perf_counter: fix counter freeing logic
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / exit.c
1 /*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/iocontext.h>
17 #include <linux/key.h>
18 #include <linux/security.h>
19 #include <linux/cpu.h>
20 #include <linux/acct.h>
21 #include <linux/tsacct_kern.h>
22 #include <linux/file.h>
23 #include <linux/fdtable.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/freezer.h>
36 #include <linux/cgroup.h>
37 #include <linux/syscalls.h>
38 #include <linux/signal.h>
39 #include <linux/posix-timers.h>
40 #include <linux/cn_proc.h>
41 #include <linux/mutex.h>
42 #include <linux/futex.h>
43 #include <linux/pipe_fs_i.h>
44 #include <linux/audit.h> /* for audit_free() */
45 #include <linux/resource.h>
46 #include <linux/blkdev.h>
47 #include <linux/task_io_accounting_ops.h>
48 #include <linux/tracehook.h>
49 #include <linux/fs_struct.h>
50 #include <linux/init_task.h>
51 #include <trace/sched.h>
52
53 #include <asm/uaccess.h>
54 #include <asm/unistd.h>
55 #include <asm/pgtable.h>
56 #include <asm/mmu_context.h>
57 #include "cred-internals.h"
58
59 DEFINE_TRACE(sched_process_free);
60 DEFINE_TRACE(sched_process_exit);
61 DEFINE_TRACE(sched_process_wait);
62
63 static void exit_mm(struct task_struct * tsk);
64
65 static void __unhash_process(struct task_struct *p)
66 {
67 nr_threads--;
68 detach_pid(p, PIDTYPE_PID);
69 if (thread_group_leader(p)) {
70 detach_pid(p, PIDTYPE_PGID);
71 detach_pid(p, PIDTYPE_SID);
72
73 list_del_rcu(&p->tasks);
74 __get_cpu_var(process_counts)--;
75 }
76 list_del_rcu(&p->thread_group);
77 list_del_init(&p->sibling);
78 }
79
80 /*
81 * This function expects the tasklist_lock write-locked.
82 */
83 static void __exit_signal(struct task_struct *tsk)
84 {
85 struct signal_struct *sig = tsk->signal;
86 struct sighand_struct *sighand;
87
88 BUG_ON(!sig);
89 BUG_ON(!atomic_read(&sig->count));
90
91 sighand = rcu_dereference(tsk->sighand);
92 spin_lock(&sighand->siglock);
93
94 posix_cpu_timers_exit(tsk);
95 if (atomic_dec_and_test(&sig->count))
96 posix_cpu_timers_exit_group(tsk);
97 else {
98 /*
99 * If there is any task waiting for the group exit
100 * then notify it:
101 */
102 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
103 wake_up_process(sig->group_exit_task);
104
105 if (tsk == sig->curr_target)
106 sig->curr_target = next_thread(tsk);
107 /*
108 * Accumulate here the counters for all threads but the
109 * group leader as they die, so they can be added into
110 * the process-wide totals when those are taken.
111 * The group leader stays around as a zombie as long
112 * as there are other threads. When it gets reaped,
113 * the exit.c code will add its counts into these totals.
114 * We won't ever get here for the group leader, since it
115 * will have been the last reference on the signal_struct.
116 */
117 sig->utime = cputime_add(sig->utime, task_utime(tsk));
118 sig->stime = cputime_add(sig->stime, task_stime(tsk));
119 sig->gtime = cputime_add(sig->gtime, task_gtime(tsk));
120 sig->min_flt += tsk->min_flt;
121 sig->maj_flt += tsk->maj_flt;
122 sig->nvcsw += tsk->nvcsw;
123 sig->nivcsw += tsk->nivcsw;
124 sig->inblock += task_io_get_inblock(tsk);
125 sig->oublock += task_io_get_oublock(tsk);
126 task_io_accounting_add(&sig->ioac, &tsk->ioac);
127 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
128 sig = NULL; /* Marker for below. */
129 }
130
131 __unhash_process(tsk);
132
133 /*
134 * Do this under ->siglock, we can race with another thread
135 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
136 */
137 flush_sigqueue(&tsk->pending);
138
139 tsk->signal = NULL;
140 tsk->sighand = NULL;
141 spin_unlock(&sighand->siglock);
142
143 __cleanup_sighand(sighand);
144 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
145 if (sig) {
146 flush_sigqueue(&sig->shared_pending);
147 taskstats_tgid_free(sig);
148 /*
149 * Make sure ->signal can't go away under rq->lock,
150 * see account_group_exec_runtime().
151 */
152 task_rq_unlock_wait(tsk);
153 __cleanup_signal(sig);
154 }
155 }
156
157 static void delayed_put_task_struct(struct rcu_head *rhp)
158 {
159 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
160
161 #ifdef CONFIG_PERF_COUNTERS
162 WARN_ON_ONCE(!list_empty(&tsk->perf_counter_ctx.counter_list));
163 #endif
164 trace_sched_process_free(tsk);
165 put_task_struct(tsk);
166 }
167
168
169 void release_task(struct task_struct * p)
170 {
171 struct task_struct *leader;
172 int zap_leader;
173 repeat:
174 tracehook_prepare_release_task(p);
175 /* don't need to get the RCU readlock here - the process is dead and
176 * can't be modifying its own credentials */
177 atomic_dec(&__task_cred(p)->user->processes);
178
179 proc_flush_task(p);
180
181 write_lock_irq(&tasklist_lock);
182 tracehook_finish_release_task(p);
183 __exit_signal(p);
184
185 /*
186 * If we are the last non-leader member of the thread
187 * group, and the leader is zombie, then notify the
188 * group leader's parent process. (if it wants notification.)
189 */
190 zap_leader = 0;
191 leader = p->group_leader;
192 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
193 BUG_ON(task_detached(leader));
194 do_notify_parent(leader, leader->exit_signal);
195 /*
196 * If we were the last child thread and the leader has
197 * exited already, and the leader's parent ignores SIGCHLD,
198 * then we are the one who should release the leader.
199 *
200 * do_notify_parent() will have marked it self-reaping in
201 * that case.
202 */
203 zap_leader = task_detached(leader);
204
205 /*
206 * This maintains the invariant that release_task()
207 * only runs on a task in EXIT_DEAD, just for sanity.
208 */
209 if (zap_leader)
210 leader->exit_state = EXIT_DEAD;
211 }
212
213 write_unlock_irq(&tasklist_lock);
214 release_thread(p);
215 call_rcu(&p->rcu, delayed_put_task_struct);
216
217 p = leader;
218 if (unlikely(zap_leader))
219 goto repeat;
220 }
221
222 /*
223 * This checks not only the pgrp, but falls back on the pid if no
224 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
225 * without this...
