perf: Fix fasync handling on inherited events
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / events / core.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/perf_event.h>
38 #include <linux/ftrace_event.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/mm_types.h>
41 #include <linux/cgroup.h>
42 #include <linux/compat.h>
43
44 #include "internal.h"
45
46 #include <asm/irq_regs.h>
47
48 struct remote_function_call {
49 struct task_struct *p;
50 int (*func)(void *info);
51 void *info;
52 int ret;
53 };
54
55 static void remote_function(void *data)
56 {
57 struct remote_function_call *tfc = data;
58 struct task_struct *p = tfc->p;
59
60 if (p) {
61 tfc->ret = -EAGAIN;
62 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
63 return;
64 }
65
66 tfc->ret = tfc->func(tfc->info);
67 }
68
69 /**
70 * task_function_call - call a function on the cpu on which a task runs
71 * @p: the task to evaluate
72 * @func: the function to be called
73 * @info: the function call argument
74 *
75 * Calls the function @func when the task is currently running. This might
76 * be on the current CPU, which just calls the function directly
77 *
78 * returns: @func return value, or
79 * -ESRCH - when the process isn't running
80 * -EAGAIN - when the process moved away
81 */
82 static int
83 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
84 {
85 struct remote_function_call data = {
86 .p = p,
87 .func = func,
88 .info = info,
89 .ret = -ESRCH, /* No such (running) process */
90 };
91
92 if (task_curr(p))
93 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
94
95 return data.ret;
96 }
97
98 /**
99 * cpu_function_call - call a function on the cpu
100 * @func: the function to be called
101 * @info: the function call argument
102 *
103 * Calls the function @func on the remote cpu.
104 *
105 * returns: @func return value or -ENXIO when the cpu is offline
106 */
107 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
108 {
109 struct remote_function_call data = {
110 .p = NULL,
111 .func = func,
112 .info = info,
113 .ret = -ENXIO, /* No such CPU */
114 };
115
116 smp_call_function_single(cpu, remote_function, &data, 1);
117
118 return data.ret;
119 }
120
121 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
122 PERF_FLAG_FD_OUTPUT |\
123 PERF_FLAG_PID_CGROUP)
124
125 /*
126 * branch priv levels that need permission checks
127 */
128 #define PERF_SAMPLE_BRANCH_PERM_PLM \
129 (PERF_SAMPLE_BRANCH_KERNEL |\
130 PERF_SAMPLE_BRANCH_HV)
131
132 enum event_type_t {
133 EVENT_FLEXIBLE = 0x1,
134 EVENT_PINNED = 0x2,
135 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
136 };
137
138 /*
139 * perf_sched_events : >0 events exist
140 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
141 */
142 struct static_key_deferred perf_sched_events __read_mostly;
143 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
144 static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
145
146 static atomic_t nr_mmap_events __read_mostly;
147 static atomic_t nr_comm_events __read_mostly;
148 static atomic_t nr_task_events __read_mostly;
149
150 static LIST_HEAD(pmus);
151 static DEFINE_MUTEX(pmus_lock);
152 static struct srcu_struct pmus_srcu;
153
154 /*
155 * perf event paranoia level:
156 * -1 - not paranoid at all
157 * 0 - disallow raw tracepoint access for unpriv
158 * 1 - disallow cpu events for unpriv
159 * 2 - disallow kernel profiling for unpriv
160 */
161 int sysctl_perf_event_paranoid __read_mostly = 1;
162
163 /* Minimum for 512 kiB + 1 user control page */
164 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
165
166 /*
167 * max perf event sample rate
168 */
169 #define DEFAULT_MAX_SAMPLE_RATE 100000
170 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
171 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
172
173 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
174
175 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
176 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
177
178 static atomic_t perf_sample_allowed_ns __read_mostly =
179 ATOMIC_INIT( DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100);
180
181 void update_perf_cpu_limits(void)
182 {
183 u64 tmp = perf_sample_period_ns;
184
185 tmp *= sysctl_perf_cpu_time_max_percent;
186 do_div(tmp, 100);
187 atomic_set(&perf_sample_allowed_ns, tmp);
188 }
189
190 int perf_proc_update_handler(struct ctl_table *table, int write,
191 void __user *buffer, size_t *lenp,
192 loff_t *ppos)
193 {
194 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
195
196 if (ret || !write)
197 return ret;
198
199 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
200 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
201 update_perf_cpu_limits();
202
203 return 0;
204 }
205
206 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
207
208 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
209 void __user *buffer, size_t *lenp,
210 loff_t *ppos)
211 {
212 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
213
214 if (ret || !write)
215 return ret;
216
217 update_perf_cpu_limits();
218
219 return 0;
220 }
221
222 /*
223 * perf samples are done in some very critical code paths (NMIs).
224 * If they take too much CPU time, the system can lock up and not
225 * get any real work done. This will drop the sample rate when
226 * we detect that events are taking too long.
227 */
228 #define NR_ACCUMULATED_SAMPLES 128
229 DEFINE_PER_CPU(u64, running_sample_length);
230
231 void perf_sample_event_took(u64 sample_len_ns)
232 {
233 u64 avg_local_sample_len;
234 u64 local_samples_len;
235
236 if (atomic_read(&perf_sample_allowed_ns) == 0)
237 return;
238
239 /* decay the counter by 1 average sample */
240 local_samples_len = __get_cpu_var(running_sample_length);
241 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
242 local_samples_len += sample_len_ns;
243 __get_cpu_var(running_sample_length) = local_samples_len;
244
245 /*
246 * note: this will be biased artifically low until we have
247 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
248 * from having to maintain a count.
249 */
250 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
251
252 if (avg_local_sample_len <= atomic_read(&perf_sample_allowed_ns))
253 return;
254
255 if (max_samples_per_tick <= 1)
256 return;
257
258 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
259 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
260 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
261
262 printk_ratelimited(KERN_WARNING
263 "perf samples too long (%lld > %d), lowering "
264 "kernel.perf_event_max_sample_rate to %d\n",
265 avg_local_sample_len,
266 atomic_read(&perf_sample_allowed_ns),
267 sysctl_perf_event_sample_rate);
268
269 update_perf_cpu_limits();
270 }
271
272 static atomic64_t perf_event_id;
273
274 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
275 enum event_type_t event_type);
276
277 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
278 enum event_type_t event_type,
279 struct task_struct *task);
280
281 static void update_context_time(struct perf_event_context *ctx);
282 static u64 perf_event_time(struct perf_event *event);
283
284 void __weak perf_event_print_debug(void) { }
285
286 extern __weak const char *perf_pmu_name(void)
287 {
288 return "pmu";
289 }
290
291 static inline u64 perf_clock(void)
292 {
293 return local_clock();
294 }
295
296 static inline struct perf_cpu_context *
297 __get_cpu_context(struct perf_event_context *ctx)
298 {
299 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
300 }
301
302 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
303 struct perf_event_context *ctx)
304 {
305 raw_spin_lock(&cpuctx->ctx.lock);
306 if (ctx)
307 raw_spin_lock(&ctx->lock);
308 }
309
310 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
311 struct perf_event_context *ctx)
312 {
313 if (ctx)
314 raw_spin_unlock(&ctx->lock);
315 raw_spin_unlock(&cpuctx->ctx.lock);
316 }
317
318 #ifdef CONFIG_CGROUP_PERF
319
320 /*
321 * perf_cgroup_info keeps track of time_enabled for a cgroup.
322 * This is a per-cpu dynamically allocated data structure.
323 */
324 struct perf_cgroup_info {
325 u64 time;
326 u64 timestamp;
327 };
328
329 struct perf_cgroup {
330 struct cgroup_subsys_state css;
331 struct perf_cgroup_info __percpu *info;
332 };
333
334 /*
335 * Must ensure cgroup is pinned (css_get) before calling
336 * this function. In other words, we cannot call this function
337 * if there is no cgroup event for the current CPU context.
338 */
339 static inline struct perf_cgroup *
340 perf_cgroup_from_task(struct task_struct *task)
341 {
342 return container_of(task_subsys_state(task, perf_subsys_id),
343 struct perf_cgroup, css);
344 }
345
346 static inline bool
347 perf_cgroup_match(struct perf_event *event)
348 {
349 struct perf_event_context *ctx = event->ctx;
350 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
351
352 /* @event doesn't care about cgroup */
353 if (!event->cgrp)
354 return true;
355
356 /* wants specific cgroup scope but @cpuctx isn't associated with any */
357 if (!cpuctx->cgrp)
358 return false;
359
360 /*
361 * Cgroup scoping is recursive. An event enabled for a cgroup is
362 * also enabled for all its descendant cgroups. If @cpuctx's
363 * cgroup is a descendant of @event's (the test covers identity
364 * case), it's a match.
365 */
366 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
367 event->cgrp->css.cgroup);
368 }
369
370 static inline bool perf_tryget_cgroup(struct perf_event *event)
371 {
372 return css_tryget(&event->cgrp->css);
373 }
374
375 static inline void perf_put_cgroup(struct perf_event *event)
376 {
377 css_put(&event->cgrp->css);
378 }
379
380 static inline void perf_detach_cgroup(struct perf_event *event)
381 {
382 perf_put_cgroup(event);
383 event->cgrp = NULL;
384 }
385
386 static inline int is_cgroup_event(struct perf_event *event)
387 {
388 return event->cgrp != NULL;
389 }
390
391 static inline u64 perf_cgroup_event_time(struct perf_event *event)
392 {
393 struct perf_cgroup_info *t;
394
395 t = per_cpu_ptr(event->cgrp->info, event->cpu);
396 return t->time;
397 }
398
399 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
400 {
401 struct perf_cgroup_info *info;
402 u64 now;
403
404 now = perf_clock();
405
406 info = this_cpu_ptr(cgrp->info);
407
408 info->time += now - info->timestamp;
409 info->timestamp = now;
410 }
411
412 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
413 {
414 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
415 if (cgrp_out)
416 __update_cgrp_time(cgrp_out);
417 }
418
419 static inline void update_cgrp_time_from_event(struct perf_event *event)
420 {
421 struct perf_cgroup *cgrp;
422
423 /*
424 * ensure we access cgroup data only when needed and
425 * when we know the cgroup is pinned (css_get)
426 */
427 if (!is_cgroup_event(event))
428 return;
429
430 cgrp = perf_cgroup_from_task(current);
431 /*
432 * Do not update time when cgroup is not active
433 */
434 if (cgrp == event->cgrp)
435 __update_cgrp_time(event->cgrp);
436 }
437
438 static inline void
439 perf_cgroup_set_timestamp(struct task_struct *task,
440 struct perf_event_context *ctx)
441 {
442 struct perf_cgroup *cgrp;
443 struct perf_cgroup_info *info;
444
445 /*
446 * ctx->lock held by caller
447 * ensure we do not access cgroup data
448 * unless we have the cgroup pinned (css_get)
449 */
450 if (!task || !ctx->nr_cgroups)
451 return;
452
453 cgrp = perf_cgroup_from_task(task);
454 info = this_cpu_ptr(cgrp->info);
455 info->timestamp = ctx->timestamp;
456 }
457
458 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
459 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
460
461 /*
462 * reschedule events based on the cgroup constraint of task.
463 *
464 * mode SWOUT : schedule out everything
465 * mode SWIN : schedule in based on cgroup for next
466 */
467 void perf_cgroup_switch(struct task_struct *task, int mode)
468 {
469 struct perf_cpu_context *cpuctx;
470 struct pmu *pmu;
471 unsigned long flags;
472
473 /*
474 * disable interrupts to avoid geting nr_cgroup
475 * changes via __perf_event_disable(). Also
476 * avoids preemption.
477 */
478 local_irq_save(flags);
479
480 /*
481 * we reschedule only in the presence of cgroup
482 * constrained events.
483 */
484 rcu_read_lock();
485
486 list_for_each_entry_rcu(pmu, &pmus, entry) {
487 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
488 if (cpuctx->unique_pmu != pmu)
489 continue; /* ensure we process each cpuctx once */
490
491 /*
492 * perf_cgroup_events says at least one
493 * context on this CPU has cgroup events.
494 *
495 * ctx->nr_cgroups reports the number of cgroup
496 * events for a context.
497 */
498 if (cpuctx->ctx.nr_cgroups > 0) {
499 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
500 perf_pmu_disable(cpuctx->ctx.pmu);
501
502 if (mode & PERF_CGROUP_SWOUT) {
503 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
504 /*
505 * must not be done before ctxswout due
506 * to event_filter_match() in event_sched_out()
507 */
508 cpuctx->cgrp = NULL;
509 }
510
511 if (mode & PERF_CGROUP_SWIN) {
512 WARN_ON_ONCE(cpuctx->cgrp);
513 /*
514 * set cgrp before ctxsw in to allow
515 * event_filter_match() to not have to pass
516 * task around
517 */
518 cpuctx->cgrp = perf_cgroup_from_task(task);
519 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
520 }
521 perf_pmu_enable(cpuctx->ctx.pmu);
522 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
523 }
524 }
525
526 rcu_read_unlock();
527
528 local_irq_restore(flags);
529 }
530
531 static inline void perf_cgroup_sched_out(struct task_struct *task,
532 struct task_struct *next)
533 {
534 struct perf_cgroup *cgrp1;
535 struct perf_cgroup *cgrp2 = NULL;
536
537 /*
538 * we come here when we know perf_cgroup_events > 0
539 */
540 cgrp1 = perf_cgroup_from_task(task);
541
542 /*
543 * next is NULL when called from perf_event_enable_on_exec()
544 * that will systematically cause a cgroup_switch()
545 */
546 if (next)
547 cgrp2 = perf_cgroup_from_task(next);
548
549 /*
550 * only schedule out current cgroup events if we know
551 * that we are switching to a different cgroup. Otherwise,
552 * do no touch the cgroup events.
553 */
554 if (cgrp1 != cgrp2)
555 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
556 }
557
558 static inline void perf_cgroup_sched_in(struct task_struct *prev,
559 struct task_struct *task)
560 {
561 struct perf_cgroup *cgrp1;
562 struct perf_cgroup *cgrp2 = NULL;
563
564 /*
565 * we come here when we know perf_cgroup_events > 0
566 */
567 cgrp1 = perf_cgroup_from_task(task);
568
569 /* prev can never be NULL */
570 cgrp2 = perf_cgroup_from_task(prev);
571
572 /*
573 * only need to schedule in cgroup events if we are changing
574 * cgroup during ctxsw. Cgroup events were not scheduled
575 * out of ctxsw out if that was not the case.
576 */
577 if (cgrp1 != cgrp2)
578 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
579 }
580
581 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
582 struct perf_event_attr *attr,
583 struct perf_event *group_leader)
584 {
585 struct perf_cgroup *cgrp;
586 struct cgroup_subsys_state *css;
587 struct fd f = fdget(fd);
588 int ret = 0;
589
590 if (!f.file)
591 return -EBADF;
592
593 css = cgroup_css_from_dir(f.file, perf_subsys_id);
594 if (IS_ERR(css)) {
595 ret = PTR_ERR(css);
596 goto out;
597 }
598
599 cgrp = container_of(css, struct perf_cgroup, css);
600 event->cgrp = cgrp;
601
602 /* must be done before we fput() the file */
603 if (!perf_tryget_cgroup(event)) {
604 event->cgrp = NULL;
605 ret = -ENOENT;
606 goto out;
607 }
608
609 /*
610 * all events in a group must monitor
611 * the same cgroup because a task belongs
612 * to only one perf cgroup at a time
613 */
614 if (group_leader && group_leader->cgrp != cgrp) {
615 perf_detach_cgroup(event);
616 ret = -EINVAL;
617 }
618 out:
619 fdput(f);
620 return ret;
621 }
622
623 static inline void
624 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
625 {
626 struct perf_cgroup_info *t;
627 t = per_cpu_ptr(event->cgrp->info, event->cpu);
628 event->shadow_ctx_time = now - t->timestamp;
629 }
630
631 static inline void
632 perf_cgroup_defer_enabled(struct perf_event *event)
633 {
634 /*
635 * when the current task's perf cgroup does not match
636 * the event's, we need to remember to call the
637 * perf_mark_enable() function the first time a task with
638 * a matching perf cgroup is scheduled in.
639 */
640 if (is_cgroup_event(event) && !perf_cgroup_match(event))
641 event->cgrp_defer_enabled = 1;
642 }
643
644 static inline void
645 perf_cgroup_mark_enabled(struct perf_event *event,
646 struct perf_event_context *ctx)
647 {
648 struct perf_event *sub;
649 u64 tstamp = perf_event_time(event);
650
651 if (!event->cgrp_defer_enabled)
652 return;
653
654 event->cgrp_defer_enabled = 0;
655
656 event->tstamp_enabled = tstamp - event->total_time_enabled;
657 list_for_each_entry(sub, &event->sibling_list, group_entry) {
658 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
659 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
660 sub->cgrp_defer_enabled = 0;
661 }
662 }
663 }
664 #else /* !CONFIG_CGROUP_PERF */
665
666 static inline bool
667 perf_cgroup_match(struct perf_event *event)
668 {
669 return true;
670 }
671
672 static inline void perf_detach_cgroup(struct perf_event *event)
673 {}
674
675 static inline int is_cgroup_event(struct perf_event *event)
676 {
677 return 0;
678 }
679
680 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
681 {
682 return 0;
683 }
684
685 static inline void update_cgrp_time_from_event(struct perf_event *event)
686 {
687 }
688
689 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
690 {
691 }
692
693 static inline void perf_cgroup_sched_out(struct task_struct *task,
694 struct task_struct *next)
695 {
696 }
697
698 static inline void perf_cgroup_sched_in(struct task_struct *prev,
699 struct task_struct *task)
700 {
701 }
702
703 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
704 struct perf_event_attr *attr,
705 struct perf_event *group_leader)
706 {
707 return -EINVAL;
708 }
709
710 static inline void
711 perf_cgroup_set_timestamp(struct task_struct *task,
712 struct perf_event_context *ctx)
713 {
714 }
715
716 void
717 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
718 {
719 }
720
721 static inline void
722 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
723 {
724 }
725
726 static inline u64 perf_cgroup_event_time(struct perf_event *event)
727 {
728 return 0;
729 }
730
731 static inline void
732 perf_cgroup_defer_enabled(struct perf_event *event)
733 {
734 }
735
736 static inline void
737 perf_cgroup_mark_enabled(struct perf_event *event,
738 struct perf_event_context *ctx)
739 {
740 }
741 #endif
742
743 void perf_pmu_disable(struct pmu *pmu)
744 {
745 int *count = this_cpu_ptr(pmu->pmu_disable_count);
746 if (!(*count)++)
747 pmu->pmu_disable(pmu);
748 }
749
750 void perf_pmu_enable(struct pmu *pmu)
751 {
752 int *count = this_cpu_ptr(pmu->pmu_disable_count);
753 if (!--(*count))
754 pmu->pmu_enable(pmu);
755 }
756
757 static DEFINE_PER_CPU(struct list_head, rotation_list);
758
759 /*
760 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
761 * because they're strictly cpu affine and rotate_start is called with IRQs
762 * disabled, while rotate_context is called from IRQ context.
763 */
764 static void perf_pmu_rotate_start(struct pmu *pmu)
765 {
766 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
767 struct list_head *head = &__get_cpu_var(rotation_list);
768
769 WARN_ON(!irqs_disabled());
770
771 if (list_empty(&cpuctx->rotation_list)) {
772 int was_empty = list_empty(head);
773 list_add(&cpuctx->rotation_list, head);
774 if (was_empty)
775 tick_nohz_full_kick();
776 }
777 }
778
779 static void get_ctx(struct perf_event_context *ctx)
780 {
781 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
782 }
783
784 static void put_ctx(struct perf_event_context *ctx)
785 {
786 if (atomic_dec_and_test(&ctx->refcount)) {
787 if (ctx->parent_ctx)
788 put_ctx(ctx->parent_ctx);
789 if (ctx->task)
790 put_task_struct(ctx->task);
791 kfree_rcu(ctx, rcu_head);
792 }
793 }
794
795 static void unclone_ctx(struct perf_event_context *ctx)
796 {
797 if (ctx->parent_ctx) {
798 put_ctx(ctx->parent_ctx);
799 ctx->parent_ctx = NULL;
800 }
801 }
802
803 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
804 {
805 /*
806 * only top level events have the pid namespace they were created in
807 */
808 if (event->parent)
809 event = event->parent;
810
811 return task_tgid_nr_ns(p, event->ns);
812 }
813
814 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
815 {
816 /*
817 * only top level events have the pid namespace they were created in
818 */
819 if (event->parent)
820 event = event->parent;
821
822 return task_pid_nr_ns(p, event->ns);
823 }
824
825 /*
826 * If we inherit events we want to return the parent event id
827 * to userspace.
828 */
829 static u64 primary_event_id(struct perf_event *event)
830 {
831 u64 id = event->id;
832
833 if (event->parent)
834 id = event->parent->id;
835
836 return id;
837 }
838
839 /*
840 * Get the perf_event_context for a task and lock it.
841 * This has to cope with with the fact that until it is locked,
842 * the context could get moved to another task.
843 */
844 static struct perf_event_context *
845 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
846 {
847 struct perf_event_context *ctx;
848
849 retry:
850 /*
851 * One of the few rules of preemptible RCU is that one cannot do
852 * rcu_read_unlock() while holding a scheduler (or nested) lock when
853 * part of the read side critical section was preemptible -- see
854 * rcu_read_unlock_special().
855 *
856 * Since ctx->lock nests under rq->lock we must ensure the entire read
857 * side critical section is non-preemptible.
858 */
859 preempt_disable();
860 rcu_read_lock();
861 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
862 if (ctx) {
863 /*
864 * If this context is a clone of another, it might
865 * get swapped for another underneath us by
866 * perf_event_task_sched_out, though the
867 * rcu_read_lock() protects us from any context
868 * getting freed. Lock the context and check if it
869 * got swapped before we could get the lock, and retry
870 * if so. If we locked the right context, then it
871 * can't get swapped on us any more.
