Merge tag 'v3.10.61' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / events / hw_breakpoint.c
1 /*
2 * This program is free software; you can redistribute it and/or modify
3 * it under the terms of the GNU General Public License as published by
4 * the Free Software Foundation; either version 2 of the License, or
5 * (at your option) any later version.
6 *
7 * This program is distributed in the hope that it will be useful,
8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
10 * GNU General Public License for more details.
11 *
12 * You should have received a copy of the GNU General Public License
13 * along with this program; if not, write to the Free Software
14 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
15 *
16 * Copyright (C) 2007 Alan Stern
17 * Copyright (C) IBM Corporation, 2009
18 * Copyright (C) 2009, Frederic Weisbecker <fweisbec@gmail.com>
19 *
20 * Thanks to Ingo Molnar for his many suggestions.
21 *
22 * Authors: Alan Stern <stern@rowland.harvard.edu>
23 * K.Prasad <prasad@linux.vnet.ibm.com>
24 * Frederic Weisbecker <fweisbec@gmail.com>
25 */
26
27 /*
28 * HW_breakpoint: a unified kernel/user-space hardware breakpoint facility,
29 * using the CPU's debug registers.
30 * This file contains the arch-independent routines.
31 */
32
33 #include <linux/irqflags.h>
34 #include <linux/kallsyms.h>
35 #include <linux/notifier.h>
36 #include <linux/kprobes.h>
37 #include <linux/kdebug.h>
38 #include <linux/kernel.h>
39 #include <linux/module.h>
40 #include <linux/percpu.h>
41 #include <linux/sched.h>
42 #include <linux/init.h>
43 #include <linux/slab.h>
44 #include <linux/list.h>
45 #include <linux/cpu.h>
46 #include <linux/smp.h>
47
48 #include <linux/hw_breakpoint.h>
49
50
51 /*
52 * Constraints data
53 */
54
55 /* Number of pinned cpu breakpoints in a cpu */
56 static DEFINE_PER_CPU(unsigned int, nr_cpu_bp_pinned[TYPE_MAX]);
57
58 /* Number of pinned task breakpoints in a cpu */
59 static DEFINE_PER_CPU(unsigned int *, nr_task_bp_pinned[TYPE_MAX]);
60
61 /* Number of non-pinned cpu/task breakpoints in a cpu */
62 static DEFINE_PER_CPU(unsigned int, nr_bp_flexible[TYPE_MAX]);
63
64 static int nr_slots[TYPE_MAX];
65
66 /* Keep track of the breakpoints attached to tasks */
67 static LIST_HEAD(bp_task_head);
68
69 static int constraints_initialized;
70
71 /* Gather the number of total pinned and un-pinned bp in a cpuset */
72 struct bp_busy_slots {
73 unsigned int pinned;
74 unsigned int flexible;
75 };
76
77 /* Serialize accesses to the above constraints */
78 static DEFINE_MUTEX(nr_bp_mutex);
79
80 __weak int hw_breakpoint_weight(struct perf_event *bp)
81 {
82 return 1;
83 }
84
85 static inline enum bp_type_idx find_slot_idx(struct perf_event *bp)
86 {
87 if (bp->attr.bp_type & HW_BREAKPOINT_RW)
88 return TYPE_DATA;
89
90 return TYPE_INST;
91 }
92
93 /*
94 * Report the maximum number of pinned breakpoints a task
95 * have in this cpu
96 */
97 static unsigned int max_task_bp_pinned(int cpu, enum bp_type_idx type)
98 {
99 int i;
100 unsigned int *tsk_pinned = per_cpu(nr_task_bp_pinned[type], cpu);
101
102 for (i = nr_slots[type] - 1; i >= 0; i--) {
103 if (tsk_pinned[i] > 0)
104 return i + 1;
105 }
106
107 return 0;
108 }
109
110 /*
111 * Count the number of breakpoints of the same type and same task.
112 * The given event must be not on the list.
113 */
114 static int task_bp_pinned(int cpu, struct perf_event *bp, enum bp_type_idx type)
115 {
116 struct task_struct *tsk = bp->hw.bp_target;
117 struct perf_event *iter;
118 int count = 0;
119
120 list_for_each_entry(iter, &bp_task_head, hw.bp_list) {
121 if (iter->hw.bp_target == tsk &&
122 find_slot_idx(iter) == type &&
123 (iter->cpu < 0 || cpu == iter->cpu))
124 count += hw_breakpoint_weight(iter);
125 }
126
127 return count;
128 }
129
130 /*
131 * Report the number of pinned/un-pinned breakpoints we have in
132 * a given cpu (cpu > -1) or in all of them (cpu = -1).