226 *
227 * The caller must hold rcu lock or the tasklist lock.
228 */
229 struct pid *session_of_pgrp(struct pid *pgrp)
230 {
231 struct task_struct *p;
232 struct pid *sid = NULL;
233
234 p = pid_task(pgrp, PIDTYPE_PGID);
235 if (p == NULL)
236 p = pid_task(pgrp, PIDTYPE_PID);
237 if (p != NULL)
238 sid = task_session(p);
239
240 return sid;
241 }
242
243 /*
244 * Determine if a process group is "orphaned", according to the POSIX
245 * definition in 2.2.2.52. Orphaned process groups are not to be affected
246 * by terminal-generated stop signals. Newly orphaned process groups are
247 * to receive a SIGHUP and a SIGCONT.
248 *
249 * "I ask you, have you ever known what it is to be an orphan?"
250 */
251 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
252 {
253 struct task_struct *p;
254
255 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
256 if ((p == ignored_task) ||
257 (p->exit_state && thread_group_empty(p)) ||
258 is_global_init(p->real_parent))
259 continue;
260
261 if (task_pgrp(p->real_parent) != pgrp &&
262 task_session(p->real_parent) == task_session(p))
263 return 0;
264 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
265
266 return 1;
267 }
268
269 int is_current_pgrp_orphaned(void)
270 {
271 int retval;
272
273 read_lock(&tasklist_lock);
274 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
275 read_unlock(&tasklist_lock);
276
277 return retval;
278 }
279
280 static int has_stopped_jobs(struct pid *pgrp)
281 {
282 int retval = 0;
283 struct task_struct *p;
284
285 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
286 if (!task_is_stopped(p))
287 continue;
288 retval = 1;
289 break;
290 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
291 return retval;
292 }
293
294 /*
295 * Check to see if any process groups have become orphaned as
296 * a result of our exiting, and if they have any stopped jobs,
297 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
298 */
299 static void
300 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
301 {
302 struct pid *pgrp = task_pgrp(tsk);
303 struct task_struct *ignored_task = tsk;
304
305 if (!parent)
306 /* exit: our father is in a different pgrp than
307 * we are and we were the only connection outside.
308 */
309 parent = tsk->real_parent;
310 else
311 /* reparent: our child is in a different pgrp than
312 * we are, and it was the only connection outside.
313 */
314 ignored_task = NULL;
315
316 if (task_pgrp(parent) != pgrp &&
317 task_session(parent) == task_session(tsk) &&
318 will_become_orphaned_pgrp(pgrp, ignored_task) &&
319 has_stopped_jobs(pgrp)) {
320 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
321 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
322 }
323 }
324
325 /**
326 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
327 *
328 * If a kernel thread is launched as a result of a system call, or if
329 * it ever exits, it should generally reparent itself to kthreadd so it
330 * isn't in the way of other processes and is correctly cleaned up on exit.
331 *
332 * The various task state such as scheduling policy and priority may have
333 * been inherited from a user process, so we reset them to sane values here.
334 *
335 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
336 */
337 static void reparent_to_kthreadd(void)
338 {
339 write_lock_irq(&tasklist_lock);
340
341 ptrace_unlink(current);
342 /* Reparent to init */
343 current->real_parent = current->parent = kthreadd_task;
344 list_move_tail(&current->sibling, &current->real_parent->children);
345
346 /* Set the exit signal to SIGCHLD so we signal init on exit */
347 current->exit_signal = SIGCHLD;
348
349 if (task_nice(current) < 0)
350 set_user_nice(current, 0);
351 /* cpus_allowed? */
352 /* rt_priority? */
353 /* signals? */
354 memcpy(current->signal->rlim, init_task.signal->rlim,
355 sizeof(current->signal->rlim));
356
357 atomic_inc(&init_cred.usage);
358 commit_creds(&init_cred);
359 write_unlock_irq(&tasklist_lock);
360 }
361
362 void __set_special_pids(struct pid *pid)
363 {
364 struct task_struct *curr = current->group_leader;
365
366 if (task_session(curr) != pid)
367 change_pid(curr, PIDTYPE_SID, pid);
368
369 if (task_pgrp(curr) != pid)
370 change_pid(curr, PIDTYPE_PGID, pid);
371 }
372
373 static void set_special_pids(struct pid *pid)
374 {
375 write_lock_irq(&tasklist_lock);
376 __set_special_pids(pid);
377 write_unlock_irq(&tasklist_lock);
378 }
379
380 /*
381 * Let kernel threads use this to say that they
382 * allow a certain signal (since daemonize() will
383 * have disabled all of them by default).
384 */
385 int allow_signal(int sig)
386 {
387 if (!valid_signal(sig) || sig < 1)
388 return -EINVAL;
389
390 spin_lock_irq(&current->sighand->siglock);
391 sigdelset(&current->blocked, sig);
392 if (!current->mm) {
393 /* Kernel threads handle their own signals.
394 Let the signal code know it'll be handled, so
395 that they don't get converted to SIGKILL or
396 just silently dropped */
397 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
398 }
399 recalc_sigpending();
400 spin_unlock_irq(&current->sighand->siglock);
401 return 0;
402 }
403
404 EXPORT_SYMBOL(allow_signal);
405
406 int disallow_signal(int sig)
407 {
408 if (!valid_signal(sig) || sig < 1)
409 return -EINVAL;
410
411 spin_lock_irq(&current->sighand->siglock);
412 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
413 recalc_sigpending();
414 spin_unlock_irq(&current->sighand->siglock);
415 return 0;
416 }
417
418 EXPORT_SYMBOL(disallow_signal);
419
420 /*
421 * Put all the gunge required to become a kernel thread without
422 * attached user resources in one place where it belongs.
423 */
424
425 void daemonize(const char *name, ...)
426 {
427 va_list args;
428 sigset_t blocked;
429
430 va_start(args, name);
431 vsnprintf(current->comm, sizeof(current->comm), name, args);
432 va_end(args);
433
434 /*
435 * If we were started as result of loading a module, close all of the
436 * user space pages. We don't need them, and if we didn't close them
437 * they would be locked into memory.
438 */
439 exit_mm(current);
440 /*
441 * We don't want to have TIF_FREEZE set if the system-wide hibernation
442 * or suspend transition begins right now.
