Merge tag 'fbdev-for-3.10' of git://gitorious.org/linux-omap-dss2/linux
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / events / core.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/rculist.h>
32 #include <linux/uaccess.h>
33 #include <linux/syscalls.h>
34 #include <linux/anon_inodes.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/perf_event.h>
37 #include <linux/ftrace_event.h>
38 #include <linux/hw_breakpoint.h>
39 #include <linux/mm_types.h>
40
41 #include "internal.h"
42
43 #include <asm/irq_regs.h>
44
45 struct remote_function_call {
46 struct task_struct *p;
47 int (*func)(void *info);
48 void *info;
49 int ret;
50 };
51
52 static void remote_function(void *data)
53 {
54 struct remote_function_call *tfc = data;
55 struct task_struct *p = tfc->p;
56
57 if (p) {
58 tfc->ret = -EAGAIN;
59 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
60 return;
61 }
62
63 tfc->ret = tfc->func(tfc->info);
64 }
65
66 /**
67 * task_function_call - call a function on the cpu on which a task runs
68 * @p: the task to evaluate
69 * @func: the function to be called
70 * @info: the function call argument
71 *
72 * Calls the function @func when the task is currently running. This might
73 * be on the current CPU, which just calls the function directly
74 *
75 * returns: @func return value, or
76 * -ESRCH - when the process isn't running
77 * -EAGAIN - when the process moved away
78 */
79 static int
80 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
81 {
82 struct remote_function_call data = {
83 .p = p,
84 .func = func,
85 .info = info,
86 .ret = -ESRCH, /* No such (running) process */
87 };
88
89 if (task_curr(p))
90 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
91
92 return data.ret;
93 }
94
95 /**
96 * cpu_function_call - call a function on the cpu
97 * @func: the function to be called
98 * @info: the function call argument
99 *
100 * Calls the function @func on the remote cpu.
101 *
102 * returns: @func return value or -ENXIO when the cpu is offline
103 */
104 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
105 {
106 struct remote_function_call data = {
107 .p = NULL,
108 .func = func,
109 .info = info,
110 .ret = -ENXIO, /* No such CPU */
111 };
112
113 smp_call_function_single(cpu, remote_function, &data, 1);
114
115 return data.ret;
116 }
117
118 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
119 PERF_FLAG_FD_OUTPUT |\
120 PERF_FLAG_PID_CGROUP)
121
122 /*
123 * branch priv levels that need permission checks
124 */
125 #define PERF_SAMPLE_BRANCH_PERM_PLM \
126 (PERF_SAMPLE_BRANCH_KERNEL |\
127 PERF_SAMPLE_BRANCH_HV)
128
129 enum event_type_t {
130 EVENT_FLEXIBLE = 0x1,
131 EVENT_PINNED = 0x2,
132 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
133 };
134
135 /*
136 * perf_sched_events : >0 events exist
137 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
138 */
139 struct static_key_deferred perf_sched_events __read_mostly;
140 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
141 static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
142
143 static atomic_t nr_mmap_events __read_mostly;
144 static atomic_t nr_comm_events __read_mostly;
145 static atomic_t nr_task_events __read_mostly;
146
147 static LIST_HEAD(pmus);
148 static DEFINE_MUTEX(pmus_lock);
149 static struct srcu_struct pmus_srcu;
150
151 /*
152 * perf event paranoia level:
153 * -1 - not paranoid at all
154 * 0 - disallow raw tracepoint access for unpriv
155 * 1 - disallow cpu events for unpriv
156 * 2 - disallow kernel profiling for unpriv
157 */
158 int sysctl_perf_event_paranoid __read_mostly = 1;
159
160 /* Minimum for 512 kiB + 1 user control page */
161 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
162
163 /*
164 * max perf event sample rate
165 */
166 #define DEFAULT_MAX_SAMPLE_RATE 100000
167 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
168 static int max_samples_per_tick __read_mostly =
169 DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
170
171 int perf_proc_update_handler(struct ctl_table *table, int write,
172 void __user *buffer, size_t *lenp,
173 loff_t *ppos)
174 {
175 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
176
177 if (ret || !write)
178 return ret;
179
180 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
181
182 return 0;
183 }
184
185 static atomic64_t perf_event_id;
186
187 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
188 enum event_type_t event_type);
189
190 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
191 enum event_type_t event_type,
192 struct task_struct *task);
193
194 static void update_context_time(struct perf_event_context *ctx);
195 static u64 perf_event_time(struct perf_event *event);
196
197 static void ring_buffer_attach(struct perf_event *event,
198 struct ring_buffer *rb);
199
200 void __weak perf_event_print_debug(void) { }
201
202 extern __weak const char *perf_pmu_name(void)
203 {
204 return "pmu";
205 }
206
207 static inline u64 perf_clock(void)
208 {
209 return local_clock();
210 }
211
212 static inline struct perf_cpu_context *
213 __get_cpu_context(struct perf_event_context *ctx)
214 {
215 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
216 }
217
218 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
219 struct perf_event_context *ctx)
220 {
221 raw_spin_lock(&cpuctx->ctx.lock);
222 if (ctx)
223 raw_spin_lock(&ctx->lock);
224 }
225
226 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
227 struct perf_event_context *ctx)
228 {
229 if (ctx)
230 raw_spin_unlock(&ctx->lock);
231 raw_spin_unlock(&cpuctx->ctx.lock);
232 }
233
234 #ifdef CONFIG_CGROUP_PERF
235
236 /*
237 * Must ensure cgroup is pinned (css_get) before calling
238 * this function. In other words, we cannot call this function
239 * if there is no cgroup event for the current CPU context.
240 */
241 static inline struct perf_cgroup *
242 perf_cgroup_from_task(struct task_struct *task)
243 {
244 return container_of(task_subsys_state(task, perf_subsys_id),
245 struct perf_cgroup, css);
246 }
247
248 static inline bool
249 perf_cgroup_match(struct perf_event *event)
250 {
251 struct perf_event_context *ctx = event->ctx;
252 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
253
254 return !event->cgrp || event->cgrp == cpuctx->cgrp;
255 }
256
257 static inline bool perf_tryget_cgroup(struct perf_event *event)
258 {
259 return css_tryget(&event->cgrp->css);
260 }
261
262 static inline void perf_put_cgroup(struct perf_event *event)
263 {
264 css_put(&event->cgrp->css);
265 }
266
267 static inline void perf_detach_cgroup(struct perf_event *event)
268 {
269 perf_put_cgroup(event);
270 event->cgrp = NULL;
271 }
272
273 static inline int is_cgroup_event(struct perf_event *event)
274 {
275 return event->cgrp != NULL;
276 }
277
278 static inline u64 perf_cgroup_event_time(struct perf_event *event)
279 {
280 struct perf_cgroup_info *t;
281
282 t = per_cpu_ptr(event->cgrp->info, event->cpu);
283 return t->time;
284 }
285
286 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
287 {
288 struct perf_cgroup_info *info;
289 u64 now;
290
291 now = perf_clock();
292
293 info = this_cpu_ptr(cgrp->info);
294
295 info->time += now - info->timestamp;
296 info->timestamp = now;
297 }
298
299 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
300 {
301 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
302 if (cgrp_out)
303 __update_cgrp_time(cgrp_out);
304 }
305
306 static inline void update_cgrp_time_from_event(struct perf_event *event)
307 {
308 struct perf_cgroup *cgrp;
309
310 /*
311 * ensure we access cgroup data only when needed and
312 * when we know the cgroup is pinned (css_get)
313 */
314 if (!is_cgroup_event(event))
315 return;
316
317 cgrp = perf_cgroup_from_task(current);
318 /*
319 * Do not update time when cgroup is not active
320 */
321 if (cgrp == event->cgrp)
322 __update_cgrp_time(event->cgrp);
323 }
324
325 static inline void
326 perf_cgroup_set_timestamp(struct task_struct *task,
327 struct perf_event_context *ctx)
328 {
329 struct perf_cgroup *cgrp;
330 struct perf_cgroup_info *info;
331
332 /*
333 * ctx->lock held by caller
334 * ensure we do not access cgroup data
335 * unless we have the cgroup pinned (css_get)
336 */
337 if (!task || !ctx->nr_cgroups)
338 return;
339
340 cgrp = perf_cgroup_from_task(task);
341 info = this_cpu_ptr(cgrp->info);
342 info->timestamp = ctx->timestamp;
343 }
344
345 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
346 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
347
348 /*
349 * reschedule events based on the cgroup constraint of task.
350 *
351 * mode SWOUT : schedule out everything
352 * mode SWIN : schedule in based on cgroup for next
353 */
354 void perf_cgroup_switch(struct task_struct *task, int mode)
355 {
356 struct perf_cpu_context *cpuctx;
357 struct pmu *pmu;
358 unsigned long flags;
359
360 /*
361 * disable interrupts to avoid geting nr_cgroup
362 * changes via __perf_event_disable(). Also
363 * avoids preemption.
364 */
365 local_irq_save(flags);
366
367 /*
368 * we reschedule only in the presence of cgroup
369 * constrained events.
370 */
371 rcu_read_lock();
372
373 list_for_each_entry_rcu(pmu, &pmus, entry) {
374 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
375 if (cpuctx->unique_pmu != pmu)
376 continue; /* ensure we process each cpuctx once */
377
378 /*
379 * perf_cgroup_events says at least one
380 * context on this CPU has cgroup events.
381 *
382 * ctx->nr_cgroups reports the number of cgroup
383 * events for a context.
384 */
385 if (cpuctx->ctx.nr_cgroups > 0) {
386 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
387 perf_pmu_disable(cpuctx->ctx.pmu);
388
389 if (mode & PERF_CGROUP_SWOUT) {
390 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
391 /*
392 * must not be done before ctxswout due
393 * to event_filter_match() in event_sched_out()
394 */
395 cpuctx->cgrp = NULL;
396 }
397
398 if (mode & PERF_CGROUP_SWIN) {
399 WARN_ON_ONCE(cpuctx->cgrp);
400 /*
401 * set cgrp before ctxsw in to allow
402 * event_filter_match() to not have to pass
403 * task around
404 */
405 cpuctx->cgrp = perf_cgroup_from_task(task);
406 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
407 }
408 perf_pmu_enable(cpuctx->ctx.pmu);
409 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
410 }
411 }
412
413 rcu_read_unlock();
414
415 local_irq_restore(flags);
416 }
417
418 static inline void perf_cgroup_sched_out(struct task_struct *task,
419 struct task_struct *next)
420 {
421 struct perf_cgroup *cgrp1;
422 struct perf_cgroup *cgrp2 = NULL;
423
424 /*
425 * we come here when we know perf_cgroup_events > 0
426 */
427 cgrp1 = perf_cgroup_from_task(task);
428
429 /*
430 * next is NULL when called from perf_event_enable_on_exec()
431 * that will systematically cause a cgroup_switch()
432 */
433 if (next)
434 cgrp2 = perf_cgroup_from_task(next);
435
436 /*
437 * only schedule out current cgroup events if we know
438 * that we are switching to a different cgroup. Otherwise,
439 * do no touch the cgroup events.
440 */
441 if (cgrp1 != cgrp2)
442 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
443 }
444
445 static inline void perf_cgroup_sched_in(struct task_struct *prev,
446 struct task_struct *task)
447 {
448 struct perf_cgroup *cgrp1;
449 struct perf_cgroup *cgrp2 = NULL;
450
451 /*
452 * we come here when we know perf_cgroup_events > 0
453 */
454 cgrp1 = perf_cgroup_from_task(task);
455
456 /* prev can never be NULL */
457 cgrp2 = perf_cgroup_from_task(prev);
458
459 /*
460 * only need to schedule in cgroup events if we are changing
461 * cgroup during ctxsw. Cgroup events were not scheduled
462 * out of ctxsw out if that was not the case.
463 */
464 if (cgrp1 != cgrp2)
465 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
466 }
467
468 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
469 struct perf_event_attr *attr,
470 struct perf_event *group_leader)
471 {
472 struct perf_cgroup *cgrp;
473 struct cgroup_subsys_state *css;
474 struct fd f = fdget(fd);
475 int ret = 0;
476
477 if (!f.file)
478 return -EBADF;
479
480 css = cgroup_css_from_dir(f.file, perf_subsys_id);
481 if (IS_ERR(css)) {
482 ret = PTR_ERR(css);
483 goto out;
484 }
485
486 cgrp = container_of(css, struct perf_cgroup, css);
487 event->cgrp = cgrp;
488
489 /* must be done before we fput() the file */
490 if (!perf_tryget_cgroup(event)) {
491 event->cgrp = NULL;
492 ret = -ENOENT;
493 goto out;
494 }
495
496 /*
497 * all events in a group must monitor
498 * the same cgroup because a task belongs
499 * to only one perf cgroup at a time
500 */
501 if (group_leader && group_leader->cgrp != cgrp) {
502 perf_detach_cgroup(event);
503 ret = -EINVAL;
504 }
505 out:
506 fdput(f);
507 return ret;
508 }
509
510 static inline void
511 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
512 {
513 struct perf_cgroup_info *t;
514 t = per_cpu_ptr(event->cgrp->info, event->cpu);
515 event->shadow_ctx_time = now - t->timestamp;
516 }
517
518 static inline void
519 perf_cgroup_defer_enabled(struct perf_event *event)
520 {
521 /*
522 * when the current task's perf cgroup does not match
523 * the event's, we need to remember to call the
524 * perf_mark_enable() function the first time a task with
525 * a matching perf cgroup is scheduled in.
526 */
527 if (is_cgroup_event(event) && !perf_cgroup_match(event))
528 event->cgrp_defer_enabled = 1;
529 }
530
531 static inline void
532 perf_cgroup_mark_enabled(struct perf_event *event,
533 struct perf_event_context *ctx)
534 {
535 struct perf_event *sub;
536 u64 tstamp = perf_event_time(event);
537
538 if (!event->cgrp_defer_enabled)
539 return;
540
541 event->cgrp_defer_enabled = 0;
542
543 event->tstamp_enabled = tstamp - event->total_time_enabled;
544 list_for_each_entry(sub, &event->sibling_list, group_entry) {
545 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
546 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
547 sub->cgrp_defer_enabled = 0;
548 }
549 }
550 }
551 #else /* !CONFIG_CGROUP_PERF */
552
553 static inline bool
554 perf_cgroup_match(struct perf_event *event)
555 {
556 return true;
557 }
558
559 static inline void perf_detach_cgroup(struct perf_event *event)
560 {}
561
562 static inline int is_cgroup_event(struct perf_event *event)
563 {
564 return 0;
565 }
566
567 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
568 {
569 return 0;
570 }
571
572 static inline void update_cgrp_time_from_event(struct perf_event *event)
573 {
574 }
575
576 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
577 {
578 }
579
580 static inline void perf_cgroup_sched_out(struct task_struct *task,
581 struct task_struct *next)
582 {
583 }
584
585 static inline void perf_cgroup_sched_in(struct task_struct *prev,
586 struct task_struct *task)
587 {
588 }
589
590 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
591 struct perf_event_attr *attr,
592 struct perf_event *group_leader)
593 {
594 return -EINVAL;
595 }
596
597 static inline void
598 perf_cgroup_set_timestamp(struct task_struct *task,
599 struct perf_event_context *ctx)
600 {
601 }
602
603 void
604 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
605 {
606 }
607
608 static inline void
609 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
610 {
611 }
612
613 static inline u64 perf_cgroup_event_time(struct perf_event *event)
614 {
615 return 0;
616 }
617
618 static inline void
619 perf_cgroup_defer_enabled(struct perf_event *event)
620 {
621 }
622
623 static inline void
624 perf_cgroup_mark_enabled(struct perf_event *event,
625 struct perf_event_context *ctx)
626 {
627 }
628 #endif
629
630 void perf_pmu_disable(struct pmu *pmu)
631 {
632 int *count = this_cpu_ptr(pmu->pmu_disable_count);
633 if (!(*count)++)
634 pmu->pmu_disable(pmu);
635 }
636
637 void perf_pmu_enable(struct pmu *pmu)
638 {
639 int *count = this_cpu_ptr(pmu->pmu_disable_count);
640 if (!--(*count))
641 pmu->pmu_enable(pmu);
642 }
643
644 static DEFINE_PER_CPU(struct list_head, rotation_list);
645
646 /*
647 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
648 * because they're strictly cpu affine and rotate_start is called with IRQs
649 * disabled, while rotate_context is called from IRQ context.
650 */
651 static void perf_pmu_rotate_start(struct pmu *pmu)
652 {
653 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
654 struct list_head *head = &__get_cpu_var(rotation_list);
655
656 WARN_ON(!irqs_disabled());
657
658 if (list_empty(&cpuctx->rotation_list))
659 list_add(&cpuctx->rotation_list, head);
660 }
661
662 static void get_ctx(struct perf_event_context *ctx)
663 {
664 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
665 }
666
667 static void put_ctx(struct perf_event_context *ctx)
668 {
669 if (atomic_dec_and_test(&ctx->refcount)) {
670 if (ctx->parent_ctx)
671 put_ctx(ctx->parent_ctx);
672 if (ctx->task)
673 put_task_struct(ctx->task);
674 kfree_rcu(ctx, rcu_head);
675 }
676 }
677
678 static void unclone_ctx(struct perf_event_context *ctx)
679 {
680 if (ctx->parent_ctx) {
681 put_ctx(ctx->parent_ctx);
682 ctx->parent_ctx = NULL;
683 }
684 }
685
686 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
687 {
688 /*
689 * only top level events have the pid namespace they were created in
690 */
691 if (event->parent)
692 event = event->parent;
693
694 return task_tgid_nr_ns(p, event->ns);
695 }
696
697 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
698 {
699 /*
700 * only top level events have the pid namespace they were created in
701 */
702 if (event->parent)
703 event = event->parent;
704
705 return task_pid_nr_ns(p, event->ns);
706 }
707
708 /*
709 * If we inherit events we want to return the parent event id
710 * to userspace.
711 */
712 static u64 primary_event_id(struct perf_event *event)
713 {
714 u64 id = event->id;
715
716 if (event->parent)
717 id = event->parent->id;
718
719 return id;
720 }
721
722 /*
723 * Get the perf_event_context for a task and lock it.
724 * This has to cope with with the fact that until it is locked,
725 * the context could get moved to another task.
726 */
727 static struct perf_event_context *
728 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
729 {
730 struct perf_event_context *ctx;
731
732 rcu_read_lock();
733 retry:
734 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
735 if (ctx) {
736 /*
737 * If this context is a clone of another, it might
738 * get swapped for another underneath us by
739 * perf_event_task_sched_out, though the
740 * rcu_read_lock() protects us from any context
741 * getting freed. Lock the context and check if it
742 * got swapped before we could get the lock, and retry
743 * if so. If we locked the right context, then it
744 * can't get swapped on us any more.
745 */
746 raw_spin_lock_irqsave(&ctx->lock, *flags);
747 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
748 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
749 goto retry;
750 }
751
752 if (!atomic_inc_not_zero(&ctx->refcount)) {
753 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
754 ctx = NULL;
755 }
756 }
757 rcu_read_unlock();
758 return ctx;
759 }
760
761 /*
762 * Get the context for a task and increment its pin_count so it
763 * can't get swapped to another task. This also increments its
764 * reference count so that the context can't get freed.
765 */
766 static struct perf_event_context *
767 perf_pin_task_context(struct task_struct *task, int ctxn)
768 {
769 struct perf_event_context *ctx;
770 unsigned long flags;
771
772 ctx = perf_lock_task_context(task, ctxn, &flags);
773 if (ctx) {
774 ++ctx->pin_count;
775 raw_spin_unlock_irqrestore(&ctx->lock, flags);
776 }
777 return ctx;
778 }
779
780 static void perf_unpin_context(struct perf_event_context *ctx)
781 {
782 unsigned long flags;
783
784 raw_spin_lock_irqsave(&ctx->lock, flags);
785 --ctx->pin_count;
786 raw_spin_unlock_irqrestore(&ctx->lock, flags);
787 }
788
789 /*
790 * Update the record of the current time in a context.
791 */
792 static void update_context_time(struct perf_event_context *ctx)
793 {
794 u64 now = perf_clock();
795
796 ctx->time += now - ctx->timestamp;
797 ctx->timestamp = now;
798 }
799
800 static u64 perf_event_time(struct perf_event *event)
801 {
802 struct perf_event_context *ctx = event->ctx;
803
804 if (is_cgroup_event(event))
805 return perf_cgroup_event_time(event);
806
807 return ctx ? ctx->time : 0;
808 }
809
810 /*
811 * Update the total_time_enabled and total_time_running fields for a event.
812 * The caller of this function needs to hold the ctx->lock.
813 */
814 static void update_event_times(struct perf_event *event)
815 {
816 struct perf_event_context *ctx = event->ctx;
817 u64 run_end;
818
819 if (event->state < PERF_EVENT_STATE_INACTIVE ||
820 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
821 return;
822 /*
823 * in cgroup mode, time_enabled represents
824 * the time the event was enabled AND active
825 * tasks were in the monitored cgroup. This is
826 * independent of the activity of the context as
827 * there may be a mix of cgroup and non-cgroup events.
828 *
829 * That is why we treat cgroup events differently
830 * here.
831 */
832 if (is_cgroup_event(event))
833 run_end = perf_cgroup_event_time(event);
834 else if (ctx->is_active)
835 run_end = ctx->time;
836 else
837 run_end = event->tstamp_stopped;
838
839 event->total_time_enabled = run_end - event->tstamp_enabled;
840
841 if (event->state == PERF_EVENT_STATE_INACTIVE)
842 run_end = event->tstamp_stopped;
843 else
844 run_end = perf_event_time(event);
845
846 event->total_time_running = run_end - event->tstamp_running;
847
848 }
849
850 /*
851 * Update total_time_enabled and total_time_running for all events in a group.
852 */
853 static void update_group_times(struct perf_event *leader)
854 {
855 struct perf_event *event;
856
857 update_event_times(leader);
858 list_for_each_entry(event, &leader->sibling_list, group_entry)
859 update_event_times(event);
860 }
861
862 static struct list_head *
863 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
864 {
865 if (event->attr.pinned)
866 return &ctx->pinned_groups;
867 else
868 return &ctx->flexible_groups;
869 }
870
871 /*
872 * Add a event from the lists for its context.
873 * Must be called with ctx->mutex and ctx->lock held.
874 */
875 static void
876 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
877 {
878 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
879 event->attach_state |= PERF_ATTACH_CONTEXT;
880
881 /*
882 * If we're a stand alone event or group leader, we go to the context
883 * list, group events are kept attached to the group so that
884 * perf_group_detach can, at all times, locate all siblings.
885 */
886 if (event->group_leader == event) {
887 struct list_head *list;
888
889 if (is_software_event(event))
890 event->group_flags |= PERF_GROUP_SOFTWARE;
891
892 list = ctx_group_list(event, ctx);
893 list_add_tail(&event->group_entry, list);
894 }
895
896 if (is_cgroup_event(event))
897 ctx->nr_cgroups++;
898
899 if (has_branch_stack(event))
900 ctx->nr_branch_stack++;
901
902 list_add_rcu(&event->event_entry, &ctx->event_list);
903 if (!ctx->nr_events)
904 perf_pmu_rotate_start(ctx->pmu);
905 ctx->nr_events++;
906 if (event->attr.inherit_stat)
907 ctx->nr_stat++;
908 }
909
910 /*
911 * Initialize event state based on the perf_event_attr::disabled.
912 */
913 static inline void perf_event__state_init(struct perf_event *event)
914 {
915 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
916 PERF_EVENT_STATE_INACTIVE;
917 }
918
919 /*
920 * Called at perf_event creation and when events are attached/detached from a
921 * group.
922 */
923 static void perf_event__read_size(struct perf_event *event)
924 {
925 int entry = sizeof(u64); /* value */
926 int size = 0;
927 int nr = 1;
928
929 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
930 size += sizeof(u64);
931
932 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
933 size += sizeof(u64);
934
935 if (event->attr.read_format & PERF_FORMAT_ID)
936 entry += sizeof(u64);
937
938 if (event->attr.read_format & PERF_FORMAT_GROUP) {
939 nr += event->group_leader->nr_siblings;
940 size += sizeof(u64);
941 }
942
943 size += entry * nr;
944 event->read_size = size;
945 }
946
947 static void perf_event__header_size(struct perf_event *event)
948 {
949 struct perf_sample_data *data;
950 u64 sample_type = event->attr.sample_type;
951 u16 size = 0;
952
953 perf_event__read_size(event);
954
955 if (sample_type & PERF_SAMPLE_IP)
956 size += sizeof(data->ip);
957
958 if (sample_type & PERF_SAMPLE_ADDR)
959 size += sizeof(data->addr);
960
961 if (sample_type & PERF_SAMPLE_PERIOD)
962 size += sizeof(data->period);
963
964 if (sample_type & PERF_SAMPLE_READ)
965 size += event->read_size;
966
967 event->header_size = size;
968 }
969
970 static void perf_event__id_header_size(struct perf_event *event)
971 {
972 struct perf_sample_data *data;
973 u64 sample_type = event->attr.sample_type;
974 u16 size = 0;
975
976 if (sample_type & PERF_SAMPLE_TID)
977 size += sizeof(data->tid_entry);
978
979 if (sample_type & PERF_SAMPLE_TIME)
980 size += sizeof(data->time);
981
982 if (sample_type & PERF_SAMPLE_ID)
983 size += sizeof(data->id);
984
985 if (sample_type & PERF_SAMPLE_STREAM_ID)
986 size += sizeof(data->stream_id);
987
988 if (sample_type & PERF_SAMPLE_CPU)
989 size += sizeof(data->cpu_entry);
990
991 event->id_header_size = size;
992 }
993
994 static void perf_group_attach(struct perf_event *event)
995 {
996 struct perf_event *group_leader = event->group_leader, *pos;
997
998 /*
999 * We can have double attach due to group movement in perf_event_open.
1000 */
1001 if (event->attach_state & PERF_ATTACH_GROUP)
1002 return;
1003
1004 event->attach_state |= PERF_ATTACH_GROUP;
1005
1006 if (group_leader == event)
1007 return;
1008
1009 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1010 !is_software_event(event))
1011 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1012
1013 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1014 group_leader->nr_siblings++;
1015
1016 perf_event__header_size(group_leader);
1017
1018 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1019 perf_event__header_size(pos);
1020 }
1021
1022 /*
1023 * Remove a event from the lists for its context.
1024 * Must be called with ctx->mutex and ctx->lock held.
1025 */
1026 static void
1027 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1028 {
1029 struct perf_cpu_context *cpuctx;
1030 /*
1031 * We can have double detach due to exit/hot-unplug + close.
1032 */
1033 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1034 return;
1035
1036 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1037
1038 if (is_cgroup_event(event)) {
1039 ctx->nr_cgroups--;
1040 cpuctx = __get_cpu_context(ctx);
1041 /*
1042 * if there are no more cgroup events
1043 * then cler cgrp to avoid stale pointer
1044 * in update_cgrp_time_from_cpuctx()
1045 */
1046 if (!ctx->nr_cgroups)
1047 cpuctx->cgrp = NULL;
1048 }
1049
1050 if (has_branch_stack(event))
1051 ctx->nr_branch_stack--;
1052
1053 ctx->nr_events--;
1054 if (event->attr.inherit_stat)
1055 ctx->nr_stat--;
1056
1057 list_del_rcu(&event->event_entry);
1058
1059 if (event->group_leader == event)
1060 list_del_init(&event->group_entry);
1061
1062 update_group_times(event);
1063
1064 /*
1065 * If event was in error state, then keep it
1066 * that way, otherwise bogus counts will be
1067 * returned on read(). The only way to get out
1068 * of error state is by explicit re-enabling
1069 * of the event
1070 */
1071 if (event->state > PERF_EVENT_STATE_OFF)
1072 event->state = PERF_EVENT_STATE_OFF;
1073 }
1074
1075 static void perf_group_detach(struct perf_event *event)
1076 {
1077 struct perf_event *sibling, *tmp;
1078 struct list_head *list = NULL;
1079
1080 /*
1081 * We can have double detach due to exit/hot-unplug + close.