133 */
134 static void
135 fetch_bp_busy_slots(struct bp_busy_slots *slots, struct perf_event *bp,
136 enum bp_type_idx type)
137 {
138 int cpu = bp->cpu;
139 struct task_struct *tsk = bp->hw.bp_target;
140
141 if (cpu >= 0) {
142 slots->pinned = per_cpu(nr_cpu_bp_pinned[type], cpu);
143 if (!tsk)
144 slots->pinned += max_task_bp_pinned(cpu, type);
145 else
146 slots->pinned += task_bp_pinned(cpu, bp, type);
147 slots->flexible = per_cpu(nr_bp_flexible[type], cpu);
148
149 return;
150 }
151
152 for_each_possible_cpu(cpu) {
153 unsigned int nr;
154
155 nr = per_cpu(nr_cpu_bp_pinned[type], cpu);
156 if (!tsk)
157 nr += max_task_bp_pinned(cpu, type);
158 else
159 nr += task_bp_pinned(cpu, bp, type);
160
161 if (nr > slots->pinned)
162 slots->pinned = nr;
163
164 nr = per_cpu(nr_bp_flexible[type], cpu);
165
166 if (nr > slots->flexible)
167 slots->flexible = nr;
168 }
169 }
170
171 /*
172 * For now, continue to consider flexible as pinned, until we can
173 * ensure no flexible event can ever be scheduled before a pinned event
174 * in a same cpu.
175 */
176 static void
177 fetch_this_slot(struct bp_busy_slots *slots, int weight)
178 {
179 slots->pinned += weight;
180 }
181
182 /*
183 * Add a pinned breakpoint for the given task in our constraint table
184 */
185 static void toggle_bp_task_slot(struct perf_event *bp, int cpu, bool enable,
186 enum bp_type_idx type, int weight)
187 {
188 unsigned int *tsk_pinned;
189 int old_count = 0;
190 int old_idx = 0;
191 int idx = 0;
192
193 old_count = task_bp_pinned(cpu, bp, type);
194 old_idx = old_count - 1;
195 idx = old_idx + weight;
196
197 /* tsk_pinned[n] is the number of tasks having n breakpoints */
198 tsk_pinned = per_cpu(nr_task_bp_pinned[type], cpu);
199 if (enable) {
200 tsk_pinned[idx]++;
201 if (old_count > 0)
202 tsk_pinned[old_idx]--;
203 } else {
204 tsk_pinned[idx]--;
205 if (old_count > 0)
206 tsk_pinned[old_idx]++;
207 }
208 }
209
210 /*
211 * Add/remove the given breakpoint in our constraint table
212 */
213 static void
214 toggle_bp_slot(struct perf_event *bp, bool enable, enum bp_type_idx type,
215 int weight)
216 {
217 int cpu = bp->cpu;
218 struct task_struct *tsk = bp->hw.bp_target;
219
220 /* Pinned counter cpu profiling */
221 if (!tsk) {
222
223 if (enable)
224 per_cpu(nr_cpu_bp_pinned[type], bp->cpu) += weight;
225 else
226 per_cpu(nr_cpu_bp_pinned[type], bp->cpu) -= weight;
227 return;
228 }
229
230 /* Pinned counter task profiling */
231
232 if (!enable)
233 list_del(&bp->hw.bp_list);
234
235 if (cpu >= 0) {
236 toggle_bp_task_slot(bp, cpu, enable, type, weight);
237 } else {
238 for_each_possible_cpu(cpu)
239 toggle_bp_task_slot(bp, cpu, enable, type, weight);
240 }
241
242 if (enable)
243 list_add_tail(&bp->hw.bp_list, &bp_task_head);
244 }
245
246 /*
247 * Function to perform processor-specific cleanup during unregistration
248 */
249 __weak void arch_unregister_hw_breakpoint(struct perf_event *bp)
250 {
251 /*
252 * A weak stub function here for those archs that don't define
253 * it inside arch/.../kernel/hw_breakpoint.c
254 */
255 }
256
257 /*
258 * Contraints to check before allowing this new breakpoint counter:
259 *
260 * == Non-pinned counter == (Considered as pinned for now)
261 *
262 * - If attached to a single cpu, check:
263 *
264 * (per_cpu(nr_bp_flexible, cpu) || (per_cpu(nr_cpu_bp_pinned, cpu)
265 * + max(per_cpu(nr_task_bp_pinned, cpu)))) < HBP_NUM
266 *
267 * -> If there are already non-pinned counters in this cpu, it means
268 * there is already a free slot for them.