443 */
444 current->flags |= (PF_NOFREEZE | PF_KTHREAD);
445
446 if (current->nsproxy != &init_nsproxy) {
447 get_nsproxy(&init_nsproxy);
448 switch_task_namespaces(current, &init_nsproxy);
449 }
450 set_special_pids(&init_struct_pid);
451 proc_clear_tty(current);
452
453 /* Block and flush all signals */
454 sigfillset(&blocked);
455 sigprocmask(SIG_BLOCK, &blocked, NULL);
456 flush_signals(current);
457
458 /* Become as one with the init task */
459
460 daemonize_fs_struct();
461 exit_files(current);
462 current->files = init_task.files;
463 atomic_inc(&current->files->count);
464
465 reparent_to_kthreadd();
466 }
467
468 EXPORT_SYMBOL(daemonize);
469
470 static void close_files(struct files_struct * files)
471 {
472 int i, j;
473 struct fdtable *fdt;
474
475 j = 0;
476
477 /*
478 * It is safe to dereference the fd table without RCU or
479 * ->file_lock because this is the last reference to the
480 * files structure.
481 */
482 fdt = files_fdtable(files);
483 for (;;) {
484 unsigned long set;
485 i = j * __NFDBITS;
486 if (i >= fdt->max_fds)
487 break;
488 set = fdt->open_fds->fds_bits[j++];
489 while (set) {
490 if (set & 1) {
491 struct file * file = xchg(&fdt->fd[i], NULL);
492 if (file) {
493 filp_close(file, files);
494 cond_resched();
495 }
496 }
497 i++;
498 set >>= 1;
499 }
500 }
501 }
502
503 struct files_struct *get_files_struct(struct task_struct *task)
504 {
505 struct files_struct *files;
506
507 task_lock(task);
508 files = task->files;
509 if (files)
510 atomic_inc(&files->count);
511 task_unlock(task);
512
513 return files;
514 }
515
516 void put_files_struct(struct files_struct *files)
517 {
518 struct fdtable *fdt;
519
520 if (atomic_dec_and_test(&files->count)) {
521 close_files(files);
522 /*
523 * Free the fd and fdset arrays if we expanded them.
524 * If the fdtable was embedded, pass files for freeing
525 * at the end of the RCU grace period. Otherwise,
526 * you can free files immediately.
527 */
528 fdt = files_fdtable(files);
529 if (fdt != &files->fdtab)
530 kmem_cache_free(files_cachep, files);
531 free_fdtable(fdt);
532 }
533 }
534
535 void reset_files_struct(struct files_struct *files)
536 {
537 struct task_struct *tsk = current;
538 struct files_struct *old;
539
540 old = tsk->files;
541 task_lock(tsk);
542 tsk->files = files;
543 task_unlock(tsk);
544 put_files_struct(old);
545 }
546
547 void exit_files(struct task_struct *tsk)
548 {
549 struct files_struct * files = tsk->files;
550
551 if (files) {
552 task_lock(tsk);
553 tsk->files = NULL;
554 task_unlock(tsk);
555 put_files_struct(files);
556 }
557 }
558
559 #ifdef CONFIG_MM_OWNER
560 /*
561 * Task p is exiting and it owned mm, lets find a new owner for it
562 */
563 static inline int
564 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
565 {
566 /*
567 * If there are other users of the mm and the owner (us) is exiting
568 * we need to find a new owner to take on the responsibility.
569 */
570 if (atomic_read(&mm->mm_users) <= 1)
571 return 0;
572 if (mm->owner != p)
573 return 0;
574 return 1;
575 }
576
577 void mm_update_next_owner(struct mm_struct *mm)
578 {
579 struct task_struct *c, *g, *p = current;
580
581 retry:
582 if (!mm_need_new_owner(mm, p))
583 return;
584
585 read_lock(&tasklist_lock);
586 /*
587 * Search in the children
588 */
589 list_for_each_entry(c, &p->children, sibling) {
590 if (c->mm == mm)
591 goto assign_new_owner;
592 }
593
594 /*
595 * Search in the siblings
596 */
597 list_for_each_entry(c, &p->parent->children, sibling) {
598 if (c->mm == mm)
599 goto assign_new_owner;
600 }
601
602 /*
603 * Search through everything else. We should not get
604 * here often
605 */
606 do_each_thread(g, c) {
607 if (c->mm == mm)
608 goto assign_new_owner;
609 } while_each_thread(g, c);
610
611 read_unlock(&tasklist_lock);
612 /*
613 * We found no owner yet mm_users > 1: this implies that we are
614 * most likely racing with swapoff (try_to_unuse()) or /proc or
615 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
616 */
617 mm->owner = NULL;
618 return;
619
620 assign_new_owner:
621 BUG_ON(c == p);
622 get_task_struct(c);
623 /*
624 * The task_lock protects c->mm from changing.
625 * We always want mm->owner->mm == mm
626 */
627 task_lock(c);
628 /*
629 * Delay read_unlock() till we have the task_lock()
630 * to ensure that c does not slip away underneath us
631 */
632 read_unlock(&tasklist_lock);
633 if (c->mm != mm) {
634 task_unlock(c);
635 put_task_struct(c);
636 goto retry;
637 }
638 mm->owner = c;
639 task_unlock(c);
640 put_task_struct(c);
641 }
642 #endif /* CONFIG_MM_OWNER */
643
644 /*
645 * Turn us into a lazy TLB process if we
646 * aren't already..
647 */
648 static void exit_mm(struct task_struct * tsk)
649 {
650 struct mm_struct *mm = tsk->mm;
651 struct core_state *core_state;
652
653 mm_release(tsk, mm);
654 if (!mm)
655 return;
656 /*
657 * Serialize with any possible pending coredump.
658 * We must hold mmap_sem around checking core_state
659 * and clearing tsk->mm. The core-inducing thread
660 * will increment ->nr_threads for each thread in the
661 * group with ->mm != NULL.
662 */
663 down_read(&mm->mmap_sem);
664 core_state = mm->core_state;
665 if (core_state) {
666 struct core_thread self;
667 up_read(&mm->mmap_sem);
668
669 self.task = tsk;
670 self.next = xchg(&core_state->dumper.next, &self);
671 /*
672 * Implies mb(), the result of xchg() must be visible
673 * to core_state->dumper.
674 */
675 if (atomic_dec_and_test(&core_state->nr_threads))
676 complete(&core_state->startup);
677
678 for (;;) {
679 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
680 if (!self.task) /* see coredump_finish() */
681 break;
682 schedule();
683 }
684 __set_task_state(tsk, TASK_RUNNING);
685 down_read(&mm->mmap_sem);
686 }
687 atomic_inc(&mm->mm_count);
688 BUG_ON(mm != tsk->active_mm);
689 /* more a memory barrier than a real lock */
690 task_lock(tsk);
691 tsk->mm = NULL;
692 up_read(&mm->mmap_sem);
693 enter_lazy_tlb(mm, current);
694 /* We don't want this task to be frozen prematurely */
695 clear_freeze_flag(tsk);
696 task_unlock(tsk);
697 mm_update_next_owner(mm);
698 mmput(mm);
699 }
700
701 /*
702 * When we die, we re-parent all our children.
