Merge branch 'for-linus' of git://git.kernel.dk/linux-block
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / events / core.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/rculist.h>
32 #include <linux/uaccess.h>
33 #include <linux/syscalls.h>
34 #include <linux/anon_inodes.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/perf_event.h>
37 #include <linux/ftrace_event.h>
38 #include <linux/hw_breakpoint.h>
39
40 #include "internal.h"
41
42 #include <asm/irq_regs.h>
43
44 struct remote_function_call {
45 struct task_struct *p;
46 int (*func)(void *info);
47 void *info;
48 int ret;
49 };
50
51 static void remote_function(void *data)
52 {
53 struct remote_function_call *tfc = data;
54 struct task_struct *p = tfc->p;
55
56 if (p) {
57 tfc->ret = -EAGAIN;
58 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
59 return;
60 }
61
62 tfc->ret = tfc->func(tfc->info);
63 }
64
65 /**
66 * task_function_call - call a function on the cpu on which a task runs
67 * @p: the task to evaluate
68 * @func: the function to be called
69 * @info: the function call argument
70 *
71 * Calls the function @func when the task is currently running. This might
72 * be on the current CPU, which just calls the function directly
73 *
74 * returns: @func return value, or
75 * -ESRCH - when the process isn't running
76 * -EAGAIN - when the process moved away
77 */
78 static int
79 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
80 {
81 struct remote_function_call data = {
82 .p = p,
83 .func = func,
84 .info = info,
85 .ret = -ESRCH, /* No such (running) process */
86 };
87
88 if (task_curr(p))
89 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
90
91 return data.ret;
92 }
93
94 /**
95 * cpu_function_call - call a function on the cpu
96 * @func: the function to be called
97 * @info: the function call argument
98 *
99 * Calls the function @func on the remote cpu.
100 *
101 * returns: @func return value or -ENXIO when the cpu is offline
102 */
103 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
104 {
105 struct remote_function_call data = {
106 .p = NULL,
107 .func = func,
108 .info = info,
109 .ret = -ENXIO, /* No such CPU */
110 };
111
112 smp_call_function_single(cpu, remote_function, &data, 1);
113
114 return data.ret;
115 }
116
117 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
118 PERF_FLAG_FD_OUTPUT |\
119 PERF_FLAG_PID_CGROUP)
120
121 /*
122 * branch priv levels that need permission checks
123 */
124 #define PERF_SAMPLE_BRANCH_PERM_PLM \
125 (PERF_SAMPLE_BRANCH_KERNEL |\
126 PERF_SAMPLE_BRANCH_HV)
127
128 enum event_type_t {
129 EVENT_FLEXIBLE = 0x1,
130 EVENT_PINNED = 0x2,
131 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
132 };
133
134 /*
135 * perf_sched_events : >0 events exist
136 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
137 */
138 struct static_key_deferred perf_sched_events __read_mostly;
139 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
140 static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
141
142 static atomic_t nr_mmap_events __read_mostly;
143 static atomic_t nr_comm_events __read_mostly;
144 static atomic_t nr_task_events __read_mostly;
145
146 static LIST_HEAD(pmus);
147 static DEFINE_MUTEX(pmus_lock);
148 static struct srcu_struct pmus_srcu;
149
150 /*
151 * perf event paranoia level:
152 * -1 - not paranoid at all
153 * 0 - disallow raw tracepoint access for unpriv
154 * 1 - disallow cpu events for unpriv
155 * 2 - disallow kernel profiling for unpriv
156 */
157 int sysctl_perf_event_paranoid __read_mostly = 1;
158
159 /* Minimum for 512 kiB + 1 user control page */
160 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
161
162 /*
163 * max perf event sample rate
164 */
165 #define DEFAULT_MAX_SAMPLE_RATE 100000
166 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
167 static int max_samples_per_tick __read_mostly =
168 DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
169
170 int perf_proc_update_handler(struct ctl_table *table, int write,
171 void __user *buffer, size_t *lenp,
172 loff_t *ppos)
173 {
174 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
175
176 if (ret || !write)
177 return ret;
178
179 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
180
181 return 0;
182 }
183
184 static atomic64_t perf_event_id;
185
186 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
187 enum event_type_t event_type);
188
189 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
190 enum event_type_t event_type,
191 struct task_struct *task);
192
193 static void update_context_time(struct perf_event_context *ctx);
194 static u64 perf_event_time(struct perf_event *event);
195
196 static void ring_buffer_attach(struct perf_event *event,
197 struct ring_buffer *rb);
198
199 void __weak perf_event_print_debug(void) { }
200
201 extern __weak const char *perf_pmu_name(void)
202 {
203 return "pmu";
204 }
205
206 static inline u64 perf_clock(void)
207 {
208 return local_clock();
209 }
210
211 static inline struct perf_cpu_context *
212 __get_cpu_context(struct perf_event_context *ctx)
213 {
214 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
215 }
216
217 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
218 struct perf_event_context *ctx)
219 {
220 raw_spin_lock(&cpuctx->ctx.lock);
221 if (ctx)
222 raw_spin_lock(&ctx->lock);
223 }
224
225 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
226 struct perf_event_context *ctx)
227 {
228 if (ctx)
229 raw_spin_unlock(&ctx->lock);
230 raw_spin_unlock(&cpuctx->ctx.lock);
231 }
232
233 #ifdef CONFIG_CGROUP_PERF
234
235 /*
236 * Must ensure cgroup is pinned (css_get) before calling
237 * this function. In other words, we cannot call this function
238 * if there is no cgroup event for the current CPU context.
239 */
240 static inline struct perf_cgroup *
241 perf_cgroup_from_task(struct task_struct *task)
242 {
243 return container_of(task_subsys_state(task, perf_subsys_id),
244 struct perf_cgroup, css);
245 }
246
247 static inline bool
248 perf_cgroup_match(struct perf_event *event)
249 {
250 struct perf_event_context *ctx = event->ctx;
251 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
252
253 return !event->cgrp || event->cgrp == cpuctx->cgrp;
254 }
255
256 static inline bool perf_tryget_cgroup(struct perf_event *event)
257 {
258 return css_tryget(&event->cgrp->css);
259 }
260
261 static inline void perf_put_cgroup(struct perf_event *event)
262 {
263 css_put(&event->cgrp->css);
264 }
265
266 static inline void perf_detach_cgroup(struct perf_event *event)
267 {
268 perf_put_cgroup(event);
269 event->cgrp = NULL;
270 }
271
272 static inline int is_cgroup_event(struct perf_event *event)
273 {
274 return event->cgrp != NULL;
275 }
276
277 static inline u64 perf_cgroup_event_time(struct perf_event *event)
278 {
279 struct perf_cgroup_info *t;
280
281 t = per_cpu_ptr(event->cgrp->info, event->cpu);
282 return t->time;
283 }
284
285 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
286 {
287 struct perf_cgroup_info *info;
288 u64 now;
289
290 now = perf_clock();
291
292 info = this_cpu_ptr(cgrp->info);
293
294 info->time += now - info->timestamp;
295 info->timestamp = now;
296 }
297
298 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
299 {
300 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
301 if (cgrp_out)
302 __update_cgrp_time(cgrp_out);
303 }
304
305 static inline void update_cgrp_time_from_event(struct perf_event *event)
306 {
307 struct perf_cgroup *cgrp;
308
309 /*
310 * ensure we access cgroup data only when needed and
311 * when we know the cgroup is pinned (css_get)
312 */
313 if (!is_cgroup_event(event))
314 return;
315
316 cgrp = perf_cgroup_from_task(current);
317 /*
318 * Do not update time when cgroup is not active
319 */
320 if (cgrp == event->cgrp)
321 __update_cgrp_time(event->cgrp);
322 }
323
324 static inline void
325 perf_cgroup_set_timestamp(struct task_struct *task,
326 struct perf_event_context *ctx)
327 {
328 struct perf_cgroup *cgrp;
329 struct perf_cgroup_info *info;
330
331 /*
332 * ctx->lock held by caller
333 * ensure we do not access cgroup data
334 * unless we have the cgroup pinned (css_get)
335 */
336 if (!task || !ctx->nr_cgroups)
337 return;
338
339 cgrp = perf_cgroup_from_task(task);
340 info = this_cpu_ptr(cgrp->info);
341 info->timestamp = ctx->timestamp;
342 }
343
344 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
345 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
346
347 /*
348 * reschedule events based on the cgroup constraint of task.
349 *
350 * mode SWOUT : schedule out everything
351 * mode SWIN : schedule in based on cgroup for next
352 */
353 void perf_cgroup_switch(struct task_struct *task, int mode)
354 {
355 struct perf_cpu_context *cpuctx;
356 struct pmu *pmu;
357 unsigned long flags;
358
359 /*
360 * disable interrupts to avoid geting nr_cgroup
361 * changes via __perf_event_disable(). Also
362 * avoids preemption.
363 */
364 local_irq_save(flags);
365
366 /*
367 * we reschedule only in the presence of cgroup
368 * constrained events.
369 */
370 rcu_read_lock();
371
372 list_for_each_entry_rcu(pmu, &pmus, entry) {
373 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
374
375 /*
376 * perf_cgroup_events says at least one
377 * context on this CPU has cgroup events.
378 *
379 * ctx->nr_cgroups reports the number of cgroup
380 * events for a context.
381 */
382 if (cpuctx->ctx.nr_cgroups > 0) {
383 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
384 perf_pmu_disable(cpuctx->ctx.pmu);
385
386 if (mode & PERF_CGROUP_SWOUT) {
387 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
388 /*
389 * must not be done before ctxswout due
390 * to event_filter_match() in event_sched_out()
391 */
392 cpuctx->cgrp = NULL;
393 }
394
395 if (mode & PERF_CGROUP_SWIN) {
396 WARN_ON_ONCE(cpuctx->cgrp);
397 /* set cgrp before ctxsw in to
398 * allow event_filter_match() to not
399 * have to pass task around
400 */
401 cpuctx->cgrp = perf_cgroup_from_task(task);
402 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
403 }
404 perf_pmu_enable(cpuctx->ctx.pmu);
405 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
406 }
407 }
408
409 rcu_read_unlock();
410
411 local_irq_restore(flags);
412 }
413
414 static inline void perf_cgroup_sched_out(struct task_struct *task,
415 struct task_struct *next)
416 {
417 struct perf_cgroup *cgrp1;
418 struct perf_cgroup *cgrp2 = NULL;
419
420 /*
421 * we come here when we know perf_cgroup_events > 0
422 */
423 cgrp1 = perf_cgroup_from_task(task);
424
425 /*
426 * next is NULL when called from perf_event_enable_on_exec()
427 * that will systematically cause a cgroup_switch()
428 */
429 if (next)
430 cgrp2 = perf_cgroup_from_task(next);
431
432 /*
433 * only schedule out current cgroup events if we know
434 * that we are switching to a different cgroup. Otherwise,
435 * do no touch the cgroup events.
436 */
437 if (cgrp1 != cgrp2)
438 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
439 }
440
441 static inline void perf_cgroup_sched_in(struct task_struct *prev,
442 struct task_struct *task)
443 {
444 struct perf_cgroup *cgrp1;
445 struct perf_cgroup *cgrp2 = NULL;
446
447 /*
448 * we come here when we know perf_cgroup_events > 0
449 */
450 cgrp1 = perf_cgroup_from_task(task);
451
452 /* prev can never be NULL */
453 cgrp2 = perf_cgroup_from_task(prev);
454
455 /*
456 * only need to schedule in cgroup events if we are changing
457 * cgroup during ctxsw. Cgroup events were not scheduled
458 * out of ctxsw out if that was not the case.
459 */
460 if (cgrp1 != cgrp2)
461 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
462 }
463
464 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
465 struct perf_event_attr *attr,
466 struct perf_event *group_leader)
467 {
468 struct perf_cgroup *cgrp;
469 struct cgroup_subsys_state *css;
470 struct file *file;
471 int ret = 0, fput_needed;
472
473 file = fget_light(fd, &fput_needed);
474 if (!file)
475 return -EBADF;
476
477 css = cgroup_css_from_dir(file, perf_subsys_id);
478 if (IS_ERR(css)) {
479 ret = PTR_ERR(css);
480 goto out;
481 }
482
483 cgrp = container_of(css, struct perf_cgroup, css);
484 event->cgrp = cgrp;
485
486 /* must be done before we fput() the file */
487 if (!perf_tryget_cgroup(event)) {
488 event->cgrp = NULL;
489 ret = -ENOENT;
490 goto out;
491 }
492
493 /*
494 * all events in a group must monitor
495 * the same cgroup because a task belongs
496 * to only one perf cgroup at a time
497 */
498 if (group_leader && group_leader->cgrp != cgrp) {
499 perf_detach_cgroup(event);
500 ret = -EINVAL;
501 }
502 out:
503 fput_light(file, fput_needed);
504 return ret;
505 }
506
507 static inline void
508 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
509 {
510 struct perf_cgroup_info *t;
511 t = per_cpu_ptr(event->cgrp->info, event->cpu);
512 event->shadow_ctx_time = now - t->timestamp;
513 }
514
515 static inline void
516 perf_cgroup_defer_enabled(struct perf_event *event)
517 {
518 /*
519 * when the current task's perf cgroup does not match
520 * the event's, we need to remember to call the
521 * perf_mark_enable() function the first time a task with
522 * a matching perf cgroup is scheduled in.
523 */
524 if (is_cgroup_event(event) && !perf_cgroup_match(event))
525 event->cgrp_defer_enabled = 1;
526 }
527
528 static inline void
529 perf_cgroup_mark_enabled(struct perf_event *event,
530 struct perf_event_context *ctx)
531 {
532 struct perf_event *sub;
533 u64 tstamp = perf_event_time(event);
534
535 if (!event->cgrp_defer_enabled)
536 return;
537
538 event->cgrp_defer_enabled = 0;
539
540 event->tstamp_enabled = tstamp - event->total_time_enabled;
541 list_for_each_entry(sub, &event->sibling_list, group_entry) {
542 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
543 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
544 sub->cgrp_defer_enabled = 0;
545 }
546 }
547 }
548 #else /* !CONFIG_CGROUP_PERF */
549
550 static inline bool
551 perf_cgroup_match(struct perf_event *event)
552 {
553 return true;
554 }
555
556 static inline void perf_detach_cgroup(struct perf_event *event)
557 {}
558
559 static inline int is_cgroup_event(struct perf_event *event)
560 {
561 return 0;
562 }
563
564 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
565 {
566 return 0;
567 }
568
569 static inline void update_cgrp_time_from_event(struct perf_event *event)
570 {
571 }
572
573 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
574 {
575 }
576
577 static inline void perf_cgroup_sched_out(struct task_struct *task,
578 struct task_struct *next)
579 {
580 }
581
582 static inline void perf_cgroup_sched_in(struct task_struct *prev,
583 struct task_struct *task)
584 {
585 }
586
587 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
588 struct perf_event_attr *attr,
589 struct perf_event *group_leader)
590 {
591 return -EINVAL;
592 }
593
594 static inline void
595 perf_cgroup_set_timestamp(struct task_struct *task,
596 struct perf_event_context *ctx)
597 {
598 }
599
600 void
601 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
602 {
603 }
604
605 static inline void
606 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
607 {
608 }
609
610 static inline u64 perf_cgroup_event_time(struct perf_event *event)
611 {
612 return 0;
613 }
614
615 static inline void
616 perf_cgroup_defer_enabled(struct perf_event *event)
617 {
618 }
619
620 static inline void
621 perf_cgroup_mark_enabled(struct perf_event *event,
622 struct perf_event_context *ctx)
623 {
624 }
625 #endif
626
627 void perf_pmu_disable(struct pmu *pmu)
628 {
629 int *count = this_cpu_ptr(pmu->pmu_disable_count);
630 if (!(*count)++)
631 pmu->pmu_disable(pmu);
632 }
633
634 void perf_pmu_enable(struct pmu *pmu)
635 {
636 int *count = this_cpu_ptr(pmu->pmu_disable_count);
637 if (!--(*count))
638 pmu->pmu_enable(pmu);
639 }
640
641 static DEFINE_PER_CPU(struct list_head, rotation_list);
642
643 /*
644 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
645 * because they're strictly cpu affine and rotate_start is called with IRQs
646 * disabled, while rotate_context is called from IRQ context.
647 */
648 static void perf_pmu_rotate_start(struct pmu *pmu)
649 {
650 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
651 struct list_head *head = &__get_cpu_var(rotation_list);
652
653 WARN_ON(!irqs_disabled());
654
655 if (list_empty(&cpuctx->rotation_list))
656 list_add(&cpuctx->rotation_list, head);
657 }
658
659 static void get_ctx(struct perf_event_context *ctx)
660 {
661 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
662 }
663
664 static void put_ctx(struct perf_event_context *ctx)
665 {
666 if (atomic_dec_and_test(&ctx->refcount)) {
667 if (ctx->parent_ctx)
668 put_ctx(ctx->parent_ctx);
669 if (ctx->task)
670 put_task_struct(ctx->task);
671 kfree_rcu(ctx, rcu_head);
672 }
673 }
674
675 static void unclone_ctx(struct perf_event_context *ctx)
676 {
677 if (ctx->parent_ctx) {
678 put_ctx(ctx->parent_ctx);
679 ctx->parent_ctx = NULL;
680 }
681 }
682
683 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
684 {
685 /*
686 * only top level events have the pid namespace they were created in
687 */
688 if (event->parent)
689 event = event->parent;
690
691 return task_tgid_nr_ns(p, event->ns);
692 }
693
694 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
695 {
696 /*
697 * only top level events have the pid namespace they were created in
698 */
699 if (event->parent)
700 event = event->parent;
701
702 return task_pid_nr_ns(p, event->ns);
703 }
704
705 /*
706 * If we inherit events we want to return the parent event id
707 * to userspace.
708 */
709 static u64 primary_event_id(struct perf_event *event)
710 {
711 u64 id = event->id;
712
713 if (event->parent)
714 id = event->parent->id;
715
716 return id;
717 }
718
719 /*
720 * Get the perf_event_context for a task and lock it.
721 * This has to cope with with the fact that until it is locked,
722 * the context could get moved to another task.
723 */
724 static struct perf_event_context *
725 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
726 {
727 struct perf_event_context *ctx;
728
729 rcu_read_lock();
730 retry:
731 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
732 if (ctx) {
733 /*
734 * If this context is a clone of another, it might
735 * get swapped for another underneath us by
736 * perf_event_task_sched_out, though the
737 * rcu_read_lock() protects us from any context
738 * getting freed. Lock the context and check if it
739 * got swapped before we could get the lock, and retry
740 * if so. If we locked the right context, then it
741 * can't get swapped on us any more.
742 */
743 raw_spin_lock_irqsave(&ctx->lock, *flags);
744 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
745 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
746 goto retry;
747 }
748
749 if (!atomic_inc_not_zero(&ctx->refcount)) {
750 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
751 ctx = NULL;
752 }
753 }
754 rcu_read_unlock();
755 return ctx;
756 }
757
758 /*
759 * Get the context for a task and increment its pin_count so it
760 * can't get swapped to another task. This also increments its
761 * reference count so that the context can't get freed.
762 */
763 static struct perf_event_context *
764 perf_pin_task_context(struct task_struct *task, int ctxn)
765 {
766 struct perf_event_context *ctx;
767 unsigned long flags;
768
769 ctx = perf_lock_task_context(task, ctxn, &flags);
770 if (ctx) {
771 ++ctx->pin_count;
772 raw_spin_unlock_irqrestore(&ctx->lock, flags);
773 }
774 return ctx;
775 }
776
777 static void perf_unpin_context(struct perf_event_context *ctx)
778 {
779 unsigned long flags;
780
781 raw_spin_lock_irqsave(&ctx->lock, flags);
782 --ctx->pin_count;
783 raw_spin_unlock_irqrestore(&ctx->lock, flags);
784 }
785
786 /*
787 * Update the record of the current time in a context.
788 */
789 static void update_context_time(struct perf_event_context *ctx)
790 {
791 u64 now = perf_clock();
792
793 ctx->time += now - ctx->timestamp;
794 ctx->timestamp = now;
795 }
796
797 static u64 perf_event_time(struct perf_event *event)
798 {
799 struct perf_event_context *ctx = event->ctx;
800
801 if (is_cgroup_event(event))
802 return perf_cgroup_event_time(event);
803
804 return ctx ? ctx->time : 0;
805 }
806
807 /*
808 * Update the total_time_enabled and total_time_running fields for a event.
809 * The caller of this function needs to hold the ctx->lock.
810 */
811 static void update_event_times(struct perf_event *event)
812 {
813 struct perf_event_context *ctx = event->ctx;
814 u64 run_end;
815
816 if (event->state < PERF_EVENT_STATE_INACTIVE ||
817 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
818 return;
819 /*
820 * in cgroup mode, time_enabled represents
821 * the time the event was enabled AND active
822 * tasks were in the monitored cgroup. This is
823 * independent of the activity of the context as
824 * there may be a mix of cgroup and non-cgroup events.
825 *
826 * That is why we treat cgroup events differently
827 * here.
828 */
829 if (is_cgroup_event(event))
830 run_end = perf_cgroup_event_time(event);
831 else if (ctx->is_active)
832 run_end = ctx->time;
833 else
834 run_end = event->tstamp_stopped;
835
836 event->total_time_enabled = run_end - event->tstamp_enabled;
837
838 if (event->state == PERF_EVENT_STATE_INACTIVE)
839 run_end = event->tstamp_stopped;
840 else
841 run_end = perf_event_time(event);
842
843 event->total_time_running = run_end - event->tstamp_running;
844
845 }
846
847 /*
848 * Update total_time_enabled and total_time_running for all events in a group.
849 */
850 static void update_group_times(struct perf_event *leader)
851 {
852 struct perf_event *event;
853
854 update_event_times(leader);
855 list_for_each_entry(event, &leader->sibling_list, group_entry)
856 update_event_times(event);
857 }
858
859 static struct list_head *
860 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
861 {
862 if (event->attr.pinned)
863 return &ctx->pinned_groups;
864 else
865 return &ctx->flexible_groups;
866 }
867
868 /*
869 * Add a event from the lists for its context.
870 * Must be called with ctx->mutex and ctx->lock held.
871 */
872 static void
873 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
874 {
875 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
876 event->attach_state |= PERF_ATTACH_CONTEXT;
877
878 /*
879 * If we're a stand alone event or group leader, we go to the context
880 * list, group events are kept attached to the group so that
881 * perf_group_detach can, at all times, locate all siblings.
882 */
883 if (event->group_leader == event) {
884 struct list_head *list;
885
886 if (is_software_event(event))
887 event->group_flags |= PERF_GROUP_SOFTWARE;
888
889 list = ctx_group_list(event, ctx);
890 list_add_tail(&event->group_entry, list);
891 }
892
893 if (is_cgroup_event(event))
894 ctx->nr_cgroups++;
895
896 if (has_branch_stack(event))
897 ctx->nr_branch_stack++;
898
899 list_add_rcu(&event->event_entry, &ctx->event_list);
900 if (!ctx->nr_events)
901 perf_pmu_rotate_start(ctx->pmu);
902 ctx->nr_events++;
903 if (event->attr.inherit_stat)
904 ctx->nr_stat++;
905 }
906
907 /*
908 * Called at perf_event creation and when events are attached/detached from a
909 * group.
910 */
911 static void perf_event__read_size(struct perf_event *event)
912 {
913 int entry = sizeof(u64); /* value */
914 int size = 0;
915 int nr = 1;
916
917 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
918 size += sizeof(u64);
919
920 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
921 size += sizeof(u64);
922
923 if (event->attr.read_format & PERF_FORMAT_ID)
924 entry += sizeof(u64);
925
926 if (event->attr.read_format & PERF_FORMAT_GROUP) {
927 nr += event->group_leader->nr_siblings;
928 size += sizeof(u64);
929 }
930
931 size += entry * nr;
932 event->read_size = size;
933 }
934
935 static void perf_event__header_size(struct perf_event *event)
936 {
937 struct perf_sample_data *data;
938 u64 sample_type = event->attr.sample_type;
939 u16 size = 0;
940
941 perf_event__read_size(event);
942
943 if (sample_type & PERF_SAMPLE_IP)
944 size += sizeof(data->ip);
945
946 if (sample_type & PERF_SAMPLE_ADDR)
947 size += sizeof(data->addr);
948
949 if (sample_type & PERF_SAMPLE_PERIOD)
950 size += sizeof(data->period);
951
952 if (sample_type & PERF_SAMPLE_READ)
953 size += event->read_size;
954
955 event->header_size = size;
956 }
957
958 static void perf_event__id_header_size(struct perf_event *event)
959 {
960 struct perf_sample_data *data;
961 u64 sample_type = event->attr.sample_type;
962 u16 size = 0;
963
964 if (sample_type & PERF_SAMPLE_TID)
965 size += sizeof(data->tid_entry);
966
967 if (sample_type & PERF_SAMPLE_TIME)
968 size += sizeof(data->time);
969
970 if (sample_type & PERF_SAMPLE_ID)
971 size += sizeof(data->id);
972
973 if (sample_type & PERF_SAMPLE_STREAM_ID)
974 size += sizeof(data->stream_id);
975
976 if (sample_type & PERF_SAMPLE_CPU)
977 size += sizeof(data->cpu_entry);
978
979 event->id_header_size = size;
980 }
981
982 static void perf_group_attach(struct perf_event *event)
983 {
984 struct perf_event *group_leader = event->group_leader, *pos;
985
986 /*
987 * We can have double attach due to group movement in perf_event_open.
988 */
989 if (event->attach_state & PERF_ATTACH_GROUP)
990 return;
991
992 event->attach_state |= PERF_ATTACH_GROUP;
993
994 if (group_leader == event)
995 return;
996
997 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
998 !is_software_event(event))
999 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1000
1001 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1002 group_leader->nr_siblings++;
1003
1004 perf_event__header_size(group_leader);
1005
1006 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1007 perf_event__header_size(pos);
1008 }
1009
1010 /*
1011 * Remove a event from the lists for its context.
1012 * Must be called with ctx->mutex and ctx->lock held.
1013 */
1014 static void
1015 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1016 {
1017 struct perf_cpu_context *cpuctx;
1018 /*
1019 * We can have double detach due to exit/hot-unplug + close.
