kernel/extable.c: mark core_kernel_text notrace
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / exit.c
1 /*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/freezer.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h>
54 #include <linux/writeback.h>
55 #include <linux/shm.h>
56
57 #include <asm/uaccess.h>
58 #include <asm/unistd.h>
59 #include <asm/pgtable.h>
60 #include <asm/mmu_context.h>
61
62 static void exit_mm(struct task_struct * tsk);
63
64 static void __unhash_process(struct task_struct *p, bool group_dead)
65 {
66 nr_threads--;
67 detach_pid(p, PIDTYPE_PID);
68 if (group_dead) {
69 detach_pid(p, PIDTYPE_PGID);
70 detach_pid(p, PIDTYPE_SID);
71
72 list_del_rcu(&p->tasks);
73 list_del_init(&p->sibling);
74 __this_cpu_dec(process_counts);
75 }
76 list_del_rcu(&p->thread_group);
77 list_del_rcu(&p->thread_node);
78 }
79
80 /*
81 * This function expects the tasklist_lock write-locked.
82 */
83 static void __exit_signal(struct task_struct *tsk)
84 {
85 struct signal_struct *sig = tsk->signal;
86 bool group_dead = thread_group_leader(tsk);
87 struct sighand_struct *sighand;
88 struct tty_struct *uninitialized_var(tty);
89 cputime_t utime, stime;
90
91 sighand = rcu_dereference_check(tsk->sighand,
92 lockdep_tasklist_lock_is_held());
93 spin_lock(&sighand->siglock);
94
95 posix_cpu_timers_exit(tsk);
96 if (group_dead) {
97 posix_cpu_timers_exit_group(tsk);
98 tty = sig->tty;
99 sig->tty = NULL;
100 } else {
101 /*
102 * This can only happen if the caller is de_thread().
103 * FIXME: this is the temporary hack, we should teach
104 * posix-cpu-timers to handle this case correctly.
105 */
106 if (unlikely(has_group_leader_pid(tsk)))
107 posix_cpu_timers_exit_group(tsk);
108
109 /*
110 * If there is any task waiting for the group exit
111 * then notify it:
112 */
113 if (sig->notify_count > 0 && !--sig->notify_count)
114 wake_up_process(sig->group_exit_task);
115
116 if (tsk == sig->curr_target)
117 sig->curr_target = next_thread(tsk);
118 /*
119 * Accumulate here the counters for all threads but the
120 * group leader as they die, so they can be added into
121 * the process-wide totals when those are taken.
122 * The group leader stays around as a zombie as long
123 * as there are other threads. When it gets reaped,
124 * the exit.c code will add its counts into these totals.
125 * We won't ever get here for the group leader, since it
126 * will have been the last reference on the signal_struct.
127 */
128 task_cputime(tsk, &utime, &stime);
129 sig->utime += utime;
130 sig->stime += stime;
131 sig->gtime += task_gtime(tsk);
132 sig->min_flt += tsk->min_flt;
133 sig->maj_flt += tsk->maj_flt;
134 sig->nvcsw += tsk->nvcsw;
135 sig->nivcsw += tsk->nivcsw;
136 sig->inblock += task_io_get_inblock(tsk);
137 sig->oublock += task_io_get_oublock(tsk);
138 task_io_accounting_add(&sig->ioac, &tsk->ioac);
139 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
140 }
141
142 sig->nr_threads--;
143 __unhash_process(tsk, group_dead);
144
145 /*
146 * Do this under ->siglock, we can race with another thread
147 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
148 */
149 flush_sigqueue(&tsk->pending);
150 tsk->sighand = NULL;
151 spin_unlock(&sighand->siglock);
152
153 __cleanup_sighand(sighand);
154 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
155 if (group_dead) {
156 flush_sigqueue(&sig->shared_pending);
157 tty_kref_put(tty);
158 }
159 }
160
161 static void delayed_put_task_struct(struct rcu_head *rhp)
162 {
163 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
164
165 perf_event_delayed_put(tsk);
166 trace_sched_process_free(tsk);
167 put_task_struct(tsk);
168 }
169
170
171 void release_task(struct task_struct * p)
172 {
173 struct task_struct *leader;
174 int zap_leader;
175 repeat:
176 /* don't need to get the RCU readlock here - the process is dead and
177 * can't be modifying its own credentials. But shut RCU-lockdep up */
178 rcu_read_lock();
179 atomic_dec(&__task_cred(p)->user->processes);
180 rcu_read_unlock();
181
182 proc_flush_task(p);
183
184 write_lock_irq(&tasklist_lock);
185 ptrace_release_task(p);
186 __exit_signal(p);
187
188 /*
189 * If we are the last non-leader member of the thread
190 * group, and the leader is zombie, then notify the
191 * group leader's parent process. (if it wants notification.)
192 */
193 zap_leader = 0;
194 leader = p->group_leader;
195 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
196 /*
197 * If we were the last child thread and the leader has
198 * exited already, and the leader's parent ignores SIGCHLD,
199 * then we are the one who should release the leader.
200 */
201 zap_leader = do_notify_parent(leader, leader->exit_signal);
202 if (zap_leader)
203 leader->exit_state = EXIT_DEAD;
204 }
205
206 write_unlock_irq(&tasklist_lock);
207 release_thread(p);
208 call_rcu(&p->rcu, delayed_put_task_struct);
209
210 p = leader;
211 if (unlikely(zap_leader))
212 goto repeat;
213 }
214
215 /*
216 * This checks not only the pgrp, but falls back on the pid if no
217 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
218 * without this...
219 *
220 * The caller must hold rcu lock or the tasklist lock.
221 */
222 struct pid *session_of_pgrp(struct pid *pgrp)
223 {
224 struct task_struct *p;
225 struct pid *sid = NULL;
226
227 p = pid_task(pgrp, PIDTYPE_PGID);
228 if (p == NULL)
229 p = pid_task(pgrp, PIDTYPE_PID);
230 if (p != NULL)
231 sid = task_session(p);
232
233 return sid;
234 }
235
236 /*
237 * Determine if a process group is "orphaned", according to the POSIX
238 * definition in 2.2.2.52. Orphaned process groups are not to be affected
239 * by terminal-generated stop signals. Newly orphaned process groups are
240 * to receive a SIGHUP and a SIGCONT.
241 *
242 * "I ask you, have you ever known what it is to be an orphan?"