1082 */
1083 if (!(event->attach_state & PERF_ATTACH_GROUP))
1084 return;
1085
1086 event->attach_state &= ~PERF_ATTACH_GROUP;
1087
1088 /*
1089 * If this is a sibling, remove it from its group.
1090 */
1091 if (event->group_leader != event) {
1092 list_del_init(&event->group_entry);
1093 event->group_leader->nr_siblings--;
1094 goto out;
1095 }
1096
1097 if (!list_empty(&event->group_entry))
1098 list = &event->group_entry;
1099
1100 /*
1101 * If this was a group event with sibling events then
1102 * upgrade the siblings to singleton events by adding them
1103 * to whatever list we are on.
1104 */
1105 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1106 if (list)
1107 list_move_tail(&sibling->group_entry, list);
1108 sibling->group_leader = sibling;
1109
1110 /* Inherit group flags from the previous leader */
1111 sibling->group_flags = event->group_flags;
1112 }
1113
1114 out:
1115 perf_event__header_size(event->group_leader);
1116
1117 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1118 perf_event__header_size(tmp);
1119 }
1120
1121 static inline int
1122 event_filter_match(struct perf_event *event)
1123 {
1124 return (event->cpu == -1 || event->cpu == smp_processor_id())
1125 && perf_cgroup_match(event);
1126 }
1127
1128 static void
1129 event_sched_out(struct perf_event *event,
1130 struct perf_cpu_context *cpuctx,
1131 struct perf_event_context *ctx)
1132 {
1133 u64 tstamp = perf_event_time(event);
1134 u64 delta;
1135 /*
1136 * An event which could not be activated because of
1137 * filter mismatch still needs to have its timings
1138 * maintained, otherwise bogus information is return
1139 * via read() for time_enabled, time_running:
1140 */
1141 if (event->state == PERF_EVENT_STATE_INACTIVE
1142 && !event_filter_match(event)) {
1143 delta = tstamp - event->tstamp_stopped;
1144 event->tstamp_running += delta;
1145 event->tstamp_stopped = tstamp;
1146 }
1147
1148 if (event->state != PERF_EVENT_STATE_ACTIVE)
1149 return;
1150
1151 event->state = PERF_EVENT_STATE_INACTIVE;
1152 if (event->pending_disable) {
1153 event->pending_disable = 0;
1154 event->state = PERF_EVENT_STATE_OFF;
1155 }
1156 event->tstamp_stopped = tstamp;
1157 event->pmu->del(event, 0);
1158 event->oncpu = -1;
1159
1160 if (!is_software_event(event))
1161 cpuctx->active_oncpu--;
1162 ctx->nr_active--;
1163 if (event->attr.freq && event->attr.sample_freq)
1164 ctx->nr_freq--;
1165 if (event->attr.exclusive || !cpuctx->active_oncpu)
1166 cpuctx->exclusive = 0;
1167 }
1168
1169 static void
1170 group_sched_out(struct perf_event *group_event,
1171 struct perf_cpu_context *cpuctx,
1172 struct perf_event_context *ctx)
1173 {
1174 struct perf_event *event;
1175 int state = group_event->state;
1176
1177 event_sched_out(group_event, cpuctx, ctx);
1178
1179 /*
1180 * Schedule out siblings (if any):
1181 */
1182 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1183 event_sched_out(event, cpuctx, ctx);
1184
1185 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1186 cpuctx->exclusive = 0;
1187 }
1188
1189 /*
1190 * Cross CPU call to remove a performance event
1191 *
1192 * We disable the event on the hardware level first. After that we
1193 * remove it from the context list.
1194 */
1195 static int __perf_remove_from_context(void *info)
1196 {
1197 struct perf_event *event = info;
1198 struct perf_event_context *ctx = event->ctx;
1199 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1200
1201 raw_spin_lock(&ctx->lock);
1202 event_sched_out(event, cpuctx, ctx);
1203 list_del_event(event, ctx);
1204 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1205 ctx->is_active = 0;
1206 cpuctx->task_ctx = NULL;
1207 }
1208 raw_spin_unlock(&ctx->lock);
1209
1210 return 0;
1211 }
1212
1213
1214 /*
1215 * Remove the event from a task's (or a CPU's) list of events.
1216 *
1217 * CPU events are removed with a smp call. For task events we only
1218 * call when the task is on a CPU.
1219 *
1220 * If event->ctx is a cloned context, callers must make sure that
1221 * every task struct that event->ctx->task could possibly point to
1222 * remains valid. This is OK when called from perf_release since
1223 * that only calls us on the top-level context, which can't be a clone.
1224 * When called from perf_event_exit_task, it's OK because the
1225 * context has been detached from its task.
1226 */
1227 static void perf_remove_from_context(struct perf_event *event)
1228 {
1229 struct perf_event_context *ctx = event->ctx;
1230 struct task_struct *task = ctx->task;
1231
1232 lockdep_assert_held(&ctx->mutex);
1233
1234 if (!task) {
1235 /*
1236 * Per cpu events are removed via an smp call and
1237 * the removal is always successful.
1238 */
1239 cpu_function_call(event->cpu, __perf_remove_from_context, event);
1240 return;
1241 }
1242
1243 retry:
1244 if (!task_function_call(task, __perf_remove_from_context, event))
1245 return;
1246
1247 raw_spin_lock_irq(&ctx->lock);
1248 /*
1249 * If we failed to find a running task, but find the context active now
1250 * that we've acquired the ctx->lock, retry.
1251 */
1252 if (ctx->is_active) {
1253 raw_spin_unlock_irq(&ctx->lock);
1254 goto retry;
1255 }
1256
1257 /*
1258 * Since the task isn't running, its safe to remove the event, us
1259 * holding the ctx->lock ensures the task won't get scheduled in.
1260 */
1261 list_del_event(event, ctx);
1262 raw_spin_unlock_irq(&ctx->lock);
1263 }
1264
1265 /*
1266 * Cross CPU call to disable a performance event
1267 */
1268 int __perf_event_disable(void *info)
1269 {
1270 struct perf_event *event = info;
1271 struct perf_event_context *ctx = event->ctx;
1272 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1273
1274 /*
1275 * If this is a per-task event, need to check whether this
1276 * event's task is the current task on this cpu.
1277 *
1278 * Can trigger due to concurrent perf_event_context_sched_out()
1279 * flipping contexts around.
1280 */
1281 if (ctx->task && cpuctx->task_ctx != ctx)
1282 return -EINVAL;
1283
1284 raw_spin_lock(&ctx->lock);
1285
1286 /*
1287 * If the event is on, turn it off.
1288 * If it is in error state, leave it in error state.
1289 */
1290 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1291 update_context_time(ctx);
1292 update_cgrp_time_from_event(event);
1293 update_group_times(event);
1294 if (event == event->group_leader)
1295 group_sched_out(event, cpuctx, ctx);
1296 else
1297 event_sched_out(event, cpuctx, ctx);
1298 event->state = PERF_EVENT_STATE_OFF;
1299 }
1300
1301 raw_spin_unlock(&ctx->lock);
1302
1303 return 0;
1304 }
1305
1306 /*
1307 * Disable a event.
1308 *
1309 * If event->ctx is a cloned context, callers must make sure that
1310 * every task struct that event->ctx->task could possibly point to
1311 * remains valid. This condition is satisifed when called through
1312 * perf_event_for_each_child or perf_event_for_each because they
1313 * hold the top-level event's child_mutex, so any descendant that
1314 * goes to exit will block in sync_child_event.
1315 * When called from perf_pending_event it's OK because event->ctx
1316 * is the current context on this CPU and preemption is disabled,
1317 * hence we can't get into perf_event_task_sched_out for this context.
1318 */
1319 void perf_event_disable(struct perf_event *event)
1320 {
1321 struct perf_event_context *ctx = event->ctx;
1322 struct task_struct *task = ctx->task;
1323
1324 if (!task) {
1325 /*
1326 * Disable the event on the cpu that it's on
1327 */
1328 cpu_function_call(event->cpu, __perf_event_disable, event);
1329 return;
1330 }
1331
1332 retry:
1333 if (!task_function_call(task, __perf_event_disable, event))
1334 return;
1335
1336 raw_spin_lock_irq(&ctx->lock);
1337 /*
1338 * If the event is still active, we need to retry the cross-call.
1339 */
1340 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1341 raw_spin_unlock_irq(&ctx->lock);
1342 /*
1343 * Reload the task pointer, it might have been changed by
1344 * a concurrent perf_event_context_sched_out().
1345 */
1346 task = ctx->task;
1347 goto retry;
1348 }
1349
1350 /*
1351 * Since we have the lock this context can't be scheduled
1352 * in, so we can change the state safely.
1353 */
1354 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1355 update_group_times(event);
1356 event->state = PERF_EVENT_STATE_OFF;
1357 }
1358 raw_spin_unlock_irq(&ctx->lock);
1359 }
1360 EXPORT_SYMBOL_GPL(perf_event_disable);
1361
1362 static void perf_set_shadow_time(struct perf_event *event,
1363 struct perf_event_context *ctx,
1364 u64 tstamp)
1365 {
1366 /*
1367 * use the correct time source for the time snapshot
1368 *
1369 * We could get by without this by leveraging the
1370 * fact that to get to this function, the caller
1371 * has most likely already called update_context_time()
1372 * and update_cgrp_time_xx() and thus both timestamp
1373 * are identical (or very close). Given that tstamp is,
1374 * already adjusted for cgroup, we could say that:
1375 * tstamp - ctx->timestamp
1376 * is equivalent to
1377 * tstamp - cgrp->timestamp.
1378 *
1379 * Then, in perf_output_read(), the calculation would
1380 * work with no changes because:
1381 * - event is guaranteed scheduled in
1382 * - no scheduled out in between
1383 * - thus the timestamp would be the same
1384 *
1385 * But this is a bit hairy.
1386 *
1387 * So instead, we have an explicit cgroup call to remain
1388 * within the time time source all along. We believe it
1389 * is cleaner and simpler to understand.
1390 */
1391 if (is_cgroup_event(event))
1392 perf_cgroup_set_shadow_time(event, tstamp);
1393 else
1394 event->shadow_ctx_time = tstamp - ctx->timestamp;
1395 }
1396
1397 #define MAX_INTERRUPTS (~0ULL)
1398
1399 static void perf_log_throttle(struct perf_event *event, int enable);
1400
1401 static int
1402 event_sched_in(struct perf_event *event,
1403 struct perf_cpu_context *cpuctx,
1404 struct perf_event_context *ctx)
1405 {
1406 u64 tstamp = perf_event_time(event);
1407
1408 if (event->state <= PERF_EVENT_STATE_OFF)
1409 return 0;
1410
1411 event->state = PERF_EVENT_STATE_ACTIVE;
1412 event->oncpu = smp_processor_id();
1413
1414 /*
1415 * Unthrottle events, since we scheduled we might have missed several
1416 * ticks already, also for a heavily scheduling task there is little
1417 * guarantee it'll get a tick in a timely manner.
1418 */
1419 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1420 perf_log_throttle(event, 1);
1421 event->hw.interrupts = 0;
1422 }
1423
1424 /*
1425 * The new state must be visible before we turn it on in the hardware:
1426 */
1427 smp_wmb();
1428
1429 if (event->pmu->add(event, PERF_EF_START)) {
1430 event->state = PERF_EVENT_STATE_INACTIVE;
1431 event->oncpu = -1;
1432 return -EAGAIN;
1433 }
1434
1435 event->tstamp_running += tstamp - event->tstamp_stopped;
1436
1437 perf_set_shadow_time(event, ctx, tstamp);
1438
1439 if (!is_software_event(event))
1440 cpuctx->active_oncpu++;
1441 ctx->nr_active++;
1442 if (event->attr.freq && event->attr.sample_freq)
1443 ctx->nr_freq++;
1444
1445 if (event->attr.exclusive)
1446 cpuctx->exclusive = 1;
1447
1448 return 0;
1449 }
1450
1451 static int
1452 group_sched_in(struct perf_event *group_event,
1453 struct perf_cpu_context *cpuctx,
1454 struct perf_event_context *ctx)
1455 {
1456 struct perf_event *event, *partial_group = NULL;
1457 struct pmu *pmu = group_event->pmu;
1458 u64 now = ctx->time;
1459 bool simulate = false;
1460
1461 if (group_event->state == PERF_EVENT_STATE_OFF)
1462 return 0;
1463
1464 pmu->start_txn(pmu);
1465
1466 if (event_sched_in(group_event, cpuctx, ctx)) {
1467 pmu->cancel_txn(pmu);
1468 return -EAGAIN;
1469 }
1470
1471 /*
1472 * Schedule in siblings as one group (if any):
1473 */
1474 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1475 if (event_sched_in(event, cpuctx, ctx)) {
1476 partial_group = event;
1477 goto group_error;
1478 }
1479 }
1480
1481 if (!pmu->commit_txn(pmu))
1482 return 0;
1483
1484 group_error:
1485 /*
1486 * Groups can be scheduled in as one unit only, so undo any
1487 * partial group before returning:
1488 * The events up to the failed event are scheduled out normally,
1489 * tstamp_stopped will be updated.
1490 *
1491 * The failed events and the remaining siblings need to have
1492 * their timings updated as if they had gone thru event_sched_in()
1493 * and event_sched_out(). This is required to get consistent timings
1494 * across the group. This also takes care of the case where the group
1495 * could never be scheduled by ensuring tstamp_stopped is set to mark
1496 * the time the event was actually stopped, such that time delta
1497 * calculation in update_event_times() is correct.
1498 */
1499 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1500 if (event == partial_group)
1501 simulate = true;
1502
1503 if (simulate) {
1504 event->tstamp_running += now - event->tstamp_stopped;
1505 event->tstamp_stopped = now;
1506 } else {
1507 event_sched_out(event, cpuctx, ctx);
1508 }
1509 }
1510 event_sched_out(group_event, cpuctx, ctx);
1511
1512 pmu->cancel_txn(pmu);
1513
1514 return -EAGAIN;
1515 }
1516
1517 /*
1518 * Work out whether we can put this event group on the CPU now.
1519 */
1520 static int group_can_go_on(struct perf_event *event,
1521 struct perf_cpu_context *cpuctx,
1522 int can_add_hw)
1523 {
1524 /*
1525 * Groups consisting entirely of software events can always go on.
1526 */
1527 if (event->group_flags & PERF_GROUP_SOFTWARE)
1528 return 1;
1529 /*
1530 * If an exclusive group is already on, no other hardware
1531 * events can go on.
1532 */
1533 if (cpuctx->exclusive)
1534 return 0;
1535 /*
1536 * If this group is exclusive and there are already
1537 * events on the CPU, it can't go on.
1538 */
1539 if (event->attr.exclusive && cpuctx->active_oncpu)
1540 return 0;
1541 /*
1542 * Otherwise, try to add it if all previous groups were able
1543 * to go on.
1544 */
1545 return can_add_hw;
1546 }
1547
1548 static void add_event_to_ctx(struct perf_event *event,
1549 struct perf_event_context *ctx)
1550 {
1551 u64 tstamp = perf_event_time(event);
1552
1553 list_add_event(event, ctx);
1554 perf_group_attach(event);
1555 event->tstamp_enabled = tstamp;
1556 event->tstamp_running = tstamp;
1557 event->tstamp_stopped = tstamp;
1558 }
1559
1560 static void task_ctx_sched_out(struct perf_event_context *ctx);
1561 static void
1562 ctx_sched_in(struct perf_event_context *ctx,
1563 struct perf_cpu_context *cpuctx,
1564 enum event_type_t event_type,
1565 struct task_struct *task);
1566
1567 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1568 struct perf_event_context *ctx,
1569 struct task_struct *task)
1570 {
1571 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1572 if (ctx)
1573 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1574 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1575 if (ctx)
1576 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1577 }
1578
1579 /*
1580 * Cross CPU call to install and enable a performance event
1581 *
1582 * Must be called with ctx->mutex held
1583 */
1584 static int __perf_install_in_context(void *info)
1585 {
1586 struct perf_event *event = info;
1587 struct perf_event_context *ctx = event->ctx;
1588 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1589 struct perf_event_context *task_ctx = cpuctx->task_ctx;
1590 struct task_struct *task = current;
1591
1592 perf_ctx_lock(cpuctx, task_ctx);
1593 perf_pmu_disable(cpuctx->ctx.pmu);
1594
1595 /*
1596 * If there was an active task_ctx schedule it out.
1597 */
1598 if (task_ctx)
1599 task_ctx_sched_out(task_ctx);
1600
1601 /*
1602 * If the context we're installing events in is not the
1603 * active task_ctx, flip them.
1604 */
1605 if (ctx->task && task_ctx != ctx) {
1606 if (task_ctx)
1607 raw_spin_unlock(&task_ctx->lock);
1608 raw_spin_lock(&ctx->lock);
1609 task_ctx = ctx;
1610 }
1611
1612 if (task_ctx) {
1613 cpuctx->task_ctx = task_ctx;
1614 task = task_ctx->task;
1615 }
1616
1617 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1618
1619 update_context_time(ctx);
1620 /*
1621 * update cgrp time only if current cgrp
1622 * matches event->cgrp. Must be done before
1623 * calling add_event_to_ctx()
1624 */
1625 update_cgrp_time_from_event(event);
1626
1627 add_event_to_ctx(event, ctx);
1628
1629 /*
1630 * Schedule everything back in
1631 */
1632 perf_event_sched_in(cpuctx, task_ctx, task);
1633
1634 perf_pmu_enable(cpuctx->ctx.pmu);
1635 perf_ctx_unlock(cpuctx, task_ctx);
1636
1637 return 0;
1638 }
1639
1640 /*
1641 * Attach a performance event to a context
1642 *
1643 * First we add the event to the list with the hardware enable bit
1644 * in event->hw_config cleared.
1645 *
1646 * If the event is attached to a task which is on a CPU we use a smp
1647 * call to enable it in the task context. The task might have been
1648 * scheduled away, but we check this in the smp call again.
1649 */
1650 static void
1651 perf_install_in_context(struct perf_event_context *ctx,
1652 struct perf_event *event,
1653 int cpu)
1654 {
1655 struct task_struct *task = ctx->task;
1656
1657 lockdep_assert_held(&ctx->mutex);
1658
1659 event->ctx = ctx;
1660 if (event->cpu != -1)
1661 event->cpu = cpu;
1662
1663 if (!task) {
1664 /*
1665 * Per cpu events are installed via an smp call and
1666 * the install is always successful.
1667 */
1668 cpu_function_call(cpu, __perf_install_in_context, event);
1669 return;
1670 }
1671
1672 retry:
1673 if (!task_function_call(task, __perf_install_in_context, event))
1674 return;
1675
1676 raw_spin_lock_irq(&ctx->lock);
1677 /*
1678 * If we failed to find a running task, but find the context active now
1679 * that we've acquired the ctx->lock, retry.
1680 */
1681 if (ctx->is_active) {
1682 raw_spin_unlock_irq(&ctx->lock);
1683 goto retry;
1684 }
1685
1686 /*
1687 * Since the task isn't running, its safe to add the event, us holding
1688 * the ctx->lock ensures the task won't get scheduled in.
1689 */
1690 add_event_to_ctx(event, ctx);
1691 raw_spin_unlock_irq(&ctx->lock);
1692 }
1693
1694 /*
1695 * Put a event into inactive state and update time fields.
1696 * Enabling the leader of a group effectively enables all
1697 * the group members that aren't explicitly disabled, so we
1698 * have to update their ->tstamp_enabled also.
1699 * Note: this works for group members as well as group leaders
1700 * since the non-leader members' sibling_lists will be empty.
1701 */
1702 static void __perf_event_mark_enabled(struct perf_event *event)
1703 {
1704 struct perf_event *sub;
1705 u64 tstamp = perf_event_time(event);
1706
1707 event->state = PERF_EVENT_STATE_INACTIVE;
1708 event->tstamp_enabled = tstamp - event->total_time_enabled;
1709 list_for_each_entry(sub, &event->sibling_list, group_entry) {
1710 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1711 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1712 }
1713 }
1714
1715 /*
1716 * Cross CPU call to enable a performance event
1717 */
1718 static int __perf_event_enable(void *info)
1719 {
1720 struct perf_event *event = info;
1721 struct perf_event_context *ctx = event->ctx;
1722 struct perf_event *leader = event->group_leader;
1723 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1724 int err;
1725
1726 if (WARN_ON_ONCE(!ctx->is_active))
1727 return -EINVAL;
1728
1729 raw_spin_lock(&ctx->lock);
1730 update_context_time(ctx);
1731
1732 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1733 goto unlock;
1734
1735 /*
1736 * set current task's cgroup time reference point
1737 */
1738 perf_cgroup_set_timestamp(current, ctx);
1739
1740 __perf_event_mark_enabled(event);
1741
1742 if (!event_filter_match(event)) {
1743 if (is_cgroup_event(event))
1744 perf_cgroup_defer_enabled(event);
1745 goto unlock;
1746 }
1747
1748 /*
1749 * If the event is in a group and isn't the group leader,
1750 * then don't put it on unless the group is on.
1751 */
1752 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1753 goto unlock;
1754
1755 if (!group_can_go_on(event, cpuctx, 1)) {
1756 err = -EEXIST;
1757 } else {
1758 if (event == leader)
1759 err = group_sched_in(event, cpuctx, ctx);
1760 else
1761 err = event_sched_in(event, cpuctx, ctx);
1762 }
1763
1764 if (err) {
1765 /*
1766 * If this event can't go on and it's part of a
1767 * group, then the whole group has to come off.
1768 */
1769 if (leader != event)
1770 group_sched_out(leader, cpuctx, ctx);
1771 if (leader->attr.pinned) {
1772 update_group_times(leader);
1773 leader->state = PERF_EVENT_STATE_ERROR;
1774 }
1775 }
1776
1777 unlock:
1778 raw_spin_unlock(&ctx->lock);
1779
1780 return 0;
1781 }
1782
1783 /*
1784 * Enable a event.
1785 *
1786 * If event->ctx is a cloned context, callers must make sure that
1787 * every task struct that event->ctx->task could possibly point to
1788 * remains valid. This condition is satisfied when called through
1789 * perf_event_for_each_child or perf_event_for_each as described
1790 * for perf_event_disable.
1791 */
1792 void perf_event_enable(struct perf_event *event)
1793 {
1794 struct perf_event_context *ctx = event->ctx;
1795 struct task_struct *task = ctx->task;
1796
1797 if (!task) {
1798 /*
1799 * Enable the event on the cpu that it's on
1800 */
1801 cpu_function_call(event->cpu, __perf_event_enable, event);
1802 return;
1803 }
1804
1805 raw_spin_lock_irq(&ctx->lock);
1806 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1807 goto out;
1808
1809 /*
1810 * If the event is in error state, clear that first.
1811 * That way, if we see the event in error state below, we
1812 * know that it has gone back into error state, as distinct
1813 * from the task having been scheduled away before the
1814 * cross-call arrived.
1815 */
1816 if (event->state == PERF_EVENT_STATE_ERROR)
1817 event->state = PERF_EVENT_STATE_OFF;
1818
1819 retry:
1820 if (!ctx->is_active) {
1821 __perf_event_mark_enabled(event);
1822 goto out;
1823 }
1824
1825 raw_spin_unlock_irq(&ctx->lock);
1826
1827 if (!task_function_call(task, __perf_event_enable, event))
1828 return;
1829
1830 raw_spin_lock_irq(&ctx->lock);
1831
1832 /*
1833 * If the context is active and the event is still off,
1834 * we need to retry the cross-call.
1835 */
1836 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
1837 /*
1838 * task could have been flipped by a concurrent
1839 * perf_event_context_sched_out()
1840 */
1841 task = ctx->task;
1842 goto retry;
1843 }
1844
1845 out:
1846 raw_spin_unlock_irq(&ctx->lock);
1847 }
1848 EXPORT_SYMBOL_GPL(perf_event_enable);
1849
1850 int perf_event_refresh(struct perf_event *event, int refresh)
1851 {
1852 /*
1853 * not supported on inherited events
1854 */
1855 if (event->attr.inherit || !is_sampling_event(event))
1856 return -EINVAL;
1857
1858 atomic_add(refresh, &event->event_limit);
1859 perf_event_enable(event);
1860
1861 return 0;
1862 }
1863 EXPORT_SYMBOL_GPL(perf_event_refresh);
1864
1865 static void ctx_sched_out(struct perf_event_context *ctx,
1866 struct perf_cpu_context *cpuctx,
1867 enum event_type_t event_type)
1868 {
1869 struct perf_event *event;
1870 int is_active = ctx->is_active;
1871
1872 ctx->is_active &= ~event_type;
1873 if (likely(!ctx->nr_events))
1874 return;
1875
1876 update_context_time(ctx);
1877 update_cgrp_time_from_cpuctx(cpuctx);
1878 if (!ctx->nr_active)
1879 return;
1880
1881 perf_pmu_disable(ctx->pmu);
1882 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
1883 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1884 group_sched_out(event, cpuctx, ctx);
1885 }
1886
1887 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
1888 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1889 group_sched_out(event, cpuctx, ctx);
1890 }
1891 perf_pmu_enable(ctx->pmu);
1892 }
1893
1894 /*
1895 * Test whether two contexts are equivalent, i.e. whether they
1896 * have both been cloned from the same version of the same context
1897 * and they both have the same number of enabled events.
1898 * If the number of enabled events is the same, then the set
1899 * of enabled events should be the same, because these are both
1900 * inherited contexts, therefore we can't access individual events
1901 * in them directly with an fd; we can only enable/disable all
1902 * events via prctl, or enable/disable all events in a family
1903 * via ioctl, which will have the same effect on both contexts.
1904 */
1905 static int context_equiv(struct perf_event_context *ctx1,
1906 struct perf_event_context *ctx2)
1907 {
1908 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1909 && ctx1->parent_gen == ctx2->parent_gen
1910 && !ctx1->pin_count && !ctx2->pin_count;
1911 }
1912
1913 static void __perf_event_sync_stat(struct perf_event *event,
1914 struct perf_event *next_event)
1915 {
1916 u64 value;
1917
1918 if (!event->attr.inherit_stat)
1919 return;
1920
1921 /*
1922 * Update the event value, we cannot use perf_event_read()
1923 * because we're in the middle of a context switch and have IRQs
1924 * disabled, which upsets smp_call_function_single(), however
1925 * we know the event must be on the current CPU, therefore we
1926 * don't need to use it.
1927 */
1928 switch (event->state) {
1929 case PERF_EVENT_STATE_ACTIVE:
1930 event->pmu->read(event);
1931 /* fall-through */
1932
1933 case PERF_EVENT_STATE_INACTIVE:
1934 update_event_times(event);
1935 break;
1936
1937 default:
1938 break;
1939 }
1940
1941 /*
1942 * In order to keep per-task stats reliable we need to flip the event
1943 * values when we flip the contexts.