1020 */
1021 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1022 return;
1023
1024 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1025
1026 if (is_cgroup_event(event)) {
1027 ctx->nr_cgroups--;
1028 cpuctx = __get_cpu_context(ctx);
1029 /*
1030 * if there are no more cgroup events
1031 * then cler cgrp to avoid stale pointer
1032 * in update_cgrp_time_from_cpuctx()
1033 */
1034 if (!ctx->nr_cgroups)
1035 cpuctx->cgrp = NULL;
1036 }
1037
1038 if (has_branch_stack(event))
1039 ctx->nr_branch_stack--;
1040
1041 ctx->nr_events--;
1042 if (event->attr.inherit_stat)
1043 ctx->nr_stat--;
1044
1045 list_del_rcu(&event->event_entry);
1046
1047 if (event->group_leader == event)
1048 list_del_init(&event->group_entry);
1049
1050 update_group_times(event);
1051
1052 /*
1053 * If event was in error state, then keep it
1054 * that way, otherwise bogus counts will be
1055 * returned on read(). The only way to get out
1056 * of error state is by explicit re-enabling
1057 * of the event
1058 */
1059 if (event->state > PERF_EVENT_STATE_OFF)
1060 event->state = PERF_EVENT_STATE_OFF;
1061 }
1062
1063 static void perf_group_detach(struct perf_event *event)
1064 {
1065 struct perf_event *sibling, *tmp;
1066 struct list_head *list = NULL;
1067
1068 /*
1069 * We can have double detach due to exit/hot-unplug + close.
1070 */
1071 if (!(event->attach_state & PERF_ATTACH_GROUP))
1072 return;
1073
1074 event->attach_state &= ~PERF_ATTACH_GROUP;
1075
1076 /*
1077 * If this is a sibling, remove it from its group.
1078 */
1079 if (event->group_leader != event) {
1080 list_del_init(&event->group_entry);
1081 event->group_leader->nr_siblings--;
1082 goto out;
1083 }
1084
1085 if (!list_empty(&event->group_entry))
1086 list = &event->group_entry;
1087
1088 /*
1089 * If this was a group event with sibling events then
1090 * upgrade the siblings to singleton events by adding them
1091 * to whatever list we are on.
1092 */
1093 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1094 if (list)
1095 list_move_tail(&sibling->group_entry, list);
1096 sibling->group_leader = sibling;
1097
1098 /* Inherit group flags from the previous leader */
1099 sibling->group_flags = event->group_flags;
1100 }
1101
1102 out:
1103 perf_event__header_size(event->group_leader);
1104
1105 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1106 perf_event__header_size(tmp);
1107 }
1108
1109 static inline int
1110 event_filter_match(struct perf_event *event)
1111 {
1112 return (event->cpu == -1 || event->cpu == smp_processor_id())
1113 && perf_cgroup_match(event);
1114 }
1115
1116 static void
1117 event_sched_out(struct perf_event *event,
1118 struct perf_cpu_context *cpuctx,
1119 struct perf_event_context *ctx)
1120 {
1121 u64 tstamp = perf_event_time(event);
1122 u64 delta;
1123 /*
1124 * An event which could not be activated because of
1125 * filter mismatch still needs to have its timings
1126 * maintained, otherwise bogus information is return
1127 * via read() for time_enabled, time_running:
1128 */
1129 if (event->state == PERF_EVENT_STATE_INACTIVE
1130 && !event_filter_match(event)) {
1131 delta = tstamp - event->tstamp_stopped;
1132 event->tstamp_running += delta;
1133 event->tstamp_stopped = tstamp;
1134 }
1135
1136 if (event->state != PERF_EVENT_STATE_ACTIVE)
1137 return;
1138
1139 event->state = PERF_EVENT_STATE_INACTIVE;
1140 if (event->pending_disable) {
1141 event->pending_disable = 0;
1142 event->state = PERF_EVENT_STATE_OFF;
1143 }
1144 event->tstamp_stopped = tstamp;
1145 event->pmu->del(event, 0);
1146 event->oncpu = -1;
1147
1148 if (!is_software_event(event))
1149 cpuctx->active_oncpu--;
1150 ctx->nr_active--;
1151 if (event->attr.freq && event->attr.sample_freq)
1152 ctx->nr_freq--;
1153 if (event->attr.exclusive || !cpuctx->active_oncpu)
1154 cpuctx->exclusive = 0;
1155 }
1156
1157 static void
1158 group_sched_out(struct perf_event *group_event,
1159 struct perf_cpu_context *cpuctx,
1160 struct perf_event_context *ctx)
1161 {
1162 struct perf_event *event;
1163 int state = group_event->state;
1164
1165 event_sched_out(group_event, cpuctx, ctx);
1166
1167 /*
1168 * Schedule out siblings (if any):
1169 */
1170 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1171 event_sched_out(event, cpuctx, ctx);
1172
1173 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1174 cpuctx->exclusive = 0;
1175 }
1176
1177 /*
1178 * Cross CPU call to remove a performance event
1179 *
1180 * We disable the event on the hardware level first. After that we
1181 * remove it from the context list.
1182 */
1183 static int __perf_remove_from_context(void *info)
1184 {
1185 struct perf_event *event = info;
1186 struct perf_event_context *ctx = event->ctx;
1187 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1188
1189 raw_spin_lock(&ctx->lock);
1190 event_sched_out(event, cpuctx, ctx);
1191 list_del_event(event, ctx);
1192 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1193 ctx->is_active = 0;
1194 cpuctx->task_ctx = NULL;
1195 }
1196 raw_spin_unlock(&ctx->lock);
1197
1198 return 0;
1199 }
1200
1201
1202 /*
1203 * Remove the event from a task's (or a CPU's) list of events.
1204 *
1205 * CPU events are removed with a smp call. For task events we only
1206 * call when the task is on a CPU.
1207 *
1208 * If event->ctx is a cloned context, callers must make sure that
1209 * every task struct that event->ctx->task could possibly point to
1210 * remains valid. This is OK when called from perf_release since
1211 * that only calls us on the top-level context, which can't be a clone.
1212 * When called from perf_event_exit_task, it's OK because the
1213 * context has been detached from its task.
1214 */
1215 static void perf_remove_from_context(struct perf_event *event)
1216 {
1217 struct perf_event_context *ctx = event->ctx;
1218 struct task_struct *task = ctx->task;
1219
1220 lockdep_assert_held(&ctx->mutex);
1221
1222 if (!task) {
1223 /*
1224 * Per cpu events are removed via an smp call and
1225 * the removal is always successful.
1226 */
1227 cpu_function_call(event->cpu, __perf_remove_from_context, event);
1228 return;
1229 }
1230
1231 retry:
1232 if (!task_function_call(task, __perf_remove_from_context, event))
1233 return;
1234
1235 raw_spin_lock_irq(&ctx->lock);
1236 /*
1237 * If we failed to find a running task, but find the context active now
1238 * that we've acquired the ctx->lock, retry.
1239 */
1240 if (ctx->is_active) {
1241 raw_spin_unlock_irq(&ctx->lock);
1242 goto retry;
1243 }
1244
1245 /*
1246 * Since the task isn't running, its safe to remove the event, us
1247 * holding the ctx->lock ensures the task won't get scheduled in.
1248 */
1249 list_del_event(event, ctx);
1250 raw_spin_unlock_irq(&ctx->lock);
1251 }
1252
1253 /*
1254 * Cross CPU call to disable a performance event
1255 */
1256 static int __perf_event_disable(void *info)
1257 {
1258 struct perf_event *event = info;
1259 struct perf_event_context *ctx = event->ctx;
1260 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1261
1262 /*
1263 * If this is a per-task event, need to check whether this
1264 * event's task is the current task on this cpu.
1265 *
1266 * Can trigger due to concurrent perf_event_context_sched_out()
1267 * flipping contexts around.
1268 */
1269 if (ctx->task && cpuctx->task_ctx != ctx)
1270 return -EINVAL;
1271
1272 raw_spin_lock(&ctx->lock);
1273
1274 /*
1275 * If the event is on, turn it off.
1276 * If it is in error state, leave it in error state.
1277 */
1278 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1279 update_context_time(ctx);
1280 update_cgrp_time_from_event(event);
1281 update_group_times(event);
1282 if (event == event->group_leader)
1283 group_sched_out(event, cpuctx, ctx);
1284 else
1285 event_sched_out(event, cpuctx, ctx);
1286 event->state = PERF_EVENT_STATE_OFF;
1287 }
1288
1289 raw_spin_unlock(&ctx->lock);
1290
1291 return 0;
1292 }
1293
1294 /*
1295 * Disable a event.
1296 *
1297 * If event->ctx is a cloned context, callers must make sure that
1298 * every task struct that event->ctx->task could possibly point to
1299 * remains valid. This condition is satisifed when called through
1300 * perf_event_for_each_child or perf_event_for_each because they
1301 * hold the top-level event's child_mutex, so any descendant that
1302 * goes to exit will block in sync_child_event.
1303 * When called from perf_pending_event it's OK because event->ctx
1304 * is the current context on this CPU and preemption is disabled,
1305 * hence we can't get into perf_event_task_sched_out for this context.
1306 */
1307 void perf_event_disable(struct perf_event *event)
1308 {
1309 struct perf_event_context *ctx = event->ctx;
1310 struct task_struct *task = ctx->task;
1311
1312 if (!task) {
1313 /*
1314 * Disable the event on the cpu that it's on
1315 */
1316 cpu_function_call(event->cpu, __perf_event_disable, event);
1317 return;
1318 }
1319
1320 retry:
1321 if (!task_function_call(task, __perf_event_disable, event))
1322 return;
1323
1324 raw_spin_lock_irq(&ctx->lock);
1325 /*
1326 * If the event is still active, we need to retry the cross-call.
1327 */
1328 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1329 raw_spin_unlock_irq(&ctx->lock);
1330 /*
1331 * Reload the task pointer, it might have been changed by
1332 * a concurrent perf_event_context_sched_out().
1333 */
1334 task = ctx->task;
1335 goto retry;
1336 }
1337
1338 /*
1339 * Since we have the lock this context can't be scheduled
1340 * in, so we can change the state safely.
1341 */
1342 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1343 update_group_times(event);
1344 event->state = PERF_EVENT_STATE_OFF;
1345 }
1346 raw_spin_unlock_irq(&ctx->lock);
1347 }
1348 EXPORT_SYMBOL_GPL(perf_event_disable);
1349
1350 static void perf_set_shadow_time(struct perf_event *event,
1351 struct perf_event_context *ctx,
1352 u64 tstamp)
1353 {
1354 /*
1355 * use the correct time source for the time snapshot
1356 *
1357 * We could get by without this by leveraging the
1358 * fact that to get to this function, the caller
1359 * has most likely already called update_context_time()
1360 * and update_cgrp_time_xx() and thus both timestamp
1361 * are identical (or very close). Given that tstamp is,
1362 * already adjusted for cgroup, we could say that:
1363 * tstamp - ctx->timestamp
1364 * is equivalent to
1365 * tstamp - cgrp->timestamp.
1366 *
1367 * Then, in perf_output_read(), the calculation would
1368 * work with no changes because:
1369 * - event is guaranteed scheduled in
1370 * - no scheduled out in between
1371 * - thus the timestamp would be the same
1372 *
1373 * But this is a bit hairy.
1374 *
1375 * So instead, we have an explicit cgroup call to remain
1376 * within the time time source all along. We believe it
1377 * is cleaner and simpler to understand.
1378 */
1379 if (is_cgroup_event(event))
1380 perf_cgroup_set_shadow_time(event, tstamp);
1381 else
1382 event->shadow_ctx_time = tstamp - ctx->timestamp;
1383 }
1384
1385 #define MAX_INTERRUPTS (~0ULL)
1386
1387 static void perf_log_throttle(struct perf_event *event, int enable);
1388
1389 static int
1390 event_sched_in(struct perf_event *event,
1391 struct perf_cpu_context *cpuctx,
1392 struct perf_event_context *ctx)
1393 {
1394 u64 tstamp = perf_event_time(event);
1395
1396 if (event->state <= PERF_EVENT_STATE_OFF)
1397 return 0;
1398
1399 event->state = PERF_EVENT_STATE_ACTIVE;
1400 event->oncpu = smp_processor_id();
1401
1402 /*
1403 * Unthrottle events, since we scheduled we might have missed several
1404 * ticks already, also for a heavily scheduling task there is little
1405 * guarantee it'll get a tick in a timely manner.
1406 */
1407 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1408 perf_log_throttle(event, 1);
1409 event->hw.interrupts = 0;
1410 }
1411
1412 /*
1413 * The new state must be visible before we turn it on in the hardware:
1414 */
1415 smp_wmb();
1416
1417 if (event->pmu->add(event, PERF_EF_START)) {
1418 event->state = PERF_EVENT_STATE_INACTIVE;
1419 event->oncpu = -1;
1420 return -EAGAIN;
1421 }
1422
1423 event->tstamp_running += tstamp - event->tstamp_stopped;
1424
1425 perf_set_shadow_time(event, ctx, tstamp);
1426
1427 if (!is_software_event(event))
1428 cpuctx->active_oncpu++;
1429 ctx->nr_active++;
1430 if (event->attr.freq && event->attr.sample_freq)
1431 ctx->nr_freq++;
1432
1433 if (event->attr.exclusive)
1434 cpuctx->exclusive = 1;
1435
1436 return 0;
1437 }
1438
1439 static int
1440 group_sched_in(struct perf_event *group_event,
1441 struct perf_cpu_context *cpuctx,
1442 struct perf_event_context *ctx)
1443 {
1444 struct perf_event *event, *partial_group = NULL;
1445 struct pmu *pmu = group_event->pmu;
1446 u64 now = ctx->time;
1447 bool simulate = false;
1448
1449 if (group_event->state == PERF_EVENT_STATE_OFF)
1450 return 0;
1451
1452 pmu->start_txn(pmu);
1453
1454 if (event_sched_in(group_event, cpuctx, ctx)) {
1455 pmu->cancel_txn(pmu);
1456 return -EAGAIN;
1457 }
1458
1459 /*
1460 * Schedule in siblings as one group (if any):
1461 */
1462 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1463 if (event_sched_in(event, cpuctx, ctx)) {
1464 partial_group = event;
1465 goto group_error;
1466 }
1467 }
1468
1469 if (!pmu->commit_txn(pmu))
1470 return 0;
1471
1472 group_error:
1473 /*
1474 * Groups can be scheduled in as one unit only, so undo any
1475 * partial group before returning:
1476 * The events up to the failed event are scheduled out normally,
1477 * tstamp_stopped will be updated.
1478 *
1479 * The failed events and the remaining siblings need to have
1480 * their timings updated as if they had gone thru event_sched_in()
1481 * and event_sched_out(). This is required to get consistent timings
1482 * across the group. This also takes care of the case where the group
1483 * could never be scheduled by ensuring tstamp_stopped is set to mark
1484 * the time the event was actually stopped, such that time delta
1485 * calculation in update_event_times() is correct.
1486 */
1487 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1488 if (event == partial_group)
1489 simulate = true;
1490
1491 if (simulate) {
1492 event->tstamp_running += now - event->tstamp_stopped;
1493 event->tstamp_stopped = now;
1494 } else {
1495 event_sched_out(event, cpuctx, ctx);
1496 }
1497 }
1498 event_sched_out(group_event, cpuctx, ctx);
1499
1500 pmu->cancel_txn(pmu);
1501
1502 return -EAGAIN;
1503 }
1504
1505 /*
1506 * Work out whether we can put this event group on the CPU now.
1507 */
1508 static int group_can_go_on(struct perf_event *event,
1509 struct perf_cpu_context *cpuctx,
1510 int can_add_hw)
1511 {
1512 /*
1513 * Groups consisting entirely of software events can always go on.
1514 */
1515 if (event->group_flags & PERF_GROUP_SOFTWARE)
1516 return 1;
1517 /*
1518 * If an exclusive group is already on, no other hardware
1519 * events can go on.
1520 */
1521 if (cpuctx->exclusive)
1522 return 0;
1523 /*
1524 * If this group is exclusive and there are already
1525 * events on the CPU, it can't go on.
1526 */
1527 if (event->attr.exclusive && cpuctx->active_oncpu)
1528 return 0;
1529 /*
1530 * Otherwise, try to add it if all previous groups were able
1531 * to go on.
1532 */
1533 return can_add_hw;
1534 }
1535
1536 static void add_event_to_ctx(struct perf_event *event,
1537 struct perf_event_context *ctx)
1538 {
1539 u64 tstamp = perf_event_time(event);
1540
1541 list_add_event(event, ctx);
1542 perf_group_attach(event);
1543 event->tstamp_enabled = tstamp;
1544 event->tstamp_running = tstamp;
1545 event->tstamp_stopped = tstamp;
1546 }
1547
1548 static void task_ctx_sched_out(struct perf_event_context *ctx);
1549 static void
1550 ctx_sched_in(struct perf_event_context *ctx,
1551 struct perf_cpu_context *cpuctx,
1552 enum event_type_t event_type,
1553 struct task_struct *task);
1554
1555 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1556 struct perf_event_context *ctx,
1557 struct task_struct *task)
1558 {
1559 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1560 if (ctx)
1561 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1562 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1563 if (ctx)
1564 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1565 }
1566
1567 /*
1568 * Cross CPU call to install and enable a performance event
1569 *
1570 * Must be called with ctx->mutex held
1571 */
1572 static int __perf_install_in_context(void *info)
1573 {
1574 struct perf_event *event = info;
1575 struct perf_event_context *ctx = event->ctx;
1576 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1577 struct perf_event_context *task_ctx = cpuctx->task_ctx;
1578 struct task_struct *task = current;
1579
1580 perf_ctx_lock(cpuctx, task_ctx);
1581 perf_pmu_disable(cpuctx->ctx.pmu);
1582
1583 /*
1584 * If there was an active task_ctx schedule it out.
1585 */
1586 if (task_ctx)
1587 task_ctx_sched_out(task_ctx);
1588
1589 /*
1590 * If the context we're installing events in is not the
1591 * active task_ctx, flip them.
1592 */
1593 if (ctx->task && task_ctx != ctx) {
1594 if (task_ctx)
1595 raw_spin_unlock(&task_ctx->lock);
1596 raw_spin_lock(&ctx->lock);
1597 task_ctx = ctx;
1598 }
1599
1600 if (task_ctx) {
1601 cpuctx->task_ctx = task_ctx;
1602 task = task_ctx->task;
1603 }
1604
1605 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1606
1607 update_context_time(ctx);
1608 /*
1609 * update cgrp time only if current cgrp
1610 * matches event->cgrp. Must be done before
1611 * calling add_event_to_ctx()
1612 */
1613 update_cgrp_time_from_event(event);
1614
1615 add_event_to_ctx(event, ctx);
1616
1617 /*
1618 * Schedule everything back in
1619 */
1620 perf_event_sched_in(cpuctx, task_ctx, task);
1621
1622 perf_pmu_enable(cpuctx->ctx.pmu);
1623 perf_ctx_unlock(cpuctx, task_ctx);
1624
1625 return 0;
1626 }
1627
1628 /*
1629 * Attach a performance event to a context
1630 *
1631 * First we add the event to the list with the hardware enable bit
1632 * in event->hw_config cleared.
1633 *
1634 * If the event is attached to a task which is on a CPU we use a smp
1635 * call to enable it in the task context. The task might have been
1636 * scheduled away, but we check this in the smp call again.
1637 */
1638 static void
1639 perf_install_in_context(struct perf_event_context *ctx,
1640 struct perf_event *event,
1641 int cpu)
1642 {
1643 struct task_struct *task = ctx->task;
1644
1645 lockdep_assert_held(&ctx->mutex);
1646
1647 event->ctx = ctx;
1648
1649 if (!task) {
1650 /*
1651 * Per cpu events are installed via an smp call and
1652 * the install is always successful.
1653 */
1654 cpu_function_call(cpu, __perf_install_in_context, event);
1655 return;
1656 }
1657
1658 retry:
1659 if (!task_function_call(task, __perf_install_in_context, event))
1660 return;
1661
1662 raw_spin_lock_irq(&ctx->lock);
1663 /*
1664 * If we failed to find a running task, but find the context active now
1665 * that we've acquired the ctx->lock, retry.
1666 */
1667 if (ctx->is_active) {
1668 raw_spin_unlock_irq(&ctx->lock);
1669 goto retry;
1670 }
1671
1672 /*
1673 * Since the task isn't running, its safe to add the event, us holding
1674 * the ctx->lock ensures the task won't get scheduled in.
1675 */
1676 add_event_to_ctx(event, ctx);
1677 raw_spin_unlock_irq(&ctx->lock);
1678 }
1679
1680 /*
1681 * Put a event into inactive state and update time fields.
1682 * Enabling the leader of a group effectively enables all
1683 * the group members that aren't explicitly disabled, so we
1684 * have to update their ->tstamp_enabled also.
1685 * Note: this works for group members as well as group leaders
1686 * since the non-leader members' sibling_lists will be empty.
1687 */
1688 static void __perf_event_mark_enabled(struct perf_event *event)
1689 {
1690 struct perf_event *sub;
1691 u64 tstamp = perf_event_time(event);
1692
1693 event->state = PERF_EVENT_STATE_INACTIVE;
1694 event->tstamp_enabled = tstamp - event->total_time_enabled;
1695 list_for_each_entry(sub, &event->sibling_list, group_entry) {
1696 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1697 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1698 }
1699 }
1700
1701 /*
1702 * Cross CPU call to enable a performance event
1703 */
1704 static int __perf_event_enable(void *info)
1705 {
1706 struct perf_event *event = info;
1707 struct perf_event_context *ctx = event->ctx;
1708 struct perf_event *leader = event->group_leader;
1709 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1710 int err;
1711
1712 if (WARN_ON_ONCE(!ctx->is_active))
1713 return -EINVAL;
1714
1715 raw_spin_lock(&ctx->lock);
1716 update_context_time(ctx);
1717
1718 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1719 goto unlock;
1720
1721 /*
1722 * set current task's cgroup time reference point
1723 */
1724 perf_cgroup_set_timestamp(current, ctx);
1725
1726 __perf_event_mark_enabled(event);
1727
1728 if (!event_filter_match(event)) {
1729 if (is_cgroup_event(event))
1730 perf_cgroup_defer_enabled(event);
1731 goto unlock;
1732 }
1733
1734 /*
1735 * If the event is in a group and isn't the group leader,
1736 * then don't put it on unless the group is on.
1737 */
1738 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1739 goto unlock;
1740
1741 if (!group_can_go_on(event, cpuctx, 1)) {
1742 err = -EEXIST;
1743 } else {
1744 if (event == leader)
1745 err = group_sched_in(event, cpuctx, ctx);
1746 else
1747 err = event_sched_in(event, cpuctx, ctx);
1748 }
1749
1750 if (err) {
1751 /*
1752 * If this event can't go on and it's part of a
1753 * group, then the whole group has to come off.
1754 */
1755 if (leader != event)
1756 group_sched_out(leader, cpuctx, ctx);
1757 if (leader->attr.pinned) {
1758 update_group_times(leader);
1759 leader->state = PERF_EVENT_STATE_ERROR;
1760 }
1761 }
1762
1763 unlock:
1764 raw_spin_unlock(&ctx->lock);
1765
1766 return 0;
1767 }
1768
1769 /*
1770 * Enable a event.
1771 *
1772 * If event->ctx is a cloned context, callers must make sure that
1773 * every task struct that event->ctx->task could possibly point to
1774 * remains valid. This condition is satisfied when called through
1775 * perf_event_for_each_child or perf_event_for_each as described
1776 * for perf_event_disable.
1777 */
1778 void perf_event_enable(struct perf_event *event)
1779 {
1780 struct perf_event_context *ctx = event->ctx;
1781 struct task_struct *task = ctx->task;
1782
1783 if (!task) {
1784 /*
1785 * Enable the event on the cpu that it's on
1786 */
1787 cpu_function_call(event->cpu, __perf_event_enable, event);
1788 return;
1789 }
1790
1791 raw_spin_lock_irq(&ctx->lock);
1792 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1793 goto out;
1794
1795 /*
1796 * If the event is in error state, clear that first.
1797 * That way, if we see the event in error state below, we
1798 * know that it has gone back into error state, as distinct
1799 * from the task having been scheduled away before the
1800 * cross-call arrived.
1801 */
1802 if (event->state == PERF_EVENT_STATE_ERROR)
1803 event->state = PERF_EVENT_STATE_OFF;
1804
1805 retry:
1806 if (!ctx->is_active) {
1807 __perf_event_mark_enabled(event);
1808 goto out;
1809 }
1810
1811 raw_spin_unlock_irq(&ctx->lock);
1812
1813 if (!task_function_call(task, __perf_event_enable, event))
1814 return;
1815
1816 raw_spin_lock_irq(&ctx->lock);
1817
1818 /*
1819 * If the context is active and the event is still off,
1820 * we need to retry the cross-call.
1821 */
1822 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
1823 /*
1824 * task could have been flipped by a concurrent
1825 * perf_event_context_sched_out()
1826 */
1827 task = ctx->task;
1828 goto retry;
1829 }
1830
1831 out:
1832 raw_spin_unlock_irq(&ctx->lock);
1833 }
1834 EXPORT_SYMBOL_GPL(perf_event_enable);
1835
1836 int perf_event_refresh(struct perf_event *event, int refresh)
1837 {
1838 /*
1839 * not supported on inherited events
1840 */
1841 if (event->attr.inherit || !is_sampling_event(event))
1842 return -EINVAL;
1843
1844 atomic_add(refresh, &event->event_limit);
1845 perf_event_enable(event);
1846
1847 return 0;
1848 }
1849 EXPORT_SYMBOL_GPL(perf_event_refresh);
1850
1851 static void ctx_sched_out(struct perf_event_context *ctx,
1852 struct perf_cpu_context *cpuctx,
1853 enum event_type_t event_type)
1854 {
1855 struct perf_event *event;
1856 int is_active = ctx->is_active;
1857
1858 ctx->is_active &= ~event_type;
1859 if (likely(!ctx->nr_events))
1860 return;
1861
1862 update_context_time(ctx);
1863 update_cgrp_time_from_cpuctx(cpuctx);
1864 if (!ctx->nr_active)
1865 return;
1866
1867 perf_pmu_disable(ctx->pmu);
1868 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
1869 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1870 group_sched_out(event, cpuctx, ctx);
1871 }
1872
1873 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
1874 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1875 group_sched_out(event, cpuctx, ctx);
1876 }
1877 perf_pmu_enable(ctx->pmu);
1878 }
1879
1880 /*
1881 * Test whether two contexts are equivalent, i.e. whether they
1882 * have both been cloned from the same version of the same context
1883 * and they both have the same number of enabled events.
