID, pid);
368
369 if (task_pgrp(curr) != pid)
370 change_pid(curr, PIDTYPE_PGID, pid);
371 }
372
373 static void set_special_pids(struct pid *pid)
374 {
375 write_lock_irq(&tasklist_lock);
376 __set_special_pids(pid);
377 write_unlock_irq(&tasklist_lock);
378 }
379
380 /*
381 * Let kernel threads use this to say that they allow a certain signal.
382 * Must not be used if kthread was cloned with CLONE_SIGHAND.
383 */
384 int allow_signal(int sig)
385 {
386 if (!valid_signal(sig) || sig < 1)
387 return -EINVAL;
388
389 spin_lock_irq(&current->sighand->siglock);
390 /* This is only needed for daemonize()'ed kthreads */
391 sigdelset(&current->blocked, sig);
392 /*
393 * Kernel threads handle their own signals. Let the signal code
394 * know it'll be handled, so that they don't get converted to
395 * SIGKILL or just silently dropped.
396 */
397 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
398 recalc_sigpending();
399 spin_unlock_irq(&current->sighand->siglock);
400 return 0;
401 }
402
403 EXPORT_SYMBOL(allow_signal);
404
405 int disallow_signal(int sig)
406 {
407 if (!valid_signal(sig) || sig < 1)
408 return -EINVAL;
409
410 spin_lock_irq(&current->sighand->siglock);
411 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
412 recalc_sigpending();
413 spin_unlock_irq(&current->sighand->siglock);
414 return 0;
415 }
416
417 EXPORT_SYMBOL(disallow_signal);
418
419 /*
420 * Put all the gunge required to become a kernel thread without
421 * attached user resources in one place where it belongs.
422 */
423
424 void daemonize(const char *name, ...)
425 {
426 va_list args;
427 sigset_t blocked;
428
429 va_start(args, name);
430 vsnprintf(current->comm, sizeof(current->comm), name, args);
431 va_end(args);
432
433 /*
434 * If we were started as result of loading a module, close all of the
435 * user space pages. We don't need them, and if we didn't close them
436 * they would be locked into memory.
437 */
438 exit_mm(current);
439 /*
440 * We don't want to have TIF_FREEZE set if the system-wide hibernation
441 * or suspend transition begins right now.
442 */
443 current->flags |= (PF_NOFREEZE | PF_KTHREAD);
444
445 if (current->nsproxy != &init_nsproxy) {
446 get_nsproxy(&init_nsproxy);
447 switch_task_namespaces(current, &init_nsproxy);
448 }
449 set_special_pids(&init_struct_pid);
450 proc_clear_tty(current);
451
452 /* Block and flush all signals */
453 sigfillset(&blocked);
454 sigprocmask(SIG_BLOCK, &blocked, NULL);
455 flush_signals(current);
456
457 /* Become as one with the init task */
458
459 daemonize_fs_struct();
460 exit_files(current);
461 current->files = init_task.files;
462 atomic_inc(&current->files->count);
463
464 reparent_to_kthreadd();
465 }
466
467 EXPORT_SYMBOL(daemonize);
468
469 static void close_files(struct files_struct * files)
470 {
471 int i, j;
472 struct fdtable *fdt;
473
474 j = 0;
475
476 /*
477 * It is safe to dereference the fd table without RCU or
478 * ->file_lock because this is the last reference to the
479 * files structure. But use RCU to shut RCU-lockdep up.
480 */
481 rcu_read_lock();
482 fdt = files_fdtable(files);
483 rcu_read_unlock();
484 for (;;) {
485 unsigned long set;
486 i = j * __NFDBITS;
487 if (i >= fdt->max_fds)
488 break;
489 set = fdt->open_fds->fds_bits[j++];
490 while (set) {
491 if (set & 1) {
492 struct file * file = xchg(&fdt->fd[i], NULL);
493 if (file) {
494 filp_close(file, files);
495 cond_resched();
496 }
497 }
498 i++;
499 set >>= 1;
500 }
501 }
502 }
503
504 struct files_struct *get_files_struct(struct task_struct *task)
505 {
506 struct files_struct *files;
507
508 task_lock(task);
509 files = task->files;
510 if (files)
511 atomic_inc(&files->count);
512 task_unlock(task);
513
514 return files;
515 }
516
517 void put_files_struct(struct files_struct *files)
518 {
519 struct fdtable *fdt;
520
521 if (atomic_dec_and_test(&files->count)) {
522 close_files(files);
523 /*
524 * Free the fd and fdset arrays if we expanded them.
525 * If the fdtable was embedded, pass files for freeing
526 * at the end of the RCU grace period. Otherwise,
527 * you can free files immediately.
528 */
529 rcu_read_lock();
530 fdt = files_fdtable(files);
531 if (fdt != &files->fdtab)
532 kmem_cache_free(files_cachep, files);
533 free_fdtable(fdt);
534 rcu_read_unlock();
535 }
536 }
537
538 void reset_files_struct(struct files_struct *files)
539 {
540 struct task_struct *tsk = current;
541 struct files_struct *old;
542
543 old = tsk->files;
544 task_lock(tsk);
545 tsk->files = files;
546 task_unlock(tsk);
547 put_files_struct(old);
548 }
549
550 void exit_files(struct task_struct *tsk)
551 {
552 struct files_struct * files = tsk->files;
553
554 if (files) {
555 task_lock(tsk);
556 tsk->files = NULL;
557 task_unlock(tsk);
558 put_files_struct(files);
559 }
560 }
561
562 #ifdef CONFIG_MM_OWNER
563 /*
564 * Task p is exiting and it owned mm, lets find a new owner for it
565 */
566 static inline int
567 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
568 {
569 /*
570 * If there are other users of the mm and the owner (us) is exiting
571 * we need to find a new owner to take on the responsibility.