1944 */
1945 value = local64_read(&next_event->count);
1946 value = local64_xchg(&event->count, value);
1947 local64_set(&next_event->count, value);
1948
1949 swap(event->total_time_enabled, next_event->total_time_enabled);
1950 swap(event->total_time_running, next_event->total_time_running);
1951
1952 /*
1953 * Since we swizzled the values, update the user visible data too.
1954 */
1955 perf_event_update_userpage(event);
1956 perf_event_update_userpage(next_event);
1957 }
1958
1959 #define list_next_entry(pos, member) \
1960 list_entry(pos->member.next, typeof(*pos), member)
1961
1962 static void perf_event_sync_stat(struct perf_event_context *ctx,
1963 struct perf_event_context *next_ctx)
1964 {
1965 struct perf_event *event, *next_event;
1966
1967 if (!ctx->nr_stat)
1968 return;
1969
1970 update_context_time(ctx);
1971
1972 event = list_first_entry(&ctx->event_list,
1973 struct perf_event, event_entry);
1974
1975 next_event = list_first_entry(&next_ctx->event_list,
1976 struct perf_event, event_entry);
1977
1978 while (&event->event_entry != &ctx->event_list &&
1979 &next_event->event_entry != &next_ctx->event_list) {
1980
1981 __perf_event_sync_stat(event, next_event);
1982
1983 event = list_next_entry(event, event_entry);
1984 next_event = list_next_entry(next_event, event_entry);
1985 }
1986 }
1987
1988 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1989 struct task_struct *next)
1990 {
1991 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1992 struct perf_event_context *next_ctx;
1993 struct perf_event_context *parent;
1994 struct perf_cpu_context *cpuctx;
1995 int do_switch = 1;
1996
1997 if (likely(!ctx))
1998 return;
1999
2000 cpuctx = __get_cpu_context(ctx);
2001 if (!cpuctx->task_ctx)
2002 return;
2003
2004 rcu_read_lock();
2005 parent = rcu_dereference(ctx->parent_ctx);
2006 next_ctx = next->perf_event_ctxp[ctxn];
2007 if (parent && next_ctx &&
2008 rcu_dereference(next_ctx->parent_ctx) == parent) {
2009 /*
2010 * Looks like the two contexts are clones, so we might be
2011 * able to optimize the context switch. We lock both
2012 * contexts and check that they are clones under the
2013 * lock (including re-checking that neither has been
2014 * uncloned in the meantime). It doesn't matter which
2015 * order we take the locks because no other cpu could
2016 * be trying to lock both of these tasks.
2017 */
2018 raw_spin_lock(&ctx->lock);
2019 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2020 if (context_equiv(ctx, next_ctx)) {
2021 /*
2022 * XXX do we need a memory barrier of sorts
2023 * wrt to rcu_dereference() of perf_event_ctxp
2024 */
2025 task->perf_event_ctxp[ctxn] = next_ctx;
2026 next->perf_event_ctxp[ctxn] = ctx;
2027 ctx->task = next;
2028 next_ctx->task = task;
2029 do_switch = 0;
2030
2031 perf_event_sync_stat(ctx, next_ctx);
2032 }
2033 raw_spin_unlock(&next_ctx->lock);
2034 raw_spin_unlock(&ctx->lock);
2035 }
2036 rcu_read_unlock();
2037
2038 if (do_switch) {
2039 raw_spin_lock(&ctx->lock);
2040 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2041 cpuctx->task_ctx = NULL;
2042 raw_spin_unlock(&ctx->lock);
2043 }
2044 }
2045
2046 #define for_each_task_context_nr(ctxn) \
2047 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2048
2049 /*
2050 * Called from scheduler to remove the events of the current task,
2051 * with interrupts disabled.
2052 *
2053 * We stop each event and update the event value in event->count.
2054 *
2055 * This does not protect us against NMI, but disable()
2056 * sets the disabled bit in the control field of event _before_
2057 * accessing the event control register. If a NMI hits, then it will
2058 * not restart the event.
2059 */
2060 void __perf_event_task_sched_out(struct task_struct *task,
2061 struct task_struct *next)
2062 {
2063 int ctxn;
2064
2065 for_each_task_context_nr(ctxn)
2066 perf_event_context_sched_out(task, ctxn, next);
2067
2068 /*
2069 * if cgroup events exist on this CPU, then we need
2070 * to check if we have to switch out PMU state.
2071 * cgroup event are system-wide mode only
2072 */
2073 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2074 perf_cgroup_sched_out(task, next);
2075 }
2076
2077 static void task_ctx_sched_out(struct perf_event_context *ctx)
2078 {
2079 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2080
2081 if (!cpuctx->task_ctx)
2082 return;
2083
2084 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2085 return;
2086
2087 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2088 cpuctx->task_ctx = NULL;
2089 }
2090
2091 /*
2092 * Called with IRQs disabled
2093 */
2094 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2095 enum event_type_t event_type)
2096 {
2097 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2098 }
2099
2100 static void
2101 ctx_pinned_sched_in(struct perf_event_context *ctx,
2102 struct perf_cpu_context *cpuctx)
2103 {
2104 struct perf_event *event;
2105
2106 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2107 if (event->state <= PERF_EVENT_STATE_OFF)
2108 continue;
2109 if (!event_filter_match(event))
2110 continue;
2111
2112 /* may need to reset tstamp_enabled */
2113 if (is_cgroup_event(event))
2114 perf_cgroup_mark_enabled(event, ctx);
2115
2116 if (group_can_go_on(event, cpuctx, 1))
2117 group_sched_in(event, cpuctx, ctx);
2118
2119 /*
2120 * If this pinned group hasn't been scheduled,
2121 * put it in error state.
2122 */
2123 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2124 update_group_times(event);
2125 event->state = PERF_EVENT_STATE_ERROR;
2126 }
2127 }
2128 }
2129
2130 static void
2131 ctx_flexible_sched_in(struct perf_event_context *ctx,
2132 struct perf_cpu_context *cpuctx)
2133 {
2134 struct perf_event *event;
2135 int can_add_hw = 1;
2136
2137 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2138 /* Ignore events in OFF or ERROR state */
2139 if (event->state <= PERF_EVENT_STATE_OFF)
2140 continue;
2141 /*
2142 * Listen to the 'cpu' scheduling filter constraint
2143 * of events:
2144 */
2145 if (!event_filter_match(event))
2146 continue;
2147
2148 /* may need to reset tstamp_enabled */
2149 if (is_cgroup_event(event))
2150 perf_cgroup_mark_enabled(event, ctx);
2151
2152 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2153 if (group_sched_in(event, cpuctx, ctx))
2154 can_add_hw = 0;
2155 }
2156 }
2157 }
2158
2159 static void
2160 ctx_sched_in(struct perf_event_context *ctx,
2161 struct perf_cpu_context *cpuctx,
2162 enum event_type_t event_type,
2163 struct task_struct *task)
2164 {
2165 u64 now;
2166 int is_active = ctx->is_active;
2167
2168 ctx->is_active |= event_type;
2169 if (likely(!ctx->nr_events))
2170 return;
2171
2172 now = perf_clock();
2173 ctx->timestamp = now;
2174 perf_cgroup_set_timestamp(task, ctx);
2175 /*
2176 * First go through the list and put on any pinned groups
2177 * in order to give them the best chance of going on.
2178 */
2179 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2180 ctx_pinned_sched_in(ctx, cpuctx);
2181
2182 /* Then walk through the lower prio flexible groups */
2183 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2184 ctx_flexible_sched_in(ctx, cpuctx);
2185 }
2186
2187 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2188 enum event_type_t event_type,
2189 struct task_struct *task)
2190 {
2191 struct perf_event_context *ctx = &cpuctx->ctx;
2192
2193 ctx_sched_in(ctx, cpuctx, event_type, task);
2194 }
2195
2196 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2197 struct task_struct *task)
2198 {
2199 struct perf_cpu_context *cpuctx;
2200
2201 cpuctx = __get_cpu_context(ctx);
2202 if (cpuctx->task_ctx == ctx)
2203 return;
2204
2205 perf_ctx_lock(cpuctx, ctx);
2206 perf_pmu_disable(ctx->pmu);
2207 /*
2208 * We want to keep the following priority order:
2209 * cpu pinned (that don't need to move), task pinned,
2210 * cpu flexible, task flexible.
2211 */
2212 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2213
2214 if (ctx->nr_events)
2215 cpuctx->task_ctx = ctx;
2216
2217 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2218
2219 perf_pmu_enable(ctx->pmu);
2220 perf_ctx_unlock(cpuctx, ctx);
2221
2222 /*
2223 * Since these rotations are per-cpu, we need to ensure the
2224 * cpu-context we got scheduled on is actually rotating.
2225 */
2226 perf_pmu_rotate_start(ctx->pmu);
2227 }
2228
2229 /*
2230 * When sampling the branck stack in system-wide, it may be necessary
2231 * to flush the stack on context switch. This happens when the branch
2232 * stack does not tag its entries with the pid of the current task.
2233 * Otherwise it becomes impossible to associate a branch entry with a
2234 * task. This ambiguity is more likely to appear when the branch stack
2235 * supports priv level filtering and the user sets it to monitor only
2236 * at the user level (which could be a useful measurement in system-wide
2237 * mode). In that case, the risk is high of having a branch stack with
2238 * branch from multiple tasks. Flushing may mean dropping the existing
2239 * entries or stashing them somewhere in the PMU specific code layer.
2240 *
2241 * This function provides the context switch callback to the lower code
2242 * layer. It is invoked ONLY when there is at least one system-wide context
2243 * with at least one active event using taken branch sampling.
2244 */
2245 static void perf_branch_stack_sched_in(struct task_struct *prev,
2246 struct task_struct *task)
2247 {
2248 struct perf_cpu_context *cpuctx;
2249 struct pmu *pmu;
2250 unsigned long flags;
2251
2252 /* no need to flush branch stack if not changing task */
2253 if (prev == task)
2254 return;
2255
2256 local_irq_save(flags);
2257
2258 rcu_read_lock();
2259
2260 list_for_each_entry_rcu(pmu, &pmus, entry) {
2261 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2262
2263 /*
2264 * check if the context has at least one
2265 * event using PERF_SAMPLE_BRANCH_STACK
2266 */
2267 if (cpuctx->ctx.nr_branch_stack > 0
2268 && pmu->flush_branch_stack) {
2269
2270 pmu = cpuctx->ctx.pmu;
2271
2272 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2273
2274 perf_pmu_disable(pmu);
2275
2276 pmu->flush_branch_stack();
2277
2278 perf_pmu_enable(pmu);
2279
2280 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2281 }
2282 }
2283
2284 rcu_read_unlock();
2285
2286 local_irq_restore(flags);
2287 }
2288
2289 /*
2290 * Called from scheduler to add the events of the current task
2291 * with interrupts disabled.
2292 *
2293 * We restore the event value and then enable it.
2294 *
2295 * This does not protect us against NMI, but enable()
2296 * sets the enabled bit in the control field of event _before_
2297 * accessing the event control register. If a NMI hits, then it will
2298 * keep the event running.
2299 */
2300 void __perf_event_task_sched_in(struct task_struct *prev,
2301 struct task_struct *task)
2302 {
2303 struct perf_event_context *ctx;
2304 int ctxn;
2305
2306 for_each_task_context_nr(ctxn) {
2307 ctx = task->perf_event_ctxp[ctxn];
2308 if (likely(!ctx))
2309 continue;
2310
2311 perf_event_context_sched_in(ctx, task);
2312 }
2313 /*
2314 * if cgroup events exist on this CPU, then we need
2315 * to check if we have to switch in PMU state.
2316 * cgroup event are system-wide mode only
2317 */
2318 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2319 perf_cgroup_sched_in(prev, task);
2320
2321 /* check for system-wide branch_stack events */
2322 if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2323 perf_branch_stack_sched_in(prev, task);
2324 }
2325
2326 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2327 {
2328 u64 frequency = event->attr.sample_freq;
2329 u64 sec = NSEC_PER_SEC;
2330 u64 divisor, dividend;
2331
2332 int count_fls, nsec_fls, frequency_fls, sec_fls;
2333
2334 count_fls = fls64(count);
2335 nsec_fls = fls64(nsec);
2336 frequency_fls = fls64(frequency);
2337 sec_fls = 30;
2338
2339 /*
2340 * We got @count in @nsec, with a target of sample_freq HZ
2341 * the target period becomes:
2342 *
2343 * @count * 10^9
2344 * period = -------------------
2345 * @nsec * sample_freq
2346 *
2347 */
2348
2349 /*
2350 * Reduce accuracy by one bit such that @a and @b converge
2351 * to a similar magnitude.
2352 */
2353 #define REDUCE_FLS(a, b) \
2354 do { \
2355 if (a##_fls > b##_fls) { \
2356 a >>= 1; \
2357 a##_fls--; \
2358 } else { \
2359 b >>= 1; \
2360 b##_fls--; \
2361 } \
2362 } while (0)
2363
2364 /*
2365 * Reduce accuracy until either term fits in a u64, then proceed with
2366 * the other, so that finally we can do a u64/u64 division.
2367 */
2368 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2369 REDUCE_FLS(nsec, frequency);
2370 REDUCE_FLS(sec, count);
2371 }
2372
2373 if (count_fls + sec_fls > 64) {
2374 divisor = nsec * frequency;
2375
2376 while (count_fls + sec_fls > 64) {
2377 REDUCE_FLS(count, sec);
2378 divisor >>= 1;
2379 }
2380
2381 dividend = count * sec;
2382 } else {
2383 dividend = count * sec;
2384
2385 while (nsec_fls + frequency_fls > 64) {
2386 REDUCE_FLS(nsec, frequency);
2387 dividend >>= 1;
2388 }
2389
2390 divisor = nsec * frequency;
2391 }
2392
2393 if (!divisor)
2394 return dividend;
2395
2396 return div64_u64(dividend, divisor);
2397 }
2398
2399 static DEFINE_PER_CPU(int, perf_throttled_count);
2400 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2401
2402 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2403 {
2404 struct hw_perf_event *hwc = &event->hw;
2405 s64 period, sample_period;
2406 s64 delta;
2407
2408 period = perf_calculate_period(event, nsec, count);
2409
2410 delta = (s64)(period - hwc->sample_period);
2411 delta = (delta + 7) / 8; /* low pass filter */
2412
2413 sample_period = hwc->sample_period + delta;
2414
2415 if (!sample_period)
2416 sample_period = 1;
2417
2418 hwc->sample_period = sample_period;
2419
2420 if (local64_read(&hwc->period_left) > 8*sample_period) {
2421 if (disable)
2422 event->pmu->stop(event, PERF_EF_UPDATE);
2423
2424 local64_set(&hwc->period_left, 0);
2425
2426 if (disable)
2427 event->pmu->start(event, PERF_EF_RELOAD);
2428 }
2429 }
2430
2431 /*
2432 * combine freq adjustment with unthrottling to avoid two passes over the
2433 * events. At the same time, make sure, having freq events does not change
2434 * the rate of unthrottling as that would introduce bias.
2435 */
2436 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2437 int needs_unthr)
2438 {
2439 struct perf_event *event;
2440 struct hw_perf_event *hwc;
2441 u64 now, period = TICK_NSEC;
2442 s64 delta;
2443
2444 /*
2445 * only need to iterate over all events iff:
2446 * - context have events in frequency mode (needs freq adjust)
2447 * - there are events to unthrottle on this cpu
2448 */
2449 if (!(ctx->nr_freq || needs_unthr))
2450 return;
2451
2452 raw_spin_lock(&ctx->lock);
2453 perf_pmu_disable(ctx->pmu);
2454
2455 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2456 if (event->state != PERF_EVENT_STATE_ACTIVE)
2457 continue;
2458
2459 if (!event_filter_match(event))
2460 continue;
2461
2462 hwc = &event->hw;
2463
2464 if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
2465 hwc->interrupts = 0;
2466 perf_log_throttle(event, 1);
2467 event->pmu->start(event, 0);
2468 }
2469
2470 if (!event->attr.freq || !event->attr.sample_freq)
2471 continue;
2472
2473 /*
2474 * stop the event and update event->count
2475 */
2476 event->pmu->stop(event, PERF_EF_UPDATE);
2477
2478 now = local64_read(&event->count);
2479 delta = now - hwc->freq_count_stamp;
2480 hwc->freq_count_stamp = now;
2481
2482 /*
2483 * restart the event
2484 * reload only if value has changed
2485 * we have stopped the event so tell that
2486 * to perf_adjust_period() to avoid stopping it
2487 * twice.
2488 */
2489 if (delta > 0)
2490 perf_adjust_period(event, period, delta, false);
2491
2492 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2493 }
2494
2495 perf_pmu_enable(ctx->pmu);
2496 raw_spin_unlock(&ctx->lock);
2497 }
2498
2499 /*
2500 * Round-robin a context's events:
2501 */
2502 static void rotate_ctx(struct perf_event_context *ctx)
2503 {
2504 /*
2505 * Rotate the first entry last of non-pinned groups. Rotation might be
2506 * disabled by the inheritance code.
2507 */
2508 if (!ctx->rotate_disable)
2509 list_rotate_left(&ctx->flexible_groups);
2510 }
2511
2512 /*
2513 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2514 * because they're strictly cpu affine and rotate_start is called with IRQs
2515 * disabled, while rotate_context is called from IRQ context.
2516 */
2517 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2518 {
2519 struct perf_event_context *ctx = NULL;
2520 int rotate = 0, remove = 1;
2521
2522 if (cpuctx->ctx.nr_events) {
2523 remove = 0;
2524 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2525 rotate = 1;
2526 }
2527
2528 ctx = cpuctx->task_ctx;
2529 if (ctx && ctx->nr_events) {
2530 remove = 0;
2531 if (ctx->nr_events != ctx->nr_active)
2532 rotate = 1;
2533 }
2534
2535 if (!rotate)
2536 goto done;
2537
2538 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2539 perf_pmu_disable(cpuctx->ctx.pmu);
2540
2541 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2542 if (ctx)
2543 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2544
2545 rotate_ctx(&cpuctx->ctx);
2546 if (ctx)
2547 rotate_ctx(ctx);
2548
2549 perf_event_sched_in(cpuctx, ctx, current);
2550
2551 perf_pmu_enable(cpuctx->ctx.pmu);
2552 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2553 done:
2554 if (remove)
2555 list_del_init(&cpuctx->rotation_list);
2556 }
2557
2558 void perf_event_task_tick(void)
2559 {
2560 struct list_head *head = &__get_cpu_var(rotation_list);
2561 struct perf_cpu_context *cpuctx, *tmp;
2562 struct perf_event_context *ctx;
2563 int throttled;
2564
2565 WARN_ON(!irqs_disabled());
2566
2567 __this_cpu_inc(perf_throttled_seq);
2568 throttled = __this_cpu_xchg(perf_throttled_count, 0);
2569
2570 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2571 ctx = &cpuctx->ctx;
2572 perf_adjust_freq_unthr_context(ctx, throttled);
2573
2574 ctx = cpuctx->task_ctx;
2575 if (ctx)
2576 perf_adjust_freq_unthr_context(ctx, throttled);
2577
2578 if (cpuctx->jiffies_interval == 1 ||
2579 !(jiffies % cpuctx->jiffies_interval))
2580 perf_rotate_context(cpuctx);
2581 }
2582 }
2583
2584 static int event_enable_on_exec(struct perf_event *event,
2585 struct perf_event_context *ctx)
2586 {
2587 if (!event->attr.enable_on_exec)
2588 return 0;
2589
2590 event->attr.enable_on_exec = 0;
2591 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2592 return 0;
2593
2594 __perf_event_mark_enabled(event);
2595
2596 return 1;
2597 }
2598
2599 /*
2600 * Enable all of a task's events that have been marked enable-on-exec.
2601 * This expects task == current.
2602 */
2603 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2604 {
2605 struct perf_event *event;
2606 unsigned long flags;
2607 int enabled = 0;
2608 int ret;
2609
2610 local_irq_save(flags);
2611 if (!ctx || !ctx->nr_events)
2612 goto out;
2613
2614 /*
2615 * We must ctxsw out cgroup events to avoid conflict
2616 * when invoking perf_task_event_sched_in() later on
2617 * in this function. Otherwise we end up trying to
2618 * ctxswin cgroup events which are already scheduled
2619 * in.
2620 */
2621 perf_cgroup_sched_out(current, NULL);
2622
2623 raw_spin_lock(&ctx->lock);
2624 task_ctx_sched_out(ctx);
2625
2626 list_for_each_entry(event, &ctx->event_list, event_entry) {
2627 ret = event_enable_on_exec(event, ctx);
2628 if (ret)
2629 enabled = 1;
2630 }
2631
2632 /*
2633 * Unclone this context if we enabled any event.
2634 */
2635 if (enabled)
2636 unclone_ctx(ctx);
2637
2638 raw_spin_unlock(&ctx->lock);
2639
2640 /*
2641 * Also calls ctxswin for cgroup events, if any:
2642 */
2643 perf_event_context_sched_in(ctx, ctx->task);
2644 out:
2645 local_irq_restore(flags);
2646 }
2647
2648 /*
2649 * Cross CPU call to read the hardware event
2650 */
2651 static void __perf_event_read(void *info)
2652 {
2653 struct perf_event *event = info;
2654 struct perf_event_context *ctx = event->ctx;
2655 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2656
2657 /*
2658 * If this is a task context, we need to check whether it is
2659 * the current task context of this cpu. If not it has been
2660 * scheduled out before the smp call arrived. In that case
2661 * event->count would have been updated to a recent sample
2662 * when the event was scheduled out.
2663 */
2664 if (ctx->task && cpuctx->task_ctx != ctx)
2665 return;
2666
2667 raw_spin_lock(&ctx->lock);
2668 if (ctx->is_active) {
2669 update_context_time(ctx);
2670 update_cgrp_time_from_event(event);
2671 }
2672 update_event_times(event);
2673 if (event->state == PERF_EVENT_STATE_ACTIVE)
2674 event->pmu->read(event);
2675 raw_spin_unlock(&ctx->lock);
2676 }
2677
2678 static inline u64 perf_event_count(struct perf_event *event)
2679 {
2680 return local64_read(&event->count) + atomic64_read(&event->child_count);
2681 }
2682
2683 static u64 perf_event_read(struct perf_event *event)
2684 {
2685 /*
2686 * If event is enabled and currently active on a CPU, update the
2687 * value in the event structure:
2688 */
2689 if (event->state == PERF_EVENT_STATE_ACTIVE) {
2690 smp_call_function_single(event->oncpu,
2691 __perf_event_read, event, 1);
2692 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2693 struct perf_event_context *ctx = event->ctx;
2694 unsigned long flags;
2695
2696 raw_spin_lock_irqsave(&ctx->lock, flags);
2697 /*
2698 * may read while context is not active
2699 * (e.g., thread is blocked), in that case
2700 * we cannot update context time
2701 */
2702 if (ctx->is_active) {
2703 update_context_time(ctx);
2704 update_cgrp_time_from_event(event);
2705 }
2706 update_event_times(event);
2707 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2708 }
2709
2710 return perf_event_count(event);
2711 }
2712
2713 /*
2714 * Initialize the perf_event context in a task_struct:
2715 */
2716 static void __perf_event_init_context(struct perf_event_context *ctx)
2717 {
2718 raw_spin_lock_init(&ctx->lock);
2719 mutex_init(&ctx->mutex);
2720 INIT_LIST_HEAD(&ctx->pinned_groups);
2721 INIT_LIST_HEAD(&ctx->flexible_groups);
2722 INIT_LIST_HEAD(&ctx->event_list);
2723 atomic_set(&ctx->refcount, 1);
2724 }
2725
2726 static struct perf_event_context *
2727 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2728 {
2729 struct perf_event_context *ctx;
2730
2731 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2732 if (!ctx)
2733 return NULL;
2734
2735 __perf_event_init_context(ctx);
2736 if (task) {
2737 ctx->task = task;
2738 get_task_struct(task);
2739 }
2740 ctx->pmu = pmu;
2741
2742 return ctx;
2743 }
2744
2745 static struct task_struct *
2746 find_lively_task_by_vpid(pid_t vpid)
2747 {
2748 struct task_struct *task;
2749 int err;
2750
2751 rcu_read_lock();
2752 if (!vpid)
2753 task = current;
2754 else
2755 task = find_task_by_vpid(vpid);
2756 if (task)
2757 get_task_struct(task);
2758 rcu_read_unlock();
2759
2760 if (!task)
2761 return ERR_PTR(-ESRCH);
2762
2763 /* Reuse ptrace permission checks for now. */
2764 err = -EACCES;
2765 if (!ptrace_may_access(task, PTRACE_MODE_READ))
2766 goto errout;
2767
2768 return task;
2769 errout:
2770 put_task_struct(task);
2771 return ERR_PTR(err);
2772
2773 }
2774
2775 /*
2776 * Returns a matching context with refcount and pincount.
2777 */
2778 static struct perf_event_context *
2779 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2780 {
2781 struct perf_event_context *ctx;
2782 struct perf_cpu_context *cpuctx;
2783 unsigned long flags;
2784 int ctxn, err;
2785
2786 if (!task) {
2787 /* Must be root to operate on a CPU event: */
2788 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2789 return ERR_PTR(-EACCES);
2790
2791 /*
2792 * We could be clever and allow to attach a event to an
2793 * offline CPU and activate it when the CPU comes up, but
2794 * that's for later.
2795 */
2796 if (!cpu_online(cpu))
2797 return ERR_PTR(-ENODEV);
2798
2799 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2800 ctx = &cpuctx->ctx;
2801 get_ctx(ctx);
2802 ++ctx->pin_count;
2803
2804 return ctx;
2805 }
2806
2807 err = -EINVAL;
2808 ctxn = pmu->task_ctx_nr;
2809 if (ctxn < 0)
2810 goto errout;
2811
2812 retry:
2813 ctx = perf_lock_task_context(task, ctxn, &flags);
2814 if (ctx) {
2815 unclone_ctx(ctx);
2816 ++ctx->pin_count;
2817 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2818 } else {
2819 ctx = alloc_perf_context(pmu, task);
2820 err = -ENOMEM;
2821 if (!ctx)
2822 goto errout;
2823
2824 err = 0;
2825 mutex_lock(&task->perf_event_mutex);
2826 /*
2827 * If it has already passed perf_event_exit_task().
2828 * we must see PF_EXITING, it takes this mutex too.