1884 * If the number of enabled events is the same, then the set
1885 * of enabled events should be the same, because these are both
1886 * inherited contexts, therefore we can't access individual events
1887 * in them directly with an fd; we can only enable/disable all
1888 * events via prctl, or enable/disable all events in a family
1889 * via ioctl, which will have the same effect on both contexts.
1890 */
1891 static int context_equiv(struct perf_event_context *ctx1,
1892 struct perf_event_context *ctx2)
1893 {
1894 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1895 && ctx1->parent_gen == ctx2->parent_gen
1896 && !ctx1->pin_count && !ctx2->pin_count;
1897 }
1898
1899 static void __perf_event_sync_stat(struct perf_event *event,
1900 struct perf_event *next_event)
1901 {
1902 u64 value;
1903
1904 if (!event->attr.inherit_stat)
1905 return;
1906
1907 /*
1908 * Update the event value, we cannot use perf_event_read()
1909 * because we're in the middle of a context switch and have IRQs
1910 * disabled, which upsets smp_call_function_single(), however
1911 * we know the event must be on the current CPU, therefore we
1912 * don't need to use it.
1913 */
1914 switch (event->state) {
1915 case PERF_EVENT_STATE_ACTIVE:
1916 event->pmu->read(event);
1917 /* fall-through */
1918
1919 case PERF_EVENT_STATE_INACTIVE:
1920 update_event_times(event);
1921 break;
1922
1923 default:
1924 break;
1925 }
1926
1927 /*
1928 * In order to keep per-task stats reliable we need to flip the event
1929 * values when we flip the contexts.
1930 */
1931 value = local64_read(&next_event->count);
1932 value = local64_xchg(&event->count, value);
1933 local64_set(&next_event->count, value);
1934
1935 swap(event->total_time_enabled, next_event->total_time_enabled);
1936 swap(event->total_time_running, next_event->total_time_running);
1937
1938 /*
1939 * Since we swizzled the values, update the user visible data too.
1940 */
1941 perf_event_update_userpage(event);
1942 perf_event_update_userpage(next_event);
1943 }
1944
1945 #define list_next_entry(pos, member) \
1946 list_entry(pos->member.next, typeof(*pos), member)
1947
1948 static void perf_event_sync_stat(struct perf_event_context *ctx,
1949 struct perf_event_context *next_ctx)
1950 {
1951 struct perf_event *event, *next_event;
1952
1953 if (!ctx->nr_stat)
1954 return;
1955
1956 update_context_time(ctx);
1957
1958 event = list_first_entry(&ctx->event_list,
1959 struct perf_event, event_entry);
1960
1961 next_event = list_first_entry(&next_ctx->event_list,
1962 struct perf_event, event_entry);
1963
1964 while (&event->event_entry != &ctx->event_list &&
1965 &next_event->event_entry != &next_ctx->event_list) {
1966
1967 __perf_event_sync_stat(event, next_event);
1968
1969 event = list_next_entry(event, event_entry);
1970 next_event = list_next_entry(next_event, event_entry);
1971 }
1972 }
1973
1974 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1975 struct task_struct *next)
1976 {
1977 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1978 struct perf_event_context *next_ctx;
1979 struct perf_event_context *parent;
1980 struct perf_cpu_context *cpuctx;
1981 int do_switch = 1;
1982
1983 if (likely(!ctx))
1984 return;
1985
1986 cpuctx = __get_cpu_context(ctx);
1987 if (!cpuctx->task_ctx)
1988 return;
1989
1990 rcu_read_lock();
1991 parent = rcu_dereference(ctx->parent_ctx);
1992 next_ctx = next->perf_event_ctxp[ctxn];
1993 if (parent && next_ctx &&
1994 rcu_dereference(next_ctx->parent_ctx) == parent) {
1995 /*
1996 * Looks like the two contexts are clones, so we might be
1997 * able to optimize the context switch. We lock both
1998 * contexts and check that they are clones under the
1999 * lock (including re-checking that neither has been
2000 * uncloned in the meantime). It doesn't matter which
2001 * order we take the locks because no other cpu could
2002 * be trying to lock both of these tasks.
2003 */
2004 raw_spin_lock(&ctx->lock);
2005 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2006 if (context_equiv(ctx, next_ctx)) {
2007 /*
2008 * XXX do we need a memory barrier of sorts
2009 * wrt to rcu_dereference() of perf_event_ctxp
2010 */
2011 task->perf_event_ctxp[ctxn] = next_ctx;
2012 next->perf_event_ctxp[ctxn] = ctx;
2013 ctx->task = next;
2014 next_ctx->task = task;
2015 do_switch = 0;
2016
2017 perf_event_sync_stat(ctx, next_ctx);
2018 }
2019 raw_spin_unlock(&next_ctx->lock);
2020 raw_spin_unlock(&ctx->lock);
2021 }
2022 rcu_read_unlock();
2023
2024 if (do_switch) {
2025 raw_spin_lock(&ctx->lock);
2026 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2027 cpuctx->task_ctx = NULL;
2028 raw_spin_unlock(&ctx->lock);
2029 }
2030 }
2031
2032 #define for_each_task_context_nr(ctxn) \
2033 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2034
2035 /*
2036 * Called from scheduler to remove the events of the current task,
2037 * with interrupts disabled.
2038 *
2039 * We stop each event and update the event value in event->count.
2040 *
2041 * This does not protect us against NMI, but disable()
2042 * sets the disabled bit in the control field of event _before_
2043 * accessing the event control register. If a NMI hits, then it will
2044 * not restart the event.
2045 */
2046 void __perf_event_task_sched_out(struct task_struct *task,
2047 struct task_struct *next)
2048 {
2049 int ctxn;
2050
2051 for_each_task_context_nr(ctxn)
2052 perf_event_context_sched_out(task, ctxn, next);
2053
2054 /*
2055 * if cgroup events exist on this CPU, then we need
2056 * to check if we have to switch out PMU state.
2057 * cgroup event are system-wide mode only
2058 */
2059 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2060 perf_cgroup_sched_out(task, next);
2061 }
2062
2063 static void task_ctx_sched_out(struct perf_event_context *ctx)
2064 {
2065 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2066
2067 if (!cpuctx->task_ctx)
2068 return;
2069
2070 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2071 return;
2072
2073 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2074 cpuctx->task_ctx = NULL;
2075 }
2076
2077 /*
2078 * Called with IRQs disabled
2079 */
2080 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2081 enum event_type_t event_type)
2082 {
2083 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2084 }
2085
2086 static void
2087 ctx_pinned_sched_in(struct perf_event_context *ctx,
2088 struct perf_cpu_context *cpuctx)
2089 {
2090 struct perf_event *event;
2091
2092 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2093 if (event->state <= PERF_EVENT_STATE_OFF)
2094 continue;
2095 if (!event_filter_match(event))
2096 continue;
2097
2098 /* may need to reset tstamp_enabled */
2099 if (is_cgroup_event(event))
2100 perf_cgroup_mark_enabled(event, ctx);
2101
2102 if (group_can_go_on(event, cpuctx, 1))
2103 group_sched_in(event, cpuctx, ctx);
2104
2105 /*
2106 * If this pinned group hasn't been scheduled,
2107 * put it in error state.
2108 */
2109 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2110 update_group_times(event);
2111 event->state = PERF_EVENT_STATE_ERROR;
2112 }
2113 }
2114 }
2115
2116 static void
2117 ctx_flexible_sched_in(struct perf_event_context *ctx,
2118 struct perf_cpu_context *cpuctx)
2119 {
2120 struct perf_event *event;
2121 int can_add_hw = 1;
2122
2123 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2124 /* Ignore events in OFF or ERROR state */
2125 if (event->state <= PERF_EVENT_STATE_OFF)
2126 continue;
2127 /*
2128 * Listen to the 'cpu' scheduling filter constraint
2129 * of events:
2130 */
2131 if (!event_filter_match(event))
2132 continue;
2133
2134 /* may need to reset tstamp_enabled */
2135 if (is_cgroup_event(event))
2136 perf_cgroup_mark_enabled(event, ctx);
2137
2138 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2139 if (group_sched_in(event, cpuctx, ctx))
2140 can_add_hw = 0;
2141 }
2142 }
2143 }
2144
2145 static void
2146 ctx_sched_in(struct perf_event_context *ctx,
2147 struct perf_cpu_context *cpuctx,
2148 enum event_type_t event_type,
2149 struct task_struct *task)
2150 {
2151 u64 now;
2152 int is_active = ctx->is_active;
2153
2154 ctx->is_active |= event_type;
2155 if (likely(!ctx->nr_events))
2156 return;
2157
2158 now = perf_clock();
2159 ctx->timestamp = now;
2160 perf_cgroup_set_timestamp(task, ctx);
2161 /*
2162 * First go through the list and put on any pinned groups
2163 * in order to give them the best chance of going on.
2164 */
2165 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2166 ctx_pinned_sched_in(ctx, cpuctx);
2167
2168 /* Then walk through the lower prio flexible groups */
2169 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2170 ctx_flexible_sched_in(ctx, cpuctx);
2171 }
2172
2173 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2174 enum event_type_t event_type,
2175 struct task_struct *task)
2176 {
2177 struct perf_event_context *ctx = &cpuctx->ctx;
2178
2179 ctx_sched_in(ctx, cpuctx, event_type, task);
2180 }
2181
2182 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2183 struct task_struct *task)
2184 {
2185 struct perf_cpu_context *cpuctx;
2186
2187 cpuctx = __get_cpu_context(ctx);
2188 if (cpuctx->task_ctx == ctx)
2189 return;
2190
2191 perf_ctx_lock(cpuctx, ctx);
2192 perf_pmu_disable(ctx->pmu);
2193 /*
2194 * We want to keep the following priority order:
2195 * cpu pinned (that don't need to move), task pinned,
2196 * cpu flexible, task flexible.
2197 */
2198 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2199
2200 if (ctx->nr_events)
2201 cpuctx->task_ctx = ctx;
2202
2203 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2204
2205 perf_pmu_enable(ctx->pmu);
2206 perf_ctx_unlock(cpuctx, ctx);
2207
2208 /*
2209 * Since these rotations are per-cpu, we need to ensure the
2210 * cpu-context we got scheduled on is actually rotating.
2211 */
2212 perf_pmu_rotate_start(ctx->pmu);
2213 }
2214
2215 /*
2216 * When sampling the branck stack in system-wide, it may be necessary
2217 * to flush the stack on context switch. This happens when the branch
2218 * stack does not tag its entries with the pid of the current task.
2219 * Otherwise it becomes impossible to associate a branch entry with a
2220 * task. This ambiguity is more likely to appear when the branch stack
2221 * supports priv level filtering and the user sets it to monitor only
2222 * at the user level (which could be a useful measurement in system-wide
2223 * mode). In that case, the risk is high of having a branch stack with
2224 * branch from multiple tasks. Flushing may mean dropping the existing
2225 * entries or stashing them somewhere in the PMU specific code layer.
2226 *
2227 * This function provides the context switch callback to the lower code
2228 * layer. It is invoked ONLY when there is at least one system-wide context
2229 * with at least one active event using taken branch sampling.
2230 */
2231 static void perf_branch_stack_sched_in(struct task_struct *prev,
2232 struct task_struct *task)
2233 {
2234 struct perf_cpu_context *cpuctx;
2235 struct pmu *pmu;
2236 unsigned long flags;
2237
2238 /* no need to flush branch stack if not changing task */
2239 if (prev == task)
2240 return;
2241
2242 local_irq_save(flags);
2243
2244 rcu_read_lock();
2245
2246 list_for_each_entry_rcu(pmu, &pmus, entry) {
2247 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2248
2249 /*
2250 * check if the context has at least one
2251 * event using PERF_SAMPLE_BRANCH_STACK
2252 */
2253 if (cpuctx->ctx.nr_branch_stack > 0
2254 && pmu->flush_branch_stack) {
2255
2256 pmu = cpuctx->ctx.pmu;
2257
2258 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2259
2260 perf_pmu_disable(pmu);
2261
2262 pmu->flush_branch_stack();
2263
2264 perf_pmu_enable(pmu);
2265
2266 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2267 }
2268 }
2269
2270 rcu_read_unlock();
2271
2272 local_irq_restore(flags);
2273 }
2274
2275 /*
2276 * Called from scheduler to add the events of the current task
2277 * with interrupts disabled.
2278 *
2279 * We restore the event value and then enable it.
2280 *
2281 * This does not protect us against NMI, but enable()
2282 * sets the enabled bit in the control field of event _before_
2283 * accessing the event control register. If a NMI hits, then it will
2284 * keep the event running.
2285 */
2286 void __perf_event_task_sched_in(struct task_struct *prev,
2287 struct task_struct *task)
2288 {
2289 struct perf_event_context *ctx;
2290 int ctxn;
2291
2292 for_each_task_context_nr(ctxn) {
2293 ctx = task->perf_event_ctxp[ctxn];
2294 if (likely(!ctx))
2295 continue;
2296
2297 perf_event_context_sched_in(ctx, task);
2298 }
2299 /*
2300 * if cgroup events exist on this CPU, then we need
2301 * to check if we have to switch in PMU state.
2302 * cgroup event are system-wide mode only
2303 */
2304 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2305 perf_cgroup_sched_in(prev, task);
2306
2307 /* check for system-wide branch_stack events */
2308 if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2309 perf_branch_stack_sched_in(prev, task);
2310 }
2311
2312 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2313 {
2314 u64 frequency = event->attr.sample_freq;
2315 u64 sec = NSEC_PER_SEC;
2316 u64 divisor, dividend;
2317
2318 int count_fls, nsec_fls, frequency_fls, sec_fls;
2319
2320 count_fls = fls64(count);
2321 nsec_fls = fls64(nsec);
2322 frequency_fls = fls64(frequency);
2323 sec_fls = 30;
2324
2325 /*
2326 * We got @count in @nsec, with a target of sample_freq HZ
2327 * the target period becomes:
2328 *
2329 * @count * 10^9
2330 * period = -------------------
2331 * @nsec * sample_freq
2332 *
2333 */
2334
2335 /*
2336 * Reduce accuracy by one bit such that @a and @b converge
2337 * to a similar magnitude.
2338 */
2339 #define REDUCE_FLS(a, b) \
2340 do { \
2341 if (a##_fls > b##_fls) { \
2342 a >>= 1; \
2343 a##_fls--; \
2344 } else { \
2345 b >>= 1; \
2346 b##_fls--; \
2347 } \
2348 } while (0)
2349
2350 /*
2351 * Reduce accuracy until either term fits in a u64, then proceed with
2352 * the other, so that finally we can do a u64/u64 division.
2353 */
2354 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2355 REDUCE_FLS(nsec, frequency);
2356 REDUCE_FLS(sec, count);
2357 }
2358
2359 if (count_fls + sec_fls > 64) {
2360 divisor = nsec * frequency;
2361
2362 while (count_fls + sec_fls > 64) {
2363 REDUCE_FLS(count, sec);
2364 divisor >>= 1;
2365 }
2366
2367 dividend = count * sec;
2368 } else {
2369 dividend = count * sec;
2370
2371 while (nsec_fls + frequency_fls > 64) {
2372 REDUCE_FLS(nsec, frequency);
2373 dividend >>= 1;
2374 }
2375
2376 divisor = nsec * frequency;
2377 }
2378
2379 if (!divisor)
2380 return dividend;
2381
2382 return div64_u64(dividend, divisor);
2383 }
2384
2385 static DEFINE_PER_CPU(int, perf_throttled_count);
2386 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2387
2388 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2389 {
2390 struct hw_perf_event *hwc = &event->hw;
2391 s64 period, sample_period;
2392 s64 delta;
2393
2394 period = perf_calculate_period(event, nsec, count);
2395
2396 delta = (s64)(period - hwc->sample_period);
2397 delta = (delta + 7) / 8; /* low pass filter */
2398
2399 sample_period = hwc->sample_period + delta;
2400
2401 if (!sample_period)
2402 sample_period = 1;
2403
2404 hwc->sample_period = sample_period;
2405
2406 if (local64_read(&hwc->period_left) > 8*sample_period) {
2407 if (disable)
2408 event->pmu->stop(event, PERF_EF_UPDATE);
2409
2410 local64_set(&hwc->period_left, 0);
2411
2412 if (disable)
2413 event->pmu->start(event, PERF_EF_RELOAD);
2414 }
2415 }
2416
2417 /*
2418 * combine freq adjustment with unthrottling to avoid two passes over the
2419 * events. At the same time, make sure, having freq events does not change
2420 * the rate of unthrottling as that would introduce bias.
2421 */
2422 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2423 int needs_unthr)
2424 {
2425 struct perf_event *event;
2426 struct hw_perf_event *hwc;
2427 u64 now, period = TICK_NSEC;
2428 s64 delta;
2429
2430 /*
2431 * only need to iterate over all events iff:
2432 * - context have events in frequency mode (needs freq adjust)
2433 * - there are events to unthrottle on this cpu
2434 */
2435 if (!(ctx->nr_freq || needs_unthr))
2436 return;
2437
2438 raw_spin_lock(&ctx->lock);
2439 perf_pmu_disable(ctx->pmu);
2440
2441 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2442 if (event->state != PERF_EVENT_STATE_ACTIVE)
2443 continue;
2444
2445 if (!event_filter_match(event))
2446 continue;
2447
2448 hwc = &event->hw;
2449
2450 if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
2451 hwc->interrupts = 0;
2452 perf_log_throttle(event, 1);
2453 event->pmu->start(event, 0);
2454 }
2455
2456 if (!event->attr.freq || !event->attr.sample_freq)
2457 continue;
2458
2459 /*
2460 * stop the event and update event->count
2461 */
2462 event->pmu->stop(event, PERF_EF_UPDATE);
2463
2464 now = local64_read(&event->count);
2465 delta = now - hwc->freq_count_stamp;
2466 hwc->freq_count_stamp = now;
2467
2468 /*
2469 * restart the event
2470 * reload only if value has changed
2471 * we have stopped the event so tell that
2472 * to perf_adjust_period() to avoid stopping it
2473 * twice.
2474 */
2475 if (delta > 0)
2476 perf_adjust_period(event, period, delta, false);
2477
2478 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2479 }
2480
2481 perf_pmu_enable(ctx->pmu);
2482 raw_spin_unlock(&ctx->lock);
2483 }
2484
2485 /*
2486 * Round-robin a context's events:
2487 */
2488 static void rotate_ctx(struct perf_event_context *ctx)
2489 {
2490 /*
2491 * Rotate the first entry last of non-pinned groups. Rotation might be
2492 * disabled by the inheritance code.
2493 */
2494 if (!ctx->rotate_disable)
2495 list_rotate_left(&ctx->flexible_groups);
2496 }
2497
2498 /*
2499 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2500 * because they're strictly cpu affine and rotate_start is called with IRQs
2501 * disabled, while rotate_context is called from IRQ context.
2502 */
2503 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2504 {
2505 struct perf_event_context *ctx = NULL;
2506 int rotate = 0, remove = 1;
2507
2508 if (cpuctx->ctx.nr_events) {
2509 remove = 0;
2510 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2511 rotate = 1;
2512 }
2513
2514 ctx = cpuctx->task_ctx;
2515 if (ctx && ctx->nr_events) {
2516 remove = 0;
2517 if (ctx->nr_events != ctx->nr_active)
2518 rotate = 1;
2519 }
2520
2521 if (!rotate)
2522 goto done;
2523
2524 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2525 perf_pmu_disable(cpuctx->ctx.pmu);
2526
2527 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2528 if (ctx)
2529 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2530
2531 rotate_ctx(&cpuctx->ctx);
2532 if (ctx)
2533 rotate_ctx(ctx);
2534
2535 perf_event_sched_in(cpuctx, ctx, current);
2536
2537 perf_pmu_enable(cpuctx->ctx.pmu);
2538 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2539 done:
2540 if (remove)
2541 list_del_init(&cpuctx->rotation_list);
2542 }
2543
2544 void perf_event_task_tick(void)
2545 {
2546 struct list_head *head = &__get_cpu_var(rotation_list);
2547 struct perf_cpu_context *cpuctx, *tmp;
2548 struct perf_event_context *ctx;
2549 int throttled;
2550
2551 WARN_ON(!irqs_disabled());
2552
2553 __this_cpu_inc(perf_throttled_seq);
2554 throttled = __this_cpu_xchg(perf_throttled_count, 0);
2555
2556 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2557 ctx = &cpuctx->ctx;
2558 perf_adjust_freq_unthr_context(ctx, throttled);
2559
2560 ctx = cpuctx->task_ctx;
2561 if (ctx)
2562 perf_adjust_freq_unthr_context(ctx, throttled);
2563
2564 if (cpuctx->jiffies_interval == 1 ||
2565 !(jiffies % cpuctx->jiffies_interval))
2566 perf_rotate_context(cpuctx);
2567 }
2568 }
2569
2570 static int event_enable_on_exec(struct perf_event *event,
2571 struct perf_event_context *ctx)
2572 {
2573 if (!event->attr.enable_on_exec)
2574 return 0;
2575
2576 event->attr.enable_on_exec = 0;
2577 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2578 return 0;
2579
2580 __perf_event_mark_enabled(event);
2581
2582 return 1;
2583 }
2584
2585 /*
2586 * Enable all of a task's events that have been marked enable-on-exec.
2587 * This expects task == current.
2588 */
2589 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2590 {
2591 struct perf_event *event;
2592 unsigned long flags;
2593 int enabled = 0;
2594 int ret;
2595
2596 local_irq_save(flags);
2597 if (!ctx || !ctx->nr_events)
2598 goto out;
2599
2600 /*
2601 * We must ctxsw out cgroup events to avoid conflict
2602 * when invoking perf_task_event_sched_in() later on
2603 * in this function. Otherwise we end up trying to
2604 * ctxswin cgroup events which are already scheduled
2605 * in.
2606 */
2607 perf_cgroup_sched_out(current, NULL);
2608
2609 raw_spin_lock(&ctx->lock);
2610 task_ctx_sched_out(ctx);
2611
2612 list_for_each_entry(event, &ctx->event_list, event_entry) {
2613 ret = event_enable_on_exec(event, ctx);
2614 if (ret)
2615 enabled = 1;
2616 }
2617
2618 /*
2619 * Unclone this context if we enabled any event.
2620 */
2621 if (enabled)
2622 unclone_ctx(ctx);
2623
2624 raw_spin_unlock(&ctx->lock);
2625
2626 /*
2627 * Also calls ctxswin for cgroup events, if any:
2628 */
2629 perf_event_context_sched_in(ctx, ctx->task);
2630 out:
2631 local_irq_restore(flags);
2632 }
2633
2634 /*
2635 * Cross CPU call to read the hardware event
2636 */
2637 static void __perf_event_read(void *info)
2638 {
2639 struct perf_event *event = info;
2640 struct perf_event_context *ctx = event->ctx;
2641 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2642
2643 /*
2644 * If this is a task context, we need to check whether it is
2645 * the current task context of this cpu. If not it has been
2646 * scheduled out before the smp call arrived. In that case
2647 * event->count would have been updated to a recent sample
2648 * when the event was scheduled out.
2649 */
2650 if (ctx->task && cpuctx->task_ctx != ctx)
2651 return;
2652
2653 raw_spin_lock(&ctx->lock);
2654 if (ctx->is_active) {
2655 update_context_time(ctx);
2656 update_cgrp_time_from_event(event);
2657 }
2658 update_event_times(event);
2659 if (event->state == PERF_EVENT_STATE_ACTIVE)
2660 event->pmu->read(event);
2661 raw_spin_unlock(&ctx->lock);
2662 }
2663
2664 static inline u64 perf_event_count(struct perf_event *event)
2665 {
2666 return local64_read(&event->count) + atomic64_read(&event->child_count);
2667 }
2668
2669 static u64 perf_event_read(struct perf_event *event)
2670 {
2671 /*
2672 * If event is enabled and currently active on a CPU, update the
2673 * value in the event structure:
2674 */
2675 if (event->state == PERF_EVENT_STATE_ACTIVE) {
2676 smp_call_function_single(event->oncpu,
2677 __perf_event_read, event, 1);
2678 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2679 struct perf_event_context *ctx = event->ctx;
2680 unsigned long flags;
2681
2682 raw_spin_lock_irqsave(&ctx->lock, flags);
2683 /*
2684 * may read while context is not active
2685 * (e.g., thread is blocked), in that case
2686 * we cannot update context time
2687 */
2688 if (ctx->is_active) {
2689 update_context_time(ctx);
2690 update_cgrp_time_from_event(event);
2691 }
2692 update_event_times(event);
2693 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2694 }
2695
2696 return perf_event_count(event);
2697 }
2698
2699 /*
2700 * Initialize the perf_event context in a task_struct:
2701 */
2702 static void __perf_event_init_context(struct perf_event_context *ctx)
2703 {
2704 raw_spin_lock_init(&ctx->lock);
2705 mutex_init(&ctx->mutex);
2706 INIT_LIST_HEAD(&ctx->pinned_groups);
2707 INIT_LIST_HEAD(&ctx->flexible_groups);
2708 INIT_LIST_HEAD(&ctx->event_list);
2709 atomic_set(&ctx->refcount, 1);
2710 }
2711
2712 static struct perf_event_context *
2713 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2714 {
2715 struct perf_event_context *ctx;
2716
2717 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2718 if (!ctx)
2719 return NULL;
2720
2721 __perf_event_init_context(ctx);
2722 if (task) {
2723 ctx->task = task;
2724 get_task_struct(task);
2725 }
2726 ctx->pmu = pmu;
2727
2728 return ctx;
2729 }
2730
2731 static struct task_struct *
2732 find_lively_task_by_vpid(pid_t vpid)
2733 {
2734 struct task_struct *task;
2735 int err;
2736
2737 rcu_read_lock();
2738 if (!vpid)
2739 task = current;
2740 else
2741 task = find_task_by_vpid(vpid);
2742 if (task)
2743 get_task_struct(task);
2744 rcu_read_unlock();
2745
2746 if (!task)
2747 return ERR_PTR(-ESRCH);
2748
2749 /* Reuse ptrace permission checks for now. */
2750 err = -EACCES;
2751 if (!ptrace_may_access(task, PTRACE_MODE_READ))
2752 goto errout;
2753
2754 return task;
2755 errout:
2756 put_task_struct(task);
2757 return ERR_PTR(err);
2758
2759 }
2760
2761 /*
2762 * Returns a matching context with refcount and pincount.