243 */
244 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
245 {
246 struct task_struct *p;
247
248 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
249 if ((p == ignored_task) ||
250 (p->exit_state && thread_group_empty(p)) ||
251 is_global_init(p->real_parent))
252 continue;
253
254 if (task_pgrp(p->real_parent) != pgrp &&
255 task_session(p->real_parent) == task_session(p))
256 return 0;
257 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
258
259 return 1;
260 }
261
262 int is_current_pgrp_orphaned(void)
263 {
264 int retval;
265
266 read_lock(&tasklist_lock);
267 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
268 read_unlock(&tasklist_lock);
269
270 return retval;
271 }
272
273 static bool has_stopped_jobs(struct pid *pgrp)
274 {
275 struct task_struct *p;
276
277 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
278 if (p->signal->flags & SIGNAL_STOP_STOPPED)
279 return true;
280 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
281
282 return false;
283 }
284
285 /*
286 * Check to see if any process groups have become orphaned as
287 * a result of our exiting, and if they have any stopped jobs,
288 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
289 */
290 static void
291 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
292 {
293 struct pid *pgrp = task_pgrp(tsk);
294 struct task_struct *ignored_task = tsk;
295
296 if (!parent)
297 /* exit: our father is in a different pgrp than
298 * we are and we were the only connection outside.
299 */
300 parent = tsk->real_parent;
301 else
302 /* reparent: our child is in a different pgrp than
303 * we are, and it was the only connection outside.
304 */
305 ignored_task = NULL;
306
307 if (task_pgrp(parent) != pgrp &&
308 task_session(parent) == task_session(tsk) &&
309 will_become_orphaned_pgrp(pgrp, ignored_task) &&
310 has_stopped_jobs(pgrp)) {
311 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
312 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
313 }
314 }
315
316 void __set_special_pids(struct pid *pid)
317 {
318 struct task_struct *curr = current->group_leader;
319
320 if (task_session(curr) != pid)
321 change_pid(curr, PIDTYPE_SID, pid);
322
323 if (task_pgrp(curr) != pid)
324 change_pid(curr, PIDTYPE_PGID, pid);
325 }
326
327 /*
328 * Let kernel threads use this to say that they allow a certain signal.
329 * Must not be used if kthread was cloned with CLONE_SIGHAND.
330 */
331 int allow_signal(int sig)
332 {
333 if (!valid_signal(sig) || sig < 1)
334 return -EINVAL;
335
336 spin_lock_irq(&current->sighand->siglock);
337 /* This is only needed for daemonize()'ed kthreads */
338 sigdelset(&current->blocked, sig);
339 /*
340 * Kernel threads handle their own signals. Let the signal code
341 * know it'll be handled, so that they don't get converted to
342 * SIGKILL or just silently dropped.
343 */
344 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
345 recalc_sigpending();
346 spin_unlock_irq(&current->sighand->siglock);
347 return 0;
348 }
349
350 EXPORT_SYMBOL(allow_signal);
351
352 int disallow_signal(int sig)
353 {
354 if (!valid_signal(sig) || sig < 1)
355 return -EINVAL;
356
357 spin_lock_irq(&current->sighand->siglock);
358 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
359 recalc_sigpending();
360 spin_unlock_irq(&current->sighand->siglock);
361 return 0;
362 }
363
364 EXPORT_SYMBOL(disallow_signal);
365
366 #ifdef CONFIG_MM_OWNER
367 /*
368 * A task is exiting. If it owned this mm, find a new owner for the mm.
369 */
370 void mm_update_next_owner(struct mm_struct *mm)
371 {
372 struct task_struct *c, *g, *p = current;
373
374 retry:
375 /*
376 * If the exiting or execing task is not the owner, it's
377 * someone else's problem.
378 */
379 if (mm->owner != p)
380 return;
381 /*
382 * The current owner is exiting/execing and there are no other
383 * candidates. Do not leave the mm pointing to a possibly
384 * freed task structure.
385 */
386 if (atomic_read(&mm->mm_users) <= 1) {
387 mm->owner = NULL;
388 return;
389 }
390
391 read_lock(&tasklist_lock);
392 /*
393 * Search in the children
394 */
395 list_for_each_entry(c, &p->children, sibling) {
396 if (c->mm == mm)
397 goto assign_new_owner;
398 }
399
400 /*
401 * Search in the siblings
402 */
403 list_for_each_entry(c, &p->real_parent->children, sibling) {
404 if (c->mm == mm)
405 goto assign_new_owner;
406 }
407
408 /*
409 * Search through everything else. We should not get
410 * here often
411 */
412 do_each_thread(g, c) {
413 if (c->mm == mm)
414 goto assign_new_owner;
415 } while_each_thread(g, c);
416
417 read_unlock(&tasklist_lock);
418 /*
419 * We found no owner yet mm_users > 1: this implies that we are
420 * most likely racing with swapoff (try_to_unuse()) or /proc or
421 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
422 */
423 mm->owner = NULL;
424 return;
425
426 assign_new_owner:
427 BUG_ON(c == p);
428 get_task_struct(c);
429 /*
430 * The task_lock protects c->mm from changing.
431 * We always want mm->owner->mm == mm
432 */
433 task_lock(c);
434 /*
435 * Delay read_unlock() till we have the task_lock()
436 * to ensure that c does not slip away underneath us
437 */
438 read_unlock(&tasklist_lock);
439 if (c->mm != mm) {
440 task_unlock(c);
441 put_task_struct(c);
442 goto retry;
443 }
444 mm->owner = c;
445 task_unlock(c);
446 put_task_struct(c);
447 }
448 #endif /* CONFIG_MM_OWNER */
449
450 /*
451 * Turn us into a lazy TLB process if we
452 * aren't already..
453 */
454 static void exit_mm(struct task_struct * tsk)
455 {
456 struct mm_struct *mm = tsk->mm;
457 struct core_state *core_state;
458
459 mm_release(tsk, mm);
460 if (!mm)
461 return;
462 sync_mm_rss(mm);
463 /*
464 * Serialize with any possible pending coredump.
465 * We must hold mmap_sem around checking core_state
466 * and clearing tsk->mm. The core-inducing thread
467 * will increment ->nr_threads for each thread in the
468 * group with ->mm != NULL.
469 */
470 down_read(&mm->mmap_sem);
471 core_state = mm->core_state;
472 if (core_state) {
473 struct core_thread self;
474 up_read(&mm->mmap_sem);
475
476 self.task = tsk;
477 self.next = xchg(&core_state->dumper.next, &self);
478 /*
479 * Implies mb(), the result of xchg() must be visible
480 * to core_state->dumper.