572 */
573 if (atomic_read(&mm->mm_users) <= 1)
574 return 0;
575 if (mm->owner != p)
576 return 0;
577 return 1;
578 }
579
580 void mm_update_next_owner(struct mm_struct *mm)
581 {
582 struct task_struct *c, *g, *p = current;
583
584 retry:
585 if (!mm_need_new_owner(mm, p))
586 return;
587
588 read_lock(&tasklist_lock);
589 /*
590 * Search in the children
591 */
592 list_for_each_entry(c, &p->children, sibling) {
593 if (c->mm == mm)
594 goto assign_new_owner;
595 }
596
597 /*
598 * Search in the siblings
599 */
600 list_for_each_entry(c, &p->real_parent->children, sibling) {
601 if (c->mm == mm)
602 goto assign_new_owner;
603 }
604
605 /*
606 * Search through everything else. We should not get
607 * here often
608 */
609 do_each_thread(g, c) {
610 if (c->mm == mm)
611 goto assign_new_owner;
612 } while_each_thread(g, c);
613
614 read_unlock(&tasklist_lock);
615 /*
616 * We found no owner yet mm_users > 1: this implies that we are
617 * most likely racing with swapoff (try_to_unuse()) or /proc or
618 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
619 */
620 mm->owner = NULL;
621 return;
622
623 assign_new_owner:
624 BUG_ON(c == p);
625 get_task_struct(c);
626 /*
627 * The task_lock protects c->mm from changing.
628 * We always want mm->owner->mm == mm
629 */
630 task_lock(c);
631 /*
632 * Delay read_unlock() till we have the task_lock()
633 * to ensure that c does not slip away underneath us
634 */
635 read_unlock(&tasklist_lock);
636 if (c->mm != mm) {
637 task_unlock(c);
638 put_task_struct(c);
639 goto retry;
640 }
641 mm->owner = c;
642 task_unlock(c);
643 put_task_struct(c);
644 }
645 #endif /* CONFIG_MM_OWNER */
646
647 /*
648 * Turn us into a lazy TLB process if we
649 * aren't already..
650 */
651 static void exit_mm(struct task_struct * tsk)
652 {
653 struct mm_struct *mm = tsk->mm;
654 struct core_state *core_state;
655
656 mm_release(tsk, mm);
657 if (!mm)
658 return;
659 /*
660 * Serialize with any possible pending coredump.
661 * We must hold mmap_sem around checking core_state
662 * and clearing tsk->mm. The core-inducing thread
663 * will increment ->nr_threads for each thread in the
664 * group with ->mm != NULL.
665 */
666 down_read(&mm->mmap_sem);
667 core_state = mm->core_state;
668 if (core_state) {
669 struct core_thread self;
670 up_read(&mm->mmap_sem);
671
672 self.task = tsk;
673 self.next = xchg(&core_state->dumper.next, &self);
674 /*
675 * Implies mb(), the result of xchg() must be visible
676 * to core_state->dumper.
677 */
678 if (atomic_dec_and_test(&core_state->nr_threads))
679 complete(&core_state->startup);
680
681 for (;;) {
682 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
683 if (!self.task) /* see coredump_finish() */
684 break;
685 schedule();
686 }
687 __set_task_state(tsk, TASK_RUNNING);
688 down_read(&mm->mmap_sem);
689 }
690 atomic_inc(&mm->mm_count);
691 BUG_ON(mm != tsk->active_mm);
692 /* more a memory barrier than a real lock */
693 task_lock(tsk);
694 tsk->mm = NULL;
695 up_read(&mm->mmap_sem);
696 enter_lazy_tlb(mm, current);
697 /* We don't want this task to be frozen prematurely */
698 clear_freeze_flag(tsk);
699 if (tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
700 atomic_dec(&mm->oom_disable_count);
701 task_unlock(tsk);
702 mm_update_next_owner(mm);
703 mmput(mm);
704 }
705
706 /*
707 * When we die, we re-parent all our children.
708 * Try to give them to another thread in our thread
709 * group, and if no such member exists, give it to
710 * the child reaper process (ie "init") in our pid
711 * space.
712 */
713 static struct task_struct *find_new_reaper(struct task_struct *father)
714 __releases(&tasklist_lock)
715 __acquires(&tasklist_lock)
716 {
717 struct pid_namespace *pid_ns = task_active_pid_ns(father);
718 struct task_struct *thread;
719
720 thread = father;
721 while_each_thread(father, thread) {
722 if (thread->flags & PF_EXITING)
723 continue;
724 if (unlikely(pid_ns->child_reaper == father))
725 pid_ns->child_reaper = thread;
726 return thread;
727 }
728
729 if (unlikely(pid_ns->child_reaper == father)) {
730 write_unlock_irq(&tasklist_lock);
731 if (unlikely(pid_ns == &init_pid_ns))
732 panic("Attempted to kill init!");
733
734 zap_pid_ns_processes(pid_ns);
735 write_lock_irq(&tasklist_lock);
736 /*
737 * We can not clear ->child_reaper or leave it alone.
738 * There may by stealth EXIT_DEAD tasks on ->children,
739 * forget_original_parent() must move them somewhere.