703 * Try to give them to another thread in our thread
704 * group, and if no such member exists, give it to
705 * the child reaper process (ie "init") in our pid
706 * space.
707 */
708 static struct task_struct *find_new_reaper(struct task_struct *father)
709 {
710 struct pid_namespace *pid_ns = task_active_pid_ns(father);
711 struct task_struct *thread;
712
713 thread = father;
714 while_each_thread(father, thread) {
715 if (thread->flags & PF_EXITING)
716 continue;
717 if (unlikely(pid_ns->child_reaper == father))
718 pid_ns->child_reaper = thread;
719 return thread;
720 }
721
722 if (unlikely(pid_ns->child_reaper == father)) {
723 write_unlock_irq(&tasklist_lock);
724 if (unlikely(pid_ns == &init_pid_ns))
725 panic("Attempted to kill init!");
726
727 zap_pid_ns_processes(pid_ns);
728 write_lock_irq(&tasklist_lock);
729 /*
730 * We can not clear ->child_reaper or leave it alone.
731 * There may by stealth EXIT_DEAD tasks on ->children,
732 * forget_original_parent() must move them somewhere.
733 */
734 pid_ns->child_reaper = init_pid_ns.child_reaper;
735 }
736
737 return pid_ns->child_reaper;
738 }
739
740 /*
741 * Any that need to be release_task'd are put on the @dead list.
742 */
743 static void reparent_thread(struct task_struct *father, struct task_struct *p,
744 struct list_head *dead)
745 {
746 if (p->pdeath_signal)
747 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
748
749 list_move_tail(&p->sibling, &p->real_parent->children);
750
751 if (task_detached(p))
752 return;
753 /*
754 * If this is a threaded reparent there is no need to
755 * notify anyone anything has happened.
756 */
757 if (same_thread_group(p->real_parent, father))
758 return;
759
760 /* We don't want people slaying init. */
761 p->exit_signal = SIGCHLD;
762
763 /* If it has exited notify the new parent about this child's death. */
764 if (!p->ptrace &&
765 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
766 do_notify_parent(p, p->exit_signal);
767 if (task_detached(p)) {
768 p->exit_state = EXIT_DEAD;
769 list_move_tail(&p->sibling, dead);
770 }
771 }
772
773 kill_orphaned_pgrp(p, father);
774 }
775
776 static void forget_original_parent(struct task_struct *father)
777 {
778 struct task_struct *p, *n, *reaper;
779 LIST_HEAD(dead_children);
780
781 exit_ptrace(father);
782
783 write_lock_irq(&tasklist_lock);
784 reaper = find_new_reaper(father);
785
786 list_for_each_entry_safe(p, n, &father->children, sibling) {
787 p->real_parent = reaper;
788 if (p->parent == father) {
789 BUG_ON(p->ptrace);
790 p->parent = p->real_parent;
791 }
792 reparent_thread(father, p, &dead_children);
793 }
794 write_unlock_irq(&tasklist_lock);
795
796 BUG_ON(!list_empty(&father->children));
797
798 list_for_each_entry_safe(p, n, &dead_children, sibling) {
799 list_del_init(&p->sibling);
800 release_task(p);
801 }
802 }
803
804 /*
805 * Send signals to all our closest relatives so that they know
806 * to properly mourn us..
807 */
808 static void exit_notify(struct task_struct *tsk, int group_dead)
809 {
810 int signal;
811 void *cookie;
812
813 /*
814 * This does two things:
815 *
816 * A. Make init inherit all the child processes
817 * B. Check to see if any process groups have become orphaned
818 * as a result of our exiting, and if they have any stopped
819 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
820 */
821 forget_original_parent(tsk);
822 exit_task_namespaces(tsk);
823
824 write_lock_irq(&tasklist_lock);
825 if (group_dead)
826 kill_orphaned_pgrp(tsk->group_leader, NULL);
827
828 /* Let father know we died
829 *
830 * Thread signals are configurable, but you aren't going to use
831 * that to send signals to arbitary processes.
832 * That stops right now.
833 *
834 * If the parent exec id doesn't match the exec id we saved
835 * when we started then we know the parent has changed security
836 * domain.
837 *
838 * If our self_exec id doesn't match our parent_exec_id then
839 * we have changed execution domain as these two values started
840 * the same after a fork.
841 */
842 if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
843 (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
844 tsk->self_exec_id != tsk->parent_exec_id))
845 tsk->exit_signal = SIGCHLD;
846
847 signal = tracehook_notify_death(tsk, &cookie, group_dead);
848 if (signal >= 0)
849 signal = do_notify_parent(tsk, signal);
850
851 tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
852
853 /* mt-exec, de_thread() is waiting for us */
854 if (thread_group_leader(tsk) &&
855 tsk->signal->group_exit_task &&
856 tsk->signal->notify_count < 0)
857 wake_up_process(tsk->signal->group_exit_task);
858
859 write_unlock_irq(&tasklist_lock);
860
861 tracehook_report_death(tsk, signal, cookie, group_dead);
862
863 /* If the process is dead, release it - nobody will wait for it */
864 if (signal == DEATH_REAP)
865 release_task(tsk);
866 }
867
868 #ifdef CONFIG_DEBUG_STACK_USAGE
869 static void check_stack_usage(void)
870 {
871 static DEFINE_SPINLOCK(low_water_lock);
872 static int lowest_to_date = THREAD_SIZE;
873 unsigned long free;
874
875 free = stack_not_used(current);
876
877 if (free >= lowest_to_date)
878 return;
879
880 spin_lock(&low_water_lock);
881 if (free < lowest_to_date) {
882 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
883 "left\n",
884 current->comm, free);
885 lowest_to_date = free;
886 }
887 spin_unlock(&low_water_lock);
888 }
889 #else
890 static inline void check_stack_usage(void) {}
891 #endif
892
893 NORET_TYPE void do_exit(long code)
894 {
895 struct task_struct *tsk = current;
896 int group_dead;
897
898 profile_task_exit(tsk);
899
900 WARN_ON(atomic_read(&tsk->fs_excl));
901
902 if (unlikely(in_interrupt()))
903 panic("Aiee, killing interrupt handler!");
904 if (unlikely(!tsk->pid))
905 panic("Attempted to kill the idle task!");
906
907 tracehook_report_exit(&code);
908
909 /*
910 * We're taking recursive faults here in do_exit. Safest is to just
911 * leave this task alone and wait for reboot.