872 */
873 raw_spin_lock_irqsave(&ctx->lock, *flags);
874 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
875 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
876 rcu_read_unlock();
877 preempt_enable();
878 goto retry;
879 }
880
881 if (!atomic_inc_not_zero(&ctx->refcount)) {
882 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
883 ctx = NULL;
884 }
885 }
886 rcu_read_unlock();
887 preempt_enable();
888 return ctx;
889 }
890
891 /*
892 * Get the context for a task and increment its pin_count so it
893 * can't get swapped to another task. This also increments its
894 * reference count so that the context can't get freed.
895 */
896 static struct perf_event_context *
897 perf_pin_task_context(struct task_struct *task, int ctxn)
898 {
899 struct perf_event_context *ctx;
900 unsigned long flags;
901
902 ctx = perf_lock_task_context(task, ctxn, &flags);
903 if (ctx) {
904 ++ctx->pin_count;
905 raw_spin_unlock_irqrestore(&ctx->lock, flags);
906 }
907 return ctx;
908 }
909
910 static void perf_unpin_context(struct perf_event_context *ctx)
911 {
912 unsigned long flags;
913
914 raw_spin_lock_irqsave(&ctx->lock, flags);
915 --ctx->pin_count;
916 raw_spin_unlock_irqrestore(&ctx->lock, flags);
917 }
918
919 /*
920 * Update the record of the current time in a context.
921 */
922 static void update_context_time(struct perf_event_context *ctx)
923 {
924 u64 now = perf_clock();
925
926 ctx->time += now - ctx->timestamp;
927 ctx->timestamp = now;
928 }
929
930 static u64 perf_event_time(struct perf_event *event)
931 {
932 struct perf_event_context *ctx = event->ctx;
933
934 if (is_cgroup_event(event))
935 return perf_cgroup_event_time(event);
936
937 return ctx ? ctx->time : 0;
938 }
939
940 /*
941 * Update the total_time_enabled and total_time_running fields for a event.
942 * The caller of this function needs to hold the ctx->lock.
943 */
944 static void update_event_times(struct perf_event *event)
945 {
946 struct perf_event_context *ctx = event->ctx;
947 u64 run_end;
948
949 if (event->state < PERF_EVENT_STATE_INACTIVE ||
950 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
951 return;
952 /*
953 * in cgroup mode, time_enabled represents
954 * the time the event was enabled AND active
955 * tasks were in the monitored cgroup. This is
956 * independent of the activity of the context as
957 * there may be a mix of cgroup and non-cgroup events.
958 *
959 * That is why we treat cgroup events differently
960 * here.
961 */
962 if (is_cgroup_event(event))
963 run_end = perf_cgroup_event_time(event);
964 else if (ctx->is_active)
965 run_end = ctx->time;
966 else
967 run_end = event->tstamp_stopped;
968
969 event->total_time_enabled = run_end - event->tstamp_enabled;
970
971 if (event->state == PERF_EVENT_STATE_INACTIVE)
972 run_end = event->tstamp_stopped;
973 else
974 run_end = perf_event_time(event);
975
976 event->total_time_running = run_end - event->tstamp_running;
977
978 }
979
980 /*
981 * Update total_time_enabled and total_time_running for all events in a group.
982 */
983 static void update_group_times(struct perf_event *leader)
984 {
985 struct perf_event *event;
986
987 update_event_times(leader);
988 list_for_each_entry(event, &leader->sibling_list, group_entry)
989 update_event_times(event);
990 }
991
992 static struct list_head *
993 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
994 {
995 if (event->attr.pinned)
996 return &ctx->pinned_groups;
997 else
998 return &ctx->flexible_groups;
999 }
1000
1001 /*
1002 * Add a event from the lists for its context.
1003 * Must be called with ctx->mutex and ctx->lock held.
1004 */
1005 static void
1006 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1007 {
1008 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1009 event->attach_state |= PERF_ATTACH_CONTEXT;
1010
1011 /*
1012 * If we're a stand alone event or group leader, we go to the context
1013 * list, group events are kept attached to the group so that
1014 * perf_group_detach can, at all times, locate all siblings.
1015 */
1016 if (event->group_leader == event) {
1017 struct list_head *list;
1018
1019 if (is_software_event(event))
1020 event->group_flags |= PERF_GROUP_SOFTWARE;
1021
1022 list = ctx_group_list(event, ctx);
1023 list_add_tail(&event->group_entry, list);
1024 }
1025
1026 if (is_cgroup_event(event))
1027 ctx->nr_cgroups++;
1028
1029 if (has_branch_stack(event))
1030 ctx->nr_branch_stack++;
1031
1032 list_add_rcu(&event->event_entry, &ctx->event_list);
1033 if (!ctx->nr_events)
1034 perf_pmu_rotate_start(ctx->pmu);
1035 ctx->nr_events++;
1036 if (event->attr.inherit_stat)
1037 ctx->nr_stat++;
1038 }
1039
1040 /*
1041 * Initialize event state based on the perf_event_attr::disabled.
1042 */
1043 static inline void perf_event__state_init(struct perf_event *event)
1044 {
1045 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1046 PERF_EVENT_STATE_INACTIVE;
1047 }
1048
1049 /*
1050 * Called at perf_event creation and when events are attached/detached from a
1051 * group.
1052 */
1053 static void perf_event__read_size(struct perf_event *event)
1054 {
1055 int entry = sizeof(u64); /* value */
1056 int size = 0;
1057 int nr = 1;
1058
1059 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1060 size += sizeof(u64);
1061
1062 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1063 size += sizeof(u64);
1064
1065 if (event->attr.read_format & PERF_FORMAT_ID)
1066 entry += sizeof(u64);
1067
1068 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1069 nr += event->group_leader->nr_siblings;
1070 size += sizeof(u64);
1071 }
1072
1073 size += entry * nr;
1074 event->read_size = size;
1075 }
1076
1077 static void perf_event__header_size(struct perf_event *event)
1078 {
1079 struct perf_sample_data *data;
1080 u64 sample_type = event->attr.sample_type;
1081 u16 size = 0;
1082
1083 perf_event__read_size(event);
1084
1085 if (sample_type & PERF_SAMPLE_IP)
1086 size += sizeof(data->ip);
1087
1088 if (sample_type & PERF_SAMPLE_ADDR)
1089 size += sizeof(data->addr);
1090
1091 if (sample_type & PERF_SAMPLE_PERIOD)
1092 size += sizeof(data->period);
1093
1094 if (sample_type & PERF_SAMPLE_WEIGHT)
1095 size += sizeof(data->weight);
1096
1097 if (sample_type & PERF_SAMPLE_READ)
1098 size += event->read_size;
1099
1100 if (sample_type & PERF_SAMPLE_DATA_SRC)
1101 size += sizeof(data->data_src.val);
1102
1103 event->header_size = size;
1104 }
1105
1106 static void perf_event__id_header_size(struct perf_event *event)
1107 {
1108 struct perf_sample_data *data;
1109 u64 sample_type = event->attr.sample_type;
1110 u16 size = 0;
1111
1112 if (sample_type & PERF_SAMPLE_TID)
1113 size += sizeof(data->tid_entry);
1114
1115 if (sample_type & PERF_SAMPLE_TIME)
1116 size += sizeof(data->time);
1117
1118 if (sample_type & PERF_SAMPLE_ID)
1119 size += sizeof(data->id);
1120
1121 if (sample_type & PERF_SAMPLE_STREAM_ID)
1122 size += sizeof(data->stream_id);
1123
1124 if (sample_type & PERF_SAMPLE_CPU)
1125 size += sizeof(data->cpu_entry);
1126
1127 event->id_header_size = size;
1128 }
1129
1130 static void perf_group_attach(struct perf_event *event)
1131 {
1132 struct perf_event *group_leader = event->group_leader, *pos;
1133
1134 /*
1135 * We can have double attach due to group movement in perf_event_open.
1136 */
1137 if (event->attach_state & PERF_ATTACH_GROUP)
1138 return;
1139
1140 event->attach_state |= PERF_ATTACH_GROUP;
1141
1142 if (group_leader == event)
1143 return;
1144
1145 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1146 !is_software_event(event))
1147 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1148
1149 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1150 group_leader->nr_siblings++;
1151
1152 perf_event__header_size(group_leader);
1153
1154 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1155 perf_event__header_size(pos);
1156 }
1157
1158 /*
1159 * Remove a event from the lists for its context.
1160 * Must be called with ctx->mutex and ctx->lock held.
1161 */
1162 static void
1163 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1164 {
1165 struct perf_cpu_context *cpuctx;
1166 /*
1167 * We can have double detach due to exit/hot-unplug + close.
1168 */
1169 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1170 return;
1171
1172 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1173
1174 if (is_cgroup_event(event)) {
1175 ctx->nr_cgroups--;
1176 cpuctx = __get_cpu_context(ctx);
1177 /*
1178 * if there are no more cgroup events
1179 * then cler cgrp to avoid stale pointer
1180 * in update_cgrp_time_from_cpuctx()
1181 */
1182 if (!ctx->nr_cgroups)
1183 cpuctx->cgrp = NULL;
1184 }
1185
1186 if (has_branch_stack(event))
1187 ctx->nr_branch_stack--;
1188
1189 ctx->nr_events--;
1190 if (event->attr.inherit_stat)
1191 ctx->nr_stat--;
1192
1193 list_del_rcu(&event->event_entry);
1194
1195 if (event->group_leader == event)
1196 list_del_init(&event->group_entry);
1197
1198 update_group_times(event);
1199
1200 /*
1201 * If event was in error state, then keep it
1202 * that way, otherwise bogus counts will be
1203 * returned on read(). The only way to get out
1204 * of error state is by explicit re-enabling
1205 * of the event
1206 */
1207 if (event->state > PERF_EVENT_STATE_OFF)
1208 event->state = PERF_EVENT_STATE_OFF;
1209 }
1210
1211 static void perf_group_detach(struct perf_event *event)
1212 {
1213 struct perf_event *sibling, *tmp;
1214 struct list_head *list = NULL;
1215
1216 /*
1217 * We can have double detach due to exit/hot-unplug + close.
1218 */
1219 if (!(event->attach_state & PERF_ATTACH_GROUP))
1220 return;
1221
1222 event->attach_state &= ~PERF_ATTACH_GROUP;
1223
1224 /*
1225 * If this is a sibling, remove it from its group.
1226 */
1227 if (event->group_leader != event) {
1228 list_del_init(&event->group_entry);
1229 event->group_leader->nr_siblings--;
1230 goto out;
1231 }
1232
1233 if (!list_empty(&event->group_entry))
1234 list = &event->group_entry;
1235
1236 /*
1237 * If this was a group event with sibling events then
1238 * upgrade the siblings to singleton events by adding them
1239 * to whatever list we are on.
1240 */
1241 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1242 if (list)
1243 list_move_tail(&sibling->group_entry, list);
1244 sibling->group_leader = sibling;
1245
1246 /* Inherit group flags from the previous leader */
1247 sibling->group_flags = event->group_flags;
1248 }
1249
1250 out:
1251 perf_event__header_size(event->group_leader);
1252
1253 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1254 perf_event__header_size(tmp);
1255 }
1256
1257 static inline int
1258 event_filter_match(struct perf_event *event)
1259 {
1260 return (event->cpu == -1 || event->cpu == smp_processor_id())
1261 && perf_cgroup_match(event);
1262 }
1263
1264 static void
1265 event_sched_out(struct perf_event *event,
1266 struct perf_cpu_context *cpuctx,
1267 struct perf_event_context *ctx)
1268 {
1269 u64 tstamp = perf_event_time(event);
1270 u64 delta;
1271 /*
1272 * An event which could not be activated because of
1273 * filter mismatch still needs to have its timings
1274 * maintained, otherwise bogus information is return
1275 * via read() for time_enabled, time_running:
1276 */
1277 if (event->state == PERF_EVENT_STATE_INACTIVE
1278 && !event_filter_match(event)) {
1279 delta = tstamp - event->tstamp_stopped;
1280 event->tstamp_running += delta;
1281 event->tstamp_stopped = tstamp;
1282 }
1283
1284 if (event->state != PERF_EVENT_STATE_ACTIVE)
1285 return;
1286
1287 event->state = PERF_EVENT_STATE_INACTIVE;
1288 if (event->pending_disable) {
1289 event->pending_disable = 0;
1290 event->state = PERF_EVENT_STATE_OFF;
1291 }
1292 event->tstamp_stopped = tstamp;
1293 event->pmu->del(event, 0);
1294 event->oncpu = -1;
1295
1296 if (!is_software_event(event))
1297 cpuctx->active_oncpu--;
1298 ctx->nr_active--;
1299 if (event->attr.freq && event->attr.sample_freq)
1300 ctx->nr_freq--;
1301 if (event->attr.exclusive || !cpuctx->active_oncpu)
1302 cpuctx->exclusive = 0;
1303 }
1304
1305 static void
1306 group_sched_out(struct perf_event *group_event,
1307 struct perf_cpu_context *cpuctx,
1308 struct perf_event_context *ctx)
1309 {
1310 struct perf_event *event;
1311 int state = group_event->state;
1312
1313 event_sched_out(group_event, cpuctx, ctx);
1314
1315 /*
1316 * Schedule out siblings (if any):
1317 */
1318 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1319 event_sched_out(event, cpuctx, ctx);
1320
1321 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1322 cpuctx->exclusive = 0;
1323 }
1324
1325 struct remove_event {
1326 struct perf_event *event;
1327 bool detach_group;
1328 };
1329
1330 /*
1331 * Cross CPU call to remove a performance event
1332 *
1333 * We disable the event on the hardware level first. After that we
1334 * remove it from the context list.
1335 */
1336 static int __perf_remove_from_context(void *info)
1337 {
1338 struct remove_event *re = info;
1339 struct perf_event *event = re->event;
1340 struct perf_event_context *ctx = event->ctx;
1341 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1342
1343 raw_spin_lock(&ctx->lock);
1344 event_sched_out(event, cpuctx, ctx);
1345 if (re->detach_group)
1346 perf_group_detach(event);
1347 list_del_event(event, ctx);
1348 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1349 ctx->is_active = 0;
1350 cpuctx->task_ctx = NULL;
1351 }
1352 raw_spin_unlock(&ctx->lock);
1353
1354 return 0;
1355 }
1356
1357
1358 /*
1359 * Remove the event from a task's (or a CPU's) list of events.
1360 *
1361 * CPU events are removed with a smp call. For task events we only
1362 * call when the task is on a CPU.
1363 *
1364 * If event->ctx is a cloned context, callers must make sure that
1365 * every task struct that event->ctx->task could possibly point to
1366 * remains valid. This is OK when called from perf_release since
1367 * that only calls us on the top-level context, which can't be a clone.
1368 * When called from perf_event_exit_task, it's OK because the
1369 * context has been detached from its task.
1370 */
1371 static void perf_remove_from_context(struct perf_event *event, bool detach_group)
1372 {
1373 struct perf_event_context *ctx = event->ctx;
1374 struct task_struct *task = ctx->task;
1375 struct remove_event re = {
1376 .event = event,
1377 .detach_group = detach_group,
1378 };
1379
1380 lockdep_assert_held(&ctx->mutex);
1381
1382 if (!task) {
1383 /*
1384 * Per cpu events are removed via an smp call and
1385 * the removal is always successful.
1386 */
1387 cpu_function_call(event->cpu, __perf_remove_from_context, &re);
1388 return;
1389 }
1390
1391 retry:
1392 if (!task_function_call(task, __perf_remove_from_context, &re))
1393 return;
1394
1395 raw_spin_lock_irq(&ctx->lock);
1396 /*
1397 * If we failed to find a running task, but find the context active now
1398 * that we've acquired the ctx->lock, retry.
1399 */
1400 if (ctx->is_active) {
1401 raw_spin_unlock_irq(&ctx->lock);
1402 /*
1403 * Reload the task pointer, it might have been changed by
1404 * a concurrent perf_event_context_sched_out().
1405 */
1406 task = ctx->task;
1407 goto retry;
1408 }
1409
1410 /*
1411 * Since the task isn't running, its safe to remove the event, us
1412 * holding the ctx->lock ensures the task won't get scheduled in.
1413 */
1414 if (detach_group)
1415 perf_group_detach(event);
1416 list_del_event(event, ctx);
1417 raw_spin_unlock_irq(&ctx->lock);
1418 }
1419
1420 /*
1421 * Cross CPU call to disable a performance event
1422 */
1423 int __perf_event_disable(void *info)
1424 {
1425 struct perf_event *event = info;
1426 struct perf_event_context *ctx = event->ctx;
1427 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1428
1429 /*
1430 * If this is a per-task event, need to check whether this
1431 * event's task is the current task on this cpu.
1432 *
1433 * Can trigger due to concurrent perf_event_context_sched_out()
1434 * flipping contexts around.
1435 */
1436 if (ctx->task && cpuctx->task_ctx != ctx)
1437 return -EINVAL;
1438
1439 raw_spin_lock(&ctx->lock);
1440
1441 /*
1442 * If the event is on, turn it off.
1443 * If it is in error state, leave it in error state.
1444 */
1445 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1446 update_context_time(ctx);
1447 update_cgrp_time_from_event(event);
1448 update_group_times(event);
1449 if (event == event->group_leader)
1450 group_sched_out(event, cpuctx, ctx);
1451 else
1452 event_sched_out(event, cpuctx, ctx);
1453 event->state = PERF_EVENT_STATE_OFF;
1454 }
1455
1456 raw_spin_unlock(&ctx->lock);
1457
1458 return 0;
1459 }
1460
1461 /*
1462 * Disable a event.
1463 *
1464 * If event->ctx is a cloned context, callers must make sure that
1465 * every task struct that event->ctx->task could possibly point to
1466 * remains valid. This condition is satisifed when called through
1467 * perf_event_for_each_child or perf_event_for_each because they
1468 * hold the top-level event's child_mutex, so any descendant that
1469 * goes to exit will block in sync_child_event.
1470 * When called from perf_pending_event it's OK because event->ctx
1471 * is the current context on this CPU and preemption is disabled,
1472 * hence we can't get into perf_event_task_sched_out for this context.
1473 */
1474 void perf_event_disable(struct perf_event *event)
1475 {
1476 struct perf_event_context *ctx = event->ctx;
1477 struct task_struct *task = ctx->task;
1478
1479 if (!task) {
1480 /*
1481 * Disable the event on the cpu that it's on
1482 */
1483 cpu_function_call(event->cpu, __perf_event_disable, event);
1484 return;
1485 }
1486
1487 retry:
1488 if (!task_function_call(task, __perf_event_disable, event))
1489 return;
1490
1491 raw_spin_lock_irq(&ctx->lock);
1492 /*
1493 * If the event is still active, we need to retry the cross-call.
1494 */
1495 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1496 raw_spin_unlock_irq(&ctx->lock);
1497 /*
1498 * Reload the task pointer, it might have been changed by
1499 * a concurrent perf_event_context_sched_out().
1500 */
1501 task = ctx->task;
1502 goto retry;
1503 }
1504
1505 /*
1506 * Since we have the lock this context can't be scheduled
1507 * in, so we can change the state safely.
1508 */
1509 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1510 update_group_times(event);
1511 event->state = PERF_EVENT_STATE_OFF;
1512 }
1513 raw_spin_unlock_irq(&ctx->lock);
1514 }
1515 EXPORT_SYMBOL_GPL(perf_event_disable);
1516
1517 static void perf_set_shadow_time(struct perf_event *event,
1518 struct perf_event_context *ctx,
1519 u64 tstamp)
1520 {
1521 /*
1522 * use the correct time source for the time snapshot
1523 *
1524 * We could get by without this by leveraging the
1525 * fact that to get to this function, the caller
1526 * has most likely already called update_context_time()
1527 * and update_cgrp_time_xx() and thus both timestamp
1528 * are identical (or very close). Given that tstamp is,
1529 * already adjusted for cgroup, we could say that:
1530 * tstamp - ctx->timestamp
1531 * is equivalent to
1532 * tstamp - cgrp->timestamp.
1533 *
1534 * Then, in perf_output_read(), the calculation would
1535 * work with no changes because:
1536 * - event is guaranteed scheduled in
1537 * - no scheduled out in between
1538 * - thus the timestamp would be the same
1539 *
1540 * But this is a bit hairy.
1541 *
1542 * So instead, we have an explicit cgroup call to remain
1543 * within the time time source all along. We believe it
1544 * is cleaner and simpler to understand.
1545 */
1546 if (is_cgroup_event(event))
1547 perf_cgroup_set_shadow_time(event, tstamp);
1548 else
1549 event->shadow_ctx_time = tstamp - ctx->timestamp;
1550 }
1551
1552 #define MAX_INTERRUPTS (~0ULL)
1553
1554 static void perf_log_throttle(struct perf_event *event, int enable);
1555
1556 static int
1557 event_sched_in(struct perf_event *event,
1558 struct perf_cpu_context *cpuctx,
1559 struct perf_event_context *ctx)
1560 {
1561 u64 tstamp = perf_event_time(event);
1562
1563 if (event->state <= PERF_EVENT_STATE_OFF)
1564 return 0;
1565
1566 event->state = PERF_EVENT_STATE_ACTIVE;
1567 event->oncpu = smp_processor_id();
1568
1569 /*
1570 * Unthrottle events, since we scheduled we might have missed several
1571 * ticks already, also for a heavily scheduling task there is little
1572 * guarantee it'll get a tick in a timely manner.
1573 */
1574 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1575 perf_log_throttle(event, 1);
1576 event->hw.interrupts = 0;
1577 }
1578
1579 /*
1580 * The new state must be visible before we turn it on in the hardware:
1581 */
1582 smp_wmb();
1583
1584 if (event->pmu->add(event, PERF_EF_START)) {
1585 event->state = PERF_EVENT_STATE_INACTIVE;
1586 event->oncpu = -1;
1587 return -EAGAIN;
1588 }
1589
1590 event->tstamp_running += tstamp - event->tstamp_stopped;
1591
1592 perf_set_shadow_time(event, ctx, tstamp);
1593
1594 if (!is_software_event(event))
1595 cpuctx->active_oncpu++;
1596 ctx->nr_active++;
1597 if (event->attr.freq && event->attr.sample_freq)
1598 ctx->nr_freq++;
1599
1600 if (event->attr.exclusive)
1601 cpuctx->exclusive = 1;
1602
1603 return 0;
1604 }
1605
1606 static int
1607 group_sched_in(struct perf_event *group_event,
1608 struct perf_cpu_context *cpuctx,
1609 struct perf_event_context *ctx)
1610 {
1611 struct perf_event *event, *partial_group = NULL;
1612 struct pmu *pmu = group_event->pmu;
1613 u64 now = ctx->time;
1614 bool simulate = false;
1615
1616 if (group_event->state == PERF_EVENT_STATE_OFF)
1617 return 0;
1618
1619 pmu->start_txn(pmu);
1620
1621 if (event_sched_in(group_event, cpuctx, ctx)) {
1622 pmu->cancel_txn(pmu);
1623 return -EAGAIN;
1624 }
1625
1626 /*
1627 * Schedule in siblings as one group (if any):
1628 */
1629 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1630 if (event_sched_in(event, cpuctx, ctx)) {
1631 partial_group = event;
1632 goto group_error;
1633 }
1634 }
1635
1636 if (!pmu->commit_txn(pmu))
1637 return 0;
1638
1639 group_error:
1640 /*
1641 * Groups can be scheduled in as one unit only, so undo any
1642 * partial group before returning:
1643 * The events up to the failed event are scheduled out normally,
1644 * tstamp_stopped will be updated.