481 */
482 if (atomic_dec_and_test(&core_state->nr_threads))
483 complete(&core_state->startup);
484
485 for (;;) {
486 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
487 if (!self.task) /* see coredump_finish() */
488 break;
489 freezable_schedule();
490 }
491 __set_task_state(tsk, TASK_RUNNING);
492 down_read(&mm->mmap_sem);
493 }
494 atomic_inc(&mm->mm_count);
495 BUG_ON(mm != tsk->active_mm);
496 /* more a memory barrier than a real lock */
497 task_lock(tsk);
498 tsk->mm = NULL;
499 up_read(&mm->mmap_sem);
500 enter_lazy_tlb(mm, current);
501 task_unlock(tsk);
502 mm_update_next_owner(mm);
503 mmput(mm);
504 }
505
506 /*
507 * When we die, we re-parent all our children, and try to:
508 * 1. give them to another thread in our thread group, if such a member exists
509 * 2. give it to the first ancestor process which prctl'd itself as a
510 * child_subreaper for its children (like a service manager)
511 * 3. give it to the init process (PID 1) in our pid namespace
512 */
513 static struct task_struct *find_new_reaper(struct task_struct *father)
514 __releases(&tasklist_lock)
515 __acquires(&tasklist_lock)
516 {
517 struct pid_namespace *pid_ns = task_active_pid_ns(father);
518 struct task_struct *thread;
519
520 thread = father;
521 while_each_thread(father, thread) {
522 if (thread->flags & PF_EXITING)
523 continue;
524 if (unlikely(pid_ns->child_reaper == father))
525 pid_ns->child_reaper = thread;
526 return thread;
527 }
528
529 if (unlikely(pid_ns->child_reaper == father)) {
530 write_unlock_irq(&tasklist_lock);
531 if (unlikely(pid_ns == &init_pid_ns)) {
532 panic("Attempted to kill init! exitcode=0x%08x\n",
533 father->signal->group_exit_code ?:
534 father->exit_code);
535 }
536
537 zap_pid_ns_processes(pid_ns);
538 write_lock_irq(&tasklist_lock);
539 } else if (father->signal->has_child_subreaper) {
540 struct task_struct *reaper;
541
542 /*
543 * Find the first ancestor marked as child_subreaper.
544 * Note that the code below checks same_thread_group(reaper,
545 * pid_ns->child_reaper). This is what we need to DTRT in a
546 * PID namespace. However we still need the check above, see
547 * http://marc.info/?l=linux-kernel&m=131385460420380
548 */
549 for (reaper = father->real_parent;
550 reaper != &init_task;
551 reaper = reaper->real_parent) {
552 if (same_thread_group(reaper, pid_ns->child_reaper))
553 break;
554 if (!reaper->signal->is_child_subreaper)
555 continue;
556 thread = reaper;
557 do {
558 if (!(thread->flags & PF_EXITING))
559 return reaper;
560 } while_each_thread(reaper, thread);
561 }
562 }
563
564 return pid_ns->child_reaper;
565 }
566
567 /*
568 * Any that need to be release_task'd are put on the @dead list.
569 */
570 static void reparent_leader(struct task_struct *father, struct task_struct *p,
571 struct list_head *dead)
572 {
573 list_move_tail(&p->sibling, &p->real_parent->children);
574 /*
575 * If this is a threaded reparent there is no need to
576 * notify anyone anything has happened.
577 */
578 if (same_thread_group(p->real_parent, father))
579 return;
580
581 /*
582 * We don't want people slaying init.
583 *
584 * Note: we do this even if it is EXIT_DEAD, wait_task_zombie()
585 * can change ->exit_state to EXIT_ZOMBIE. If this is the final
586 * state, do_notify_parent() was already called and ->exit_signal
587 * doesn't matter.
588 */
589 p->exit_signal = SIGCHLD;
590
591 if (p->exit_state == EXIT_DEAD)
592 return;
593
594 /* If it has exited notify the new parent about this child's death. */
595 if (!p->ptrace &&
596 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
597 if (do_notify_parent(p, p->exit_signal)) {
598 p->exit_state = EXIT_DEAD;
599 list_move_tail(&p->sibling, dead);
600 }
601 }
602
603 kill_orphaned_pgrp(p, father);
604 }
605
606 static void forget_original_parent(struct task_struct *father)
607 {
608 struct task_struct *p, *n, *reaper;
609 LIST_HEAD(dead_children);
610
611 write_lock_irq(&tasklist_lock);
612 /*
613 * Note that exit_ptrace() and find_new_reaper() might
614 * drop tasklist_lock and reacquire it.
615 */
616 exit_ptrace(father);
617 reaper = find_new_reaper(father);
618
619 list_for_each_entry_safe(p, n, &father->children, sibling) {
620 struct task_struct *t = p;
621 do {
622 t->real_parent = reaper;
623 if (t->parent == father) {
624 BUG_ON(t->ptrace);
625 t->parent = t->real_parent;
626 }
627 if (t->pdeath_signal)
628 group_send_sig_info(t->pdeath_signal,
629 SEND_SIG_NOINFO, t);
630 } while_each_thread(p, t);
631 reparent_leader(father, p, &dead_children);
632 }
633 write_unlock_irq(&tasklist_lock);
634
635 BUG_ON(!list_empty(&father->children));
636
637 list_for_each_entry_safe(p, n, &dead_children, sibling) {
638 list_del_init(&p->sibling);
639 release_task(p);
640 }
641 }
642
643 /*
644 * Send signals to all our closest relatives so that they know
645 * to properly mourn us..
646 */
647 static void exit_notify(struct task_struct *tsk, int group_dead)
648 {
649 bool autoreap;
650
651 /*
652 * This does two things:
653 *
654 * A. Make init inherit all the child processes
655 * B. Check to see if any process groups have become orphaned
656 * as a result of our exiting, and if they have any stopped
657 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
658 */
659 forget_original_parent(tsk);
660
661 write_lock_irq(&tasklist_lock);
662 if (group_dead)
663 kill_orphaned_pgrp(tsk->group_leader, NULL);
664
665 if (unlikely(tsk->ptrace)) {
666 int sig = thread_group_leader(tsk) &&
667 thread_group_empty(tsk) &&
668 !ptrace_reparented(tsk) ?