2763 */
2764 static struct perf_event_context *
2765 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2766 {
2767 struct perf_event_context *ctx;
2768 struct perf_cpu_context *cpuctx;
2769 unsigned long flags;
2770 int ctxn, err;
2771
2772 if (!task) {
2773 /* Must be root to operate on a CPU event: */
2774 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2775 return ERR_PTR(-EACCES);
2776
2777 /*
2778 * We could be clever and allow to attach a event to an
2779 * offline CPU and activate it when the CPU comes up, but
2780 * that's for later.
2781 */
2782 if (!cpu_online(cpu))
2783 return ERR_PTR(-ENODEV);
2784
2785 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2786 ctx = &cpuctx->ctx;
2787 get_ctx(ctx);
2788 ++ctx->pin_count;
2789
2790 return ctx;
2791 }
2792
2793 err = -EINVAL;
2794 ctxn = pmu->task_ctx_nr;
2795 if (ctxn < 0)
2796 goto errout;
2797
2798 retry:
2799 ctx = perf_lock_task_context(task, ctxn, &flags);
2800 if (ctx) {
2801 unclone_ctx(ctx);
2802 ++ctx->pin_count;
2803 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2804 } else {
2805 ctx = alloc_perf_context(pmu, task);
2806 err = -ENOMEM;
2807 if (!ctx)
2808 goto errout;
2809
2810 err = 0;
2811 mutex_lock(&task->perf_event_mutex);
2812 /*
2813 * If it has already passed perf_event_exit_task().
2814 * we must see PF_EXITING, it takes this mutex too.
2815 */
2816 if (task->flags & PF_EXITING)
2817 err = -ESRCH;
2818 else if (task->perf_event_ctxp[ctxn])
2819 err = -EAGAIN;
2820 else {
2821 get_ctx(ctx);
2822 ++ctx->pin_count;
2823 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2824 }
2825 mutex_unlock(&task->perf_event_mutex);
2826
2827 if (unlikely(err)) {
2828 put_ctx(ctx);
2829
2830 if (err == -EAGAIN)
2831 goto retry;
2832 goto errout;
2833 }
2834 }
2835
2836 return ctx;
2837
2838 errout:
2839 return ERR_PTR(err);
2840 }
2841
2842 static void perf_event_free_filter(struct perf_event *event);
2843
2844 static void free_event_rcu(struct rcu_head *head)
2845 {
2846 struct perf_event *event;
2847
2848 event = container_of(head, struct perf_event, rcu_head);
2849 if (event->ns)
2850 put_pid_ns(event->ns);
2851 perf_event_free_filter(event);
2852 kfree(event);
2853 }
2854
2855 static void ring_buffer_put(struct ring_buffer *rb);
2856
2857 static void free_event(struct perf_event *event)
2858 {
2859 irq_work_sync(&event->pending);
2860
2861 if (!event->parent) {
2862 if (event->attach_state & PERF_ATTACH_TASK)
2863 static_key_slow_dec_deferred(&perf_sched_events);
2864 if (event->attr.mmap || event->attr.mmap_data)
2865 atomic_dec(&nr_mmap_events);
2866 if (event->attr.comm)
2867 atomic_dec(&nr_comm_events);
2868 if (event->attr.task)
2869 atomic_dec(&nr_task_events);
2870 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2871 put_callchain_buffers();
2872 if (is_cgroup_event(event)) {
2873 atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
2874 static_key_slow_dec_deferred(&perf_sched_events);
2875 }
2876
2877 if (has_branch_stack(event)) {
2878 static_key_slow_dec_deferred(&perf_sched_events);
2879 /* is system-wide event */
2880 if (!(event->attach_state & PERF_ATTACH_TASK))
2881 atomic_dec(&per_cpu(perf_branch_stack_events,
2882 event->cpu));
2883 }
2884 }
2885
2886 if (event->rb) {
2887 ring_buffer_put(event->rb);
2888 event->rb = NULL;
2889 }
2890
2891 if (is_cgroup_event(event))
2892 perf_detach_cgroup(event);
2893
2894 if (event->destroy)
2895 event->destroy(event);
2896
2897 if (event->ctx)
2898 put_ctx(event->ctx);
2899
2900 call_rcu(&event->rcu_head, free_event_rcu);
2901 }
2902
2903 int perf_event_release_kernel(struct perf_event *event)
2904 {
2905 struct perf_event_context *ctx = event->ctx;
2906
2907 WARN_ON_ONCE(ctx->parent_ctx);
2908 /*
2909 * There are two ways this annotation is useful:
2910 *
2911 * 1) there is a lock recursion from perf_event_exit_task
2912 * see the comment there.
2913 *
2914 * 2) there is a lock-inversion with mmap_sem through
2915 * perf_event_read_group(), which takes faults while
2916 * holding ctx->mutex, however this is called after
2917 * the last filedesc died, so there is no possibility
2918 * to trigger the AB-BA case.
2919 */
2920 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2921 raw_spin_lock_irq(&ctx->lock);
2922 perf_group_detach(event);
2923 raw_spin_unlock_irq(&ctx->lock);
2924 perf_remove_from_context(event);
2925 mutex_unlock(&ctx->mutex);
2926
2927 free_event(event);
2928
2929 return 0;
2930 }
2931 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2932
2933 /*
2934 * Called when the last reference to the file is gone.
2935 */
2936 static int perf_release(struct inode *inode, struct file *file)
2937 {
2938 struct perf_event *event = file->private_data;
2939 struct task_struct *owner;
2940
2941 file->private_data = NULL;
2942
2943 rcu_read_lock();
2944 owner = ACCESS_ONCE(event->owner);
2945 /*
2946 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
2947 * !owner it means the list deletion is complete and we can indeed
2948 * free this event, otherwise we need to serialize on
2949 * owner->perf_event_mutex.
2950 */
2951 smp_read_barrier_depends();
2952 if (owner) {
2953 /*
2954 * Since delayed_put_task_struct() also drops the last
2955 * task reference we can safely take a new reference
2956 * while holding the rcu_read_lock().
2957 */
2958 get_task_struct(owner);
2959 }
2960 rcu_read_unlock();
2961
2962 if (owner) {
2963 mutex_lock(&owner->perf_event_mutex);
2964 /*
2965 * We have to re-check the event->owner field, if it is cleared
2966 * we raced with perf_event_exit_task(), acquiring the mutex
2967 * ensured they're done, and we can proceed with freeing the
2968 * event.
2969 */
2970 if (event->owner)
2971 list_del_init(&event->owner_entry);
2972 mutex_unlock(&owner->perf_event_mutex);
2973 put_task_struct(owner);
2974 }
2975
2976 return perf_event_release_kernel(event);
2977 }
2978
2979 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2980 {
2981 struct perf_event *child;
2982 u64 total = 0;
2983
2984 *enabled = 0;
2985 *running = 0;
2986
2987 mutex_lock(&event->child_mutex);
2988 total += perf_event_read(event);
2989 *enabled += event->total_time_enabled +
2990 atomic64_read(&event->child_total_time_enabled);
2991 *running += event->total_time_running +
2992 atomic64_read(&event->child_total_time_running);
2993
2994 list_for_each_entry(child, &event->child_list, child_list) {
2995 total += perf_event_read(child);
2996 *enabled += child->total_time_enabled;
2997 *running += child->total_time_running;
2998 }
2999 mutex_unlock(&event->child_mutex);
3000
3001 return total;
3002 }
3003 EXPORT_SYMBOL_GPL(perf_event_read_value);
3004
3005 static int perf_event_read_group(struct perf_event *event,
3006 u64 read_format, char __user *buf)
3007 {
3008 struct perf_event *leader = event->group_leader, *sub;
3009 int n = 0, size = 0, ret = -EFAULT;
3010 struct perf_event_context *ctx = leader->ctx;
3011 u64 values[5];
3012 u64 count, enabled, running;
3013
3014 mutex_lock(&ctx->mutex);
3015 count = perf_event_read_value(leader, &enabled, &running);
3016
3017 values[n++] = 1 + leader->nr_siblings;
3018 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3019 values[n++] = enabled;
3020 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3021 values[n++] = running;
3022 values[n++] = count;
3023 if (read_format & PERF_FORMAT_ID)
3024 values[n++] = primary_event_id(leader);
3025
3026 size = n * sizeof(u64);
3027
3028 if (copy_to_user(buf, values, size))
3029 goto unlock;
3030
3031 ret = size;
3032
3033 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3034 n = 0;
3035
3036 values[n++] = perf_event_read_value(sub, &enabled, &running);
3037 if (read_format & PERF_FORMAT_ID)
3038 values[n++] = primary_event_id(sub);
3039
3040 size = n * sizeof(u64);
3041
3042 if (copy_to_user(buf + ret, values, size)) {
3043 ret = -EFAULT;
3044 goto unlock;
3045 }
3046
3047 ret += size;
3048 }
3049 unlock:
3050 mutex_unlock(&ctx->mutex);
3051
3052 return ret;
3053 }
3054
3055 static int perf_event_read_one(struct perf_event *event,
3056 u64 read_format, char __user *buf)
3057 {
3058 u64 enabled, running;
3059 u64 values[4];
3060 int n = 0;
3061
3062 values[n++] = perf_event_read_value(event, &enabled, &running);
3063 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3064 values[n++] = enabled;
3065 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3066 values[n++] = running;
3067 if (read_format & PERF_FORMAT_ID)
3068 values[n++] = primary_event_id(event);
3069
3070 if (copy_to_user(buf, values, n * sizeof(u64)))
3071 return -EFAULT;
3072
3073 return n * sizeof(u64);
3074 }
3075
3076 /*
3077 * Read the performance event - simple non blocking version for now
3078 */
3079 static ssize_t
3080 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3081 {
3082 u64 read_format = event->attr.read_format;
3083 int ret;
3084
3085 /*
3086 * Return end-of-file for a read on a event that is in
3087 * error state (i.e. because it was pinned but it couldn't be
3088 * scheduled on to the CPU at some point).
3089 */
3090 if (event->state == PERF_EVENT_STATE_ERROR)
3091 return 0;
3092
3093 if (count < event->read_size)
3094 return -ENOSPC;
3095
3096 WARN_ON_ONCE(event->ctx->parent_ctx);
3097 if (read_format & PERF_FORMAT_GROUP)
3098 ret = perf_event_read_group(event, read_format, buf);
3099 else
3100 ret = perf_event_read_one(event, read_format, buf);
3101
3102 return ret;
3103 }
3104
3105 static ssize_t
3106 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3107 {
3108 struct perf_event *event = file->private_data;
3109
3110 return perf_read_hw(event, buf, count);
3111 }
3112
3113 static unsigned int perf_poll(struct file *file, poll_table *wait)
3114 {
3115 struct perf_event *event = file->private_data;
3116 struct ring_buffer *rb;
3117 unsigned int events = POLL_HUP;
3118
3119 /*
3120 * Race between perf_event_set_output() and perf_poll(): perf_poll()
3121 * grabs the rb reference but perf_event_set_output() overrides it.
3122 * Here is the timeline for two threads T1, T2:
3123 * t0: T1, rb = rcu_dereference(event->rb)
3124 * t1: T2, old_rb = event->rb
3125 * t2: T2, event->rb = new rb
3126 * t3: T2, ring_buffer_detach(old_rb)
3127 * t4: T1, ring_buffer_attach(rb1)
3128 * t5: T1, poll_wait(event->waitq)
3129 *
3130 * To avoid this problem, we grab mmap_mutex in perf_poll()
3131 * thereby ensuring that the assignment of the new ring buffer
3132 * and the detachment of the old buffer appear atomic to perf_poll()
3133 */
3134 mutex_lock(&event->mmap_mutex);
3135
3136 rcu_read_lock();
3137 rb = rcu_dereference(event->rb);
3138 if (rb) {
3139 ring_buffer_attach(event, rb);
3140 events = atomic_xchg(&rb->poll, 0);
3141 }
3142 rcu_read_unlock();
3143
3144 mutex_unlock(&event->mmap_mutex);
3145
3146 poll_wait(file, &event->waitq, wait);
3147
3148 return events;
3149 }
3150
3151 static void perf_event_reset(struct perf_event *event)
3152 {
3153 (void)perf_event_read(event);
3154 local64_set(&event->count, 0);
3155 perf_event_update_userpage(event);
3156 }
3157
3158 /*
3159 * Holding the top-level event's child_mutex means that any
3160 * descendant process that has inherited this event will block
3161 * in sync_child_event if it goes to exit, thus satisfying the
3162 * task existence requirements of perf_event_enable/disable.
3163 */
3164 static void perf_event_for_each_child(struct perf_event *event,
3165 void (*func)(struct perf_event *))
3166 {
3167 struct perf_event *child;
3168
3169 WARN_ON_ONCE(event->ctx->parent_ctx);
3170 mutex_lock(&event->child_mutex);
3171 func(event);
3172 list_for_each_entry(child, &event->child_list, child_list)
3173 func(child);
3174 mutex_unlock(&event->child_mutex);
3175 }
3176
3177 static void perf_event_for_each(struct perf_event *event,
3178 void (*func)(struct perf_event *))
3179 {
3180 struct perf_event_context *ctx = event->ctx;
3181 struct perf_event *sibling;
3182
3183 WARN_ON_ONCE(ctx->parent_ctx);
3184 mutex_lock(&ctx->mutex);
3185 event = event->group_leader;
3186
3187 perf_event_for_each_child(event, func);
3188 list_for_each_entry(sibling, &event->sibling_list, group_entry)
3189 perf_event_for_each_child(sibling, func);
3190 mutex_unlock(&ctx->mutex);
3191 }
3192
3193 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3194 {
3195 struct perf_event_context *ctx = event->ctx;
3196 int ret = 0;
3197 u64 value;
3198
3199 if (!is_sampling_event(event))
3200 return -EINVAL;
3201
3202 if (copy_from_user(&value, arg, sizeof(value)))
3203 return -EFAULT;
3204
3205 if (!value)
3206 return -EINVAL;
3207
3208 raw_spin_lock_irq(&ctx->lock);
3209 if (event->attr.freq) {
3210 if (value > sysctl_perf_event_sample_rate) {
3211 ret = -EINVAL;
3212 goto unlock;
3213 }
3214
3215 event->attr.sample_freq = value;
3216 } else {
3217 event->attr.sample_period = value;
3218 event->hw.sample_period = value;
3219 }
3220 unlock:
3221 raw_spin_unlock_irq(&ctx->lock);
3222
3223 return ret;
3224 }
3225
3226 static const struct file_operations perf_fops;
3227
3228 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
3229 {
3230 struct file *file;
3231
3232 file = fget_light(fd, fput_needed);
3233 if (!file)
3234 return ERR_PTR(-EBADF);
3235
3236 if (file->f_op != &perf_fops) {
3237 fput_light(file, *fput_needed);
3238 *fput_needed = 0;
3239 return ERR_PTR(-EBADF);
3240 }
3241
3242 return file->private_data;
3243 }
3244
3245 static int perf_event_set_output(struct perf_event *event,
3246 struct perf_event *output_event);
3247 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3248
3249 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3250 {
3251 struct perf_event *event = file->private_data;
3252 void (*func)(struct perf_event *);
3253 u32 flags = arg;
3254
3255 switch (cmd) {
3256 case PERF_EVENT_IOC_ENABLE:
3257 func = perf_event_enable;
3258 break;
3259 case PERF_EVENT_IOC_DISABLE:
3260 func = perf_event_disable;
3261 break;
3262 case PERF_EVENT_IOC_RESET:
3263 func = perf_event_reset;
3264 break;
3265
3266 case PERF_EVENT_IOC_REFRESH:
3267 return perf_event_refresh(event, arg);
3268
3269 case PERF_EVENT_IOC_PERIOD:
3270 return perf_event_period(event, (u64 __user *)arg);
3271
3272 case PERF_EVENT_IOC_SET_OUTPUT:
3273 {
3274 struct perf_event *output_event = NULL;
3275 int fput_needed = 0;
3276 int ret;
3277
3278 if (arg != -1) {
3279 output_event = perf_fget_light(arg, &fput_needed);
3280 if (IS_ERR(output_event))
3281 return PTR_ERR(output_event);
3282 }
3283
3284 ret = perf_event_set_output(event, output_event);
3285 if (output_event)
3286 fput_light(output_event->filp, fput_needed);
3287
3288 return ret;
3289 }
3290
3291 case PERF_EVENT_IOC_SET_FILTER:
3292 return perf_event_set_filter(event, (void __user *)arg);
3293
3294 default:
3295 return -ENOTTY;
3296 }
3297
3298 if (flags & PERF_IOC_FLAG_GROUP)
3299 perf_event_for_each(event, func);
3300 else
3301 perf_event_for_each_child(event, func);
3302
3303 return 0;
3304 }
3305
3306 int perf_event_task_enable(void)
3307 {
3308 struct perf_event *event;
3309
3310 mutex_lock(&current->perf_event_mutex);
3311 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3312 perf_event_for_each_child(event, perf_event_enable);
3313 mutex_unlock(&current->perf_event_mutex);
3314
3315 return 0;
3316 }
3317
3318 int perf_event_task_disable(void)
3319 {
3320 struct perf_event *event;
3321
3322 mutex_lock(&current->perf_event_mutex);
3323 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3324 perf_event_for_each_child(event, perf_event_disable);
3325 mutex_unlock(&current->perf_event_mutex);
3326
3327 return 0;
3328 }
3329
3330 static int perf_event_index(struct perf_event *event)
3331 {
3332 if (event->hw.state & PERF_HES_STOPPED)
3333 return 0;
3334
3335 if (event->state != PERF_EVENT_STATE_ACTIVE)
3336 return 0;
3337
3338 return event->pmu->event_idx(event);
3339 }
3340
3341 static void calc_timer_values(struct perf_event *event,
3342 u64 *now,
3343 u64 *enabled,
3344 u64 *running)
3345 {
3346 u64 ctx_time;
3347
3348 *now = perf_clock();
3349 ctx_time = event->shadow_ctx_time + *now;
3350 *enabled = ctx_time - event->tstamp_enabled;
3351 *running = ctx_time - event->tstamp_running;
3352 }
3353
3354 void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3355 {
3356 }
3357
3358 /*
3359 * Callers need to ensure there can be no nesting of this function, otherwise
3360 * the seqlock logic goes bad. We can not serialize this because the arch
3361 * code calls this from NMI context.
3362 */
3363 void perf_event_update_userpage(struct perf_event *event)
3364 {
3365 struct perf_event_mmap_page *userpg;
3366 struct ring_buffer *rb;
3367 u64 enabled, running, now;
3368
3369 rcu_read_lock();
3370 /*
3371 * compute total_time_enabled, total_time_running
3372 * based on snapshot values taken when the event
3373 * was last scheduled in.
3374 *
3375 * we cannot simply called update_context_time()
3376 * because of locking issue as we can be called in
3377 * NMI context
3378 */
3379 calc_timer_values(event, &now, &enabled, &running);
3380 rb = rcu_dereference(event->rb);
3381 if (!rb)
3382 goto unlock;
3383
3384 userpg = rb->user_page;
3385
3386 /*
3387 * Disable preemption so as to not let the corresponding user-space
3388 * spin too long if we get preempted.
3389 */
3390 preempt_disable();
3391 ++userpg->lock;
3392 barrier();
3393 userpg->index = perf_event_index(event);
3394 userpg->offset = perf_event_count(event);
3395 if (userpg->index)
3396 userpg->offset -= local64_read(&event->hw.prev_count);
3397
3398 userpg->time_enabled = enabled +
3399 atomic64_read(&event->child_total_time_enabled);
3400
3401 userpg->time_running = running +
3402 atomic64_read(&event->child_total_time_running);
3403
3404 arch_perf_update_userpage(userpg, now);
3405
3406 barrier();
3407 ++userpg->lock;
3408 preempt_enable();
3409 unlock:
3410 rcu_read_unlock();
3411 }
3412
3413 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3414 {
3415 struct perf_event *event = vma->vm_file->private_data;
3416 struct ring_buffer *rb;
3417 int ret = VM_FAULT_SIGBUS;
3418
3419 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3420 if (vmf->pgoff == 0)
3421 ret = 0;
3422 return ret;
3423 }
3424
3425 rcu_read_lock();
3426 rb = rcu_dereference(event->rb);
3427 if (!rb)
3428 goto unlock;
3429
3430 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3431 goto unlock;
3432
3433 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3434 if (!vmf->page)
3435 goto unlock;
3436
3437 get_page(vmf->page);
3438 vmf->page->mapping = vma->vm_file->f_mapping;
3439 vmf->page->index = vmf->pgoff;
3440
3441 ret = 0;
3442 unlock:
3443 rcu_read_unlock();
3444
3445 return ret;
3446 }
3447
3448 static void ring_buffer_attach(struct perf_event *event,
3449 struct ring_buffer *rb)
3450 {
3451 unsigned long flags;
3452
3453 if (!list_empty(&event->rb_entry))
3454 return;
3455
3456 spin_lock_irqsave(&rb->event_lock, flags);
3457 if (!list_empty(&event->rb_entry))
3458 goto unlock;
3459
3460 list_add(&event->rb_entry, &rb->event_list);
3461 unlock:
3462 spin_unlock_irqrestore(&rb->event_lock, flags);
3463 }
3464
3465 static void ring_buffer_detach(struct perf_event *event,
3466 struct ring_buffer *rb)
3467 {
3468 unsigned long flags;
3469
3470 if (list_empty(&event->rb_entry))
3471 return;
3472
3473 spin_lock_irqsave(&rb->event_lock, flags);
3474 list_del_init(&event->rb_entry);
3475 wake_up_all(&event->waitq);
3476 spin_unlock_irqrestore(&rb->event_lock, flags);
3477 }
3478
3479 static void ring_buffer_wakeup(struct perf_event *event)
3480 {
3481 struct ring_buffer *rb;
3482
3483 rcu_read_lock();
3484 rb = rcu_dereference(event->rb);
3485 if (!rb)
3486 goto unlock;
3487
3488 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3489 wake_up_all(&event->waitq);
3490
3491 unlock:
3492 rcu_read_unlock();
3493 }
3494
3495 static void rb_free_rcu(struct rcu_head *rcu_head)
3496 {
3497 struct ring_buffer *rb;
3498
3499 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3500 rb_free(rb);
3501 }
3502
3503 static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3504 {
3505 struct ring_buffer *rb;
3506
3507 rcu_read_lock();
3508 rb = rcu_dereference(event->rb);
3509 if (rb) {
3510 if (!atomic_inc_not_zero(&rb->refcount))
3511 rb = NULL;
3512 }
3513 rcu_read_unlock();
3514
3515 return rb;
3516 }
3517
3518 static void ring_buffer_put(struct ring_buffer *rb)
3519 {
3520 struct perf_event *event, *n;
3521 unsigned long flags;
3522
3523 if (!atomic_dec_and_test(&rb->refcount))
3524 return;
3525
3526 spin_lock_irqsave(&rb->event_lock, flags);
3527 list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) {
3528 list_del_init(&event->rb_entry);
3529 wake_up_all(&event->waitq);
3530 }
3531 spin_unlock_irqrestore(&rb->event_lock, flags);
3532
3533 call_rcu(&rb->rcu_head, rb_free_rcu);
3534 }
3535
3536 static void perf_mmap_open(struct vm_area_struct *vma)
3537 {
3538 struct perf_event *event = vma->vm_file->private_data;
3539
3540 atomic_inc(&event->mmap_count);
3541 }
3542
3543 static void perf_mmap_close(struct vm_area_struct *vma)
3544 {
3545 struct perf_event *event = vma->vm_file->private_data;
3546
3547 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3548 unsigned long size = perf_data_size(event->rb);
3549 struct user_struct *user = event->mmap_user;
3550 struct ring_buffer *rb = event->rb;
3551
3552 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3553 vma->vm_mm->pinned_vm -= event->mmap_locked;
3554 rcu_assign_pointer(event->rb, NULL);
3555 ring_buffer_detach(event, rb);
3556 mutex_unlock(&event->mmap_mutex);
3557
3558 ring_buffer_put(rb);
3559 free_uid(user);
3560 }
3561 }
3562
3563 static const struct vm_operations_struct perf_mmap_vmops = {
3564 .open = perf_mmap_open,
3565 .close = perf_mmap_close,
3566 .fault = perf_mmap_fault,
3567 .page_mkwrite = perf_mmap_fault,
3568 };
3569
3570 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3571 {
3572 struct perf_event *event = file->private_data;
3573 unsigned long user_locked, user_lock_limit;
3574 struct user_struct *user = current_user();
3575 unsigned long locked, lock_limit;
3576 struct ring_buffer *rb;
3577 unsigned long vma_size;
3578 unsigned long nr_pages;
3579 long user_extra, extra;
3580 int ret = 0, flags = 0;
3581
3582 /*
3583 * Don't allow mmap() of inherited per-task counters. This would
3584 * create a performance issue due to all children writing to the
3585 * same rb.
3586 */
3587 if (event->cpu == -1 && event->attr.inherit)
3588 return -EINVAL;
3589
3590 if (!(vma->vm_flags & VM_SHARED))
3591 return -EINVAL;
3592
3593 vma_size = vma->vm_end - vma->vm_start;
3594 nr_pages = (vma_size / PAGE_SIZE) - 1;
3595
3596 /*
3597 * If we have rb pages ensure they're a power-of-two number, so we
3598 * can do bitmasks instead of modulo.