1645 *
1646 * The failed events and the remaining siblings need to have
1647 * their timings updated as if they had gone thru event_sched_in()
1648 * and event_sched_out(). This is required to get consistent timings
1649 * across the group. This also takes care of the case where the group
1650 * could never be scheduled by ensuring tstamp_stopped is set to mark
1651 * the time the event was actually stopped, such that time delta
1652 * calculation in update_event_times() is correct.
1653 */
1654 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1655 if (event == partial_group)
1656 simulate = true;
1657
1658 if (simulate) {
1659 event->tstamp_running += now - event->tstamp_stopped;
1660 event->tstamp_stopped = now;
1661 } else {
1662 event_sched_out(event, cpuctx, ctx);
1663 }
1664 }
1665 event_sched_out(group_event, cpuctx, ctx);
1666
1667 pmu->cancel_txn(pmu);
1668
1669 return -EAGAIN;
1670 }
1671
1672 /*
1673 * Work out whether we can put this event group on the CPU now.
1674 */
1675 static int group_can_go_on(struct perf_event *event,
1676 struct perf_cpu_context *cpuctx,
1677 int can_add_hw)
1678 {
1679 /*
1680 * Groups consisting entirely of software events can always go on.
1681 */
1682 if (event->group_flags & PERF_GROUP_SOFTWARE)
1683 return 1;
1684 /*
1685 * If an exclusive group is already on, no other hardware
1686 * events can go on.
1687 */
1688 if (cpuctx->exclusive)
1689 return 0;
1690 /*
1691 * If this group is exclusive and there are already
1692 * events on the CPU, it can't go on.
1693 */
1694 if (event->attr.exclusive && cpuctx->active_oncpu)
1695 return 0;
1696 /*
1697 * Otherwise, try to add it if all previous groups were able
1698 * to go on.
1699 */
1700 return can_add_hw;
1701 }
1702
1703 static void add_event_to_ctx(struct perf_event *event,
1704 struct perf_event_context *ctx)
1705 {
1706 u64 tstamp = perf_event_time(event);
1707
1708 list_add_event(event, ctx);
1709 perf_group_attach(event);
1710 event->tstamp_enabled = tstamp;
1711 event->tstamp_running = tstamp;
1712 event->tstamp_stopped = tstamp;
1713 }
1714
1715 static void task_ctx_sched_out(struct perf_event_context *ctx);
1716 static void
1717 ctx_sched_in(struct perf_event_context *ctx,
1718 struct perf_cpu_context *cpuctx,
1719 enum event_type_t event_type,
1720 struct task_struct *task);
1721
1722 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1723 struct perf_event_context *ctx,
1724 struct task_struct *task)
1725 {
1726 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1727 if (ctx)
1728 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1729 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1730 if (ctx)
1731 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1732 }
1733
1734 /*
1735 * Cross CPU call to install and enable a performance event
1736 *
1737 * Must be called with ctx->mutex held
1738 */
1739 static int __perf_install_in_context(void *info)
1740 {
1741 struct perf_event *event = info;
1742 struct perf_event_context *ctx = event->ctx;
1743 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1744 struct perf_event_context *task_ctx = cpuctx->task_ctx;
1745 struct task_struct *task = current;
1746
1747 perf_ctx_lock(cpuctx, task_ctx);
1748 perf_pmu_disable(cpuctx->ctx.pmu);
1749
1750 /*
1751 * If there was an active task_ctx schedule it out.
1752 */
1753 if (task_ctx)
1754 task_ctx_sched_out(task_ctx);
1755
1756 /*
1757 * If the context we're installing events in is not the
1758 * active task_ctx, flip them.
1759 */
1760 if (ctx->task && task_ctx != ctx) {
1761 if (task_ctx)
1762 raw_spin_unlock(&task_ctx->lock);
1763 raw_spin_lock(&ctx->lock);
1764 task_ctx = ctx;
1765 }
1766
1767 if (task_ctx) {
1768 cpuctx->task_ctx = task_ctx;
1769 task = task_ctx->task;
1770 }
1771
1772 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1773
1774 update_context_time(ctx);
1775 /*
1776 * update cgrp time only if current cgrp
1777 * matches event->cgrp. Must be done before
1778 * calling add_event_to_ctx()
1779 */
1780 update_cgrp_time_from_event(event);
1781
1782 add_event_to_ctx(event, ctx);
1783
1784 /*
1785 * Schedule everything back in
1786 */
1787 perf_event_sched_in(cpuctx, task_ctx, task);
1788
1789 perf_pmu_enable(cpuctx->ctx.pmu);
1790 perf_ctx_unlock(cpuctx, task_ctx);
1791
1792 return 0;
1793 }
1794
1795 /*
1796 * Attach a performance event to a context
1797 *
1798 * First we add the event to the list with the hardware enable bit
1799 * in event->hw_config cleared.
1800 *
1801 * If the event is attached to a task which is on a CPU we use a smp
1802 * call to enable it in the task context. The task might have been
1803 * scheduled away, but we check this in the smp call again.
1804 */
1805 static void
1806 perf_install_in_context(struct perf_event_context *ctx,
1807 struct perf_event *event,
1808 int cpu)
1809 {
1810 struct task_struct *task = ctx->task;
1811
1812 lockdep_assert_held(&ctx->mutex);
1813
1814 event->ctx = ctx;
1815 if (event->cpu != -1)
1816 event->cpu = cpu;
1817
1818 if (!task) {
1819 /*
1820 * Per cpu events are installed via an smp call and
1821 * the install is always successful.
1822 */
1823 cpu_function_call(cpu, __perf_install_in_context, event);
1824 return;
1825 }
1826
1827 retry:
1828 if (!task_function_call(task, __perf_install_in_context, event))
1829 return;
1830
1831 raw_spin_lock_irq(&ctx->lock);
1832 /*
1833 * If we failed to find a running task, but find the context active now
1834 * that we've acquired the ctx->lock, retry.
1835 */
1836 if (ctx->is_active) {
1837 raw_spin_unlock_irq(&ctx->lock);
1838 /*
1839 * Reload the task pointer, it might have been changed by
1840 * a concurrent perf_event_context_sched_out().
1841 */
1842 task = ctx->task;
1843 goto retry;
1844 }
1845
1846 /*
1847 * Since the task isn't running, its safe to add the event, us holding
1848 * the ctx->lock ensures the task won't get scheduled in.
1849 */
1850 add_event_to_ctx(event, ctx);
1851 raw_spin_unlock_irq(&ctx->lock);
1852 }
1853
1854 /*
1855 * Put a event into inactive state and update time fields.
1856 * Enabling the leader of a group effectively enables all
1857 * the group members that aren't explicitly disabled, so we
1858 * have to update their ->tstamp_enabled also.
1859 * Note: this works for group members as well as group leaders
1860 * since the non-leader members' sibling_lists will be empty.
1861 */
1862 static void __perf_event_mark_enabled(struct perf_event *event)
1863 {
1864 struct perf_event *sub;
1865 u64 tstamp = perf_event_time(event);
1866
1867 event->state = PERF_EVENT_STATE_INACTIVE;
1868 event->tstamp_enabled = tstamp - event->total_time_enabled;
1869 list_for_each_entry(sub, &event->sibling_list, group_entry) {
1870 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1871 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1872 }
1873 }
1874
1875 /*
1876 * Cross CPU call to enable a performance event
1877 */
1878 static int __perf_event_enable(void *info)
1879 {
1880 struct perf_event *event = info;
1881 struct perf_event_context *ctx = event->ctx;
1882 struct perf_event *leader = event->group_leader;
1883 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1884 int err;
1885
1886 /*
1887 * There's a time window between 'ctx->is_active' check
1888 * in perf_event_enable function and this place having:
1889 * - IRQs on
1890 * - ctx->lock unlocked
1891 *
1892 * where the task could be killed and 'ctx' deactivated
1893 * by perf_event_exit_task.
1894 */
1895 if (!ctx->is_active)
1896 return -EINVAL;
1897
1898 raw_spin_lock(&ctx->lock);
1899 update_context_time(ctx);
1900
1901 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1902 goto unlock;
1903
1904 /*
1905 * set current task's cgroup time reference point
1906 */
1907 perf_cgroup_set_timestamp(current, ctx);
1908
1909 __perf_event_mark_enabled(event);
1910
1911 if (!event_filter_match(event)) {
1912 if (is_cgroup_event(event))
1913 perf_cgroup_defer_enabled(event);
1914 goto unlock;
1915 }
1916
1917 /*
1918 * If the event is in a group and isn't the group leader,
1919 * then don't put it on unless the group is on.
1920 */
1921 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1922 goto unlock;
1923
1924 if (!group_can_go_on(event, cpuctx, 1)) {
1925 err = -EEXIST;
1926 } else {
1927 if (event == leader)
1928 err = group_sched_in(event, cpuctx, ctx);
1929 else
1930 err = event_sched_in(event, cpuctx, ctx);
1931 }
1932
1933 if (err) {
1934 /*
1935 * If this event can't go on and it's part of a
1936 * group, then the whole group has to come off.
1937 */
1938 if (leader != event)
1939 group_sched_out(leader, cpuctx, ctx);
1940 if (leader->attr.pinned) {
1941 update_group_times(leader);
1942 leader->state = PERF_EVENT_STATE_ERROR;
1943 }
1944 }
1945
1946 unlock:
1947 raw_spin_unlock(&ctx->lock);
1948
1949 return 0;
1950 }
1951
1952 /*
1953 * Enable a event.
1954 *
1955 * If event->ctx is a cloned context, callers must make sure that
1956 * every task struct that event->ctx->task could possibly point to
1957 * remains valid. This condition is satisfied when called through
1958 * perf_event_for_each_child or perf_event_for_each as described
1959 * for perf_event_disable.
1960 */
1961 void perf_event_enable(struct perf_event *event)
1962 {
1963 struct perf_event_context *ctx = event->ctx;
1964 struct task_struct *task = ctx->task;
1965
1966 if (!task) {
1967 /*
1968 * Enable the event on the cpu that it's on
1969 */
1970 cpu_function_call(event->cpu, __perf_event_enable, event);
1971 return;
1972 }
1973
1974 raw_spin_lock_irq(&ctx->lock);
1975 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1976 goto out;
1977
1978 /*
1979 * If the event is in error state, clear that first.
1980 * That way, if we see the event in error state below, we
1981 * know that it has gone back into error state, as distinct
1982 * from the task having been scheduled away before the
1983 * cross-call arrived.
1984 */
1985 if (event->state == PERF_EVENT_STATE_ERROR)
1986 event->state = PERF_EVENT_STATE_OFF;
1987
1988 retry:
1989 if (!ctx->is_active) {
1990 __perf_event_mark_enabled(event);
1991 goto out;
1992 }
1993
1994 raw_spin_unlock_irq(&ctx->lock);
1995
1996 if (!task_function_call(task, __perf_event_enable, event))
1997 return;
1998
1999 raw_spin_lock_irq(&ctx->lock);
2000
2001 /*
2002 * If the context is active and the event is still off,
2003 * we need to retry the cross-call.
2004 */
2005 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2006 /*
2007 * task could have been flipped by a concurrent
2008 * perf_event_context_sched_out()
2009 */
2010 task = ctx->task;
2011 goto retry;
2012 }
2013
2014 out:
2015 raw_spin_unlock_irq(&ctx->lock);
2016 }
2017 EXPORT_SYMBOL_GPL(perf_event_enable);
2018
2019 int perf_event_refresh(struct perf_event *event, int refresh)
2020 {
2021 /*
2022 * not supported on inherited events
2023 */
2024 if (event->attr.inherit || !is_sampling_event(event))
2025 return -EINVAL;
2026
2027 atomic_add(refresh, &event->event_limit);
2028 perf_event_enable(event);
2029
2030 return 0;
2031 }
2032 EXPORT_SYMBOL_GPL(perf_event_refresh);
2033
2034 static void ctx_sched_out(struct perf_event_context *ctx,
2035 struct perf_cpu_context *cpuctx,
2036 enum event_type_t event_type)
2037 {
2038 struct perf_event *event;
2039 int is_active = ctx->is_active;
2040
2041 ctx->is_active &= ~event_type;
2042 if (likely(!ctx->nr_events))
2043 return;
2044
2045 update_context_time(ctx);
2046 update_cgrp_time_from_cpuctx(cpuctx);
2047 if (!ctx->nr_active)
2048 return;
2049
2050 perf_pmu_disable(ctx->pmu);
2051 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2052 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2053 group_sched_out(event, cpuctx, ctx);
2054 }
2055
2056 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2057 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2058 group_sched_out(event, cpuctx, ctx);
2059 }
2060 perf_pmu_enable(ctx->pmu);
2061 }
2062
2063 /*
2064 * Test whether two contexts are equivalent, i.e. whether they
2065 * have both been cloned from the same version of the same context
2066 * and they both have the same number of enabled events.
2067 * If the number of enabled events is the same, then the set
2068 * of enabled events should be the same, because these are both
2069 * inherited contexts, therefore we can't access individual events
2070 * in them directly with an fd; we can only enable/disable all
2071 * events via prctl, or enable/disable all events in a family
2072 * via ioctl, which will have the same effect on both contexts.
2073 */
2074 static int context_equiv(struct perf_event_context *ctx1,
2075 struct perf_event_context *ctx2)
2076 {
2077 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
2078 && ctx1->parent_gen == ctx2->parent_gen
2079 && !ctx1->pin_count && !ctx2->pin_count;
2080 }
2081
2082 static void __perf_event_sync_stat(struct perf_event *event,
2083 struct perf_event *next_event)
2084 {
2085 u64 value;
2086
2087 if (!event->attr.inherit_stat)
2088 return;
2089
2090 /*
2091 * Update the event value, we cannot use perf_event_read()
2092 * because we're in the middle of a context switch and have IRQs
2093 * disabled, which upsets smp_call_function_single(), however
2094 * we know the event must be on the current CPU, therefore we
2095 * don't need to use it.
2096 */
2097 switch (event->state) {
2098 case PERF_EVENT_STATE_ACTIVE:
2099 event->pmu->read(event);
2100 /* fall-through */
2101
2102 case PERF_EVENT_STATE_INACTIVE:
2103 update_event_times(event);
2104 break;
2105
2106 default:
2107 break;
2108 }
2109
2110 /*
2111 * In order to keep per-task stats reliable we need to flip the event
2112 * values when we flip the contexts.
2113 */
2114 value = local64_read(&next_event->count);
2115 value = local64_xchg(&event->count, value);
2116 local64_set(&next_event->count, value);
2117
2118 swap(event->total_time_enabled, next_event->total_time_enabled);
2119 swap(event->total_time_running, next_event->total_time_running);
2120
2121 /*
2122 * Since we swizzled the values, update the user visible data too.
2123 */
2124 perf_event_update_userpage(event);
2125 perf_event_update_userpage(next_event);
2126 }
2127
2128 static void perf_event_sync_stat(struct perf_event_context *ctx,
2129 struct perf_event_context *next_ctx)
2130 {
2131 struct perf_event *event, *next_event;
2132
2133 if (!ctx->nr_stat)
2134 return;
2135
2136 update_context_time(ctx);
2137
2138 event = list_first_entry(&ctx->event_list,
2139 struct perf_event, event_entry);
2140
2141 next_event = list_first_entry(&next_ctx->event_list,
2142 struct perf_event, event_entry);
2143
2144 while (&event->event_entry != &ctx->event_list &&
2145 &next_event->event_entry != &next_ctx->event_list) {
2146
2147 __perf_event_sync_stat(event, next_event);
2148
2149 event = list_next_entry(event, event_entry);
2150 next_event = list_next_entry(next_event, event_entry);
2151 }
2152 }
2153
2154 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2155 struct task_struct *next)
2156 {
2157 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2158 struct perf_event_context *next_ctx;
2159 struct perf_event_context *parent;
2160 struct perf_cpu_context *cpuctx;
2161 int do_switch = 1;
2162
2163 if (likely(!ctx))
2164 return;
2165
2166 cpuctx = __get_cpu_context(ctx);
2167 if (!cpuctx->task_ctx)
2168 return;
2169
2170 rcu_read_lock();
2171 parent = rcu_dereference(ctx->parent_ctx);
2172 next_ctx = next->perf_event_ctxp[ctxn];
2173 if (parent && next_ctx &&
2174 rcu_dereference(next_ctx->parent_ctx) == parent) {
2175 /*
2176 * Looks like the two contexts are clones, so we might be
2177 * able to optimize the context switch. We lock both
2178 * contexts and check that they are clones under the
2179 * lock (including re-checking that neither has been
2180 * uncloned in the meantime). It doesn't matter which
2181 * order we take the locks because no other cpu could
2182 * be trying to lock both of these tasks.
2183 */
2184 raw_spin_lock(&ctx->lock);
2185 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2186 if (context_equiv(ctx, next_ctx)) {
2187 /*
2188 * XXX do we need a memory barrier of sorts
2189 * wrt to rcu_dereference() of perf_event_ctxp
2190 */
2191 task->perf_event_ctxp[ctxn] = next_ctx;
2192 next->perf_event_ctxp[ctxn] = ctx;
2193 ctx->task = next;
2194 next_ctx->task = task;
2195 do_switch = 0;
2196
2197 perf_event_sync_stat(ctx, next_ctx);
2198 }
2199 raw_spin_unlock(&next_ctx->lock);
2200 raw_spin_unlock(&ctx->lock);
2201 }
2202 rcu_read_unlock();
2203
2204 if (do_switch) {
2205 raw_spin_lock(&ctx->lock);
2206 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2207 cpuctx->task_ctx = NULL;
2208 raw_spin_unlock(&ctx->lock);
2209 }
2210 }
2211
2212 #define for_each_task_context_nr(ctxn) \
2213 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2214
2215 /*
2216 * Called from scheduler to remove the events of the current task,
2217 * with interrupts disabled.
2218 *
2219 * We stop each event and update the event value in event->count.
2220 *
2221 * This does not protect us against NMI, but disable()
2222 * sets the disabled bit in the control field of event _before_
2223 * accessing the event control register. If a NMI hits, then it will
2224 * not restart the event.
2225 */
2226 void __perf_event_task_sched_out(struct task_struct *task,
2227 struct task_struct *next)
2228 {
2229 int ctxn;
2230
2231 for_each_task_context_nr(ctxn)
2232 perf_event_context_sched_out(task, ctxn, next);
2233
2234 /*
2235 * if cgroup events exist on this CPU, then we need
2236 * to check if we have to switch out PMU state.
2237 * cgroup event are system-wide mode only
2238 */
2239 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2240 perf_cgroup_sched_out(task, next);
2241 }
2242
2243 static void task_ctx_sched_out(struct perf_event_context *ctx)
2244 {
2245 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2246
2247 if (!cpuctx->task_ctx)
2248 return;
2249
2250 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2251 return;
2252
2253 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2254 cpuctx->task_ctx = NULL;
2255 }
2256
2257 /*
2258 * Called with IRQs disabled
2259 */
2260 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2261 enum event_type_t event_type)
2262 {
2263 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2264 }
2265
2266 static void
2267 ctx_pinned_sched_in(struct perf_event_context *ctx,
2268 struct perf_cpu_context *cpuctx)
2269 {
2270 struct perf_event *event;
2271
2272 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2273 if (event->state <= PERF_EVENT_STATE_OFF)
2274 continue;
2275 if (!event_filter_match(event))
2276 continue;
2277
2278 /* may need to reset tstamp_enabled */
2279 if (is_cgroup_event(event))
2280 perf_cgroup_mark_enabled(event, ctx);
2281
2282 if (group_can_go_on(event, cpuctx, 1))
2283 group_sched_in(event, cpuctx, ctx);
2284
2285 /*
2286 * If this pinned group hasn't been scheduled,
2287 * put it in error state.
2288 */
2289 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2290 update_group_times(event);
2291 event->state = PERF_EVENT_STATE_ERROR;
2292 }
2293 }
2294 }
2295
2296 static void
2297 ctx_flexible_sched_in(struct perf_event_context *ctx,
2298 struct perf_cpu_context *cpuctx)
2299 {
2300 struct perf_event *event;
2301 int can_add_hw = 1;
2302
2303 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2304 /* Ignore events in OFF or ERROR state */
2305 if (event->state <= PERF_EVENT_STATE_OFF)
2306 continue;
2307 /*
2308 * Listen to the 'cpu' scheduling filter constraint
2309 * of events:
2310 */
2311 if (!event_filter_match(event))
2312 continue;
2313
2314 /* may need to reset tstamp_enabled */
2315 if (is_cgroup_event(event))
2316 perf_cgroup_mark_enabled(event, ctx);
2317
2318 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2319 if (group_sched_in(event, cpuctx, ctx))
2320 can_add_hw = 0;
2321 }
2322 }
2323 }
2324
2325 static void
2326 ctx_sched_in(struct perf_event_context *ctx,
2327 struct perf_cpu_context *cpuctx,
2328 enum event_type_t event_type,
2329 struct task_struct *task)
2330 {
2331 u64 now;
2332 int is_active = ctx->is_active;
2333
2334 ctx->is_active |= event_type;
2335 if (likely(!ctx->nr_events))
2336 return;
2337
2338 now = perf_clock();
2339 ctx->timestamp = now;
2340 perf_cgroup_set_timestamp(task, ctx);
2341 /*
2342 * First go through the list and put on any pinned groups
2343 * in order to give them the best chance of going on.