669 tsk->exit_signal : SIGCHLD;
670 autoreap = do_notify_parent(tsk, sig);
671 } else if (thread_group_leader(tsk)) {
672 autoreap = thread_group_empty(tsk) &&
673 do_notify_parent(tsk, tsk->exit_signal);
674 } else {
675 autoreap = true;
676 }
677
678 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
679
680 /* mt-exec, de_thread() is waiting for group leader */
681 if (unlikely(tsk->signal->notify_count < 0))
682 wake_up_process(tsk->signal->group_exit_task);
683 write_unlock_irq(&tasklist_lock);
684
685 /* If the process is dead, release it - nobody will wait for it */
686 if (autoreap)
687 release_task(tsk);
688 }
689
690 #ifdef CONFIG_DEBUG_STACK_USAGE
691 static void check_stack_usage(void)
692 {
693 static DEFINE_SPINLOCK(low_water_lock);
694 static int lowest_to_date = THREAD_SIZE;
695 unsigned long free;
696
697 free = stack_not_used(current);
698
699 if (free >= lowest_to_date)
700 return;
701
702 spin_lock(&low_water_lock);
703 if (free < lowest_to_date) {
704 printk(KERN_WARNING "%s (%d) used greatest stack depth: "
705 "%lu bytes left\n",
706 current->comm, task_pid_nr(current), free);
707 lowest_to_date = free;
708 }
709 spin_unlock(&low_water_lock);
710 }
711 #else
712 static inline void check_stack_usage(void) {}
713 #endif
714
715 void do_exit(long code)
716 {
717 struct task_struct *tsk = current;
718 int group_dead;
719
720 profile_task_exit(tsk);
721
722 WARN_ON(blk_needs_flush_plug(tsk));
723
724 if (unlikely(in_interrupt()))
725 panic("Aiee, killing interrupt handler!");
726 if (unlikely(!tsk->pid))
727 panic("Attempted to kill the idle task!");
728
729 /*
730 * If do_exit is called because this processes oopsed, it's possible
731 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
732 * continuing. Amongst other possible reasons, this is to prevent
733 * mm_release()->clear_child_tid() from writing to a user-controlled
734 * kernel address.
735 */
736 set_fs(USER_DS);
737
738 ptrace_event(PTRACE_EVENT_EXIT, code);
739
740 validate_creds_for_do_exit(tsk);
741
742 /*
743 * We're taking recursive faults here in do_exit. Safest is to just
744 * leave this task alone and wait for reboot.
745 */
746 if (unlikely(tsk->flags & PF_EXITING)) {
747 printk(KERN_ALERT
748 "Fixing recursive fault but reboot is needed!\n");
749 /*
750 * We can do this unlocked here. The futex code uses
751 * this flag just to verify whether the pi state
752 * cleanup has been done or not. In the worst case it
753 * loops once more. We pretend that the cleanup was
754 * done as there is no way to return. Either the
755 * OWNER_DIED bit is set by now or we push the blocked
756 * task into the wait for ever nirwana as well.
757 */
758 tsk->flags |= PF_EXITPIDONE;
759 set_current_state(TASK_UNINTERRUPTIBLE);
760 schedule();
761 }
762
763 exit_signals(tsk); /* sets PF_EXITING */
764 /*
765 * tsk->flags are checked in the futex code to protect against
766 * an exiting task cleaning up the robust pi futexes.
767 */
768 smp_mb();
769 raw_spin_unlock_wait(&tsk->pi_lock);
770
771 if (unlikely(in_atomic()))
772 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
773 current->comm, task_pid_nr(current),
774 preempt_count());
775
776 acct_update_integrals(tsk);
777 /* sync mm's RSS info before statistics gathering */
778 if (tsk->mm)
779 sync_mm_rss(tsk->mm);
780 group_dead = atomic_dec_and_test(&tsk->signal->live);
781 if (group_dead) {
782 hrtimer_cancel(&tsk->signal->real_timer);
783 exit_itimers(tsk->signal);
784 if (tsk->mm)
785 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
786 }
787 acct_collect(code, group_dead);
788 if (group_dead)
789 tty_audit_exit();
790 audit_free(tsk);
791
792 tsk->exit_code = code;
793 taskstats_exit(tsk, group_dead);
794
795 exit_mm(tsk);
796
797 if (group_dead)
798 acct_process();
799 trace_sched_process_exit(tsk);
800
801 exit_sem(tsk);
802 exit_shm(tsk);
803 exit_files(tsk);
804 exit_fs(tsk);
805 if (group_dead)
806 disassociate_ctty(1);
807 exit_task_namespaces(tsk);
808 exit_task_work(tsk);
809 check_stack_usage();
810 exit_thread();
811
812 /*
813 * Flush inherited counters to the parent - before the parent
814 * gets woken up by child-exit notifications.
815 *
816 * because of cgroup mode, must be called before cgroup_exit()
817 */
818 perf_event_exit_task(tsk);
819
820 cgroup_exit(tsk, 1);
821
822 module_put(task_thread_info(tsk)->exec_domain->module);
823
824 proc_exit_connector(tsk);
825 /*
826 * FIXME: do that only when needed, using sched_exit tracepoint
827 */
828 ptrace_put_breakpoints(tsk);
829
830 exit_notify(tsk, group_dead);
831 #ifdef CONFIG_NUMA
832 task_lock(tsk);
833 mpol_put(tsk->mempolicy);
834 tsk->mempolicy = NULL;
835 task_unlock(tsk);
836 #endif
837 #ifdef CONFIG_FUTEX
838 if (unlikely(current->pi_state_cache))
839 kfree(current->pi_state_cache);
840 #endif
841 /*
842 * Make sure we are holding no locks:
843 */
844 debug_check_no_locks_held(tsk);
845 /*
846 * We can do this unlocked here. The futex code uses this flag
847 * just to verify whether the pi state cleanup has been done
848 * or not. In the worst case it loops once more.
849 */
850 tsk->flags |= PF_EXITPIDONE;
851
852 if (tsk->io_context)
853 exit_io_context(tsk);
854
855 if (tsk->splice_pipe)
856 free_pipe_info(tsk->splice_pipe);
857
858 if (tsk->task_frag.page)
859 put_page(tsk->task_frag.page);
860
861 validate_creds_for_do_exit(tsk);
862
863 preempt_disable();
864 if (tsk->nr_dirtied)
865 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
866 exit_rcu();
867
868 /*
869 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
870 * when the following two conditions become true.
871 * - There is race condition of mmap_sem (It is acquired by
872 * exit_mm()), and
873 * - SMI occurs before setting TASK_RUNINNG.