3599 */
3600 if (nr_pages != 0 && !is_power_of_2(nr_pages))
3601 return -EINVAL;
3602
3603 if (vma_size != PAGE_SIZE * (1 + nr_pages))
3604 return -EINVAL;
3605
3606 if (vma->vm_pgoff != 0)
3607 return -EINVAL;
3608
3609 WARN_ON_ONCE(event->ctx->parent_ctx);
3610 mutex_lock(&event->mmap_mutex);
3611 if (event->rb) {
3612 if (event->rb->nr_pages == nr_pages)
3613 atomic_inc(&event->rb->refcount);
3614 else
3615 ret = -EINVAL;
3616 goto unlock;
3617 }
3618
3619 user_extra = nr_pages + 1;
3620 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3621
3622 /*
3623 * Increase the limit linearly with more CPUs:
3624 */
3625 user_lock_limit *= num_online_cpus();
3626
3627 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3628
3629 extra = 0;
3630 if (user_locked > user_lock_limit)
3631 extra = user_locked - user_lock_limit;
3632
3633 lock_limit = rlimit(RLIMIT_MEMLOCK);
3634 lock_limit >>= PAGE_SHIFT;
3635 locked = vma->vm_mm->pinned_vm + extra;
3636
3637 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3638 !capable(CAP_IPC_LOCK)) {
3639 ret = -EPERM;
3640 goto unlock;
3641 }
3642
3643 WARN_ON(event->rb);
3644
3645 if (vma->vm_flags & VM_WRITE)
3646 flags |= RING_BUFFER_WRITABLE;
3647
3648 rb = rb_alloc(nr_pages,
3649 event->attr.watermark ? event->attr.wakeup_watermark : 0,
3650 event->cpu, flags);
3651
3652 if (!rb) {
3653 ret = -ENOMEM;
3654 goto unlock;
3655 }
3656 rcu_assign_pointer(event->rb, rb);
3657
3658 atomic_long_add(user_extra, &user->locked_vm);
3659 event->mmap_locked = extra;
3660 event->mmap_user = get_current_user();
3661 vma->vm_mm->pinned_vm += event->mmap_locked;
3662
3663 perf_event_update_userpage(event);
3664
3665 unlock:
3666 if (!ret)
3667 atomic_inc(&event->mmap_count);
3668 mutex_unlock(&event->mmap_mutex);
3669
3670 vma->vm_flags |= VM_RESERVED;
3671 vma->vm_ops = &perf_mmap_vmops;
3672
3673 return ret;
3674 }
3675
3676 static int perf_fasync(int fd, struct file *filp, int on)
3677 {
3678 struct inode *inode = filp->f_path.dentry->d_inode;
3679 struct perf_event *event = filp->private_data;
3680 int retval;
3681
3682 mutex_lock(&inode->i_mutex);
3683 retval = fasync_helper(fd, filp, on, &event->fasync);
3684 mutex_unlock(&inode->i_mutex);
3685
3686 if (retval < 0)
3687 return retval;
3688
3689 return 0;
3690 }
3691
3692 static const struct file_operations perf_fops = {
3693 .llseek = no_llseek,
3694 .release = perf_release,
3695 .read = perf_read,
3696 .poll = perf_poll,
3697 .unlocked_ioctl = perf_ioctl,
3698 .compat_ioctl = perf_ioctl,
3699 .mmap = perf_mmap,
3700 .fasync = perf_fasync,
3701 };
3702
3703 /*
3704 * Perf event wakeup
3705 *
3706 * If there's data, ensure we set the poll() state and publish everything
3707 * to user-space before waking everybody up.
3708 */
3709
3710 void perf_event_wakeup(struct perf_event *event)
3711 {
3712 ring_buffer_wakeup(event);
3713
3714 if (event->pending_kill) {
3715 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3716 event->pending_kill = 0;
3717 }
3718 }
3719
3720 static void perf_pending_event(struct irq_work *entry)
3721 {
3722 struct perf_event *event = container_of(entry,
3723 struct perf_event, pending);
3724
3725 if (event->pending_disable) {
3726 event->pending_disable = 0;
3727 __perf_event_disable(event);
3728 }
3729
3730 if (event->pending_wakeup) {
3731 event->pending_wakeup = 0;
3732 perf_event_wakeup(event);
3733 }
3734 }
3735
3736 /*
3737 * We assume there is only KVM supporting the callbacks.
3738 * Later on, we might change it to a list if there is
3739 * another virtualization implementation supporting the callbacks.
3740 */
3741 struct perf_guest_info_callbacks *perf_guest_cbs;
3742
3743 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3744 {
3745 perf_guest_cbs = cbs;
3746 return 0;
3747 }
3748 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3749
3750 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3751 {
3752 perf_guest_cbs = NULL;
3753 return 0;
3754 }
3755 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3756
3757 static void __perf_event_header__init_id(struct perf_event_header *header,
3758 struct perf_sample_data *data,
3759 struct perf_event *event)
3760 {
3761 u64 sample_type = event->attr.sample_type;
3762
3763 data->type = sample_type;
3764 header->size += event->id_header_size;
3765
3766 if (sample_type & PERF_SAMPLE_TID) {
3767 /* namespace issues */
3768 data->tid_entry.pid = perf_event_pid(event, current);
3769 data->tid_entry.tid = perf_event_tid(event, current);
3770 }
3771
3772 if (sample_type & PERF_SAMPLE_TIME)
3773 data->time = perf_clock();
3774
3775 if (sample_type & PERF_SAMPLE_ID)
3776 data->id = primary_event_id(event);
3777
3778 if (sample_type & PERF_SAMPLE_STREAM_ID)
3779 data->stream_id = event->id;
3780
3781 if (sample_type & PERF_SAMPLE_CPU) {
3782 data->cpu_entry.cpu = raw_smp_processor_id();
3783 data->cpu_entry.reserved = 0;
3784 }
3785 }
3786
3787 void perf_event_header__init_id(struct perf_event_header *header,
3788 struct perf_sample_data *data,
3789 struct perf_event *event)
3790 {
3791 if (event->attr.sample_id_all)
3792 __perf_event_header__init_id(header, data, event);
3793 }
3794
3795 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
3796 struct perf_sample_data *data)
3797 {
3798 u64 sample_type = data->type;
3799
3800 if (sample_type & PERF_SAMPLE_TID)
3801 perf_output_put(handle, data->tid_entry);
3802
3803 if (sample_type & PERF_SAMPLE_TIME)
3804 perf_output_put(handle, data->time);
3805
3806 if (sample_type & PERF_SAMPLE_ID)
3807 perf_output_put(handle, data->id);
3808
3809 if (sample_type & PERF_SAMPLE_STREAM_ID)
3810 perf_output_put(handle, data->stream_id);
3811
3812 if (sample_type & PERF_SAMPLE_CPU)
3813 perf_output_put(handle, data->cpu_entry);
3814 }
3815
3816 void perf_event__output_id_sample(struct perf_event *event,
3817 struct perf_output_handle *handle,
3818 struct perf_sample_data *sample)
3819 {
3820 if (event->attr.sample_id_all)
3821 __perf_event__output_id_sample(handle, sample);
3822 }
3823
3824 static void perf_output_read_one(struct perf_output_handle *handle,
3825 struct perf_event *event,
3826 u64 enabled, u64 running)
3827 {
3828 u64 read_format = event->attr.read_format;
3829 u64 values[4];
3830 int n = 0;
3831
3832 values[n++] = perf_event_count(event);
3833 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3834 values[n++] = enabled +
3835 atomic64_read(&event->child_total_time_enabled);
3836 }
3837 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3838 values[n++] = running +
3839 atomic64_read(&event->child_total_time_running);
3840 }
3841 if (read_format & PERF_FORMAT_ID)
3842 values[n++] = primary_event_id(event);
3843
3844 __output_copy(handle, values, n * sizeof(u64));
3845 }
3846
3847 /*
3848 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3849 */
3850 static void perf_output_read_group(struct perf_output_handle *handle,
3851 struct perf_event *event,
3852 u64 enabled, u64 running)
3853 {
3854 struct perf_event *leader = event->group_leader, *sub;
3855 u64 read_format = event->attr.read_format;
3856 u64 values[5];
3857 int n = 0;
3858
3859 values[n++] = 1 + leader->nr_siblings;
3860
3861 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3862 values[n++] = enabled;
3863
3864 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3865 values[n++] = running;
3866
3867 if (leader != event)
3868 leader->pmu->read(leader);
3869
3870 values[n++] = perf_event_count(leader);
3871 if (read_format & PERF_FORMAT_ID)
3872 values[n++] = primary_event_id(leader);
3873
3874 __output_copy(handle, values, n * sizeof(u64));
3875
3876 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3877 n = 0;
3878
3879 if (sub != event)
3880 sub->pmu->read(sub);
3881
3882 values[n++] = perf_event_count(sub);
3883 if (read_format & PERF_FORMAT_ID)
3884 values[n++] = primary_event_id(sub);
3885
3886 __output_copy(handle, values, n * sizeof(u64));
3887 }
3888 }
3889
3890 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
3891 PERF_FORMAT_TOTAL_TIME_RUNNING)
3892
3893 static void perf_output_read(struct perf_output_handle *handle,
3894 struct perf_event *event)
3895 {
3896 u64 enabled = 0, running = 0, now;
3897 u64 read_format = event->attr.read_format;
3898
3899 /*
3900 * compute total_time_enabled, total_time_running
3901 * based on snapshot values taken when the event
3902 * was last scheduled in.
3903 *
3904 * we cannot simply called update_context_time()
3905 * because of locking issue as we are called in
3906 * NMI context
3907 */
3908 if (read_format & PERF_FORMAT_TOTAL_TIMES)
3909 calc_timer_values(event, &now, &enabled, &running);
3910
3911 if (event->attr.read_format & PERF_FORMAT_GROUP)
3912 perf_output_read_group(handle, event, enabled, running);
3913 else
3914 perf_output_read_one(handle, event, enabled, running);
3915 }
3916
3917 void perf_output_sample(struct perf_output_handle *handle,
3918 struct perf_event_header *header,
3919 struct perf_sample_data *data,
3920 struct perf_event *event)
3921 {
3922 u64 sample_type = data->type;
3923
3924 perf_output_put(handle, *header);
3925
3926 if (sample_type & PERF_SAMPLE_IP)
3927 perf_output_put(handle, data->ip);
3928
3929 if (sample_type & PERF_SAMPLE_TID)
3930 perf_output_put(handle, data->tid_entry);
3931
3932 if (sample_type & PERF_SAMPLE_TIME)
3933 perf_output_put(handle, data->time);
3934
3935 if (sample_type & PERF_SAMPLE_ADDR)
3936 perf_output_put(handle, data->addr);
3937
3938 if (sample_type & PERF_SAMPLE_ID)
3939 perf_output_put(handle, data->id);
3940
3941 if (sample_type & PERF_SAMPLE_STREAM_ID)
3942 perf_output_put(handle, data->stream_id);
3943
3944 if (sample_type & PERF_SAMPLE_CPU)
3945 perf_output_put(handle, data->cpu_entry);
3946
3947 if (sample_type & PERF_SAMPLE_PERIOD)
3948 perf_output_put(handle, data->period);
3949
3950 if (sample_type & PERF_SAMPLE_READ)
3951 perf_output_read(handle, event);
3952
3953 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3954 if (data->callchain) {
3955 int size = 1;
3956
3957 if (data->callchain)
3958 size += data->callchain->nr;
3959
3960 size *= sizeof(u64);
3961
3962 __output_copy(handle, data->callchain, size);
3963 } else {
3964 u64 nr = 0;
3965 perf_output_put(handle, nr);
3966 }
3967 }
3968
3969 if (sample_type & PERF_SAMPLE_RAW) {
3970 if (data->raw) {
3971 perf_output_put(handle, data->raw->size);
3972 __output_copy(handle, data->raw->data,
3973 data->raw->size);
3974 } else {
3975 struct {
3976 u32 size;
3977 u32 data;
3978 } raw = {
3979 .size = sizeof(u32),
3980 .data = 0,
3981 };
3982 perf_output_put(handle, raw);
3983 }
3984 }
3985
3986 if (!event->attr.watermark) {
3987 int wakeup_events = event->attr.wakeup_events;
3988
3989 if (wakeup_events) {
3990 struct ring_buffer *rb = handle->rb;
3991 int events = local_inc_return(&rb->events);
3992
3993 if (events >= wakeup_events) {
3994 local_sub(wakeup_events, &rb->events);
3995 local_inc(&rb->wakeup);
3996 }
3997 }
3998 }
3999
4000 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4001 if (data->br_stack) {
4002 size_t size;
4003
4004 size = data->br_stack->nr
4005 * sizeof(struct perf_branch_entry);
4006
4007 perf_output_put(handle, data->br_stack->nr);
4008 perf_output_copy(handle, data->br_stack->entries, size);
4009 } else {
4010 /*
4011 * we always store at least the value of nr
4012 */
4013 u64 nr = 0;
4014 perf_output_put(handle, nr);
4015 }
4016 }
4017 }
4018
4019 void perf_prepare_sample(struct perf_event_header *header,
4020 struct perf_sample_data *data,
4021 struct perf_event *event,
4022 struct pt_regs *regs)
4023 {
4024 u64 sample_type = event->attr.sample_type;
4025
4026 header->type = PERF_RECORD_SAMPLE;
4027 header->size = sizeof(*header) + event->header_size;
4028
4029 header->misc = 0;
4030 header->misc |= perf_misc_flags(regs);
4031
4032 __perf_event_header__init_id(header, data, event);
4033
4034 if (sample_type & PERF_SAMPLE_IP)
4035 data->ip = perf_instruction_pointer(regs);
4036
4037 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4038 int size = 1;
4039
4040 data->callchain = perf_callchain(regs);
4041
4042 if (data->callchain)
4043 size += data->callchain->nr;
4044
4045 header->size += size * sizeof(u64);
4046 }
4047
4048 if (sample_type & PERF_SAMPLE_RAW) {
4049 int size = sizeof(u32);
4050
4051 if (data->raw)
4052 size += data->raw->size;
4053 else
4054 size += sizeof(u32);
4055
4056 WARN_ON_ONCE(size & (sizeof(u64)-1));
4057 header->size += size;
4058 }
4059
4060 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4061 int size = sizeof(u64); /* nr */
4062 if (data->br_stack) {
4063 size += data->br_stack->nr
4064 * sizeof(struct perf_branch_entry);
4065 }
4066 header->size += size;
4067 }
4068 }
4069
4070 static void perf_event_output(struct perf_event *event,
4071 struct perf_sample_data *data,
4072 struct pt_regs *regs)
4073 {
4074 struct perf_output_handle handle;
4075 struct perf_event_header header;
4076
4077 /* protect the callchain buffers */
4078 rcu_read_lock();
4079
4080 perf_prepare_sample(&header, data, event, regs);
4081
4082 if (perf_output_begin(&handle, event, header.size))
4083 goto exit;
4084
4085 perf_output_sample(&handle, &header, data, event);
4086
4087 perf_output_end(&handle);
4088
4089 exit:
4090 rcu_read_unlock();
4091 }
4092
4093 /*
4094 * read event_id
4095 */
4096
4097 struct perf_read_event {
4098 struct perf_event_header header;
4099
4100 u32 pid;
4101 u32 tid;
4102 };
4103
4104 static void
4105 perf_event_read_event(struct perf_event *event,
4106 struct task_struct *task)
4107 {
4108 struct perf_output_handle handle;
4109 struct perf_sample_data sample;
4110 struct perf_read_event read_event = {
4111 .header = {
4112 .type = PERF_RECORD_READ,
4113 .misc = 0,
4114 .size = sizeof(read_event) + event->read_size,
4115 },
4116 .pid = perf_event_pid(event, task),
4117 .tid = perf_event_tid(event, task),
4118 };
4119 int ret;
4120
4121 perf_event_header__init_id(&read_event.header, &sample, event);
4122 ret = perf_output_begin(&handle, event, read_event.header.size);
4123 if (ret)
4124 return;
4125
4126 perf_output_put(&handle, read_event);
4127 perf_output_read(&handle, event);
4128 perf_event__output_id_sample(event, &handle, &sample);
4129
4130 perf_output_end(&handle);
4131 }
4132
4133 /*
4134 * task tracking -- fork/exit
4135 *
4136 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
4137 */
4138
4139 struct perf_task_event {
4140 struct task_struct *task;
4141 struct perf_event_context *task_ctx;
4142
4143 struct {
4144 struct perf_event_header header;
4145
4146 u32 pid;
4147 u32 ppid;
4148 u32 tid;
4149 u32 ptid;
4150 u64 time;
4151 } event_id;
4152 };
4153
4154 static void perf_event_task_output(struct perf_event *event,
4155 struct perf_task_event *task_event)
4156 {
4157 struct perf_output_handle handle;
4158 struct perf_sample_data sample;
4159 struct task_struct *task = task_event->task;
4160 int ret, size = task_event->event_id.header.size;
4161
4162 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4163
4164 ret = perf_output_begin(&handle, event,
4165 task_event->event_id.header.size);
4166 if (ret)
4167 goto out;
4168
4169 task_event->event_id.pid = perf_event_pid(event, task);
4170 task_event->event_id.ppid = perf_event_pid(event, current);
4171
4172 task_event->event_id.tid = perf_event_tid(event, task);
4173 task_event->event_id.ptid = perf_event_tid(event, current);
4174
4175 perf_output_put(&handle, task_event->event_id);
4176
4177 perf_event__output_id_sample(event, &handle, &sample);
4178
4179 perf_output_end(&handle);
4180 out:
4181 task_event->event_id.header.size = size;
4182 }
4183
4184 static int perf_event_task_match(struct perf_event *event)
4185 {
4186 if (event->state < PERF_EVENT_STATE_INACTIVE)
4187 return 0;
4188
4189 if (!event_filter_match(event))
4190 return 0;
4191
4192 if (event->attr.comm || event->attr.mmap ||
4193 event->attr.mmap_data || event->attr.task)
4194 return 1;
4195
4196 return 0;
4197 }
4198
4199 static void perf_event_task_ctx(struct perf_event_context *ctx,
4200 struct perf_task_event *task_event)
4201 {
4202 struct perf_event *event;
4203
4204 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4205 if (perf_event_task_match(event))
4206 perf_event_task_output(event, task_event);
4207 }
4208 }
4209
4210 static void perf_event_task_event(struct perf_task_event *task_event)
4211 {
4212 struct perf_cpu_context *cpuctx;
4213 struct perf_event_context *ctx;
4214 struct pmu *pmu;
4215 int ctxn;
4216
4217 rcu_read_lock();
4218 list_for_each_entry_rcu(pmu, &pmus, entry) {
4219 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4220 if (cpuctx->active_pmu != pmu)
4221 goto next;
4222 perf_event_task_ctx(&cpuctx->ctx, task_event);
4223
4224 ctx = task_event->task_ctx;
4225 if (!ctx) {
4226 ctxn = pmu->task_ctx_nr;
4227 if (ctxn < 0)
4228 goto next;
4229 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4230 }
4231 if (ctx)
4232 perf_event_task_ctx(ctx, task_event);
4233 next:
4234 put_cpu_ptr(pmu->pmu_cpu_context);
4235 }
4236 rcu_read_unlock();
4237 }
4238
4239 static void perf_event_task(struct task_struct *task,
4240 struct perf_event_context *task_ctx,
4241 int new)
4242 {
4243 struct perf_task_event task_event;
4244
4245 if (!atomic_read(&nr_comm_events) &&
4246 !atomic_read(&nr_mmap_events) &&
4247 !atomic_read(&nr_task_events))
4248 return;
4249
4250 task_event = (struct perf_task_event){
4251 .task = task,
4252 .task_ctx = task_ctx,
4253 .event_id = {
4254 .header = {
4255 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4256 .misc = 0,
4257 .size = sizeof(task_event.event_id),
4258 },
4259 /* .pid */
4260 /* .ppid */
4261 /* .tid */
4262 /* .ptid */
4263 .time = perf_clock(),
4264 },
4265 };
4266
4267 perf_event_task_event(&task_event);
4268 }
4269
4270 void perf_event_fork(struct task_struct *task)
4271 {
4272 perf_event_task(task, NULL, 1);
4273 }
4274
4275 /*
4276 * comm tracking
4277 */
4278
4279 struct perf_comm_event {
4280 struct task_struct *task;
4281 char *comm;
4282 int comm_size;
4283
4284 struct {
4285 struct perf_event_header header;
4286
4287 u32 pid;
4288 u32 tid;
4289 } event_id;
4290 };
4291
4292 static void perf_event_comm_output(struct perf_event *event,
4293 struct perf_comm_event *comm_event)
4294 {
4295 struct perf_output_handle handle;
4296 struct perf_sample_data sample;
4297 int size = comm_event->event_id.header.size;
4298 int ret;
4299
4300 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4301 ret = perf_output_begin(&handle, event,
4302 comm_event->event_id.header.size);
4303
4304 if (ret)
4305 goto out;
4306
4307 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4308 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4309
4310 perf_output_put(&handle, comm_event->event_id);
4311 __output_copy(&handle, comm_event->comm,
4312 comm_event->comm_size);
4313
4314 perf_event__output_id_sample(event, &handle, &sample);
4315
4316 perf_output_end(&handle);
4317 out:
4318 comm_event->event_id.header.size = size;
4319 }
4320
4321 static int perf_event_comm_match(struct perf_event *event)
4322 {
4323 if (event->state < PERF_EVENT_STATE_INACTIVE)
4324 return 0;
4325
4326 if (!event_filter_match(event))
4327 return 0;
4328
4329 if (event->attr.comm)
4330 return 1;
4331
4332 return 0;
4333 }
4334
4335 static void perf_event_comm_ctx(struct perf_event_context *ctx,
4336 struct perf_comm_event *comm_event)
4337 {
4338 struct perf_event *event;
4339
4340 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4341 if (perf_event_comm_match(event))
4342 perf_event_comm_output(event, comm_event);
4343 }
4344 }
4345
4346 static void perf_event_comm_event(struct perf_comm_event *comm_event)
4347 {
4348 struct perf_cpu_context *cpuctx;
4349 struct perf_event_context *ctx;
4350 char comm[TASK_COMM_LEN];
4351 unsigned int size;
4352 struct pmu *pmu;
4353 int ctxn;
4354
4355 memset(comm, 0, sizeof(comm));
4356 strlcpy(comm, comm_event->task->comm, sizeof(comm));
4357 size = ALIGN(strlen(comm)+1, sizeof(u64));
4358
4359 comm_event->comm = comm;
4360 comm_event->comm_size = size;
4361
4362 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4363 rcu_read_lock();
4364 list_for_each_entry_rcu(pmu, &pmus, entry) {
4365 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4366 if (cpuctx->active_pmu != pmu)
4367 goto next;
4368 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
4369
4370 ctxn = pmu->task_ctx_nr;
4371 if (ctxn < 0)
4372 goto next;
4373
4374 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4375 if (ctx)
4376 perf_event_comm_ctx(ctx, comm_event);
4377 next:
4378 put_cpu_ptr(pmu->pmu_cpu_context);
4379 }
4380 rcu_read_unlock();
4381 }
4382
4383 void perf_event_comm(struct task_struct *task)
4384 {
4385 struct perf_comm_event comm_event;
4386 struct perf_event_context *ctx;
4387 int ctxn;
4388
4389 for_each_task_context_nr(ctxn) {
4390 ctx = task->perf_event_ctxp[ctxn];
4391 if (!ctx)
4392 continue;
4393
4394 perf_event_enable_on_exec(ctx);
4395 }
4396
4397 if (!atomic_read(&nr_comm_events))
4398 return;
4399
4400 comm_event = (struct perf_comm_event){
4401 .task = task,
4402 /* .comm */
4403 /* .comm_size */
4404 .event_id = {
4405 .header = {
4406 .type = PERF_RECORD_COMM,
4407 .misc = 0,
4408 /* .size */
4409 },
4410 /* .pid */
4411 /* .tid */
4412 },
4413 };
4414
4415 perf_event_comm_event(&comm_event);
4416 }
4417
4418 /*
4419 * mmap tracking
4420 */
4421
4422 struct perf_mmap_event {
4423 struct vm_area_struct *vma;
4424
4425 const char *file_name;
4426 int file_size;
4427
4428 struct {
4429 struct perf_event_header header;
4430
4431 u32 pid;
4432 u32 tid;
4433 u64 start;
4434 u64 len;
4435 u64 pgoff;
4436 } event_id;
4437 };
4438
4439 static void perf_event_mmap_output(struct perf_event *event,
4440 struct perf_mmap_event *mmap_event)
4441 {
4442 struct perf_output_handle handle;
4443 struct perf_sample_data sample;
4444 int size = mmap_event->event_id.header.size;
4445 int ret;
4446
4447 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4448 ret = perf_output_begin(&handle, event,
4449 mmap_event->event_id.header.size);
4450 if (ret)
4451 goto out;
4452
4453 mmap_event->event_id.pid = perf_event_pid(event, current);
4454 mmap_event->event_id.tid = perf_event_tid(event, current);
4455
4456 perf_output_put(&handle, mmap_event->event_id);
4457 __output_copy(&handle, mmap_event->file_name,
4458 mmap_event->file_size);
4459
4460 perf_event__output_id_sample(event, &handle, &sample);
4461
4462 perf_output_end(&handle);
4463 out:
4464 mmap_event->event_id.header.size = size;
4465 }
4466
4467 static int perf_event_mmap_match(struct perf_event *event,
4468 struct perf_mmap_event *mmap_event,
4469 int executable)
4470 {
4471 if (event->state < PERF_EVENT_STATE_INACTIVE)
4472 return 0;
4473
4474 if (!event_filter_match(event))
4475 return 0;
4476
4477 if ((!executable && event->attr.mmap_data) ||
4478 (executable && event->attr.mmap))
4479 return 1;
4480
4481 return 0;
4482 }
4483
4484 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4485 struct perf_mmap_event *mmap_event,
4486 int executable)
4487 {
4488 struct perf_event *event;
4489
4490 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4491 if (perf_event_mmap_match(event, mmap_event, executable))
4492 perf_event_mmap_output(event, mmap_event);
4493 }
4494 }
4495
4496 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4497 {
4498 struct perf_cpu_context *cpuctx;
4499 struct perf_event_context *ctx;
4500 struct vm_area_struct *vma = mmap_event->vma;
4501 struct file *file = vma->vm_file;
4502 unsigned int size;
4503 char tmp[16];
4504 char *buf = NULL;
4505 const char *name;
4506 struct pmu *pmu;
4507 int ctxn;
4508
4509 memset(tmp, 0, sizeof(tmp));
4510
4511 if (file) {
4512 /*
4513 * d_path works from the end of the rb backwards, so we
4514 * need to add enough zero bytes after the string to handle
4515 * the 64bit alignment we do later.
