[PATCH] csa: convert CONFIG tag for extended accounting routines
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / exit.c
1 /*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/smp_lock.h>
11 #include <linux/module.h>
12 #include <linux/capability.h>
13 #include <linux/completion.h>
14 #include <linux/personality.h>
15 #include <linux/tty.h>
16 #include <linux/namespace.h>
17 #include <linux/key.h>
18 #include <linux/security.h>
19 #include <linux/cpu.h>
20 #include <linux/acct.h>
21 #include <linux/tsacct_kern.h>
22 #include <linux/file.h>
23 #include <linux/binfmts.h>
24 #include <linux/ptrace.h>
25 #include <linux/profile.h>
26 #include <linux/mount.h>
27 #include <linux/proc_fs.h>
28 #include <linux/mempolicy.h>
29 #include <linux/taskstats_kern.h>
30 #include <linux/delayacct.h>
31 #include <linux/cpuset.h>
32 #include <linux/syscalls.h>
33 #include <linux/signal.h>
34 #include <linux/posix-timers.h>
35 #include <linux/cn_proc.h>
36 #include <linux/mutex.h>
37 #include <linux/futex.h>
38 #include <linux/compat.h>
39 #include <linux/pipe_fs_i.h>
40 #include <linux/audit.h> /* for audit_free() */
41 #include <linux/resource.h>
42 #include <linux/blkdev.h>
43
44 #include <asm/uaccess.h>
45 #include <asm/unistd.h>
46 #include <asm/pgtable.h>
47 #include <asm/mmu_context.h>
48
49 extern void sem_exit (void);
50 extern struct task_struct *child_reaper;
51
52 static void exit_mm(struct task_struct * tsk);
53
54 static void __unhash_process(struct task_struct *p)
55 {
56 nr_threads--;
57 detach_pid(p, PIDTYPE_PID);
58 if (thread_group_leader(p)) {
59 detach_pid(p, PIDTYPE_PGID);
60 detach_pid(p, PIDTYPE_SID);
61
62 list_del_rcu(&p->tasks);
63 __get_cpu_var(process_counts)--;
64 }
65 list_del_rcu(&p->thread_group);
66 remove_parent(p);
67 }
68
69 /*
70 * This function expects the tasklist_lock write-locked.
71 */
72 static void __exit_signal(struct task_struct *tsk)
73 {
74 struct signal_struct *sig = tsk->signal;
75 struct sighand_struct *sighand;
76
77 BUG_ON(!sig);
78 BUG_ON(!atomic_read(&sig->count));
79
80 rcu_read_lock();
81 sighand = rcu_dereference(tsk->sighand);
82 spin_lock(&sighand->siglock);
83
84 posix_cpu_timers_exit(tsk);
85 if (atomic_dec_and_test(&sig->count))
86 posix_cpu_timers_exit_group(tsk);
87 else {
88 /*
89 * If there is any task waiting for the group exit
90 * then notify it:
91 */
92 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) {
93 wake_up_process(sig->group_exit_task);
94 sig->group_exit_task = NULL;
95 }
96 if (tsk == sig->curr_target)
97 sig->curr_target = next_thread(tsk);
98 /*
99 * Accumulate here the counters for all threads but the
100 * group leader as they die, so they can be added into
101 * the process-wide totals when those are taken.
102 * The group leader stays around as a zombie as long
103 * as there are other threads. When it gets reaped,
104 * the exit.c code will add its counts into these totals.
105 * We won't ever get here for the group leader, since it
106 * will have been the last reference on the signal_struct.
107 */
108 sig->utime = cputime_add(sig->utime, tsk->utime);
109 sig->stime = cputime_add(sig->stime, tsk->stime);
110 sig->min_flt += tsk->min_flt;
111 sig->maj_flt += tsk->maj_flt;
112 sig->nvcsw += tsk->nvcsw;
113 sig->nivcsw += tsk->nivcsw;
114 sig->sched_time += tsk->sched_time;
115 sig = NULL; /* Marker for below. */
116 }
117
118 __unhash_process(tsk);
119
120 tsk->signal = NULL;
121 tsk->sighand = NULL;
122 spin_unlock(&sighand->siglock);
123 rcu_read_unlock();
124
125 __cleanup_sighand(sighand);
126 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
127 flush_sigqueue(&tsk->pending);
128 if (sig) {
129 flush_sigqueue(&sig->shared_pending);
130 __cleanup_signal(sig);
131 }
132 }
133
134 static void delayed_put_task_struct(struct rcu_head *rhp)
135 {
136 put_task_struct(container_of(rhp, struct task_struct, rcu));
137 }
138
139 void release_task(struct task_struct * p)
140 {
141 struct task_struct *leader;
142 int zap_leader;
143 repeat:
144 atomic_dec(&p->user->processes);
145 write_lock_irq(&tasklist_lock);
146 ptrace_unlink(p);
147 BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children));
148 __exit_signal(p);
149
150 /*
151 * If we are the last non-leader member of the thread
152 * group, and the leader is zombie, then notify the
153 * group leader's parent process. (if it wants notification.)
154 */
155 zap_leader = 0;
156 leader = p->group_leader;
157 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
158 BUG_ON(leader->exit_signal == -1);
159 do_notify_parent(leader, leader->exit_signal);
160 /*
161 * If we were the last child thread and the leader has
162 * exited already, and the leader's parent ignores SIGCHLD,
163 * then we are the one who should release the leader.
164 *
165 * do_notify_parent() will have marked it self-reaping in
166 * that case.
167 */
168 zap_leader = (leader->exit_signal == -1);
169 }
170
171 sched_exit(p);
172 write_unlock_irq(&tasklist_lock);
173 proc_flush_task(p);
174 release_thread(p);
175 call_rcu(&p->rcu, delayed_put_task_struct);
176
177 p = leader;
178 if (unlikely(zap_leader))
179 goto repeat;
180 }
181
182 /*
183 * This checks not only the pgrp, but falls back on the pid if no
184 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
185 * without this...
186 */
187 int session_of_pgrp(int pgrp)
188 {
189 struct task_struct *p;
190 int sid = -1;
191
192 read_lock(&tasklist_lock);
193 do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
194 if (p->signal->session > 0) {
195 sid = p->signal->session;
196 goto out;
197 }
198 } while_each_task_pid(pgrp, PIDTYPE_PGID, p);
199 p = find_task_by_pid(pgrp);
200 if (p)
201 sid = p->signal->session;
202 out:
203 read_unlock(&tasklist_lock);
204
205 return sid;
206 }
207
208 /*
209 * Determine if a process group is "orphaned", according to the POSIX
210 * definition in 2.2.2.52. Orphaned process groups are not to be affected
211 * by terminal-generated stop signals. Newly orphaned process groups are
212 * to receive a SIGHUP and a SIGCONT.