874 * (or hypervisor of virtual machine switches to other guest)
875 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
876 *
877 * To avoid it, we have to wait for releasing tsk->pi_lock which
878 * is held by try_to_wake_up()
879 */
880 smp_mb();
881 raw_spin_unlock_wait(&tsk->pi_lock);
882
883 /* causes final put_task_struct in finish_task_switch(). */
884 tsk->state = TASK_DEAD;
885 tsk->flags |= PF_NOFREEZE; /* tell freezer to ignore us */
886 schedule();
887 BUG();
888 /* Avoid "noreturn function does return". */
889 for (;;)
890 cpu_relax(); /* For when BUG is null */
891 }
892
893 EXPORT_SYMBOL_GPL(do_exit);
894
895 void complete_and_exit(struct completion *comp, long code)
896 {
897 if (comp)
898 complete(comp);
899
900 do_exit(code);
901 }
902
903 EXPORT_SYMBOL(complete_and_exit);
904
905 SYSCALL_DEFINE1(exit, int, error_code)
906 {
907 do_exit((error_code&0xff)<<8);
908 }
909
910 /*
911 * Take down every thread in the group. This is called by fatal signals
912 * as well as by sys_exit_group (below).
913 */
914 void
915 do_group_exit(int exit_code)
916 {
917 struct signal_struct *sig = current->signal;
918
919 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
920
921 if (signal_group_exit(sig))
922 exit_code = sig->group_exit_code;
923 else if (!thread_group_empty(current)) {
924 struct sighand_struct *const sighand = current->sighand;
925 spin_lock_irq(&sighand->siglock);
926 if (signal_group_exit(sig))
927 /* Another thread got here before we took the lock. */
928 exit_code = sig->group_exit_code;
929 else {
930 sig->group_exit_code = exit_code;
931 sig->flags = SIGNAL_GROUP_EXIT;
932 zap_other_threads(current);
933 }
934 spin_unlock_irq(&sighand->siglock);
935 }
936
937 do_exit(exit_code);
938 /* NOTREACHED */
939 }
940
941 /*
942 * this kills every thread in the thread group. Note that any externally
943 * wait4()-ing process will get the correct exit code - even if this
944 * thread is not the thread group leader.
945 */
946 SYSCALL_DEFINE1(exit_group, int, error_code)
947 {
948 do_group_exit((error_code & 0xff) << 8);
949 /* NOTREACHED */
950 return 0;
951 }
952
953 struct wait_opts {
954 enum pid_type wo_type;
955 int wo_flags;
956 struct pid *wo_pid;
957
958 struct siginfo __user *wo_info;
959 int __user *wo_stat;
960 struct rusage __user *wo_rusage;
961
962 wait_queue_t child_wait;
963 int notask_error;
964 };
965
966 static inline
967 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
968 {
969 if (type != PIDTYPE_PID)
970 task = task->group_leader;
971 return task->pids[type].pid;
972 }
973
974 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
975 {
976 return wo->wo_type == PIDTYPE_MAX ||
977 task_pid_type(p, wo->wo_type) == wo->wo_pid;
978 }
979
980 static int eligible_child(struct wait_opts *wo, struct task_struct *p)
981 {
982 if (!eligible_pid(wo, p))
983 return 0;
984 /* Wait for all children (clone and not) if __WALL is set;
985 * otherwise, wait for clone children *only* if __WCLONE is
986 * set; otherwise, wait for non-clone children *only*. (Note:
987 * A "clone" child here is one that reports to its parent
988 * using a signal other than SIGCHLD.) */
989 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
990 && !(wo->wo_flags & __WALL))
991 return 0;
992
993 return 1;
994 }
995
996 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
997 pid_t pid, uid_t uid, int why, int status)
998 {
999 struct siginfo __user *infop;
1000 int retval = wo->wo_rusage
1001 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1002
1003 put_task_struct(p);
1004 infop = wo->wo_info;
1005 if (infop) {
1006 if (!retval)
1007 retval = put_user(SIGCHLD, &infop->si_signo);
1008 if (!retval)
1009 retval = put_user(0, &infop->si_errno);
1010 if (!retval)
1011 retval = put_user((short)why, &infop->si_code);
1012 if (!retval)
1013 retval = put_user(pid, &infop->si_pid);
1014 if (!retval)
1015 retval = put_user(uid, &infop->si_uid);
1016 if (!retval)
1017 retval = put_user(status, &infop->si_status);
1018 }
1019 if (!retval)
1020 retval = pid;
1021 return retval;
1022 }
1023
1024 /*
1025 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1026 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1027 * the lock and this task is uninteresting. If we return nonzero, we have
1028 * released the lock and the system call should return.
1029 */
1030 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1031 {
1032 unsigned long state;
1033 int retval, status, traced;
1034 pid_t pid = task_pid_vnr(p);
1035 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1036 struct siginfo __user *infop;
1037
1038 if (!likely(wo->wo_flags & WEXITED))
1039 return 0;
1040
1041 if (unlikely(wo->wo_flags & WNOWAIT)) {
1042 int exit_code = p->exit_code;
1043 int why;
1044
1045 get_task_struct(p);
1046 read_unlock(&tasklist_lock);
1047 if ((exit_code & 0x7f) == 0) {
1048 why = CLD_EXITED;
1049 status = exit_code >> 8;
1050 } else {
1051 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1052 status = exit_code & 0x7f;
1053 }
1054 return wait_noreap_copyout(wo, p, pid, uid, why, status);
1055 }
1056
1057 /*
1058 * Try to move the task's state to DEAD
1059 * only one thread is allowed to do this:
1060 */
1061 state = xchg(&p->exit_state, EXIT_DEAD);
1062 if (state != EXIT_ZOMBIE) {
1063 BUG_ON(state != EXIT_DEAD);
1064 return 0;
1065 }
1066
1067 traced = ptrace_reparented(p);
1068 /*
1069 * It can be ptraced but not reparented, check
1070 * thread_group_leader() to filter out sub-threads.
1071 */
1072 if (likely(!traced) && thread_group_leader(p)) {
1073 struct signal_struct *psig;
1074 struct signal_struct *sig;
1075 unsigned long maxrss;
1076 cputime_t tgutime, tgstime;
1077
1078 /*
1079 * The resource counters for the group leader are in its
1080 * own task_struct. Those for dead threads in the group
1081 * are in its signal_struct, as are those for the child
1082 * processes it has previously reaped. All these
1083 * accumulate in the parent's signal_struct c* fields.
