cd55144270b5401030f4b5ce5576f97b6b976b63
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / events / ring_buffer.c
1 /*
2 * Performance events ring-buffer code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/perf_event.h>
13 #include <linux/vmalloc.h>
14 #include <linux/slab.h>
15
16 #include "internal.h"
17
18 static bool perf_output_space(struct ring_buffer *rb, unsigned long tail,
19 unsigned long offset, unsigned long head)
20 {
21 unsigned long sz = perf_data_size(rb);
22 unsigned long mask = sz - 1;
23
24 /*
25 * check if user-writable
26 * overwrite : over-write its own tail
27 * !overwrite: buffer possibly drops events.
28 */
29 if (rb->overwrite)
30 return true;
31
32 /*
33 * verify that payload is not bigger than buffer
34 * otherwise masking logic may fail to detect
35 * the "not enough space" condition
36 */
37 if ((head - offset) > sz)
38 return false;
39
40 offset = (offset - tail) & mask;
41 head = (head - tail) & mask;
42
43 if ((int)(head - offset) < 0)
44 return false;
45
46 return true;
47 }
48
49 static void perf_output_wakeup(struct perf_output_handle *handle)
50 {
51 atomic_set(&handle->rb->poll, POLL_IN);
52
53 handle->event->pending_wakeup = 1;
54 irq_work_queue(&handle->event->pending);
55 }
56
57 /*
58 * We need to ensure a later event_id doesn't publish a head when a former
59 * event isn't done writing. However since we need to deal with NMIs we
60 * cannot fully serialize things.
61 *
62 * We only publish the head (and generate a wakeup) when the outer-most
63 * event completes.
64 */
65 static void perf_output_get_handle(struct perf_output_handle *handle)
66 {
67 struct ring_buffer *rb = handle->rb;
68
69 preempt_disable();
70 local_inc(&rb->nest);
71 handle->wakeup = local_read(&rb->wakeup);
72 }
73
74 static void perf_output_put_handle(struct perf_output_handle *handle)
75 {
76 struct ring_buffer *rb = handle->rb;
77 unsigned long head;
78
79 again:
80 head = local_read(&rb->head);
81
82 /*
83 * IRQ/NMI can happen here, which means we can miss a head update.
84 */
85
86 if (!local_dec_and_test(&rb->nest))
87 goto out;
88
89 /*
90 * Publish the known good head. Rely on the full barrier implied
91 * by atomic_dec_and_test() order the rb->head read and this
92 * write.
93 */
94 rb->user_page->data_head = head;
95
96 /*
97 * Now check if we missed an update, rely on the (compiler)
98 * barrier in atomic_dec_and_test() to re-read rb->head.
99 */
100 if (unlikely(head != local_read(&rb->head))) {
101 local_inc(&rb->nest);
102 goto again;
103 }
104
105 if (handle->wakeup != local_read(&rb->wakeup))
106 perf_output_wakeup(handle);
107
108 out:
109 preempt_enable();
110 }
111
112 int perf_output_begin(struct perf_output_handle *handle,
113 struct perf_event *event, unsigned int size)
114 {
115 struct ring_buffer *rb;
116 unsigned long tail, offset, head;
117 int have_lost;
118 struct perf_sample_data sample_data;
119 struct {
120 struct perf_event_header header;
121 u64 id;
122 u64 lost;
123 } lost_event;
124
125 rcu_read_lock();
126 /*
127 * For inherited events we send all the output towards the parent.
128 */
129 if (event->parent)
130 event = event->parent;
131
132 rb = rcu_dereference(event->rb);
133 if (!rb)
134 goto out;
135
136 handle->rb = rb;
137 handle->event = event;
138
139 if (!rb->nr_pages)
140 goto out;
141
142 have_lost = local_read(&rb->lost);
143 if (have_lost) {
144 lost_event.header.size = sizeof(lost_event);
145 perf_event_header__init_id(&lost_event.header, &sample_data,
146 event);
147 size += lost_event.header.size;
148 }
149
150 perf_output_get_handle(handle);
151
152 do {
153 /*
154 * Userspace could choose to issue a mb() before updating the
155 * tail pointer. So that all reads will be completed before the
156 * write is issued.