2344 */
2345 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2346 ctx_pinned_sched_in(ctx, cpuctx);
2347
2348 /* Then walk through the lower prio flexible groups */
2349 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2350 ctx_flexible_sched_in(ctx, cpuctx);
2351 }
2352
2353 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2354 enum event_type_t event_type,
2355 struct task_struct *task)
2356 {
2357 struct perf_event_context *ctx = &cpuctx->ctx;
2358
2359 ctx_sched_in(ctx, cpuctx, event_type, task);
2360 }
2361
2362 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2363 struct task_struct *task)
2364 {
2365 struct perf_cpu_context *cpuctx;
2366
2367 cpuctx = __get_cpu_context(ctx);
2368 if (cpuctx->task_ctx == ctx)
2369 return;
2370
2371 perf_ctx_lock(cpuctx, ctx);
2372 perf_pmu_disable(ctx->pmu);
2373 /*
2374 * We want to keep the following priority order:
2375 * cpu pinned (that don't need to move), task pinned,
2376 * cpu flexible, task flexible.
2377 */
2378 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2379
2380 if (ctx->nr_events)
2381 cpuctx->task_ctx = ctx;
2382
2383 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2384
2385 perf_pmu_enable(ctx->pmu);
2386 perf_ctx_unlock(cpuctx, ctx);
2387
2388 /*
2389 * Since these rotations are per-cpu, we need to ensure the
2390 * cpu-context we got scheduled on is actually rotating.
2391 */
2392 perf_pmu_rotate_start(ctx->pmu);
2393 }
2394
2395 /*
2396 * When sampling the branck stack in system-wide, it may be necessary
2397 * to flush the stack on context switch. This happens when the branch
2398 * stack does not tag its entries with the pid of the current task.
2399 * Otherwise it becomes impossible to associate a branch entry with a
2400 * task. This ambiguity is more likely to appear when the branch stack
2401 * supports priv level filtering and the user sets it to monitor only
2402 * at the user level (which could be a useful measurement in system-wide
2403 * mode). In that case, the risk is high of having a branch stack with
2404 * branch from multiple tasks. Flushing may mean dropping the existing
2405 * entries or stashing them somewhere in the PMU specific code layer.
2406 *
2407 * This function provides the context switch callback to the lower code
2408 * layer. It is invoked ONLY when there is at least one system-wide context
2409 * with at least one active event using taken branch sampling.
2410 */
2411 static void perf_branch_stack_sched_in(struct task_struct *prev,
2412 struct task_struct *task)
2413 {
2414 struct perf_cpu_context *cpuctx;
2415 struct pmu *pmu;
2416 unsigned long flags;
2417
2418 /* no need to flush branch stack if not changing task */
2419 if (prev == task)
2420 return;
2421
2422 local_irq_save(flags);
2423
2424 rcu_read_lock();
2425
2426 list_for_each_entry_rcu(pmu, &pmus, entry) {
2427 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2428
2429 /*
2430 * check if the context has at least one
2431 * event using PERF_SAMPLE_BRANCH_STACK
2432 */
2433 if (cpuctx->ctx.nr_branch_stack > 0
2434 && pmu->flush_branch_stack) {
2435
2436 pmu = cpuctx->ctx.pmu;
2437
2438 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2439
2440 perf_pmu_disable(pmu);
2441
2442 pmu->flush_branch_stack();
2443
2444 perf_pmu_enable(pmu);
2445
2446 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2447 }
2448 }
2449
2450 rcu_read_unlock();
2451
2452 local_irq_restore(flags);
2453 }
2454
2455 /*
2456 * Called from scheduler to add the events of the current task
2457 * with interrupts disabled.
2458 *
2459 * We restore the event value and then enable it.
2460 *
2461 * This does not protect us against NMI, but enable()
2462 * sets the enabled bit in the control field of event _before_
2463 * accessing the event control register. If a NMI hits, then it will
2464 * keep the event running.
2465 */
2466 void __perf_event_task_sched_in(struct task_struct *prev,
2467 struct task_struct *task)
2468 {
2469 struct perf_event_context *ctx;
2470 int ctxn;
2471
2472 for_each_task_context_nr(ctxn) {
2473 ctx = task->perf_event_ctxp[ctxn];
2474 if (likely(!ctx))
2475 continue;
2476
2477 perf_event_context_sched_in(ctx, task);
2478 }
2479 /*
2480 * if cgroup events exist on this CPU, then we need
2481 * to check if we have to switch in PMU state.
2482 * cgroup event are system-wide mode only
2483 */
2484 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2485 perf_cgroup_sched_in(prev, task);
2486
2487 /* check for system-wide branch_stack events */
2488 if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2489 perf_branch_stack_sched_in(prev, task);
2490 }
2491
2492 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2493 {
2494 u64 frequency = event->attr.sample_freq;
2495 u64 sec = NSEC_PER_SEC;
2496 u64 divisor, dividend;
2497
2498 int count_fls, nsec_fls, frequency_fls, sec_fls;
2499
2500 count_fls = fls64(count);
2501 nsec_fls = fls64(nsec);
2502 frequency_fls = fls64(frequency);
2503 sec_fls = 30;
2504
2505 /*
2506 * We got @count in @nsec, with a target of sample_freq HZ
2507 * the target period becomes:
2508 *
2509 * @count * 10^9
2510 * period = -------------------
2511 * @nsec * sample_freq
2512 *
2513 */
2514
2515 /*
2516 * Reduce accuracy by one bit such that @a and @b converge
2517 * to a similar magnitude.
2518 */
2519 #define REDUCE_FLS(a, b) \
2520 do { \
2521 if (a##_fls > b##_fls) { \
2522 a >>= 1; \
2523 a##_fls--; \
2524 } else { \
2525 b >>= 1; \
2526 b##_fls--; \
2527 } \
2528 } while (0)
2529
2530 /*
2531 * Reduce accuracy until either term fits in a u64, then proceed with
2532 * the other, so that finally we can do a u64/u64 division.
2533 */
2534 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2535 REDUCE_FLS(nsec, frequency);
2536 REDUCE_FLS(sec, count);
2537 }
2538
2539 if (count_fls + sec_fls > 64) {
2540 divisor = nsec * frequency;
2541
2542 while (count_fls + sec_fls > 64) {
2543 REDUCE_FLS(count, sec);
2544 divisor >>= 1;
2545 }
2546
2547 dividend = count * sec;
2548 } else {
2549 dividend = count * sec;
2550
2551 while (nsec_fls + frequency_fls > 64) {
2552 REDUCE_FLS(nsec, frequency);
2553 dividend >>= 1;
2554 }
2555
2556 divisor = nsec * frequency;
2557 }
2558
2559 if (!divisor)
2560 return dividend;
2561
2562 return div64_u64(dividend, divisor);
2563 }
2564
2565 static DEFINE_PER_CPU(int, perf_throttled_count);
2566 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2567
2568 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2569 {
2570 struct hw_perf_event *hwc = &event->hw;
2571 s64 period, sample_period;
2572 s64 delta;
2573
2574 period = perf_calculate_period(event, nsec, count);
2575
2576 delta = (s64)(period - hwc->sample_period);
2577 delta = (delta + 7) / 8; /* low pass filter */
2578
2579 sample_period = hwc->sample_period + delta;
2580
2581 if (!sample_period)
2582 sample_period = 1;
2583
2584 hwc->sample_period = sample_period;
2585
2586 if (local64_read(&hwc->period_left) > 8*sample_period) {
2587 if (disable)
2588 event->pmu->stop(event, PERF_EF_UPDATE);
2589
2590 local64_set(&hwc->period_left, 0);
2591
2592 if (disable)
2593 event->pmu->start(event, PERF_EF_RELOAD);
2594 }
2595 }
2596
2597 /*
2598 * combine freq adjustment with unthrottling to avoid two passes over the
2599 * events. At the same time, make sure, having freq events does not change
2600 * the rate of unthrottling as that would introduce bias.
2601 */
2602 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2603 int needs_unthr)
2604 {
2605 struct perf_event *event;
2606 struct hw_perf_event *hwc;
2607 u64 now, period = TICK_NSEC;
2608 s64 delta;
2609
2610 /*
2611 * only need to iterate over all events iff:
2612 * - context have events in frequency mode (needs freq adjust)
2613 * - there are events to unthrottle on this cpu
2614 */
2615 if (!(ctx->nr_freq || needs_unthr))
2616 return;
2617
2618 raw_spin_lock(&ctx->lock);
2619 perf_pmu_disable(ctx->pmu);
2620
2621 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2622 if (event->state != PERF_EVENT_STATE_ACTIVE)
2623 continue;
2624
2625 if (!event_filter_match(event))
2626 continue;
2627
2628 hwc = &event->hw;
2629
2630 if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
2631 hwc->interrupts = 0;
2632 perf_log_throttle(event, 1);
2633 event->pmu->start(event, 0);
2634 }
2635
2636 if (!event->attr.freq || !event->attr.sample_freq)
2637 continue;
2638
2639 /*
2640 * stop the event and update event->count
2641 */
2642 event->pmu->stop(event, PERF_EF_UPDATE);
2643
2644 now = local64_read(&event->count);
2645 delta = now - hwc->freq_count_stamp;
2646 hwc->freq_count_stamp = now;
2647
2648 /*
2649 * restart the event
2650 * reload only if value has changed
2651 * we have stopped the event so tell that
2652 * to perf_adjust_period() to avoid stopping it
2653 * twice.
2654 */
2655 if (delta > 0)
2656 perf_adjust_period(event, period, delta, false);
2657
2658 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2659 }
2660
2661 perf_pmu_enable(ctx->pmu);
2662 raw_spin_unlock(&ctx->lock);
2663 }
2664
2665 /*
2666 * Round-robin a context's events:
2667 */
2668 static void rotate_ctx(struct perf_event_context *ctx)
2669 {
2670 /*
2671 * Rotate the first entry last of non-pinned groups. Rotation might be
2672 * disabled by the inheritance code.
2673 */
2674 if (!ctx->rotate_disable)
2675 list_rotate_left(&ctx->flexible_groups);
2676 }
2677
2678 /*
2679 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2680 * because they're strictly cpu affine and rotate_start is called with IRQs
2681 * disabled, while rotate_context is called from IRQ context.
2682 */
2683 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2684 {
2685 struct perf_event_context *ctx = NULL;
2686 int rotate = 0, remove = 1;
2687
2688 if (cpuctx->ctx.nr_events) {
2689 remove = 0;
2690 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2691 rotate = 1;
2692 }
2693
2694 ctx = cpuctx->task_ctx;
2695 if (ctx && ctx->nr_events) {
2696 remove = 0;
2697 if (ctx->nr_events != ctx->nr_active)
2698 rotate = 1;
2699 }
2700
2701 if (!rotate)
2702 goto done;
2703
2704 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2705 perf_pmu_disable(cpuctx->ctx.pmu);
2706
2707 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2708 if (ctx)
2709 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2710
2711 rotate_ctx(&cpuctx->ctx);
2712 if (ctx)
2713 rotate_ctx(ctx);
2714
2715 perf_event_sched_in(cpuctx, ctx, current);
2716
2717 perf_pmu_enable(cpuctx->ctx.pmu);
2718 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2719 done:
2720 if (remove)
2721 list_del_init(&cpuctx->rotation_list);
2722 }
2723
2724 #ifdef CONFIG_NO_HZ_FULL
2725 bool perf_event_can_stop_tick(void)
2726 {
2727 if (list_empty(&__get_cpu_var(rotation_list)))
2728 return true;
2729 else
2730 return false;
2731 }
2732 #endif
2733
2734 void perf_event_task_tick(void)
2735 {
2736 struct list_head *head = &__get_cpu_var(rotation_list);
2737 struct perf_cpu_context *cpuctx, *tmp;
2738 struct perf_event_context *ctx;
2739 int throttled;
2740
2741 WARN_ON(!irqs_disabled());
2742
2743 __this_cpu_inc(perf_throttled_seq);
2744 throttled = __this_cpu_xchg(perf_throttled_count, 0);
2745
2746 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2747 ctx = &cpuctx->ctx;
2748 perf_adjust_freq_unthr_context(ctx, throttled);
2749
2750 ctx = cpuctx->task_ctx;
2751 if (ctx)
2752 perf_adjust_freq_unthr_context(ctx, throttled);
2753
2754 if (cpuctx->jiffies_interval == 1 ||
2755 !(jiffies % cpuctx->jiffies_interval))
2756 perf_rotate_context(cpuctx);
2757 }
2758 }
2759
2760 static int event_enable_on_exec(struct perf_event *event,
2761 struct perf_event_context *ctx)
2762 {
2763 if (!event->attr.enable_on_exec)
2764 return 0;
2765
2766 event->attr.enable_on_exec = 0;
2767 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2768 return 0;
2769
2770 __perf_event_mark_enabled(event);
2771
2772 return 1;
2773 }
2774
2775 /*
2776 * Enable all of a task's events that have been marked enable-on-exec.
2777 * This expects task == current.
2778 */
2779 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2780 {
2781 struct perf_event *event;
2782 unsigned long flags;
2783 int enabled = 0;
2784 int ret;
2785
2786 local_irq_save(flags);
2787 if (!ctx || !ctx->nr_events)
2788 goto out;
2789
2790 /*
2791 * We must ctxsw out cgroup events to avoid conflict
2792 * when invoking perf_task_event_sched_in() later on
2793 * in this function. Otherwise we end up trying to
2794 * ctxswin cgroup events which are already scheduled
2795 * in.
2796 */
2797 perf_cgroup_sched_out(current, NULL);
2798
2799 raw_spin_lock(&ctx->lock);
2800 task_ctx_sched_out(ctx);
2801
2802 list_for_each_entry(event, &ctx->event_list, event_entry) {
2803 ret = event_enable_on_exec(event, ctx);
2804 if (ret)
2805 enabled = 1;
2806 }
2807
2808 /*
2809 * Unclone this context if we enabled any event.
2810 */
2811 if (enabled)
2812 unclone_ctx(ctx);
2813
2814 raw_spin_unlock(&ctx->lock);
2815
2816 /*
2817 * Also calls ctxswin for cgroup events, if any:
2818 */
2819 perf_event_context_sched_in(ctx, ctx->task);
2820 out:
2821 local_irq_restore(flags);
2822 }
2823
2824 /*
2825 * Cross CPU call to read the hardware event
2826 */
2827 static void __perf_event_read(void *info)
2828 {
2829 struct perf_event *event = info;
2830 struct perf_event_context *ctx = event->ctx;
2831 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2832
2833 /*
2834 * If this is a task context, we need to check whether it is
2835 * the current task context of this cpu. If not it has been
2836 * scheduled out before the smp call arrived. In that case
2837 * event->count would have been updated to a recent sample
2838 * when the event was scheduled out.
2839 */
2840 if (ctx->task && cpuctx->task_ctx != ctx)
2841 return;
2842
2843 raw_spin_lock(&ctx->lock);
2844 if (ctx->is_active) {
2845 update_context_time(ctx);
2846 update_cgrp_time_from_event(event);
2847 }
2848 update_event_times(event);
2849 if (event->state == PERF_EVENT_STATE_ACTIVE)
2850 event->pmu->read(event);
2851 raw_spin_unlock(&ctx->lock);
2852 }
2853
2854 static inline u64 perf_event_count(struct perf_event *event)
2855 {
2856 return local64_read(&event->count) + atomic64_read(&event->child_count);
2857 }
2858
2859 static u64 perf_event_read(struct perf_event *event)
2860 {
2861 /*
2862 * If event is enabled and currently active on a CPU, update the
2863 * value in the event structure:
2864 */
2865 if (event->state == PERF_EVENT_STATE_ACTIVE) {
2866 smp_call_function_single(event->oncpu,
2867 __perf_event_read, event, 1);
2868 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2869 struct perf_event_context *ctx = event->ctx;
2870 unsigned long flags;
2871
2872 raw_spin_lock_irqsave(&ctx->lock, flags);
2873 /*
2874 * may read while context is not active
2875 * (e.g., thread is blocked), in that case
2876 * we cannot update context time
2877 */
2878 if (ctx->is_active) {
2879 update_context_time(ctx);
2880 update_cgrp_time_from_event(event);
2881 }
2882 update_event_times(event);
2883 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2884 }
2885
2886 return perf_event_count(event);
2887 }
2888
2889 /*
2890 * Initialize the perf_event context in a task_struct:
2891 */
2892 static void __perf_event_init_context(struct perf_event_context *ctx)
2893 {
2894 raw_spin_lock_init(&ctx->lock);
2895 mutex_init(&ctx->mutex);
2896 INIT_LIST_HEAD(&ctx->pinned_groups);
2897 INIT_LIST_HEAD(&ctx->flexible_groups);
2898 INIT_LIST_HEAD(&ctx->event_list);
2899 atomic_set(&ctx->refcount, 1);
2900 }
2901
2902 static struct perf_event_context *
2903 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2904 {
2905 struct perf_event_context *ctx;
2906
2907 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2908 if (!ctx)
2909 return NULL;
2910
2911 __perf_event_init_context(ctx);
2912 if (task) {
2913 ctx->task = task;
2914 get_task_struct(task);
2915 }
2916 ctx->pmu = pmu;
2917
2918 return ctx;
2919 }
2920
2921 static struct task_struct *
2922 find_lively_task_by_vpid(pid_t vpid)
2923 {
2924 struct task_struct *task;
2925 int err;
2926
2927 rcu_read_lock();
2928 if (!vpid)
2929 task = current;
2930 else
2931 task = find_task_by_vpid(vpid);
2932 if (task)
2933 get_task_struct(task);
2934 rcu_read_unlock();
2935
2936 if (!task)
2937 return ERR_PTR(-ESRCH);
2938
2939 /* Reuse ptrace permission checks for now. */
2940 err = -EACCES;
2941 if (!ptrace_may_access(task, PTRACE_MODE_READ))
2942 goto errout;
2943
2944 return task;
2945 errout:
2946 put_task_struct(task);
2947 return ERR_PTR(err);
2948
2949 }
2950
2951 /*
2952 * Returns a matching context with refcount and pincount.
2953 */
2954 static struct perf_event_context *
2955 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2956 {
2957 struct perf_event_context *ctx;
2958 struct perf_cpu_context *cpuctx;
2959 unsigned long flags;
2960 int ctxn, err;
2961
2962 if (!task) {
2963 /* Must be root to operate on a CPU event: */
2964 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2965 return ERR_PTR(-EACCES);
2966
2967 /*
2968 * We could be clever and allow to attach a event to an
2969 * offline CPU and activate it when the CPU comes up, but
2970 * that's for later.
2971 */
2972 if (!cpu_online(cpu))
2973 return ERR_PTR(-ENODEV);
2974
2975 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2976 ctx = &cpuctx->ctx;
2977 get_ctx(ctx);
2978 ++ctx->pin_count;
2979
2980 return ctx;
2981 }
2982
2983 err = -EINVAL;
2984 ctxn = pmu->task_ctx_nr;
2985 if (ctxn < 0)
2986 goto errout;
2987
2988 retry:
2989 ctx = perf_lock_task_context(task, ctxn, &flags);
2990 if (ctx) {
2991 unclone_ctx(ctx);
2992 ++ctx->pin_count;
2993 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2994 } else {
2995 ctx = alloc_perf_context(pmu, task);
2996 err = -ENOMEM;
2997 if (!ctx)
2998 goto errout;
2999
3000 err = 0;
3001 mutex_lock(&task->perf_event_mutex);
3002 /*
3003 * If it has already passed perf_event_exit_task().
3004 * we must see PF_EXITING, it takes this mutex too.
3005 */
3006 if (task->flags & PF_EXITING)
3007 err = -ESRCH;
3008 else if (task->perf_event_ctxp[ctxn])
3009 err = -EAGAIN;
3010 else {
3011 get_ctx(ctx);
3012 ++ctx->pin_count;
3013 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3014 }
3015 mutex_unlock(&task->perf_event_mutex);
3016
3017 if (unlikely(err)) {
3018 put_ctx(ctx);
3019
3020 if (err == -EAGAIN)
3021 goto retry;
3022 goto errout;
3023 }
3024 }
3025
3026 return ctx;
3027
3028 errout:
3029 return ERR_PTR(err);
3030 }
3031
3032 static void perf_event_free_filter(struct perf_event *event);
3033
3034 static void free_event_rcu(struct rcu_head *head)
3035 {
3036 struct perf_event *event;
3037
3038 event = container_of(head, struct perf_event, rcu_head);
3039 if (event->ns)
3040 put_pid_ns(event->ns);
3041 perf_event_free_filter(event);
3042 kfree(event);
3043 }
3044
3045 static void ring_buffer_put(struct ring_buffer *rb);
3046 static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb);
3047
3048 static void free_event(struct perf_event *event)
3049 {
3050 irq_work_sync(&event->pending);
3051
3052 if (!event->parent) {
3053 if (event->attach_state & PERF_ATTACH_TASK)
3054 static_key_slow_dec_deferred(&perf_sched_events);
3055 if (event->attr.mmap || event->attr.mmap_data)
3056 atomic_dec(&nr_mmap_events);
3057 if (event->attr.comm)
3058 atomic_dec(&nr_comm_events);
3059 if (event->attr.task)
3060 atomic_dec(&nr_task_events);
3061 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3062 put_callchain_buffers();
3063 if (is_cgroup_event(event)) {
3064 atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
3065 static_key_slow_dec_deferred(&perf_sched_events);
3066 }
3067
3068 if (has_branch_stack(event)) {
3069 static_key_slow_dec_deferred(&perf_sched_events);
3070 /* is system-wide event */
3071 if (!(event->attach_state & PERF_ATTACH_TASK)) {
3072 atomic_dec(&per_cpu(perf_branch_stack_events,
3073 event->cpu));
3074 }
3075 }
3076 }
3077
3078 if (event->rb) {
3079 struct ring_buffer *rb;
3080
3081 /*
3082 * Can happen when we close an event with re-directed output.
3083 *
3084 * Since we have a 0 refcount, perf_mmap_close() will skip
3085 * over us; possibly making our ring_buffer_put() the last.