740 */
741 pid_ns->child_reaper = init_pid_ns.child_reaper;
742 }
743
744 return pid_ns->child_reaper;
745 }
746
747 /*
748 * Any that need to be release_task'd are put on the @dead list.
749 */
750 static void reparent_leader(struct task_struct *father, struct task_struct *p,
751 struct list_head *dead)
752 {
753 list_move_tail(&p->sibling, &p->real_parent->children);
754
755 if (task_detached(p))
756 return;
757 /*
758 * If this is a threaded reparent there is no need to
759 * notify anyone anything has happened.
760 */
761 if (same_thread_group(p->real_parent, father))
762 return;
763
764 /* We don't want people slaying init. */
765 p->exit_signal = SIGCHLD;
766
767 /* If it has exited notify the new parent about this child's death. */
768 if (!task_ptrace(p) &&
769 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
770 do_notify_parent(p, p->exit_signal);
771 if (task_detached(p)) {
772 p->exit_state = EXIT_DEAD;
773 list_move_tail(&p->sibling, dead);
774 }
775 }
776
777 kill_orphaned_pgrp(p, father);
778 }
779
780 static void forget_original_parent(struct task_struct *father)
781 {
782 struct task_struct *p, *n, *reaper;
783 LIST_HEAD(dead_children);
784
785 write_lock_irq(&tasklist_lock);
786 /*
787 * Note that exit_ptrace() and find_new_reaper() might
788 * drop tasklist_lock and reacquire it.
789 */
790 exit_ptrace(father);
791 reaper = find_new_reaper(father);
792
793 list_for_each_entry_safe(p, n, &father->children, sibling) {
794 struct task_struct *t = p;
795 do {
796 t->real_parent = reaper;
797 if (t->parent == father) {
798 BUG_ON(task_ptrace(t));
799 t->parent = t->real_parent;
800 }
801 if (t->pdeath_signal)
802 group_send_sig_info(t->pdeath_signal,
803 SEND_SIG_NOINFO, t);
804 } while_each_thread(p, t);
805 reparent_leader(father, p, &dead_children);
806 }
807 write_unlock_irq(&tasklist_lock);
808
809 BUG_ON(!list_empty(&father->children));
810
811 list_for_each_entry_safe(p, n, &dead_children, sibling) {
812 list_del_init(&p->sibling);
813 release_task(p);
814 }
815 }
816
817 /*
818 * Send signals to all our closest relatives so that they know
819 * to properly mourn us..
820 */
821 static void exit_notify(struct task_struct *tsk, int group_dead)
822 {
823 int signal;
824 void *cookie;
825
826 /*
827 * This does two things:
828 *
829 * A. Make init inherit all the child processes
830 * B. Check to see if any process groups have become orphaned
831 * as a result of our exiting, and if they have any stopped
832 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
833 */
834 forget_original_parent(tsk);
835 exit_task_namespaces(tsk);
836
837 write_lock_irq(&tasklist_lock);
838 if (group_dead)
839 kill_orphaned_pgrp(tsk->group_leader, NULL);
840
841 /* Let father know we died
842 *
843 * Thread signals are configurable, but you aren't going to use
844 * that to send signals to arbitary processes.
845 * That stops right now.
846 *
847 * If the parent exec id doesn't match the exec id we saved
848 * when we started then we know the parent has changed security
849 * domain.
850 *
851 * If our self_exec id doesn't match our parent_exec_id then
852 * we have changed execution domain as these two values started
853 * the same after a fork.
854 */
855 if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
856 (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
857 tsk->self_exec_id != tsk->parent_exec_id))
858 tsk->exit_signal = SIGCHLD;
859
860 signal = tracehook_notify_death(tsk, &cookie, group_dead);
861 if (signal >= 0)
862 signal = do_notify_parent(tsk, signal);
863
864 tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
865
866 /* mt-exec, de_thread() is waiting for group leader */
867 if (unlikely(tsk->signal->notify_count < 0))
868 wake_up_process(tsk->signal->group_exit_task);
869 write_unlock_irq(&tasklist_lock);
870
871 tracehook_report_death(tsk, signal, cookie, group_dead);
872
873 /* If the process is dead, release it - nobody will wait for it */
874 if (signal == DEATH_REAP)
875 release_task(tsk);
876 }
877
878 #ifdef CONFIG_DEBUG_STACK_USAGE
879 static void check_stack_usage(void)
880 {
881 static DEFINE_SPINLOCK(low_water_lock);
882 static int lowest_to_date = THREAD_SIZE;
883 unsigned long free;
884
885 free = stack_not_used(current);
886
887 if (free >= lowest_to_date)
888 return;
889
890 spin_lock(&low_water_lock);
891 if (free < lowest_to_date) {
892 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
893 "left\n",
894 current->comm, free);
895 lowest_to_date = free;
896 }
897 spin_unlock(&low_water_lock);
898 }
899 #else
900 static inline void check_stack_usage(void) {}
901 #endif
902
903 NORET_TYPE void do_exit(long code)
904 {
905 struct task_struct *tsk = current;
906 int group_dead;
907
908 profile_task_exit(tsk);
909
910 WARN_ON(atomic_read(&tsk->fs_excl));
911
912 if (unlikely(in_interrupt()))
913 panic("Aiee, killing interrupt handler!");
914 if (unlikely(!tsk->pid))
915 panic("Attempted to kill the idle task!");
916
917 /*
918 * If do_exit is called because this processes oopsed, it's possible
919 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
920 * continuing. Amongst other possible reasons, this is to prevent
921 * mm_release()->clear_child_tid() from writing to a user-controlled
922 * kernel address.