912 */
913 if (unlikely(tsk->flags & PF_EXITING)) {
914 printk(KERN_ALERT
915 "Fixing recursive fault but reboot is needed!\n");
916 /*
917 * We can do this unlocked here. The futex code uses
918 * this flag just to verify whether the pi state
919 * cleanup has been done or not. In the worst case it
920 * loops once more. We pretend that the cleanup was
921 * done as there is no way to return. Either the
922 * OWNER_DIED bit is set by now or we push the blocked
923 * task into the wait for ever nirwana as well.
924 */
925 tsk->flags |= PF_EXITPIDONE;
926 set_current_state(TASK_UNINTERRUPTIBLE);
927 schedule();
928 }
929
930 exit_irq_thread();
931
932 exit_signals(tsk); /* sets PF_EXITING */
933 /*
934 * tsk->flags are checked in the futex code to protect against
935 * an exiting task cleaning up the robust pi futexes.
936 */
937 smp_mb();
938 spin_unlock_wait(&tsk->pi_lock);
939
940 if (unlikely(in_atomic()))
941 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
942 current->comm, task_pid_nr(current),
943 preempt_count());
944
945 acct_update_integrals(tsk);
946
947 group_dead = atomic_dec_and_test(&tsk->signal->live);
948 if (group_dead) {
949 hrtimer_cancel(&tsk->signal->real_timer);
950 exit_itimers(tsk->signal);
951 }
952 acct_collect(code, group_dead);
953 if (group_dead)
954 tty_audit_exit();
955 if (unlikely(tsk->audit_context))
956 audit_free(tsk);
957
958 tsk->exit_code = code;
959 taskstats_exit(tsk, group_dead);
960
961 exit_mm(tsk);
962
963 if (group_dead)
964 acct_process();
965 trace_sched_process_exit(tsk);
966
967 exit_sem(tsk);
968 exit_files(tsk);
969 exit_fs(tsk);
970 check_stack_usage();
971 exit_thread();
972 cgroup_exit(tsk, 1);
973
974 if (group_dead && tsk->signal->leader)
975 disassociate_ctty(1);
976
977 module_put(task_thread_info(tsk)->exec_domain->module);
978 if (tsk->binfmt)
979 module_put(tsk->binfmt->module);
980
981 proc_exit_connector(tsk);
982
983 /*
984 * Flush inherited counters to the parent - before the parent
985 * gets woken up by child-exit notifications.
986 */
987 perf_counter_exit_task(tsk);
988
989 exit_notify(tsk, group_dead);
990 #ifdef CONFIG_NUMA
991 mpol_put(tsk->mempolicy);
992 tsk->mempolicy = NULL;
993 #endif
994 #ifdef CONFIG_FUTEX
995 if (unlikely(!list_empty(&tsk->pi_state_list)))
996 exit_pi_state_list(tsk);
997 if (unlikely(current->pi_state_cache))
998 kfree(current->pi_state_cache);
999 #endif
1000 /*
1001 * Make sure we are holding no locks:
1002 */
1003 debug_check_no_locks_held(tsk);
1004 /*
1005 * We can do this unlocked here. The futex code uses this flag
1006 * just to verify whether the pi state cleanup has been done
1007 * or not. In the worst case it loops once more.
1008 */
1009 tsk->flags |= PF_EXITPIDONE;
1010
1011 if (tsk->io_context)
1012 exit_io_context();
1013
1014 if (tsk->splice_pipe)
1015 __free_pipe_info(tsk->splice_pipe);
1016
1017 preempt_disable();
1018 /* causes final put_task_struct in finish_task_switch(). */
1019 tsk->state = TASK_DEAD;
1020 schedule();
1021 BUG();
1022 /* Avoid "noreturn function does return". */
1023 for (;;)
1024 cpu_relax(); /* For when BUG is null */
1025 }
1026
1027 EXPORT_SYMBOL_GPL(do_exit);
1028
1029 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1030 {
1031 if (comp)
1032 complete(comp);
1033
1034 do_exit(code);
1035 }
1036
1037 EXPORT_SYMBOL(complete_and_exit);
1038
1039 SYSCALL_DEFINE1(exit, int, error_code)
1040 {
1041 do_exit((error_code&0xff)<<8);
1042 }
1043
1044 /*
1045 * Take down every thread in the group. This is called by fatal signals
1046 * as well as by sys_exit_group (below).
1047 */
1048 NORET_TYPE void
1049 do_group_exit(int exit_code)
1050 {
1051 struct signal_struct *sig = current->signal;
1052
1053 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1054
1055 if (signal_group_exit(sig))
1056 exit_code = sig->group_exit_code;
1057 else if (!thread_group_empty(current)) {
1058 struct sighand_struct *const sighand = current->sighand;
1059 spin_lock_irq(&sighand->siglock);
1060 if (signal_group_exit(sig))
1061 /* Another thread got here before we took the lock. */
1062 exit_code = sig->group_exit_code;
1063 else {
1064 sig->group_exit_code = exit_code;
1065 sig->flags = SIGNAL_GROUP_EXIT;
1066 zap_other_threads(current);
1067 }
1068 spin_unlock_irq(&sighand->siglock);
1069 }
1070
1071 do_exit(exit_code);
1072 /* NOTREACHED */
1073 }
1074
1075 /*
1076 * this kills every thread in the thread group. Note that any externally
1077 * wait4()-ing process will get the correct exit code - even if this
1078 * thread is not the thread group leader.
1079 */
1080 SYSCALL_DEFINE1(exit_group, int, error_code)
1081 {
1082 do_group_exit((error_code & 0xff) << 8);
1083 /* NOTREACHED */
1084 return 0;
1085 }
1086
1087 static struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1088 {
1089 struct pid *pid = NULL;
1090 if (type == PIDTYPE_PID)
1091 pid = task->pids[type].pid;
1092 else if (type < PIDTYPE_MAX)
1093 pid = task->group_leader->pids[type].pid;
1094 return pid;
1095 }
1096
1097 static int eligible_child(enum pid_type type, struct pid *pid, int options,
1098 struct task_struct *p)
1099 {
1100 int err;
1101
1102 if (type < PIDTYPE_MAX) {
1103 if (task_pid_type(p, type) != pid)
1104 return 0;
1105 }
1106
1107 /* Wait for all children (clone and not) if __WALL is set;
1108 * otherwise, wait for clone children *only* if __WCLONE is
1109 * set; otherwise, wait for non-clone children *only*. (Note:
1110 * A "clone" child here is one that reports to its parent
1111 * using a signal other than SIGCHLD.) */
1112 if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1113 && !(options & __WALL))
1114 return 0;
1115
1116 err = security_task_wait(p);
1117 if (err)
1118 return err;
1119
1120 return 1;
1121 }
1122
1123 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1124 int why, int status,
1125 struct siginfo __user *infop,
1126 struct rusage __user *rusagep)
1127 {
1128 int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1129
1130 put_task_struct(p);
1131 if (!retval)
1132 retval = put_user(SIGCHLD, &infop->si_signo);
1133 if (!retval)
1134 retval = put_user(0, &infop->si_errno);
1135 if (!retval)
1136 retval = put_user((short)why, &infop->si_code);
1137 if (!retval)
1138 retval = put_user(pid, &infop->si_pid);
1139 if (!retval)
1140 retval = put_user(uid, &infop->si_uid);
1141 if (!retval)
1142 retval = put_user(status, &infop->si_status);
1143 if (!retval)
1144 retval = pid;
1145 return retval;
1146 }
1147
1148 /*
1149 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1150 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1151 * the lock and this task is uninteresting. If we return nonzero, we have
1152 * released the lock and the system call should return.