4516 */
4517 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4518 if (!buf) {
4519 name = strncpy(tmp, "//enomem", sizeof(tmp));
4520 goto got_name;
4521 }
4522 name = d_path(&file->f_path, buf, PATH_MAX);
4523 if (IS_ERR(name)) {
4524 name = strncpy(tmp, "//toolong", sizeof(tmp));
4525 goto got_name;
4526 }
4527 } else {
4528 if (arch_vma_name(mmap_event->vma)) {
4529 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4530 sizeof(tmp));
4531 goto got_name;
4532 }
4533
4534 if (!vma->vm_mm) {
4535 name = strncpy(tmp, "[vdso]", sizeof(tmp));
4536 goto got_name;
4537 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4538 vma->vm_end >= vma->vm_mm->brk) {
4539 name = strncpy(tmp, "[heap]", sizeof(tmp));
4540 goto got_name;
4541 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4542 vma->vm_end >= vma->vm_mm->start_stack) {
4543 name = strncpy(tmp, "[stack]", sizeof(tmp));
4544 goto got_name;
4545 }
4546
4547 name = strncpy(tmp, "//anon", sizeof(tmp));
4548 goto got_name;
4549 }
4550
4551 got_name:
4552 size = ALIGN(strlen(name)+1, sizeof(u64));
4553
4554 mmap_event->file_name = name;
4555 mmap_event->file_size = size;
4556
4557 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4558
4559 rcu_read_lock();
4560 list_for_each_entry_rcu(pmu, &pmus, entry) {
4561 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4562 if (cpuctx->active_pmu != pmu)
4563 goto next;
4564 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4565 vma->vm_flags & VM_EXEC);
4566
4567 ctxn = pmu->task_ctx_nr;
4568 if (ctxn < 0)
4569 goto next;
4570
4571 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4572 if (ctx) {
4573 perf_event_mmap_ctx(ctx, mmap_event,
4574 vma->vm_flags & VM_EXEC);
4575 }
4576 next:
4577 put_cpu_ptr(pmu->pmu_cpu_context);
4578 }
4579 rcu_read_unlock();
4580
4581 kfree(buf);
4582 }
4583
4584 void perf_event_mmap(struct vm_area_struct *vma)
4585 {
4586 struct perf_mmap_event mmap_event;
4587
4588 if (!atomic_read(&nr_mmap_events))
4589 return;
4590
4591 mmap_event = (struct perf_mmap_event){
4592 .vma = vma,
4593 /* .file_name */
4594 /* .file_size */
4595 .event_id = {
4596 .header = {
4597 .type = PERF_RECORD_MMAP,
4598 .misc = PERF_RECORD_MISC_USER,
4599 /* .size */
4600 },
4601 /* .pid */
4602 /* .tid */
4603 .start = vma->vm_start,
4604 .len = vma->vm_end - vma->vm_start,
4605 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
4606 },
4607 };
4608
4609 perf_event_mmap_event(&mmap_event);
4610 }
4611
4612 /*
4613 * IRQ throttle logging
4614 */
4615
4616 static void perf_log_throttle(struct perf_event *event, int enable)
4617 {
4618 struct perf_output_handle handle;
4619 struct perf_sample_data sample;
4620 int ret;
4621
4622 struct {
4623 struct perf_event_header header;
4624 u64 time;
4625 u64 id;
4626 u64 stream_id;
4627 } throttle_event = {
4628 .header = {
4629 .type = PERF_RECORD_THROTTLE,
4630 .misc = 0,
4631 .size = sizeof(throttle_event),
4632 },
4633 .time = perf_clock(),
4634 .id = primary_event_id(event),
4635 .stream_id = event->id,
4636 };
4637
4638 if (enable)
4639 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4640
4641 perf_event_header__init_id(&throttle_event.header, &sample, event);
4642
4643 ret = perf_output_begin(&handle, event,
4644 throttle_event.header.size);
4645 if (ret)
4646 return;
4647
4648 perf_output_put(&handle, throttle_event);
4649 perf_event__output_id_sample(event, &handle, &sample);
4650 perf_output_end(&handle);
4651 }
4652
4653 /*
4654 * Generic event overflow handling, sampling.
4655 */
4656
4657 static int __perf_event_overflow(struct perf_event *event,
4658 int throttle, struct perf_sample_data *data,
4659 struct pt_regs *regs)
4660 {
4661 int events = atomic_read(&event->event_limit);
4662 struct hw_perf_event *hwc = &event->hw;
4663 u64 seq;
4664 int ret = 0;
4665
4666 /*
4667 * Non-sampling counters might still use the PMI to fold short
4668 * hardware counters, ignore those.
4669 */
4670 if (unlikely(!is_sampling_event(event)))
4671 return 0;
4672
4673 seq = __this_cpu_read(perf_throttled_seq);
4674 if (seq != hwc->interrupts_seq) {
4675 hwc->interrupts_seq = seq;
4676 hwc->interrupts = 1;
4677 } else {
4678 hwc->interrupts++;
4679 if (unlikely(throttle
4680 && hwc->interrupts >= max_samples_per_tick)) {
4681 __this_cpu_inc(perf_throttled_count);
4682 hwc->interrupts = MAX_INTERRUPTS;
4683 perf_log_throttle(event, 0);
4684 ret = 1;
4685 }
4686 }
4687
4688 if (event->attr.freq) {
4689 u64 now = perf_clock();
4690 s64 delta = now - hwc->freq_time_stamp;
4691
4692 hwc->freq_time_stamp = now;
4693
4694 if (delta > 0 && delta < 2*TICK_NSEC)
4695 perf_adjust_period(event, delta, hwc->last_period, true);
4696 }
4697
4698 /*
4699 * XXX event_limit might not quite work as expected on inherited
4700 * events
4701 */
4702
4703 event->pending_kill = POLL_IN;
4704 if (events && atomic_dec_and_test(&event->event_limit)) {
4705 ret = 1;
4706 event->pending_kill = POLL_HUP;
4707 event->pending_disable = 1;
4708 irq_work_queue(&event->pending);
4709 }
4710
4711 if (event->overflow_handler)
4712 event->overflow_handler(event, data, regs);
4713 else
4714 perf_event_output(event, data, regs);
4715
4716 if (event->fasync && event->pending_kill) {
4717 event->pending_wakeup = 1;
4718 irq_work_queue(&event->pending);
4719 }
4720
4721 return ret;
4722 }
4723
4724 int perf_event_overflow(struct perf_event *event,
4725 struct perf_sample_data *data,
4726 struct pt_regs *regs)
4727 {
4728 return __perf_event_overflow(event, 1, data, regs);
4729 }
4730
4731 /*
4732 * Generic software event infrastructure
4733 */
4734
4735 struct swevent_htable {
4736 struct swevent_hlist *swevent_hlist;
4737 struct mutex hlist_mutex;
4738 int hlist_refcount;
4739
4740 /* Recursion avoidance in each contexts */
4741 int recursion[PERF_NR_CONTEXTS];
4742 };
4743
4744 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4745
4746 /*
4747 * We directly increment event->count and keep a second value in
4748 * event->hw.period_left to count intervals. This period event
4749 * is kept in the range [-sample_period, 0] so that we can use the
4750 * sign as trigger.
4751 */
4752
4753 static u64 perf_swevent_set_period(struct perf_event *event)
4754 {
4755 struct hw_perf_event *hwc = &event->hw;
4756 u64 period = hwc->last_period;
4757 u64 nr, offset;
4758 s64 old, val;
4759
4760 hwc->last_period = hwc->sample_period;
4761
4762 again:
4763 old = val = local64_read(&hwc->period_left);
4764 if (val < 0)
4765 return 0;
4766
4767 nr = div64_u64(period + val, period);
4768 offset = nr * period;
4769 val -= offset;
4770 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4771 goto again;
4772
4773 return nr;
4774 }
4775
4776 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4777 struct perf_sample_data *data,
4778 struct pt_regs *regs)
4779 {
4780 struct hw_perf_event *hwc = &event->hw;
4781 int throttle = 0;
4782
4783 if (!overflow)
4784 overflow = perf_swevent_set_period(event);
4785
4786 if (hwc->interrupts == MAX_INTERRUPTS)
4787 return;
4788
4789 for (; overflow; overflow--) {
4790 if (__perf_event_overflow(event, throttle,
4791 data, regs)) {
4792 /*
4793 * We inhibit the overflow from happening when
4794 * hwc->interrupts == MAX_INTERRUPTS.
4795 */
4796 break;
4797 }
4798 throttle = 1;
4799 }
4800 }
4801
4802 static void perf_swevent_event(struct perf_event *event, u64 nr,
4803 struct perf_sample_data *data,
4804 struct pt_regs *regs)
4805 {
4806 struct hw_perf_event *hwc = &event->hw;
4807
4808 local64_add(nr, &event->count);
4809
4810 if (!regs)
4811 return;
4812
4813 if (!is_sampling_event(event))
4814 return;
4815
4816 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
4817 data->period = nr;
4818 return perf_swevent_overflow(event, 1, data, regs);
4819 } else
4820 data->period = event->hw.last_period;
4821
4822 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4823 return perf_swevent_overflow(event, 1, data, regs);
4824
4825 if (local64_add_negative(nr, &hwc->period_left))
4826 return;
4827
4828 perf_swevent_overflow(event, 0, data, regs);
4829 }
4830
4831 static int perf_exclude_event(struct perf_event *event,
4832 struct pt_regs *regs)
4833 {
4834 if (event->hw.state & PERF_HES_STOPPED)
4835 return 1;
4836
4837 if (regs) {
4838 if (event->attr.exclude_user && user_mode(regs))
4839 return 1;
4840
4841 if (event->attr.exclude_kernel && !user_mode(regs))
4842 return 1;
4843 }
4844
4845 return 0;
4846 }
4847
4848 static int perf_swevent_match(struct perf_event *event,
4849 enum perf_type_id type,
4850 u32 event_id,
4851 struct perf_sample_data *data,
4852 struct pt_regs *regs)
4853 {
4854 if (event->attr.type != type)
4855 return 0;
4856
4857 if (event->attr.config != event_id)
4858 return 0;
4859
4860 if (perf_exclude_event(event, regs))
4861 return 0;
4862
4863 return 1;
4864 }
4865
4866 static inline u64 swevent_hash(u64 type, u32 event_id)
4867 {
4868 u64 val = event_id | (type << 32);
4869
4870 return hash_64(val, SWEVENT_HLIST_BITS);
4871 }
4872
4873 static inline struct hlist_head *
4874 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4875 {
4876 u64 hash = swevent_hash(type, event_id);
4877
4878 return &hlist->heads[hash];
4879 }
4880
4881 /* For the read side: events when they trigger */
4882 static inline struct hlist_head *
4883 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4884 {
4885 struct swevent_hlist *hlist;
4886
4887 hlist = rcu_dereference(swhash->swevent_hlist);
4888 if (!hlist)
4889 return NULL;
4890
4891 return __find_swevent_head(hlist, type, event_id);
4892 }
4893
4894 /* For the event head insertion and removal in the hlist */
4895 static inline struct hlist_head *
4896 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4897 {
4898 struct swevent_hlist *hlist;
4899 u32 event_id = event->attr.config;
4900 u64 type = event->attr.type;
4901
4902 /*
4903 * Event scheduling is always serialized against hlist allocation
4904 * and release. Which makes the protected version suitable here.
4905 * The context lock guarantees that.
4906 */
4907 hlist = rcu_dereference_protected(swhash->swevent_hlist,
4908 lockdep_is_held(&event->ctx->lock));
4909 if (!hlist)
4910 return NULL;
4911
4912 return __find_swevent_head(hlist, type, event_id);
4913 }
4914
4915 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4916 u64 nr,
4917 struct perf_sample_data *data,
4918 struct pt_regs *regs)
4919 {
4920 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4921 struct perf_event *event;
4922 struct hlist_node *node;
4923 struct hlist_head *head;
4924
4925 rcu_read_lock();
4926 head = find_swevent_head_rcu(swhash, type, event_id);
4927 if (!head)
4928 goto end;
4929
4930 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4931 if (perf_swevent_match(event, type, event_id, data, regs))
4932 perf_swevent_event(event, nr, data, regs);
4933 }
4934 end:
4935 rcu_read_unlock();
4936 }
4937
4938 int perf_swevent_get_recursion_context(void)
4939 {
4940 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4941
4942 return get_recursion_context(swhash->recursion);
4943 }
4944 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4945
4946 inline void perf_swevent_put_recursion_context(int rctx)
4947 {
4948 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4949
4950 put_recursion_context(swhash->recursion, rctx);
4951 }
4952
4953 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
4954 {
4955 struct perf_sample_data data;
4956 int rctx;
4957
4958 preempt_disable_notrace();
4959 rctx = perf_swevent_get_recursion_context();
4960 if (rctx < 0)
4961 return;
4962
4963 perf_sample_data_init(&data, addr, 0);
4964
4965 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
4966
4967 perf_swevent_put_recursion_context(rctx);
4968 preempt_enable_notrace();
4969 }
4970
4971 static void perf_swevent_read(struct perf_event *event)
4972 {
4973 }
4974
4975 static int perf_swevent_add(struct perf_event *event, int flags)
4976 {
4977 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4978 struct hw_perf_event *hwc = &event->hw;
4979 struct hlist_head *head;
4980
4981 if (is_sampling_event(event)) {
4982 hwc->last_period = hwc->sample_period;
4983 perf_swevent_set_period(event);
4984 }
4985
4986 hwc->state = !(flags & PERF_EF_START);
4987
4988 head = find_swevent_head(swhash, event);
4989 if (WARN_ON_ONCE(!head))
4990 return -EINVAL;
4991
4992 hlist_add_head_rcu(&event->hlist_entry, head);
4993
4994 return 0;
4995 }
4996
4997 static void perf_swevent_del(struct perf_event *event, int flags)
4998 {
4999 hlist_del_rcu(&event->hlist_entry);
5000 }
5001
5002 static void perf_swevent_start(struct perf_event *event, int flags)
5003 {
5004 event->hw.state = 0;
5005 }
5006
5007 static void perf_swevent_stop(struct perf_event *event, int flags)
5008 {
5009 event->hw.state = PERF_HES_STOPPED;
5010 }
5011
5012 /* Deref the hlist from the update side */
5013 static inline struct swevent_hlist *
5014 swevent_hlist_deref(struct swevent_htable *swhash)
5015 {
5016 return rcu_dereference_protected(swhash->swevent_hlist,
5017 lockdep_is_held(&swhash->hlist_mutex));
5018 }
5019
5020 static void swevent_hlist_release(struct swevent_htable *swhash)
5021 {
5022 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5023
5024 if (!hlist)
5025 return;
5026
5027 rcu_assign_pointer(swhash->swevent_hlist, NULL);
5028 kfree_rcu(hlist, rcu_head);
5029 }
5030
5031 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5032 {
5033 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5034
5035 mutex_lock(&swhash->hlist_mutex);
5036
5037 if (!--swhash->hlist_refcount)
5038 swevent_hlist_release(swhash);
5039
5040 mutex_unlock(&swhash->hlist_mutex);
5041 }
5042
5043 static void swevent_hlist_put(struct perf_event *event)
5044 {
5045 int cpu;
5046
5047 if (event->cpu != -1) {
5048 swevent_hlist_put_cpu(event, event->cpu);
5049 return;
5050 }
5051
5052 for_each_possible_cpu(cpu)
5053 swevent_hlist_put_cpu(event, cpu);
5054 }
5055
5056 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5057 {
5058 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5059 int err = 0;
5060
5061 mutex_lock(&swhash->hlist_mutex);
5062
5063 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5064 struct swevent_hlist *hlist;
5065
5066 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5067 if (!hlist) {
5068 err = -ENOMEM;
5069 goto exit;
5070 }
5071 rcu_assign_pointer(swhash->swevent_hlist, hlist);
5072 }
5073 swhash->hlist_refcount++;
5074 exit:
5075 mutex_unlock(&swhash->hlist_mutex);
5076
5077 return err;
5078 }
5079
5080 static int swevent_hlist_get(struct perf_event *event)
5081 {
5082 int err;
5083 int cpu, failed_cpu;
5084
5085 if (event->cpu != -1)
5086 return swevent_hlist_get_cpu(event, event->cpu);
5087
5088 get_online_cpus();
5089 for_each_possible_cpu(cpu) {
5090 err = swevent_hlist_get_cpu(event, cpu);
5091 if (err) {
5092 failed_cpu = cpu;
5093 goto fail;
5094 }
5095 }
5096 put_online_cpus();
5097
5098 return 0;
5099 fail:
5100 for_each_possible_cpu(cpu) {
5101 if (cpu == failed_cpu)
5102 break;
5103 swevent_hlist_put_cpu(event, cpu);
5104 }
5105
5106 put_online_cpus();
5107 return err;
5108 }
5109
5110 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5111
5112 static void sw_perf_event_destroy(struct perf_event *event)
5113 {
5114 u64 event_id = event->attr.config;
5115
5116 WARN_ON(event->parent);
5117
5118 static_key_slow_dec(&perf_swevent_enabled[event_id]);
5119 swevent_hlist_put(event);
5120 }
5121
5122 static int perf_swevent_init(struct perf_event *event)
5123 {
5124 int event_id = event->attr.config;
5125
5126 if (event->attr.type != PERF_TYPE_SOFTWARE)
5127 return -ENOENT;
5128
5129 /*
5130 * no branch sampling for software events
5131 */
5132 if (has_branch_stack(event))
5133 return -EOPNOTSUPP;
5134
5135 switch (event_id) {
5136 case PERF_COUNT_SW_CPU_CLOCK:
5137 case PERF_COUNT_SW_TASK_CLOCK:
5138 return -ENOENT;
5139
5140 default:
5141 break;
5142 }
5143
5144 if (event_id >= PERF_COUNT_SW_MAX)
5145 return -ENOENT;
5146
5147 if (!event->parent) {
5148 int err;
5149
5150 err = swevent_hlist_get(event);
5151 if (err)
5152 return err;
5153
5154 static_key_slow_inc(&perf_swevent_enabled[event_id]);
5155 event->destroy = sw_perf_event_destroy;
5156 }
5157
5158 return 0;
5159 }
5160
5161 static int perf_swevent_event_idx(struct perf_event *event)
5162 {
5163 return 0;
5164 }
5165
5166 static struct pmu perf_swevent = {
5167 .task_ctx_nr = perf_sw_context,
5168
5169 .event_init = perf_swevent_init,
5170 .add = perf_swevent_add,
5171 .del = perf_swevent_del,
5172 .start = perf_swevent_start,
5173 .stop = perf_swevent_stop,
5174 .read = perf_swevent_read,
5175
5176 .event_idx = perf_swevent_event_idx,
5177 };
5178
5179 #ifdef CONFIG_EVENT_TRACING
5180
5181 static int perf_tp_filter_match(struct perf_event *event,
5182 struct perf_sample_data *data)
5183 {
5184 void *record = data->raw->data;
5185
5186 if (likely(!event->filter) || filter_match_preds(event->filter, record))
5187 return 1;
5188 return 0;
5189 }
5190
5191 static int perf_tp_event_match(struct perf_event *event,
5192 struct perf_sample_data *data,
5193 struct pt_regs *regs)
5194 {
5195 if (event->hw.state & PERF_HES_STOPPED)
5196 return 0;
5197 /*
5198 * All tracepoints are from kernel-space.
5199 */
5200 if (event->attr.exclude_kernel)
5201 return 0;
5202
5203 if (!perf_tp_filter_match(event, data))
5204 return 0;
5205
5206 return 1;
5207 }
5208
5209 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5210 struct pt_regs *regs, struct hlist_head *head, int rctx)
5211 {
5212 struct perf_sample_data data;
5213 struct perf_event *event;
5214 struct hlist_node *node;
5215
5216 struct perf_raw_record raw = {
5217 .size = entry_size,
5218 .data = record,
5219 };
5220
5221 perf_sample_data_init(&data, addr, 0);
5222 data.raw = &raw;
5223
5224 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
5225 if (perf_tp_event_match(event, &data, regs))
5226 perf_swevent_event(event, count, &data, regs);
5227 }
5228
5229 perf_swevent_put_recursion_context(rctx);
5230 }
5231 EXPORT_SYMBOL_GPL(perf_tp_event);
5232
5233 static void tp_perf_event_destroy(struct perf_event *event)
5234 {
5235 perf_trace_destroy(event);
5236 }
5237
5238 static int perf_tp_event_init(struct perf_event *event)
5239 {
5240 int err;
5241
5242 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5243 return -ENOENT;
5244
5245 /*
5246 * no branch sampling for tracepoint events
5247 */
5248 if (has_branch_stack(event))
5249 return -EOPNOTSUPP;
5250
5251 err = perf_trace_init(event);
5252 if (err)
5253 return err;
5254
5255 event->destroy = tp_perf_event_destroy;
5256
5257 return 0;
5258 }
5259
5260 static struct pmu perf_tracepoint = {
5261 .task_ctx_nr = perf_sw_context,
5262
5263 .event_init = perf_tp_event_init,
5264 .add = perf_trace_add,
5265 .del = perf_trace_del,
5266 .start = perf_swevent_start,
5267 .stop = perf_swevent_stop,
5268 .read = perf_swevent_read,
5269
5270 .event_idx = perf_swevent_event_idx,
5271 };
5272
5273 static inline void perf_tp_register(void)
5274 {
5275 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5276 }
5277
5278 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5279 {
5280 char *filter_str;
5281 int ret;
5282
5283 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5284 return -EINVAL;
5285
5286 filter_str = strndup_user(arg, PAGE_SIZE);
5287 if (IS_ERR(filter_str))
5288 return PTR_ERR(filter_str);
5289
5290 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5291
5292 kfree(filter_str);
5293 return ret;
5294 }
5295
5296 static void perf_event_free_filter(struct perf_event *event)
5297 {
5298 ftrace_profile_free_filter(event);
5299 }
5300
5301 #else
5302
5303 static inline void perf_tp_register(void)
5304 {
5305 }
5306
5307 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5308 {
5309 return -ENOENT;
5310 }
5311
5312 static void perf_event_free_filter(struct perf_event *event)
5313 {
5314 }
5315
5316 #endif /* CONFIG_EVENT_TRACING */
5317
5318 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5319 void perf_bp_event(struct perf_event *bp, void *data)
5320 {
5321 struct perf_sample_data sample;
5322 struct pt_regs *regs = data;
5323
5324 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
5325
5326 if (!bp->hw.state && !perf_exclude_event(bp, regs))
5327 perf_swevent_event(bp, 1, &sample, regs);
5328 }
5329 #endif
5330
5331 /*
5332 * hrtimer based swevent callback
5333 */
5334
5335 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5336 {
5337 enum hrtimer_restart ret = HRTIMER_RESTART;
5338 struct perf_sample_data data;
5339 struct pt_regs *regs;
5340 struct perf_event *event;
5341 u64 period;
5342
5343 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
5344
5345 if (event->state != PERF_EVENT_STATE_ACTIVE)
5346 return HRTIMER_NORESTART;
5347
5348 event->pmu->read(event);
5349
5350 perf_sample_data_init(&data, 0, event->hw.last_period);
5351 regs = get_irq_regs();
5352
5353 if (regs && !perf_exclude_event(event, regs)) {
5354 if (!(event->attr.exclude_idle && is_idle_task(current)))
5355 if (__perf_event_overflow(event, 1, &data, regs))
5356 ret = HRTIMER_NORESTART;
5357 }
5358
5359 period = max_t(u64, 10000, event->hw.sample_period);
5360 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5361
5362 return ret;
5363 }
5364
5365 static void perf_swevent_start_hrtimer(struct perf_event *event)
5366 {
5367 struct hw_perf_event *hwc = &event->hw;
5368 s64 period;
5369
5370 if (!is_sampling_event(event))
5371 return;
5372
5373 period = local64_read(&hwc->period_left);
5374 if (period) {
5375 if (period < 0)
5376 period = 10000;
5377
5378 local64_set(&hwc->period_left, 0);
5379 } else {
5380 period = max_t(u64, 10000, hwc->sample_period);
5381 }
5382 __hrtimer_start_range_ns(&hwc->hrtimer,
5383 ns_to_ktime(period), 0,
5384 HRTIMER_MODE_REL_PINNED, 0);
5385 }
5386
5387 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5388 {
5389 struct hw_perf_event *hwc = &event->hw;
5390
5391 if (is_sampling_event(event)) {
5392 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
5393 local64_set(&hwc->period_left, ktime_to_ns(remaining));
5394
5395 hrtimer_cancel(&hwc->hrtimer);
5396 }
5397 }
5398
5399 static void perf_swevent_init_hrtimer(struct perf_event *event)
5400 {
5401 struct hw_perf_event *hwc = &event->hw;
5402
5403 if (!is_sampling_event(event))
5404 return;
5405
5406 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5407 hwc->hrtimer.function = perf_swevent_hrtimer;
5408
5409 /*
5410 * Since hrtimers have a fixed rate, we can do a static freq->period
5411 * mapping and avoid the whole period adjust feedback stuff.