3086 */
3087 mutex_lock(&event->mmap_mutex);
3088 rb = event->rb;
3089 if (rb) {
3090 rcu_assign_pointer(event->rb, NULL);
3091 ring_buffer_detach(event, rb);
3092 ring_buffer_put(rb); /* could be last */
3093 }
3094 mutex_unlock(&event->mmap_mutex);
3095 }
3096
3097 if (is_cgroup_event(event))
3098 perf_detach_cgroup(event);
3099
3100 if (event->destroy)
3101 event->destroy(event);
3102
3103 if (event->ctx)
3104 put_ctx(event->ctx);
3105
3106 call_rcu(&event->rcu_head, free_event_rcu);
3107 }
3108
3109 int perf_event_release_kernel(struct perf_event *event)
3110 {
3111 struct perf_event_context *ctx = event->ctx;
3112
3113 WARN_ON_ONCE(ctx->parent_ctx);
3114 /*
3115 * There are two ways this annotation is useful:
3116 *
3117 * 1) there is a lock recursion from perf_event_exit_task
3118 * see the comment there.
3119 *
3120 * 2) there is a lock-inversion with mmap_sem through
3121 * perf_event_read_group(), which takes faults while
3122 * holding ctx->mutex, however this is called after
3123 * the last filedesc died, so there is no possibility
3124 * to trigger the AB-BA case.
3125 */
3126 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
3127 perf_remove_from_context(event, true);
3128 mutex_unlock(&ctx->mutex);
3129
3130 free_event(event);
3131
3132 return 0;
3133 }
3134 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3135
3136 /*
3137 * Called when the last reference to the file is gone.
3138 */
3139 static void put_event(struct perf_event *event)
3140 {
3141 struct task_struct *owner;
3142
3143 if (!atomic_long_dec_and_test(&event->refcount))
3144 return;
3145
3146 rcu_read_lock();
3147 owner = ACCESS_ONCE(event->owner);
3148 /*
3149 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3150 * !owner it means the list deletion is complete and we can indeed
3151 * free this event, otherwise we need to serialize on
3152 * owner->perf_event_mutex.
3153 */
3154 smp_read_barrier_depends();
3155 if (owner) {
3156 /*
3157 * Since delayed_put_task_struct() also drops the last
3158 * task reference we can safely take a new reference
3159 * while holding the rcu_read_lock().
3160 */
3161 get_task_struct(owner);
3162 }
3163 rcu_read_unlock();
3164
3165 if (owner) {
3166 mutex_lock(&owner->perf_event_mutex);
3167 /*
3168 * We have to re-check the event->owner field, if it is cleared
3169 * we raced with perf_event_exit_task(), acquiring the mutex
3170 * ensured they're done, and we can proceed with freeing the
3171 * event.
3172 */
3173 if (event->owner)
3174 list_del_init(&event->owner_entry);
3175 mutex_unlock(&owner->perf_event_mutex);
3176 put_task_struct(owner);
3177 }
3178
3179 perf_event_release_kernel(event);
3180 }
3181
3182 static int perf_release(struct inode *inode, struct file *file)
3183 {
3184 put_event(file->private_data);
3185 return 0;
3186 }
3187
3188 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3189 {
3190 struct perf_event *child;
3191 u64 total = 0;
3192
3193 *enabled = 0;
3194 *running = 0;
3195
3196 mutex_lock(&event->child_mutex);
3197 total += perf_event_read(event);
3198 *enabled += event->total_time_enabled +
3199 atomic64_read(&event->child_total_time_enabled);
3200 *running += event->total_time_running +
3201 atomic64_read(&event->child_total_time_running);
3202
3203 list_for_each_entry(child, &event->child_list, child_list) {
3204 total += perf_event_read(child);
3205 *enabled += child->total_time_enabled;
3206 *running += child->total_time_running;
3207 }
3208 mutex_unlock(&event->child_mutex);
3209
3210 return total;
3211 }
3212 EXPORT_SYMBOL_GPL(perf_event_read_value);
3213
3214 static int perf_event_read_group(struct perf_event *event,
3215 u64 read_format, char __user *buf)
3216 {
3217 struct perf_event *leader = event->group_leader, *sub;
3218 int n = 0, size = 0, ret = -EFAULT;
3219 struct perf_event_context *ctx = leader->ctx;
3220 u64 values[5];
3221 u64 count, enabled, running;
3222
3223 mutex_lock(&ctx->mutex);
3224 count = perf_event_read_value(leader, &enabled, &running);
3225
3226 values[n++] = 1 + leader->nr_siblings;
3227 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3228 values[n++] = enabled;
3229 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3230 values[n++] = running;
3231 values[n++] = count;
3232 if (read_format & PERF_FORMAT_ID)
3233 values[n++] = primary_event_id(leader);
3234
3235 size = n * sizeof(u64);
3236
3237 if (copy_to_user(buf, values, size))
3238 goto unlock;
3239
3240 ret = size;
3241
3242 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3243 n = 0;
3244
3245 values[n++] = perf_event_read_value(sub, &enabled, &running);
3246 if (read_format & PERF_FORMAT_ID)
3247 values[n++] = primary_event_id(sub);
3248
3249 size = n * sizeof(u64);
3250
3251 if (copy_to_user(buf + ret, values, size)) {
3252 ret = -EFAULT;
3253 goto unlock;
3254 }
3255
3256 ret += size;
3257 }
3258 unlock:
3259 mutex_unlock(&ctx->mutex);
3260
3261 return ret;
3262 }
3263
3264 static int perf_event_read_one(struct perf_event *event,
3265 u64 read_format, char __user *buf)
3266 {
3267 u64 enabled, running;
3268 u64 values[4];
3269 int n = 0;
3270
3271 values[n++] = perf_event_read_value(event, &enabled, &running);
3272 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3273 values[n++] = enabled;
3274 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3275 values[n++] = running;
3276 if (read_format & PERF_FORMAT_ID)
3277 values[n++] = primary_event_id(event);
3278
3279 if (copy_to_user(buf, values, n * sizeof(u64)))
3280 return -EFAULT;
3281
3282 return n * sizeof(u64);
3283 }
3284
3285 /*
3286 * Read the performance event - simple non blocking version for now
3287 */
3288 static ssize_t
3289 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3290 {
3291 u64 read_format = event->attr.read_format;
3292 int ret;
3293
3294 /*
3295 * Return end-of-file for a read on a event that is in
3296 * error state (i.e. because it was pinned but it couldn't be
3297 * scheduled on to the CPU at some point).
3298 */
3299 if (event->state == PERF_EVENT_STATE_ERROR)
3300 return 0;
3301
3302 if (count < event->read_size)
3303 return -ENOSPC;
3304
3305 WARN_ON_ONCE(event->ctx->parent_ctx);
3306 if (read_format & PERF_FORMAT_GROUP)
3307 ret = perf_event_read_group(event, read_format, buf);
3308 else
3309 ret = perf_event_read_one(event, read_format, buf);
3310
3311 return ret;
3312 }
3313
3314 static ssize_t
3315 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3316 {
3317 struct perf_event *event = file->private_data;
3318
3319 return perf_read_hw(event, buf, count);
3320 }
3321
3322 static unsigned int perf_poll(struct file *file, poll_table *wait)
3323 {
3324 struct perf_event *event = file->private_data;
3325 struct ring_buffer *rb;
3326 unsigned int events = POLL_HUP;
3327
3328 /*
3329 * Pin the event->rb by taking event->mmap_mutex; otherwise
3330 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3331 */
3332 mutex_lock(&event->mmap_mutex);
3333 rb = event->rb;
3334 if (rb)
3335 events = atomic_xchg(&rb->poll, 0);
3336 mutex_unlock(&event->mmap_mutex);
3337
3338 poll_wait(file, &event->waitq, wait);
3339
3340 return events;
3341 }
3342
3343 static void perf_event_reset(struct perf_event *event)
3344 {
3345 (void)perf_event_read(event);
3346 local64_set(&event->count, 0);
3347 perf_event_update_userpage(event);
3348 }
3349
3350 /*
3351 * Holding the top-level event's child_mutex means that any
3352 * descendant process that has inherited this event will block
3353 * in sync_child_event if it goes to exit, thus satisfying the
3354 * task existence requirements of perf_event_enable/disable.
3355 */
3356 static void perf_event_for_each_child(struct perf_event *event,
3357 void (*func)(struct perf_event *))
3358 {
3359 struct perf_event *child;
3360
3361 WARN_ON_ONCE(event->ctx->parent_ctx);
3362 mutex_lock(&event->child_mutex);
3363 func(event);
3364 list_for_each_entry(child, &event->child_list, child_list)
3365 func(child);
3366 mutex_unlock(&event->child_mutex);
3367 }
3368
3369 static void perf_event_for_each(struct perf_event *event,
3370 void (*func)(struct perf_event *))
3371 {
3372 struct perf_event_context *ctx = event->ctx;
3373 struct perf_event *sibling;
3374
3375 WARN_ON_ONCE(ctx->parent_ctx);
3376 mutex_lock(&ctx->mutex);
3377 event = event->group_leader;
3378
3379 perf_event_for_each_child(event, func);
3380 list_for_each_entry(sibling, &event->sibling_list, group_entry)
3381 perf_event_for_each_child(sibling, func);
3382 mutex_unlock(&ctx->mutex);
3383 }
3384
3385 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3386 {
3387 struct perf_event_context *ctx = event->ctx;
3388 int ret = 0;
3389 u64 value;
3390
3391 if (!is_sampling_event(event))
3392 return -EINVAL;
3393
3394 if (copy_from_user(&value, arg, sizeof(value)))
3395 return -EFAULT;
3396
3397 if (!value)
3398 return -EINVAL;
3399
3400 raw_spin_lock_irq(&ctx->lock);
3401 if (event->attr.freq) {
3402 if (value > sysctl_perf_event_sample_rate) {
3403 ret = -EINVAL;
3404 goto unlock;
3405 }
3406
3407 event->attr.sample_freq = value;
3408 } else {
3409 event->attr.sample_period = value;
3410 event->hw.sample_period = value;
3411 }
3412 unlock:
3413 raw_spin_unlock_irq(&ctx->lock);
3414
3415 return ret;
3416 }
3417
3418 static const struct file_operations perf_fops;
3419
3420 static inline int perf_fget_light(int fd, struct fd *p)
3421 {
3422 struct fd f = fdget(fd);
3423 if (!f.file)
3424 return -EBADF;
3425
3426 if (f.file->f_op != &perf_fops) {
3427 fdput(f);
3428 return -EBADF;
3429 }
3430 *p = f;
3431 return 0;
3432 }
3433
3434 static int perf_event_set_output(struct perf_event *event,
3435 struct perf_event *output_event);
3436 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3437
3438 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3439 {
3440 struct perf_event *event = file->private_data;
3441 void (*func)(struct perf_event *);
3442 u32 flags = arg;
3443
3444 switch (cmd) {
3445 case PERF_EVENT_IOC_ENABLE:
3446 func = perf_event_enable;
3447 break;
3448 case PERF_EVENT_IOC_DISABLE:
3449 func = perf_event_disable;
3450 break;
3451 case PERF_EVENT_IOC_RESET:
3452 func = perf_event_reset;
3453 break;
3454
3455 case PERF_EVENT_IOC_REFRESH:
3456 return perf_event_refresh(event, arg);
3457
3458 case PERF_EVENT_IOC_PERIOD:
3459 return perf_event_period(event, (u64 __user *)arg);
3460
3461 case PERF_EVENT_IOC_SET_OUTPUT:
3462 {
3463 int ret;
3464 if (arg != -1) {
3465 struct perf_event *output_event;
3466 struct fd output;
3467 ret = perf_fget_light(arg, &output);
3468 if (ret)
3469 return ret;
3470 output_event = output.file->private_data;
3471 ret = perf_event_set_output(event, output_event);
3472 fdput(output);
3473 } else {
3474 ret = perf_event_set_output(event, NULL);
3475 }
3476 return ret;
3477 }
3478
3479 case PERF_EVENT_IOC_SET_FILTER:
3480 return perf_event_set_filter(event, (void __user *)arg);
3481
3482 default:
3483 return -ENOTTY;
3484 }
3485
3486 if (flags & PERF_IOC_FLAG_GROUP)
3487 perf_event_for_each(event, func);
3488 else
3489 perf_event_for_each_child(event, func);
3490
3491 return 0;
3492 }
3493
3494 #ifdef CONFIG_COMPAT
3495 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
3496 unsigned long arg)
3497 {
3498 switch (_IOC_NR(cmd)) {
3499 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
3500 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
3501 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
3502 cmd &= ~IOCSIZE_MASK;
3503 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
3504 }
3505 break;
3506 }
3507 return perf_ioctl(file, cmd, arg);
3508 }
3509 #else
3510 # define perf_compat_ioctl NULL
3511 #endif
3512
3513 int perf_event_task_enable(void)
3514 {
3515 struct perf_event *event;
3516
3517 mutex_lock(&current->perf_event_mutex);
3518 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3519 perf_event_for_each_child(event, perf_event_enable);
3520 mutex_unlock(&current->perf_event_mutex);
3521
3522 return 0;
3523 }
3524
3525 int perf_event_task_disable(void)
3526 {
3527 struct perf_event *event;
3528
3529 mutex_lock(&current->perf_event_mutex);
3530 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3531 perf_event_for_each_child(event, perf_event_disable);
3532 mutex_unlock(&current->perf_event_mutex);
3533
3534 return 0;
3535 }
3536
3537 static int perf_event_index(struct perf_event *event)
3538 {
3539 if (event->hw.state & PERF_HES_STOPPED)
3540 return 0;
3541
3542 if (event->state != PERF_EVENT_STATE_ACTIVE)
3543 return 0;
3544
3545 return event->pmu->event_idx(event);
3546 }
3547
3548 static void calc_timer_values(struct perf_event *event,
3549 u64 *now,
3550 u64 *enabled,
3551 u64 *running)
3552 {
3553 u64 ctx_time;
3554
3555 *now = perf_clock();
3556 ctx_time = event->shadow_ctx_time + *now;
3557 *enabled = ctx_time - event->tstamp_enabled;
3558 *running = ctx_time - event->tstamp_running;
3559 }
3560
3561 void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3562 {
3563 }
3564
3565 /*
3566 * Callers need to ensure there can be no nesting of this function, otherwise
3567 * the seqlock logic goes bad. We can not serialize this because the arch
3568 * code calls this from NMI context.
3569 */
3570 void perf_event_update_userpage(struct perf_event *event)
3571 {
3572 struct perf_event_mmap_page *userpg;
3573 struct ring_buffer *rb;
3574 u64 enabled, running, now;
3575
3576 rcu_read_lock();
3577 /*
3578 * compute total_time_enabled, total_time_running
3579 * based on snapshot values taken when the event
3580 * was last scheduled in.
3581 *
3582 * we cannot simply called update_context_time()
3583 * because of locking issue as we can be called in
3584 * NMI context
3585 */
3586 calc_timer_values(event, &now, &enabled, &running);
3587 rb = rcu_dereference(event->rb);
3588 if (!rb)
3589 goto unlock;
3590
3591 userpg = rb->user_page;
3592
3593 /*
3594 * Disable preemption so as to not let the corresponding user-space
3595 * spin too long if we get preempted.
3596 */
3597 preempt_disable();
3598 ++userpg->lock;
3599 barrier();
3600 userpg->index = perf_event_index(event);
3601 userpg->offset = perf_event_count(event);
3602 if (userpg->index)
3603 userpg->offset -= local64_read(&event->hw.prev_count);
3604
3605 userpg->time_enabled = enabled +
3606 atomic64_read(&event->child_total_time_enabled);
3607
3608 userpg->time_running = running +
3609 atomic64_read(&event->child_total_time_running);
3610
3611 arch_perf_update_userpage(userpg, now);
3612
3613 barrier();
3614 ++userpg->lock;
3615 preempt_enable();
3616 unlock:
3617 rcu_read_unlock();
3618 }
3619
3620 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3621 {
3622 struct perf_event *event = vma->vm_file->private_data;
3623 struct ring_buffer *rb;
3624 int ret = VM_FAULT_SIGBUS;
3625
3626 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3627 if (vmf->pgoff == 0)
3628 ret = 0;
3629 return ret;
3630 }
3631
3632 rcu_read_lock();
3633 rb = rcu_dereference(event->rb);
3634 if (!rb)
3635 goto unlock;
3636
3637 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3638 goto unlock;
3639
3640 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3641 if (!vmf->page)
3642 goto unlock;
3643
3644 get_page(vmf->page);
3645 vmf->page->mapping = vma->vm_file->f_mapping;
3646 vmf->page->index = vmf->pgoff;
3647
3648 ret = 0;
3649 unlock:
3650 rcu_read_unlock();
3651
3652 return ret;
3653 }
3654
3655 static void ring_buffer_attach(struct perf_event *event,
3656 struct ring_buffer *rb)
3657 {
3658 unsigned long flags;
3659
3660 if (!list_empty(&event->rb_entry))
3661 return;
3662
3663 spin_lock_irqsave(&rb->event_lock, flags);
3664 if (list_empty(&event->rb_entry))
3665 list_add(&event->rb_entry, &rb->event_list);
3666 spin_unlock_irqrestore(&rb->event_lock, flags);
3667 }
3668
3669 static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb)
3670 {
3671 unsigned long flags;
3672
3673 if (list_empty(&event->rb_entry))
3674 return;
3675
3676 spin_lock_irqsave(&rb->event_lock, flags);
3677 list_del_init(&event->rb_entry);
3678 wake_up_all(&event->waitq);
3679 spin_unlock_irqrestore(&rb->event_lock, flags);
3680 }
3681
3682 static void ring_buffer_wakeup(struct perf_event *event)
3683 {
3684 struct ring_buffer *rb;
3685
3686 rcu_read_lock();
3687 rb = rcu_dereference(event->rb);
3688 if (rb) {
3689 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3690 wake_up_all(&event->waitq);
3691 }
3692 rcu_read_unlock();
3693 }
3694
3695 static void rb_free_rcu(struct rcu_head *rcu_head)
3696 {
3697 struct ring_buffer *rb;
3698
3699 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3700 rb_free(rb);
3701 }
3702
3703 static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3704 {
3705 struct ring_buffer *rb;
3706
3707 rcu_read_lock();
3708 rb = rcu_dereference(event->rb);
3709 if (rb) {
3710 if (!atomic_inc_not_zero(&rb->refcount))
3711 rb = NULL;
3712 }
3713 rcu_read_unlock();
3714
3715 return rb;
3716 }
3717
3718 static void ring_buffer_put(struct ring_buffer *rb)
3719 {
3720 if (!atomic_dec_and_test(&rb->refcount))
3721 return;
3722
3723 WARN_ON_ONCE(!list_empty(&rb->event_list));
3724
3725 call_rcu(&rb->rcu_head, rb_free_rcu);
3726 }
3727
3728 static void perf_mmap_open(struct vm_area_struct *vma)
3729 {
3730 struct perf_event *event = vma->vm_file->private_data;
3731
3732 atomic_inc(&event->mmap_count);
3733 atomic_inc(&event->rb->mmap_count);
3734 }
3735
3736 /*
3737 * A buffer can be mmap()ed multiple times; either directly through the same
3738 * event, or through other events by use of perf_event_set_output().
3739 *
3740 * In order to undo the VM accounting done by perf_mmap() we need to destroy
3741 * the buffer here, where we still have a VM context. This means we need
3742 * to detach all events redirecting to us.
3743 */
3744 static void perf_mmap_close(struct vm_area_struct *vma)
3745 {
3746 struct perf_event *event = vma->vm_file->private_data;
3747
3748 struct ring_buffer *rb = event->rb;
3749 struct user_struct *mmap_user = rb->mmap_user;
3750 int mmap_locked = rb->mmap_locked;
3751 unsigned long size = perf_data_size(rb);
3752
3753 atomic_dec(&rb->mmap_count);
3754
3755 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
3756 return;
3757
3758 /* Detach current event from the buffer. */
3759 rcu_assign_pointer(event->rb, NULL);
3760 ring_buffer_detach(event, rb);
3761 mutex_unlock(&event->mmap_mutex);
3762
3763 /* If there's still other mmap()s of this buffer, we're done. */
3764 if (atomic_read(&rb->mmap_count)) {
3765 ring_buffer_put(rb); /* can't be last */
3766 return;
3767 }
3768
3769 /*
3770 * No other mmap()s, detach from all other events that might redirect
3771 * into the now unreachable buffer. Somewhat complicated by the
3772 * fact that rb::event_lock otherwise nests inside mmap_mutex.
3773 */
3774 again:
3775 rcu_read_lock();
3776 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
3777 if (!atomic_long_inc_not_zero(&event->refcount)) {
3778 /*
3779 * This event is en-route to free_event() which will
3780 * detach it and remove it from the list.
3781 */
3782 continue;
3783 }
3784 rcu_read_unlock();
3785
3786 mutex_lock(&event->mmap_mutex);
3787 /*
3788 * Check we didn't race with perf_event_set_output() which can
3789 * swizzle the rb from under us while we were waiting to
3790 * acquire mmap_mutex.
3791 *
3792 * If we find a different rb; ignore this event, a next
3793 * iteration will no longer find it on the list. We have to
3794 * still restart the iteration to make sure we're not now
3795 * iterating the wrong list.
3796 */
3797 if (event->rb == rb) {
3798 rcu_assign_pointer(event->rb, NULL);
3799 ring_buffer_detach(event, rb);
3800 ring_buffer_put(rb); /* can't be last, we still have one */
3801 }
3802 mutex_unlock(&event->mmap_mutex);
3803 put_event(event);
3804
3805 /*
3806 * Restart the iteration; either we're on the wrong list or
3807 * destroyed its integrity by doing a deletion.
3808 */
3809 goto again;
3810 }
3811 rcu_read_unlock();
3812
3813 /*
3814 * It could be there's still a few 0-ref events on the list; they'll
3815 * get cleaned up by free_event() -- they'll also still have their
3816 * ref on the rb and will free it whenever they are done with it.
3817 *
3818 * Aside from that, this buffer is 'fully' detached and unmapped,
3819 * undo the VM accounting.