213 *
214 * "I ask you, have you ever known what it is to be an orphan?"
215 */
216 static int will_become_orphaned_pgrp(int pgrp, struct task_struct *ignored_task)
217 {
218 struct task_struct *p;
219 int ret = 1;
220
221 do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
222 if (p == ignored_task
223 || p->exit_state
224 || is_init(p->real_parent))
225 continue;
226 if (process_group(p->real_parent) != pgrp
227 && p->real_parent->signal->session == p->signal->session) {
228 ret = 0;
229 break;
230 }
231 } while_each_task_pid(pgrp, PIDTYPE_PGID, p);
232 return ret; /* (sighing) "Often!" */
233 }
234
235 int is_orphaned_pgrp(int pgrp)
236 {
237 int retval;
238
239 read_lock(&tasklist_lock);
240 retval = will_become_orphaned_pgrp(pgrp, NULL);
241 read_unlock(&tasklist_lock);
242
243 return retval;
244 }
245
246 static int has_stopped_jobs(int pgrp)
247 {
248 int retval = 0;
249 struct task_struct *p;
250
251 do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
252 if (p->state != TASK_STOPPED)
253 continue;
254 retval = 1;
255 break;
256 } while_each_task_pid(pgrp, PIDTYPE_PGID, p);
257 return retval;
258 }
259
260 /**
261 * reparent_to_init - Reparent the calling kernel thread to the init task.
262 *
263 * If a kernel thread is launched as a result of a system call, or if
264 * it ever exits, it should generally reparent itself to init so that
265 * it is correctly cleaned up on exit.
266 *
267 * The various task state such as scheduling policy and priority may have
268 * been inherited from a user process, so we reset them to sane values here.
269 *
270 * NOTE that reparent_to_init() gives the caller full capabilities.
271 */
272 static void reparent_to_init(void)
273 {
274 write_lock_irq(&tasklist_lock);
275
276 ptrace_unlink(current);
277 /* Reparent to init */
278 remove_parent(current);
279 current->parent = child_reaper;
280 current->real_parent = child_reaper;
281 add_parent(current);
282
283 /* Set the exit signal to SIGCHLD so we signal init on exit */
284 current->exit_signal = SIGCHLD;
285
286 if (!has_rt_policy(current) && (task_nice(current) < 0))
287 set_user_nice(current, 0);
288 /* cpus_allowed? */
289 /* rt_priority? */
290 /* signals? */
291 security_task_reparent_to_init(current);
292 memcpy(current->signal->rlim, init_task.signal->rlim,
293 sizeof(current->signal->rlim));
294 atomic_inc(&(INIT_USER->__count));
295 write_unlock_irq(&tasklist_lock);
296 switch_uid(INIT_USER);
297 }
298
299 void __set_special_pids(pid_t session, pid_t pgrp)
300 {
301 struct task_struct *curr = current->group_leader;
302
303 if (curr->signal->session != session) {
304 detach_pid(curr, PIDTYPE_SID);
305 curr->signal->session = session;
306 attach_pid(curr, PIDTYPE_SID, session);
307 }
308 if (process_group(curr) != pgrp) {
309 detach_pid(curr, PIDTYPE_PGID);
310 curr->signal->pgrp = pgrp;
311 attach_pid(curr, PIDTYPE_PGID, pgrp);
312 }
313 }
314
315 void set_special_pids(pid_t session, pid_t pgrp)
316 {
317 write_lock_irq(&tasklist_lock);
318 __set_special_pids(session, pgrp);
319 write_unlock_irq(&tasklist_lock);
320 }
321
322 /*
323 * Let kernel threads use this to say that they
324 * allow a certain signal (since daemonize() will
325 * have disabled all of them by default).
326 */
327 int allow_signal(int sig)
328 {
329 if (!valid_signal(sig) || sig < 1)
330 return -EINVAL;
331
332 spin_lock_irq(&current->sighand->siglock);
333 sigdelset(&current->blocked, sig);
334 if (!current->mm) {
335 /* Kernel threads handle their own signals.
336 Let the signal code know it'll be handled, so
337 that they don't get converted to SIGKILL or
338 just silently dropped */
339 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
340 }
341 recalc_sigpending();
342 spin_unlock_irq(&current->sighand->siglock);
343 return 0;
344 }
345
346 EXPORT_SYMBOL(allow_signal);
347
348 int disallow_signal(int sig)
349 {
350 if (!valid_signal(sig) || sig < 1)
351 return -EINVAL;
352
353 spin_lock_irq(&current->sighand->siglock);
354 sigaddset(&current->blocked, sig);
355 recalc_sigpending();
356 spin_unlock_irq(&current->sighand->siglock);
357 return 0;
358 }
359
360 EXPORT_SYMBOL(disallow_signal);
361
362 /*
363 * Put all the gunge required to become a kernel thread without
364 * attached user resources in one place where it belongs.
365 */
366
367 void daemonize(const char *name, ...)
368 {
369 va_list args;
370 struct fs_struct *fs;
371 sigset_t blocked;
372
373 va_start(args, name);
374 vsnprintf(current->comm, sizeof(current->comm), name, args);
375 va_end(args);
376
377 /*
378 * If we were started as result of loading a module, close all of the
379 * user space pages. We don't need them, and if we didn't close them
380 * they would be locked into memory.
381 */
382 exit_mm(current);
383
384 set_special_pids(1, 1);
385 mutex_lock(&tty_mutex);
386 current->signal->tty = NULL;
387 mutex_unlock(&tty_mutex);
388
389 /* Block and flush all signals */
390 sigfillset(&blocked);
391 sigprocmask(SIG_BLOCK, &blocked, NULL);
392 flush_signals(current);
393
394 /* Become as one with the init task */
395
396 exit_fs(current); /* current->fs->count--; */
397 fs = init_task.fs;
398 current->fs = fs;
399 atomic_inc(&fs->count);
400 exit_namespace(current);
401 current->namespace = init_task.namespace;
402 get_namespace(current->namespace);
403 exit_files(current);
404 current->files = init_task.files;
405 atomic_inc(&current->files->count);
406
407 reparent_to_init();
408 }
409
410 EXPORT_SYMBOL(daemonize);
411
412 static void close_files(struct files_struct * files)
413 {
414 int i, j;
415 struct fdtable *fdt;
416
417 j = 0;
418
419 /*
420 * It is safe to dereference the fd table without RCU or
421 * ->file_lock because this is the last reference to the
422 * files structure.