2829 */
2830 if (task->flags & PF_EXITING)
2831 err = -ESRCH;
2832 else if (task->perf_event_ctxp[ctxn])
2833 err = -EAGAIN;
2834 else {
2835 get_ctx(ctx);
2836 ++ctx->pin_count;
2837 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2838 }
2839 mutex_unlock(&task->perf_event_mutex);
2840
2841 if (unlikely(err)) {
2842 put_ctx(ctx);
2843
2844 if (err == -EAGAIN)
2845 goto retry;
2846 goto errout;
2847 }
2848 }
2849
2850 return ctx;
2851
2852 errout:
2853 return ERR_PTR(err);
2854 }
2855
2856 static void perf_event_free_filter(struct perf_event *event);
2857
2858 static void free_event_rcu(struct rcu_head *head)
2859 {
2860 struct perf_event *event;
2861
2862 event = container_of(head, struct perf_event, rcu_head);
2863 if (event->ns)
2864 put_pid_ns(event->ns);
2865 perf_event_free_filter(event);
2866 kfree(event);
2867 }
2868
2869 static void ring_buffer_put(struct ring_buffer *rb);
2870
2871 static void free_event(struct perf_event *event)
2872 {
2873 irq_work_sync(&event->pending);
2874
2875 if (!event->parent) {
2876 if (event->attach_state & PERF_ATTACH_TASK)
2877 static_key_slow_dec_deferred(&perf_sched_events);
2878 if (event->attr.mmap || event->attr.mmap_data)
2879 atomic_dec(&nr_mmap_events);
2880 if (event->attr.comm)
2881 atomic_dec(&nr_comm_events);
2882 if (event->attr.task)
2883 atomic_dec(&nr_task_events);
2884 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2885 put_callchain_buffers();
2886 if (is_cgroup_event(event)) {
2887 atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
2888 static_key_slow_dec_deferred(&perf_sched_events);
2889 }
2890
2891 if (has_branch_stack(event)) {
2892 static_key_slow_dec_deferred(&perf_sched_events);
2893 /* is system-wide event */
2894 if (!(event->attach_state & PERF_ATTACH_TASK))
2895 atomic_dec(&per_cpu(perf_branch_stack_events,
2896 event->cpu));
2897 }
2898 }
2899
2900 if (event->rb) {
2901 ring_buffer_put(event->rb);
2902 event->rb = NULL;
2903 }
2904
2905 if (is_cgroup_event(event))
2906 perf_detach_cgroup(event);
2907
2908 if (event->destroy)
2909 event->destroy(event);
2910
2911 if (event->ctx)
2912 put_ctx(event->ctx);
2913
2914 call_rcu(&event->rcu_head, free_event_rcu);
2915 }
2916
2917 int perf_event_release_kernel(struct perf_event *event)
2918 {
2919 struct perf_event_context *ctx = event->ctx;
2920
2921 WARN_ON_ONCE(ctx->parent_ctx);
2922 /*
2923 * There are two ways this annotation is useful:
2924 *
2925 * 1) there is a lock recursion from perf_event_exit_task
2926 * see the comment there.
2927 *
2928 * 2) there is a lock-inversion with mmap_sem through
2929 * perf_event_read_group(), which takes faults while
2930 * holding ctx->mutex, however this is called after
2931 * the last filedesc died, so there is no possibility
2932 * to trigger the AB-BA case.
2933 */
2934 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2935 raw_spin_lock_irq(&ctx->lock);
2936 perf_group_detach(event);
2937 raw_spin_unlock_irq(&ctx->lock);
2938 perf_remove_from_context(event);
2939 mutex_unlock(&ctx->mutex);
2940
2941 free_event(event);
2942
2943 return 0;
2944 }
2945 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2946
2947 /*
2948 * Called when the last reference to the file is gone.
2949 */
2950 static void put_event(struct perf_event *event)
2951 {
2952 struct task_struct *owner;
2953
2954 if (!atomic_long_dec_and_test(&event->refcount))
2955 return;
2956
2957 rcu_read_lock();
2958 owner = ACCESS_ONCE(event->owner);
2959 /*
2960 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
2961 * !owner it means the list deletion is complete and we can indeed
2962 * free this event, otherwise we need to serialize on
2963 * owner->perf_event_mutex.
2964 */
2965 smp_read_barrier_depends();
2966 if (owner) {
2967 /*
2968 * Since delayed_put_task_struct() also drops the last
2969 * task reference we can safely take a new reference
2970 * while holding the rcu_read_lock().
2971 */
2972 get_task_struct(owner);
2973 }
2974 rcu_read_unlock();
2975
2976 if (owner) {
2977 mutex_lock(&owner->perf_event_mutex);
2978 /*
2979 * We have to re-check the event->owner field, if it is cleared
2980 * we raced with perf_event_exit_task(), acquiring the mutex
2981 * ensured they're done, and we can proceed with freeing the
2982 * event.
2983 */
2984 if (event->owner)
2985 list_del_init(&event->owner_entry);
2986 mutex_unlock(&owner->perf_event_mutex);
2987 put_task_struct(owner);
2988 }
2989
2990 perf_event_release_kernel(event);
2991 }
2992
2993 static int perf_release(struct inode *inode, struct file *file)
2994 {
2995 put_event(file->private_data);
2996 return 0;
2997 }
2998
2999 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3000 {
3001 struct perf_event *child;
3002 u64 total = 0;
3003
3004 *enabled = 0;
3005 *running = 0;
3006
3007 mutex_lock(&event->child_mutex);
3008 total += perf_event_read(event);
3009 *enabled += event->total_time_enabled +
3010 atomic64_read(&event->child_total_time_enabled);
3011 *running += event->total_time_running +
3012 atomic64_read(&event->child_total_time_running);
3013
3014 list_for_each_entry(child, &event->child_list, child_list) {
3015 total += perf_event_read(child);
3016 *enabled += child->total_time_enabled;
3017 *running += child->total_time_running;
3018 }
3019 mutex_unlock(&event->child_mutex);
3020
3021 return total;
3022 }
3023 EXPORT_SYMBOL_GPL(perf_event_read_value);
3024
3025 static int perf_event_read_group(struct perf_event *event,
3026 u64 read_format, char __user *buf)
3027 {
3028 struct perf_event *leader = event->group_leader, *sub;
3029 int n = 0, size = 0, ret = -EFAULT;
3030 struct perf_event_context *ctx = leader->ctx;
3031 u64 values[5];
3032 u64 count, enabled, running;
3033
3034 mutex_lock(&ctx->mutex);
3035 count = perf_event_read_value(leader, &enabled, &running);
3036
3037 values[n++] = 1 + leader->nr_siblings;
3038 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3039 values[n++] = enabled;
3040 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3041 values[n++] = running;
3042 values[n++] = count;
3043 if (read_format & PERF_FORMAT_ID)
3044 values[n++] = primary_event_id(leader);
3045
3046 size = n * sizeof(u64);
3047
3048 if (copy_to_user(buf, values, size))
3049 goto unlock;
3050
3051 ret = size;
3052
3053 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3054 n = 0;
3055
3056 values[n++] = perf_event_read_value(sub, &enabled, &running);
3057 if (read_format & PERF_FORMAT_ID)
3058 values[n++] = primary_event_id(sub);
3059
3060 size = n * sizeof(u64);
3061
3062 if (copy_to_user(buf + ret, values, size)) {
3063 ret = -EFAULT;
3064 goto unlock;
3065 }
3066
3067 ret += size;
3068 }
3069 unlock:
3070 mutex_unlock(&ctx->mutex);
3071
3072 return ret;
3073 }
3074
3075 static int perf_event_read_one(struct perf_event *event,
3076 u64 read_format, char __user *buf)
3077 {
3078 u64 enabled, running;
3079 u64 values[4];
3080 int n = 0;
3081
3082 values[n++] = perf_event_read_value(event, &enabled, &running);
3083 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3084 values[n++] = enabled;
3085 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3086 values[n++] = running;
3087 if (read_format & PERF_FORMAT_ID)
3088 values[n++] = primary_event_id(event);
3089
3090 if (copy_to_user(buf, values, n * sizeof(u64)))
3091 return -EFAULT;
3092
3093 return n * sizeof(u64);
3094 }
3095
3096 /*
3097 * Read the performance event - simple non blocking version for now
3098 */
3099 static ssize_t
3100 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3101 {
3102 u64 read_format = event->attr.read_format;
3103 int ret;
3104
3105 /*
3106 * Return end-of-file for a read on a event that is in
3107 * error state (i.e. because it was pinned but it couldn't be
3108 * scheduled on to the CPU at some point).
3109 */
3110 if (event->state == PERF_EVENT_STATE_ERROR)
3111 return 0;
3112
3113 if (count < event->read_size)
3114 return -ENOSPC;
3115
3116 WARN_ON_ONCE(event->ctx->parent_ctx);
3117 if (read_format & PERF_FORMAT_GROUP)
3118 ret = perf_event_read_group(event, read_format, buf);
3119 else
3120 ret = perf_event_read_one(event, read_format, buf);
3121
3122 return ret;
3123 }
3124
3125 static ssize_t
3126 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3127 {
3128 struct perf_event *event = file->private_data;
3129
3130 return perf_read_hw(event, buf, count);
3131 }
3132
3133 static unsigned int perf_poll(struct file *file, poll_table *wait)
3134 {
3135 struct perf_event *event = file->private_data;
3136 struct ring_buffer *rb;
3137 unsigned int events = POLL_HUP;
3138
3139 /*
3140 * Race between perf_event_set_output() and perf_poll(): perf_poll()
3141 * grabs the rb reference but perf_event_set_output() overrides it.
3142 * Here is the timeline for two threads T1, T2:
3143 * t0: T1, rb = rcu_dereference(event->rb)
3144 * t1: T2, old_rb = event->rb
3145 * t2: T2, event->rb = new rb
3146 * t3: T2, ring_buffer_detach(old_rb)
3147 * t4: T1, ring_buffer_attach(rb1)
3148 * t5: T1, poll_wait(event->waitq)
3149 *
3150 * To avoid this problem, we grab mmap_mutex in perf_poll()
3151 * thereby ensuring that the assignment of the new ring buffer
3152 * and the detachment of the old buffer appear atomic to perf_poll()
3153 */
3154 mutex_lock(&event->mmap_mutex);
3155
3156 rcu_read_lock();
3157 rb = rcu_dereference(event->rb);
3158 if (rb) {
3159 ring_buffer_attach(event, rb);
3160 events = atomic_xchg(&rb->poll, 0);
3161 }
3162 rcu_read_unlock();
3163
3164 mutex_unlock(&event->mmap_mutex);
3165
3166 poll_wait(file, &event->waitq, wait);
3167
3168 return events;
3169 }
3170
3171 static void perf_event_reset(struct perf_event *event)
3172 {
3173 (void)perf_event_read(event);
3174 local64_set(&event->count, 0);
3175 perf_event_update_userpage(event);
3176 }
3177
3178 /*
3179 * Holding the top-level event's child_mutex means that any
3180 * descendant process that has inherited this event will block
3181 * in sync_child_event if it goes to exit, thus satisfying the
3182 * task existence requirements of perf_event_enable/disable.
3183 */
3184 static void perf_event_for_each_child(struct perf_event *event,
3185 void (*func)(struct perf_event *))
3186 {
3187 struct perf_event *child;
3188
3189 WARN_ON_ONCE(event->ctx->parent_ctx);
3190 mutex_lock(&event->child_mutex);
3191 func(event);
3192 list_for_each_entry(child, &event->child_list, child_list)
3193 func(child);
3194 mutex_unlock(&event->child_mutex);
3195 }
3196
3197 static void perf_event_for_each(struct perf_event *event,
3198 void (*func)(struct perf_event *))
3199 {
3200 struct perf_event_context *ctx = event->ctx;
3201 struct perf_event *sibling;
3202
3203 WARN_ON_ONCE(ctx->parent_ctx);
3204 mutex_lock(&ctx->mutex);
3205 event = event->group_leader;
3206
3207 perf_event_for_each_child(event, func);
3208 list_for_each_entry(sibling, &event->sibling_list, group_entry)
3209 perf_event_for_each_child(sibling, func);
3210 mutex_unlock(&ctx->mutex);
3211 }
3212
3213 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3214 {
3215 struct perf_event_context *ctx = event->ctx;
3216 int ret = 0;
3217 u64 value;
3218
3219 if (!is_sampling_event(event))
3220 return -EINVAL;
3221
3222 if (copy_from_user(&value, arg, sizeof(value)))
3223 return -EFAULT;
3224
3225 if (!value)
3226 return -EINVAL;
3227
3228 raw_spin_lock_irq(&ctx->lock);
3229 if (event->attr.freq) {
3230 if (value > sysctl_perf_event_sample_rate) {
3231 ret = -EINVAL;
3232 goto unlock;
3233 }
3234
3235 event->attr.sample_freq = value;
3236 } else {
3237 event->attr.sample_period = value;
3238 event->hw.sample_period = value;
3239 }
3240 unlock:
3241 raw_spin_unlock_irq(&ctx->lock);
3242
3243 return ret;
3244 }
3245
3246 static const struct file_operations perf_fops;
3247
3248 static inline int perf_fget_light(int fd, struct fd *p)
3249 {
3250 struct fd f = fdget(fd);
3251 if (!f.file)
3252 return -EBADF;
3253
3254 if (f.file->f_op != &perf_fops) {
3255 fdput(f);
3256 return -EBADF;
3257 }
3258 *p = f;
3259 return 0;
3260 }
3261
3262 static int perf_event_set_output(struct perf_event *event,
3263 struct perf_event *output_event);
3264 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3265
3266 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3267 {
3268 struct perf_event *event = file->private_data;
3269 void (*func)(struct perf_event *);
3270 u32 flags = arg;
3271
3272 switch (cmd) {
3273 case PERF_EVENT_IOC_ENABLE:
3274 func = perf_event_enable;
3275 break;
3276 case PERF_EVENT_IOC_DISABLE:
3277 func = perf_event_disable;
3278 break;
3279 case PERF_EVENT_IOC_RESET:
3280 func = perf_event_reset;
3281 break;
3282
3283 case PERF_EVENT_IOC_REFRESH:
3284 return perf_event_refresh(event, arg);
3285
3286 case PERF_EVENT_IOC_PERIOD:
3287 return perf_event_period(event, (u64 __user *)arg);
3288
3289 case PERF_EVENT_IOC_SET_OUTPUT:
3290 {
3291 int ret;
3292 if (arg != -1) {
3293 struct perf_event *output_event;
3294 struct fd output;
3295 ret = perf_fget_light(arg, &output);
3296 if (ret)
3297 return ret;
3298 output_event = output.file->private_data;
3299 ret = perf_event_set_output(event, output_event);
3300 fdput(output);
3301 } else {
3302 ret = perf_event_set_output(event, NULL);
3303 }
3304 return ret;
3305 }
3306
3307 case PERF_EVENT_IOC_SET_FILTER:
3308 return perf_event_set_filter(event, (void __user *)arg);
3309
3310 default:
3311 return -ENOTTY;
3312 }
3313
3314 if (flags & PERF_IOC_FLAG_GROUP)
3315 perf_event_for_each(event, func);
3316 else
3317 perf_event_for_each_child(event, func);
3318
3319 return 0;
3320 }
3321
3322 int perf_event_task_enable(void)
3323 {
3324 struct perf_event *event;
3325
3326 mutex_lock(&current->perf_event_mutex);
3327 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3328 perf_event_for_each_child(event, perf_event_enable);
3329 mutex_unlock(&current->perf_event_mutex);
3330
3331 return 0;
3332 }
3333
3334 int perf_event_task_disable(void)
3335 {
3336 struct perf_event *event;
3337
3338 mutex_lock(&current->perf_event_mutex);
3339 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3340 perf_event_for_each_child(event, perf_event_disable);
3341 mutex_unlock(&current->perf_event_mutex);
3342
3343 return 0;
3344 }
3345
3346 static int perf_event_index(struct perf_event *event)
3347 {
3348 if (event->hw.state & PERF_HES_STOPPED)
3349 return 0;
3350
3351 if (event->state != PERF_EVENT_STATE_ACTIVE)
3352 return 0;
3353
3354 return event->pmu->event_idx(event);
3355 }
3356
3357 static void calc_timer_values(struct perf_event *event,
3358 u64 *now,
3359 u64 *enabled,
3360 u64 *running)
3361 {
3362 u64 ctx_time;
3363
3364 *now = perf_clock();
3365 ctx_time = event->shadow_ctx_time + *now;
3366 *enabled = ctx_time - event->tstamp_enabled;
3367 *running = ctx_time - event->tstamp_running;
3368 }
3369
3370 void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3371 {
3372 }
3373
3374 /*
3375 * Callers need to ensure there can be no nesting of this function, otherwise
3376 * the seqlock logic goes bad. We can not serialize this because the arch
3377 * code calls this from NMI context.
3378 */
3379 void perf_event_update_userpage(struct perf_event *event)
3380 {
3381 struct perf_event_mmap_page *userpg;
3382 struct ring_buffer *rb;
3383 u64 enabled, running, now;
3384
3385 rcu_read_lock();
3386 /*
3387 * compute total_time_enabled, total_time_running
3388 * based on snapshot values taken when the event
3389 * was last scheduled in.
3390 *
3391 * we cannot simply called update_context_time()
3392 * because of locking issue as we can be called in
3393 * NMI context
3394 */
3395 calc_timer_values(event, &now, &enabled, &running);
3396 rb = rcu_dereference(event->rb);
3397 if (!rb)
3398 goto unlock;
3399
3400 userpg = rb->user_page;
3401
3402 /*
3403 * Disable preemption so as to not let the corresponding user-space
3404 * spin too long if we get preempted.
3405 */
3406 preempt_disable();
3407 ++userpg->lock;
3408 barrier();
3409 userpg->index = perf_event_index(event);
3410 userpg->offset = perf_event_count(event);
3411 if (userpg->index)
3412 userpg->offset -= local64_read(&event->hw.prev_count);
3413
3414 userpg->time_enabled = enabled +
3415 atomic64_read(&event->child_total_time_enabled);
3416
3417 userpg->time_running = running +
3418 atomic64_read(&event->child_total_time_running);
3419
3420 arch_perf_update_userpage(userpg, now);
3421
3422 barrier();
3423 ++userpg->lock;
3424 preempt_enable();
3425 unlock:
3426 rcu_read_unlock();
3427 }
3428
3429 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3430 {
3431 struct perf_event *event = vma->vm_file->private_data;
3432 struct ring_buffer *rb;
3433 int ret = VM_FAULT_SIGBUS;
3434
3435 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3436 if (vmf->pgoff == 0)
3437 ret = 0;
3438 return ret;
3439 }
3440
3441 rcu_read_lock();
3442 rb = rcu_dereference(event->rb);
3443 if (!rb)
3444 goto unlock;
3445
3446 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3447 goto unlock;
3448
3449 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3450 if (!vmf->page)
3451 goto unlock;
3452
3453 get_page(vmf->page);
3454 vmf->page->mapping = vma->vm_file->f_mapping;
3455 vmf->page->index = vmf->pgoff;
3456
3457 ret = 0;
3458 unlock:
3459 rcu_read_unlock();
3460
3461 return ret;
3462 }
3463
3464 static void ring_buffer_attach(struct perf_event *event,
3465 struct ring_buffer *rb)
3466 {
3467 unsigned long flags;
3468
3469 if (!list_empty(&event->rb_entry))
3470 return;
3471
3472 spin_lock_irqsave(&rb->event_lock, flags);
3473 if (!list_empty(&event->rb_entry))
3474 goto unlock;
3475
3476 list_add(&event->rb_entry, &rb->event_list);
3477 unlock:
3478 spin_unlock_irqrestore(&rb->event_lock, flags);
3479 }
3480
3481 static void ring_buffer_detach(struct perf_event *event,
3482 struct ring_buffer *rb)
3483 {
3484 unsigned long flags;
3485
3486 if (list_empty(&event->rb_entry))
3487 return;
3488
3489 spin_lock_irqsave(&rb->event_lock, flags);
3490 list_del_init(&event->rb_entry);
3491 wake_up_all(&event->waitq);
3492 spin_unlock_irqrestore(&rb->event_lock, flags);
3493 }
3494
3495 static void ring_buffer_wakeup(struct perf_event *event)
3496 {
3497 struct ring_buffer *rb;
3498
3499 rcu_read_lock();
3500 rb = rcu_dereference(event->rb);
3501 if (!rb)
3502 goto unlock;
3503
3504 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3505 wake_up_all(&event->waitq);
3506
3507 unlock:
3508 rcu_read_unlock();
3509 }
3510
3511 static void rb_free_rcu(struct rcu_head *rcu_head)
3512 {
3513 struct ring_buffer *rb;
3514
3515 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3516 rb_free(rb);
3517 }
3518
3519 static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3520 {
3521 struct ring_buffer *rb;
3522
3523 rcu_read_lock();
3524 rb = rcu_dereference(event->rb);
3525 if (rb) {
3526 if (!atomic_inc_not_zero(&rb->refcount))
3527 rb = NULL;
3528 }
3529 rcu_read_unlock();
3530
3531 return rb;
3532 }
3533
3534 static void ring_buffer_put(struct ring_buffer *rb)
3535 {
3536 struct perf_event *event, *n;
3537 unsigned long flags;
3538
3539 if (!atomic_dec_and_test(&rb->refcount))
3540 return;
3541
3542 spin_lock_irqsave(&rb->event_lock, flags);
3543 list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) {
3544 list_del_init(&event->rb_entry);
3545 wake_up_all(&event->waitq);
3546 }
3547 spin_unlock_irqrestore(&rb->event_lock, flags);
3548
3549 call_rcu(&rb->rcu_head, rb_free_rcu);
3550 }
3551
3552 static void perf_mmap_open(struct vm_area_struct *vma)
3553 {
3554 struct perf_event *event = vma->vm_file->private_data;
3555
3556 atomic_inc(&event->mmap_count);
3557 }
3558
3559 static void perf_mmap_close(struct vm_area_struct *vma)
3560 {
3561 struct perf_event *event = vma->vm_file->private_data;
3562
3563 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3564 unsigned long size = perf_data_size(event->rb);
3565 struct user_struct *user = event->mmap_user;
3566 struct ring_buffer *rb = event->rb;
3567
3568 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3569 vma->vm_mm->pinned_vm -= event->mmap_locked;
3570 rcu_assign_pointer(event->rb, NULL);
3571 ring_buffer_detach(event, rb);
3572 mutex_unlock(&event->mmap_mutex);
3573
3574 ring_buffer_put(rb);
3575 free_uid(user);
3576 }
3577 }
3578
3579 static const struct vm_operations_struct perf_mmap_vmops = {
3580 .open = perf_mmap_open,
3581 .close = perf_mmap_close,
3582 .fault = perf_mmap_fault,
3583 .page_mkwrite = perf_mmap_fault,
3584 };
3585
3586 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3587 {
3588 struct perf_event *event = file->private_data;
3589 unsigned long user_locked, user_lock_limit;
3590 struct user_struct *user = current_user();
3591 unsigned long locked, lock_limit;
3592 struct ring_buffer *rb;
3593 unsigned long vma_size;
3594 unsigned long nr_pages;
3595 long user_extra, extra;
3596 int ret = 0, flags = 0;
3597
3598 /*
3599 * Don't allow mmap() of inherited per-task counters. This would
3600 * create a performance issue due to all children writing to the
3601 * same rb.
3602 */
3603 if (event->cpu == -1 && event->attr.inherit)
3604 return -EINVAL;
3605
3606 if (!(vma->vm_flags & VM_SHARED))
3607 return -EINVAL;
3608
3609 vma_size = vma->vm_end - vma->vm_start;
3610 nr_pages = (vma_size / PAGE_SIZE) - 1;
3611
3612 /*
3613 * If we have rb pages ensure they're a power-of-two number, so we
3614 * can do bitmasks instead of modulo.
3615 */
3616 if (nr_pages != 0 && !is_power_of_2(nr_pages))
3617 return -EINVAL;
3618
3619 if (vma_size != PAGE_SIZE * (1 + nr_pages))
3620 return -EINVAL;
3621
3622 if (vma->vm_pgoff != 0)
3623 return -EINVAL;
3624
3625 WARN_ON_ONCE(event->ctx->parent_ctx);
3626 mutex_lock(&event->mmap_mutex);
3627 if (event->rb) {
3628 if (event->rb->nr_pages == nr_pages)
3629 atomic_inc(&event->rb->refcount);
3630 else
3631 ret = -EINVAL;
3632 goto unlock;
3633 }
3634
3635 user_extra = nr_pages + 1;
3636 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3637
3638 /*
3639 * Increase the limit linearly with more CPUs:
3640 */
3641 user_lock_limit *= num_online_cpus();
3642
3643 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3644
3645 extra = 0;
3646 if (user_locked > user_lock_limit)
3647 extra = user_locked - user_lock_limit;
3648
3649 lock_limit = rlimit(RLIMIT_MEMLOCK);
3650 lock_limit >>= PAGE_SHIFT;
3651 locked = vma->vm_mm->pinned_vm + extra;
3652
3653 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3654 !capable(CAP_IPC_LOCK)) {
3655 ret = -EPERM;
3656 goto unlock;
3657 }
3658
3659 WARN_ON(event->rb);
3660
3661 if (vma->vm_flags & VM_WRITE)
3662 flags |= RING_BUFFER_WRITABLE;
3663
3664 rb = rb_alloc(nr_pages,
3665 event->attr.watermark ? event->attr.wakeup_watermark : 0,
3666 event->cpu, flags);
3667
3668 if (!rb) {
3669 ret = -ENOMEM;
3670 goto unlock;
3671 }
3672 rcu_assign_pointer(event->rb, rb);
3673
3674 atomic_long_add(user_extra, &user->locked_vm);
3675 event->mmap_locked = extra;
3676 event->mmap_user = get_current_user();
3677 vma->vm_mm->pinned_vm += event->mmap_locked;
3678
3679 perf_event_update_userpage(event);
3680
3681 unlock:
3682 if (!ret)
3683 atomic_inc(&event->mmap_count);
3684 mutex_unlock(&event->mmap_mutex);
3685
3686 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3687 vma->vm_ops = &perf_mmap_vmops;
3688
3689 return ret;
3690 }
3691
3692 static int perf_fasync(int fd, struct file *filp, int on)
3693 {
3694 struct inode *inode = file_inode(filp);
3695 struct perf_event *event = filp->private_data;
3696 int retval;
3697
3698 mutex_lock(&inode->i_mutex);
3699 retval = fasync_helper(fd, filp, on, &event->fasync);
3700 mutex_unlock(&inode->i_mutex);
3701
3702 if (retval < 0)
3703 return retval;
3704
3705 return 0;
3706 }
3707
3708 static const struct file_operations perf_fops = {
3709 .llseek = no_llseek,
3710 .release = perf_release,
3711 .read = perf_read,
3712 .poll = perf_poll,
3713 .unlocked_ioctl = perf_ioctl,
3714 .compat_ioctl = perf_ioctl,
3715 .mmap = perf_mmap,
3716 .fasync = perf_fasync,
3717 };
3718
3719 /*
3720 * Perf event wakeup
3721 *
3722 * If there's data, ensure we set the poll() state and publish everything
3723 * to user-space before waking everybody up.
3724 */
3725
3726 void perf_event_wakeup(struct perf_event *event)
3727 {
3728 ring_buffer_wakeup(event);
3729
3730 if (event->pending_kill) {
3731 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3732 event->pending_kill = 0;
3733 }
3734 }
3735
3736 static void perf_pending_event(struct irq_work *entry)
3737 {
3738 struct perf_event *event = container_of(entry,
3739 struct perf_event, pending);
3740
3741 if (event->pending_disable) {
3742 event->pending_disable = 0;
3743 __perf_event_disable(event);
3744 }
3745
3746 if (event->pending_wakeup) {
3747 event->pending_wakeup = 0;
3748 perf_event_wakeup(event);
3749 }
3750 }
3751
3752 /*
3753 * We assume there is only KVM supporting the callbacks.
3754 * Later on, we might change it to a list if there is
3755 * another virtualization implementation supporting the callbacks.