923 */
924 set_fs(USER_DS);
925
926 tracehook_report_exit(&code);
927
928 validate_creds_for_do_exit(tsk);
929
930 /*
931 * We're taking recursive faults here in do_exit. Safest is to just
932 * leave this task alone and wait for reboot.
933 */
934 if (unlikely(tsk->flags & PF_EXITING)) {
935 printk(KERN_ALERT
936 "Fixing recursive fault but reboot is needed!\n");
937 /*
938 * We can do this unlocked here. The futex code uses
939 * this flag just to verify whether the pi state
940 * cleanup has been done or not. In the worst case it
941 * loops once more. We pretend that the cleanup was
942 * done as there is no way to return. Either the
943 * OWNER_DIED bit is set by now or we push the blocked
944 * task into the wait for ever nirwana as well.
945 */
946 tsk->flags |= PF_EXITPIDONE;
947 set_current_state(TASK_UNINTERRUPTIBLE);
948 schedule();
949 }
950
951 exit_irq_thread();
952
953 exit_signals(tsk); /* sets PF_EXITING */
954 /*
955 * tsk->flags are checked in the futex code to protect against
956 * an exiting task cleaning up the robust pi futexes.
957 */
958 smp_mb();
959 raw_spin_unlock_wait(&tsk->pi_lock);
960
961 if (unlikely(in_atomic()))
962 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
963 current->comm, task_pid_nr(current),
964 preempt_count());
965
966 acct_update_integrals(tsk);
967 /* sync mm's RSS info before statistics gathering */
968 if (tsk->mm)
969 sync_mm_rss(tsk, tsk->mm);
970 group_dead = atomic_dec_and_test(&tsk->signal->live);
971 if (group_dead) {
972 hrtimer_cancel(&tsk->signal->real_timer);
973 exit_itimers(tsk->signal);
974 if (tsk->mm)
975 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
976 }
977 acct_collect(code, group_dead);
978 if (group_dead)
979 tty_audit_exit();
980 if (unlikely(tsk->audit_context))
981 audit_free(tsk);
982
983 tsk->exit_code = code;
984 taskstats_exit(tsk, group_dead);
985
986 exit_mm(tsk);
987
988 if (group_dead)
989 acct_process();
990 trace_sched_process_exit(tsk);
991
992 exit_sem(tsk);
993 exit_files(tsk);
994 exit_fs(tsk);
995 check_stack_usage();
996 exit_thread();
997
998 /*
999 * Flush inherited counters to the parent - before the parent
1000 * gets woken up by child-exit notifications.
1001 *
1002 * because of cgroup mode, must be called before cgroup_exit()
1003 */
1004 perf_event_exit_task(tsk);
1005
1006 cgroup_exit(tsk, 1);
1007
1008 if (group_dead)
1009 disassociate_ctty(1);
1010
1011 module_put(task_thread_info(tsk)->exec_domain->module);
1012
1013 proc_exit_connector(tsk);
1014
1015 /*
1016 * FIXME: do that only when needed, using sched_exit tracepoint
1017 */
1018 flush_ptrace_hw_breakpoint(tsk);
1019
1020 exit_notify(tsk, group_dead);
1021 #ifdef CONFIG_NUMA
1022 task_lock(tsk);
1023 mpol_put(tsk->mempolicy);
1024 tsk->mempolicy = NULL;
1025 task_unlock(tsk);
1026 #endif
1027 #ifdef CONFIG_FUTEX
1028 if (unlikely(current->pi_state_cache))
1029 kfree(current->pi_state_cache);
1030 #endif
1031 /*
1032 * Make sure we are holding no locks:
1033 */
1034 debug_check_no_locks_held(tsk);
1035 /*
1036 * We can do this unlocked here. The futex code uses this flag
1037 * just to verify whether the pi state cleanup has been done
1038 * or not. In the worst case it loops once more.
1039 */
1040 tsk->flags |= PF_EXITPIDONE;
1041
1042 if (tsk->io_context)
1043 exit_io_context(tsk);
1044
1045 if (tsk->splice_pipe)
1046 __free_pipe_info(tsk->splice_pipe);
1047
1048 validate_creds_for_do_exit(tsk);
1049
1050 preempt_disable();
1051 exit_rcu();
1052 /* causes final put_task_struct in finish_task_switch(). */
1053 tsk->state = TASK_DEAD;
1054 schedule();
1055 BUG();
1056 /* Avoid "noreturn function does return". */
1057 for (;;)
1058 cpu_relax(); /* For when BUG is null */
1059 }
1060
1061 EXPORT_SYMBOL_GPL(do_exit);
1062
1063 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1064 {
1065 if (comp)
1066 complete(comp);
1067
1068 do_exit(code);
1069 }
1070
1071 EXPORT_SYMBOL(complete_and_exit);
1072
1073 SYSCALL_DEFINE1(exit, int, error_code)
1074 {
1075 do_exit((error_code&0xff)<<8);
1076 }
1077
1078 /*
1079 * Take down every thread in the group. This is called by fatal signals
1080 * as well as by sys_exit_group (below).