423 */
424 fdt = files_fdtable(files);
425 for (;;) {
426 unsigned long set;
427 i = j * __NFDBITS;
428 if (i >= fdt->max_fdset || i >= fdt->max_fds)
429 break;
430 set = fdt->open_fds->fds_bits[j++];
431 while (set) {
432 if (set & 1) {
433 struct file * file = xchg(&fdt->fd[i], NULL);
434 if (file)
435 filp_close(file, files);
436 }
437 i++;
438 set >>= 1;
439 }
440 }
441 }
442
443 struct files_struct *get_files_struct(struct task_struct *task)
444 {
445 struct files_struct *files;
446
447 task_lock(task);
448 files = task->files;
449 if (files)
450 atomic_inc(&files->count);
451 task_unlock(task);
452
453 return files;
454 }
455
456 void fastcall put_files_struct(struct files_struct *files)
457 {
458 struct fdtable *fdt;
459
460 if (atomic_dec_and_test(&files->count)) {
461 close_files(files);
462 /*
463 * Free the fd and fdset arrays if we expanded them.
464 * If the fdtable was embedded, pass files for freeing
465 * at the end of the RCU grace period. Otherwise,
466 * you can free files immediately.
467 */
468 fdt = files_fdtable(files);
469 if (fdt == &files->fdtab)
470 fdt->free_files = files;
471 else
472 kmem_cache_free(files_cachep, files);
473 free_fdtable(fdt);
474 }
475 }
476
477 EXPORT_SYMBOL(put_files_struct);
478
479 void reset_files_struct(struct task_struct *tsk, struct files_struct *files)
480 {
481 struct files_struct *old;
482
483 old = tsk->files;
484 task_lock(tsk);
485 tsk->files = files;
486 task_unlock(tsk);
487 put_files_struct(old);
488 }
489 EXPORT_SYMBOL(reset_files_struct);
490
491 static inline void __exit_files(struct task_struct *tsk)
492 {
493 struct files_struct * files = tsk->files;
494
495 if (files) {
496 task_lock(tsk);
497 tsk->files = NULL;
498 task_unlock(tsk);
499 put_files_struct(files);
500 }
501 }
502
503 void exit_files(struct task_struct *tsk)
504 {
505 __exit_files(tsk);
506 }
507
508 static inline void __put_fs_struct(struct fs_struct *fs)
509 {
510 /* No need to hold fs->lock if we are killing it */
511 if (atomic_dec_and_test(&fs->count)) {
512 dput(fs->root);
513 mntput(fs->rootmnt);
514 dput(fs->pwd);
515 mntput(fs->pwdmnt);
516 if (fs->altroot) {
517 dput(fs->altroot);
518 mntput(fs->altrootmnt);
519 }
520 kmem_cache_free(fs_cachep, fs);
521 }
522 }
523
524 void put_fs_struct(struct fs_struct *fs)
525 {
526 __put_fs_struct(fs);
527 }
528
529 static inline void __exit_fs(struct task_struct *tsk)
530 {
531 struct fs_struct * fs = tsk->fs;
532
533 if (fs) {
534 task_lock(tsk);
535 tsk->fs = NULL;
536 task_unlock(tsk);
537 __put_fs_struct(fs);
538 }
539 }
540
541 void exit_fs(struct task_struct *tsk)
542 {
543 __exit_fs(tsk);
544 }
545
546 EXPORT_SYMBOL_GPL(exit_fs);
547
548 /*
549 * Turn us into a lazy TLB process if we
550 * aren't already..
551 */
552 static void exit_mm(struct task_struct * tsk)
553 {
554 struct mm_struct *mm = tsk->mm;
555
556 mm_release(tsk, mm);
557 if (!mm)
558 return;
559 /*
560 * Serialize with any possible pending coredump.
561 * We must hold mmap_sem around checking core_waiters
562 * and clearing tsk->mm. The core-inducing thread
563 * will increment core_waiters for each thread in the
564 * group with ->mm != NULL.
565 */
566 down_read(&mm->mmap_sem);
567 if (mm->core_waiters) {
568 up_read(&mm->mmap_sem);
569 down_write(&mm->mmap_sem);
570 if (!--mm->core_waiters)
571 complete(mm->core_startup_done);
572 up_write(&mm->mmap_sem);
573
574 wait_for_completion(&mm->core_done);
575 down_read(&mm->mmap_sem);
576 }
577 atomic_inc(&mm->mm_count);
578 BUG_ON(mm != tsk->active_mm);
579 /* more a memory barrier than a real lock */
580 task_lock(tsk);
581 tsk->mm = NULL;
582 up_read(&mm->mmap_sem);
583 enter_lazy_tlb(mm, current);
584 task_unlock(tsk);
585 mmput(mm);
586 }
587
588 static inline void
589 choose_new_parent(struct task_struct *p, struct task_struct *reaper)
590 {
591 /*
592 * Make sure we're not reparenting to ourselves and that
593 * the parent is not a zombie.
594 */
595 BUG_ON(p == reaper || reaper->exit_state);
596 p->real_parent = reaper;
597 }
598
599 static void
600 reparent_thread(struct task_struct *p, struct task_struct *father, int traced)
601 {
602 /* We don't want people slaying init. */
603 if (p->exit_signal != -1)
604 p->exit_signal = SIGCHLD;
605
606 if (p->pdeath_signal)
607 /* We already hold the tasklist_lock here. */
608 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
609
610 /* Move the child from its dying parent to the new one. */
611 if (unlikely(traced)) {
612 /* Preserve ptrace links if someone else is tracing this child. */
613 list_del_init(&p->ptrace_list);
614 if (p->parent != p->real_parent)
615 list_add(&p->ptrace_list, &p->real_parent->ptrace_children);
616 } else {
617 /* If this child is being traced, then we're the one tracing it
618 * anyway, so let go of it.
619 */
620 p->ptrace = 0;
621 remove_parent(p);
622 p->parent = p->real_parent;
623 add_parent(p);
624
625 /* If we'd notified the old parent about this child's death,
626 * also notify the new parent.
627 */
628 if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 &&
629 thread_group_empty(p))
630 do_notify_parent(p, p->exit_signal);
631 else if (p->state == TASK_TRACED) {
632 /*
633 * If it was at a trace stop, turn it into
634 * a normal stop since it's no longer being
635 * traced.
636 */
637 ptrace_untrace(p);
638 }
639 }
640
641 /*
642 * process group orphan check
643 * Case ii: Our child is in a different pgrp
644 * than we are, and it was the only connection
645 * outside, so the child pgrp is now orphaned.