3756 */
3757 struct perf_guest_info_callbacks *perf_guest_cbs;
3758
3759 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3760 {
3761 perf_guest_cbs = cbs;
3762 return 0;
3763 }
3764 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3765
3766 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3767 {
3768 perf_guest_cbs = NULL;
3769 return 0;
3770 }
3771 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3772
3773 static void
3774 perf_output_sample_regs(struct perf_output_handle *handle,
3775 struct pt_regs *regs, u64 mask)
3776 {
3777 int bit;
3778
3779 for_each_set_bit(bit, (const unsigned long *) &mask,
3780 sizeof(mask) * BITS_PER_BYTE) {
3781 u64 val;
3782
3783 val = perf_reg_value(regs, bit);
3784 perf_output_put(handle, val);
3785 }
3786 }
3787
3788 static void perf_sample_regs_user(struct perf_regs_user *regs_user,
3789 struct pt_regs *regs)
3790 {
3791 if (!user_mode(regs)) {
3792 if (current->mm)
3793 regs = task_pt_regs(current);
3794 else
3795 regs = NULL;
3796 }
3797
3798 if (regs) {
3799 regs_user->regs = regs;
3800 regs_user->abi = perf_reg_abi(current);
3801 }
3802 }
3803
3804 /*
3805 * Get remaining task size from user stack pointer.
3806 *
3807 * It'd be better to take stack vma map and limit this more
3808 * precisly, but there's no way to get it safely under interrupt,
3809 * so using TASK_SIZE as limit.
3810 */
3811 static u64 perf_ustack_task_size(struct pt_regs *regs)
3812 {
3813 unsigned long addr = perf_user_stack_pointer(regs);
3814
3815 if (!addr || addr >= TASK_SIZE)
3816 return 0;
3817
3818 return TASK_SIZE - addr;
3819 }
3820
3821 static u16
3822 perf_sample_ustack_size(u16 stack_size, u16 header_size,
3823 struct pt_regs *regs)
3824 {
3825 u64 task_size;
3826
3827 /* No regs, no stack pointer, no dump. */
3828 if (!regs)
3829 return 0;
3830
3831 /*
3832 * Check if we fit in with the requested stack size into the:
3833 * - TASK_SIZE
3834 * If we don't, we limit the size to the TASK_SIZE.
3835 *
3836 * - remaining sample size
3837 * If we don't, we customize the stack size to
3838 * fit in to the remaining sample size.
3839 */
3840
3841 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
3842 stack_size = min(stack_size, (u16) task_size);
3843
3844 /* Current header size plus static size and dynamic size. */
3845 header_size += 2 * sizeof(u64);
3846
3847 /* Do we fit in with the current stack dump size? */
3848 if ((u16) (header_size + stack_size) < header_size) {
3849 /*
3850 * If we overflow the maximum size for the sample,
3851 * we customize the stack dump size to fit in.
3852 */
3853 stack_size = USHRT_MAX - header_size - sizeof(u64);
3854 stack_size = round_up(stack_size, sizeof(u64));
3855 }
3856
3857 return stack_size;
3858 }
3859
3860 static void
3861 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
3862 struct pt_regs *regs)
3863 {
3864 /* Case of a kernel thread, nothing to dump */
3865 if (!regs) {
3866 u64 size = 0;
3867 perf_output_put(handle, size);
3868 } else {
3869 unsigned long sp;
3870 unsigned int rem;
3871 u64 dyn_size;
3872
3873 /*
3874 * We dump:
3875 * static size
3876 * - the size requested by user or the best one we can fit
3877 * in to the sample max size
3878 * data
3879 * - user stack dump data
3880 * dynamic size
3881 * - the actual dumped size
3882 */
3883
3884 /* Static size. */
3885 perf_output_put(handle, dump_size);
3886
3887 /* Data. */
3888 sp = perf_user_stack_pointer(regs);
3889 rem = __output_copy_user(handle, (void *) sp, dump_size);
3890 dyn_size = dump_size - rem;
3891
3892 perf_output_skip(handle, rem);
3893
3894 /* Dynamic size. */
3895 perf_output_put(handle, dyn_size);
3896 }
3897 }
3898
3899 static void __perf_event_header__init_id(struct perf_event_header *header,
3900 struct perf_sample_data *data,
3901 struct perf_event *event)
3902 {
3903 u64 sample_type = event->attr.sample_type;
3904
3905 data->type = sample_type;
3906 header->size += event->id_header_size;
3907
3908 if (sample_type & PERF_SAMPLE_TID) {
3909 /* namespace issues */
3910 data->tid_entry.pid = perf_event_pid(event, current);
3911 data->tid_entry.tid = perf_event_tid(event, current);
3912 }
3913
3914 if (sample_type & PERF_SAMPLE_TIME)
3915 data->time = perf_clock();
3916
3917 if (sample_type & PERF_SAMPLE_ID)
3918 data->id = primary_event_id(event);
3919
3920 if (sample_type & PERF_SAMPLE_STREAM_ID)
3921 data->stream_id = event->id;
3922
3923 if (sample_type & PERF_SAMPLE_CPU) {
3924 data->cpu_entry.cpu = raw_smp_processor_id();
3925 data->cpu_entry.reserved = 0;
3926 }
3927 }
3928
3929 void perf_event_header__init_id(struct perf_event_header *header,
3930 struct perf_sample_data *data,
3931 struct perf_event *event)
3932 {
3933 if (event->attr.sample_id_all)
3934 __perf_event_header__init_id(header, data, event);
3935 }
3936
3937 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
3938 struct perf_sample_data *data)
3939 {
3940 u64 sample_type = data->type;
3941
3942 if (sample_type & PERF_SAMPLE_TID)
3943 perf_output_put(handle, data->tid_entry);
3944
3945 if (sample_type & PERF_SAMPLE_TIME)
3946 perf_output_put(handle, data->time);
3947
3948 if (sample_type & PERF_SAMPLE_ID)
3949 perf_output_put(handle, data->id);
3950
3951 if (sample_type & PERF_SAMPLE_STREAM_ID)
3952 perf_output_put(handle, data->stream_id);
3953
3954 if (sample_type & PERF_SAMPLE_CPU)
3955 perf_output_put(handle, data->cpu_entry);
3956 }
3957
3958 void perf_event__output_id_sample(struct perf_event *event,
3959 struct perf_output_handle *handle,
3960 struct perf_sample_data *sample)
3961 {
3962 if (event->attr.sample_id_all)
3963 __perf_event__output_id_sample(handle, sample);
3964 }
3965
3966 static void perf_output_read_one(struct perf_output_handle *handle,
3967 struct perf_event *event,
3968 u64 enabled, u64 running)
3969 {
3970 u64 read_format = event->attr.read_format;
3971 u64 values[4];
3972 int n = 0;
3973
3974 values[n++] = perf_event_count(event);
3975 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3976 values[n++] = enabled +
3977 atomic64_read(&event->child_total_time_enabled);
3978 }
3979 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3980 values[n++] = running +
3981 atomic64_read(&event->child_total_time_running);
3982 }
3983 if (read_format & PERF_FORMAT_ID)
3984 values[n++] = primary_event_id(event);
3985
3986 __output_copy(handle, values, n * sizeof(u64));
3987 }
3988
3989 /*
3990 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3991 */
3992 static void perf_output_read_group(struct perf_output_handle *handle,
3993 struct perf_event *event,
3994 u64 enabled, u64 running)
3995 {
3996 struct perf_event *leader = event->group_leader, *sub;
3997 u64 read_format = event->attr.read_format;
3998 u64 values[5];
3999 int n = 0;
4000
4001 values[n++] = 1 + leader->nr_siblings;
4002
4003 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4004 values[n++] = enabled;
4005
4006 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4007 values[n++] = running;
4008
4009 if (leader != event)
4010 leader->pmu->read(leader);
4011
4012 values[n++] = perf_event_count(leader);
4013 if (read_format & PERF_FORMAT_ID)
4014 values[n++] = primary_event_id(leader);
4015
4016 __output_copy(handle, values, n * sizeof(u64));
4017
4018 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4019 n = 0;
4020
4021 if (sub != event)
4022 sub->pmu->read(sub);
4023
4024 values[n++] = perf_event_count(sub);
4025 if (read_format & PERF_FORMAT_ID)
4026 values[n++] = primary_event_id(sub);
4027
4028 __output_copy(handle, values, n * sizeof(u64));
4029 }
4030 }
4031
4032 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4033 PERF_FORMAT_TOTAL_TIME_RUNNING)
4034
4035 static void perf_output_read(struct perf_output_handle *handle,
4036 struct perf_event *event)
4037 {
4038 u64 enabled = 0, running = 0, now;
4039 u64 read_format = event->attr.read_format;
4040
4041 /*
4042 * compute total_time_enabled, total_time_running
4043 * based on snapshot values taken when the event
4044 * was last scheduled in.
4045 *
4046 * we cannot simply called update_context_time()
4047 * because of locking issue as we are called in
4048 * NMI context
4049 */
4050 if (read_format & PERF_FORMAT_TOTAL_TIMES)
4051 calc_timer_values(event, &now, &enabled, &running);
4052
4053 if (event->attr.read_format & PERF_FORMAT_GROUP)
4054 perf_output_read_group(handle, event, enabled, running);
4055 else
4056 perf_output_read_one(handle, event, enabled, running);
4057 }
4058
4059 void perf_output_sample(struct perf_output_handle *handle,
4060 struct perf_event_header *header,
4061 struct perf_sample_data *data,
4062 struct perf_event *event)
4063 {
4064 u64 sample_type = data->type;
4065
4066 perf_output_put(handle, *header);
4067
4068 if (sample_type & PERF_SAMPLE_IP)
4069 perf_output_put(handle, data->ip);
4070
4071 if (sample_type & PERF_SAMPLE_TID)
4072 perf_output_put(handle, data->tid_entry);
4073
4074 if (sample_type & PERF_SAMPLE_TIME)
4075 perf_output_put(handle, data->time);
4076
4077 if (sample_type & PERF_SAMPLE_ADDR)
4078 perf_output_put(handle, data->addr);
4079
4080 if (sample_type & PERF_SAMPLE_ID)
4081 perf_output_put(handle, data->id);
4082
4083 if (sample_type & PERF_SAMPLE_STREAM_ID)
4084 perf_output_put(handle, data->stream_id);
4085
4086 if (sample_type & PERF_SAMPLE_CPU)
4087 perf_output_put(handle, data->cpu_entry);
4088
4089 if (sample_type & PERF_SAMPLE_PERIOD)
4090 perf_output_put(handle, data->period);
4091
4092 if (sample_type & PERF_SAMPLE_READ)
4093 perf_output_read(handle, event);
4094
4095 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4096 if (data->callchain) {
4097 int size = 1;
4098
4099 if (data->callchain)
4100 size += data->callchain->nr;
4101
4102 size *= sizeof(u64);
4103
4104 __output_copy(handle, data->callchain, size);
4105 } else {
4106 u64 nr = 0;
4107 perf_output_put(handle, nr);
4108 }
4109 }
4110
4111 if (sample_type & PERF_SAMPLE_RAW) {
4112 if (data->raw) {
4113 perf_output_put(handle, data->raw->size);
4114 __output_copy(handle, data->raw->data,
4115 data->raw->size);
4116 } else {
4117 struct {
4118 u32 size;
4119 u32 data;
4120 } raw = {
4121 .size = sizeof(u32),
4122 .data = 0,
4123 };
4124 perf_output_put(handle, raw);
4125 }
4126 }
4127
4128 if (!event->attr.watermark) {
4129 int wakeup_events = event->attr.wakeup_events;
4130
4131 if (wakeup_events) {
4132 struct ring_buffer *rb = handle->rb;
4133 int events = local_inc_return(&rb->events);
4134
4135 if (events >= wakeup_events) {
4136 local_sub(wakeup_events, &rb->events);
4137 local_inc(&rb->wakeup);
4138 }
4139 }
4140 }
4141
4142 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4143 if (data->br_stack) {
4144 size_t size;
4145
4146 size = data->br_stack->nr
4147 * sizeof(struct perf_branch_entry);
4148
4149 perf_output_put(handle, data->br_stack->nr);
4150 perf_output_copy(handle, data->br_stack->entries, size);
4151 } else {
4152 /*
4153 * we always store at least the value of nr
4154 */
4155 u64 nr = 0;
4156 perf_output_put(handle, nr);
4157 }
4158 }
4159
4160 if (sample_type & PERF_SAMPLE_REGS_USER) {
4161 u64 abi = data->regs_user.abi;
4162
4163 /*
4164 * If there are no regs to dump, notice it through
4165 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4166 */
4167 perf_output_put(handle, abi);
4168
4169 if (abi) {
4170 u64 mask = event->attr.sample_regs_user;
4171 perf_output_sample_regs(handle,
4172 data->regs_user.regs,
4173 mask);
4174 }
4175 }
4176
4177 if (sample_type & PERF_SAMPLE_STACK_USER)
4178 perf_output_sample_ustack(handle,
4179 data->stack_user_size,
4180 data->regs_user.regs);
4181 }
4182
4183 void perf_prepare_sample(struct perf_event_header *header,
4184 struct perf_sample_data *data,
4185 struct perf_event *event,
4186 struct pt_regs *regs)
4187 {
4188 u64 sample_type = event->attr.sample_type;
4189
4190 header->type = PERF_RECORD_SAMPLE;
4191 header->size = sizeof(*header) + event->header_size;
4192
4193 header->misc = 0;
4194 header->misc |= perf_misc_flags(regs);
4195
4196 __perf_event_header__init_id(header, data, event);
4197
4198 if (sample_type & PERF_SAMPLE_IP)
4199 data->ip = perf_instruction_pointer(regs);
4200
4201 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4202 int size = 1;
4203
4204 data->callchain = perf_callchain(event, regs);
4205
4206 if (data->callchain)
4207 size += data->callchain->nr;
4208
4209 header->size += size * sizeof(u64);
4210 }
4211
4212 if (sample_type & PERF_SAMPLE_RAW) {
4213 int size = sizeof(u32);
4214
4215 if (data->raw)
4216 size += data->raw->size;
4217 else
4218 size += sizeof(u32);
4219
4220 WARN_ON_ONCE(size & (sizeof(u64)-1));
4221 header->size += size;
4222 }
4223
4224 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4225 int size = sizeof(u64); /* nr */
4226 if (data->br_stack) {
4227 size += data->br_stack->nr
4228 * sizeof(struct perf_branch_entry);
4229 }
4230 header->size += size;
4231 }
4232
4233 if (sample_type & PERF_SAMPLE_REGS_USER) {
4234 /* regs dump ABI info */
4235 int size = sizeof(u64);
4236
4237 perf_sample_regs_user(&data->regs_user, regs);
4238
4239 if (data->regs_user.regs) {
4240 u64 mask = event->attr.sample_regs_user;
4241 size += hweight64(mask) * sizeof(u64);
4242 }
4243
4244 header->size += size;
4245 }
4246
4247 if (sample_type & PERF_SAMPLE_STACK_USER) {
4248 /*
4249 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
4250 * processed as the last one or have additional check added
4251 * in case new sample type is added, because we could eat
4252 * up the rest of the sample size.
4253 */
4254 struct perf_regs_user *uregs = &data->regs_user;
4255 u16 stack_size = event->attr.sample_stack_user;
4256 u16 size = sizeof(u64);
4257
4258 if (!uregs->abi)
4259 perf_sample_regs_user(uregs, regs);
4260
4261 stack_size = perf_sample_ustack_size(stack_size, header->size,
4262 uregs->regs);
4263
4264 /*
4265 * If there is something to dump, add space for the dump
4266 * itself and for the field that tells the dynamic size,
4267 * which is how many have been actually dumped.
4268 */
4269 if (stack_size)
4270 size += sizeof(u64) + stack_size;
4271
4272 data->stack_user_size = stack_size;
4273 header->size += size;
4274 }
4275 }
4276
4277 static void perf_event_output(struct perf_event *event,
4278 struct perf_sample_data *data,
4279 struct pt_regs *regs)
4280 {
4281 struct perf_output_handle handle;
4282 struct perf_event_header header;
4283
4284 /* protect the callchain buffers */
4285 rcu_read_lock();
4286
4287 perf_prepare_sample(&header, data, event, regs);
4288
4289 if (perf_output_begin(&handle, event, header.size))
4290 goto exit;
4291
4292 perf_output_sample(&handle, &header, data, event);
4293
4294 perf_output_end(&handle);
4295
4296 exit:
4297 rcu_read_unlock();
4298 }
4299
4300 /*
4301 * read event_id
4302 */
4303
4304 struct perf_read_event {
4305 struct perf_event_header header;
4306
4307 u32 pid;
4308 u32 tid;
4309 };
4310
4311 static void
4312 perf_event_read_event(struct perf_event *event,
4313 struct task_struct *task)
4314 {
4315 struct perf_output_handle handle;
4316 struct perf_sample_data sample;
4317 struct perf_read_event read_event = {
4318 .header = {
4319 .type = PERF_RECORD_READ,
4320 .misc = 0,
4321 .size = sizeof(read_event) + event->read_size,
4322 },
4323 .pid = perf_event_pid(event, task),
4324 .tid = perf_event_tid(event, task),
4325 };
4326 int ret;
4327
4328 perf_event_header__init_id(&read_event.header, &sample, event);
4329 ret = perf_output_begin(&handle, event, read_event.header.size);
4330 if (ret)
4331 return;
4332
4333 perf_output_put(&handle, read_event);
4334 perf_output_read(&handle, event);
4335 perf_event__output_id_sample(event, &handle, &sample);
4336
4337 perf_output_end(&handle);
4338 }
4339
4340 /*
4341 * task tracking -- fork/exit
4342 *
4343 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
4344 */
4345
4346 struct perf_task_event {
4347 struct task_struct *task;
4348 struct perf_event_context *task_ctx;
4349
4350 struct {
4351 struct perf_event_header header;
4352
4353 u32 pid;
4354 u32 ppid;
4355 u32 tid;
4356 u32 ptid;
4357 u64 time;
4358 } event_id;
4359 };
4360
4361 static void perf_event_task_output(struct perf_event *event,
4362 struct perf_task_event *task_event)
4363 {
4364 struct perf_output_handle handle;
4365 struct perf_sample_data sample;
4366 struct task_struct *task = task_event->task;
4367 int ret, size = task_event->event_id.header.size;
4368
4369 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4370
4371 ret = perf_output_begin(&handle, event,
4372 task_event->event_id.header.size);
4373 if (ret)
4374 goto out;
4375
4376 task_event->event_id.pid = perf_event_pid(event, task);
4377 task_event->event_id.ppid = perf_event_pid(event, current);
4378
4379 task_event->event_id.tid = perf_event_tid(event, task);
4380 task_event->event_id.ptid = perf_event_tid(event, current);
4381
4382 perf_output_put(&handle, task_event->event_id);
4383
4384 perf_event__output_id_sample(event, &handle, &sample);
4385
4386 perf_output_end(&handle);
4387 out:
4388 task_event->event_id.header.size = size;
4389 }
4390
4391 static int perf_event_task_match(struct perf_event *event)
4392 {
4393 if (event->state < PERF_EVENT_STATE_INACTIVE)
4394 return 0;
4395
4396 if (!event_filter_match(event))
4397 return 0;
4398
4399 if (event->attr.comm || event->attr.mmap ||
4400 event->attr.mmap_data || event->attr.task)
4401 return 1;
4402
4403 return 0;
4404 }
4405
4406 static void perf_event_task_ctx(struct perf_event_context *ctx,
4407 struct perf_task_event *task_event)
4408 {
4409 struct perf_event *event;
4410
4411 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4412 if (perf_event_task_match(event))
4413 perf_event_task_output(event, task_event);
4414 }
4415 }
4416
4417 static void perf_event_task_event(struct perf_task_event *task_event)
4418 {
4419 struct perf_cpu_context *cpuctx;
4420 struct perf_event_context *ctx;
4421 struct pmu *pmu;
4422 int ctxn;
4423
4424 rcu_read_lock();
4425 list_for_each_entry_rcu(pmu, &pmus, entry) {
4426 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4427 if (cpuctx->unique_pmu != pmu)
4428 goto next;
4429 perf_event_task_ctx(&cpuctx->ctx, task_event);
4430
4431 ctx = task_event->task_ctx;
4432 if (!ctx) {
4433 ctxn = pmu->task_ctx_nr;
4434 if (ctxn < 0)
4435 goto next;
4436 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4437 if (ctx)
4438 perf_event_task_ctx(ctx, task_event);
4439 }
4440 next:
4441 put_cpu_ptr(pmu->pmu_cpu_context);
4442 }
4443 if (task_event->task_ctx)
4444 perf_event_task_ctx(task_event->task_ctx, task_event);
4445
4446 rcu_read_unlock();
4447 }
4448
4449 static void perf_event_task(struct task_struct *task,
4450 struct perf_event_context *task_ctx,
4451 int new)
4452 {
4453 struct perf_task_event task_event;
4454
4455 if (!atomic_read(&nr_comm_events) &&
4456 !atomic_read(&nr_mmap_events) &&
4457 !atomic_read(&nr_task_events))
4458 return;
4459
4460 task_event = (struct perf_task_event){
4461 .task = task,
4462 .task_ctx = task_ctx,
4463 .event_id = {
4464 .header = {
4465 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4466 .misc = 0,
4467 .size = sizeof(task_event.event_id),
4468 },
4469 /* .pid */
4470 /* .ppid */
4471 /* .tid */
4472 /* .ptid */
4473 .time = perf_clock(),
4474 },
4475 };
4476
4477 perf_event_task_event(&task_event);
4478 }
4479
4480 void perf_event_fork(struct task_struct *task)
4481 {
4482 perf_event_task(task, NULL, 1);
4483 }
4484
4485 /*
4486 * comm tracking
4487 */
4488
4489 struct perf_comm_event {
4490 struct task_struct *task;
4491 char *comm;
4492 int comm_size;
4493
4494 struct {
4495 struct perf_event_header header;
4496
4497 u32 pid;
4498 u32 tid;
4499 } event_id;
4500 };
4501
4502 static void perf_event_comm_output(struct perf_event *event,
4503 struct perf_comm_event *comm_event)
4504 {
4505 struct perf_output_handle handle;
4506 struct perf_sample_data sample;
4507 int size = comm_event->event_id.header.size;
4508 int ret;
4509
4510 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4511 ret = perf_output_begin(&handle, event,
4512 comm_event->event_id.header.size);
4513
4514 if (ret)
4515 goto out;
4516
4517 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4518 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4519
4520 perf_output_put(&handle, comm_event->event_id);
4521 __output_copy(&handle, comm_event->comm,
4522 comm_event->comm_size);
4523
4524 perf_event__output_id_sample(event, &handle, &sample);
4525
4526 perf_output_end(&handle);
4527 out:
4528 comm_event->event_id.header.size = size;
4529 }
4530
4531 static int perf_event_comm_match(struct perf_event *event)
4532 {
4533 if (event->state < PERF_EVENT_STATE_INACTIVE)
4534 return 0;
4535
4536 if (!event_filter_match(event))
4537 return 0;
4538
4539 if (event->attr.comm)
4540 return 1;
4541
4542 return 0;
4543 }
4544
4545 static void perf_event_comm_ctx(struct perf_event_context *ctx,
4546 struct perf_comm_event *comm_event)
4547 {
4548 struct perf_event *event;
4549
4550 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4551 if (perf_event_comm_match(event))
4552 perf_event_comm_output(event, comm_event);
4553 }
4554 }
4555
4556 static void perf_event_comm_event(struct perf_comm_event *comm_event)
4557 {
4558 struct perf_cpu_context *cpuctx;
4559 struct perf_event_context *ctx;
4560 char comm[TASK_COMM_LEN];
4561 unsigned int size;
4562 struct pmu *pmu;
4563 int ctxn;
4564
4565 memset(comm, 0, sizeof(comm));
4566 strlcpy(comm, comm_event->task->comm, sizeof(comm));
4567 size = ALIGN(strlen(comm)+1, sizeof(u64));
4568
4569 comm_event->comm = comm;
4570 comm_event->comm_size = size;
4571
4572 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4573 rcu_read_lock();
4574 list_for_each_entry_rcu(pmu, &pmus, entry) {
4575 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4576 if (cpuctx->unique_pmu != pmu)
4577 goto next;
4578 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
4579
4580 ctxn = pmu->task_ctx_nr;
4581 if (ctxn < 0)
4582 goto next;
4583
4584 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4585 if (ctx)
4586 perf_event_comm_ctx(ctx, comm_event);
4587 next:
4588 put_cpu_ptr(pmu->pmu_cpu_context);
4589 }
4590 rcu_read_unlock();
4591 }
4592
4593 void perf_event_comm(struct task_struct *task)
4594 {
4595 struct perf_comm_event comm_event;
4596 struct perf_event_context *ctx;
4597 int ctxn;
4598
4599 rcu_read_lock();
4600 for_each_task_context_nr(ctxn) {
4601 ctx = task->perf_event_ctxp[ctxn];
4602 if (!ctx)
4603 continue;
4604
4605 perf_event_enable_on_exec(ctx);
4606 }
4607 rcu_read_unlock();
4608
4609 if (!atomic_read(&nr_comm_events))
4610 return;
4611
4612 comm_event = (struct perf_comm_event){
4613 .task = task,
4614 /* .comm */
4615 /* .comm_size */
4616 .event_id = {
4617 .header = {
4618 .type = PERF_RECORD_COMM,
4619 .misc = 0,
4620 /* .size */
4621 },
4622 /* .pid */
4623 /* .tid */
4624 },
4625 };
4626
4627 perf_event_comm_event(&comm_event);
4628 }
4629
4630 /*
4631 * mmap tracking
4632 */
4633
4634 struct perf_mmap_event {
4635 struct vm_area_struct *vma;
4636
4637 const char *file_name;
4638 int file_size;
4639
4640 struct {
4641 struct perf_event_header header;
4642
4643 u32 pid;
4644 u32 tid;
4645 u64 start;
4646 u64 len;
4647 u64 pgoff;
4648 } event_id;
4649 };
4650
4651 static void perf_event_mmap_output(struct perf_event *event,
4652 struct perf_mmap_event *mmap_event)
4653 {
4654 struct perf_output_handle handle;
4655 struct perf_sample_data sample;
4656 int size = mmap_event->event_id.header.size;
4657 int ret;
4658
4659 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4660 ret = perf_output_begin(&handle, event,
4661 mmap_event->event_id.header.size);
4662 if (ret)
4663 goto out;
4664
4665 mmap_event->event_id.pid = perf_event_pid(event, current);
4666 mmap_event->event_id.tid = perf_event_tid(event, current);
4667
4668 perf_output_put(&handle, mmap_event->event_id);
4669 __output_copy(&handle, mmap_event->file_name,
4670 mmap_event->file_size);
4671
4672 perf_event__output_id_sample(event, &handle, &sample);
4673
4674 perf_output_end(&handle);
4675 out:
4676 mmap_event->event_id.header.size = size;
4677 }
4678
4679 static int perf_event_mmap_match(struct perf_event *event,
4680 struct perf_mmap_event *mmap_event,
4681 int executable)
4682 {
4683 if (event->state < PERF_EVENT_STATE_INACTIVE)
4684 return 0;
4685
4686 if (!event_filter_match(event))
4687 return 0;
4688
4689 if ((!executable && event->attr.mmap_data) ||
4690 (executable && event->attr.mmap))
4691 return 1;
4692
4693 return 0;
4694 }
4695
4696 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4697 struct perf_mmap_event *mmap_event,
4698 int executable)
4699 {
4700 struct perf_event *event;
4701
4702 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4703 if (perf_event_mmap_match(event, mmap_event, executable))
4704 perf_event_mmap_output(event, mmap_event);
4705 }
4706 }
4707
4708 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4709 {
4710 struct perf_cpu_context *cpuctx;
4711 struct perf_event_context *ctx;
4712 struct vm_area_struct *vma = mmap_event->vma;
4713 struct file *file = vma->vm_file;
4714 unsigned int size;
4715 char tmp[16];
4716 char *buf = NULL;
4717 const char *name;
4718 struct pmu *pmu;
4719 int ctxn;
4720
4721 memset(tmp, 0, sizeof(tmp));
4722
4723 if (file) {
4724 /*
4725 * d_path works from the end of the rb backwards, so we
4726 * need to add enough zero bytes after the string to handle
4727 * the 64bit alignment we do later.