1081 */
1082 NORET_TYPE void
1083 do_group_exit(int exit_code)
1084 {
1085 struct signal_struct *sig = current->signal;
1086
1087 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1088
1089 if (signal_group_exit(sig))
1090 exit_code = sig->group_exit_code;
1091 else if (!thread_group_empty(current)) {
1092 struct sighand_struct *const sighand = current->sighand;
1093 spin_lock_irq(&sighand->siglock);
1094 if (signal_group_exit(sig))
1095 /* Another thread got here before we took the lock. */
1096 exit_code = sig->group_exit_code;
1097 else {
1098 sig->group_exit_code = exit_code;
1099 sig->flags = SIGNAL_GROUP_EXIT;
1100 zap_other_threads(current);
1101 }
1102 spin_unlock_irq(&sighand->siglock);
1103 }
1104
1105 do_exit(exit_code);
1106 /* NOTREACHED */
1107 }
1108
1109 /*
1110 * this kills every thread in the thread group. Note that any externally
1111 * wait4()-ing process will get the correct exit code - even if this
1112 * thread is not the thread group leader.
1113 */
1114 SYSCALL_DEFINE1(exit_group, int, error_code)
1115 {
1116 do_group_exit((error_code & 0xff) << 8);
1117 /* NOTREACHED */
1118 return 0;
1119 }
1120
1121 struct wait_opts {
1122 enum pid_type wo_type;
1123 int wo_flags;
1124 struct pid *wo_pid;
1125
1126 struct siginfo __user *wo_info;
1127 int __user *wo_stat;
1128 struct rusage __user *wo_rusage;
1129
1130 wait_queue_t child_wait;
1131 int notask_error;
1132 };
1133
1134 static inline
1135 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1136 {
1137 if (type != PIDTYPE_PID)
1138 task = task->group_leader;
1139 return task->pids[type].pid;
1140 }
1141
1142 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1143 {
1144 return wo->wo_type == PIDTYPE_MAX ||
1145 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1146 }
1147
1148 static int eligible_child(struct wait_opts *wo, struct task_struct *p)
1149 {
1150 if (!eligible_pid(wo, p))
1151 return 0;
1152 /* Wait for all children (clone and not) if __WALL is set;
1153 * otherwise, wait for clone children *only* if __WCLONE is
1154 * set; otherwise, wait for non-clone children *only*. (Note:
1155 * A "clone" child here is one that reports to its parent
1156 * using a signal other than SIGCHLD.) */
1157 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1158 && !(wo->wo_flags & __WALL))
1159 return 0;
1160
1161 return 1;
1162 }
1163
1164 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1165 pid_t pid, uid_t uid, int why, int status)
1166 {
1167 struct siginfo __user *infop;
1168 int retval = wo->wo_rusage
1169 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1170
1171 put_task_struct(p);
1172 infop = wo->wo_info;
1173 if (infop) {
1174 if (!retval)
1175 retval = put_user(SIGCHLD, &infop->si_signo);
1176 if (!retval)
1177 retval = put_user(0, &infop->si_errno);
1178 if (!retval)
1179 retval = put_user((short)why, &infop->si_code);
1180 if (!retval)
1181 retval = put_user(pid, &infop->si_pid);
1182 if (!retval)
1183 retval = put_user(uid, &infop->si_uid);
1184 if (!retval)
1185 retval = put_user(status, &infop->si_status);
1186 }
1187 if (!retval)
1188 retval = pid;
1189 return retval;
1190 }
1191
1192 /*
1193 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1194 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1195 * the lock and this task is uninteresting. If we return nonzero, we have
1196 * released the lock and the system call should return.
1197 */
1198 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1199 {
1200 unsigned long state;
1201 int retval, status, traced;
1202 pid_t pid = task_pid_vnr(p);
1203 uid_t uid = __task_cred(p)->uid;
1204 struct siginfo __user *infop;
1205
1206 if (!likely(wo->wo_flags & WEXITED))
1207 return 0;
1208
1209 if (unlikely(wo->wo_flags & WNOWAIT)) {
1210 int exit_code = p->exit_code;
1211 int why;
1212
1213 get_task_struct(p);
1214 read_unlock(&tasklist_lock);
1215 if ((exit_code & 0x7f) == 0) {
1216 why = CLD_EXITED;
1217 status = exit_code >> 8;
1218 } else {
1219 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1220 status = exit_code & 0x7f;
1221 }
1222 return wait_noreap_copyout(wo, p, pid, uid, why, status);
1223 }
1224
1225 /*
1226 * Try to move the task's state to DEAD
1227 * only one thread is allowed to do this:
1228 */
1229 state = xchg(&p->exit_state, EXIT_DEAD);
1230 if (state != EXIT_ZOMBIE) {
1231 BUG_ON(state != EXIT_DEAD);
1232 return 0;
1233 }
1234
1235 traced = ptrace_reparented(p);
1236 /*
1237 * It can be ptraced but not reparented, check
1238 * !task_detached() to filter out sub-threads.
1239 */
1240 if (likely(!traced) && likely(!task_detached(p))) {
1241 struct signal_struct *psig;
1242 struct signal_struct *sig;
1243 unsigned long maxrss;
1244 cputime_t tgutime, tgstime;
1245
1246 /*
1247 * The resource counters for the group leader are in its
1248 * own task_struct. Those for dead threads in the group
1249 * are in its signal_struct, as are those for the child
1250 * processes it has previously reaped. All these
1251 * accumulate in the parent's signal_struct c* fields.
1252 *
1253 * We don't bother to take a lock here to protect these
1254 * p->signal fields, because they are only touched by
1255 * __exit_signal, which runs with tasklist_lock
1256 * write-locked anyway, and so is excluded here. We do
1257 * need to protect the access to parent->signal fields,
1258 * as other threads in the parent group can be right
1259 * here reaping other children at the same time.
1260 *
1261 * We use thread_group_times() to get times for the thread
1262 * group, which consolidates times for all threads in the
1263 * group including the group leader.