1084 *
1085 * We don't bother to take a lock here to protect these
1086 * p->signal fields, because they are only touched by
1087 * __exit_signal, which runs with tasklist_lock
1088 * write-locked anyway, and so is excluded here. We do
1089 * need to protect the access to parent->signal fields,
1090 * as other threads in the parent group can be right
1091 * here reaping other children at the same time.
1092 *
1093 * We use thread_group_cputime_adjusted() to get times for the thread
1094 * group, which consolidates times for all threads in the
1095 * group including the group leader.
1096 */
1097 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1098 spin_lock_irq(&p->real_parent->sighand->siglock);
1099 psig = p->real_parent->signal;
1100 sig = p->signal;
1101 psig->cutime += tgutime + sig->cutime;
1102 psig->cstime += tgstime + sig->cstime;
1103 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1104 psig->cmin_flt +=
1105 p->min_flt + sig->min_flt + sig->cmin_flt;
1106 psig->cmaj_flt +=
1107 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1108 psig->cnvcsw +=
1109 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1110 psig->cnivcsw +=
1111 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1112 psig->cinblock +=
1113 task_io_get_inblock(p) +
1114 sig->inblock + sig->cinblock;
1115 psig->coublock +=
1116 task_io_get_oublock(p) +
1117 sig->oublock + sig->coublock;
1118 maxrss = max(sig->maxrss, sig->cmaxrss);
1119 if (psig->cmaxrss < maxrss)
1120 psig->cmaxrss = maxrss;
1121 task_io_accounting_add(&psig->ioac, &p->ioac);
1122 task_io_accounting_add(&psig->ioac, &sig->ioac);
1123 spin_unlock_irq(&p->real_parent->sighand->siglock);
1124 }
1125
1126 /*
1127 * Now we are sure this task is interesting, and no other
1128 * thread can reap it because we set its state to EXIT_DEAD.
1129 */
1130 read_unlock(&tasklist_lock);
1131
1132 retval = wo->wo_rusage
1133 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1134 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1135 ? p->signal->group_exit_code : p->exit_code;
1136 if (!retval && wo->wo_stat)
1137 retval = put_user(status, wo->wo_stat);
1138
1139 infop = wo->wo_info;
1140 if (!retval && infop)
1141 retval = put_user(SIGCHLD, &infop->si_signo);
1142 if (!retval && infop)
1143 retval = put_user(0, &infop->si_errno);
1144 if (!retval && infop) {
1145 int why;
1146
1147 if ((status & 0x7f) == 0) {
1148 why = CLD_EXITED;
1149 status >>= 8;
1150 } else {
1151 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1152 status &= 0x7f;
1153 }
1154 retval = put_user((short)why, &infop->si_code);
1155 if (!retval)
1156 retval = put_user(status, &infop->si_status);
1157 }
1158 if (!retval && infop)
1159 retval = put_user(pid, &infop->si_pid);
1160 if (!retval && infop)
1161 retval = put_user(uid, &infop->si_uid);
1162 if (!retval)
1163 retval = pid;
1164
1165 if (traced) {
1166 write_lock_irq(&tasklist_lock);
1167 /* We dropped tasklist, ptracer could die and untrace */
1168 ptrace_unlink(p);
1169 /*
1170 * If this is not a sub-thread, notify the parent.
1171 * If parent wants a zombie, don't release it now.
1172 */
1173 if (thread_group_leader(p) &&
1174 !do_notify_parent(p, p->exit_signal)) {
1175 p->exit_state = EXIT_ZOMBIE;
1176 p = NULL;
1177 }
1178 write_unlock_irq(&tasklist_lock);
1179 }
1180 if (p != NULL)
1181 release_task(p);
1182
1183 return retval;
1184 }
1185
1186 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1187 {
1188 if (ptrace) {
1189 if (task_is_stopped_or_traced(p) &&
1190 !(p->jobctl & JOBCTL_LISTENING))
1191 return &p->exit_code;
1192 } else {
1193 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1194 return &p->signal->group_exit_code;
1195 }
1196 return NULL;
1197 }
1198
1199 /**
1200 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1201 * @wo: wait options
1202 * @ptrace: is the wait for ptrace
1203 * @p: task to wait for
1204 *
1205 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1206 *
1207 * CONTEXT:
1208 * read_lock(&tasklist_lock), which is released if return value is
1209 * non-zero. Also, grabs and releases @p->sighand->siglock.
1210 *
1211 * RETURNS:
1212 * 0 if wait condition didn't exist and search for other wait conditions
1213 * should continue. Non-zero return, -errno on failure and @p's pid on
1214 * success, implies that tasklist_lock is released and wait condition
1215 * search should terminate.
1216 */
1217 static int wait_task_stopped(struct wait_opts *wo,
1218 int ptrace, struct task_struct *p)
1219 {
1220 struct siginfo __user *infop;
1221 int retval, exit_code, *p_code, why;
1222 uid_t uid = 0; /* unneeded, required by compiler */
1223 pid_t pid;
1224
1225 /*
1226 * Traditionally we see ptrace'd stopped tasks regardless of options.
1227 */
1228 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1229 return 0;
1230
1231 if (!task_stopped_code(p, ptrace))
1232 return 0;
1233
1234 exit_code = 0;
1235 spin_lock_irq(&p->sighand->siglock);
1236
1237 p_code = task_stopped_code(p, ptrace);
1238 if (unlikely(!p_code))
1239 goto unlock_sig;
1240
1241 exit_code = *p_code;
1242 if (!exit_code)
1243 goto unlock_sig;
1244
1245 if (!unlikely(wo->wo_flags & WNOWAIT))
1246 *p_code = 0;
1247
1248 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1249 unlock_sig:
1250 spin_unlock_irq(&p->sighand->siglock);
1251 if (!exit_code)
1252 return 0;
1253
1254 /*
1255 * Now we are pretty sure this task is interesting.
1256 * Make sure it doesn't get reaped out from under us while we
1257 * give up the lock and then examine it below. We don't want to
1258 * keep holding onto the tasklist_lock while we call getrusage and
1259 * possibly take page faults for user memory.