157 */
158 tail = ACCESS_ONCE(rb->user_page->data_tail);
159 smp_rmb();
160 offset = head = local_read(&rb->head);
161 head += size;
162 if (unlikely(!perf_output_space(rb, tail, offset, head)))
163 goto fail;
164 } while (local_cmpxchg(&rb->head, offset, head) != offset);
165
166 if (head - local_read(&rb->wakeup) > rb->watermark)
167 local_add(rb->watermark, &rb->wakeup);
168
169 handle->page = offset >> (PAGE_SHIFT + page_order(rb));
170 handle->page &= rb->nr_pages - 1;
171 handle->size = offset & ((PAGE_SIZE << page_order(rb)) - 1);
172 handle->addr = rb->data_pages[handle->page];
173 handle->addr += handle->size;
174 handle->size = (PAGE_SIZE << page_order(rb)) - handle->size;
175
176 if (have_lost) {
177 lost_event.header.type = PERF_RECORD_LOST;
178 lost_event.header.misc = 0;
179 lost_event.id = event->id;
180 lost_event.lost = local_xchg(&rb->lost, 0);
181
182 perf_output_put(handle, lost_event);
183 perf_event__output_id_sample(event, handle, &sample_data);
184 }
185
186 return 0;
187
188 fail:
189 local_inc(&rb->lost);
190 perf_output_put_handle(handle);
191 out:
192 rcu_read_unlock();
193
194 return -ENOSPC;
195 }
196
197 unsigned int perf_output_copy(struct perf_output_handle *handle,
198 const void *buf, unsigned int len)
199 {
200 return __output_copy(handle, buf, len);
201 }
202
203 unsigned int perf_output_skip(struct perf_output_handle *handle,
204 unsigned int len)
205 {
206 return __output_skip(handle, NULL, len);
207 }
208
209 void perf_output_end(struct perf_output_handle *handle)
210 {
211 perf_output_put_handle(handle);
212 rcu_read_unlock();
213 }
214
215 static void
216 ring_buffer_init(struct ring_buffer *rb, long watermark, int flags)
217 {
218 long max_size = perf_data_size(rb);
219
220 if (watermark)
221 rb->watermark = min(max_size, watermark);
222
223 if (!rb->watermark)
224 rb->watermark = max_size / 2;
225
226 if (flags & RING_BUFFER_WRITABLE)
227 rb->overwrite = 0;
228 else
229 rb->overwrite = 1;
230
231 atomic_set(&rb->refcount, 1);
232
233 INIT_LIST_HEAD(&rb->event_list);
234 spin_lock_init(&rb->event_lock);
235 }
236
237 #ifndef CONFIG_PERF_USE_VMALLOC
238
239 /*
240 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
241 */
242
243 struct page *
244 perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
245 {
246 if (pgoff > rb->nr_pages)
247 return NULL;
248
249 if (pgoff == 0)
250 return virt_to_page(rb->user_page);
251
252 return virt_to_page(rb->data_pages[pgoff - 1]);
253 }
254
255 static void *perf_mmap_alloc_page(int cpu)
256 {
257 struct page *page;
258 int node;
259
260 node = (cpu == -1) ? cpu : cpu_to_node(cpu);
261 page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
262 if (!page)
263 return NULL;
264
265 return page_address(page);
266 }
267
268 struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
269 {
270 struct ring_buffer *rb;
271 unsigned long size;
272 int i;
273
274 size = sizeof(struct ring_buffer);
275 size += nr_pages * sizeof(void *);
276
277 rb = kzalloc(size, GFP_KERNEL);
278 if (!rb)
279 goto fail;
280
281 rb->user_page = perf_mmap_alloc_page(cpu);
282 if (!rb->user_page)
283 goto fail_user_page;
284
285 for (i = 0; i < nr_pages; i++) {
286 rb->data_pages[i] = perf_mmap_alloc_page(cpu);
287 if (!rb->data_pages[i])
288 goto fail_data_pages;
289 }
290
291 rb->nr_pages = nr_pages;
292
293 ring_buffer_init(rb, watermark, flags);
294
295 return rb;
296
297 fail_data_pages:
298 for (i--; i >= 0; i--)
299 free_page((unsigned long)rb->data_pages[i]);
300
301 free_page((unsigned long)rb->user_page);
302
303 fail_user_page:
304 kfree(rb);
305
306 fail:
307 return NULL;
308 }
309
310 static void perf_mmap_free_page(unsigned long addr)
311 {
312 struct page *page = virt_to_page((void *)addr);
313
314 page->mapping = NULL;
315 __free_page(page);
316 }
317
318 void rb_free(struct ring_buffer *rb)
319 {
320 int i;
321
322 perf_mmap_free_page((unsigned long)rb->user_page);
323 for (i = 0; i < rb->nr_pages; i++)
324 perf_mmap_free_page((unsigned long)rb->data_pages[i]);
325 kfree(rb);
326 }
327
328 #else
329 static int data_page_nr(struct ring_buffer *rb)
330 {
331 return rb->nr_pages << page_order(rb);
332 }
333
334 struct page *
335 perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
336 {
337 /* The '>' counts in the user page. */
338 if (pgoff > data_page_nr(rb))
339 return NULL;
340
341 return vmalloc_to_page((void *)rb->user_page + pgoff * PAGE_SIZE);
342 }
343
344 static void perf_mmap_unmark_page(void *addr)
345 {
346 struct page *page = vmalloc_to_page(addr);
347
348 page->mapping = NULL;
349 }
350
351 static void rb_free_work(struct work_struct *work)
352 {
353 struct ring_buffer *rb;
354 void *base;
355 int i, nr;
356
357 rb = container_of(work, struct ring_buffer, work);
358 nr = data_page_nr(rb);
359
360 base = rb->user_page;
361 /* The '<=' counts in the user page. */
362 for (i = 0; i <= nr; i++)
363 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
364
365 vfree(base);
366 kfree(rb);
367 }
368
369 void rb_free(struct ring_buffer *rb)
370 {
371 schedule_work(&rb->work);
372 }
373
374 struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
375 {
376 struct ring_buffer *rb;
377 unsigned long size;
378 void *all_buf;
379
380 size = sizeof(struct ring_buffer);
381 size += sizeof(void *);
382
383 rb = kzalloc(size, GFP_KERNEL);
384 if (!rb)
385 goto fail;
386
387 INIT_WORK(&rb->work, rb_free_work);
388
389 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
390 if (!all_buf)
391 goto fail_all_buf;
392
393 rb->user_page = all_buf;
394 rb->data_pages[0] = all_buf + PAGE_SIZE;
395 rb->page_order = ilog2(nr_pages);
396 rb->nr_pages = !!nr_pages;
397
398 ring_buffer_init(rb, watermark, flags);
399
400 return rb;
401
402 fail_all_buf:
403 kfree(rb);
404
405 fail:
406 return NULL;
407 }
408
409 #endif