1153 */
1154 static int wait_task_zombie(struct task_struct *p, int options,
1155 struct siginfo __user *infop,
1156 int __user *stat_addr, struct rusage __user *ru)
1157 {
1158 unsigned long state;
1159 int retval, status, traced;
1160 pid_t pid = task_pid_vnr(p);
1161 uid_t uid = __task_cred(p)->uid;
1162
1163 if (!likely(options & WEXITED))
1164 return 0;
1165
1166 if (unlikely(options & WNOWAIT)) {
1167 int exit_code = p->exit_code;
1168 int why, status;
1169
1170 get_task_struct(p);
1171 read_unlock(&tasklist_lock);
1172 if ((exit_code & 0x7f) == 0) {
1173 why = CLD_EXITED;
1174 status = exit_code >> 8;
1175 } else {
1176 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1177 status = exit_code & 0x7f;
1178 }
1179 return wait_noreap_copyout(p, pid, uid, why,
1180 status, infop, ru);
1181 }
1182
1183 /*
1184 * Try to move the task's state to DEAD
1185 * only one thread is allowed to do this:
1186 */
1187 state = xchg(&p->exit_state, EXIT_DEAD);
1188 if (state != EXIT_ZOMBIE) {
1189 BUG_ON(state != EXIT_DEAD);
1190 return 0;
1191 }
1192
1193 traced = ptrace_reparented(p);
1194
1195 if (likely(!traced)) {
1196 struct signal_struct *psig;
1197 struct signal_struct *sig;
1198 struct task_cputime cputime;
1199
1200 /*
1201 * The resource counters for the group leader are in its
1202 * own task_struct. Those for dead threads in the group
1203 * are in its signal_struct, as are those for the child
1204 * processes it has previously reaped. All these
1205 * accumulate in the parent's signal_struct c* fields.
1206 *
1207 * We don't bother to take a lock here to protect these
1208 * p->signal fields, because they are only touched by
1209 * __exit_signal, which runs with tasklist_lock
1210 * write-locked anyway, and so is excluded here. We do
1211 * need to protect the access to p->parent->signal fields,
1212 * as other threads in the parent group can be right
1213 * here reaping other children at the same time.
1214 *
1215 * We use thread_group_cputime() to get times for the thread
1216 * group, which consolidates times for all threads in the
1217 * group including the group leader.
1218 */
1219 thread_group_cputime(p, &cputime);
1220 spin_lock_irq(&p->parent->sighand->siglock);
1221 psig = p->parent->signal;
1222 sig = p->signal;
1223 psig->cutime =
1224 cputime_add(psig->cutime,
1225 cputime_add(cputime.utime,
1226 sig->cutime));
1227 psig->cstime =
1228 cputime_add(psig->cstime,
1229 cputime_add(cputime.stime,
1230 sig->cstime));
1231 psig->cgtime =
1232 cputime_add(psig->cgtime,
1233 cputime_add(p->gtime,
1234 cputime_add(sig->gtime,
1235 sig->cgtime)));
1236 psig->cmin_flt +=
1237 p->min_flt + sig->min_flt + sig->cmin_flt;
1238 psig->cmaj_flt +=
1239 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1240 psig->cnvcsw +=
1241 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1242 psig->cnivcsw +=
1243 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1244 psig->cinblock +=
1245 task_io_get_inblock(p) +
1246 sig->inblock + sig->cinblock;
1247 psig->coublock +=
1248 task_io_get_oublock(p) +
1249 sig->oublock + sig->coublock;
1250 task_io_accounting_add(&psig->ioac, &p->ioac);
1251 task_io_accounting_add(&psig->ioac, &sig->ioac);
1252 spin_unlock_irq(&p->parent->sighand->siglock);
1253 }
1254
1255 /*
1256 * Now we are sure this task is interesting, and no other
1257 * thread can reap it because we set its state to EXIT_DEAD.
1258 */
1259 read_unlock(&tasklist_lock);
1260
1261 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1262 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1263 ? p->signal->group_exit_code : p->exit_code;
1264 if (!retval && stat_addr)
1265 retval = put_user(status, stat_addr);
1266 if (!retval && infop)
1267 retval = put_user(SIGCHLD, &infop->si_signo);
1268 if (!retval && infop)
1269 retval = put_user(0, &infop->si_errno);
1270 if (!retval && infop) {
1271 int why;
1272
1273 if ((status & 0x7f) == 0) {
1274 why = CLD_EXITED;
1275 status >>= 8;
1276 } else {
1277 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1278 status &= 0x7f;
1279 }
1280 retval = put_user((short)why, &infop->si_code);
1281 if (!retval)
1282 retval = put_user(status, &infop->si_status);
1283 }
1284 if (!retval && infop)
1285 retval = put_user(pid, &infop->si_pid);
1286 if (!retval && infop)
1287 retval = put_user(uid, &infop->si_uid);
1288 if (!retval)
1289 retval = pid;
1290
1291 if (traced) {
1292 write_lock_irq(&tasklist_lock);
1293 /* We dropped tasklist, ptracer could die and untrace */
1294 ptrace_unlink(p);
1295 /*
1296 * If this is not a detached task, notify the parent.
1297 * If it's still not detached after that, don't release
1298 * it now.
1299 */
1300 if (!task_detached(p)) {
1301 do_notify_parent(p, p->exit_signal);
1302 if (!task_detached(p)) {
1303 p->exit_state = EXIT_ZOMBIE;
1304 p = NULL;
1305 }
1306 }
1307 write_unlock_irq(&tasklist_lock);
1308 }
1309 if (p != NULL)
1310 release_task(p);
1311
1312 return retval;
1313 }
1314
1315 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1316 {
1317 if (ptrace) {
1318 if (task_is_stopped_or_traced(p))
1319 return &p->exit_code;
1320 } else {
1321 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1322 return &p->signal->group_exit_code;
1323 }
1324 return NULL;
1325 }
1326
1327 /*
1328 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
1329 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1330 * the lock and this task is uninteresting. If we return nonzero, we have
1331 * released the lock and the system call should return.