1264 */
1265 thread_group_times(p, &tgutime, &tgstime);
1266 spin_lock_irq(&p->real_parent->sighand->siglock);
1267 psig = p->real_parent->signal;
1268 sig = p->signal;
1269 psig->cutime =
1270 cputime_add(psig->cutime,
1271 cputime_add(tgutime,
1272 sig->cutime));
1273 psig->cstime =
1274 cputime_add(psig->cstime,
1275 cputime_add(tgstime,
1276 sig->cstime));
1277 psig->cgtime =
1278 cputime_add(psig->cgtime,
1279 cputime_add(p->gtime,
1280 cputime_add(sig->gtime,
1281 sig->cgtime)));
1282 psig->cmin_flt +=
1283 p->min_flt + sig->min_flt + sig->cmin_flt;
1284 psig->cmaj_flt +=
1285 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1286 psig->cnvcsw +=
1287 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1288 psig->cnivcsw +=
1289 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1290 psig->cinblock +=
1291 task_io_get_inblock(p) +
1292 sig->inblock + sig->cinblock;
1293 psig->coublock +=
1294 task_io_get_oublock(p) +
1295 sig->oublock + sig->coublock;
1296 maxrss = max(sig->maxrss, sig->cmaxrss);
1297 if (psig->cmaxrss < maxrss)
1298 psig->cmaxrss = maxrss;
1299 task_io_accounting_add(&psig->ioac, &p->ioac);
1300 task_io_accounting_add(&psig->ioac, &sig->ioac);
1301 spin_unlock_irq(&p->real_parent->sighand->siglock);
1302 }
1303
1304 /*
1305 * Now we are sure this task is interesting, and no other
1306 * thread can reap it because we set its state to EXIT_DEAD.
1307 */
1308 read_unlock(&tasklist_lock);
1309
1310 retval = wo->wo_rusage
1311 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1312 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1313 ? p->signal->group_exit_code : p->exit_code;
1314 if (!retval && wo->wo_stat)
1315 retval = put_user(status, wo->wo_stat);
1316
1317 infop = wo->wo_info;
1318 if (!retval && infop)
1319 retval = put_user(SIGCHLD, &infop->si_signo);
1320 if (!retval && infop)
1321 retval = put_user(0, &infop->si_errno);
1322 if (!retval && infop) {
1323 int why;
1324
1325 if ((status & 0x7f) == 0) {
1326 why = CLD_EXITED;
1327 status >>= 8;
1328 } else {
1329 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1330 status &= 0x7f;
1331 }
1332 retval = put_user((short)why, &infop->si_code);
1333 if (!retval)
1334 retval = put_user(status, &infop->si_status);
1335 }
1336 if (!retval && infop)
1337 retval = put_user(pid, &infop->si_pid);
1338 if (!retval && infop)
1339 retval = put_user(uid, &infop->si_uid);
1340 if (!retval)
1341 retval = pid;
1342
1343 if (traced) {
1344 write_lock_irq(&tasklist_lock);
1345 /* We dropped tasklist, ptracer could die and untrace */
1346 ptrace_unlink(p);
1347 /*
1348 * If this is not a detached task, notify the parent.
1349 * If it's still not detached after that, don't release
1350 * it now.
1351 */
1352 if (!task_detached(p)) {
1353 do_notify_parent(p, p->exit_signal);
1354 if (!task_detached(p)) {
1355 p->exit_state = EXIT_ZOMBIE;
1356 p = NULL;
1357 }
1358 }
1359 write_unlock_irq(&tasklist_lock);
1360 }
1361 if (p != NULL)
1362 release_task(p);
1363
1364 return retval;
1365 }
1366
1367 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1368 {
1369 if (ptrace) {
1370 if (task_is_stopped_or_traced(p))
1371 return &p->exit_code;
1372 } else {
1373 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1374 return &p->signal->group_exit_code;
1375 }
1376 return NULL;
1377 }
1378
1379 /*
1380 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
1381 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1382 * the lock and this task is uninteresting. If we return nonzero, we have
1383 * released the lock and the system call should return.
1384 */
1385 static int wait_task_stopped(struct wait_opts *wo,
1386 int ptrace, struct task_struct *p)
1387 {
1388 struct siginfo __user *infop;
1389 int retval, exit_code, *p_code, why;
1390 uid_t uid = 0; /* unneeded, required by compiler */
1391 pid_t pid;
1392
1393 /*
1394 * Traditionally we see ptrace'd stopped tasks regardless of options.
1395 */
1396 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1397 return 0;
1398
1399 exit_code = 0;
1400 spin_lock_irq(&p->sighand->siglock);
1401
1402 p_code = task_stopped_code(p, ptrace);
1403 if (unlikely(!p_code))
1404 goto unlock_sig;
1405
1406 exit_code = *p_code;
1407 if (!exit_code)
1408 goto unlock_sig;
1409
1410 if (!unlikely(wo->wo_flags & WNOWAIT))
1411 *p_code = 0;
1412
1413 uid = task_uid(p);
1414 unlock_sig:
1415 spin_unlock_irq(&p->sighand->siglock);
1416 if (!exit_code)
1417 return 0;
1418
1419 /*
1420 * Now we are pretty sure this task is interesting.
1421 * Make sure it doesn't get reaped out from under us while we
1422 * give up the lock and then examine it below. We don't want to
1423 * keep holding onto the tasklist_lock while we call getrusage and
1424 * possibly take page faults for user memory.