4728 */
4729 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4730 if (!buf) {
4731 name = strncpy(tmp, "//enomem", sizeof(tmp));
4732 goto got_name;
4733 }
4734 name = d_path(&file->f_path, buf, PATH_MAX);
4735 if (IS_ERR(name)) {
4736 name = strncpy(tmp, "//toolong", sizeof(tmp));
4737 goto got_name;
4738 }
4739 } else {
4740 if (arch_vma_name(mmap_event->vma)) {
4741 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4742 sizeof(tmp) - 1);
4743 tmp[sizeof(tmp) - 1] = '\0';
4744 goto got_name;
4745 }
4746
4747 if (!vma->vm_mm) {
4748 name = strncpy(tmp, "[vdso]", sizeof(tmp));
4749 goto got_name;
4750 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4751 vma->vm_end >= vma->vm_mm->brk) {
4752 name = strncpy(tmp, "[heap]", sizeof(tmp));
4753 goto got_name;
4754 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4755 vma->vm_end >= vma->vm_mm->start_stack) {
4756 name = strncpy(tmp, "[stack]", sizeof(tmp));
4757 goto got_name;
4758 }
4759
4760 name = strncpy(tmp, "//anon", sizeof(tmp));
4761 goto got_name;
4762 }
4763
4764 got_name:
4765 size = ALIGN(strlen(name)+1, sizeof(u64));
4766
4767 mmap_event->file_name = name;
4768 mmap_event->file_size = size;
4769
4770 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4771
4772 rcu_read_lock();
4773 list_for_each_entry_rcu(pmu, &pmus, entry) {
4774 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4775 if (cpuctx->unique_pmu != pmu)
4776 goto next;
4777 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4778 vma->vm_flags & VM_EXEC);
4779
4780 ctxn = pmu->task_ctx_nr;
4781 if (ctxn < 0)
4782 goto next;
4783
4784 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4785 if (ctx) {
4786 perf_event_mmap_ctx(ctx, mmap_event,
4787 vma->vm_flags & VM_EXEC);
4788 }
4789 next:
4790 put_cpu_ptr(pmu->pmu_cpu_context);
4791 }
4792 rcu_read_unlock();
4793
4794 kfree(buf);
4795 }
4796
4797 void perf_event_mmap(struct vm_area_struct *vma)
4798 {
4799 struct perf_mmap_event mmap_event;
4800
4801 if (!atomic_read(&nr_mmap_events))
4802 return;
4803
4804 mmap_event = (struct perf_mmap_event){
4805 .vma = vma,
4806 /* .file_name */
4807 /* .file_size */
4808 .event_id = {
4809 .header = {
4810 .type = PERF_RECORD_MMAP,
4811 .misc = PERF_RECORD_MISC_USER,
4812 /* .size */
4813 },
4814 /* .pid */
4815 /* .tid */
4816 .start = vma->vm_start,
4817 .len = vma->vm_end - vma->vm_start,
4818 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
4819 },
4820 };
4821
4822 perf_event_mmap_event(&mmap_event);
4823 }
4824
4825 /*
4826 * IRQ throttle logging
4827 */
4828
4829 static void perf_log_throttle(struct perf_event *event, int enable)
4830 {
4831 struct perf_output_handle handle;
4832 struct perf_sample_data sample;
4833 int ret;
4834
4835 struct {
4836 struct perf_event_header header;
4837 u64 time;
4838 u64 id;
4839 u64 stream_id;
4840 } throttle_event = {
4841 .header = {
4842 .type = PERF_RECORD_THROTTLE,
4843 .misc = 0,
4844 .size = sizeof(throttle_event),
4845 },
4846 .time = perf_clock(),
4847 .id = primary_event_id(event),
4848 .stream_id = event->id,
4849 };
4850
4851 if (enable)
4852 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4853
4854 perf_event_header__init_id(&throttle_event.header, &sample, event);
4855
4856 ret = perf_output_begin(&handle, event,
4857 throttle_event.header.size);
4858 if (ret)
4859 return;
4860
4861 perf_output_put(&handle, throttle_event);
4862 perf_event__output_id_sample(event, &handle, &sample);
4863 perf_output_end(&handle);
4864 }
4865
4866 /*
4867 * Generic event overflow handling, sampling.
4868 */
4869
4870 static int __perf_event_overflow(struct perf_event *event,
4871 int throttle, struct perf_sample_data *data,
4872 struct pt_regs *regs)
4873 {
4874 int events = atomic_read(&event->event_limit);
4875 struct hw_perf_event *hwc = &event->hw;
4876 u64 seq;
4877 int ret = 0;
4878
4879 /*
4880 * Non-sampling counters might still use the PMI to fold short
4881 * hardware counters, ignore those.
4882 */
4883 if (unlikely(!is_sampling_event(event)))
4884 return 0;
4885
4886 seq = __this_cpu_read(perf_throttled_seq);
4887 if (seq != hwc->interrupts_seq) {
4888 hwc->interrupts_seq = seq;
4889 hwc->interrupts = 1;
4890 } else {
4891 hwc->interrupts++;
4892 if (unlikely(throttle
4893 && hwc->interrupts >= max_samples_per_tick)) {
4894 __this_cpu_inc(perf_throttled_count);
4895 hwc->interrupts = MAX_INTERRUPTS;
4896 perf_log_throttle(event, 0);
4897 ret = 1;
4898 }
4899 }
4900
4901 if (event->attr.freq) {
4902 u64 now = perf_clock();
4903 s64 delta = now - hwc->freq_time_stamp;
4904
4905 hwc->freq_time_stamp = now;
4906
4907 if (delta > 0 && delta < 2*TICK_NSEC)
4908 perf_adjust_period(event, delta, hwc->last_period, true);
4909 }
4910
4911 /*
4912 * XXX event_limit might not quite work as expected on inherited
4913 * events
4914 */
4915
4916 event->pending_kill = POLL_IN;
4917 if (events && atomic_dec_and_test(&event->event_limit)) {
4918 ret = 1;
4919 event->pending_kill = POLL_HUP;
4920 event->pending_disable = 1;
4921 irq_work_queue(&event->pending);
4922 }
4923
4924 if (event->overflow_handler)
4925 event->overflow_handler(event, data, regs);
4926 else
4927 perf_event_output(event, data, regs);
4928
4929 if (event->fasync && event->pending_kill) {
4930 event->pending_wakeup = 1;
4931 irq_work_queue(&event->pending);
4932 }
4933
4934 return ret;
4935 }
4936
4937 int perf_event_overflow(struct perf_event *event,
4938 struct perf_sample_data *data,
4939 struct pt_regs *regs)
4940 {
4941 return __perf_event_overflow(event, 1, data, regs);
4942 }
4943
4944 /*
4945 * Generic software event infrastructure
4946 */
4947
4948 struct swevent_htable {
4949 struct swevent_hlist *swevent_hlist;
4950 struct mutex hlist_mutex;
4951 int hlist_refcount;
4952
4953 /* Recursion avoidance in each contexts */
4954 int recursion[PERF_NR_CONTEXTS];
4955 };
4956
4957 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4958
4959 /*
4960 * We directly increment event->count and keep a second value in
4961 * event->hw.period_left to count intervals. This period event
4962 * is kept in the range [-sample_period, 0] so that we can use the
4963 * sign as trigger.
4964 */
4965
4966 static u64 perf_swevent_set_period(struct perf_event *event)
4967 {
4968 struct hw_perf_event *hwc = &event->hw;
4969 u64 period = hwc->last_period;
4970 u64 nr, offset;
4971 s64 old, val;
4972
4973 hwc->last_period = hwc->sample_period;
4974
4975 again:
4976 old = val = local64_read(&hwc->period_left);
4977 if (val < 0)
4978 return 0;
4979
4980 nr = div64_u64(period + val, period);
4981 offset = nr * period;
4982 val -= offset;
4983 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4984 goto again;
4985
4986 return nr;
4987 }
4988
4989 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4990 struct perf_sample_data *data,
4991 struct pt_regs *regs)
4992 {
4993 struct hw_perf_event *hwc = &event->hw;
4994 int throttle = 0;
4995
4996 if (!overflow)
4997 overflow = perf_swevent_set_period(event);
4998
4999 if (hwc->interrupts == MAX_INTERRUPTS)
5000 return;
5001
5002 for (; overflow; overflow--) {
5003 if (__perf_event_overflow(event, throttle,
5004 data, regs)) {
5005 /*
5006 * We inhibit the overflow from happening when
5007 * hwc->interrupts == MAX_INTERRUPTS.
5008 */
5009 break;
5010 }
5011 throttle = 1;
5012 }
5013 }
5014
5015 static void perf_swevent_event(struct perf_event *event, u64 nr,
5016 struct perf_sample_data *data,
5017 struct pt_regs *regs)
5018 {
5019 struct hw_perf_event *hwc = &event->hw;
5020
5021 local64_add(nr, &event->count);
5022
5023 if (!regs)
5024 return;
5025
5026 if (!is_sampling_event(event))
5027 return;
5028
5029 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5030 data->period = nr;
5031 return perf_swevent_overflow(event, 1, data, regs);
5032 } else
5033 data->period = event->hw.last_period;
5034
5035 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5036 return perf_swevent_overflow(event, 1, data, regs);
5037
5038 if (local64_add_negative(nr, &hwc->period_left))
5039 return;
5040
5041 perf_swevent_overflow(event, 0, data, regs);
5042 }
5043
5044 static int perf_exclude_event(struct perf_event *event,
5045 struct pt_regs *regs)
5046 {
5047 if (event->hw.state & PERF_HES_STOPPED)
5048 return 1;
5049
5050 if (regs) {
5051 if (event->attr.exclude_user && user_mode(regs))
5052 return 1;
5053
5054 if (event->attr.exclude_kernel && !user_mode(regs))
5055 return 1;
5056 }
5057
5058 return 0;
5059 }
5060
5061 static int perf_swevent_match(struct perf_event *event,
5062 enum perf_type_id type,
5063 u32 event_id,
5064 struct perf_sample_data *data,
5065 struct pt_regs *regs)
5066 {
5067 if (event->attr.type != type)
5068 return 0;
5069
5070 if (event->attr.config != event_id)
5071 return 0;
5072
5073 if (perf_exclude_event(event, regs))
5074 return 0;
5075
5076 return 1;
5077 }
5078
5079 static inline u64 swevent_hash(u64 type, u32 event_id)
5080 {
5081 u64 val = event_id | (type << 32);
5082
5083 return hash_64(val, SWEVENT_HLIST_BITS);
5084 }
5085
5086 static inline struct hlist_head *
5087 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5088 {
5089 u64 hash = swevent_hash(type, event_id);
5090
5091 return &hlist->heads[hash];
5092 }
5093
5094 /* For the read side: events when they trigger */
5095 static inline struct hlist_head *
5096 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5097 {
5098 struct swevent_hlist *hlist;
5099
5100 hlist = rcu_dereference(swhash->swevent_hlist);
5101 if (!hlist)
5102 return NULL;
5103
5104 return __find_swevent_head(hlist, type, event_id);
5105 }
5106
5107 /* For the event head insertion and removal in the hlist */
5108 static inline struct hlist_head *
5109 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5110 {
5111 struct swevent_hlist *hlist;
5112 u32 event_id = event->attr.config;
5113 u64 type = event->attr.type;
5114
5115 /*
5116 * Event scheduling is always serialized against hlist allocation
5117 * and release. Which makes the protected version suitable here.
5118 * The context lock guarantees that.
5119 */
5120 hlist = rcu_dereference_protected(swhash->swevent_hlist,
5121 lockdep_is_held(&event->ctx->lock));
5122 if (!hlist)
5123 return NULL;
5124
5125 return __find_swevent_head(hlist, type, event_id);
5126 }
5127
5128 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5129 u64 nr,
5130 struct perf_sample_data *data,
5131 struct pt_regs *regs)
5132 {
5133 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5134 struct perf_event *event;
5135 struct hlist_head *head;
5136
5137 rcu_read_lock();
5138 head = find_swevent_head_rcu(swhash, type, event_id);
5139 if (!head)
5140 goto end;
5141
5142 hlist_for_each_entry_rcu(event, head, hlist_entry) {
5143 if (perf_swevent_match(event, type, event_id, data, regs))
5144 perf_swevent_event(event, nr, data, regs);
5145 }
5146 end:
5147 rcu_read_unlock();
5148 }
5149
5150 int perf_swevent_get_recursion_context(void)
5151 {
5152 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5153
5154 return get_recursion_context(swhash->recursion);
5155 }
5156 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
5157
5158 inline void perf_swevent_put_recursion_context(int rctx)
5159 {
5160 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5161
5162 put_recursion_context(swhash->recursion, rctx);
5163 }
5164
5165 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5166 {
5167 struct perf_sample_data data;
5168 int rctx;
5169
5170 preempt_disable_notrace();
5171 rctx = perf_swevent_get_recursion_context();
5172 if (rctx < 0)
5173 return;
5174
5175 perf_sample_data_init(&data, addr, 0);
5176
5177 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5178
5179 perf_swevent_put_recursion_context(rctx);
5180 preempt_enable_notrace();
5181 }
5182
5183 static void perf_swevent_read(struct perf_event *event)
5184 {
5185 }
5186
5187 static int perf_swevent_add(struct perf_event *event, int flags)
5188 {
5189 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5190 struct hw_perf_event *hwc = &event->hw;
5191 struct hlist_head *head;
5192
5193 if (is_sampling_event(event)) {
5194 hwc->last_period = hwc->sample_period;
5195 perf_swevent_set_period(event);
5196 }
5197
5198 hwc->state = !(flags & PERF_EF_START);
5199
5200 head = find_swevent_head(swhash, event);
5201 if (WARN_ON_ONCE(!head))
5202 return -EINVAL;
5203
5204 hlist_add_head_rcu(&event->hlist_entry, head);
5205
5206 return 0;
5207 }
5208
5209 static void perf_swevent_del(struct perf_event *event, int flags)
5210 {
5211 hlist_del_rcu(&event->hlist_entry);
5212 }
5213
5214 static void perf_swevent_start(struct perf_event *event, int flags)
5215 {
5216 event->hw.state = 0;
5217 }
5218
5219 static void perf_swevent_stop(struct perf_event *event, int flags)
5220 {
5221 event->hw.state = PERF_HES_STOPPED;
5222 }
5223
5224 /* Deref the hlist from the update side */
5225 static inline struct swevent_hlist *
5226 swevent_hlist_deref(struct swevent_htable *swhash)
5227 {
5228 return rcu_dereference_protected(swhash->swevent_hlist,
5229 lockdep_is_held(&swhash->hlist_mutex));
5230 }
5231
5232 static void swevent_hlist_release(struct swevent_htable *swhash)
5233 {
5234 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5235
5236 if (!hlist)
5237 return;
5238
5239 rcu_assign_pointer(swhash->swevent_hlist, NULL);
5240 kfree_rcu(hlist, rcu_head);
5241 }
5242
5243 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5244 {
5245 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5246
5247 mutex_lock(&swhash->hlist_mutex);
5248
5249 if (!--swhash->hlist_refcount)
5250 swevent_hlist_release(swhash);
5251
5252 mutex_unlock(&swhash->hlist_mutex);
5253 }
5254
5255 static void swevent_hlist_put(struct perf_event *event)
5256 {
5257 int cpu;
5258
5259 if (event->cpu != -1) {
5260 swevent_hlist_put_cpu(event, event->cpu);
5261 return;
5262 }
5263
5264 for_each_possible_cpu(cpu)
5265 swevent_hlist_put_cpu(event, cpu);
5266 }
5267
5268 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5269 {
5270 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5271 int err = 0;
5272
5273 mutex_lock(&swhash->hlist_mutex);
5274
5275 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5276 struct swevent_hlist *hlist;
5277
5278 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5279 if (!hlist) {
5280 err = -ENOMEM;
5281 goto exit;
5282 }
5283 rcu_assign_pointer(swhash->swevent_hlist, hlist);
5284 }
5285 swhash->hlist_refcount++;
5286 exit:
5287 mutex_unlock(&swhash->hlist_mutex);
5288
5289 return err;
5290 }
5291
5292 static int swevent_hlist_get(struct perf_event *event)
5293 {
5294 int err;
5295 int cpu, failed_cpu;
5296
5297 if (event->cpu != -1)
5298 return swevent_hlist_get_cpu(event, event->cpu);
5299
5300 get_online_cpus();
5301 for_each_possible_cpu(cpu) {
5302 err = swevent_hlist_get_cpu(event, cpu);
5303 if (err) {
5304 failed_cpu = cpu;
5305 goto fail;
5306 }
5307 }
5308 put_online_cpus();
5309
5310 return 0;
5311 fail:
5312 for_each_possible_cpu(cpu) {
5313 if (cpu == failed_cpu)
5314 break;
5315 swevent_hlist_put_cpu(event, cpu);
5316 }
5317
5318 put_online_cpus();
5319 return err;
5320 }
5321
5322 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5323
5324 static void sw_perf_event_destroy(struct perf_event *event)
5325 {
5326 u64 event_id = event->attr.config;
5327
5328 WARN_ON(event->parent);
5329
5330 static_key_slow_dec(&perf_swevent_enabled[event_id]);
5331 swevent_hlist_put(event);
5332 }
5333
5334 static int perf_swevent_init(struct perf_event *event)
5335 {
5336 u64 event_id = event->attr.config;
5337
5338 if (event->attr.type != PERF_TYPE_SOFTWARE)
5339 return -ENOENT;
5340
5341 /*
5342 * no branch sampling for software events
5343 */
5344 if (has_branch_stack(event))
5345 return -EOPNOTSUPP;
5346
5347 switch (event_id) {
5348 case PERF_COUNT_SW_CPU_CLOCK:
5349 case PERF_COUNT_SW_TASK_CLOCK:
5350 return -ENOENT;
5351
5352 default:
5353 break;
5354 }
5355
5356 if (event_id >= PERF_COUNT_SW_MAX)
5357 return -ENOENT;
5358
5359 if (!event->parent) {
5360 int err;
5361
5362 err = swevent_hlist_get(event);
5363 if (err)
5364 return err;
5365
5366 static_key_slow_inc(&perf_swevent_enabled[event_id]);
5367 event->destroy = sw_perf_event_destroy;
5368 }
5369
5370 return 0;
5371 }
5372
5373 static int perf_swevent_event_idx(struct perf_event *event)
5374 {
5375 return 0;
5376 }
5377
5378 static struct pmu perf_swevent = {
5379 .task_ctx_nr = perf_sw_context,
5380
5381 .event_init = perf_swevent_init,
5382 .add = perf_swevent_add,
5383 .del = perf_swevent_del,
5384 .start = perf_swevent_start,
5385 .stop = perf_swevent_stop,
5386 .read = perf_swevent_read,
5387
5388 .event_idx = perf_swevent_event_idx,
5389 };
5390
5391 #ifdef CONFIG_EVENT_TRACING
5392
5393 static int perf_tp_filter_match(struct perf_event *event,
5394 struct perf_sample_data *data)
5395 {
5396 void *record = data->raw->data;
5397
5398 if (likely(!event->filter) || filter_match_preds(event->filter, record))
5399 return 1;
5400 return 0;
5401 }
5402
5403 static int perf_tp_event_match(struct perf_event *event,
5404 struct perf_sample_data *data,
5405 struct pt_regs *regs)
5406 {
5407 if (event->hw.state & PERF_HES_STOPPED)
5408 return 0;
5409 /*
5410 * All tracepoints are from kernel-space.
5411 */
5412 if (event->attr.exclude_kernel)
5413 return 0;
5414
5415 if (!perf_tp_filter_match(event, data))
5416 return 0;
5417
5418 return 1;
5419 }
5420
5421 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5422 struct pt_regs *regs, struct hlist_head *head, int rctx,
5423 struct task_struct *task)
5424 {
5425 struct perf_sample_data data;
5426 struct perf_event *event;
5427
5428 struct perf_raw_record raw = {
5429 .size = entry_size,
5430 .data = record,
5431 };
5432
5433 perf_sample_data_init(&data, addr, 0);
5434 data.raw = &raw;
5435
5436 hlist_for_each_entry_rcu(event, head, hlist_entry) {
5437 if (perf_tp_event_match(event, &data, regs))
5438 perf_swevent_event(event, count, &data, regs);
5439 }
5440
5441 /*
5442 * If we got specified a target task, also iterate its context and
5443 * deliver this event there too.
5444 */
5445 if (task && task != current) {
5446 struct perf_event_context *ctx;
5447 struct trace_entry *entry = record;
5448
5449 rcu_read_lock();
5450 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
5451 if (!ctx)
5452 goto unlock;
5453
5454 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5455 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5456 continue;
5457 if (event->attr.config != entry->type)
5458 continue;
5459 if (perf_tp_event_match(event, &data, regs))
5460 perf_swevent_event(event, count, &data, regs);
5461 }
5462 unlock:
5463 rcu_read_unlock();
5464 }
5465
5466 perf_swevent_put_recursion_context(rctx);
5467 }
5468 EXPORT_SYMBOL_GPL(perf_tp_event);
5469
5470 static void tp_perf_event_destroy(struct perf_event *event)
5471 {
5472 perf_trace_destroy(event);
5473 }
5474
5475 static int perf_tp_event_init(struct perf_event *event)
5476 {
5477 int err;
5478
5479 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5480 return -ENOENT;
5481
5482 /*
5483 * no branch sampling for tracepoint events
5484 */
5485 if (has_branch_stack(event))
5486 return -EOPNOTSUPP;
5487
5488 err = perf_trace_init(event);
5489 if (err)
5490 return err;
5491
5492 event->destroy = tp_perf_event_destroy;
5493
5494 return 0;
5495 }
5496
5497 static struct pmu perf_tracepoint = {
5498 .task_ctx_nr = perf_sw_context,
5499
5500 .event_init = perf_tp_event_init,
5501 .add = perf_trace_add,
5502 .del = perf_trace_del,
5503 .start = perf_swevent_start,
5504 .stop = perf_swevent_stop,
5505 .read = perf_swevent_read,
5506
5507 .event_idx = perf_swevent_event_idx,
5508 };
5509
5510 static inline void perf_tp_register(void)
5511 {
5512 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5513 }
5514
5515 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5516 {
5517 char *filter_str;
5518 int ret;
5519
5520 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5521 return -EINVAL;
5522
5523 filter_str = strndup_user(arg, PAGE_SIZE);
5524 if (IS_ERR(filter_str))
5525 return PTR_ERR(filter_str);
5526
5527 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5528
5529 kfree(filter_str);
5530 return ret;
5531 }
5532
5533 static void perf_event_free_filter(struct perf_event *event)
5534 {
5535 ftrace_profile_free_filter(event);
5536 }
5537
5538 #else
5539
5540 static inline void perf_tp_register(void)
5541 {
5542 }
5543
5544 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5545 {
5546 return -ENOENT;
5547 }
5548
5549 static void perf_event_free_filter(struct perf_event *event)
5550 {
5551 }
5552
5553 #endif /* CONFIG_EVENT_TRACING */
5554
5555 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5556 void perf_bp_event(struct perf_event *bp, void *data)
5557 {
5558 struct perf_sample_data sample;
5559 struct pt_regs *regs = data;
5560
5561 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
5562
5563 if (!bp->hw.state && !perf_exclude_event(bp, regs))
5564 perf_swevent_event(bp, 1, &sample, regs);
5565 }
5566 #endif
5567
5568 /*
5569 * hrtimer based swevent callback
5570 */
5571
5572 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5573 {
5574 enum hrtimer_restart ret = HRTIMER_RESTART;
5575 struct perf_sample_data data;
5576 struct pt_regs *regs;
5577 struct perf_event *event;
5578 u64 period;
5579
5580 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
5581
5582 if (event->state != PERF_EVENT_STATE_ACTIVE)
5583 return HRTIMER_NORESTART;
5584
5585 event->pmu->read(event);
5586
5587 perf_sample_data_init(&data, 0, event->hw.last_period);
5588 regs = get_irq_regs();
5589
5590 if (regs && !perf_exclude_event(event, regs)) {
5591 if (!(event->attr.exclude_idle && is_idle_task(current)))
5592 if (__perf_event_overflow(event, 1, &data, regs))
5593 ret = HRTIMER_NORESTART;
5594 }
5595
5596 period = max_t(u64, 10000, event->hw.sample_period);
5597 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5598
5599 return ret;
5600 }
5601
5602 static void perf_swevent_start_hrtimer(struct perf_event *event)
5603 {
5604 struct hw_perf_event *hwc = &event->hw;
5605 s64 period;
5606
5607 if (!is_sampling_event(event))
5608 return;
5609
5610 period = local64_read(&hwc->period_left);
5611 if (period) {
5612 if (period < 0)
5613 period = 10000;
5614
5615 local64_set(&hwc->period_left, 0);
5616 } else {
5617 period = max_t(u64, 10000, hwc->sample_period);
5618 }
5619 __hrtimer_start_range_ns(&hwc->hrtimer,
5620 ns_to_ktime(period), 0,
5621 HRTIMER_MODE_REL_PINNED, 0);
5622 }
5623
5624 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5625 {
5626 struct hw_perf_event *hwc = &event->hw;
5627
5628 if (is_sampling_event(event)) {
5629 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
5630 local64_set(&hwc->period_left, ktime_to_ns(remaining));
5631
5632 hrtimer_cancel(&hwc->hrtimer);
5633 }
5634 }
5635
5636 static void perf_swevent_init_hrtimer(struct perf_event *event)
5637 {
5638 struct hw_perf_event *hwc = &event->hw;
5639
5640 if (!is_sampling_event(event))
5641 return;
5642
5643 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5644 hwc->hrtimer.function = perf_swevent_hrtimer;
5645
5646 /*
5647 * Since hrtimers have a fixed rate, we can do a static freq->period
5648 * mapping and avoid the whole period adjust feedback stuff.