269 * Otherwise, we check that the maximum number of per task
270 * breakpoints (for this cpu) plus the number of per cpu breakpoint
271 * (for this cpu) doesn't cover every registers.
272 *
273 * - If attached to every cpus, check:
274 *
275 * (per_cpu(nr_bp_flexible, *) || (max(per_cpu(nr_cpu_bp_pinned, *))
276 * + max(per_cpu(nr_task_bp_pinned, *)))) < HBP_NUM
277 *
278 * -> This is roughly the same, except we check the number of per cpu
279 * bp for every cpu and we keep the max one. Same for the per tasks
280 * breakpoints.
281 *
282 *
283 * == Pinned counter ==
284 *
285 * - If attached to a single cpu, check:
286 *
287 * ((per_cpu(nr_bp_flexible, cpu) > 1) + per_cpu(nr_cpu_bp_pinned, cpu)
288 * + max(per_cpu(nr_task_bp_pinned, cpu))) < HBP_NUM
289 *
290 * -> Same checks as before. But now the nr_bp_flexible, if any, must keep
291 * one register at least (or they will never be fed).
292 *
293 * - If attached to every cpus, check:
294 *
295 * ((per_cpu(nr_bp_flexible, *) > 1) + max(per_cpu(nr_cpu_bp_pinned, *))
296 * + max(per_cpu(nr_task_bp_pinned, *))) < HBP_NUM
297 */
298 static int __reserve_bp_slot(struct perf_event *bp)
299 {
300 struct bp_busy_slots slots = {0};
301 enum bp_type_idx type;
302 int weight;
303
304 /* We couldn't initialize breakpoint constraints on boot */
305 if (!constraints_initialized)
306 return -ENOMEM;
307
308 /* Basic checks */
309 if (bp->attr.bp_type == HW_BREAKPOINT_EMPTY ||
310 bp->attr.bp_type == HW_BREAKPOINT_INVALID)
311 return -EINVAL;
312
313 type = find_slot_idx(bp);
314 weight = hw_breakpoint_weight(bp);
315
316 fetch_bp_busy_slots(&slots, bp, type);
317 /*
318 * Simulate the addition of this breakpoint to the constraints
319 * and see the result.
320 */
321 fetch_this_slot(&slots, weight);
322
323 /* Flexible counters need to keep at least one slot */
324 if (slots.pinned + (!!slots.flexible) > nr_slots[type])
325 return -ENOSPC;
326
327 toggle_bp_slot(bp, true, type, weight);
328
329 return 0;
330 }
331
332 int reserve_bp_slot(struct perf_event *bp)
333 {
334 int ret;
335
336 mutex_lock(&nr_bp_mutex);
337
338 ret = __reserve_bp_slot(bp);
339
340 mutex_unlock(&nr_bp_mutex);
341
342 return ret;
343 }
344
345 static void __release_bp_slot(struct perf_event *bp)
346 {
347 enum bp_type_idx type;
348 int weight;
349
350 type = find_slot_idx(bp);
351 weight = hw_breakpoint_weight(bp);
352 toggle_bp_slot(bp, false, type, weight);
353 }
354
355 void release_bp_slot(struct perf_event *bp)
356 {
357 mutex_lock(&nr_bp_mutex);
358
359 arch_unregister_hw_breakpoint(bp);
360 __release_bp_slot(bp);
361
362 mutex_unlock(&nr_bp_mutex);
363 }
364
365 /*
366 * Allow the kernel debugger to reserve breakpoint slots without
367 * taking a lock using the dbg_* variant of for the reserve and
368 * release breakpoint slots.
369 */
370 int dbg_reserve_bp_slot(struct perf_event *bp)
371 {
372 if (mutex_is_locked(&nr_bp_mutex))
373 return -1;
374
375 return __reserve_bp_slot(bp);
376 }
377
378 int dbg_release_bp_slot(struct perf_event *bp)
379 {
380 if (mutex_is_locked(&nr_bp_mutex))
381 return -1;
382
383 __release_bp_slot(bp);
384
385 return 0;
386 }
387
388 static int validate_hw_breakpoint(struct perf_event *bp)
389 {
390 int ret;
391
392 ret = arch_validate_hwbkpt_settings(bp);
393 if (ret)
394 return ret;
395
396 if (arch_check_bp_in_kernelspace(bp)) {
397 if (bp->attr.exclude_kernel)
398 return -EINVAL;
399 /*
400 * Don't let unprivileged users set a breakpoint in the trap
401 * path to avoid trap recursion attacks.