3820 */
3821
3822 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
3823 vma->vm_mm->pinned_vm -= mmap_locked;
3824 free_uid(mmap_user);
3825
3826 ring_buffer_put(rb); /* could be last */
3827 }
3828
3829 static const struct vm_operations_struct perf_mmap_vmops = {
3830 .open = perf_mmap_open,
3831 .close = perf_mmap_close,
3832 .fault = perf_mmap_fault,
3833 .page_mkwrite = perf_mmap_fault,
3834 };
3835
3836 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3837 {
3838 struct perf_event *event = file->private_data;
3839 unsigned long user_locked, user_lock_limit;
3840 struct user_struct *user = current_user();
3841 unsigned long locked, lock_limit;
3842 struct ring_buffer *rb;
3843 unsigned long vma_size;
3844 unsigned long nr_pages;
3845 long user_extra, extra;
3846 int ret = 0, flags = 0;
3847
3848 /*
3849 * Don't allow mmap() of inherited per-task counters. This would
3850 * create a performance issue due to all children writing to the
3851 * same rb.
3852 */
3853 if (event->cpu == -1 && event->attr.inherit)
3854 return -EINVAL;
3855
3856 if (!(vma->vm_flags & VM_SHARED))
3857 return -EINVAL;
3858
3859 vma_size = vma->vm_end - vma->vm_start;
3860 nr_pages = (vma_size / PAGE_SIZE) - 1;
3861
3862 /*
3863 * If we have rb pages ensure they're a power-of-two number, so we
3864 * can do bitmasks instead of modulo.
3865 */
3866 if (nr_pages != 0 && !is_power_of_2(nr_pages))
3867 return -EINVAL;
3868
3869 if (vma_size != PAGE_SIZE * (1 + nr_pages))
3870 return -EINVAL;
3871
3872 if (vma->vm_pgoff != 0)
3873 return -EINVAL;
3874
3875 WARN_ON_ONCE(event->ctx->parent_ctx);
3876 again:
3877 mutex_lock(&event->mmap_mutex);
3878 if (event->rb) {
3879 if (event->rb->nr_pages != nr_pages) {
3880 ret = -EINVAL;
3881 goto unlock;
3882 }
3883
3884 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
3885 /*
3886 * Raced against perf_mmap_close() through
3887 * perf_event_set_output(). Try again, hope for better
3888 * luck.
3889 */
3890 mutex_unlock(&event->mmap_mutex);
3891 goto again;
3892 }
3893
3894 goto unlock;
3895 }
3896
3897 user_extra = nr_pages + 1;
3898 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3899
3900 /*
3901 * Increase the limit linearly with more CPUs:
3902 */
3903 user_lock_limit *= num_online_cpus();
3904
3905 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3906
3907 extra = 0;
3908 if (user_locked > user_lock_limit)
3909 extra = user_locked - user_lock_limit;
3910
3911 lock_limit = rlimit(RLIMIT_MEMLOCK);
3912 lock_limit >>= PAGE_SHIFT;
3913 locked = vma->vm_mm->pinned_vm + extra;
3914
3915 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3916 !capable(CAP_IPC_LOCK)) {
3917 ret = -EPERM;
3918 goto unlock;
3919 }
3920
3921 WARN_ON(event->rb);
3922
3923 if (vma->vm_flags & VM_WRITE)
3924 flags |= RING_BUFFER_WRITABLE;
3925
3926 rb = rb_alloc(nr_pages,
3927 event->attr.watermark ? event->attr.wakeup_watermark : 0,
3928 event->cpu, flags);
3929
3930 if (!rb) {
3931 ret = -ENOMEM;
3932 goto unlock;
3933 }
3934
3935 atomic_set(&rb->mmap_count, 1);
3936 rb->mmap_locked = extra;
3937 rb->mmap_user = get_current_user();
3938
3939 atomic_long_add(user_extra, &user->locked_vm);
3940 vma->vm_mm->pinned_vm += extra;
3941
3942 ring_buffer_attach(event, rb);
3943 rcu_assign_pointer(event->rb, rb);
3944
3945 perf_event_update_userpage(event);
3946
3947 unlock:
3948 if (!ret)
3949 atomic_inc(&event->mmap_count);
3950 mutex_unlock(&event->mmap_mutex);
3951
3952 /*
3953 * Since pinned accounting is per vm we cannot allow fork() to copy our
3954 * vma.
3955 */
3956 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
3957 vma->vm_ops = &perf_mmap_vmops;
3958
3959 return ret;
3960 }
3961
3962 static int perf_fasync(int fd, struct file *filp, int on)
3963 {
3964 struct inode *inode = file_inode(filp);
3965 struct perf_event *event = filp->private_data;
3966 int retval;
3967
3968 mutex_lock(&inode->i_mutex);
3969 retval = fasync_helper(fd, filp, on, &event->fasync);
3970 mutex_unlock(&inode->i_mutex);
3971
3972 if (retval < 0)
3973 return retval;
3974
3975 return 0;
3976 }
3977
3978 static const struct file_operations perf_fops = {
3979 .llseek = no_llseek,
3980 .release = perf_release,
3981 .read = perf_read,
3982 .poll = perf_poll,
3983 .unlocked_ioctl = perf_ioctl,
3984 .compat_ioctl = perf_compat_ioctl,
3985 .mmap = perf_mmap,
3986 .fasync = perf_fasync,
3987 };
3988
3989 /*
3990 * Perf event wakeup
3991 *
3992 * If there's data, ensure we set the poll() state and publish everything
3993 * to user-space before waking everybody up.
3994 */
3995
3996 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
3997 {
3998 /* only the parent has fasync state */
3999 if (event->parent)
4000 event = event->parent;
4001 return &event->fasync;
4002 }
4003
4004 void perf_event_wakeup(struct perf_event *event)
4005 {
4006 ring_buffer_wakeup(event);
4007
4008 if (event->pending_kill) {
4009 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
4010 event->pending_kill = 0;
4011 }
4012 }
4013
4014 static void perf_pending_event(struct irq_work *entry)
4015 {
4016 struct perf_event *event = container_of(entry,
4017 struct perf_event, pending);
4018 int rctx;
4019
4020 rctx = perf_swevent_get_recursion_context();
4021 /*
4022 * If we 'fail' here, that's OK, it means recursion is already disabled
4023 * and we won't recurse 'further'.
4024 */
4025
4026 if (event->pending_disable) {
4027 event->pending_disable = 0;
4028 __perf_event_disable(event);
4029 }
4030
4031 if (event->pending_wakeup) {
4032 event->pending_wakeup = 0;
4033 perf_event_wakeup(event);
4034 }
4035
4036 if (rctx >= 0)
4037 perf_swevent_put_recursion_context(rctx);
4038 }
4039
4040 /*
4041 * We assume there is only KVM supporting the callbacks.
4042 * Later on, we might change it to a list if there is
4043 * another virtualization implementation supporting the callbacks.
4044 */
4045 struct perf_guest_info_callbacks *perf_guest_cbs;
4046
4047 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4048 {
4049 perf_guest_cbs = cbs;
4050 return 0;
4051 }
4052 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4053
4054 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4055 {
4056 perf_guest_cbs = NULL;
4057 return 0;
4058 }
4059 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4060
4061 static void
4062 perf_output_sample_regs(struct perf_output_handle *handle,
4063 struct pt_regs *regs, u64 mask)
4064 {
4065 int bit;
4066
4067 for_each_set_bit(bit, (const unsigned long *) &mask,
4068 sizeof(mask) * BITS_PER_BYTE) {
4069 u64 val;
4070
4071 val = perf_reg_value(regs, bit);
4072 perf_output_put(handle, val);
4073 }
4074 }
4075
4076 static void perf_sample_regs_user(struct perf_regs_user *regs_user,
4077 struct pt_regs *regs)
4078 {
4079 if (!user_mode(regs)) {
4080 if (current->mm)
4081 regs = task_pt_regs(current);
4082 else
4083 regs = NULL;
4084 }
4085
4086 if (regs) {
4087 regs_user->regs = regs;
4088 regs_user->abi = perf_reg_abi(current);
4089 }
4090 }
4091
4092 /*
4093 * Get remaining task size from user stack pointer.
4094 *
4095 * It'd be better to take stack vma map and limit this more
4096 * precisly, but there's no way to get it safely under interrupt,
4097 * so using TASK_SIZE as limit.
4098 */
4099 static u64 perf_ustack_task_size(struct pt_regs *regs)
4100 {
4101 unsigned long addr = perf_user_stack_pointer(regs);
4102
4103 if (!addr || addr >= TASK_SIZE)
4104 return 0;
4105
4106 return TASK_SIZE - addr;
4107 }
4108
4109 static u16
4110 perf_sample_ustack_size(u16 stack_size, u16 header_size,
4111 struct pt_regs *regs)
4112 {
4113 u64 task_size;
4114
4115 /* No regs, no stack pointer, no dump. */
4116 if (!regs)
4117 return 0;
4118
4119 /*
4120 * Check if we fit in with the requested stack size into the:
4121 * - TASK_SIZE
4122 * If we don't, we limit the size to the TASK_SIZE.
4123 *
4124 * - remaining sample size
4125 * If we don't, we customize the stack size to
4126 * fit in to the remaining sample size.
4127 */
4128
4129 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4130 stack_size = min(stack_size, (u16) task_size);
4131
4132 /* Current header size plus static size and dynamic size. */
4133 header_size += 2 * sizeof(u64);
4134
4135 /* Do we fit in with the current stack dump size? */
4136 if ((u16) (header_size + stack_size) < header_size) {
4137 /*
4138 * If we overflow the maximum size for the sample,
4139 * we customize the stack dump size to fit in.
4140 */
4141 stack_size = USHRT_MAX - header_size - sizeof(u64);
4142 stack_size = round_up(stack_size, sizeof(u64));
4143 }
4144
4145 return stack_size;
4146 }
4147
4148 static void
4149 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4150 struct pt_regs *regs)
4151 {
4152 /* Case of a kernel thread, nothing to dump */
4153 if (!regs) {
4154 u64 size = 0;
4155 perf_output_put(handle, size);
4156 } else {
4157 unsigned long sp;
4158 unsigned int rem;
4159 u64 dyn_size;
4160
4161 /*
4162 * We dump:
4163 * static size
4164 * - the size requested by user or the best one we can fit
4165 * in to the sample max size
4166 * data
4167 * - user stack dump data
4168 * dynamic size
4169 * - the actual dumped size
4170 */
4171
4172 /* Static size. */
4173 perf_output_put(handle, dump_size);
4174
4175 /* Data. */
4176 sp = perf_user_stack_pointer(regs);
4177 rem = __output_copy_user(handle, (void *) sp, dump_size);
4178 dyn_size = dump_size - rem;
4179
4180 perf_output_skip(handle, rem);
4181
4182 /* Dynamic size. */
4183 perf_output_put(handle, dyn_size);
4184 }
4185 }
4186
4187 static void __perf_event_header__init_id(struct perf_event_header *header,
4188 struct perf_sample_data *data,
4189 struct perf_event *event)
4190 {
4191 u64 sample_type = event->attr.sample_type;
4192
4193 data->type = sample_type;
4194 header->size += event->id_header_size;
4195
4196 if (sample_type & PERF_SAMPLE_TID) {
4197 /* namespace issues */
4198 data->tid_entry.pid = perf_event_pid(event, current);
4199 data->tid_entry.tid = perf_event_tid(event, current);
4200 }
4201
4202 if (sample_type & PERF_SAMPLE_TIME)
4203 data->time = perf_clock();
4204
4205 if (sample_type & PERF_SAMPLE_ID)
4206 data->id = primary_event_id(event);
4207
4208 if (sample_type & PERF_SAMPLE_STREAM_ID)
4209 data->stream_id = event->id;
4210
4211 if (sample_type & PERF_SAMPLE_CPU) {
4212 data->cpu_entry.cpu = raw_smp_processor_id();
4213 data->cpu_entry.reserved = 0;
4214 }
4215 }
4216
4217 void perf_event_header__init_id(struct perf_event_header *header,
4218 struct perf_sample_data *data,
4219 struct perf_event *event)
4220 {
4221 if (event->attr.sample_id_all)
4222 __perf_event_header__init_id(header, data, event);
4223 }
4224
4225 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4226 struct perf_sample_data *data)
4227 {
4228 u64 sample_type = data->type;
4229
4230 if (sample_type & PERF_SAMPLE_TID)
4231 perf_output_put(handle, data->tid_entry);
4232
4233 if (sample_type & PERF_SAMPLE_TIME)
4234 perf_output_put(handle, data->time);
4235
4236 if (sample_type & PERF_SAMPLE_ID)
4237 perf_output_put(handle, data->id);
4238
4239 if (sample_type & PERF_SAMPLE_STREAM_ID)
4240 perf_output_put(handle, data->stream_id);
4241
4242 if (sample_type & PERF_SAMPLE_CPU)
4243 perf_output_put(handle, data->cpu_entry);
4244 }
4245
4246 void perf_event__output_id_sample(struct perf_event *event,
4247 struct perf_output_handle *handle,
4248 struct perf_sample_data *sample)
4249 {
4250 if (event->attr.sample_id_all)
4251 __perf_event__output_id_sample(handle, sample);
4252 }
4253
4254 static void perf_output_read_one(struct perf_output_handle *handle,
4255 struct perf_event *event,
4256 u64 enabled, u64 running)
4257 {
4258 u64 read_format = event->attr.read_format;
4259 u64 values[4];
4260 int n = 0;
4261
4262 values[n++] = perf_event_count(event);
4263 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4264 values[n++] = enabled +
4265 atomic64_read(&event->child_total_time_enabled);
4266 }
4267 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4268 values[n++] = running +
4269 atomic64_read(&event->child_total_time_running);
4270 }
4271 if (read_format & PERF_FORMAT_ID)
4272 values[n++] = primary_event_id(event);
4273
4274 __output_copy(handle, values, n * sizeof(u64));
4275 }
4276
4277 /*
4278 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4279 */
4280 static void perf_output_read_group(struct perf_output_handle *handle,
4281 struct perf_event *event,
4282 u64 enabled, u64 running)
4283 {
4284 struct perf_event *leader = event->group_leader, *sub;
4285 u64 read_format = event->attr.read_format;
4286 u64 values[5];
4287 int n = 0;
4288
4289 values[n++] = 1 + leader->nr_siblings;
4290
4291 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4292 values[n++] = enabled;
4293
4294 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4295 values[n++] = running;
4296
4297 if (leader != event)
4298 leader->pmu->read(leader);
4299
4300 values[n++] = perf_event_count(leader);
4301 if (read_format & PERF_FORMAT_ID)
4302 values[n++] = primary_event_id(leader);
4303
4304 __output_copy(handle, values, n * sizeof(u64));
4305
4306 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4307 n = 0;
4308
4309 if (sub != event)
4310 sub->pmu->read(sub);
4311
4312 values[n++] = perf_event_count(sub);
4313 if (read_format & PERF_FORMAT_ID)
4314 values[n++] = primary_event_id(sub);
4315
4316 __output_copy(handle, values, n * sizeof(u64));
4317 }
4318 }
4319
4320 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4321 PERF_FORMAT_TOTAL_TIME_RUNNING)
4322
4323 static void perf_output_read(struct perf_output_handle *handle,
4324 struct perf_event *event)
4325 {
4326 u64 enabled = 0, running = 0, now;
4327 u64 read_format = event->attr.read_format;
4328
4329 /*
4330 * compute total_time_enabled, total_time_running
4331 * based on snapshot values taken when the event
4332 * was last scheduled in.
4333 *
4334 * we cannot simply called update_context_time()
4335 * because of locking issue as we are called in
4336 * NMI context
4337 */
4338 if (read_format & PERF_FORMAT_TOTAL_TIMES)
4339 calc_timer_values(event, &now, &enabled, &running);
4340
4341 if (event->attr.read_format & PERF_FORMAT_GROUP)
4342 perf_output_read_group(handle, event, enabled, running);
4343 else
4344 perf_output_read_one(handle, event, enabled, running);
4345 }
4346
4347 void perf_output_sample(struct perf_output_handle *handle,
4348 struct perf_event_header *header,
4349 struct perf_sample_data *data,
4350 struct perf_event *event)
4351 {
4352 u64 sample_type = data->type;
4353
4354 perf_output_put(handle, *header);
4355
4356 if (sample_type & PERF_SAMPLE_IP)
4357 perf_output_put(handle, data->ip);
4358
4359 if (sample_type & PERF_SAMPLE_TID)
4360 perf_output_put(handle, data->tid_entry);
4361
4362 if (sample_type & PERF_SAMPLE_TIME)
4363 perf_output_put(handle, data->time);
4364
4365 if (sample_type & PERF_SAMPLE_ADDR)
4366 perf_output_put(handle, data->addr);
4367
4368 if (sample_type & PERF_SAMPLE_ID)
4369 perf_output_put(handle, data->id);
4370
4371 if (sample_type & PERF_SAMPLE_STREAM_ID)
4372 perf_output_put(handle, data->stream_id);
4373
4374 if (sample_type & PERF_SAMPLE_CPU)
4375 perf_output_put(handle, data->cpu_entry);
4376
4377 if (sample_type & PERF_SAMPLE_PERIOD)
4378 perf_output_put(handle, data->period);
4379
4380 if (sample_type & PERF_SAMPLE_READ)
4381 perf_output_read(handle, event);
4382
4383 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4384 if (data->callchain) {
4385 int size = 1;
4386
4387 if (data->callchain)
4388 size += data->callchain->nr;
4389
4390 size *= sizeof(u64);
4391
4392 __output_copy(handle, data->callchain, size);
4393 } else {
4394 u64 nr = 0;
4395 perf_output_put(handle, nr);
4396 }
4397 }
4398
4399 if (sample_type & PERF_SAMPLE_RAW) {
4400 if (data->raw) {
4401 perf_output_put(handle, data->raw->size);
4402 __output_copy(handle, data->raw->data,
4403 data->raw->size);
4404 } else {
4405 struct {
4406 u32 size;
4407 u32 data;
4408 } raw = {
4409 .size = sizeof(u32),
4410 .data = 0,
4411 };
4412 perf_output_put(handle, raw);
4413 }
4414 }
4415
4416 if (!event->attr.watermark) {
4417 int wakeup_events = event->attr.wakeup_events;
4418
4419 if (wakeup_events) {
4420 struct ring_buffer *rb = handle->rb;
4421 int events = local_inc_return(&rb->events);
4422
4423 if (events >= wakeup_events) {
4424 local_sub(wakeup_events, &rb->events);
4425 local_inc(&rb->wakeup);
4426 }
4427 }
4428 }
4429
4430 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4431 if (data->br_stack) {
4432 size_t size;
4433
4434 size = data->br_stack->nr
4435 * sizeof(struct perf_branch_entry);
4436
4437 perf_output_put(handle, data->br_stack->nr);
4438 perf_output_copy(handle, data->br_stack->entries, size);
4439 } else {
4440 /*
4441 * we always store at least the value of nr
4442 */
4443 u64 nr = 0;
4444 perf_output_put(handle, nr);
4445 }
4446 }
4447
4448 if (sample_type & PERF_SAMPLE_REGS_USER) {
4449 u64 abi = data->regs_user.abi;
4450
4451 /*
4452 * If there are no regs to dump, notice it through
4453 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4454 */
4455 perf_output_put(handle, abi);
4456
4457 if (abi) {
4458 u64 mask = event->attr.sample_regs_user;
4459 perf_output_sample_regs(handle,
4460 data->regs_user.regs,
4461 mask);
4462 }
4463 }
4464
4465 if (sample_type & PERF_SAMPLE_STACK_USER)
4466 perf_output_sample_ustack(handle,
4467 data->stack_user_size,
4468 data->regs_user.regs);
4469
4470 if (sample_type & PERF_SAMPLE_WEIGHT)
4471 perf_output_put(handle, data->weight);
4472
4473 if (sample_type & PERF_SAMPLE_DATA_SRC)
4474 perf_output_put(handle, data->data_src.val);
4475 }
4476
4477 void perf_prepare_sample(struct perf_event_header *header,
4478 struct perf_sample_data *data,
4479 struct perf_event *event,
4480 struct pt_regs *regs)
4481 {
4482 u64 sample_type = event->attr.sample_type;
4483
4484 header->type = PERF_RECORD_SAMPLE;
4485 header->size = sizeof(*header) + event->header_size;
4486
4487 header->misc = 0;
4488 header->misc |= perf_misc_flags(regs);
4489
4490 __perf_event_header__init_id(header, data, event);
4491
4492 if (sample_type & PERF_SAMPLE_IP)
4493 data->ip = perf_instruction_pointer(regs);
4494
4495 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4496 int size = 1;
4497
4498 data->callchain = perf_callchain(event, regs);
4499
4500 if (data->callchain)
4501 size += data->callchain->nr;
4502
4503 header->size += size * sizeof(u64);
4504 }
4505
4506 if (sample_type & PERF_SAMPLE_RAW) {
4507 int size = sizeof(u32);
4508
4509 if (data->raw)
4510 size += data->raw->size;
4511 else
4512 size += sizeof(u32);
4513
4514 WARN_ON_ONCE(size & (sizeof(u64)-1));
4515 header->size += size;
4516 }
4517
4518 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4519 int size = sizeof(u64); /* nr */
4520 if (data->br_stack) {
4521 size += data->br_stack->nr
4522 * sizeof(struct perf_branch_entry);
4523 }
4524 header->size += size;
4525 }
4526
4527 if (sample_type & PERF_SAMPLE_REGS_USER) {
4528 /* regs dump ABI info */
4529 int size = sizeof(u64);
4530
4531 perf_sample_regs_user(&data->regs_user, regs);
4532
4533 if (data->regs_user.regs) {
4534 u64 mask = event->attr.sample_regs_user;
4535 size += hweight64(mask) * sizeof(u64);
4536 }
4537
4538 header->size += size;
4539 }
4540
4541 if (sample_type & PERF_SAMPLE_STACK_USER) {
4542 /*
4543 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
4544 * processed as the last one or have additional check added
4545 * in case new sample type is added, because we could eat
4546 * up the rest of the sample size.
4547 */
4548 struct perf_regs_user *uregs = &data->regs_user;
4549 u16 stack_size = event->attr.sample_stack_user;
4550 u16 size = sizeof(u64);
4551
4552 if (!uregs->abi)
4553 perf_sample_regs_user(uregs, regs);
4554
4555 stack_size = perf_sample_ustack_size(stack_size, header->size,
4556 uregs->regs);
4557
4558 /*
4559 * If there is something to dump, add space for the dump
4560 * itself and for the field that tells the dynamic size,
4561 * which is how many have been actually dumped.