646 */
647 if ((process_group(p) != process_group(father)) &&
648 (p->signal->session == father->signal->session)) {
649 int pgrp = process_group(p);
650
651 if (will_become_orphaned_pgrp(pgrp, NULL) && has_stopped_jobs(pgrp)) {
652 __kill_pg_info(SIGHUP, SEND_SIG_PRIV, pgrp);
653 __kill_pg_info(SIGCONT, SEND_SIG_PRIV, pgrp);
654 }
655 }
656 }
657
658 /*
659 * When we die, we re-parent all our children.
660 * Try to give them to another thread in our thread
661 * group, and if no such member exists, give it to
662 * the global child reaper process (ie "init")
663 */
664 static void
665 forget_original_parent(struct task_struct *father, struct list_head *to_release)
666 {
667 struct task_struct *p, *reaper = father;
668 struct list_head *_p, *_n;
669
670 do {
671 reaper = next_thread(reaper);
672 if (reaper == father) {
673 reaper = child_reaper;
674 break;
675 }
676 } while (reaper->exit_state);
677
678 /*
679 * There are only two places where our children can be:
680 *
681 * - in our child list
682 * - in our ptraced child list
683 *
684 * Search them and reparent children.
685 */
686 list_for_each_safe(_p, _n, &father->children) {
687 int ptrace;
688 p = list_entry(_p, struct task_struct, sibling);
689
690 ptrace = p->ptrace;
691
692 /* if father isn't the real parent, then ptrace must be enabled */
693 BUG_ON(father != p->real_parent && !ptrace);
694
695 if (father == p->real_parent) {
696 /* reparent with a reaper, real father it's us */
697 choose_new_parent(p, reaper);
698 reparent_thread(p, father, 0);
699 } else {
700 /* reparent ptraced task to its real parent */
701 __ptrace_unlink (p);
702 if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 &&
703 thread_group_empty(p))
704 do_notify_parent(p, p->exit_signal);
705 }
706
707 /*
708 * if the ptraced child is a zombie with exit_signal == -1
709 * we must collect it before we exit, or it will remain
710 * zombie forever since we prevented it from self-reap itself
711 * while it was being traced by us, to be able to see it in wait4.
712 */
713 if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && p->exit_signal == -1))
714 list_add(&p->ptrace_list, to_release);
715 }
716 list_for_each_safe(_p, _n, &father->ptrace_children) {
717 p = list_entry(_p, struct task_struct, ptrace_list);
718 choose_new_parent(p, reaper);
719 reparent_thread(p, father, 1);
720 }
721 }
722
723 /*
724 * Send signals to all our closest relatives so that they know
725 * to properly mourn us..
726 */
727 static void exit_notify(struct task_struct *tsk)
728 {
729 int state;
730 struct task_struct *t;
731 struct list_head ptrace_dead, *_p, *_n;
732
733 if (signal_pending(tsk) && !(tsk->signal->flags & SIGNAL_GROUP_EXIT)
734 && !thread_group_empty(tsk)) {
735 /*
736 * This occurs when there was a race between our exit
737 * syscall and a group signal choosing us as the one to
738 * wake up. It could be that we are the only thread
739 * alerted to check for pending signals, but another thread
740 * should be woken now to take the signal since we will not.
741 * Now we'll wake all the threads in the group just to make
742 * sure someone gets all the pending signals.
743 */
744 read_lock(&tasklist_lock);
745 spin_lock_irq(&tsk->sighand->siglock);
746 for (t = next_thread(tsk); t != tsk; t = next_thread(t))
747 if (!signal_pending(t) && !(t->flags & PF_EXITING)) {
748 recalc_sigpending_tsk(t);
749 if (signal_pending(t))
750 signal_wake_up(t, 0);
751 }
752 spin_unlock_irq(&tsk->sighand->siglock);
753 read_unlock(&tasklist_lock);
754 }
755
756 write_lock_irq(&tasklist_lock);
757
758 /*
759 * This does two things:
760 *
761 * A. Make init inherit all the child processes
762 * B. Check to see if any process groups have become orphaned
763 * as a result of our exiting, and if they have any stopped
764 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
765 */
766
767 INIT_LIST_HEAD(&ptrace_dead);
768 forget_original_parent(tsk, &ptrace_dead);
769 BUG_ON(!list_empty(&tsk->children));
770 BUG_ON(!list_empty(&tsk->ptrace_children));
771
772 /*
773 * Check to see if any process groups have become orphaned
774 * as a result of our exiting, and if they have any stopped
775 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
776 *
777 * Case i: Our father is in a different pgrp than we are
778 * and we were the only connection outside, so our pgrp
779 * is about to become orphaned.
780 */
781
782 t = tsk->real_parent;
783
784 if ((process_group(t) != process_group(tsk)) &&
785 (t->signal->session == tsk->signal->session) &&
786 will_become_orphaned_pgrp(process_group(tsk), tsk) &&
787 has_stopped_jobs(process_group(tsk))) {
788 __kill_pg_info(SIGHUP, SEND_SIG_PRIV, process_group(tsk));
789 __kill_pg_info(SIGCONT, SEND_SIG_PRIV, process_group(tsk));
790 }
791
792 /* Let father know we died
793 *
794 * Thread signals are configurable, but you aren't going to use
795 * that to send signals to arbitary processes.
796 * That stops right now.
797 *
798 * If the parent exec id doesn't match the exec id we saved
799 * when we started then we know the parent has changed security
800 * domain.
801 *
802 * If our self_exec id doesn't match our parent_exec_id then
803 * we have changed execution domain as these two values started
804 * the same after a fork.
805 *
806 */
807
808 if (tsk->exit_signal != SIGCHLD && tsk->exit_signal != -1 &&
809 ( tsk->parent_exec_id != t->self_exec_id ||
810 tsk->self_exec_id != tsk->parent_exec_id)
811 && !capable(CAP_KILL))
812 tsk->exit_signal = SIGCHLD;
813
814
815 /* If something other than our normal parent is ptracing us, then
816 * send it a SIGCHLD instead of honoring exit_signal. exit_signal
817 * only has special meaning to our real parent.