402 */
403 if (!capable(CAP_SYS_ADMIN))
404 return -EPERM;
405 }
406
407 return 0;
408 }
409
410 int register_perf_hw_breakpoint(struct perf_event *bp)
411 {
412 int ret;
413
414 ret = reserve_bp_slot(bp);
415 if (ret)
416 return ret;
417
418 ret = validate_hw_breakpoint(bp);
419
420 /* if arch_validate_hwbkpt_settings() fails then release bp slot */
421 if (ret)
422 release_bp_slot(bp);
423
424 return ret;
425 }
426
427 /**
428 * register_user_hw_breakpoint - register a hardware breakpoint for user space
429 * @attr: breakpoint attributes
430 * @triggered: callback to trigger when we hit the breakpoint
431 * @tsk: pointer to 'task_struct' of the process to which the address belongs
432 */
433 struct perf_event *
434 register_user_hw_breakpoint(struct perf_event_attr *attr,
435 perf_overflow_handler_t triggered,
436 void *context,
437 struct task_struct *tsk)
438 {
439 return perf_event_create_kernel_counter(attr, -1, tsk, triggered,
440 context);
441 }
442 EXPORT_SYMBOL_GPL(register_user_hw_breakpoint);
443
444 /**
445 * modify_user_hw_breakpoint - modify a user-space hardware breakpoint
446 * @bp: the breakpoint structure to modify
447 * @attr: new breakpoint attributes
448 * @triggered: callback to trigger when we hit the breakpoint
449 * @tsk: pointer to 'task_struct' of the process to which the address belongs
450 */
451 int modify_user_hw_breakpoint(struct perf_event *bp, struct perf_event_attr *attr)
452 {
453 u64 old_addr = bp->attr.bp_addr;
454 u64 old_len = bp->attr.bp_len;
455 int old_type = bp->attr.bp_type;
456 int err = 0;
457
458 /*
459 * modify_user_hw_breakpoint can be invoked with IRQs disabled and hence it
460 * will not be possible to raise IPIs that invoke __perf_event_disable.
461 * So call the function directly after making sure we are targeting the
462 * current task.
463 */
464 if (irqs_disabled() && bp->ctx && bp->ctx->task == current)
465 __perf_event_disable(bp);
466 else
467 perf_event_disable(bp);
468
469 bp->attr.bp_addr = attr->bp_addr;
470 bp->attr.bp_type = attr->bp_type;
471 bp->attr.bp_len = attr->bp_len;
472
473 if (attr->disabled)
474 goto end;
475
476 err = validate_hw_breakpoint(bp);
477 if (!err)
478 perf_event_enable(bp);
479
480 if (err) {
481 bp->attr.bp_addr = old_addr;
482 bp->attr.bp_type = old_type;
483 bp->attr.bp_len = old_len;
484 if (!bp->attr.disabled)
485 perf_event_enable(bp);
486
487 return err;
488 }
489
490 end:
491 bp->attr.disabled = attr->disabled;
492
493 return 0;
494 }
495 EXPORT_SYMBOL_GPL(modify_user_hw_breakpoint);
496
497 /**
498 * unregister_hw_breakpoint - unregister a user-space hardware breakpoint
499 * @bp: the breakpoint structure to unregister
500 */
501 void unregister_hw_breakpoint(struct perf_event *bp)
502 {
503 if (!bp)
504 return;
505 perf_event_release_kernel(bp);
506 }
507 EXPORT_SYMBOL_GPL(unregister_hw_breakpoint);
508
509 /**
510 * register_wide_hw_breakpoint - register a wide breakpoint in the kernel
511 * @attr: breakpoint attributes
512 * @triggered: callback to trigger when we hit the breakpoint
513 *
514 * @return a set of per_cpu pointers to perf events
515 */
516 struct perf_event * __percpu *
517 register_wide_hw_breakpoint(struct perf_event_attr *attr,
518 perf_overflow_handler_t triggered,
519 void *context)
520 {
521 struct perf_event * __percpu *cpu_events, **pevent, *bp;
522 long err;
523 int cpu;
524
525 cpu_events = alloc_percpu(typeof(*cpu_events));
526 if (!cpu_events)
527 return (void __percpu __force *)ERR_PTR(-ENOMEM);
528
529 get_online_cpus();
530 for_each_online_cpu(cpu) {
531 pevent = per_cpu_ptr(cpu_events, cpu);
532 bp = perf_event_create_kernel_counter(attr, cpu, NULL,