5412 */
5413 if (event->attr.freq) {
5414 long freq = event->attr.sample_freq;
5415
5416 event->attr.sample_period = NSEC_PER_SEC / freq;
5417 hwc->sample_period = event->attr.sample_period;
5418 local64_set(&hwc->period_left, hwc->sample_period);
5419 event->attr.freq = 0;
5420 }
5421 }
5422
5423 /*
5424 * Software event: cpu wall time clock
5425 */
5426
5427 static void cpu_clock_event_update(struct perf_event *event)
5428 {
5429 s64 prev;
5430 u64 now;
5431
5432 now = local_clock();
5433 prev = local64_xchg(&event->hw.prev_count, now);
5434 local64_add(now - prev, &event->count);
5435 }
5436
5437 static void cpu_clock_event_start(struct perf_event *event, int flags)
5438 {
5439 local64_set(&event->hw.prev_count, local_clock());
5440 perf_swevent_start_hrtimer(event);
5441 }
5442
5443 static void cpu_clock_event_stop(struct perf_event *event, int flags)
5444 {
5445 perf_swevent_cancel_hrtimer(event);
5446 cpu_clock_event_update(event);
5447 }
5448
5449 static int cpu_clock_event_add(struct perf_event *event, int flags)
5450 {
5451 if (flags & PERF_EF_START)
5452 cpu_clock_event_start(event, flags);
5453
5454 return 0;
5455 }
5456
5457 static void cpu_clock_event_del(struct perf_event *event, int flags)
5458 {
5459 cpu_clock_event_stop(event, flags);
5460 }
5461
5462 static void cpu_clock_event_read(struct perf_event *event)
5463 {
5464 cpu_clock_event_update(event);
5465 }
5466
5467 static int cpu_clock_event_init(struct perf_event *event)
5468 {
5469 if (event->attr.type != PERF_TYPE_SOFTWARE)
5470 return -ENOENT;
5471
5472 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5473 return -ENOENT;
5474
5475 /*
5476 * no branch sampling for software events
5477 */
5478 if (has_branch_stack(event))
5479 return -EOPNOTSUPP;
5480
5481 perf_swevent_init_hrtimer(event);
5482
5483 return 0;
5484 }
5485
5486 static struct pmu perf_cpu_clock = {
5487 .task_ctx_nr = perf_sw_context,
5488
5489 .event_init = cpu_clock_event_init,
5490 .add = cpu_clock_event_add,
5491 .del = cpu_clock_event_del,
5492 .start = cpu_clock_event_start,
5493 .stop = cpu_clock_event_stop,
5494 .read = cpu_clock_event_read,
5495
5496 .event_idx = perf_swevent_event_idx,
5497 };
5498
5499 /*
5500 * Software event: task time clock
5501 */
5502
5503 static void task_clock_event_update(struct perf_event *event, u64 now)
5504 {
5505 u64 prev;
5506 s64 delta;
5507
5508 prev = local64_xchg(&event->hw.prev_count, now);
5509 delta = now - prev;
5510 local64_add(delta, &event->count);
5511 }
5512
5513 static void task_clock_event_start(struct perf_event *event, int flags)
5514 {
5515 local64_set(&event->hw.prev_count, event->ctx->time);
5516 perf_swevent_start_hrtimer(event);
5517 }
5518
5519 static void task_clock_event_stop(struct perf_event *event, int flags)
5520 {
5521 perf_swevent_cancel_hrtimer(event);
5522 task_clock_event_update(event, event->ctx->time);
5523 }
5524
5525 static int task_clock_event_add(struct perf_event *event, int flags)
5526 {
5527 if (flags & PERF_EF_START)
5528 task_clock_event_start(event, flags);
5529
5530 return 0;
5531 }
5532
5533 static void task_clock_event_del(struct perf_event *event, int flags)
5534 {
5535 task_clock_event_stop(event, PERF_EF_UPDATE);
5536 }
5537
5538 static void task_clock_event_read(struct perf_event *event)
5539 {
5540 u64 now = perf_clock();
5541 u64 delta = now - event->ctx->timestamp;
5542 u64 time = event->ctx->time + delta;
5543
5544 task_clock_event_update(event, time);
5545 }
5546
5547 static int task_clock_event_init(struct perf_event *event)
5548 {
5549 if (event->attr.type != PERF_TYPE_SOFTWARE)
5550 return -ENOENT;
5551
5552 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5553 return -ENOENT;
5554
5555 /*
5556 * no branch sampling for software events
5557 */
5558 if (has_branch_stack(event))
5559 return -EOPNOTSUPP;
5560
5561 perf_swevent_init_hrtimer(event);
5562
5563 return 0;
5564 }
5565
5566 static struct pmu perf_task_clock = {
5567 .task_ctx_nr = perf_sw_context,
5568
5569 .event_init = task_clock_event_init,
5570 .add = task_clock_event_add,
5571 .del = task_clock_event_del,
5572 .start = task_clock_event_start,
5573 .stop = task_clock_event_stop,
5574 .read = task_clock_event_read,
5575
5576 .event_idx = perf_swevent_event_idx,
5577 };
5578
5579 static void perf_pmu_nop_void(struct pmu *pmu)
5580 {
5581 }
5582
5583 static int perf_pmu_nop_int(struct pmu *pmu)
5584 {
5585 return 0;
5586 }
5587
5588 static void perf_pmu_start_txn(struct pmu *pmu)
5589 {
5590 perf_pmu_disable(pmu);
5591 }
5592
5593 static int perf_pmu_commit_txn(struct pmu *pmu)
5594 {
5595 perf_pmu_enable(pmu);
5596 return 0;
5597 }
5598
5599 static void perf_pmu_cancel_txn(struct pmu *pmu)
5600 {
5601 perf_pmu_enable(pmu);
5602 }
5603
5604 static int perf_event_idx_default(struct perf_event *event)
5605 {
5606 return event->hw.idx + 1;
5607 }
5608
5609 /*
5610 * Ensures all contexts with the same task_ctx_nr have the same
5611 * pmu_cpu_context too.
5612 */
5613 static void *find_pmu_context(int ctxn)
5614 {
5615 struct pmu *pmu;
5616
5617 if (ctxn < 0)
5618 return NULL;
5619
5620 list_for_each_entry(pmu, &pmus, entry) {
5621 if (pmu->task_ctx_nr == ctxn)
5622 return pmu->pmu_cpu_context;
5623 }
5624
5625 return NULL;
5626 }
5627
5628 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5629 {
5630 int cpu;
5631
5632 for_each_possible_cpu(cpu) {
5633 struct perf_cpu_context *cpuctx;
5634
5635 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5636
5637 if (cpuctx->active_pmu == old_pmu)
5638 cpuctx->active_pmu = pmu;
5639 }
5640 }
5641
5642 static void free_pmu_context(struct pmu *pmu)
5643 {
5644 struct pmu *i;
5645
5646 mutex_lock(&pmus_lock);
5647 /*
5648 * Like a real lame refcount.
5649 */
5650 list_for_each_entry(i, &pmus, entry) {
5651 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
5652 update_pmu_context(i, pmu);
5653 goto out;
5654 }
5655 }
5656
5657 free_percpu(pmu->pmu_cpu_context);
5658 out:
5659 mutex_unlock(&pmus_lock);
5660 }
5661 static struct idr pmu_idr;
5662
5663 static ssize_t
5664 type_show(struct device *dev, struct device_attribute *attr, char *page)
5665 {
5666 struct pmu *pmu = dev_get_drvdata(dev);
5667
5668 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
5669 }
5670
5671 static struct device_attribute pmu_dev_attrs[] = {
5672 __ATTR_RO(type),
5673 __ATTR_NULL,
5674 };
5675
5676 static int pmu_bus_running;
5677 static struct bus_type pmu_bus = {
5678 .name = "event_source",
5679 .dev_attrs = pmu_dev_attrs,
5680 };
5681
5682 static void pmu_dev_release(struct device *dev)
5683 {
5684 kfree(dev);
5685 }
5686
5687 static int pmu_dev_alloc(struct pmu *pmu)
5688 {
5689 int ret = -ENOMEM;
5690
5691 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
5692 if (!pmu->dev)
5693 goto out;
5694
5695 pmu->dev->groups = pmu->attr_groups;
5696 device_initialize(pmu->dev);
5697 ret = dev_set_name(pmu->dev, "%s", pmu->name);
5698 if (ret)
5699 goto free_dev;
5700
5701 dev_set_drvdata(pmu->dev, pmu);
5702 pmu->dev->bus = &pmu_bus;
5703 pmu->dev->release = pmu_dev_release;
5704 ret = device_add(pmu->dev);
5705 if (ret)
5706 goto free_dev;
5707
5708 out:
5709 return ret;
5710
5711 free_dev:
5712 put_device(pmu->dev);
5713 goto out;
5714 }
5715
5716 static struct lock_class_key cpuctx_mutex;
5717 static struct lock_class_key cpuctx_lock;
5718
5719 int perf_pmu_register(struct pmu *pmu, char *name, int type)
5720 {
5721 int cpu, ret;
5722
5723 mutex_lock(&pmus_lock);
5724 ret = -ENOMEM;
5725 pmu->pmu_disable_count = alloc_percpu(int);
5726 if (!pmu->pmu_disable_count)
5727 goto unlock;
5728
5729 pmu->type = -1;
5730 if (!name)
5731 goto skip_type;
5732 pmu->name = name;
5733
5734 if (type < 0) {
5735 int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
5736 if (!err)
5737 goto free_pdc;
5738
5739 err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
5740 if (err) {
5741 ret = err;
5742 goto free_pdc;
5743 }
5744 }
5745 pmu->type = type;
5746
5747 if (pmu_bus_running) {
5748 ret = pmu_dev_alloc(pmu);
5749 if (ret)
5750 goto free_idr;
5751 }
5752
5753 skip_type:
5754 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5755 if (pmu->pmu_cpu_context)
5756 goto got_cpu_context;
5757
5758 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5759 if (!pmu->pmu_cpu_context)
5760 goto free_dev;
5761
5762 for_each_possible_cpu(cpu) {
5763 struct perf_cpu_context *cpuctx;
5764
5765 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5766 __perf_event_init_context(&cpuctx->ctx);
5767 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
5768 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
5769 cpuctx->ctx.type = cpu_context;
5770 cpuctx->ctx.pmu = pmu;
5771 cpuctx->jiffies_interval = 1;
5772 INIT_LIST_HEAD(&cpuctx->rotation_list);
5773 cpuctx->active_pmu = pmu;
5774 }
5775
5776 got_cpu_context:
5777 if (!pmu->start_txn) {
5778 if (pmu->pmu_enable) {
5779 /*
5780 * If we have pmu_enable/pmu_disable calls, install
5781 * transaction stubs that use that to try and batch
5782 * hardware accesses.
5783 */
5784 pmu->start_txn = perf_pmu_start_txn;
5785 pmu->commit_txn = perf_pmu_commit_txn;
5786 pmu->cancel_txn = perf_pmu_cancel_txn;
5787 } else {
5788 pmu->start_txn = perf_pmu_nop_void;
5789 pmu->commit_txn = perf_pmu_nop_int;
5790 pmu->cancel_txn = perf_pmu_nop_void;
5791 }
5792 }
5793
5794 if (!pmu->pmu_enable) {
5795 pmu->pmu_enable = perf_pmu_nop_void;
5796 pmu->pmu_disable = perf_pmu_nop_void;
5797 }
5798
5799 if (!pmu->event_idx)
5800 pmu->event_idx = perf_event_idx_default;
5801
5802 list_add_rcu(&pmu->entry, &pmus);
5803 ret = 0;
5804 unlock:
5805 mutex_unlock(&pmus_lock);
5806
5807 return ret;
5808
5809 free_dev:
5810 device_del(pmu->dev);
5811 put_device(pmu->dev);
5812
5813 free_idr:
5814 if (pmu->type >= PERF_TYPE_MAX)
5815 idr_remove(&pmu_idr, pmu->type);
5816
5817 free_pdc:
5818 free_percpu(pmu->pmu_disable_count);
5819 goto unlock;
5820 }
5821
5822 void perf_pmu_unregister(struct pmu *pmu)
5823 {
5824 mutex_lock(&pmus_lock);
5825 list_del_rcu(&pmu->entry);
5826 mutex_unlock(&pmus_lock);
5827
5828 /*
5829 * We dereference the pmu list under both SRCU and regular RCU, so
5830 * synchronize against both of those.
5831 */
5832 synchronize_srcu(&pmus_srcu);
5833 synchronize_rcu();
5834
5835 free_percpu(pmu->pmu_disable_count);
5836 if (pmu->type >= PERF_TYPE_MAX)
5837 idr_remove(&pmu_idr, pmu->type);
5838 device_del(pmu->dev);
5839 put_device(pmu->dev);
5840 free_pmu_context(pmu);
5841 }
5842
5843 struct pmu *perf_init_event(struct perf_event *event)
5844 {
5845 struct pmu *pmu = NULL;
5846 int idx;
5847 int ret;
5848
5849 idx = srcu_read_lock(&pmus_srcu);
5850
5851 rcu_read_lock();
5852 pmu = idr_find(&pmu_idr, event->attr.type);
5853 rcu_read_unlock();
5854 if (pmu) {
5855 event->pmu = pmu;
5856 ret = pmu->event_init(event);
5857 if (ret)
5858 pmu = ERR_PTR(ret);
5859 goto unlock;
5860 }
5861
5862 list_for_each_entry_rcu(pmu, &pmus, entry) {
5863 event->pmu = pmu;
5864 ret = pmu->event_init(event);
5865 if (!ret)
5866 goto unlock;
5867
5868 if (ret != -ENOENT) {
5869 pmu = ERR_PTR(ret);
5870 goto unlock;
5871 }
5872 }
5873 pmu = ERR_PTR(-ENOENT);
5874 unlock:
5875 srcu_read_unlock(&pmus_srcu, idx);
5876
5877 return pmu;
5878 }
5879
5880 /*
5881 * Allocate and initialize a event structure
5882 */
5883 static struct perf_event *
5884 perf_event_alloc(struct perf_event_attr *attr, int cpu,
5885 struct task_struct *task,
5886 struct perf_event *group_leader,
5887 struct perf_event *parent_event,
5888 perf_overflow_handler_t overflow_handler,
5889 void *context)
5890 {
5891 struct pmu *pmu;
5892 struct perf_event *event;
5893 struct hw_perf_event *hwc;
5894 long err;
5895
5896 if ((unsigned)cpu >= nr_cpu_ids) {
5897 if (!task || cpu != -1)
5898 return ERR_PTR(-EINVAL);
5899 }
5900
5901 event = kzalloc(sizeof(*event), GFP_KERNEL);
5902 if (!event)
5903 return ERR_PTR(-ENOMEM);
5904
5905 /*
5906 * Single events are their own group leaders, with an
5907 * empty sibling list:
5908 */
5909 if (!group_leader)
5910 group_leader = event;
5911
5912 mutex_init(&event->child_mutex);
5913 INIT_LIST_HEAD(&event->child_list);
5914
5915 INIT_LIST_HEAD(&event->group_entry);
5916 INIT_LIST_HEAD(&event->event_entry);
5917 INIT_LIST_HEAD(&event->sibling_list);
5918 INIT_LIST_HEAD(&event->rb_entry);
5919
5920 init_waitqueue_head(&event->waitq);
5921 init_irq_work(&event->pending, perf_pending_event);
5922
5923 mutex_init(&event->mmap_mutex);
5924
5925 event->cpu = cpu;
5926 event->attr = *attr;
5927 event->group_leader = group_leader;
5928 event->pmu = NULL;
5929 event->oncpu = -1;
5930
5931 event->parent = parent_event;
5932
5933 event->ns = get_pid_ns(current->nsproxy->pid_ns);
5934 event->id = atomic64_inc_return(&perf_event_id);
5935
5936 event->state = PERF_EVENT_STATE_INACTIVE;
5937
5938 if (task) {
5939 event->attach_state = PERF_ATTACH_TASK;
5940 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5941 /*
5942 * hw_breakpoint is a bit difficult here..
5943 */
5944 if (attr->type == PERF_TYPE_BREAKPOINT)
5945 event->hw.bp_target = task;
5946 #endif
5947 }
5948
5949 if (!overflow_handler && parent_event) {
5950 overflow_handler = parent_event->overflow_handler;
5951 context = parent_event->overflow_handler_context;
5952 }
5953
5954 event->overflow_handler = overflow_handler;
5955 event->overflow_handler_context = context;
5956
5957 if (attr->disabled)
5958 event->state = PERF_EVENT_STATE_OFF;
5959
5960 pmu = NULL;
5961
5962 hwc = &event->hw;
5963 hwc->sample_period = attr->sample_period;
5964 if (attr->freq && attr->sample_freq)
5965 hwc->sample_period = 1;
5966 hwc->last_period = hwc->sample_period;
5967
5968 local64_set(&hwc->period_left, hwc->sample_period);
5969
5970 /*
5971 * we currently do not support PERF_FORMAT_GROUP on inherited events
5972 */
5973 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5974 goto done;
5975
5976 pmu = perf_init_event(event);
5977
5978 done:
5979 err = 0;
5980 if (!pmu)
5981 err = -EINVAL;
5982 else if (IS_ERR(pmu))
5983 err = PTR_ERR(pmu);
5984
5985 if (err) {
5986 if (event->ns)
5987 put_pid_ns(event->ns);
5988 kfree(event);
5989 return ERR_PTR(err);
5990 }
5991
5992 if (!event->parent) {
5993 if (event->attach_state & PERF_ATTACH_TASK)
5994 static_key_slow_inc(&perf_sched_events.key);
5995 if (event->attr.mmap || event->attr.mmap_data)
5996 atomic_inc(&nr_mmap_events);
5997 if (event->attr.comm)
5998 atomic_inc(&nr_comm_events);
5999 if (event->attr.task)
6000 atomic_inc(&nr_task_events);
6001 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6002 err = get_callchain_buffers();
6003 if (err) {
6004 free_event(event);
6005 return ERR_PTR(err);
6006 }
6007 }
6008 if (has_branch_stack(event)) {
6009 static_key_slow_inc(&perf_sched_events.key);
6010 if (!(event->attach_state & PERF_ATTACH_TASK))
6011 atomic_inc(&per_cpu(perf_branch_stack_events,
6012 event->cpu));
6013 }
6014 }
6015
6016 return event;
6017 }
6018
6019 static int perf_copy_attr(struct perf_event_attr __user *uattr,
6020 struct perf_event_attr *attr)
6021 {
6022 u32 size;
6023 int ret;
6024
6025 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6026 return -EFAULT;
6027
6028 /*
6029 * zero the full structure, so that a short copy will be nice.
6030 */
6031 memset(attr, 0, sizeof(*attr));
6032
6033 ret = get_user(size, &uattr->size);
6034 if (ret)
6035 return ret;
6036
6037 if (size > PAGE_SIZE) /* silly large */
6038 goto err_size;
6039
6040 if (!size) /* abi compat */
6041 size = PERF_ATTR_SIZE_VER0;
6042
6043 if (size < PERF_ATTR_SIZE_VER0)
6044 goto err_size;
6045
6046 /*
6047 * If we're handed a bigger struct than we know of,
6048 * ensure all the unknown bits are 0 - i.e. new
6049 * user-space does not rely on any kernel feature
6050 * extensions we dont know about yet.
6051 */
6052 if (size > sizeof(*attr)) {
6053 unsigned char __user *addr;
6054 unsigned char __user *end;
6055 unsigned char val;
6056
6057 addr = (void __user *)uattr + sizeof(*attr);
6058 end = (void __user *)uattr + size;
6059
6060 for (; addr < end; addr++) {
6061 ret = get_user(val, addr);
6062 if (ret)
6063 return ret;
6064 if (val)
6065 goto err_size;
6066 }
6067 size = sizeof(*attr);
6068 }
6069
6070 ret = copy_from_user(attr, uattr, size);
6071 if (ret)
6072 return -EFAULT;
6073
6074 if (attr->__reserved_1)
6075 return -EINVAL;
6076
6077 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6078 return -EINVAL;
6079
6080 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6081 return -EINVAL;
6082
6083 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6084 u64 mask = attr->branch_sample_type;
6085
6086 /* only using defined bits */
6087 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6088 return -EINVAL;
6089
6090 /* at least one branch bit must be set */
6091 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6092 return -EINVAL;
6093
6094 /* kernel level capture: check permissions */
6095 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6096 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6097 return -EACCES;
6098
6099 /* propagate priv level, when not set for branch */
6100 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6101
6102 /* exclude_kernel checked on syscall entry */
6103 if (!attr->exclude_kernel)
6104 mask |= PERF_SAMPLE_BRANCH_KERNEL;
6105
6106 if (!attr->exclude_user)
6107 mask |= PERF_SAMPLE_BRANCH_USER;
6108
6109 if (!attr->exclude_hv)
6110 mask |= PERF_SAMPLE_BRANCH_HV;
6111 /*
6112 * adjust user setting (for HW filter setup)
6113 */
6114 attr->branch_sample_type = mask;
6115 }
6116 }
6117 out:
6118 return ret;
6119
6120 err_size:
6121 put_user(sizeof(*attr), &uattr->size);
6122 ret = -E2BIG;
6123 goto out;
6124 }
6125
6126 static int
6127 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6128 {
6129 struct ring_buffer *rb = NULL, *old_rb = NULL;
6130 int ret = -EINVAL;
6131
6132 if (!output_event)
6133 goto set;
6134
6135 /* don't allow circular references */
6136 if (event == output_event)
6137 goto out;
6138
6139 /*
6140 * Don't allow cross-cpu buffers
6141 */
6142 if (output_event->cpu != event->cpu)
6143 goto out;
6144
6145 /*
6146 * If its not a per-cpu rb, it must be the same task.
6147 */
6148 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6149 goto out;
6150
6151 set:
6152 mutex_lock(&event->mmap_mutex);
6153 /* Can't redirect output if we've got an active mmap() */
6154 if (atomic_read(&event->mmap_count))
6155 goto unlock;
6156
6157 if (output_event) {
6158 /* get the rb we want to redirect to */
6159 rb = ring_buffer_get(output_event);
6160 if (!rb)
6161 goto unlock;
6162 }
6163
6164 old_rb = event->rb;
6165 rcu_assign_pointer(event->rb, rb);
6166 if (old_rb)
6167 ring_buffer_detach(event, old_rb);
6168 ret = 0;
6169 unlock:
6170 mutex_unlock(&event->mmap_mutex);
6171
6172 if (old_rb)
6173 ring_buffer_put(old_rb);
6174 out:
6175 return ret;
6176 }
6177
6178 /**
6179 * sys_perf_event_open - open a performance event, associate it to a task/cpu
6180 *
6181 * @attr_uptr: event_id type attributes for monitoring/sampling
6182 * @pid: target pid
6183 * @cpu: target cpu
6184 * @group_fd: group leader event fd
6185 */
6186 SYSCALL_DEFINE5(perf_event_open,
6187 struct perf_event_attr __user *, attr_uptr,
6188 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
6189 {
6190 struct perf_event *group_leader = NULL, *output_event = NULL;
6191 struct perf_event *event, *sibling;
6192 struct perf_event_attr attr;
6193 struct perf_event_context *ctx;
6194 struct file *event_file = NULL;
6195 struct file *group_file = NULL;
6196 struct task_struct *task = NULL;
6197 struct pmu *pmu;
6198 int event_fd;
6199 int move_group = 0;
6200 int fput_needed = 0;
6201 int err;
6202
6203 /* for future expandability... */
6204 if (flags & ~PERF_FLAG_ALL)
6205 return -EINVAL;
6206
6207 err = perf_copy_attr(attr_uptr, &attr);
6208 if (err)
6209 return err;
6210
6211 if (!attr.exclude_kernel) {
6212 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6213 return -EACCES;
6214 }
6215
6216 if (attr.freq) {
6217 if (attr.sample_freq > sysctl_perf_event_sample_rate)
6218 return -EINVAL;
6219 }
6220
6221 /*
6222 * In cgroup mode, the pid argument is used to pass the fd
6223 * opened to the cgroup directory in cgroupfs. The cpu argument
6224 * designates the cpu on which to monitor threads from that
6225 * cgroup.
6226 */
6227 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6228 return -EINVAL;
6229
6230 event_fd = get_unused_fd_flags(O_RDWR);
6231 if (event_fd < 0)
6232 return event_fd;
6233
6234 if (group_fd != -1) {
6235 group_leader = perf_fget_light(group_fd, &fput_needed);
6236 if (IS_ERR(group_leader)) {
6237 err = PTR_ERR(group_leader);
6238 goto err_fd;
6239 }
6240 group_file = group_leader->filp;
6241 if (flags & PERF_FLAG_FD_OUTPUT)
6242 output_event = group_leader;
6243 if (flags & PERF_FLAG_FD_NO_GROUP)
6244 group_leader = NULL;
6245 }
6246
6247 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6248 task = find_lively_task_by_vpid(pid);
6249 if (IS_ERR(task)) {
6250 err = PTR_ERR(task);
6251 goto err_group_fd;
6252 }
6253 }
6254
6255 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6256 NULL, NULL);
6257 if (IS_ERR(event)) {
6258 err = PTR_ERR(event);
6259 goto err_task;
6260 }
6261
6262 if (flags & PERF_FLAG_PID_CGROUP) {
6263 err = perf_cgroup_connect(pid, event, &attr, group_leader);
6264 if (err)
6265 goto err_alloc;
6266 /*
6267 * one more event:
6268 * - that has cgroup constraint on event->cpu
6269 * - that may need work on context switch
6270 */
6271 atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
6272 static_key_slow_inc(&perf_sched_events.key);
6273 }
6274
6275 /*
6276 * Special case software events and allow them to be part of
6277 * any hardware group.
6278 */
6279 pmu = event->pmu;
6280
6281 if (group_leader &&
6282 (is_software_event(event) != is_software_event(group_leader))) {
6283 if (is_software_event(event)) {
6284 /*
6285 * If event and group_leader are not both a software
6286 * event, and event is, then group leader is not.
6287 *
6288 * Allow the addition of software events to !software
6289 * groups, this is safe because software events never
6290 * fail to schedule.
6291 */
6292 pmu = group_leader->pmu;
6293 } else if (is_software_event(group_leader) &&
6294 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6295 /*
6296 * In case the group is a pure software group, and we
6297 * try to add a hardware event, move the whole group to
6298 * the hardware context.