4562 */
4563 if (stack_size)
4564 size += sizeof(u64) + stack_size;
4565
4566 data->stack_user_size = stack_size;
4567 header->size += size;
4568 }
4569 }
4570
4571 static void perf_event_output(struct perf_event *event,
4572 struct perf_sample_data *data,
4573 struct pt_regs *regs)
4574 {
4575 struct perf_output_handle handle;
4576 struct perf_event_header header;
4577
4578 /* protect the callchain buffers */
4579 rcu_read_lock();
4580
4581 perf_prepare_sample(&header, data, event, regs);
4582
4583 if (perf_output_begin(&handle, event, header.size))
4584 goto exit;
4585
4586 perf_output_sample(&handle, &header, data, event);
4587
4588 perf_output_end(&handle);
4589
4590 exit:
4591 rcu_read_unlock();
4592 }
4593
4594 /*
4595 * read event_id
4596 */
4597
4598 struct perf_read_event {
4599 struct perf_event_header header;
4600
4601 u32 pid;
4602 u32 tid;
4603 };
4604
4605 static void
4606 perf_event_read_event(struct perf_event *event,
4607 struct task_struct *task)
4608 {
4609 struct perf_output_handle handle;
4610 struct perf_sample_data sample;
4611 struct perf_read_event read_event = {
4612 .header = {
4613 .type = PERF_RECORD_READ,
4614 .misc = 0,
4615 .size = sizeof(read_event) + event->read_size,
4616 },
4617 .pid = perf_event_pid(event, task),
4618 .tid = perf_event_tid(event, task),
4619 };
4620 int ret;
4621
4622 perf_event_header__init_id(&read_event.header, &sample, event);
4623 ret = perf_output_begin(&handle, event, read_event.header.size);
4624 if (ret)
4625 return;
4626
4627 perf_output_put(&handle, read_event);
4628 perf_output_read(&handle, event);
4629 perf_event__output_id_sample(event, &handle, &sample);
4630
4631 perf_output_end(&handle);
4632 }
4633
4634 typedef int (perf_event_aux_match_cb)(struct perf_event *event, void *data);
4635 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
4636
4637 static void
4638 perf_event_aux_ctx(struct perf_event_context *ctx,
4639 perf_event_aux_match_cb match,
4640 perf_event_aux_output_cb output,
4641 void *data)
4642 {
4643 struct perf_event *event;
4644
4645 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4646 if (event->state < PERF_EVENT_STATE_INACTIVE)
4647 continue;
4648 if (!event_filter_match(event))
4649 continue;
4650 if (match(event, data))
4651 output(event, data);
4652 }
4653 }
4654
4655 static void
4656 perf_event_aux(perf_event_aux_match_cb match,
4657 perf_event_aux_output_cb output,
4658 void *data,
4659 struct perf_event_context *task_ctx)
4660 {
4661 struct perf_cpu_context *cpuctx;
4662 struct perf_event_context *ctx;
4663 struct pmu *pmu;
4664 int ctxn;
4665
4666 rcu_read_lock();
4667 list_for_each_entry_rcu(pmu, &pmus, entry) {
4668 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4669 if (cpuctx->unique_pmu != pmu)
4670 goto next;
4671 perf_event_aux_ctx(&cpuctx->ctx, match, output, data);
4672 if (task_ctx)
4673 goto next;
4674 ctxn = pmu->task_ctx_nr;
4675 if (ctxn < 0)
4676 goto next;
4677 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4678 if (ctx)
4679 perf_event_aux_ctx(ctx, match, output, data);
4680 next:
4681 put_cpu_ptr(pmu->pmu_cpu_context);
4682 }
4683
4684 if (task_ctx) {
4685 preempt_disable();
4686 perf_event_aux_ctx(task_ctx, match, output, data);
4687 preempt_enable();
4688 }
4689 rcu_read_unlock();
4690 }
4691
4692 /*
4693 * task tracking -- fork/exit
4694 *
4695 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
4696 */
4697
4698 struct perf_task_event {
4699 struct task_struct *task;
4700 struct perf_event_context *task_ctx;
4701
4702 struct {
4703 struct perf_event_header header;
4704
4705 u32 pid;
4706 u32 ppid;
4707 u32 tid;
4708 u32 ptid;
4709 u64 time;
4710 } event_id;
4711 };
4712
4713 static void perf_event_task_output(struct perf_event *event,
4714 void *data)
4715 {
4716 struct perf_task_event *task_event = data;
4717 struct perf_output_handle handle;
4718 struct perf_sample_data sample;
4719 struct task_struct *task = task_event->task;
4720 int ret, size = task_event->event_id.header.size;
4721
4722 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4723
4724 ret = perf_output_begin(&handle, event,
4725 task_event->event_id.header.size);
4726 if (ret)
4727 goto out;
4728
4729 task_event->event_id.pid = perf_event_pid(event, task);
4730 task_event->event_id.ppid = perf_event_pid(event, current);
4731
4732 task_event->event_id.tid = perf_event_tid(event, task);
4733 task_event->event_id.ptid = perf_event_tid(event, current);
4734
4735 perf_output_put(&handle, task_event->event_id);
4736
4737 perf_event__output_id_sample(event, &handle, &sample);
4738
4739 perf_output_end(&handle);
4740 out:
4741 task_event->event_id.header.size = size;
4742 }
4743
4744 static int perf_event_task_match(struct perf_event *event,
4745 void *data __maybe_unused)
4746 {
4747 return event->attr.comm || event->attr.mmap ||
4748 event->attr.mmap_data || event->attr.task;
4749 }
4750
4751 static void perf_event_task(struct task_struct *task,
4752 struct perf_event_context *task_ctx,
4753 int new)
4754 {
4755 struct perf_task_event task_event;
4756
4757 if (!atomic_read(&nr_comm_events) &&
4758 !atomic_read(&nr_mmap_events) &&
4759 !atomic_read(&nr_task_events))
4760 return;
4761
4762 task_event = (struct perf_task_event){
4763 .task = task,
4764 .task_ctx = task_ctx,
4765 .event_id = {
4766 .header = {
4767 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4768 .misc = 0,
4769 .size = sizeof(task_event.event_id),
4770 },
4771 /* .pid */
4772 /* .ppid */
4773 /* .tid */
4774 /* .ptid */
4775 .time = perf_clock(),
4776 },
4777 };
4778
4779 perf_event_aux(perf_event_task_match,
4780 perf_event_task_output,
4781 &task_event,
4782 task_ctx);
4783 }
4784
4785 void perf_event_fork(struct task_struct *task)
4786 {
4787 perf_event_task(task, NULL, 1);
4788 }
4789
4790 /*
4791 * comm tracking
4792 */
4793
4794 struct perf_comm_event {
4795 struct task_struct *task;
4796 char *comm;
4797 int comm_size;
4798
4799 struct {
4800 struct perf_event_header header;
4801
4802 u32 pid;
4803 u32 tid;
4804 } event_id;
4805 };
4806
4807 static void perf_event_comm_output(struct perf_event *event,
4808 void *data)
4809 {
4810 struct perf_comm_event *comm_event = data;
4811 struct perf_output_handle handle;
4812 struct perf_sample_data sample;
4813 int size = comm_event->event_id.header.size;
4814 int ret;
4815
4816 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4817 ret = perf_output_begin(&handle, event,
4818 comm_event->event_id.header.size);
4819
4820 if (ret)
4821 goto out;
4822
4823 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4824 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4825
4826 perf_output_put(&handle, comm_event->event_id);
4827 __output_copy(&handle, comm_event->comm,
4828 comm_event->comm_size);
4829
4830 perf_event__output_id_sample(event, &handle, &sample);
4831
4832 perf_output_end(&handle);
4833 out:
4834 comm_event->event_id.header.size = size;
4835 }
4836
4837 static int perf_event_comm_match(struct perf_event *event,
4838 void *data __maybe_unused)
4839 {
4840 return event->attr.comm;
4841 }
4842
4843 static void perf_event_comm_event(struct perf_comm_event *comm_event)
4844 {
4845 char comm[TASK_COMM_LEN];
4846 unsigned int size;
4847
4848 memset(comm, 0, sizeof(comm));
4849 strlcpy(comm, comm_event->task->comm, sizeof(comm));
4850 size = ALIGN(strlen(comm)+1, sizeof(u64));
4851
4852 comm_event->comm = comm;
4853 comm_event->comm_size = size;
4854
4855 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4856
4857 perf_event_aux(perf_event_comm_match,
4858 perf_event_comm_output,
4859 comm_event,
4860 NULL);
4861 }
4862
4863 void perf_event_comm(struct task_struct *task)
4864 {
4865 struct perf_comm_event comm_event;
4866 struct perf_event_context *ctx;
4867 int ctxn;
4868
4869 rcu_read_lock();
4870 for_each_task_context_nr(ctxn) {
4871 ctx = task->perf_event_ctxp[ctxn];
4872 if (!ctx)
4873 continue;
4874
4875 perf_event_enable_on_exec(ctx);
4876 }
4877 rcu_read_unlock();
4878
4879 if (!atomic_read(&nr_comm_events))
4880 return;
4881
4882 comm_event = (struct perf_comm_event){
4883 .task = task,
4884 /* .comm */
4885 /* .comm_size */
4886 .event_id = {
4887 .header = {
4888 .type = PERF_RECORD_COMM,
4889 .misc = 0,
4890 /* .size */
4891 },
4892 /* .pid */
4893 /* .tid */
4894 },
4895 };
4896
4897 perf_event_comm_event(&comm_event);
4898 }
4899
4900 /*
4901 * mmap tracking
4902 */
4903
4904 struct perf_mmap_event {
4905 struct vm_area_struct *vma;
4906
4907 const char *file_name;
4908 int file_size;
4909
4910 struct {
4911 struct perf_event_header header;
4912
4913 u32 pid;
4914 u32 tid;
4915 u64 start;
4916 u64 len;
4917 u64 pgoff;
4918 } event_id;
4919 };
4920
4921 static void perf_event_mmap_output(struct perf_event *event,
4922 void *data)
4923 {
4924 struct perf_mmap_event *mmap_event = data;
4925 struct perf_output_handle handle;
4926 struct perf_sample_data sample;
4927 int size = mmap_event->event_id.header.size;
4928 int ret;
4929
4930 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4931 ret = perf_output_begin(&handle, event,
4932 mmap_event->event_id.header.size);
4933 if (ret)
4934 goto out;
4935
4936 mmap_event->event_id.pid = perf_event_pid(event, current);
4937 mmap_event->event_id.tid = perf_event_tid(event, current);
4938
4939 perf_output_put(&handle, mmap_event->event_id);
4940 __output_copy(&handle, mmap_event->file_name,
4941 mmap_event->file_size);
4942
4943 perf_event__output_id_sample(event, &handle, &sample);
4944
4945 perf_output_end(&handle);
4946 out:
4947 mmap_event->event_id.header.size = size;
4948 }
4949
4950 static int perf_event_mmap_match(struct perf_event *event,
4951 void *data)
4952 {
4953 struct perf_mmap_event *mmap_event = data;
4954 struct vm_area_struct *vma = mmap_event->vma;
4955 int executable = vma->vm_flags & VM_EXEC;
4956
4957 return (!executable && event->attr.mmap_data) ||
4958 (executable && event->attr.mmap);
4959 }
4960
4961 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4962 {
4963 struct vm_area_struct *vma = mmap_event->vma;
4964 struct file *file = vma->vm_file;
4965 unsigned int size;
4966 char tmp[16];
4967 char *buf = NULL;
4968 const char *name;
4969
4970 memset(tmp, 0, sizeof(tmp));
4971
4972 if (file) {
4973 /*
4974 * d_path works from the end of the rb backwards, so we
4975 * need to add enough zero bytes after the string to handle
4976 * the 64bit alignment we do later.
4977 */
4978 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4979 if (!buf) {
4980 name = strncpy(tmp, "//enomem", sizeof(tmp));
4981 goto got_name;
4982 }
4983 name = d_path(&file->f_path, buf, PATH_MAX);
4984 if (IS_ERR(name)) {
4985 name = strncpy(tmp, "//toolong", sizeof(tmp));
4986 goto got_name;
4987 }
4988 } else {
4989 if (arch_vma_name(mmap_event->vma)) {
4990 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4991 sizeof(tmp) - 1);
4992 tmp[sizeof(tmp) - 1] = '\0';
4993 goto got_name;
4994 }
4995
4996 if (!vma->vm_mm) {
4997 name = strncpy(tmp, "[vdso]", sizeof(tmp));
4998 goto got_name;
4999 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
5000 vma->vm_end >= vma->vm_mm->brk) {
5001 name = strncpy(tmp, "[heap]", sizeof(tmp));
5002 goto got_name;
5003 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
5004 vma->vm_end >= vma->vm_mm->start_stack) {
5005 name = strncpy(tmp, "[stack]", sizeof(tmp));
5006 goto got_name;
5007 }
5008
5009 name = strncpy(tmp, "//anon", sizeof(tmp));
5010 goto got_name;
5011 }
5012
5013 got_name:
5014 size = ALIGN(strlen(name)+1, sizeof(u64));
5015
5016 mmap_event->file_name = name;
5017 mmap_event->file_size = size;
5018
5019 if (!(vma->vm_flags & VM_EXEC))
5020 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5021
5022 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5023
5024 perf_event_aux(perf_event_mmap_match,
5025 perf_event_mmap_output,
5026 mmap_event,
5027 NULL);
5028
5029 kfree(buf);
5030 }
5031
5032 void perf_event_mmap(struct vm_area_struct *vma)
5033 {
5034 struct perf_mmap_event mmap_event;
5035
5036 if (!atomic_read(&nr_mmap_events))
5037 return;
5038
5039 mmap_event = (struct perf_mmap_event){
5040 .vma = vma,
5041 /* .file_name */
5042 /* .file_size */
5043 .event_id = {
5044 .header = {
5045 .type = PERF_RECORD_MMAP,
5046 .misc = PERF_RECORD_MISC_USER,
5047 /* .size */
5048 },
5049 /* .pid */
5050 /* .tid */
5051 .start = vma->vm_start,
5052 .len = vma->vm_end - vma->vm_start,
5053 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
5054 },
5055 };
5056
5057 perf_event_mmap_event(&mmap_event);
5058 }
5059
5060 /*
5061 * IRQ throttle logging
5062 */
5063
5064 static void perf_log_throttle(struct perf_event *event, int enable)
5065 {
5066 struct perf_output_handle handle;
5067 struct perf_sample_data sample;
5068 int ret;
5069
5070 struct {
5071 struct perf_event_header header;
5072 u64 time;
5073 u64 id;
5074 u64 stream_id;
5075 } throttle_event = {
5076 .header = {
5077 .type = PERF_RECORD_THROTTLE,
5078 .misc = 0,
5079 .size = sizeof(throttle_event),
5080 },
5081 .time = perf_clock(),
5082 .id = primary_event_id(event),
5083 .stream_id = event->id,
5084 };
5085
5086 if (enable)
5087 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5088
5089 perf_event_header__init_id(&throttle_event.header, &sample, event);
5090
5091 ret = perf_output_begin(&handle, event,
5092 throttle_event.header.size);
5093 if (ret)
5094 return;
5095
5096 perf_output_put(&handle, throttle_event);
5097 perf_event__output_id_sample(event, &handle, &sample);
5098 perf_output_end(&handle);
5099 }
5100
5101 /*
5102 * Generic event overflow handling, sampling.
5103 */
5104
5105 static int __perf_event_overflow(struct perf_event *event,
5106 int throttle, struct perf_sample_data *data,
5107 struct pt_regs *regs)
5108 {
5109 int events = atomic_read(&event->event_limit);
5110 struct hw_perf_event *hwc = &event->hw;
5111 u64 seq;
5112 int ret = 0;
5113
5114 /*
5115 * Non-sampling counters might still use the PMI to fold short
5116 * hardware counters, ignore those.
5117 */
5118 if (unlikely(!is_sampling_event(event)))
5119 return 0;
5120
5121 seq = __this_cpu_read(perf_throttled_seq);
5122 if (seq != hwc->interrupts_seq) {
5123 hwc->interrupts_seq = seq;
5124 hwc->interrupts = 1;
5125 } else {
5126 hwc->interrupts++;
5127 if (unlikely(throttle
5128 && hwc->interrupts >= max_samples_per_tick)) {
5129 __this_cpu_inc(perf_throttled_count);
5130 hwc->interrupts = MAX_INTERRUPTS;
5131 perf_log_throttle(event, 0);
5132 ret = 1;
5133 }
5134 }
5135
5136 if (event->attr.freq) {
5137 u64 now = perf_clock();
5138 s64 delta = now - hwc->freq_time_stamp;
5139
5140 hwc->freq_time_stamp = now;
5141
5142 if (delta > 0 && delta < 2*TICK_NSEC)
5143 perf_adjust_period(event, delta, hwc->last_period, true);
5144 }
5145
5146 /*
5147 * XXX event_limit might not quite work as expected on inherited
5148 * events
5149 */
5150
5151 event->pending_kill = POLL_IN;
5152 if (events && atomic_dec_and_test(&event->event_limit)) {
5153 ret = 1;
5154 event->pending_kill = POLL_HUP;
5155 event->pending_disable = 1;
5156 irq_work_queue(&event->pending);
5157 }
5158
5159 if (event->overflow_handler)
5160 event->overflow_handler(event, data, regs);
5161 else
5162 perf_event_output(event, data, regs);
5163
5164 if (*perf_event_fasync(event) && event->pending_kill) {
5165 event->pending_wakeup = 1;
5166 irq_work_queue(&event->pending);
5167 }
5168
5169 return ret;
5170 }
5171
5172 int perf_event_overflow(struct perf_event *event,
5173 struct perf_sample_data *data,
5174 struct pt_regs *regs)
5175 {
5176 return __perf_event_overflow(event, 1, data, regs);
5177 }
5178
5179 /*
5180 * Generic software event infrastructure
5181 */
5182
5183 struct swevent_htable {
5184 struct swevent_hlist *swevent_hlist;
5185 struct mutex hlist_mutex;
5186 int hlist_refcount;
5187
5188 /* Recursion avoidance in each contexts */
5189 int recursion[PERF_NR_CONTEXTS];
5190
5191 /* Keeps track of cpu being initialized/exited */
5192 bool online;
5193 };
5194
5195 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
5196
5197 /*
5198 * We directly increment event->count and keep a second value in
5199 * event->hw.period_left to count intervals. This period event
5200 * is kept in the range [-sample_period, 0] so that we can use the
5201 * sign as trigger.
5202 */
5203
5204 static u64 perf_swevent_set_period(struct perf_event *event)
5205 {
5206 struct hw_perf_event *hwc = &event->hw;
5207 u64 period = hwc->last_period;
5208 u64 nr, offset;
5209 s64 old, val;
5210
5211 hwc->last_period = hwc->sample_period;
5212
5213 again:
5214 old = val = local64_read(&hwc->period_left);
5215 if (val < 0)
5216 return 0;
5217
5218 nr = div64_u64(period + val, period);
5219 offset = nr * period;
5220 val -= offset;
5221 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5222 goto again;
5223
5224 return nr;
5225 }
5226
5227 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5228 struct perf_sample_data *data,
5229 struct pt_regs *regs)
5230 {
5231 struct hw_perf_event *hwc = &event->hw;
5232 int throttle = 0;
5233
5234 if (!overflow)
5235 overflow = perf_swevent_set_period(event);
5236
5237 if (hwc->interrupts == MAX_INTERRUPTS)
5238 return;
5239
5240 for (; overflow; overflow--) {
5241 if (__perf_event_overflow(event, throttle,
5242 data, regs)) {
5243 /*
5244 * We inhibit the overflow from happening when
5245 * hwc->interrupts == MAX_INTERRUPTS.
5246 */
5247 break;
5248 }
5249 throttle = 1;
5250 }
5251 }
5252
5253 static void perf_swevent_event(struct perf_event *event, u64 nr,
5254 struct perf_sample_data *data,
5255 struct pt_regs *regs)
5256 {
5257 struct hw_perf_event *hwc = &event->hw;
5258
5259 local64_add(nr, &event->count);
5260
5261 if (!regs)
5262 return;
5263
5264 if (!is_sampling_event(event))
5265 return;
5266
5267 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5268 data->period = nr;
5269 return perf_swevent_overflow(event, 1, data, regs);
5270 } else
5271 data->period = event->hw.last_period;
5272
5273 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5274 return perf_swevent_overflow(event, 1, data, regs);
5275
5276 if (local64_add_negative(nr, &hwc->period_left))
5277 return;
5278
5279 perf_swevent_overflow(event, 0, data, regs);
5280 }
5281
5282 static int perf_exclude_event(struct perf_event *event,
5283 struct pt_regs *regs)
5284 {
5285 if (event->hw.state & PERF_HES_STOPPED)
5286 return 1;
5287
5288 if (regs) {
5289 if (event->attr.exclude_user && user_mode(regs))
5290 return 1;
5291
5292 if (event->attr.exclude_kernel && !user_mode(regs))
5293 return 1;
5294 }
5295
5296 return 0;
5297 }
5298
5299 static int perf_swevent_match(struct perf_event *event,
5300 enum perf_type_id type,
5301 u32 event_id,
5302 struct perf_sample_data *data,
5303 struct pt_regs *regs)
5304 {
5305 if (event->attr.type != type)
5306 return 0;
5307
5308 if (event->attr.config != event_id)
5309 return 0;
5310
5311 if (perf_exclude_event(event, regs))
5312 return 0;
5313
5314 return 1;
5315 }
5316
5317 static inline u64 swevent_hash(u64 type, u32 event_id)
5318 {
5319 u64 val = event_id | (type << 32);
5320
5321 return hash_64(val, SWEVENT_HLIST_BITS);
5322 }
5323
5324 static inline struct hlist_head *
5325 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5326 {
5327 u64 hash = swevent_hash(type, event_id);
5328
5329 return &hlist->heads[hash];
5330 }
5331
5332 /* For the read side: events when they trigger */
5333 static inline struct hlist_head *
5334 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5335 {
5336 struct swevent_hlist *hlist;
5337
5338 hlist = rcu_dereference(swhash->swevent_hlist);
5339 if (!hlist)
5340 return NULL;
5341
5342 return __find_swevent_head(hlist, type, event_id);
5343 }
5344
5345 /* For the event head insertion and removal in the hlist */
5346 static inline struct hlist_head *
5347 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5348 {
5349 struct swevent_hlist *hlist;
5350 u32 event_id = event->attr.config;
5351 u64 type = event->attr.type;
5352
5353 /*
5354 * Event scheduling is always serialized against hlist allocation
5355 * and release. Which makes the protected version suitable here.