1332 */
1333 static int wait_task_stopped(int ptrace, struct task_struct *p,
1334 int options, struct siginfo __user *infop,
1335 int __user *stat_addr, struct rusage __user *ru)
1336 {
1337 int retval, exit_code, *p_code, why;
1338 uid_t uid = 0; /* unneeded, required by compiler */
1339 pid_t pid;
1340
1341 if (!(options & WUNTRACED))
1342 return 0;
1343
1344 exit_code = 0;
1345 spin_lock_irq(&p->sighand->siglock);
1346
1347 p_code = task_stopped_code(p, ptrace);
1348 if (unlikely(!p_code))
1349 goto unlock_sig;
1350
1351 exit_code = *p_code;
1352 if (!exit_code)
1353 goto unlock_sig;
1354
1355 if (!unlikely(options & WNOWAIT))
1356 *p_code = 0;
1357
1358 /* don't need the RCU readlock here as we're holding a spinlock */
1359 uid = __task_cred(p)->uid;
1360 unlock_sig:
1361 spin_unlock_irq(&p->sighand->siglock);
1362 if (!exit_code)
1363 return 0;
1364
1365 /*
1366 * Now we are pretty sure this task is interesting.
1367 * Make sure it doesn't get reaped out from under us while we
1368 * give up the lock and then examine it below. We don't want to
1369 * keep holding onto the tasklist_lock while we call getrusage and
1370 * possibly take page faults for user memory.
1371 */
1372 get_task_struct(p);
1373 pid = task_pid_vnr(p);
1374 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1375 read_unlock(&tasklist_lock);
1376
1377 if (unlikely(options & WNOWAIT))
1378 return wait_noreap_copyout(p, pid, uid,
1379 why, exit_code,
1380 infop, ru);
1381
1382 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1383 if (!retval && stat_addr)
1384 retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1385 if (!retval && infop)
1386 retval = put_user(SIGCHLD, &infop->si_signo);
1387 if (!retval && infop)
1388 retval = put_user(0, &infop->si_errno);
1389 if (!retval && infop)
1390 retval = put_user((short)why, &infop->si_code);
1391 if (!retval && infop)
1392 retval = put_user(exit_code, &infop->si_status);
1393 if (!retval && infop)
1394 retval = put_user(pid, &infop->si_pid);
1395 if (!retval && infop)
1396 retval = put_user(uid, &infop->si_uid);
1397 if (!retval)
1398 retval = pid;
1399 put_task_struct(p);
1400
1401 BUG_ON(!retval);
1402 return retval;
1403 }
1404
1405 /*
1406 * Handle do_wait work for one task in a live, non-stopped state.
1407 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1408 * the lock and this task is uninteresting. If we return nonzero, we have
1409 * released the lock and the system call should return.
1410 */
1411 static int wait_task_continued(struct task_struct *p, int options,
1412 struct siginfo __user *infop,
1413 int __user *stat_addr, struct rusage __user *ru)
1414 {
1415 int retval;
1416 pid_t pid;
1417 uid_t uid;
1418
1419 if (!unlikely(options & WCONTINUED))
1420 return 0;
1421
1422 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1423 return 0;
1424
1425 spin_lock_irq(&p->sighand->siglock);
1426 /* Re-check with the lock held. */
1427 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1428 spin_unlock_irq(&p->sighand->siglock);
1429 return 0;
1430 }
1431 if (!unlikely(options & WNOWAIT))
1432 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1433 uid = __task_cred(p)->uid;
1434 spin_unlock_irq(&p->sighand->siglock);
1435
1436 pid = task_pid_vnr(p);
1437 get_task_struct(p);
1438 read_unlock(&tasklist_lock);
1439
1440 if (!infop) {
1441 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1442 put_task_struct(p);
1443 if (!retval && stat_addr)
1444 retval = put_user(0xffff, stat_addr);
1445 if (!retval)
1446 retval = pid;
1447 } else {
1448 retval = wait_noreap_copyout(p, pid, uid,
1449 CLD_CONTINUED, SIGCONT,
1450 infop, ru);
1451 BUG_ON(retval == 0);
1452 }
1453
1454 return retval;
1455 }
1456
1457 /*
1458 * Consider @p for a wait by @parent.
1459 *
1460 * -ECHILD should be in *@notask_error before the first call.
1461 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1462 * Returns zero if the search for a child should continue;
1463 * then *@notask_error is 0 if @p is an eligible child,
1464 * or another error from security_task_wait(), or still -ECHILD.
1465 */
1466 static int wait_consider_task(struct task_struct *parent, int ptrace,
1467 struct task_struct *p, int *notask_error,
1468 enum pid_type type, struct pid *pid, int options,
1469 struct siginfo __user *infop,
1470 int __user *stat_addr, struct rusage __user *ru)
1471 {
1472 int ret = eligible_child(type, pid, options, p);
1473 if (!ret)
1474 return ret;
1475
1476 if (unlikely(ret < 0)) {
1477 /*
1478 * If we have not yet seen any eligible child,
1479 * then let this error code replace -ECHILD.
1480 * A permission error will give the user a clue
1481 * to look for security policy problems, rather
1482 * than for mysterious wait bugs.
1483 */
1484 if (*notask_error)
1485 *notask_error = ret;
1486 }
1487
1488 if (likely(!ptrace) && unlikely(p->ptrace)) {
1489 /*
1490 * This child is hidden by ptrace.
1491 * We aren't allowed to see it now, but eventually we will.
1492 */
1493 *notask_error = 0;
1494 return 0;
1495 }
1496
1497 if (p->exit_state == EXIT_DEAD)
1498 return 0;
1499
1500 /*
1501 * We don't reap group leaders with subthreads.
1502 */
1503 if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
1504 return wait_task_zombie(p, options, infop, stat_addr, ru);
1505
1506 /*
1507 * It's stopped or running now, so it might
1508 * later continue, exit, or stop again.
1509 */
1510 *notask_error = 0;
1511
1512 if (task_stopped_code(p, ptrace))
1513 return wait_task_stopped(ptrace, p, options,
1514 infop, stat_addr, ru);
1515
1516 return wait_task_continued(p, options, infop, stat_addr, ru);
1517 }
1518
1519 /*
1520 * Do the work of do_wait() for one thread in the group, @tsk.
1521 *
1522 * -ECHILD should be in *@notask_error before the first call.