533 triggered, context);
534
535 *pevent = bp;
536
537 if (IS_ERR(bp)) {
538 err = PTR_ERR(bp);
539 goto fail;
540 }
541 }
542 put_online_cpus();
543
544 return cpu_events;
545
546 fail:
547 for_each_online_cpu(cpu) {
548 pevent = per_cpu_ptr(cpu_events, cpu);
549 if (IS_ERR(*pevent))
550 break;
551 unregister_hw_breakpoint(*pevent);
552 }
553 put_online_cpus();
554
555 free_percpu(cpu_events);
556 return (void __percpu __force *)ERR_PTR(err);
557 }
558 EXPORT_SYMBOL_GPL(register_wide_hw_breakpoint);
559
560 /**
561 * unregister_wide_hw_breakpoint - unregister a wide breakpoint in the kernel
562 * @cpu_events: the per cpu set of events to unregister
563 */
564 void unregister_wide_hw_breakpoint(struct perf_event * __percpu *cpu_events)
565 {
566 int cpu;
567 struct perf_event **pevent;
568
569 for_each_possible_cpu(cpu) {
570 pevent = per_cpu_ptr(cpu_events, cpu);
571 unregister_hw_breakpoint(*pevent);
572 }
573 free_percpu(cpu_events);
574 }
575 EXPORT_SYMBOL_GPL(unregister_wide_hw_breakpoint);
576
577 static struct notifier_block hw_breakpoint_exceptions_nb = {
578 .notifier_call = hw_breakpoint_exceptions_notify,
579 /* we need to be notified first */
580 .priority = 0x7fffffff
581 };
582
583 static void bp_perf_event_destroy(struct perf_event *event)
584 {
585 release_bp_slot(event);
586 }
587
588 static int hw_breakpoint_event_init(struct perf_event *bp)
589 {
590 int err;
591
592 if (bp->attr.type != PERF_TYPE_BREAKPOINT)
593 return -ENOENT;
594
595 /*
596 * no branch sampling for breakpoint events
597 */
598 if (has_branch_stack(bp))
599 return -EOPNOTSUPP;
600
601 err = register_perf_hw_breakpoint(bp);
602 if (err)
603 return err;
604
605 bp->destroy = bp_perf_event_destroy;
606
607 return 0;
608 }
609
610 static int hw_breakpoint_add(struct perf_event *bp, int flags)
611 {
612 if (!(flags & PERF_EF_START))
613 bp->hw.state = PERF_HES_STOPPED;
614
615 return arch_install_hw_breakpoint(bp);
616 }
617
618 static void hw_breakpoint_del(struct perf_event *bp, int flags)
619 {
620 arch_uninstall_hw_breakpoint(bp);
621 }
622
623 static void hw_breakpoint_start(struct perf_event *bp, int flags)
624 {
625 bp->hw.state = 0;
626 }
627
628 static void hw_breakpoint_stop(struct perf_event *bp, int flags)
629 {
630 bp->hw.state = PERF_HES_STOPPED;
631 }
632
633 static int hw_breakpoint_event_idx(struct perf_event *bp)
634 {
635 return 0;
636 }
637
638 static struct pmu perf_breakpoint = {
639 .task_ctx_nr = perf_sw_context, /* could eventually get its own */
640
641 .event_init = hw_breakpoint_event_init,
642 .add = hw_breakpoint_add,
643 .del = hw_breakpoint_del,
644 .start = hw_breakpoint_start,
645 .stop = hw_breakpoint_stop,
646 .read = hw_breakpoint_pmu_read,
647
648 .event_idx = hw_breakpoint_event_idx,
649 };
650
651 int __init init_hw_breakpoint(void)
652 {
653 unsigned int **task_bp_pinned;
654 int cpu, err_cpu;
655 int i;
656
657 for (i = 0; i < TYPE_MAX; i++)
658 nr_slots[i] = hw_breakpoint_slots(i);
659
660 for_each_possible_cpu(cpu) {
661 for (i = 0; i < TYPE_MAX; i++) {
662 task_bp_pinned = &per_cpu(nr_task_bp_pinned[i], cpu);
663 *task_bp_pinned = kzalloc(sizeof(int) * nr_slots[i],
664 GFP_KERNEL);
665 if (!*task_bp_pinned)
666 goto err_alloc;
667 }
668 }
669
670 constraints_initialized = 1;
671
672 perf_pmu_register(&perf_breakpoint, "breakpoint", PERF_TYPE_BREAKPOINT);
673
674 return register_die_notifier(&hw_breakpoint_exceptions_nb);
675
676 err_alloc:
677 for_each_possible_cpu(err_cpu) {
678 for (i = 0; i < TYPE_MAX; i++)
679 kfree(per_cpu(nr_task_bp_pinned[i], err_cpu));
680 if (err_cpu == cpu)
681 break;
682 }
683
684 return -ENOMEM;
685 }
686
687