818 */
819 if (tsk->exit_signal != -1 && thread_group_empty(tsk)) {
820 int signal = tsk->parent == tsk->real_parent ? tsk->exit_signal : SIGCHLD;
821 do_notify_parent(tsk, signal);
822 } else if (tsk->ptrace) {
823 do_notify_parent(tsk, SIGCHLD);
824 }
825
826 state = EXIT_ZOMBIE;
827 if (tsk->exit_signal == -1 &&
828 (likely(tsk->ptrace == 0) ||
829 unlikely(tsk->parent->signal->flags & SIGNAL_GROUP_EXIT)))
830 state = EXIT_DEAD;
831 tsk->exit_state = state;
832
833 write_unlock_irq(&tasklist_lock);
834
835 list_for_each_safe(_p, _n, &ptrace_dead) {
836 list_del_init(_p);
837 t = list_entry(_p, struct task_struct, ptrace_list);
838 release_task(t);
839 }
840
841 /* If the process is dead, release it - nobody will wait for it */
842 if (state == EXIT_DEAD)
843 release_task(tsk);
844 }
845
846 fastcall NORET_TYPE void do_exit(long code)
847 {
848 struct task_struct *tsk = current;
849 struct taskstats *tidstats;
850 int group_dead;
851 unsigned int mycpu;
852
853 profile_task_exit(tsk);
854
855 WARN_ON(atomic_read(&tsk->fs_excl));
856
857 if (unlikely(in_interrupt()))
858 panic("Aiee, killing interrupt handler!");
859 if (unlikely(!tsk->pid))
860 panic("Attempted to kill the idle task!");
861 if (unlikely(tsk == child_reaper))
862 panic("Attempted to kill init!");
863
864 if (unlikely(current->ptrace & PT_TRACE_EXIT)) {
865 current->ptrace_message = code;
866 ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP);
867 }
868
869 /*
870 * We're taking recursive faults here in do_exit. Safest is to just
871 * leave this task alone and wait for reboot.
872 */
873 if (unlikely(tsk->flags & PF_EXITING)) {
874 printk(KERN_ALERT
875 "Fixing recursive fault but reboot is needed!\n");
876 if (tsk->io_context)
877 exit_io_context();
878 set_current_state(TASK_UNINTERRUPTIBLE);
879 schedule();
880 }
881
882 tsk->flags |= PF_EXITING;
883
884 if (unlikely(in_atomic()))
885 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
886 current->comm, current->pid,
887 preempt_count());
888
889 taskstats_exit_alloc(&tidstats, &mycpu);
890
891 acct_update_integrals(tsk);
892 if (tsk->mm) {
893 update_hiwater_rss(tsk->mm);
894 update_hiwater_vm(tsk->mm);
895 }
896 group_dead = atomic_dec_and_test(&tsk->signal->live);
897 if (group_dead) {
898 hrtimer_cancel(&tsk->signal->real_timer);
899 exit_itimers(tsk->signal);
900 }
901 acct_collect(code, group_dead);
902 if (unlikely(tsk->robust_list))
903 exit_robust_list(tsk);
904 #if defined(CONFIG_FUTEX) && defined(CONFIG_COMPAT)
905 if (unlikely(tsk->compat_robust_list))
906 compat_exit_robust_list(tsk);
907 #endif
908 if (unlikely(tsk->audit_context))
909 audit_free(tsk);
910 taskstats_exit_send(tsk, tidstats, group_dead, mycpu);
911 taskstats_exit_free(tidstats);
912
913 exit_mm(tsk);
914
915 if (group_dead)
916 acct_process();
917 exit_sem(tsk);
918 __exit_files(tsk);
919 __exit_fs(tsk);
920 exit_namespace(tsk);
921 exit_thread();
922 cpuset_exit(tsk);
923 exit_keys(tsk);
924
925 if (group_dead && tsk->signal->leader)
926 disassociate_ctty(1);
927
928 module_put(task_thread_info(tsk)->exec_domain->module);
929 if (tsk->binfmt)
930 module_put(tsk->binfmt->module);
931
932 tsk->exit_code = code;
933 proc_exit_connector(tsk);
934 exit_notify(tsk);
935 #ifdef CONFIG_NUMA
936 mpol_free(tsk->mempolicy);
937 tsk->mempolicy = NULL;
938 #endif
939 /*
940 * This must happen late, after the PID is not
941 * hashed anymore:
942 */
943 if (unlikely(!list_empty(&tsk->pi_state_list)))
944 exit_pi_state_list(tsk);
945 if (unlikely(current->pi_state_cache))
946 kfree(current->pi_state_cache);
947 /*
948 * Make sure we are holding no locks:
949 */
950 debug_check_no_locks_held(tsk);
951
952 if (tsk->io_context)
953 exit_io_context();
954
955 if (tsk->splice_pipe)
956 __free_pipe_info(tsk->splice_pipe);
957
958 preempt_disable();
959 /* causes final put_task_struct in finish_task_switch(). */
960 tsk->state = TASK_DEAD;
961
962 schedule();
963 BUG();
964 /* Avoid "noreturn function does return". */
965 for (;;)
966 cpu_relax(); /* For when BUG is null */
967 }
968
969 EXPORT_SYMBOL_GPL(do_exit);
970
971 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
972 {
973 if (comp)
974 complete(comp);
975
976 do_exit(code);
977 }
978
979 EXPORT_SYMBOL(complete_and_exit);
980
981 asmlinkage long sys_exit(int error_code)
982 {
983 do_exit((error_code&0xff)<<8);
984 }
985
986 /*
987 * Take down every thread in the group. This is called by fatal signals
988 * as well as by sys_exit_group (below).
989 */
990 NORET_TYPE void
991 do_group_exit(int exit_code)
992 {
993 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
994
995 if (current->signal->flags & SIGNAL_GROUP_EXIT)
996 exit_code = current->signal->group_exit_code;
997 else if (!thread_group_empty(current)) {
998 struct signal_struct *const sig = current->signal;
999 struct sighand_struct *const sighand = current->sighand;
1000 spin_lock_irq(&sighand->siglock);
1001 if (sig->flags & SIGNAL_GROUP_EXIT)
1002 /* Another thread got here before we took the lock. */
1003 exit_code = sig->group_exit_code;
1004 else {
1005 sig->group_exit_code = exit_code;
1006 zap_other_threads(current);
1007 }
1008 spin_unlock_irq(&sighand->siglock);
1009 }
1010
1011 do_exit(exit_code);
1012 /* NOTREACHED */
1013 }
1014
1015 /*
1016 * this kills every thread in the thread group. Note that any externally
1017 * wait4()-ing process will get the correct exit code - even if this
1018 * thread is not the thread group leader.