5649 */
5650 if (event->attr.freq) {
5651 long freq = event->attr.sample_freq;
5652
5653 event->attr.sample_period = NSEC_PER_SEC / freq;
5654 hwc->sample_period = event->attr.sample_period;
5655 local64_set(&hwc->period_left, hwc->sample_period);
5656 hwc->last_period = hwc->sample_period;
5657 event->attr.freq = 0;
5658 }
5659 }
5660
5661 /*
5662 * Software event: cpu wall time clock
5663 */
5664
5665 static void cpu_clock_event_update(struct perf_event *event)
5666 {
5667 s64 prev;
5668 u64 now;
5669
5670 now = local_clock();
5671 prev = local64_xchg(&event->hw.prev_count, now);
5672 local64_add(now - prev, &event->count);
5673 }
5674
5675 static void cpu_clock_event_start(struct perf_event *event, int flags)
5676 {
5677 local64_set(&event->hw.prev_count, local_clock());
5678 perf_swevent_start_hrtimer(event);
5679 }
5680
5681 static void cpu_clock_event_stop(struct perf_event *event, int flags)
5682 {
5683 perf_swevent_cancel_hrtimer(event);
5684 cpu_clock_event_update(event);
5685 }
5686
5687 static int cpu_clock_event_add(struct perf_event *event, int flags)
5688 {
5689 if (flags & PERF_EF_START)
5690 cpu_clock_event_start(event, flags);
5691
5692 return 0;
5693 }
5694
5695 static void cpu_clock_event_del(struct perf_event *event, int flags)
5696 {
5697 cpu_clock_event_stop(event, flags);
5698 }
5699
5700 static void cpu_clock_event_read(struct perf_event *event)
5701 {
5702 cpu_clock_event_update(event);
5703 }
5704
5705 static int cpu_clock_event_init(struct perf_event *event)
5706 {
5707 if (event->attr.type != PERF_TYPE_SOFTWARE)
5708 return -ENOENT;
5709
5710 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5711 return -ENOENT;
5712
5713 /*
5714 * no branch sampling for software events
5715 */
5716 if (has_branch_stack(event))
5717 return -EOPNOTSUPP;
5718
5719 perf_swevent_init_hrtimer(event);
5720
5721 return 0;
5722 }
5723
5724 static struct pmu perf_cpu_clock = {
5725 .task_ctx_nr = perf_sw_context,
5726
5727 .event_init = cpu_clock_event_init,
5728 .add = cpu_clock_event_add,
5729 .del = cpu_clock_event_del,
5730 .start = cpu_clock_event_start,
5731 .stop = cpu_clock_event_stop,
5732 .read = cpu_clock_event_read,
5733
5734 .event_idx = perf_swevent_event_idx,
5735 };
5736
5737 /*
5738 * Software event: task time clock
5739 */
5740
5741 static void task_clock_event_update(struct perf_event *event, u64 now)
5742 {
5743 u64 prev;
5744 s64 delta;
5745
5746 prev = local64_xchg(&event->hw.prev_count, now);
5747 delta = now - prev;
5748 local64_add(delta, &event->count);
5749 }
5750
5751 static void task_clock_event_start(struct perf_event *event, int flags)
5752 {
5753 local64_set(&event->hw.prev_count, event->ctx->time);
5754 perf_swevent_start_hrtimer(event);
5755 }
5756
5757 static void task_clock_event_stop(struct perf_event *event, int flags)
5758 {
5759 perf_swevent_cancel_hrtimer(event);
5760 task_clock_event_update(event, event->ctx->time);
5761 }
5762
5763 static int task_clock_event_add(struct perf_event *event, int flags)
5764 {
5765 if (flags & PERF_EF_START)
5766 task_clock_event_start(event, flags);
5767
5768 return 0;
5769 }
5770
5771 static void task_clock_event_del(struct perf_event *event, int flags)
5772 {
5773 task_clock_event_stop(event, PERF_EF_UPDATE);
5774 }
5775
5776 static void task_clock_event_read(struct perf_event *event)
5777 {
5778 u64 now = perf_clock();
5779 u64 delta = now - event->ctx->timestamp;
5780 u64 time = event->ctx->time + delta;
5781
5782 task_clock_event_update(event, time);
5783 }
5784
5785 static int task_clock_event_init(struct perf_event *event)
5786 {
5787 if (event->attr.type != PERF_TYPE_SOFTWARE)
5788 return -ENOENT;
5789
5790 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5791 return -ENOENT;
5792
5793 /*
5794 * no branch sampling for software events
5795 */
5796 if (has_branch_stack(event))
5797 return -EOPNOTSUPP;
5798
5799 perf_swevent_init_hrtimer(event);
5800
5801 return 0;
5802 }
5803
5804 static struct pmu perf_task_clock = {
5805 .task_ctx_nr = perf_sw_context,
5806
5807 .event_init = task_clock_event_init,
5808 .add = task_clock_event_add,
5809 .del = task_clock_event_del,
5810 .start = task_clock_event_start,
5811 .stop = task_clock_event_stop,
5812 .read = task_clock_event_read,
5813
5814 .event_idx = perf_swevent_event_idx,
5815 };
5816
5817 static void perf_pmu_nop_void(struct pmu *pmu)
5818 {
5819 }
5820
5821 static int perf_pmu_nop_int(struct pmu *pmu)
5822 {
5823 return 0;
5824 }
5825
5826 static void perf_pmu_start_txn(struct pmu *pmu)
5827 {
5828 perf_pmu_disable(pmu);
5829 }
5830
5831 static int perf_pmu_commit_txn(struct pmu *pmu)
5832 {
5833 perf_pmu_enable(pmu);
5834 return 0;
5835 }
5836
5837 static void perf_pmu_cancel_txn(struct pmu *pmu)
5838 {
5839 perf_pmu_enable(pmu);
5840 }
5841
5842 static int perf_event_idx_default(struct perf_event *event)
5843 {
5844 return event->hw.idx + 1;
5845 }
5846
5847 /*
5848 * Ensures all contexts with the same task_ctx_nr have the same
5849 * pmu_cpu_context too.
5850 */
5851 static void *find_pmu_context(int ctxn)
5852 {
5853 struct pmu *pmu;
5854
5855 if (ctxn < 0)
5856 return NULL;
5857
5858 list_for_each_entry(pmu, &pmus, entry) {
5859 if (pmu->task_ctx_nr == ctxn)
5860 return pmu->pmu_cpu_context;
5861 }
5862
5863 return NULL;
5864 }
5865
5866 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5867 {
5868 int cpu;
5869
5870 for_each_possible_cpu(cpu) {
5871 struct perf_cpu_context *cpuctx;
5872
5873 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5874
5875 if (cpuctx->unique_pmu == old_pmu)
5876 cpuctx->unique_pmu = pmu;
5877 }
5878 }
5879
5880 static void free_pmu_context(struct pmu *pmu)
5881 {
5882 struct pmu *i;
5883
5884 mutex_lock(&pmus_lock);
5885 /*
5886 * Like a real lame refcount.
5887 */
5888 list_for_each_entry(i, &pmus, entry) {
5889 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
5890 update_pmu_context(i, pmu);
5891 goto out;
5892 }
5893 }
5894
5895 free_percpu(pmu->pmu_cpu_context);
5896 out:
5897 mutex_unlock(&pmus_lock);
5898 }
5899 static struct idr pmu_idr;
5900
5901 static ssize_t
5902 type_show(struct device *dev, struct device_attribute *attr, char *page)
5903 {
5904 struct pmu *pmu = dev_get_drvdata(dev);
5905
5906 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
5907 }
5908
5909 static struct device_attribute pmu_dev_attrs[] = {
5910 __ATTR_RO(type),
5911 __ATTR_NULL,
5912 };
5913
5914 static int pmu_bus_running;
5915 static struct bus_type pmu_bus = {
5916 .name = "event_source",
5917 .dev_attrs = pmu_dev_attrs,
5918 };
5919
5920 static void pmu_dev_release(struct device *dev)
5921 {
5922 kfree(dev);
5923 }
5924
5925 static int pmu_dev_alloc(struct pmu *pmu)
5926 {
5927 int ret = -ENOMEM;
5928
5929 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
5930 if (!pmu->dev)
5931 goto out;
5932
5933 pmu->dev->groups = pmu->attr_groups;
5934 device_initialize(pmu->dev);
5935 ret = dev_set_name(pmu->dev, "%s", pmu->name);
5936 if (ret)
5937 goto free_dev;
5938
5939 dev_set_drvdata(pmu->dev, pmu);
5940 pmu->dev->bus = &pmu_bus;
5941 pmu->dev->release = pmu_dev_release;
5942 ret = device_add(pmu->dev);
5943 if (ret)
5944 goto free_dev;
5945
5946 out:
5947 return ret;
5948
5949 free_dev:
5950 put_device(pmu->dev);
5951 goto out;
5952 }
5953
5954 static struct lock_class_key cpuctx_mutex;
5955 static struct lock_class_key cpuctx_lock;
5956
5957 int perf_pmu_register(struct pmu *pmu, char *name, int type)
5958 {
5959 int cpu, ret;
5960
5961 mutex_lock(&pmus_lock);
5962 ret = -ENOMEM;
5963 pmu->pmu_disable_count = alloc_percpu(int);
5964 if (!pmu->pmu_disable_count)
5965 goto unlock;
5966
5967 pmu->type = -1;
5968 if (!name)
5969 goto skip_type;
5970 pmu->name = name;
5971
5972 if (type < 0) {
5973 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
5974 if (type < 0) {
5975 ret = type;
5976 goto free_pdc;
5977 }
5978 }
5979 pmu->type = type;
5980
5981 if (pmu_bus_running) {
5982 ret = pmu_dev_alloc(pmu);
5983 if (ret)
5984 goto free_idr;
5985 }
5986
5987 skip_type:
5988 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5989 if (pmu->pmu_cpu_context)
5990 goto got_cpu_context;
5991
5992 ret = -ENOMEM;
5993 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5994 if (!pmu->pmu_cpu_context)
5995 goto free_dev;
5996
5997 for_each_possible_cpu(cpu) {
5998 struct perf_cpu_context *cpuctx;
5999
6000 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6001 __perf_event_init_context(&cpuctx->ctx);
6002 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6003 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6004 cpuctx->ctx.type = cpu_context;
6005 cpuctx->ctx.pmu = pmu;
6006 cpuctx->jiffies_interval = 1;
6007 INIT_LIST_HEAD(&cpuctx->rotation_list);
6008 cpuctx->unique_pmu = pmu;
6009 }
6010
6011 got_cpu_context:
6012 if (!pmu->start_txn) {
6013 if (pmu->pmu_enable) {
6014 /*
6015 * If we have pmu_enable/pmu_disable calls, install
6016 * transaction stubs that use that to try and batch
6017 * hardware accesses.
6018 */
6019 pmu->start_txn = perf_pmu_start_txn;
6020 pmu->commit_txn = perf_pmu_commit_txn;
6021 pmu->cancel_txn = perf_pmu_cancel_txn;
6022 } else {
6023 pmu->start_txn = perf_pmu_nop_void;
6024 pmu->commit_txn = perf_pmu_nop_int;
6025 pmu->cancel_txn = perf_pmu_nop_void;
6026 }
6027 }
6028
6029 if (!pmu->pmu_enable) {
6030 pmu->pmu_enable = perf_pmu_nop_void;
6031 pmu->pmu_disable = perf_pmu_nop_void;
6032 }
6033
6034 if (!pmu->event_idx)
6035 pmu->event_idx = perf_event_idx_default;
6036
6037 list_add_rcu(&pmu->entry, &pmus);
6038 ret = 0;
6039 unlock:
6040 mutex_unlock(&pmus_lock);
6041
6042 return ret;
6043
6044 free_dev:
6045 device_del(pmu->dev);
6046 put_device(pmu->dev);
6047
6048 free_idr:
6049 if (pmu->type >= PERF_TYPE_MAX)
6050 idr_remove(&pmu_idr, pmu->type);
6051
6052 free_pdc:
6053 free_percpu(pmu->pmu_disable_count);
6054 goto unlock;
6055 }
6056
6057 void perf_pmu_unregister(struct pmu *pmu)
6058 {
6059 mutex_lock(&pmus_lock);
6060 list_del_rcu(&pmu->entry);
6061 mutex_unlock(&pmus_lock);
6062
6063 /*
6064 * We dereference the pmu list under both SRCU and regular RCU, so
6065 * synchronize against both of those.
6066 */
6067 synchronize_srcu(&pmus_srcu);
6068 synchronize_rcu();
6069
6070 free_percpu(pmu->pmu_disable_count);
6071 if (pmu->type >= PERF_TYPE_MAX)
6072 idr_remove(&pmu_idr, pmu->type);
6073 device_del(pmu->dev);
6074 put_device(pmu->dev);
6075 free_pmu_context(pmu);
6076 }
6077
6078 struct pmu *perf_init_event(struct perf_event *event)
6079 {
6080 struct pmu *pmu = NULL;
6081 int idx;
6082 int ret;
6083
6084 idx = srcu_read_lock(&pmus_srcu);
6085
6086 rcu_read_lock();
6087 pmu = idr_find(&pmu_idr, event->attr.type);
6088 rcu_read_unlock();
6089 if (pmu) {
6090 event->pmu = pmu;
6091 ret = pmu->event_init(event);
6092 if (ret)
6093 pmu = ERR_PTR(ret);
6094 goto unlock;
6095 }
6096
6097 list_for_each_entry_rcu(pmu, &pmus, entry) {
6098 event->pmu = pmu;
6099 ret = pmu->event_init(event);
6100 if (!ret)
6101 goto unlock;
6102
6103 if (ret != -ENOENT) {
6104 pmu = ERR_PTR(ret);
6105 goto unlock;
6106 }
6107 }
6108 pmu = ERR_PTR(-ENOENT);
6109 unlock:
6110 srcu_read_unlock(&pmus_srcu, idx);
6111
6112 return pmu;
6113 }
6114
6115 /*
6116 * Allocate and initialize a event structure
6117 */
6118 static struct perf_event *
6119 perf_event_alloc(struct perf_event_attr *attr, int cpu,
6120 struct task_struct *task,
6121 struct perf_event *group_leader,
6122 struct perf_event *parent_event,
6123 perf_overflow_handler_t overflow_handler,
6124 void *context)
6125 {
6126 struct pmu *pmu;
6127 struct perf_event *event;
6128 struct hw_perf_event *hwc;
6129 long err;
6130
6131 if ((unsigned)cpu >= nr_cpu_ids) {
6132 if (!task || cpu != -1)
6133 return ERR_PTR(-EINVAL);
6134 }
6135
6136 event = kzalloc(sizeof(*event), GFP_KERNEL);
6137 if (!event)
6138 return ERR_PTR(-ENOMEM);
6139
6140 /*
6141 * Single events are their own group leaders, with an
6142 * empty sibling list:
6143 */
6144 if (!group_leader)
6145 group_leader = event;
6146
6147 mutex_init(&event->child_mutex);
6148 INIT_LIST_HEAD(&event->child_list);
6149
6150 INIT_LIST_HEAD(&event->group_entry);
6151 INIT_LIST_HEAD(&event->event_entry);
6152 INIT_LIST_HEAD(&event->sibling_list);
6153 INIT_LIST_HEAD(&event->rb_entry);
6154
6155 init_waitqueue_head(&event->waitq);
6156 init_irq_work(&event->pending, perf_pending_event);
6157
6158 mutex_init(&event->mmap_mutex);
6159
6160 atomic_long_set(&event->refcount, 1);
6161 event->cpu = cpu;
6162 event->attr = *attr;
6163 event->group_leader = group_leader;
6164 event->pmu = NULL;
6165 event->oncpu = -1;
6166
6167 event->parent = parent_event;
6168
6169 event->ns = get_pid_ns(task_active_pid_ns(current));
6170 event->id = atomic64_inc_return(&perf_event_id);
6171
6172 event->state = PERF_EVENT_STATE_INACTIVE;
6173
6174 if (task) {
6175 event->attach_state = PERF_ATTACH_TASK;
6176
6177 if (attr->type == PERF_TYPE_TRACEPOINT)
6178 event->hw.tp_target = task;
6179 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6180 /*
6181 * hw_breakpoint is a bit difficult here..
6182 */
6183 else if (attr->type == PERF_TYPE_BREAKPOINT)
6184 event->hw.bp_target = task;
6185 #endif
6186 }
6187
6188 if (!overflow_handler && parent_event) {
6189 overflow_handler = parent_event->overflow_handler;
6190 context = parent_event->overflow_handler_context;
6191 }
6192
6193 event->overflow_handler = overflow_handler;
6194 event->overflow_handler_context = context;
6195
6196 perf_event__state_init(event);
6197
6198 pmu = NULL;
6199
6200 hwc = &event->hw;
6201 hwc->sample_period = attr->sample_period;
6202 if (attr->freq && attr->sample_freq)
6203 hwc->sample_period = 1;
6204 hwc->last_period = hwc->sample_period;
6205
6206 local64_set(&hwc->period_left, hwc->sample_period);
6207
6208 /*
6209 * we currently do not support PERF_FORMAT_GROUP on inherited events
6210 */
6211 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6212 goto done;
6213
6214 pmu = perf_init_event(event);
6215
6216 done:
6217 err = 0;
6218 if (!pmu)
6219 err = -EINVAL;
6220 else if (IS_ERR(pmu))
6221 err = PTR_ERR(pmu);
6222
6223 if (err) {
6224 if (event->ns)
6225 put_pid_ns(event->ns);
6226 kfree(event);
6227 return ERR_PTR(err);
6228 }
6229
6230 if (!event->parent) {
6231 if (event->attach_state & PERF_ATTACH_TASK)
6232 static_key_slow_inc(&perf_sched_events.key);
6233 if (event->attr.mmap || event->attr.mmap_data)
6234 atomic_inc(&nr_mmap_events);
6235 if (event->attr.comm)
6236 atomic_inc(&nr_comm_events);
6237 if (event->attr.task)
6238 atomic_inc(&nr_task_events);
6239 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6240 err = get_callchain_buffers();
6241 if (err) {
6242 free_event(event);
6243 return ERR_PTR(err);
6244 }
6245 }
6246 if (has_branch_stack(event)) {
6247 static_key_slow_inc(&perf_sched_events.key);
6248 if (!(event->attach_state & PERF_ATTACH_TASK))
6249 atomic_inc(&per_cpu(perf_branch_stack_events,
6250 event->cpu));
6251 }
6252 }
6253
6254 return event;
6255 }
6256
6257 static int perf_copy_attr(struct perf_event_attr __user *uattr,
6258 struct perf_event_attr *attr)
6259 {
6260 u32 size;
6261 int ret;
6262
6263 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6264 return -EFAULT;
6265
6266 /*
6267 * zero the full structure, so that a short copy will be nice.
6268 */
6269 memset(attr, 0, sizeof(*attr));
6270
6271 ret = get_user(size, &uattr->size);
6272 if (ret)
6273 return ret;
6274
6275 if (size > PAGE_SIZE) /* silly large */
6276 goto err_size;
6277
6278 if (!size) /* abi compat */
6279 size = PERF_ATTR_SIZE_VER0;
6280
6281 if (size < PERF_ATTR_SIZE_VER0)
6282 goto err_size;
6283
6284 /*
6285 * If we're handed a bigger struct than we know of,
6286 * ensure all the unknown bits are 0 - i.e. new
6287 * user-space does not rely on any kernel feature
6288 * extensions we dont know about yet.
6289 */
6290 if (size > sizeof(*attr)) {
6291 unsigned char __user *addr;
6292 unsigned char __user *end;
6293 unsigned char val;
6294
6295 addr = (void __user *)uattr + sizeof(*attr);
6296 end = (void __user *)uattr + size;
6297
6298 for (; addr < end; addr++) {
6299 ret = get_user(val, addr);
6300 if (ret)
6301 return ret;
6302 if (val)
6303 goto err_size;
6304 }
6305 size = sizeof(*attr);
6306 }
6307
6308 ret = copy_from_user(attr, uattr, size);
6309 if (ret)
6310 return -EFAULT;
6311
6312 if (attr->__reserved_1)
6313 return -EINVAL;
6314
6315 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6316 return -EINVAL;
6317
6318 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6319 return -EINVAL;
6320
6321 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6322 u64 mask = attr->branch_sample_type;
6323
6324 /* only using defined bits */
6325 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6326 return -EINVAL;
6327
6328 /* at least one branch bit must be set */
6329 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6330 return -EINVAL;
6331
6332 /* kernel level capture: check permissions */
6333 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6334 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6335 return -EACCES;
6336
6337 /* propagate priv level, when not set for branch */
6338 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6339
6340 /* exclude_kernel checked on syscall entry */
6341 if (!attr->exclude_kernel)
6342 mask |= PERF_SAMPLE_BRANCH_KERNEL;
6343
6344 if (!attr->exclude_user)
6345 mask |= PERF_SAMPLE_BRANCH_USER;
6346
6347 if (!attr->exclude_hv)
6348 mask |= PERF_SAMPLE_BRANCH_HV;
6349 /*
6350 * adjust user setting (for HW filter setup)
6351 */
6352 attr->branch_sample_type = mask;
6353 }
6354 }
6355
6356 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
6357 ret = perf_reg_validate(attr->sample_regs_user);
6358 if (ret)
6359 return ret;
6360 }
6361
6362 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
6363 if (!arch_perf_have_user_stack_dump())
6364 return -ENOSYS;
6365
6366 /*
6367 * We have __u32 type for the size, but so far
6368 * we can only use __u16 as maximum due to the
6369 * __u16 sample size limit.
6370 */
6371 if (attr->sample_stack_user >= USHRT_MAX)
6372 ret = -EINVAL;
6373 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
6374 ret = -EINVAL;
6375 }
6376
6377 out:
6378 return ret;
6379
6380 err_size:
6381 put_user(sizeof(*attr), &uattr->size);
6382 ret = -E2BIG;
6383 goto out;
6384 }
6385
6386 static int
6387 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6388 {
6389 struct ring_buffer *rb = NULL, *old_rb = NULL;
6390 int ret = -EINVAL;
6391
6392 if (!output_event)
6393 goto set;
6394
6395 /* don't allow circular references */
6396 if (event == output_event)
6397 goto out;
6398
6399 /*
6400 * Don't allow cross-cpu buffers
6401 */
6402 if (output_event->cpu != event->cpu)
6403 goto out;
6404
6405 /*
6406 * If its not a per-cpu rb, it must be the same task.
6407 */
6408 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6409 goto out;
6410
6411 set:
6412 mutex_lock(&event->mmap_mutex);
6413 /* Can't redirect output if we've got an active mmap() */
6414 if (atomic_read(&event->mmap_count))
6415 goto unlock;
6416
6417 if (output_event) {
6418 /* get the rb we want to redirect to */
6419 rb = ring_buffer_get(output_event);
6420 if (!rb)
6421 goto unlock;
6422 }
6423
6424 old_rb = event->rb;
6425 rcu_assign_pointer(event->rb, rb);
6426 if (old_rb)
6427 ring_buffer_detach(event, old_rb);
6428 ret = 0;
6429 unlock:
6430 mutex_unlock(&event->mmap_mutex);
6431
6432 if (old_rb)
6433 ring_buffer_put(old_rb);
6434 out:
6435 return ret;
6436 }
6437
6438 /**
6439 * sys_perf_event_open - open a performance event, associate it to a task/cpu
6440 *
6441 * @attr_uptr: event_id type attributes for monitoring/sampling
6442 * @pid: target pid
6443 * @cpu: target cpu
6444 * @group_fd: group leader event fd
6445 */
6446 SYSCALL_DEFINE5(perf_event_open,
6447 struct perf_event_attr __user *, attr_uptr,
6448 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
6449 {
6450 struct perf_event *group_leader = NULL, *output_event = NULL;
6451 struct perf_event *event, *sibling;
6452 struct perf_event_attr attr;
6453 struct perf_event_context *ctx;
6454 struct file *event_file = NULL;
6455 struct fd group = {NULL, 0};
6456 struct task_struct *task = NULL;
6457 struct pmu *pmu;
6458 int event_fd;
6459 int move_group = 0;
6460 int err;
6461
6462 /* for future expandability... */
6463 if (flags & ~PERF_FLAG_ALL)
6464 return -EINVAL;
6465
6466 err = perf_copy_attr(attr_uptr, &attr);
6467 if (err)
6468 return err;
6469
6470 if (!attr.exclude_kernel) {
6471 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6472 return -EACCES;
6473 }
6474
6475 if (attr.freq) {
6476 if (attr.sample_freq > sysctl_perf_event_sample_rate)
6477 return -EINVAL;
6478 }
6479
6480 /*
6481 * In cgroup mode, the pid argument is used to pass the fd
6482 * opened to the cgroup directory in cgroupfs. The cpu argument
6483 * designates the cpu on which to monitor threads from that
6484 * cgroup.
6485 */
6486 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6487 return -EINVAL;
6488
6489 event_fd = get_unused_fd();
6490 if (event_fd < 0)
6491 return event_fd;
6492
6493 if (group_fd != -1) {
6494 err = perf_fget_light(group_fd, &group);
6495 if (err)
6496 goto err_fd;
6497 group_leader = group.file->private_data;
6498 if (flags & PERF_FLAG_FD_OUTPUT)
6499 output_event = group_leader;
6500 if (flags & PERF_FLAG_FD_NO_GROUP)
6501 group_leader = NULL;
6502 }
6503
6504 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6505 task = find_lively_task_by_vpid(pid);
6506 if (IS_ERR(task)) {
6507 err = PTR_ERR(task);
6508 goto err_group_fd;
6509 }
6510 }
6511
6512 get_online_cpus();
6513
6514 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6515 NULL, NULL);
6516 if (IS_ERR(event)) {
6517 err = PTR_ERR(event);
6518 goto err_task;
6519 }
6520
6521 if (flags & PERF_FLAG_PID_CGROUP) {
6522 err = perf_cgroup_connect(pid, event, &attr, group_leader);
6523 if (err)
6524 goto err_alloc;
6525 /*
6526 * one more event:
6527 * - that has cgroup constraint on event->cpu
6528 * - that may need work on context switch
6529 */
6530 atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
6531 static_key_slow_inc(&perf_sched_events.key);
6532 }
6533
6534 /*
6535 * Special case software events and allow them to be part of
6536 * any hardware group.
6537 */
6538 pmu = event->pmu;
6539
6540 if (group_leader &&
6541 (is_software_event(event) != is_software_event(group_leader))) {
6542 if (is_software_event(event)) {
6543 /*
6544 * If event and group_leader are not both a software
6545 * event, and event is, then group leader is not.
6546 *
6547 * Allow the addition of software events to !software
6548 * groups, this is safe because software events never
6549 * fail to schedule.
6550 */
6551 pmu = group_leader->pmu;
6552 } else if (is_software_event(group_leader) &&
6553 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6554 /*
6555 * In case the group is a pure software group, and we
6556 * try to add a hardware event, move the whole group to
6557 * the hardware context.
6558 */
6559 move_group = 1;
6560 }
6561 }
6562
6563 /*
6564 * Get the target context (task or percpu):
6565 */
6566 ctx = find_get_context(pmu, task, event->cpu);
6567 if (IS_ERR(ctx)) {
6568 err = PTR_ERR(ctx);
6569 goto err_alloc;
6570 }
6571
6572 if (task) {
6573 put_task_struct(task);
6574 task = NULL;
6575 }
6576
6577 /*
6578 * Look up the group leader (we will attach this event to it):
6579 */
6580 if (group_leader) {
6581 err = -EINVAL;
6582
6583 /*
6584 * Do not allow a recursive hierarchy (this new sibling
6585 * becoming part of another group-sibling):
6586 */
6587 if (group_leader->group_leader != group_leader)
6588 goto err_context;
6589 /*
6590 * Do not allow to attach to a group in a different
6591 * task or CPU context:
6592 */
6593 if (move_group) {
6594 if (group_leader->ctx->type != ctx->type)
6595 goto err_context;
6596 } else {
6597 if (group_leader->ctx != ctx)
6598 goto err_context;
6599 }
6600
6601 /*
6602 * Only a group leader can be exclusive or pinned
6603 */
6604 if (attr.exclusive || attr.pinned)
6605 goto err_context;
6606 }
6607
6608 if (output_event) {
6609 err = perf_event_set_output(event, output_event);
6610 if (err)
6611 goto err_context;
6612 }
6613
6614 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
6615 if (IS_ERR(event_file)) {
6616 err = PTR_ERR(event_file);
6617 goto err_context;
6618 }
6619
6620 if (move_group) {
6621 struct perf_event_context *gctx = group_leader->ctx;
6622
6623 mutex_lock(&gctx->mutex);
6624 perf_remove_from_context(group_leader);
6625
6626 /*
6627 * Removing from the context ends up with disabled
6628 * event. What we want here is event in the initial
6629 * startup state, ready to be add into new context.