1523 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1524 * Returns zero if the search for a child should continue; then
1525 * *@notask_error is 0 if there were any eligible children,
1526 * or another error from security_task_wait(), or still -ECHILD.
1527 */
1528 static int do_wait_thread(struct task_struct *tsk, int *notask_error,
1529 enum pid_type type, struct pid *pid, int options,
1530 struct siginfo __user *infop, int __user *stat_addr,
1531 struct rusage __user *ru)
1532 {
1533 struct task_struct *p;
1534
1535 list_for_each_entry(p, &tsk->children, sibling) {
1536 /*
1537 * Do not consider detached threads.
1538 */
1539 if (!task_detached(p)) {
1540 int ret = wait_consider_task(tsk, 0, p, notask_error,
1541 type, pid, options,
1542 infop, stat_addr, ru);
1543 if (ret)
1544 return ret;
1545 }
1546 }
1547
1548 return 0;
1549 }
1550
1551 static int ptrace_do_wait(struct task_struct *tsk, int *notask_error,
1552 enum pid_type type, struct pid *pid, int options,
1553 struct siginfo __user *infop, int __user *stat_addr,
1554 struct rusage __user *ru)
1555 {
1556 struct task_struct *p;
1557
1558 /*
1559 * Traditionally we see ptrace'd stopped tasks regardless of options.
1560 */
1561 options |= WUNTRACED;
1562
1563 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1564 int ret = wait_consider_task(tsk, 1, p, notask_error,
1565 type, pid, options,
1566 infop, stat_addr, ru);
1567 if (ret)
1568 return ret;
1569 }
1570
1571 return 0;
1572 }
1573
1574 static long do_wait(enum pid_type type, struct pid *pid, int options,
1575 struct siginfo __user *infop, int __user *stat_addr,
1576 struct rusage __user *ru)
1577 {
1578 DECLARE_WAITQUEUE(wait, current);
1579 struct task_struct *tsk;
1580 int retval;
1581
1582 trace_sched_process_wait(pid);
1583
1584 add_wait_queue(&current->signal->wait_chldexit,&wait);
1585 repeat:
1586 /*
1587 * If there is nothing that can match our critiera just get out.
1588 * We will clear @retval to zero if we see any child that might later
1589 * match our criteria, even if we are not able to reap it yet.
1590 */
1591 retval = -ECHILD;
1592 if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type])))
1593 goto end;
1594
1595 current->state = TASK_INTERRUPTIBLE;
1596 read_lock(&tasklist_lock);
1597 tsk = current;
1598 do {
1599 int tsk_result = do_wait_thread(tsk, &retval,
1600 type, pid, options,
1601 infop, stat_addr, ru);
1602 if (!tsk_result)
1603 tsk_result = ptrace_do_wait(tsk, &retval,
1604 type, pid, options,
1605 infop, stat_addr, ru);
1606 if (tsk_result) {
1607 /*
1608 * tasklist_lock is unlocked and we have a final result.
1609 */
1610 retval = tsk_result;
1611 goto end;
1612 }
1613
1614 if (options & __WNOTHREAD)
1615 break;
1616 tsk = next_thread(tsk);
1617 BUG_ON(tsk->signal != current->signal);
1618 } while (tsk != current);
1619 read_unlock(&tasklist_lock);
1620
1621 if (!retval && !(options & WNOHANG)) {
1622 retval = -ERESTARTSYS;
1623 if (!signal_pending(current)) {
1624 schedule();
1625 goto repeat;
1626 }
1627 }
1628
1629 end:
1630 current->state = TASK_RUNNING;
1631 remove_wait_queue(&current->signal->wait_chldexit,&wait);
1632 if (infop) {
1633 if (retval > 0)
1634 retval = 0;
1635 else {
1636 /*
1637 * For a WNOHANG return, clear out all the fields
1638 * we would set so the user can easily tell the
1639 * difference.
1640 */
1641 if (!retval)
1642 retval = put_user(0, &infop->si_signo);
1643 if (!retval)
1644 retval = put_user(0, &infop->si_errno);
1645 if (!retval)
1646 retval = put_user(0, &infop->si_code);
1647 if (!retval)
1648 retval = put_user(0, &infop->si_pid);
1649 if (!retval)
1650 retval = put_user(0, &infop->si_uid);
1651 if (!retval)
1652 retval = put_user(0, &infop->si_status);
1653 }
1654 }
1655 return retval;
1656 }
1657
1658 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1659 infop, int, options, struct rusage __user *, ru)
1660 {
1661 struct pid *pid = NULL;
1662 enum pid_type type;
1663 long ret;
1664
1665 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1666 return -EINVAL;
1667 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1668 return -EINVAL;
1669
1670 switch (which) {
1671 case P_ALL:
1672 type = PIDTYPE_MAX;
1673 break;
1674 case P_PID:
1675 type = PIDTYPE_PID;
1676 if (upid <= 0)
1677 return -EINVAL;
1678 break;
1679 case P_PGID:
1680 type = PIDTYPE_PGID;
1681 if (upid <= 0)
1682 return -EINVAL;
1683 break;
1684 default:
1685 return -EINVAL;
1686 }
1687
1688 if (type < PIDTYPE_MAX)
1689 pid = find_get_pid(upid);
1690 ret = do_wait(type, pid, options, infop, NULL, ru);
1691 put_pid(pid);
1692
1693 /* avoid REGPARM breakage on x86: */
1694 asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1695 return ret;
1696 }
1697
1698 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1699 int, options, struct rusage __user *, ru)
1700 {
1701 struct pid *pid = NULL;
1702 enum pid_type type;
1703 long ret;
1704
1705 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1706 __WNOTHREAD|__WCLONE|__WALL))
1707 return -EINVAL;
1708
1709 if (upid == -1)
1710 type = PIDTYPE_MAX;
1711 else if (upid < 0) {
1712 type = PIDTYPE_PGID;
1713 pid = find_get_pid(-upid);
1714 } else if (upid == 0) {
1715 type = PIDTYPE_PGID;
1716 pid = get_task_pid(current, PIDTYPE_PGID);
1717 } else /* upid > 0 */ {
1718 type = PIDTYPE_PID;
1719 pid = find_get_pid(upid);
1720 }
1721
1722 ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru);
1723 put_pid(pid);
1724
1725 /* avoid REGPARM breakage on x86: */
1726 asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1727 return ret;
1728 }
1729
1730 #ifdef __ARCH_WANT_SYS_WAITPID
1731
1732 /*
1733 * sys_waitpid() remains for compatibility. waitpid() should be
1734 * implemented by calling sys_wait4() from libc.a.
1735 */
1736 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1737 {
1738 return sys_wait4(pid, stat_addr, options, NULL);
1739 }
1740
1741 #endif