1019 */
1020 asmlinkage void sys_exit_group(int error_code)
1021 {
1022 do_group_exit((error_code & 0xff) << 8);
1023 }
1024
1025 static int eligible_child(pid_t pid, int options, struct task_struct *p)
1026 {
1027 if (pid > 0) {
1028 if (p->pid != pid)
1029 return 0;
1030 } else if (!pid) {
1031 if (process_group(p) != process_group(current))
1032 return 0;
1033 } else if (pid != -1) {
1034 if (process_group(p) != -pid)
1035 return 0;
1036 }
1037
1038 /*
1039 * Do not consider detached threads that are
1040 * not ptraced:
1041 */
1042 if (p->exit_signal == -1 && !p->ptrace)
1043 return 0;
1044
1045 /* Wait for all children (clone and not) if __WALL is set;
1046 * otherwise, wait for clone children *only* if __WCLONE is
1047 * set; otherwise, wait for non-clone children *only*. (Note:
1048 * A "clone" child here is one that reports to its parent
1049 * using a signal other than SIGCHLD.) */
1050 if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1051 && !(options & __WALL))
1052 return 0;
1053 /*
1054 * Do not consider thread group leaders that are
1055 * in a non-empty thread group:
1056 */
1057 if (delay_group_leader(p))
1058 return 2;
1059
1060 if (security_task_wait(p))
1061 return 0;
1062
1063 return 1;
1064 }
1065
1066 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1067 int why, int status,
1068 struct siginfo __user *infop,
1069 struct rusage __user *rusagep)
1070 {
1071 int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1072
1073 put_task_struct(p);
1074 if (!retval)
1075 retval = put_user(SIGCHLD, &infop->si_signo);
1076 if (!retval)
1077 retval = put_user(0, &infop->si_errno);
1078 if (!retval)
1079 retval = put_user((short)why, &infop->si_code);
1080 if (!retval)
1081 retval = put_user(pid, &infop->si_pid);
1082 if (!retval)
1083 retval = put_user(uid, &infop->si_uid);
1084 if (!retval)
1085 retval = put_user(status, &infop->si_status);
1086 if (!retval)
1087 retval = pid;
1088 return retval;
1089 }
1090
1091 /*
1092 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1093 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1094 * the lock and this task is uninteresting. If we return nonzero, we have
1095 * released the lock and the system call should return.
1096 */
1097 static int wait_task_zombie(struct task_struct *p, int noreap,
1098 struct siginfo __user *infop,
1099 int __user *stat_addr, struct rusage __user *ru)
1100 {
1101 unsigned long state;
1102 int retval;
1103 int status;
1104
1105 if (unlikely(noreap)) {
1106 pid_t pid = p->pid;
1107 uid_t uid = p->uid;
1108 int exit_code = p->exit_code;
1109 int why, status;
1110
1111 if (unlikely(p->exit_state != EXIT_ZOMBIE))
1112 return 0;
1113 if (unlikely(p->exit_signal == -1 && p->ptrace == 0))
1114 return 0;
1115 get_task_struct(p);
1116 read_unlock(&tasklist_lock);
1117 if ((exit_code & 0x7f) == 0) {
1118 why = CLD_EXITED;
1119 status = exit_code >> 8;
1120 } else {
1121 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1122 status = exit_code & 0x7f;
1123 }
1124 return wait_noreap_copyout(p, pid, uid, why,
1125 status, infop, ru);
1126 }
1127
1128 /*
1129 * Try to move the task's state to DEAD
1130 * only one thread is allowed to do this:
1131 */
1132 state = xchg(&p->exit_state, EXIT_DEAD);
1133 if (state != EXIT_ZOMBIE) {
1134 BUG_ON(state != EXIT_DEAD);
1135 return 0;
1136 }
1137 if (unlikely(p->exit_signal == -1 && p->ptrace == 0)) {
1138 /*
1139 * This can only happen in a race with a ptraced thread
1140 * dying on another processor.
1141 */
1142 return 0;
1143 }
1144
1145 if (likely(p->real_parent == p->parent) && likely(p->signal)) {
1146 struct signal_struct *psig;
1147 struct signal_struct *sig;
1148
1149 /*
1150 * The resource counters for the group leader are in its
1151 * own task_struct. Those for dead threads in the group
1152 * are in its signal_struct, as are those for the child
1153 * processes it has previously reaped. All these
1154 * accumulate in the parent's signal_struct c* fields.
1155 *
1156 * We don't bother to take a lock here to protect these
1157 * p->signal fields, because they are only touched by
1158 * __exit_signal, which runs with tasklist_lock
1159 * write-locked anyway, and so is excluded here. We do
1160 * need to protect the access to p->parent->signal fields,
1161 * as other threads in the parent group can be right
1162 * here reaping other children at the same time.
1163 */
1164 spin_lock_irq(&p->parent->sighand->siglock);
1165 psig = p->parent->signal;
1166 sig = p->signal;
1167 psig->cutime =
1168 cputime_add(psig->cutime,
1169 cputime_add(p->utime,
1170 cputime_add(sig->utime,
1171 sig->cutime)));
1172 psig->cstime =
1173 cputime_add(psig->cstime,
1174 cputime_add(p->stime,
1175 cputime_add(sig->stime,
1176 sig->cstime)));
1177 psig->cmin_flt +=
1178 p->min_flt + sig->min_flt + sig->cmin_flt;
1179 psig->cmaj_flt +=
1180 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1181 psig->cnvcsw +=
1182 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1183 psig->cnivcsw +=
1184 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1185 spin_unlock_irq(&p->parent->sighand->siglock);
1186 }
1187
1188 /*
1189 * Now we are sure this task is interesting, and no other
1190 * thread can reap it because we set its state to EXIT_DEAD.
1191 */
1192 read_unlock(&tasklist_lock);
1193
1194 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1195 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1196 ? p->signal->group_exit_code : p->exit_code;
1197 if (!retval && stat_addr)
1198 retval = put_user(status, stat_addr);
1199 if (!retval && infop)
1200 retval = put_user(SIGCHLD, &infop->si_signo);
1201 if (!retval && infop)
1202 retval = put_user(0, &infop->si_errno);
1203 if (!retval && infop) {
1204 int why;
1205
1206 if ((status & 0x7f) == 0) {
1207 why = CLD_EXITED;
1208 status >>= 8;
1209 } else {
1210 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1211 status &= 0x7f;
1212 }
1213 retval = put_user((short)why, &infop->si_code);
1214 if (!retval)
1215 retval = put_user(status, &infop->si_status);
1216 }
1217 if (!retval && infop)
1218 retval = put_user(p->pid, &infop->si_pid);
1219 if (!retval && infop)
1220 retval = put_user(p->uid, &infop->si_uid);
1221 if (retval) {
1222 // TODO: is this safe?
1223 p->exit_state = EXIT_ZOMBIE;
1224 return retval;
1225 }
1226 retval = p->pid;
1227 if (p->real_parent != p->parent) {
1228 write_lock_irq(&tasklist_lock);
1229 /* Double-check with lock held. */
1230 if (p->real_parent != p->parent) {
1231 __ptrace_unlink(p);
1232 // TODO: is this safe?
1233 p->exit_state = EXIT_ZOMBIE;
1234 /*
1235 * If this is not a detached task, notify the parent.
1236 * If it's still not detached after that, don't release
1237 * it now.