1425 */
1426 get_task_struct(p);
1427 pid = task_pid_vnr(p);
1428 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1429 read_unlock(&tasklist_lock);
1430
1431 if (unlikely(wo->wo_flags & WNOWAIT))
1432 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1433
1434 retval = wo->wo_rusage
1435 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1436 if (!retval && wo->wo_stat)
1437 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1438
1439 infop = wo->wo_info;
1440 if (!retval && infop)
1441 retval = put_user(SIGCHLD, &infop->si_signo);
1442 if (!retval && infop)
1443 retval = put_user(0, &infop->si_errno);
1444 if (!retval && infop)
1445 retval = put_user((short)why, &infop->si_code);
1446 if (!retval && infop)
1447 retval = put_user(exit_code, &infop->si_status);
1448 if (!retval && infop)
1449 retval = put_user(pid, &infop->si_pid);
1450 if (!retval && infop)
1451 retval = put_user(uid, &infop->si_uid);
1452 if (!retval)
1453 retval = pid;
1454 put_task_struct(p);
1455
1456 BUG_ON(!retval);
1457 return retval;
1458 }
1459
1460 /*
1461 * Handle do_wait work for one task in a live, non-stopped state.
1462 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1463 * the lock and this task is uninteresting. If we return nonzero, we have
1464 * released the lock and the system call should return.
1465 */
1466 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1467 {
1468 int retval;
1469 pid_t pid;
1470 uid_t uid;
1471
1472 if (!unlikely(wo->wo_flags & WCONTINUED))
1473 return 0;
1474
1475 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1476 return 0;
1477
1478 spin_lock_irq(&p->sighand->siglock);
1479 /* Re-check with the lock held. */
1480 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1481 spin_unlock_irq(&p->sighand->siglock);
1482 return 0;
1483 }
1484 if (!unlikely(wo->wo_flags & WNOWAIT))
1485 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1486 uid = task_uid(p);
1487 spin_unlock_irq(&p->sighand->siglock);
1488
1489 pid = task_pid_vnr(p);
1490 get_task_struct(p);
1491 read_unlock(&tasklist_lock);
1492
1493 if (!wo->wo_info) {
1494 retval = wo->wo_rusage
1495 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1496 put_task_struct(p);
1497 if (!retval && wo->wo_stat)
1498 retval = put_user(0xffff, wo->wo_stat);
1499 if (!retval)
1500 retval = pid;
1501 } else {
1502 retval = wait_noreap_copyout(wo, p, pid, uid,
1503 CLD_CONTINUED, SIGCONT);
1504 BUG_ON(retval == 0);
1505 }
1506
1507 return retval;
1508 }
1509
1510 /*
1511 * Consider @p for a wait by @parent.
1512 *
1513 * -ECHILD should be in ->notask_error before the first call.
1514 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1515 * Returns zero if the search for a child should continue;
1516 * then ->notask_error is 0 if @p is an eligible child,
1517 * or another error from security_task_wait(), or still -ECHILD.
1518 */
1519 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1520 struct task_struct *p)
1521 {
1522 int ret = eligible_child(wo, p);
1523 if (!ret)
1524 return ret;
1525
1526 ret = security_task_wait(p);
1527 if (unlikely(ret < 0)) {
1528 /*
1529 * If we have not yet seen any eligible child,
1530 * then let this error code replace -ECHILD.
1531 * A permission error will give the user a clue
1532 * to look for security policy problems, rather
1533 * than for mysterious wait bugs.
1534 */
1535 if (wo->notask_error)
1536 wo->notask_error = ret;
1537 return 0;
1538 }
1539
1540 if (likely(!ptrace) && unlikely(task_ptrace(p))) {
1541 /*
1542 * This child is hidden by ptrace.
1543 * We aren't allowed to see it now, but eventually we will.
1544 */
1545 wo->notask_error = 0;
1546 return 0;
1547 }
1548
1549 if (p->exit_state == EXIT_DEAD)
1550 return 0;
1551
1552 /*
1553 * We don't reap group leaders with subthreads.
1554 */
1555 if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
1556 return wait_task_zombie(wo, p);
1557
1558 /*
1559 * It's stopped or running now, so it might
1560 * later continue, exit, or stop again.
1561 */
1562 wo->notask_error = 0;
1563
1564 if (task_stopped_code(p, ptrace))
1565 return wait_task_stopped(wo, ptrace, p);
1566
1567 return wait_task_continued(wo, p);
1568 }
1569
1570 /*
1571 * Do the work of do_wait() for one thread in the group, @tsk.
1572 *
1573 * -ECHILD should be in ->notask_error before the first call.
1574 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1575 * Returns zero if the search for a child should continue; then
1576 * ->notask_error is 0 if there were any eligible children,
1577 * or another error from security_task_wait(), or still -ECHILD.
1578 */
1579 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1580 {
1581 struct task_struct *p;
1582
1583 list_for_each_entry(p, &tsk->children, sibling) {
1584 int ret = wait_consider_task(wo, 0, p);
1585 if (ret)
1586 return ret;
1587 }
1588
1589 return 0;
1590 }
1591
1592 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1593 {
1594 struct task_struct *p;
1595
1596 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1597 int ret = wait_consider_task(wo, 1, p);
1598 if (ret)
1599 return ret;
1600 }
1601
1602 return 0;
1603 }
1604
1605 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1606 int sync, void *key)
1607 {
1608 struct wait_opts *wo = container_of(wait, struct wait_opts,
1609 child_wait);
1610 struct task_struct *p = key;
1611
1612 if (!eligible_pid(wo, p))
1613 return 0;
1614
1615 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1616 return 0;
1617
1618 return default_wake_function(wait, mode, sync, key);
1619 }
1620
1621 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1622 {
1623 __wake_up_sync_key(&parent->signal->wait_chldexit,
1624 TASK_INTERRUPTIBLE, 1, p);
1625 }
1626
1627 static long do_wait(struct wait_opts *wo)
1628 {
1629 struct task_struct *tsk;
1630 int retval;
1631
1632 trace_sched_process_wait(wo->wo_pid);
1633
1634 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1635 wo->child_wait.private = current;
1636 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1637 repeat:
1638 /*
1639 * If there is nothing that can match our critiera just get out.