1260 */
1261 get_task_struct(p);
1262 pid = task_pid_vnr(p);
1263 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1264 read_unlock(&tasklist_lock);
1265
1266 if (unlikely(wo->wo_flags & WNOWAIT))
1267 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1268
1269 retval = wo->wo_rusage
1270 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1271 if (!retval && wo->wo_stat)
1272 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1273
1274 infop = wo->wo_info;
1275 if (!retval && infop)
1276 retval = put_user(SIGCHLD, &infop->si_signo);
1277 if (!retval && infop)
1278 retval = put_user(0, &infop->si_errno);
1279 if (!retval && infop)
1280 retval = put_user((short)why, &infop->si_code);
1281 if (!retval && infop)
1282 retval = put_user(exit_code, &infop->si_status);
1283 if (!retval && infop)
1284 retval = put_user(pid, &infop->si_pid);
1285 if (!retval && infop)
1286 retval = put_user(uid, &infop->si_uid);
1287 if (!retval)
1288 retval = pid;
1289 put_task_struct(p);
1290
1291 BUG_ON(!retval);
1292 return retval;
1293 }
1294
1295 /*
1296 * Handle do_wait work for one task in a live, non-stopped state.
1297 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1298 * the lock and this task is uninteresting. If we return nonzero, we have
1299 * released the lock and the system call should return.
1300 */
1301 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1302 {
1303 int retval;
1304 pid_t pid;
1305 uid_t uid;
1306
1307 if (!unlikely(wo->wo_flags & WCONTINUED))
1308 return 0;
1309
1310 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1311 return 0;
1312
1313 spin_lock_irq(&p->sighand->siglock);
1314 /* Re-check with the lock held. */
1315 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1316 spin_unlock_irq(&p->sighand->siglock);
1317 return 0;
1318 }
1319 if (!unlikely(wo->wo_flags & WNOWAIT))
1320 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1321 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1322 spin_unlock_irq(&p->sighand->siglock);
1323
1324 pid = task_pid_vnr(p);
1325 get_task_struct(p);
1326 read_unlock(&tasklist_lock);
1327
1328 if (!wo->wo_info) {
1329 retval = wo->wo_rusage
1330 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1331 put_task_struct(p);
1332 if (!retval && wo->wo_stat)
1333 retval = put_user(0xffff, wo->wo_stat);
1334 if (!retval)
1335 retval = pid;
1336 } else {
1337 retval = wait_noreap_copyout(wo, p, pid, uid,
1338 CLD_CONTINUED, SIGCONT);
1339 BUG_ON(retval == 0);
1340 }
1341
1342 return retval;
1343 }
1344
1345 /*
1346 * Consider @p for a wait by @parent.
1347 *
1348 * -ECHILD should be in ->notask_error before the first call.
1349 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1350 * Returns zero if the search for a child should continue;
1351 * then ->notask_error is 0 if @p is an eligible child,
1352 * or another error from security_task_wait(), or still -ECHILD.
1353 */
1354 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1355 struct task_struct *p)
1356 {
1357 int ret = eligible_child(wo, p);
1358 if (!ret)
1359 return ret;
1360
1361 ret = security_task_wait(p);
1362 if (unlikely(ret < 0)) {
1363 /*
1364 * If we have not yet seen any eligible child,
1365 * then let this error code replace -ECHILD.
1366 * A permission error will give the user a clue
1367 * to look for security policy problems, rather
1368 * than for mysterious wait bugs.
1369 */
1370 if (wo->notask_error)
1371 wo->notask_error = ret;
1372 return 0;
1373 }
1374
1375 /* dead body doesn't have much to contribute */
1376 if (unlikely(p->exit_state == EXIT_DEAD)) {
1377 /*
1378 * But do not ignore this task until the tracer does
1379 * wait_task_zombie()->do_notify_parent().
1380 */
1381 if (likely(!ptrace) && unlikely(ptrace_reparented(p)))
1382 wo->notask_error = 0;
1383 return 0;
1384 }
1385
1386 /* slay zombie? */
1387 if (p->exit_state == EXIT_ZOMBIE) {
1388 /*
1389 * A zombie ptracee is only visible to its ptracer.
1390 * Notification and reaping will be cascaded to the real
1391 * parent when the ptracer detaches.
1392 */
1393 if (likely(!ptrace) && unlikely(p->ptrace)) {
1394 /* it will become visible, clear notask_error */
1395 wo->notask_error = 0;
1396 return 0;
1397 }
1398
1399 /* we don't reap group leaders with subthreads */
1400 if (!delay_group_leader(p))
1401 return wait_task_zombie(wo, p);
1402
1403 /*
1404 * Allow access to stopped/continued state via zombie by
1405 * falling through. Clearing of notask_error is complex.
1406 *
1407 * When !@ptrace:
1408 *
1409 * If WEXITED is set, notask_error should naturally be
1410 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1411 * so, if there are live subthreads, there are events to
1412 * wait for. If all subthreads are dead, it's still safe
1413 * to clear - this function will be called again in finite
1414 * amount time once all the subthreads are released and
1415 * will then return without clearing.
1416 *
1417 * When @ptrace:
1418 *
1419 * Stopped state is per-task and thus can't change once the
1420 * target task dies. Only continued and exited can happen.
1421 * Clear notask_error if WCONTINUED | WEXITED.
1422 */
1423 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1424 wo->notask_error = 0;
1425 } else {
1426 /*
1427 * If @p is ptraced by a task in its real parent's group,
1428 * hide group stop/continued state when looking at @p as
1429 * the real parent; otherwise, a single stop can be
1430 * reported twice as group and ptrace stops.
1431 *
1432 * If a ptracer wants to distinguish the two events for its
1433 * own children, it should create a separate process which
1434 * takes the role of real parent.
1435 */
1436 if (likely(!ptrace) && p->ptrace && !ptrace_reparented(p))
1437 return 0;
1438
1439 /*
1440 * @p is alive and it's gonna stop, continue or exit, so
1441 * there always is something to wait for.
1442 */
1443 wo->notask_error = 0;
1444 }
1445
1446 /*
1447 * Wait for stopped. Depending on @ptrace, different stopped state
1448 * is used and the two don't interact with each other.
1449 */
1450 ret = wait_task_stopped(wo, ptrace, p);
1451 if (ret)
1452 return ret;
1453
1454 /*
1455 * Wait for continued. There's only one continued state and the
1456 * ptracer can consume it which can confuse the real parent. Don't
1457 * use WCONTINUED from ptracer. You don't need or want it.
1458 */
1459 return wait_task_continued(wo, p);
1460 }
1461
1462 /*
1463 * Do the work of do_wait() for one thread in the group, @tsk.