1238 */
1239 if (p->exit_signal != -1) {
1240 do_notify_parent(p, p->exit_signal);
1241 if (p->exit_signal != -1)
1242 p = NULL;
1243 }
1244 }
1245 write_unlock_irq(&tasklist_lock);
1246 }
1247 if (p != NULL)
1248 release_task(p);
1249 BUG_ON(!retval);
1250 return retval;
1251 }
1252
1253 /*
1254 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
1255 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1256 * the lock and this task is uninteresting. If we return nonzero, we have
1257 * released the lock and the system call should return.
1258 */
1259 static int wait_task_stopped(struct task_struct *p, int delayed_group_leader,
1260 int noreap, struct siginfo __user *infop,
1261 int __user *stat_addr, struct rusage __user *ru)
1262 {
1263 int retval, exit_code;
1264
1265 if (!p->exit_code)
1266 return 0;
1267 if (delayed_group_leader && !(p->ptrace & PT_PTRACED) &&
1268 p->signal && p->signal->group_stop_count > 0)
1269 /*
1270 * A group stop is in progress and this is the group leader.
1271 * We won't report until all threads have stopped.
1272 */
1273 return 0;
1274
1275 /*
1276 * Now we are pretty sure this task is interesting.
1277 * Make sure it doesn't get reaped out from under us while we
1278 * give up the lock and then examine it below. We don't want to
1279 * keep holding onto the tasklist_lock while we call getrusage and
1280 * possibly take page faults for user memory.
1281 */
1282 get_task_struct(p);
1283 read_unlock(&tasklist_lock);
1284
1285 if (unlikely(noreap)) {
1286 pid_t pid = p->pid;
1287 uid_t uid = p->uid;
1288 int why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED;
1289
1290 exit_code = p->exit_code;
1291 if (unlikely(!exit_code) ||
1292 unlikely(p->state & TASK_TRACED))
1293 goto bail_ref;
1294 return wait_noreap_copyout(p, pid, uid,
1295 why, (exit_code << 8) | 0x7f,
1296 infop, ru);
1297 }
1298
1299 write_lock_irq(&tasklist_lock);
1300
1301 /*
1302 * This uses xchg to be atomic with the thread resuming and setting
1303 * it. It must also be done with the write lock held to prevent a
1304 * race with the EXIT_ZOMBIE case.
1305 */
1306 exit_code = xchg(&p->exit_code, 0);
1307 if (unlikely(p->exit_state)) {
1308 /*
1309 * The task resumed and then died. Let the next iteration
1310 * catch it in EXIT_ZOMBIE. Note that exit_code might
1311 * already be zero here if it resumed and did _exit(0).
1312 * The task itself is dead and won't touch exit_code again;
1313 * other processors in this function are locked out.
1314 */
1315 p->exit_code = exit_code;
1316 exit_code = 0;
1317 }
1318 if (unlikely(exit_code == 0)) {
1319 /*
1320 * Another thread in this function got to it first, or it
1321 * resumed, or it resumed and then died.
1322 */
1323 write_unlock_irq(&tasklist_lock);
1324 bail_ref:
1325 put_task_struct(p);
1326 /*
1327 * We are returning to the wait loop without having successfully
1328 * removed the process and having released the lock. We cannot
1329 * continue, since the "p" task pointer is potentially stale.
1330 *
1331 * Return -EAGAIN, and do_wait() will restart the loop from the
1332 * beginning. Do _not_ re-acquire the lock.
1333 */
1334 return -EAGAIN;
1335 }
1336
1337 /* move to end of parent's list to avoid starvation */
1338 remove_parent(p);
1339 add_parent(p);
1340
1341 write_unlock_irq(&tasklist_lock);
1342
1343 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1344 if (!retval && stat_addr)
1345 retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1346 if (!retval && infop)
1347 retval = put_user(SIGCHLD, &infop->si_signo);
1348 if (!retval && infop)
1349 retval = put_user(0, &infop->si_errno);
1350 if (!retval && infop)
1351 retval = put_user((short)((p->ptrace & PT_PTRACED)
1352 ? CLD_TRAPPED : CLD_STOPPED),
1353 &infop->si_code);
1354 if (!retval && infop)
1355 retval = put_user(exit_code, &infop->si_status);
1356 if (!retval && infop)
1357 retval = put_user(p->pid, &infop->si_pid);
1358 if (!retval && infop)
1359 retval = put_user(p->uid, &infop->si_uid);
1360 if (!retval)
1361 retval = p->pid;
1362 put_task_struct(p);
1363
1364 BUG_ON(!retval);
1365 return retval;
1366 }
1367
1368 /*
1369 * Handle do_wait work for one task in a live, non-stopped state.
1370 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1371 * the lock and this task is uninteresting. If we return nonzero, we have
1372 * released the lock and the system call should return.
1373 */
1374 static int wait_task_continued(struct task_struct *p, int noreap,
1375 struct siginfo __user *infop,
1376 int __user *stat_addr, struct rusage __user *ru)
1377 {
1378 int retval;
1379 pid_t pid;
1380 uid_t uid;
1381
1382 if (unlikely(!p->signal))
1383 return 0;
1384
1385 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1386 return 0;
1387
1388 spin_lock_irq(&p->sighand->siglock);
1389 /* Re-check with the lock held. */
1390 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1391 spin_unlock_irq(&p->sighand->siglock);
1392 return 0;
1393 }
1394 if (!noreap)
1395 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1396 spin_unlock_irq(&p->sighand->siglock);
1397
1398 pid = p->pid;
1399 uid = p->uid;
1400 get_task_struct(p);
1401 read_unlock(&tasklist_lock);
1402
1403 if (!infop) {
1404 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1405 put_task_struct(p);
1406 if (!retval && stat_addr)
1407 retval = put_user(0xffff, stat_addr);
1408 if (!retval)
1409 retval = p->pid;
1410 } else {
1411 retval = wait_noreap_copyout(p, pid, uid,
1412 CLD_CONTINUED, SIGCONT,
1413 infop, ru);
1414 BUG_ON(retval == 0);
1415 }
1416
1417 return retval;
1418 }
1419
1420
1421 static inline int my_ptrace_child(struct task_struct *p)
1422 {
1423 if (!(p->ptrace & PT_PTRACED))
1424 return 0;
1425 if (!(p->ptrace & PT_ATTACHED))
1426 return 1;
1427 /*
1428 * This child was PTRACE_ATTACH'd. We should be seeing it only if
1429 * we are the attacher. If we are the real parent, this is a race
1430 * inside ptrace_attach. It is waiting for the tasklist_lock,
1431 * which we have to switch the parent links, but has already set
1432 * the flags in p->ptrace.