1640 * We will clear ->notask_error to zero if we see any child that
1641 * might later match our criteria, even if we are not able to reap
1642 * it yet.
1643 */
1644 wo->notask_error = -ECHILD;
1645 if ((wo->wo_type < PIDTYPE_MAX) &&
1646 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1647 goto notask;
1648
1649 set_current_state(TASK_INTERRUPTIBLE);
1650 read_lock(&tasklist_lock);
1651 tsk = current;
1652 do {
1653 retval = do_wait_thread(wo, tsk);
1654 if (retval)
1655 goto end;
1656
1657 retval = ptrace_do_wait(wo, tsk);
1658 if (retval)
1659 goto end;
1660
1661 if (wo->wo_flags & __WNOTHREAD)
1662 break;
1663 } while_each_thread(current, tsk);
1664 read_unlock(&tasklist_lock);
1665
1666 notask:
1667 retval = wo->notask_error;
1668 if (!retval && !(wo->wo_flags & WNOHANG)) {
1669 retval = -ERESTARTSYS;
1670 if (!signal_pending(current)) {
1671 schedule();
1672 goto repeat;
1673 }
1674 }
1675 end:
1676 __set_current_state(TASK_RUNNING);
1677 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1678 return retval;
1679 }
1680
1681 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1682 infop, int, options, struct rusage __user *, ru)
1683 {
1684 struct wait_opts wo;
1685 struct pid *pid = NULL;
1686 enum pid_type type;
1687 long ret;
1688
1689 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1690 return -EINVAL;
1691 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1692 return -EINVAL;
1693
1694 switch (which) {
1695 case P_ALL:
1696 type = PIDTYPE_MAX;
1697 break;
1698 case P_PID:
1699 type = PIDTYPE_PID;
1700 if (upid <= 0)
1701 return -EINVAL;
1702 break;
1703 case P_PGID:
1704 type = PIDTYPE_PGID;
1705 if (upid <= 0)
1706 return -EINVAL;
1707 break;
1708 default:
1709 return -EINVAL;
1710 }
1711
1712 if (type < PIDTYPE_MAX)
1713 pid = find_get_pid(upid);
1714
1715 wo.wo_type = type;
1716 wo.wo_pid = pid;
1717 wo.wo_flags = options;
1718 wo.wo_info = infop;
1719 wo.wo_stat = NULL;
1720 wo.wo_rusage = ru;
1721 ret = do_wait(&wo);
1722
1723 if (ret > 0) {
1724 ret = 0;
1725 } else if (infop) {
1726 /*
1727 * For a WNOHANG return, clear out all the fields
1728 * we would set so the user can easily tell the
1729 * difference.
1730 */
1731 if (!ret)
1732 ret = put_user(0, &infop->si_signo);
1733 if (!ret)
1734 ret = put_user(0, &infop->si_errno);
1735 if (!ret)
1736 ret = put_user(0, &infop->si_code);
1737 if (!ret)
1738 ret = put_user(0, &infop->si_pid);
1739 if (!ret)
1740 ret = put_user(0, &infop->si_uid);
1741 if (!ret)
1742 ret = put_user(0, &infop->si_status);
1743 }
1744
1745 put_pid(pid);
1746
1747 /* avoid REGPARM breakage on x86: */
1748 asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1749 return ret;
1750 }
1751
1752 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1753 int, options, struct rusage __user *, ru)
1754 {
1755 struct wait_opts wo;
1756 struct pid *pid = NULL;
1757 enum pid_type type;
1758 long ret;
1759
1760 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1761 __WNOTHREAD|__WCLONE|__WALL))
1762 return -EINVAL;
1763
1764 if (upid == -1)
1765 type = PIDTYPE_MAX;
1766 else if (upid < 0) {
1767 type = PIDTYPE_PGID;
1768 pid = find_get_pid(-upid);
1769 } else if (upid == 0) {
1770 type = PIDTYPE_PGID;
1771 pid = get_task_pid(current, PIDTYPE_PGID);
1772 } else /* upid > 0 */ {
1773 type = PIDTYPE_PID;
1774 pid = find_get_pid(upid);
1775 }
1776
1777 wo.wo_type = type;
1778 wo.wo_pid = pid;
1779 wo.wo_flags = options | WEXITED;
1780 wo.wo_info = NULL;
1781 wo.wo_stat = stat_addr;
1782 wo.wo_rusage = ru;
1783 ret = do_wait(&wo);
1784 put_pid(pid);
1785
1786 /* avoid REGPARM breakage on x86: */
1787 asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1788 return ret;
1789 }
1790
1791 #ifdef __ARCH_WANT_SYS_WAITPID
1792
1793 /*
1794 * sys_waitpid() remains for compatibility. waitpid() should be
1795 * implemented by calling sys_wait4() from libc.a.
1796 */
1797 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1798 {
1799 return sys_wait4(pid, stat_addr, options, NULL);
1800 }
1801
1802 #endif