6299 */
6300 move_group = 1;
6301 }
6302 }
6303
6304 /*
6305 * Get the target context (task or percpu):
6306 */
6307 ctx = find_get_context(pmu, task, cpu);
6308 if (IS_ERR(ctx)) {
6309 err = PTR_ERR(ctx);
6310 goto err_alloc;
6311 }
6312
6313 if (task) {
6314 put_task_struct(task);
6315 task = NULL;
6316 }
6317
6318 /*
6319 * Look up the group leader (we will attach this event to it):
6320 */
6321 if (group_leader) {
6322 err = -EINVAL;
6323
6324 /*
6325 * Do not allow a recursive hierarchy (this new sibling
6326 * becoming part of another group-sibling):
6327 */
6328 if (group_leader->group_leader != group_leader)
6329 goto err_context;
6330 /*
6331 * Do not allow to attach to a group in a different
6332 * task or CPU context:
6333 */
6334 if (move_group) {
6335 if (group_leader->ctx->type != ctx->type)
6336 goto err_context;
6337 } else {
6338 if (group_leader->ctx != ctx)
6339 goto err_context;
6340 }
6341
6342 /*
6343 * Only a group leader can be exclusive or pinned
6344 */
6345 if (attr.exclusive || attr.pinned)
6346 goto err_context;
6347 }
6348
6349 if (output_event) {
6350 err = perf_event_set_output(event, output_event);
6351 if (err)
6352 goto err_context;
6353 }
6354
6355 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
6356 if (IS_ERR(event_file)) {
6357 err = PTR_ERR(event_file);
6358 goto err_context;
6359 }
6360
6361 if (move_group) {
6362 struct perf_event_context *gctx = group_leader->ctx;
6363
6364 mutex_lock(&gctx->mutex);
6365 perf_remove_from_context(group_leader);
6366 list_for_each_entry(sibling, &group_leader->sibling_list,
6367 group_entry) {
6368 perf_remove_from_context(sibling);
6369 put_ctx(gctx);
6370 }
6371 mutex_unlock(&gctx->mutex);
6372 put_ctx(gctx);
6373 }
6374
6375 event->filp = event_file;
6376 WARN_ON_ONCE(ctx->parent_ctx);
6377 mutex_lock(&ctx->mutex);
6378
6379 if (move_group) {
6380 perf_install_in_context(ctx, group_leader, cpu);
6381 get_ctx(ctx);
6382 list_for_each_entry(sibling, &group_leader->sibling_list,
6383 group_entry) {
6384 perf_install_in_context(ctx, sibling, cpu);
6385 get_ctx(ctx);
6386 }
6387 }
6388
6389 perf_install_in_context(ctx, event, cpu);
6390 ++ctx->generation;
6391 perf_unpin_context(ctx);
6392 mutex_unlock(&ctx->mutex);
6393
6394 event->owner = current;
6395
6396 mutex_lock(&current->perf_event_mutex);
6397 list_add_tail(&event->owner_entry, &current->perf_event_list);
6398 mutex_unlock(&current->perf_event_mutex);
6399
6400 /*
6401 * Precalculate sample_data sizes
6402 */
6403 perf_event__header_size(event);
6404 perf_event__id_header_size(event);
6405
6406 /*
6407 * Drop the reference on the group_event after placing the
6408 * new event on the sibling_list. This ensures destruction
6409 * of the group leader will find the pointer to itself in
6410 * perf_group_detach().
6411 */
6412 fput_light(group_file, fput_needed);
6413 fd_install(event_fd, event_file);
6414 return event_fd;
6415
6416 err_context:
6417 perf_unpin_context(ctx);
6418 put_ctx(ctx);
6419 err_alloc:
6420 free_event(event);
6421 err_task:
6422 if (task)
6423 put_task_struct(task);
6424 err_group_fd:
6425 fput_light(group_file, fput_needed);
6426 err_fd:
6427 put_unused_fd(event_fd);
6428 return err;
6429 }
6430
6431 /**
6432 * perf_event_create_kernel_counter
6433 *
6434 * @attr: attributes of the counter to create
6435 * @cpu: cpu in which the counter is bound
6436 * @task: task to profile (NULL for percpu)
6437 */
6438 struct perf_event *
6439 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
6440 struct task_struct *task,
6441 perf_overflow_handler_t overflow_handler,
6442 void *context)
6443 {
6444 struct perf_event_context *ctx;
6445 struct perf_event *event;
6446 int err;
6447
6448 /*
6449 * Get the target context (task or percpu):
6450 */
6451
6452 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
6453 overflow_handler, context);
6454 if (IS_ERR(event)) {
6455 err = PTR_ERR(event);
6456 goto err;
6457 }
6458
6459 ctx = find_get_context(event->pmu, task, cpu);
6460 if (IS_ERR(ctx)) {
6461 err = PTR_ERR(ctx);
6462 goto err_free;
6463 }
6464
6465 event->filp = NULL;
6466 WARN_ON_ONCE(ctx->parent_ctx);
6467 mutex_lock(&ctx->mutex);
6468 perf_install_in_context(ctx, event, cpu);
6469 ++ctx->generation;
6470 perf_unpin_context(ctx);
6471 mutex_unlock(&ctx->mutex);
6472
6473 return event;
6474
6475 err_free:
6476 free_event(event);
6477 err:
6478 return ERR_PTR(err);
6479 }
6480 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6481
6482 static void sync_child_event(struct perf_event *child_event,
6483 struct task_struct *child)
6484 {
6485 struct perf_event *parent_event = child_event->parent;
6486 u64 child_val;
6487
6488 if (child_event->attr.inherit_stat)
6489 perf_event_read_event(child_event, child);
6490
6491 child_val = perf_event_count(child_event);
6492
6493 /*
6494 * Add back the child's count to the parent's count:
6495 */
6496 atomic64_add(child_val, &parent_event->child_count);
6497 atomic64_add(child_event->total_time_enabled,
6498 &parent_event->child_total_time_enabled);
6499 atomic64_add(child_event->total_time_running,
6500 &parent_event->child_total_time_running);
6501
6502 /*
6503 * Remove this event from the parent's list
6504 */
6505 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6506 mutex_lock(&parent_event->child_mutex);
6507 list_del_init(&child_event->child_list);
6508 mutex_unlock(&parent_event->child_mutex);
6509
6510 /*
6511 * Release the parent event, if this was the last
6512 * reference to it.
6513 */
6514 fput(parent_event->filp);
6515 }
6516
6517 static void
6518 __perf_event_exit_task(struct perf_event *child_event,
6519 struct perf_event_context *child_ctx,
6520 struct task_struct *child)
6521 {
6522 if (child_event->parent) {
6523 raw_spin_lock_irq(&child_ctx->lock);
6524 perf_group_detach(child_event);
6525 raw_spin_unlock_irq(&child_ctx->lock);
6526 }
6527
6528 perf_remove_from_context(child_event);
6529
6530 /*
6531 * It can happen that the parent exits first, and has events
6532 * that are still around due to the child reference. These
6533 * events need to be zapped.
6534 */
6535 if (child_event->parent) {
6536 sync_child_event(child_event, child);
6537 free_event(child_event);
6538 }
6539 }
6540
6541 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6542 {
6543 struct perf_event *child_event, *tmp;
6544 struct perf_event_context *child_ctx;
6545 unsigned long flags;
6546
6547 if (likely(!child->perf_event_ctxp[ctxn])) {
6548 perf_event_task(child, NULL, 0);
6549 return;
6550 }
6551
6552 local_irq_save(flags);
6553 /*
6554 * We can't reschedule here because interrupts are disabled,
6555 * and either child is current or it is a task that can't be
6556 * scheduled, so we are now safe from rescheduling changing
6557 * our context.
6558 */
6559 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6560
6561 /*
6562 * Take the context lock here so that if find_get_context is
6563 * reading child->perf_event_ctxp, we wait until it has
6564 * incremented the context's refcount before we do put_ctx below.
6565 */
6566 raw_spin_lock(&child_ctx->lock);
6567 task_ctx_sched_out(child_ctx);
6568 child->perf_event_ctxp[ctxn] = NULL;
6569 /*
6570 * If this context is a clone; unclone it so it can't get
6571 * swapped to another process while we're removing all
6572 * the events from it.
6573 */
6574 unclone_ctx(child_ctx);
6575 update_context_time(child_ctx);
6576 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6577
6578 /*
6579 * Report the task dead after unscheduling the events so that we
6580 * won't get any samples after PERF_RECORD_EXIT. We can however still
6581 * get a few PERF_RECORD_READ events.
6582 */
6583 perf_event_task(child, child_ctx, 0);
6584
6585 /*
6586 * We can recurse on the same lock type through:
6587 *
6588 * __perf_event_exit_task()
6589 * sync_child_event()
6590 * fput(parent_event->filp)
6591 * perf_release()
6592 * mutex_lock(&ctx->mutex)
6593 *
6594 * But since its the parent context it won't be the same instance.
6595 */
6596 mutex_lock(&child_ctx->mutex);
6597
6598 again:
6599 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
6600 group_entry)
6601 __perf_event_exit_task(child_event, child_ctx, child);
6602
6603 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6604 group_entry)
6605 __perf_event_exit_task(child_event, child_ctx, child);
6606
6607 /*
6608 * If the last event was a group event, it will have appended all
6609 * its siblings to the list, but we obtained 'tmp' before that which
6610 * will still point to the list head terminating the iteration.
6611 */
6612 if (!list_empty(&child_ctx->pinned_groups) ||
6613 !list_empty(&child_ctx->flexible_groups))
6614 goto again;
6615
6616 mutex_unlock(&child_ctx->mutex);
6617
6618 put_ctx(child_ctx);
6619 }
6620
6621 /*
6622 * When a child task exits, feed back event values to parent events.
6623 */
6624 void perf_event_exit_task(struct task_struct *child)
6625 {
6626 struct perf_event *event, *tmp;
6627 int ctxn;
6628
6629 mutex_lock(&child->perf_event_mutex);
6630 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
6631 owner_entry) {
6632 list_del_init(&event->owner_entry);
6633
6634 /*
6635 * Ensure the list deletion is visible before we clear
6636 * the owner, closes a race against perf_release() where
6637 * we need to serialize on the owner->perf_event_mutex.
6638 */
6639 smp_wmb();
6640 event->owner = NULL;
6641 }
6642 mutex_unlock(&child->perf_event_mutex);
6643
6644 for_each_task_context_nr(ctxn)
6645 perf_event_exit_task_context(child, ctxn);
6646 }
6647
6648 static void perf_free_event(struct perf_event *event,
6649 struct perf_event_context *ctx)
6650 {
6651 struct perf_event *parent = event->parent;
6652
6653 if (WARN_ON_ONCE(!parent))
6654 return;
6655
6656 mutex_lock(&parent->child_mutex);
6657 list_del_init(&event->child_list);
6658 mutex_unlock(&parent->child_mutex);
6659
6660 fput(parent->filp);
6661
6662 perf_group_detach(event);
6663 list_del_event(event, ctx);
6664 free_event(event);
6665 }
6666
6667 /*
6668 * free an unexposed, unused context as created by inheritance by
6669 * perf_event_init_task below, used by fork() in case of fail.
6670 */
6671 void perf_event_free_task(struct task_struct *task)
6672 {
6673 struct perf_event_context *ctx;
6674 struct perf_event *event, *tmp;
6675 int ctxn;
6676
6677 for_each_task_context_nr(ctxn) {
6678 ctx = task->perf_event_ctxp[ctxn];
6679 if (!ctx)
6680 continue;
6681
6682 mutex_lock(&ctx->mutex);
6683 again:
6684 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
6685 group_entry)
6686 perf_free_event(event, ctx);
6687
6688 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
6689 group_entry)
6690 perf_free_event(event, ctx);
6691
6692 if (!list_empty(&ctx->pinned_groups) ||
6693 !list_empty(&ctx->flexible_groups))
6694 goto again;
6695
6696 mutex_unlock(&ctx->mutex);
6697
6698 put_ctx(ctx);
6699 }
6700 }
6701
6702 void perf_event_delayed_put(struct task_struct *task)
6703 {
6704 int ctxn;
6705
6706 for_each_task_context_nr(ctxn)
6707 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
6708 }
6709
6710 /*
6711 * inherit a event from parent task to child task:
6712 */
6713 static struct perf_event *
6714 inherit_event(struct perf_event *parent_event,
6715 struct task_struct *parent,
6716 struct perf_event_context *parent_ctx,
6717 struct task_struct *child,
6718 struct perf_event *group_leader,
6719 struct perf_event_context *child_ctx)
6720 {
6721 struct perf_event *child_event;
6722 unsigned long flags;
6723
6724 /*
6725 * Instead of creating recursive hierarchies of events,
6726 * we link inherited events back to the original parent,
6727 * which has a filp for sure, which we use as the reference
6728 * count:
6729 */
6730 if (parent_event->parent)
6731 parent_event = parent_event->parent;
6732
6733 child_event = perf_event_alloc(&parent_event->attr,
6734 parent_event->cpu,
6735 child,
6736 group_leader, parent_event,
6737 NULL, NULL);
6738 if (IS_ERR(child_event))
6739 return child_event;
6740 get_ctx(child_ctx);
6741
6742 /*
6743 * Make the child state follow the state of the parent event,
6744 * not its attr.disabled bit. We hold the parent's mutex,
6745 * so we won't race with perf_event_{en, dis}able_family.
6746 */
6747 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
6748 child_event->state = PERF_EVENT_STATE_INACTIVE;
6749 else
6750 child_event->state = PERF_EVENT_STATE_OFF;
6751
6752 if (parent_event->attr.freq) {
6753 u64 sample_period = parent_event->hw.sample_period;
6754 struct hw_perf_event *hwc = &child_event->hw;
6755
6756 hwc->sample_period = sample_period;
6757 hwc->last_period = sample_period;
6758
6759 local64_set(&hwc->period_left, sample_period);
6760 }
6761
6762 child_event->ctx = child_ctx;
6763 child_event->overflow_handler = parent_event->overflow_handler;
6764 child_event->overflow_handler_context
6765 = parent_event->overflow_handler_context;
6766
6767 /*
6768 * Precalculate sample_data sizes
6769 */
6770 perf_event__header_size(child_event);
6771 perf_event__id_header_size(child_event);
6772
6773 /*
6774 * Link it up in the child's context:
6775 */
6776 raw_spin_lock_irqsave(&child_ctx->lock, flags);
6777 add_event_to_ctx(child_event, child_ctx);
6778 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6779
6780 /*
6781 * Get a reference to the parent filp - we will fput it
6782 * when the child event exits. This is safe to do because
6783 * we are in the parent and we know that the filp still
6784 * exists and has a nonzero count:
6785 */
6786 atomic_long_inc(&parent_event->filp->f_count);
6787
6788 /*
6789 * Link this into the parent event's child list
6790 */
6791 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6792 mutex_lock(&parent_event->child_mutex);
6793 list_add_tail(&child_event->child_list, &parent_event->child_list);
6794 mutex_unlock(&parent_event->child_mutex);
6795
6796 return child_event;
6797 }
6798
6799 static int inherit_group(struct perf_event *parent_event,
6800 struct task_struct *parent,
6801 struct perf_event_context *parent_ctx,
6802 struct task_struct *child,
6803 struct perf_event_context *child_ctx)
6804 {
6805 struct perf_event *leader;
6806 struct perf_event *sub;
6807 struct perf_event *child_ctr;
6808
6809 leader = inherit_event(parent_event, parent, parent_ctx,
6810 child, NULL, child_ctx);
6811 if (IS_ERR(leader))
6812 return PTR_ERR(leader);
6813 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6814 child_ctr = inherit_event(sub, parent, parent_ctx,
6815 child, leader, child_ctx);
6816 if (IS_ERR(child_ctr))
6817 return PTR_ERR(child_ctr);
6818 }
6819 return 0;
6820 }
6821
6822 static int
6823 inherit_task_group(struct perf_event *event, struct task_struct *parent,
6824 struct perf_event_context *parent_ctx,
6825 struct task_struct *child, int ctxn,
6826 int *inherited_all)
6827 {
6828 int ret;
6829 struct perf_event_context *child_ctx;
6830
6831 if (!event->attr.inherit) {
6832 *inherited_all = 0;
6833 return 0;
6834 }
6835
6836 child_ctx = child->perf_event_ctxp[ctxn];
6837 if (!child_ctx) {
6838 /*
6839 * This is executed from the parent task context, so
6840 * inherit events that have been marked for cloning.
6841 * First allocate and initialize a context for the
6842 * child.
6843 */
6844
6845 child_ctx = alloc_perf_context(event->pmu, child);
6846 if (!child_ctx)
6847 return -ENOMEM;
6848
6849 child->perf_event_ctxp[ctxn] = child_ctx;
6850 }
6851
6852 ret = inherit_group(event, parent, parent_ctx,
6853 child, child_ctx);
6854
6855 if (ret)
6856 *inherited_all = 0;
6857
6858 return ret;
6859 }
6860
6861 /*
6862 * Initialize the perf_event context in task_struct
6863 */
6864 int perf_event_init_context(struct task_struct *child, int ctxn)
6865 {
6866 struct perf_event_context *child_ctx, *parent_ctx;
6867 struct perf_event_context *cloned_ctx;
6868 struct perf_event *event;
6869 struct task_struct *parent = current;
6870 int inherited_all = 1;
6871 unsigned long flags;
6872 int ret = 0;
6873
6874 if (likely(!parent->perf_event_ctxp[ctxn]))
6875 return 0;
6876
6877 /*
6878 * If the parent's context is a clone, pin it so it won't get
6879 * swapped under us.
6880 */
6881 parent_ctx = perf_pin_task_context(parent, ctxn);
6882
6883 /*
6884 * No need to check if parent_ctx != NULL here; since we saw
6885 * it non-NULL earlier, the only reason for it to become NULL
6886 * is if we exit, and since we're currently in the middle of
6887 * a fork we can't be exiting at the same time.
6888 */
6889
6890 /*
6891 * Lock the parent list. No need to lock the child - not PID
6892 * hashed yet and not running, so nobody can access it.
6893 */
6894 mutex_lock(&parent_ctx->mutex);
6895
6896 /*
6897 * We dont have to disable NMIs - we are only looking at
6898 * the list, not manipulating it:
6899 */
6900 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
6901 ret = inherit_task_group(event, parent, parent_ctx,
6902 child, ctxn, &inherited_all);
6903 if (ret)
6904 break;
6905 }
6906
6907 /*
6908 * We can't hold ctx->lock when iterating the ->flexible_group list due
6909 * to allocations, but we need to prevent rotation because
6910 * rotate_ctx() will change the list from interrupt context.
6911 */
6912 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6913 parent_ctx->rotate_disable = 1;
6914 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6915
6916 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
6917 ret = inherit_task_group(event, parent, parent_ctx,
6918 child, ctxn, &inherited_all);
6919 if (ret)
6920 break;
6921 }
6922
6923 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6924 parent_ctx->rotate_disable = 0;
6925
6926 child_ctx = child->perf_event_ctxp[ctxn];
6927
6928 if (child_ctx && inherited_all) {
6929 /*
6930 * Mark the child context as a clone of the parent
6931 * context, or of whatever the parent is a clone of.
6932 *
6933 * Note that if the parent is a clone, the holding of
6934 * parent_ctx->lock avoids it from being uncloned.
6935 */
6936 cloned_ctx = parent_ctx->parent_ctx;
6937 if (cloned_ctx) {
6938 child_ctx->parent_ctx = cloned_ctx;
6939 child_ctx->parent_gen = parent_ctx->parent_gen;
6940 } else {
6941 child_ctx->parent_ctx = parent_ctx;
6942 child_ctx->parent_gen = parent_ctx->generation;
6943 }
6944 get_ctx(child_ctx->parent_ctx);
6945 }
6946
6947 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6948 mutex_unlock(&parent_ctx->mutex);
6949
6950 perf_unpin_context(parent_ctx);
6951 put_ctx(parent_ctx);
6952
6953 return ret;
6954 }
6955
6956 /*
6957 * Initialize the perf_event context in task_struct
6958 */
6959 int perf_event_init_task(struct task_struct *child)
6960 {
6961 int ctxn, ret;
6962
6963 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
6964 mutex_init(&child->perf_event_mutex);
6965 INIT_LIST_HEAD(&child->perf_event_list);
6966
6967 for_each_task_context_nr(ctxn) {
6968 ret = perf_event_init_context(child, ctxn);
6969 if (ret)
6970 return ret;
6971 }
6972
6973 return 0;
6974 }
6975
6976 static void __init perf_event_init_all_cpus(void)
6977 {
6978 struct swevent_htable *swhash;
6979 int cpu;
6980
6981 for_each_possible_cpu(cpu) {
6982 swhash = &per_cpu(swevent_htable, cpu);
6983 mutex_init(&swhash->hlist_mutex);
6984 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6985 }
6986 }
6987
6988 static void __cpuinit perf_event_init_cpu(int cpu)
6989 {
6990 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6991
6992 mutex_lock(&swhash->hlist_mutex);
6993 if (swhash->hlist_refcount > 0) {
6994 struct swevent_hlist *hlist;
6995
6996 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
6997 WARN_ON(!hlist);
6998 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6999 }
7000 mutex_unlock(&swhash->hlist_mutex);
7001 }
7002
7003 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7004 static void perf_pmu_rotate_stop(struct pmu *pmu)
7005 {
7006 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7007
7008 WARN_ON(!irqs_disabled());
7009
7010 list_del_init(&cpuctx->rotation_list);
7011 }
7012
7013 static void __perf_event_exit_context(void *__info)
7014 {
7015 struct perf_event_context *ctx = __info;
7016 struct perf_event *event, *tmp;
7017
7018 perf_pmu_rotate_stop(ctx->pmu);
7019
7020 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7021 __perf_remove_from_context(event);
7022 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7023 __perf_remove_from_context(event);
7024 }
7025
7026 static void perf_event_exit_cpu_context(int cpu)
7027 {
7028 struct perf_event_context *ctx;
7029 struct pmu *pmu;
7030 int idx;
7031
7032 idx = srcu_read_lock(&pmus_srcu);
7033 list_for_each_entry_rcu(pmu, &pmus, entry) {
7034 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
7035
7036 mutex_lock(&ctx->mutex);
7037 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7038 mutex_unlock(&ctx->mutex);
7039 }
7040 srcu_read_unlock(&pmus_srcu, idx);
7041 }
7042
7043 static void perf_event_exit_cpu(int cpu)
7044 {
7045 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7046
7047 mutex_lock(&swhash->hlist_mutex);
7048 swevent_hlist_release(swhash);
7049 mutex_unlock(&swhash->hlist_mutex);
7050
7051 perf_event_exit_cpu_context(cpu);
7052 }
7053 #else
7054 static inline void perf_event_exit_cpu(int cpu) { }
7055 #endif
7056
7057 static int
7058 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7059 {
7060 int cpu;
7061
7062 for_each_online_cpu(cpu)
7063 perf_event_exit_cpu(cpu);
7064
7065 return NOTIFY_OK;
7066 }
7067
7068 /*
7069 * Run the perf reboot notifier at the very last possible moment so that
7070 * the generic watchdog code runs as long as possible.
7071 */
7072 static struct notifier_block perf_reboot_notifier = {
7073 .notifier_call = perf_reboot,
7074 .priority = INT_MIN,
7075 };
7076
7077 static int __cpuinit
7078 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7079 {
7080 unsigned int cpu = (long)hcpu;
7081
7082 switch (action & ~CPU_TASKS_FROZEN) {
7083
7084 case CPU_UP_PREPARE:
7085 case CPU_DOWN_FAILED:
7086 perf_event_init_cpu(cpu);
7087 break;
7088
7089 case CPU_UP_CANCELED:
7090 case CPU_DOWN_PREPARE:
7091 perf_event_exit_cpu(cpu);
7092 break;
7093
7094 default:
7095 break;
7096 }
7097
7098 return NOTIFY_OK;
7099 }
7100
7101 void __init perf_event_init(void)
7102 {
7103 int ret;
7104
7105 idr_init(&pmu_idr);
7106
7107 perf_event_init_all_cpus();
7108 init_srcu_struct(&pmus_srcu);
7109 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7110 perf_pmu_register(&perf_cpu_clock, NULL, -1);
7111 perf_pmu_register(&perf_task_clock, NULL, -1);
7112 perf_tp_register();
7113 perf_cpu_notifier(perf_cpu_notify);
7114 register_reboot_notifier(&perf_reboot_notifier);
7115
7116 ret = init_hw_breakpoint();
7117 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7118
7119 /* do not patch jump label more than once per second */
7120 jump_label_rate_limit(&perf_sched_events, HZ);
7121
7122 /*
7123 * Build time assertion that we keep the data_head at the intended
7124 * location. IOW, validation we got the __reserved[] size right.
7125 */
7126 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
7127 != 1024);
7128 }
7129
7130 static int __init perf_event_sysfs_init(void)
7131 {
7132 struct pmu *pmu;
7133 int ret;
7134
7135 mutex_lock(&pmus_lock);
7136
7137 ret = bus_register(&pmu_bus);
7138 if (ret)
7139 goto unlock;
7140
7141 list_for_each_entry(pmu, &pmus, entry) {
7142 if (!pmu->name || pmu->type < 0)
7143 continue;
7144
7145 ret = pmu_dev_alloc(pmu);
7146 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
7147 }
7148 pmu_bus_running = 1;
7149 ret = 0;
7150
7151 unlock:
7152 mutex_unlock(&pmus_lock);
7153
7154 return ret;
7155 }
7156 device_initcall(perf_event_sysfs_init);
7157
7158 #ifdef CONFIG_CGROUP_PERF
7159 static struct cgroup_subsys_state *perf_cgroup_create(struct cgroup *cont)
7160 {
7161 struct perf_cgroup *jc;
7162
7163 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
7164 if (!jc)
7165 return ERR_PTR(-ENOMEM);
7166
7167 jc->info = alloc_percpu(struct perf_cgroup_info);
7168 if (!jc->info) {
7169 kfree(jc);
7170 return ERR_PTR(-ENOMEM);
7171 }
7172
7173 return &jc->css;
7174 }
7175
7176 static void perf_cgroup_destroy(struct cgroup *cont)
7177 {
7178 struct perf_cgroup *jc;
7179 jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
7180 struct perf_cgroup, css);
7181 free_percpu(jc->info);
7182 kfree(jc);
7183 }
7184
7185 static int __perf_cgroup_move(void *info)
7186 {
7187 struct task_struct *task = info;
7188 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7189 return 0;
7190 }
7191
7192 static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
7193 {
7194 struct task_struct *task;
7195
7196 cgroup_taskset_for_each(task, cgrp, tset)
7197 task_function_call(task, __perf_cgroup_move, task);
7198 }
7199
7200 static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7201 struct task_struct *task)
7202 {
7203 /*
7204 * cgroup_exit() is called in the copy_process() failure path.
7205 * Ignore this case since the task hasn't ran yet, this avoids
7206 * trying to poke a half freed task state from generic code.
7207 */
7208 if (!(task->flags & PF_EXITING))
7209 return;
7210
7211 task_function_call(task, __perf_cgroup_move, task);
7212 }
7213
7214 struct cgroup_subsys perf_subsys = {
7215 .name = "perf_event",
7216 .subsys_id = perf_subsys_id,
7217 .create = perf_cgroup_create,
7218 .destroy = perf_cgroup_destroy,
7219 .exit = perf_cgroup_exit,
7220 .attach = perf_cgroup_attach,
7221 };
7222 #endif /* CONFIG_CGROUP_PERF */