1433 */
1434 return (p->parent != p->real_parent);
1435 }
1436
1437 static long do_wait(pid_t pid, int options, struct siginfo __user *infop,
1438 int __user *stat_addr, struct rusage __user *ru)
1439 {
1440 DECLARE_WAITQUEUE(wait, current);
1441 struct task_struct *tsk;
1442 int flag, retval;
1443
1444 add_wait_queue(&current->signal->wait_chldexit,&wait);
1445 repeat:
1446 /*
1447 * We will set this flag if we see any child that might later
1448 * match our criteria, even if we are not able to reap it yet.
1449 */
1450 flag = 0;
1451 current->state = TASK_INTERRUPTIBLE;
1452 read_lock(&tasklist_lock);
1453 tsk = current;
1454 do {
1455 struct task_struct *p;
1456 struct list_head *_p;
1457 int ret;
1458
1459 list_for_each(_p,&tsk->children) {
1460 p = list_entry(_p, struct task_struct, sibling);
1461
1462 ret = eligible_child(pid, options, p);
1463 if (!ret)
1464 continue;
1465
1466 switch (p->state) {
1467 case TASK_TRACED:
1468 /*
1469 * When we hit the race with PTRACE_ATTACH,
1470 * we will not report this child. But the
1471 * race means it has not yet been moved to
1472 * our ptrace_children list, so we need to
1473 * set the flag here to avoid a spurious ECHILD
1474 * when the race happens with the only child.
1475 */
1476 flag = 1;
1477 if (!my_ptrace_child(p))
1478 continue;
1479 /*FALLTHROUGH*/
1480 case TASK_STOPPED:
1481 /*
1482 * It's stopped now, so it might later
1483 * continue, exit, or stop again.
1484 */
1485 flag = 1;
1486 if (!(options & WUNTRACED) &&
1487 !my_ptrace_child(p))
1488 continue;
1489 retval = wait_task_stopped(p, ret == 2,
1490 (options & WNOWAIT),
1491 infop,
1492 stat_addr, ru);
1493 if (retval == -EAGAIN)
1494 goto repeat;
1495 if (retval != 0) /* He released the lock. */
1496 goto end;
1497 break;
1498 default:
1499 // case EXIT_DEAD:
1500 if (p->exit_state == EXIT_DEAD)
1501 continue;
1502 // case EXIT_ZOMBIE:
1503 if (p->exit_state == EXIT_ZOMBIE) {
1504 /*
1505 * Eligible but we cannot release
1506 * it yet:
1507 */
1508 if (ret == 2)
1509 goto check_continued;
1510 if (!likely(options & WEXITED))
1511 continue;
1512 retval = wait_task_zombie(
1513 p, (options & WNOWAIT),
1514 infop, stat_addr, ru);
1515 /* He released the lock. */
1516 if (retval != 0)
1517 goto end;
1518 break;
1519 }
1520 check_continued:
1521 /*
1522 * It's running now, so it might later
1523 * exit, stop, or stop and then continue.
1524 */
1525 flag = 1;
1526 if (!unlikely(options & WCONTINUED))
1527 continue;
1528 retval = wait_task_continued(
1529 p, (options & WNOWAIT),
1530 infop, stat_addr, ru);
1531 if (retval != 0) /* He released the lock. */
1532 goto end;
1533 break;
1534 }
1535 }
1536 if (!flag) {
1537 list_for_each(_p, &tsk->ptrace_children) {
1538 p = list_entry(_p, struct task_struct,
1539 ptrace_list);
1540 if (!eligible_child(pid, options, p))
1541 continue;
1542 flag = 1;
1543 break;
1544 }
1545 }
1546 if (options & __WNOTHREAD)
1547 break;
1548 tsk = next_thread(tsk);
1549 BUG_ON(tsk->signal != current->signal);
1550 } while (tsk != current);
1551
1552 read_unlock(&tasklist_lock);
1553 if (flag) {
1554 retval = 0;
1555 if (options & WNOHANG)
1556 goto end;
1557 retval = -ERESTARTSYS;
1558 if (signal_pending(current))
1559 goto end;
1560 schedule();
1561 goto repeat;
1562 }
1563 retval = -ECHILD;
1564 end:
1565 current->state = TASK_RUNNING;
1566 remove_wait_queue(&current->signal->wait_chldexit,&wait);
1567 if (infop) {
1568 if (retval > 0)
1569 retval = 0;
1570 else {
1571 /*
1572 * For a WNOHANG return, clear out all the fields
1573 * we would set so the user can easily tell the
1574 * difference.
1575 */
1576 if (!retval)
1577 retval = put_user(0, &infop->si_signo);
1578 if (!retval)
1579 retval = put_user(0, &infop->si_errno);
1580 if (!retval)
1581 retval = put_user(0, &infop->si_code);
1582 if (!retval)
1583 retval = put_user(0, &infop->si_pid);
1584 if (!retval)
1585 retval = put_user(0, &infop->si_uid);
1586 if (!retval)
1587 retval = put_user(0, &infop->si_status);
1588 }
1589 }
1590 return retval;
1591 }
1592
1593 asmlinkage long sys_waitid(int which, pid_t pid,
1594 struct siginfo __user *infop, int options,
1595 struct rusage __user *ru)
1596 {
1597 long ret;
1598
1599 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1600 return -EINVAL;
1601 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1602 return -EINVAL;
1603
1604 switch (which) {
1605 case P_ALL:
1606 pid = -1;
1607 break;
1608 case P_PID:
1609 if (pid <= 0)
1610 return -EINVAL;
1611 break;
1612 case P_PGID:
1613 if (pid <= 0)
1614 return -EINVAL;
1615 pid = -pid;
1616 break;
1617 default:
1618 return -EINVAL;
1619 }
1620
1621 ret = do_wait(pid, options, infop, NULL, ru);
1622
1623 /* avoid REGPARM breakage on x86: */
1624 prevent_tail_call(ret);
1625 return ret;
1626 }
1627
1628 asmlinkage long sys_wait4(pid_t pid, int __user *stat_addr,
1629 int options, struct rusage __user *ru)
1630 {
1631 long ret;
1632
1633 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1634 __WNOTHREAD|__WCLONE|__WALL))
1635 return -EINVAL;
1636 ret = do_wait(pid, options | WEXITED, NULL, stat_addr, ru);
1637
1638 /* avoid REGPARM breakage on x86: */
1639 prevent_tail_call(ret);
1640 return ret;
1641 }
1642
1643 #ifdef __ARCH_WANT_SYS_WAITPID
1644
1645 /*
1646 * sys_waitpid() remains for compatibility. waitpid() should be
1647 * implemented by calling sys_wait4() from libc.a.
1648 */
1649 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1650 {
1651 return sys_wait4(pid, stat_addr, options, NULL);
1652 }
1653
1654 #endif