1464 *
1465 * -ECHILD should be in ->notask_error before the first call.
1466 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1467 * Returns zero if the search for a child should continue; then
1468 * ->notask_error is 0 if there were any eligible children,
1469 * or another error from security_task_wait(), or still -ECHILD.
1470 */
1471 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1472 {
1473 struct task_struct *p;
1474
1475 list_for_each_entry(p, &tsk->children, sibling) {
1476 int ret = wait_consider_task(wo, 0, p);
1477 if (ret)
1478 return ret;
1479 }
1480
1481 return 0;
1482 }
1483
1484 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1485 {
1486 struct task_struct *p;
1487
1488 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1489 int ret = wait_consider_task(wo, 1, p);
1490 if (ret)
1491 return ret;
1492 }
1493
1494 return 0;
1495 }
1496
1497 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1498 int sync, void *key)
1499 {
1500 struct wait_opts *wo = container_of(wait, struct wait_opts,
1501 child_wait);
1502 struct task_struct *p = key;
1503
1504 if (!eligible_pid(wo, p))
1505 return 0;
1506
1507 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1508 return 0;
1509
1510 return default_wake_function(wait, mode, sync, key);
1511 }
1512
1513 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1514 {
1515 __wake_up_sync_key(&parent->signal->wait_chldexit,
1516 TASK_INTERRUPTIBLE, 1, p);
1517 }
1518
1519 static long do_wait(struct wait_opts *wo)
1520 {
1521 struct task_struct *tsk;
1522 int retval;
1523
1524 trace_sched_process_wait(wo->wo_pid);
1525
1526 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1527 wo->child_wait.private = current;
1528 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1529 repeat:
1530 /*
1531 * If there is nothing that can match our critiera just get out.
1532 * We will clear ->notask_error to zero if we see any child that
1533 * might later match our criteria, even if we are not able to reap
1534 * it yet.
1535 */
1536 wo->notask_error = -ECHILD;
1537 if ((wo->wo_type < PIDTYPE_MAX) &&
1538 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1539 goto notask;
1540
1541 set_current_state(TASK_INTERRUPTIBLE);
1542 read_lock(&tasklist_lock);
1543 tsk = current;
1544 do {
1545 retval = do_wait_thread(wo, tsk);
1546 if (retval)
1547 goto end;
1548
1549 retval = ptrace_do_wait(wo, tsk);
1550 if (retval)
1551 goto end;
1552
1553 if (wo->wo_flags & __WNOTHREAD)
1554 break;
1555 } while_each_thread(current, tsk);
1556 read_unlock(&tasklist_lock);
1557
1558 notask:
1559 retval = wo->notask_error;
1560 if (!retval && !(wo->wo_flags & WNOHANG)) {
1561 retval = -ERESTARTSYS;
1562 if (!signal_pending(current)) {
1563 schedule();
1564 goto repeat;
1565 }
1566 }
1567 end:
1568 __set_current_state(TASK_RUNNING);
1569 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1570 return retval;
1571 }
1572
1573 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1574 infop, int, options, struct rusage __user *, ru)
1575 {
1576 struct wait_opts wo;
1577 struct pid *pid = NULL;
1578 enum pid_type type;
1579 long ret;
1580
1581 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1582 return -EINVAL;
1583 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1584 return -EINVAL;
1585
1586 switch (which) {
1587 case P_ALL:
1588 type = PIDTYPE_MAX;
1589 break;
1590 case P_PID:
1591 type = PIDTYPE_PID;
1592 if (upid <= 0)
1593 return -EINVAL;
1594 break;
1595 case P_PGID:
1596 type = PIDTYPE_PGID;
1597 if (upid <= 0)
1598 return -EINVAL;
1599 break;
1600 default:
1601 return -EINVAL;
1602 }
1603
1604 if (type < PIDTYPE_MAX)
1605 pid = find_get_pid(upid);
1606
1607 wo.wo_type = type;
1608 wo.wo_pid = pid;
1609 wo.wo_flags = options;
1610 wo.wo_info = infop;
1611 wo.wo_stat = NULL;
1612 wo.wo_rusage = ru;
1613 ret = do_wait(&wo);
1614
1615 if (ret > 0) {
1616 ret = 0;
1617 } else if (infop) {
1618 /*
1619 * For a WNOHANG return, clear out all the fields
1620 * we would set so the user can easily tell the
1621 * difference.
1622 */
1623 if (!ret)
1624 ret = put_user(0, &infop->si_signo);
1625 if (!ret)
1626 ret = put_user(0, &infop->si_errno);
1627 if (!ret)
1628 ret = put_user(0, &infop->si_code);
1629 if (!ret)
1630 ret = put_user(0, &infop->si_pid);
1631 if (!ret)
1632 ret = put_user(0, &infop->si_uid);
1633 if (!ret)
1634 ret = put_user(0, &infop->si_status);
1635 }
1636
1637 put_pid(pid);
1638 return ret;
1639 }
1640
1641 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1642 int, options, struct rusage __user *, ru)
1643 {
1644 struct wait_opts wo;
1645 struct pid *pid = NULL;
1646 enum pid_type type;
1647 long ret;
1648
1649 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1650 __WNOTHREAD|__WCLONE|__WALL))
1651 return -EINVAL;
1652
1653 if (upid == -1)
1654 type = PIDTYPE_MAX;
1655 else if (upid < 0) {
1656 type = PIDTYPE_PGID;
1657 pid = find_get_pid(-upid);
1658 } else if (upid == 0) {
1659 type = PIDTYPE_PGID;
1660 pid = get_task_pid(current, PIDTYPE_PGID);
1661 } else /* upid > 0 */ {
1662 type = PIDTYPE_PID;
1663 pid = find_get_pid(upid);
1664 }
1665
1666 wo.wo_type = type;
1667 wo.wo_pid = pid;
1668 wo.wo_flags = options | WEXITED;
1669 wo.wo_info = NULL;
1670 wo.wo_stat = stat_addr;
1671 wo.wo_rusage = ru;
1672 ret = do_wait(&wo);
1673 put_pid(pid);
1674
1675 return ret;
1676 }
1677
1678 #ifdef __ARCH_WANT_SYS_WAITPID
1679
1680 /*
1681 * sys_waitpid() remains for compatibility. waitpid() should be
1682 * implemented by calling sys_wait4() from libc.a.
1683 */
1684 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1685 {
1686 return sys_wait4(pid, stat_addr, options, NULL);
1687 }
1688
1689 #endif