6630 */
6631 perf_event__state_init(group_leader);
6632 list_for_each_entry(sibling, &group_leader->sibling_list,
6633 group_entry) {
6634 perf_remove_from_context(sibling);
6635 perf_event__state_init(sibling);
6636 put_ctx(gctx);
6637 }
6638 mutex_unlock(&gctx->mutex);
6639 put_ctx(gctx);
6640 }
6641
6642 WARN_ON_ONCE(ctx->parent_ctx);
6643 mutex_lock(&ctx->mutex);
6644
6645 if (move_group) {
6646 synchronize_rcu();
6647 perf_install_in_context(ctx, group_leader, event->cpu);
6648 get_ctx(ctx);
6649 list_for_each_entry(sibling, &group_leader->sibling_list,
6650 group_entry) {
6651 perf_install_in_context(ctx, sibling, event->cpu);
6652 get_ctx(ctx);
6653 }
6654 }
6655
6656 perf_install_in_context(ctx, event, event->cpu);
6657 ++ctx->generation;
6658 perf_unpin_context(ctx);
6659 mutex_unlock(&ctx->mutex);
6660
6661 put_online_cpus();
6662
6663 event->owner = current;
6664
6665 mutex_lock(&current->perf_event_mutex);
6666 list_add_tail(&event->owner_entry, &current->perf_event_list);
6667 mutex_unlock(&current->perf_event_mutex);
6668
6669 /*
6670 * Precalculate sample_data sizes
6671 */
6672 perf_event__header_size(event);
6673 perf_event__id_header_size(event);
6674
6675 /*
6676 * Drop the reference on the group_event after placing the
6677 * new event on the sibling_list. This ensures destruction
6678 * of the group leader will find the pointer to itself in
6679 * perf_group_detach().
6680 */
6681 fdput(group);
6682 fd_install(event_fd, event_file);
6683 return event_fd;
6684
6685 err_context:
6686 perf_unpin_context(ctx);
6687 put_ctx(ctx);
6688 err_alloc:
6689 free_event(event);
6690 err_task:
6691 put_online_cpus();
6692 if (task)
6693 put_task_struct(task);
6694 err_group_fd:
6695 fdput(group);
6696 err_fd:
6697 put_unused_fd(event_fd);
6698 return err;
6699 }
6700
6701 /**
6702 * perf_event_create_kernel_counter
6703 *
6704 * @attr: attributes of the counter to create
6705 * @cpu: cpu in which the counter is bound
6706 * @task: task to profile (NULL for percpu)
6707 */
6708 struct perf_event *
6709 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
6710 struct task_struct *task,
6711 perf_overflow_handler_t overflow_handler,
6712 void *context)
6713 {
6714 struct perf_event_context *ctx;
6715 struct perf_event *event;
6716 int err;
6717
6718 /*
6719 * Get the target context (task or percpu):
6720 */
6721
6722 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
6723 overflow_handler, context);
6724 if (IS_ERR(event)) {
6725 err = PTR_ERR(event);
6726 goto err;
6727 }
6728
6729 ctx = find_get_context(event->pmu, task, cpu);
6730 if (IS_ERR(ctx)) {
6731 err = PTR_ERR(ctx);
6732 goto err_free;
6733 }
6734
6735 WARN_ON_ONCE(ctx->parent_ctx);
6736 mutex_lock(&ctx->mutex);
6737 perf_install_in_context(ctx, event, cpu);
6738 ++ctx->generation;
6739 perf_unpin_context(ctx);
6740 mutex_unlock(&ctx->mutex);
6741
6742 return event;
6743
6744 err_free:
6745 free_event(event);
6746 err:
6747 return ERR_PTR(err);
6748 }
6749 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6750
6751 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
6752 {
6753 struct perf_event_context *src_ctx;
6754 struct perf_event_context *dst_ctx;
6755 struct perf_event *event, *tmp;
6756 LIST_HEAD(events);
6757
6758 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
6759 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
6760
6761 mutex_lock(&src_ctx->mutex);
6762 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
6763 event_entry) {
6764 perf_remove_from_context(event);
6765 put_ctx(src_ctx);
6766 list_add(&event->event_entry, &events);
6767 }
6768 mutex_unlock(&src_ctx->mutex);
6769
6770 synchronize_rcu();
6771
6772 mutex_lock(&dst_ctx->mutex);
6773 list_for_each_entry_safe(event, tmp, &events, event_entry) {
6774 list_del(&event->event_entry);
6775 if (event->state >= PERF_EVENT_STATE_OFF)
6776 event->state = PERF_EVENT_STATE_INACTIVE;
6777 perf_install_in_context(dst_ctx, event, dst_cpu);
6778 get_ctx(dst_ctx);
6779 }
6780 mutex_unlock(&dst_ctx->mutex);
6781 }
6782 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
6783
6784 static void sync_child_event(struct perf_event *child_event,
6785 struct task_struct *child)
6786 {
6787 struct perf_event *parent_event = child_event->parent;
6788 u64 child_val;
6789
6790 if (child_event->attr.inherit_stat)
6791 perf_event_read_event(child_event, child);
6792
6793 child_val = perf_event_count(child_event);
6794
6795 /*
6796 * Add back the child's count to the parent's count:
6797 */
6798 atomic64_add(child_val, &parent_event->child_count);
6799 atomic64_add(child_event->total_time_enabled,
6800 &parent_event->child_total_time_enabled);
6801 atomic64_add(child_event->total_time_running,
6802 &parent_event->child_total_time_running);
6803
6804 /*
6805 * Remove this event from the parent's list
6806 */
6807 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6808 mutex_lock(&parent_event->child_mutex);
6809 list_del_init(&child_event->child_list);
6810 mutex_unlock(&parent_event->child_mutex);
6811
6812 /*
6813 * Release the parent event, if this was the last
6814 * reference to it.
6815 */
6816 put_event(parent_event);
6817 }
6818
6819 static void
6820 __perf_event_exit_task(struct perf_event *child_event,
6821 struct perf_event_context *child_ctx,
6822 struct task_struct *child)
6823 {
6824 if (child_event->parent) {
6825 raw_spin_lock_irq(&child_ctx->lock);
6826 perf_group_detach(child_event);
6827 raw_spin_unlock_irq(&child_ctx->lock);
6828 }
6829
6830 perf_remove_from_context(child_event);
6831
6832 /*
6833 * It can happen that the parent exits first, and has events
6834 * that are still around due to the child reference. These
6835 * events need to be zapped.
6836 */
6837 if (child_event->parent) {
6838 sync_child_event(child_event, child);
6839 free_event(child_event);
6840 }
6841 }
6842
6843 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6844 {
6845 struct perf_event *child_event, *tmp;
6846 struct perf_event_context *child_ctx;
6847 unsigned long flags;
6848
6849 if (likely(!child->perf_event_ctxp[ctxn])) {
6850 perf_event_task(child, NULL, 0);
6851 return;
6852 }
6853
6854 local_irq_save(flags);
6855 /*
6856 * We can't reschedule here because interrupts are disabled,
6857 * and either child is current or it is a task that can't be
6858 * scheduled, so we are now safe from rescheduling changing
6859 * our context.
6860 */
6861 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6862
6863 /*
6864 * Take the context lock here so that if find_get_context is
6865 * reading child->perf_event_ctxp, we wait until it has
6866 * incremented the context's refcount before we do put_ctx below.
6867 */
6868 raw_spin_lock(&child_ctx->lock);
6869 task_ctx_sched_out(child_ctx);
6870 child->perf_event_ctxp[ctxn] = NULL;
6871 /*
6872 * If this context is a clone; unclone it so it can't get
6873 * swapped to another process while we're removing all
6874 * the events from it.
6875 */
6876 unclone_ctx(child_ctx);
6877 update_context_time(child_ctx);
6878 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6879
6880 /*
6881 * Report the task dead after unscheduling the events so that we
6882 * won't get any samples after PERF_RECORD_EXIT. We can however still
6883 * get a few PERF_RECORD_READ events.
6884 */
6885 perf_event_task(child, child_ctx, 0);
6886
6887 /*
6888 * We can recurse on the same lock type through:
6889 *
6890 * __perf_event_exit_task()
6891 * sync_child_event()
6892 * put_event()
6893 * mutex_lock(&ctx->mutex)
6894 *
6895 * But since its the parent context it won't be the same instance.
6896 */
6897 mutex_lock(&child_ctx->mutex);
6898
6899 again:
6900 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
6901 group_entry)
6902 __perf_event_exit_task(child_event, child_ctx, child);
6903
6904 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6905 group_entry)
6906 __perf_event_exit_task(child_event, child_ctx, child);
6907
6908 /*
6909 * If the last event was a group event, it will have appended all
6910 * its siblings to the list, but we obtained 'tmp' before that which
6911 * will still point to the list head terminating the iteration.
6912 */
6913 if (!list_empty(&child_ctx->pinned_groups) ||
6914 !list_empty(&child_ctx->flexible_groups))
6915 goto again;
6916
6917 mutex_unlock(&child_ctx->mutex);
6918
6919 put_ctx(child_ctx);
6920 }
6921
6922 /*
6923 * When a child task exits, feed back event values to parent events.
6924 */
6925 void perf_event_exit_task(struct task_struct *child)
6926 {
6927 struct perf_event *event, *tmp;
6928 int ctxn;
6929
6930 mutex_lock(&child->perf_event_mutex);
6931 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
6932 owner_entry) {
6933 list_del_init(&event->owner_entry);
6934
6935 /*
6936 * Ensure the list deletion is visible before we clear
6937 * the owner, closes a race against perf_release() where
6938 * we need to serialize on the owner->perf_event_mutex.
6939 */
6940 smp_wmb();
6941 event->owner = NULL;
6942 }
6943 mutex_unlock(&child->perf_event_mutex);
6944
6945 for_each_task_context_nr(ctxn)
6946 perf_event_exit_task_context(child, ctxn);
6947 }
6948
6949 static void perf_free_event(struct perf_event *event,
6950 struct perf_event_context *ctx)
6951 {
6952 struct perf_event *parent = event->parent;
6953
6954 if (WARN_ON_ONCE(!parent))
6955 return;
6956
6957 mutex_lock(&parent->child_mutex);
6958 list_del_init(&event->child_list);
6959 mutex_unlock(&parent->child_mutex);
6960
6961 put_event(parent);
6962
6963 perf_group_detach(event);
6964 list_del_event(event, ctx);
6965 free_event(event);
6966 }
6967
6968 /*
6969 * free an unexposed, unused context as created by inheritance by
6970 * perf_event_init_task below, used by fork() in case of fail.
6971 */
6972 void perf_event_free_task(struct task_struct *task)
6973 {
6974 struct perf_event_context *ctx;
6975 struct perf_event *event, *tmp;
6976 int ctxn;
6977
6978 for_each_task_context_nr(ctxn) {
6979 ctx = task->perf_event_ctxp[ctxn];
6980 if (!ctx)
6981 continue;
6982
6983 mutex_lock(&ctx->mutex);
6984 again:
6985 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
6986 group_entry)
6987 perf_free_event(event, ctx);
6988
6989 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
6990 group_entry)
6991 perf_free_event(event, ctx);
6992
6993 if (!list_empty(&ctx->pinned_groups) ||
6994 !list_empty(&ctx->flexible_groups))
6995 goto again;
6996
6997 mutex_unlock(&ctx->mutex);
6998
6999 put_ctx(ctx);
7000 }
7001 }
7002
7003 void perf_event_delayed_put(struct task_struct *task)
7004 {
7005 int ctxn;
7006
7007 for_each_task_context_nr(ctxn)
7008 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
7009 }
7010
7011 /*
7012 * inherit a event from parent task to child task:
7013 */
7014 static struct perf_event *
7015 inherit_event(struct perf_event *parent_event,
7016 struct task_struct *parent,
7017 struct perf_event_context *parent_ctx,
7018 struct task_struct *child,
7019 struct perf_event *group_leader,
7020 struct perf_event_context *child_ctx)
7021 {
7022 struct perf_event *child_event;
7023 unsigned long flags;
7024
7025 /*
7026 * Instead of creating recursive hierarchies of events,
7027 * we link inherited events back to the original parent,
7028 * which has a filp for sure, which we use as the reference
7029 * count:
7030 */
7031 if (parent_event->parent)
7032 parent_event = parent_event->parent;
7033
7034 child_event = perf_event_alloc(&parent_event->attr,
7035 parent_event->cpu,
7036 child,
7037 group_leader, parent_event,
7038 NULL, NULL);
7039 if (IS_ERR(child_event))
7040 return child_event;
7041
7042 if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
7043 free_event(child_event);
7044 return NULL;
7045 }
7046
7047 get_ctx(child_ctx);
7048
7049 /*
7050 * Make the child state follow the state of the parent event,
7051 * not its attr.disabled bit. We hold the parent's mutex,
7052 * so we won't race with perf_event_{en, dis}able_family.
7053 */
7054 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
7055 child_event->state = PERF_EVENT_STATE_INACTIVE;
7056 else
7057 child_event->state = PERF_EVENT_STATE_OFF;
7058
7059 if (parent_event->attr.freq) {
7060 u64 sample_period = parent_event->hw.sample_period;
7061 struct hw_perf_event *hwc = &child_event->hw;
7062
7063 hwc->sample_period = sample_period;
7064 hwc->last_period = sample_period;
7065
7066 local64_set(&hwc->period_left, sample_period);
7067 }
7068
7069 child_event->ctx = child_ctx;
7070 child_event->overflow_handler = parent_event->overflow_handler;
7071 child_event->overflow_handler_context
7072 = parent_event->overflow_handler_context;
7073
7074 /*
7075 * Precalculate sample_data sizes
7076 */
7077 perf_event__header_size(child_event);
7078 perf_event__id_header_size(child_event);
7079
7080 /*
7081 * Link it up in the child's context:
7082 */
7083 raw_spin_lock_irqsave(&child_ctx->lock, flags);
7084 add_event_to_ctx(child_event, child_ctx);
7085 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7086
7087 /*
7088 * Link this into the parent event's child list
7089 */
7090 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7091 mutex_lock(&parent_event->child_mutex);
7092 list_add_tail(&child_event->child_list, &parent_event->child_list);
7093 mutex_unlock(&parent_event->child_mutex);
7094
7095 return child_event;
7096 }
7097
7098 static int inherit_group(struct perf_event *parent_event,
7099 struct task_struct *parent,
7100 struct perf_event_context *parent_ctx,
7101 struct task_struct *child,
7102 struct perf_event_context *child_ctx)
7103 {
7104 struct perf_event *leader;
7105 struct perf_event *sub;
7106 struct perf_event *child_ctr;
7107
7108 leader = inherit_event(parent_event, parent, parent_ctx,
7109 child, NULL, child_ctx);
7110 if (IS_ERR(leader))
7111 return PTR_ERR(leader);
7112 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
7113 child_ctr = inherit_event(sub, parent, parent_ctx,
7114 child, leader, child_ctx);
7115 if (IS_ERR(child_ctr))
7116 return PTR_ERR(child_ctr);
7117 }
7118 return 0;
7119 }
7120
7121 static int
7122 inherit_task_group(struct perf_event *event, struct task_struct *parent,
7123 struct perf_event_context *parent_ctx,
7124 struct task_struct *child, int ctxn,
7125 int *inherited_all)
7126 {
7127 int ret;
7128 struct perf_event_context *child_ctx;
7129
7130 if (!event->attr.inherit) {
7131 *inherited_all = 0;
7132 return 0;
7133 }
7134
7135 child_ctx = child->perf_event_ctxp[ctxn];
7136 if (!child_ctx) {
7137 /*
7138 * This is executed from the parent task context, so
7139 * inherit events that have been marked for cloning.
7140 * First allocate and initialize a context for the
7141 * child.
7142 */
7143
7144 child_ctx = alloc_perf_context(event->pmu, child);
7145 if (!child_ctx)
7146 return -ENOMEM;
7147
7148 child->perf_event_ctxp[ctxn] = child_ctx;
7149 }
7150
7151 ret = inherit_group(event, parent, parent_ctx,
7152 child, child_ctx);
7153
7154 if (ret)
7155 *inherited_all = 0;
7156
7157 return ret;
7158 }
7159
7160 /*
7161 * Initialize the perf_event context in task_struct
7162 */
7163 int perf_event_init_context(struct task_struct *child, int ctxn)
7164 {
7165 struct perf_event_context *child_ctx, *parent_ctx;
7166 struct perf_event_context *cloned_ctx;
7167 struct perf_event *event;
7168 struct task_struct *parent = current;
7169 int inherited_all = 1;
7170 unsigned long flags;
7171 int ret = 0;
7172
7173 if (likely(!parent->perf_event_ctxp[ctxn]))
7174 return 0;
7175
7176 /*
7177 * If the parent's context is a clone, pin it so it won't get
7178 * swapped under us.
7179 */
7180 parent_ctx = perf_pin_task_context(parent, ctxn);
7181
7182 /*
7183 * No need to check if parent_ctx != NULL here; since we saw
7184 * it non-NULL earlier, the only reason for it to become NULL
7185 * is if we exit, and since we're currently in the middle of
7186 * a fork we can't be exiting at the same time.
7187 */
7188
7189 /*
7190 * Lock the parent list. No need to lock the child - not PID
7191 * hashed yet and not running, so nobody can access it.
7192 */
7193 mutex_lock(&parent_ctx->mutex);
7194
7195 /*
7196 * We dont have to disable NMIs - we are only looking at
7197 * the list, not manipulating it:
7198 */
7199 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
7200 ret = inherit_task_group(event, parent, parent_ctx,
7201 child, ctxn, &inherited_all);
7202 if (ret)
7203 break;
7204 }
7205
7206 /*
7207 * We can't hold ctx->lock when iterating the ->flexible_group list due
7208 * to allocations, but we need to prevent rotation because
7209 * rotate_ctx() will change the list from interrupt context.
7210 */
7211 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7212 parent_ctx->rotate_disable = 1;
7213 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7214
7215 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
7216 ret = inherit_task_group(event, parent, parent_ctx,
7217 child, ctxn, &inherited_all);
7218 if (ret)
7219 break;
7220 }
7221
7222 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7223 parent_ctx->rotate_disable = 0;
7224
7225 child_ctx = child->perf_event_ctxp[ctxn];
7226
7227 if (child_ctx && inherited_all) {
7228 /*
7229 * Mark the child context as a clone of the parent
7230 * context, or of whatever the parent is a clone of.
7231 *
7232 * Note that if the parent is a clone, the holding of
7233 * parent_ctx->lock avoids it from being uncloned.
7234 */
7235 cloned_ctx = parent_ctx->parent_ctx;
7236 if (cloned_ctx) {
7237 child_ctx->parent_ctx = cloned_ctx;
7238 child_ctx->parent_gen = parent_ctx->parent_gen;
7239 } else {
7240 child_ctx->parent_ctx = parent_ctx;
7241 child_ctx->parent_gen = parent_ctx->generation;
7242 }
7243 get_ctx(child_ctx->parent_ctx);
7244 }
7245
7246 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7247 mutex_unlock(&parent_ctx->mutex);
7248
7249 perf_unpin_context(parent_ctx);
7250 put_ctx(parent_ctx);
7251
7252 return ret;
7253 }
7254
7255 /*
7256 * Initialize the perf_event context in task_struct
7257 */
7258 int perf_event_init_task(struct task_struct *child)
7259 {
7260 int ctxn, ret;
7261
7262 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
7263 mutex_init(&child->perf_event_mutex);
7264 INIT_LIST_HEAD(&child->perf_event_list);
7265
7266 for_each_task_context_nr(ctxn) {
7267 ret = perf_event_init_context(child, ctxn);
7268 if (ret)
7269 return ret;
7270 }
7271
7272 return 0;
7273 }
7274
7275 static void __init perf_event_init_all_cpus(void)
7276 {
7277 struct swevent_htable *swhash;
7278 int cpu;
7279
7280 for_each_possible_cpu(cpu) {
7281 swhash = &per_cpu(swevent_htable, cpu);
7282 mutex_init(&swhash->hlist_mutex);
7283 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7284 }
7285 }
7286
7287 static void __cpuinit perf_event_init_cpu(int cpu)
7288 {
7289 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7290
7291 mutex_lock(&swhash->hlist_mutex);
7292 if (swhash->hlist_refcount > 0) {
7293 struct swevent_hlist *hlist;
7294
7295 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
7296 WARN_ON(!hlist);
7297 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7298 }
7299 mutex_unlock(&swhash->hlist_mutex);
7300 }
7301
7302 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7303 static void perf_pmu_rotate_stop(struct pmu *pmu)
7304 {
7305 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7306
7307 WARN_ON(!irqs_disabled());
7308
7309 list_del_init(&cpuctx->rotation_list);
7310 }
7311
7312 static void __perf_event_exit_context(void *__info)
7313 {
7314 struct perf_event_context *ctx = __info;
7315 struct perf_event *event, *tmp;
7316
7317 perf_pmu_rotate_stop(ctx->pmu);
7318
7319 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7320 __perf_remove_from_context(event);
7321 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7322 __perf_remove_from_context(event);
7323 }
7324
7325 static void perf_event_exit_cpu_context(int cpu)
7326 {
7327 struct perf_event_context *ctx;
7328 struct pmu *pmu;
7329 int idx;
7330
7331 idx = srcu_read_lock(&pmus_srcu);
7332 list_for_each_entry_rcu(pmu, &pmus, entry) {
7333 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
7334
7335 mutex_lock(&ctx->mutex);
7336 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7337 mutex_unlock(&ctx->mutex);
7338 }
7339 srcu_read_unlock(&pmus_srcu, idx);
7340 }
7341
7342 static void perf_event_exit_cpu(int cpu)
7343 {
7344 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7345
7346 mutex_lock(&swhash->hlist_mutex);
7347 swevent_hlist_release(swhash);
7348 mutex_unlock(&swhash->hlist_mutex);
7349
7350 perf_event_exit_cpu_context(cpu);
7351 }
7352 #else
7353 static inline void perf_event_exit_cpu(int cpu) { }
7354 #endif
7355
7356 static int
7357 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7358 {
7359 int cpu;
7360
7361 for_each_online_cpu(cpu)
7362 perf_event_exit_cpu(cpu);
7363
7364 return NOTIFY_OK;
7365 }
7366
7367 /*
7368 * Run the perf reboot notifier at the very last possible moment so that
7369 * the generic watchdog code runs as long as possible.
7370 */
7371 static struct notifier_block perf_reboot_notifier = {
7372 .notifier_call = perf_reboot,
7373 .priority = INT_MIN,
7374 };
7375
7376 static int __cpuinit
7377 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7378 {
7379 unsigned int cpu = (long)hcpu;
7380
7381 switch (action & ~CPU_TASKS_FROZEN) {
7382
7383 case CPU_UP_PREPARE:
7384 case CPU_DOWN_FAILED:
7385 perf_event_init_cpu(cpu);
7386 break;
7387
7388 case CPU_UP_CANCELED:
7389 case CPU_DOWN_PREPARE:
7390 perf_event_exit_cpu(cpu);
7391 break;
7392
7393 default:
7394 break;
7395 }
7396
7397 return NOTIFY_OK;
7398 }
7399
7400 void __init perf_event_init(void)
7401 {
7402 int ret;
7403
7404 idr_init(&pmu_idr);
7405
7406 perf_event_init_all_cpus();
7407 init_srcu_struct(&pmus_srcu);
7408 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7409 perf_pmu_register(&perf_cpu_clock, NULL, -1);
7410 perf_pmu_register(&perf_task_clock, NULL, -1);
7411 perf_tp_register();
7412 perf_cpu_notifier(perf_cpu_notify);
7413 register_reboot_notifier(&perf_reboot_notifier);
7414
7415 ret = init_hw_breakpoint();
7416 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7417
7418 /* do not patch jump label more than once per second */
7419 jump_label_rate_limit(&perf_sched_events, HZ);
7420
7421 /*
7422 * Build time assertion that we keep the data_head at the intended
7423 * location. IOW, validation we got the __reserved[] size right.
7424 */
7425 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
7426 != 1024);
7427 }
7428
7429 static int __init perf_event_sysfs_init(void)
7430 {
7431 struct pmu *pmu;
7432 int ret;
7433
7434 mutex_lock(&pmus_lock);
7435
7436 ret = bus_register(&pmu_bus);
7437 if (ret)
7438 goto unlock;
7439
7440 list_for_each_entry(pmu, &pmus, entry) {
7441 if (!pmu->name || pmu->type < 0)
7442 continue;
7443
7444 ret = pmu_dev_alloc(pmu);
7445 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
7446 }
7447 pmu_bus_running = 1;
7448 ret = 0;
7449
7450 unlock:
7451 mutex_unlock(&pmus_lock);
7452
7453 return ret;
7454 }
7455 device_initcall(perf_event_sysfs_init);
7456
7457 #ifdef CONFIG_CGROUP_PERF
7458 static struct cgroup_subsys_state *perf_cgroup_css_alloc(struct cgroup *cont)
7459 {
7460 struct perf_cgroup *jc;
7461
7462 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
7463 if (!jc)
7464 return ERR_PTR(-ENOMEM);
7465
7466 jc->info = alloc_percpu(struct perf_cgroup_info);
7467 if (!jc->info) {
7468 kfree(jc);
7469 return ERR_PTR(-ENOMEM);
7470 }
7471
7472 return &jc->css;
7473 }
7474
7475 static void perf_cgroup_css_free(struct cgroup *cont)
7476 {
7477 struct perf_cgroup *jc;
7478 jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
7479 struct perf_cgroup, css);
7480 free_percpu(jc->info);
7481 kfree(jc);
7482 }
7483
7484 static int __perf_cgroup_move(void *info)
7485 {
7486 struct task_struct *task = info;
7487 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7488 return 0;
7489 }
7490
7491 static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
7492 {
7493 struct task_struct *task;
7494
7495 cgroup_taskset_for_each(task, cgrp, tset)
7496 task_function_call(task, __perf_cgroup_move, task);
7497 }
7498
7499 static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7500 struct task_struct *task)
7501 {
7502 /*
7503 * cgroup_exit() is called in the copy_process() failure path.
7504 * Ignore this case since the task hasn't ran yet, this avoids
7505 * trying to poke a half freed task state from generic code.
7506 */
7507 if (!(task->flags & PF_EXITING))
7508 return;
7509
7510 task_function_call(task, __perf_cgroup_move, task);
7511 }
7512
7513 struct cgroup_subsys perf_subsys = {
7514 .name = "perf_event",
7515 .subsys_id = perf_subsys_id,
7516 .css_alloc = perf_cgroup_css_alloc,
7517 .css_free = perf_cgroup_css_free,
7518 .exit = perf_cgroup_exit,
7519 .attach = perf_cgroup_attach,
7520
7521 /*
7522 * perf_event cgroup doesn't handle nesting correctly.
7523 * ctx->nr_cgroups adjustments should be propagated through the
7524 * cgroup hierarchy. Fix it and remove the following.
7525 */
7526 .broken_hierarchy = true,
7527 };
7528 #endif /* CONFIG_CGROUP_PERF */