5356 * The context lock guarantees that.
5357 */
5358 hlist = rcu_dereference_protected(swhash->swevent_hlist,
5359 lockdep_is_held(&event->ctx->lock));
5360 if (!hlist)
5361 return NULL;
5362
5363 return __find_swevent_head(hlist, type, event_id);
5364 }
5365
5366 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5367 u64 nr,
5368 struct perf_sample_data *data,
5369 struct pt_regs *regs)
5370 {
5371 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5372 struct perf_event *event;
5373 struct hlist_head *head;
5374
5375 rcu_read_lock();
5376 head = find_swevent_head_rcu(swhash, type, event_id);
5377 if (!head)
5378 goto end;
5379
5380 hlist_for_each_entry_rcu(event, head, hlist_entry) {
5381 if (perf_swevent_match(event, type, event_id, data, regs))
5382 perf_swevent_event(event, nr, data, regs);
5383 }
5384 end:
5385 rcu_read_unlock();
5386 }
5387
5388 int perf_swevent_get_recursion_context(void)
5389 {
5390 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5391
5392 return get_recursion_context(swhash->recursion);
5393 }
5394 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
5395
5396 inline void perf_swevent_put_recursion_context(int rctx)
5397 {
5398 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5399
5400 put_recursion_context(swhash->recursion, rctx);
5401 }
5402
5403 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5404 {
5405 struct perf_sample_data data;
5406 int rctx;
5407
5408 preempt_disable_notrace();
5409 rctx = perf_swevent_get_recursion_context();
5410 if (rctx < 0)
5411 return;
5412
5413 perf_sample_data_init(&data, addr, 0);
5414
5415 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5416
5417 perf_swevent_put_recursion_context(rctx);
5418 preempt_enable_notrace();
5419 }
5420
5421 static void perf_swevent_read(struct perf_event *event)
5422 {
5423 }
5424
5425 static int perf_swevent_add(struct perf_event *event, int flags)
5426 {
5427 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5428 struct hw_perf_event *hwc = &event->hw;
5429 struct hlist_head *head;
5430
5431 if (is_sampling_event(event)) {
5432 hwc->last_period = hwc->sample_period;
5433 perf_swevent_set_period(event);
5434 }
5435
5436 hwc->state = !(flags & PERF_EF_START);
5437
5438 head = find_swevent_head(swhash, event);
5439 if (!head) {
5440 /*
5441 * We can race with cpu hotplug code. Do not
5442 * WARN if the cpu just got unplugged.
5443 */
5444 WARN_ON_ONCE(swhash->online);
5445 return -EINVAL;
5446 }
5447
5448 hlist_add_head_rcu(&event->hlist_entry, head);
5449
5450 return 0;
5451 }
5452
5453 static void perf_swevent_del(struct perf_event *event, int flags)
5454 {
5455 hlist_del_rcu(&event->hlist_entry);
5456 }
5457
5458 static void perf_swevent_start(struct perf_event *event, int flags)
5459 {
5460 event->hw.state = 0;
5461 }
5462
5463 static void perf_swevent_stop(struct perf_event *event, int flags)
5464 {
5465 event->hw.state = PERF_HES_STOPPED;
5466 }
5467
5468 /* Deref the hlist from the update side */
5469 static inline struct swevent_hlist *
5470 swevent_hlist_deref(struct swevent_htable *swhash)
5471 {
5472 return rcu_dereference_protected(swhash->swevent_hlist,
5473 lockdep_is_held(&swhash->hlist_mutex));
5474 }
5475
5476 static void swevent_hlist_release(struct swevent_htable *swhash)
5477 {
5478 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5479
5480 if (!hlist)
5481 return;
5482
5483 rcu_assign_pointer(swhash->swevent_hlist, NULL);
5484 kfree_rcu(hlist, rcu_head);
5485 }
5486
5487 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5488 {
5489 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5490
5491 mutex_lock(&swhash->hlist_mutex);
5492
5493 if (!--swhash->hlist_refcount)
5494 swevent_hlist_release(swhash);
5495
5496 mutex_unlock(&swhash->hlist_mutex);
5497 }
5498
5499 static void swevent_hlist_put(struct perf_event *event)
5500 {
5501 int cpu;
5502
5503 if (event->cpu != -1) {
5504 swevent_hlist_put_cpu(event, event->cpu);
5505 return;
5506 }
5507
5508 for_each_possible_cpu(cpu)
5509 swevent_hlist_put_cpu(event, cpu);
5510 }
5511
5512 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5513 {
5514 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5515 int err = 0;
5516
5517 mutex_lock(&swhash->hlist_mutex);
5518
5519 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5520 struct swevent_hlist *hlist;
5521
5522 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5523 if (!hlist) {
5524 err = -ENOMEM;
5525 goto exit;
5526 }
5527 rcu_assign_pointer(swhash->swevent_hlist, hlist);
5528 }
5529 swhash->hlist_refcount++;
5530 exit:
5531 mutex_unlock(&swhash->hlist_mutex);
5532
5533 return err;
5534 }
5535
5536 static int swevent_hlist_get(struct perf_event *event)
5537 {
5538 int err;
5539 int cpu, failed_cpu;
5540
5541 if (event->cpu != -1)
5542 return swevent_hlist_get_cpu(event, event->cpu);
5543
5544 get_online_cpus();
5545 for_each_possible_cpu(cpu) {
5546 err = swevent_hlist_get_cpu(event, cpu);
5547 if (err) {
5548 failed_cpu = cpu;
5549 goto fail;
5550 }
5551 }
5552 put_online_cpus();
5553
5554 return 0;
5555 fail:
5556 for_each_possible_cpu(cpu) {
5557 if (cpu == failed_cpu)
5558 break;
5559 swevent_hlist_put_cpu(event, cpu);
5560 }
5561
5562 put_online_cpus();
5563 return err;
5564 }
5565
5566 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5567
5568 static void sw_perf_event_destroy(struct perf_event *event)
5569 {
5570 u64 event_id = event->attr.config;
5571
5572 WARN_ON(event->parent);
5573
5574 static_key_slow_dec(&perf_swevent_enabled[event_id]);
5575 swevent_hlist_put(event);
5576 }
5577
5578 static int perf_swevent_init(struct perf_event *event)
5579 {
5580 u64 event_id = event->attr.config;
5581
5582 if (event->attr.type != PERF_TYPE_SOFTWARE)
5583 return -ENOENT;
5584
5585 /*
5586 * no branch sampling for software events
5587 */
5588 if (has_branch_stack(event))
5589 return -EOPNOTSUPP;
5590
5591 switch (event_id) {
5592 case PERF_COUNT_SW_CPU_CLOCK:
5593 case PERF_COUNT_SW_TASK_CLOCK:
5594 return -ENOENT;
5595
5596 default:
5597 break;
5598 }
5599
5600 if (event_id >= PERF_COUNT_SW_MAX)
5601 return -ENOENT;
5602
5603 if (!event->parent) {
5604 int err;
5605
5606 err = swevent_hlist_get(event);
5607 if (err)
5608 return err;
5609
5610 static_key_slow_inc(&perf_swevent_enabled[event_id]);
5611 event->destroy = sw_perf_event_destroy;
5612 }
5613
5614 return 0;
5615 }
5616
5617 static int perf_swevent_event_idx(struct perf_event *event)
5618 {
5619 return 0;
5620 }
5621
5622 static struct pmu perf_swevent = {
5623 .task_ctx_nr = perf_sw_context,
5624
5625 .event_init = perf_swevent_init,
5626 .add = perf_swevent_add,
5627 .del = perf_swevent_del,
5628 .start = perf_swevent_start,
5629 .stop = perf_swevent_stop,
5630 .read = perf_swevent_read,
5631
5632 .event_idx = perf_swevent_event_idx,
5633 };
5634
5635 #ifdef CONFIG_EVENT_TRACING
5636
5637 static int perf_tp_filter_match(struct perf_event *event,
5638 struct perf_sample_data *data)
5639 {
5640 void *record = data->raw->data;
5641
5642 if (likely(!event->filter) || filter_match_preds(event->filter, record))
5643 return 1;
5644 return 0;
5645 }
5646
5647 static int perf_tp_event_match(struct perf_event *event,
5648 struct perf_sample_data *data,
5649 struct pt_regs *regs)
5650 {
5651 if (event->hw.state & PERF_HES_STOPPED)
5652 return 0;
5653 /*
5654 * All tracepoints are from kernel-space.
5655 */
5656 if (event->attr.exclude_kernel)
5657 return 0;
5658
5659 if (!perf_tp_filter_match(event, data))
5660 return 0;
5661
5662 return 1;
5663 }
5664
5665 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5666 struct pt_regs *regs, struct hlist_head *head, int rctx,
5667 struct task_struct *task)
5668 {
5669 struct perf_sample_data data;
5670 struct perf_event *event;
5671
5672 struct perf_raw_record raw = {
5673 .size = entry_size,
5674 .data = record,
5675 };
5676
5677 perf_sample_data_init(&data, addr, 0);
5678 data.raw = &raw;
5679
5680 hlist_for_each_entry_rcu(event, head, hlist_entry) {
5681 if (perf_tp_event_match(event, &data, regs))
5682 perf_swevent_event(event, count, &data, regs);
5683 }
5684
5685 /*
5686 * If we got specified a target task, also iterate its context and
5687 * deliver this event there too.
5688 */
5689 if (task && task != current) {
5690 struct perf_event_context *ctx;
5691 struct trace_entry *entry = record;
5692
5693 rcu_read_lock();
5694 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
5695 if (!ctx)
5696 goto unlock;
5697
5698 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5699 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5700 continue;
5701 if (event->attr.config != entry->type)
5702 continue;
5703 if (perf_tp_event_match(event, &data, regs))
5704 perf_swevent_event(event, count, &data, regs);
5705 }
5706 unlock:
5707 rcu_read_unlock();
5708 }
5709
5710 perf_swevent_put_recursion_context(rctx);
5711 }
5712 EXPORT_SYMBOL_GPL(perf_tp_event);
5713
5714 static void tp_perf_event_destroy(struct perf_event *event)
5715 {
5716 perf_trace_destroy(event);
5717 }
5718
5719 static int perf_tp_event_init(struct perf_event *event)
5720 {
5721 int err;
5722
5723 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5724 return -ENOENT;
5725
5726 /*
5727 * no branch sampling for tracepoint events
5728 */
5729 if (has_branch_stack(event))
5730 return -EOPNOTSUPP;
5731
5732 err = perf_trace_init(event);
5733 if (err)
5734 return err;
5735
5736 event->destroy = tp_perf_event_destroy;
5737
5738 return 0;
5739 }
5740
5741 static struct pmu perf_tracepoint = {
5742 .task_ctx_nr = perf_sw_context,
5743
5744 .event_init = perf_tp_event_init,
5745 .add = perf_trace_add,
5746 .del = perf_trace_del,
5747 .start = perf_swevent_start,
5748 .stop = perf_swevent_stop,
5749 .read = perf_swevent_read,
5750
5751 .event_idx = perf_swevent_event_idx,
5752 };
5753
5754 static inline void perf_tp_register(void)
5755 {
5756 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5757 }
5758
5759 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5760 {
5761 char *filter_str;
5762 int ret;
5763
5764 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5765 return -EINVAL;
5766
5767 filter_str = strndup_user(arg, PAGE_SIZE);
5768 if (IS_ERR(filter_str))
5769 return PTR_ERR(filter_str);
5770
5771 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5772
5773 kfree(filter_str);
5774 return ret;
5775 }
5776
5777 static void perf_event_free_filter(struct perf_event *event)
5778 {
5779 ftrace_profile_free_filter(event);
5780 }
5781
5782 #else
5783
5784 static inline void perf_tp_register(void)
5785 {
5786 }
5787
5788 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5789 {
5790 return -ENOENT;
5791 }
5792
5793 static void perf_event_free_filter(struct perf_event *event)
5794 {
5795 }
5796
5797 #endif /* CONFIG_EVENT_TRACING */
5798
5799 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5800 void perf_bp_event(struct perf_event *bp, void *data)
5801 {
5802 struct perf_sample_data sample;
5803 struct pt_regs *regs = data;
5804
5805 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
5806
5807 if (!bp->hw.state && !perf_exclude_event(bp, regs))
5808 perf_swevent_event(bp, 1, &sample, regs);
5809 }
5810 #endif
5811
5812 /*
5813 * hrtimer based swevent callback
5814 */
5815
5816 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5817 {
5818 enum hrtimer_restart ret = HRTIMER_RESTART;
5819 struct perf_sample_data data;
5820 struct pt_regs *regs;
5821 struct perf_event *event;
5822 u64 period;
5823
5824 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
5825
5826 if (event->state != PERF_EVENT_STATE_ACTIVE)
5827 return HRTIMER_NORESTART;
5828
5829 event->pmu->read(event);
5830
5831 perf_sample_data_init(&data, 0, event->hw.last_period);
5832 regs = get_irq_regs();
5833
5834 if (regs && !perf_exclude_event(event, regs)) {
5835 if (!(event->attr.exclude_idle && is_idle_task(current)))
5836 if (__perf_event_overflow(event, 1, &data, regs))
5837 ret = HRTIMER_NORESTART;
5838 }
5839
5840 period = max_t(u64, 10000, event->hw.sample_period);
5841 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5842
5843 return ret;
5844 }
5845
5846 static void perf_swevent_start_hrtimer(struct perf_event *event)
5847 {
5848 struct hw_perf_event *hwc = &event->hw;
5849 s64 period;
5850
5851 if (!is_sampling_event(event))
5852 return;
5853
5854 period = local64_read(&hwc->period_left);
5855 if (period) {
5856 if (period < 0)
5857 period = 10000;
5858
5859 local64_set(&hwc->period_left, 0);
5860 } else {
5861 period = max_t(u64, 10000, hwc->sample_period);
5862 }
5863 __hrtimer_start_range_ns(&hwc->hrtimer,
5864 ns_to_ktime(period), 0,
5865 HRTIMER_MODE_REL_PINNED, 0);
5866 }
5867
5868 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5869 {
5870 struct hw_perf_event *hwc = &event->hw;
5871
5872 if (is_sampling_event(event)) {
5873 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
5874 local64_set(&hwc->period_left, ktime_to_ns(remaining));
5875
5876 hrtimer_cancel(&hwc->hrtimer);
5877 }
5878 }
5879
5880 static void perf_swevent_init_hrtimer(struct perf_event *event)
5881 {
5882 struct hw_perf_event *hwc = &event->hw;
5883
5884 if (!is_sampling_event(event))
5885 return;
5886
5887 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5888 hwc->hrtimer.function = perf_swevent_hrtimer;
5889
5890 /*
5891 * Since hrtimers have a fixed rate, we can do a static freq->period
5892 * mapping and avoid the whole period adjust feedback stuff.
5893 */
5894 if (event->attr.freq) {
5895 long freq = event->attr.sample_freq;
5896
5897 event->attr.sample_period = NSEC_PER_SEC / freq;
5898 hwc->sample_period = event->attr.sample_period;
5899 local64_set(&hwc->period_left, hwc->sample_period);
5900 hwc->last_period = hwc->sample_period;
5901 event->attr.freq = 0;
5902 }
5903 }
5904
5905 /*
5906 * Software event: cpu wall time clock
5907 */
5908
5909 static void cpu_clock_event_update(struct perf_event *event)
5910 {
5911 s64 prev;
5912 u64 now;
5913
5914 now = local_clock();
5915 prev = local64_xchg(&event->hw.prev_count, now);
5916 local64_add(now - prev, &event->count);
5917 }
5918
5919 static void cpu_clock_event_start(struct perf_event *event, int flags)
5920 {
5921 local64_set(&event->hw.prev_count, local_clock());
5922 perf_swevent_start_hrtimer(event);
5923 }
5924
5925 static void cpu_clock_event_stop(struct perf_event *event, int flags)
5926 {
5927 perf_swevent_cancel_hrtimer(event);
5928 cpu_clock_event_update(event);
5929 }
5930
5931 static int cpu_clock_event_add(struct perf_event *event, int flags)
5932 {
5933 if (flags & PERF_EF_START)
5934 cpu_clock_event_start(event, flags);
5935
5936 return 0;
5937 }
5938
5939 static void cpu_clock_event_del(struct perf_event *event, int flags)
5940 {
5941 cpu_clock_event_stop(event, flags);
5942 }
5943
5944 static void cpu_clock_event_read(struct perf_event *event)
5945 {
5946 cpu_clock_event_update(event);
5947 }
5948
5949 static int cpu_clock_event_init(struct perf_event *event)
5950 {
5951 if (event->attr.type != PERF_TYPE_SOFTWARE)
5952 return -ENOENT;
5953
5954 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5955 return -ENOENT;
5956
5957 /*
5958 * no branch sampling for software events
5959 */
5960 if (has_branch_stack(event))
5961 return -EOPNOTSUPP;
5962
5963 perf_swevent_init_hrtimer(event);
5964
5965 return 0;
5966 }
5967
5968 static struct pmu perf_cpu_clock = {
5969 .task_ctx_nr = perf_sw_context,
5970
5971 .event_init = cpu_clock_event_init,
5972 .add = cpu_clock_event_add,
5973 .del = cpu_clock_event_del,
5974 .start = cpu_clock_event_start,
5975 .stop = cpu_clock_event_stop,
5976 .read = cpu_clock_event_read,
5977
5978 .event_idx = perf_swevent_event_idx,
5979 };
5980
5981 /*
5982 * Software event: task time clock
5983 */
5984
5985 static void task_clock_event_update(struct perf_event *event, u64 now)
5986 {
5987 u64 prev;
5988 s64 delta;
5989
5990 prev = local64_xchg(&event->hw.prev_count, now);
5991 delta = now - prev;
5992 local64_add(delta, &event->count);
5993 }
5994
5995 static void task_clock_event_start(struct perf_event *event, int flags)
5996 {
5997 local64_set(&event->hw.prev_count, event->ctx->time);
5998 perf_swevent_start_hrtimer(event);
5999 }
6000
6001 static void task_clock_event_stop(struct perf_event *event, int flags)
6002 {
6003 perf_swevent_cancel_hrtimer(event);
6004 task_clock_event_update(event, event->ctx->time);
6005 }
6006
6007 static int task_clock_event_add(struct perf_event *event, int flags)
6008 {
6009 if (flags & PERF_EF_START)
6010 task_clock_event_start(event, flags);
6011
6012 return 0;
6013 }
6014
6015 static void task_clock_event_del(struct perf_event *event, int flags)
6016 {
6017 task_clock_event_stop(event, PERF_EF_UPDATE);
6018 }
6019
6020 static void task_clock_event_read(struct perf_event *event)
6021 {
6022 u64 now = perf_clock();
6023 u64 delta = now - event->ctx->timestamp;
6024 u64 time = event->ctx->time + delta;
6025
6026 task_clock_event_update(event, time);
6027 }
6028
6029 static int task_clock_event_init(struct perf_event *event)
6030 {
6031 if (event->attr.type != PERF_TYPE_SOFTWARE)
6032 return -ENOENT;
6033
6034 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
6035 return -ENOENT;
6036
6037 /*
6038 * no branch sampling for software events
6039 */
6040 if (has_branch_stack(event))
6041 return -EOPNOTSUPP;
6042
6043 perf_swevent_init_hrtimer(event);
6044
6045 return 0;
6046 }
6047
6048 static struct pmu perf_task_clock = {
6049 .task_ctx_nr = perf_sw_context,
6050
6051 .event_init = task_clock_event_init,
6052 .add = task_clock_event_add,
6053 .del = task_clock_event_del,
6054 .start = task_clock_event_start,
6055 .stop = task_clock_event_stop,
6056 .read = task_clock_event_read,
6057
6058 .event_idx = perf_swevent_event_idx,
6059 };
6060
6061 static void perf_pmu_nop_void(struct pmu *pmu)
6062 {
6063 }
6064
6065 static int perf_pmu_nop_int(struct pmu *pmu)
6066 {
6067 return 0;
6068 }
6069
6070 static void perf_pmu_start_txn(struct pmu *pmu)
6071 {
6072 perf_pmu_disable(pmu);
6073 }
6074
6075 static int perf_pmu_commit_txn(struct pmu *pmu)
6076 {
6077 perf_pmu_enable(pmu);
6078 return 0;
6079 }
6080
6081 static void perf_pmu_cancel_txn(struct pmu *pmu)
6082 {
6083 perf_pmu_enable(pmu);
6084 }
6085
6086 static int perf_event_idx_default(struct perf_event *event)
6087 {
6088 return event->hw.idx + 1;
6089 }
6090
6091 /*
6092 * Ensures all contexts with the same task_ctx_nr have the same
6093 * pmu_cpu_context too.
6094 */
6095 static void *find_pmu_context(int ctxn)
6096 {
6097 struct pmu *pmu;
6098
6099 if (ctxn < 0)
6100 return NULL;
6101
6102 list_for_each_entry(pmu, &pmus, entry) {
6103 if (pmu->task_ctx_nr == ctxn)
6104 return pmu->pmu_cpu_context;
6105 }
6106
6107 return NULL;
6108 }
6109
6110 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
6111 {
6112 int cpu;
6113
6114 for_each_possible_cpu(cpu) {
6115 struct perf_cpu_context *cpuctx;
6116
6117 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6118
6119 if (cpuctx->unique_pmu == old_pmu)
6120 cpuctx->unique_pmu = pmu;
6121 }
6122 }
6123
6124 static void free_pmu_context(struct pmu *pmu)
6125 {
6126 struct pmu *i;
6127
6128 mutex_lock(&pmus_lock);
6129 /*
6130 * Like a real lame refcount.
6131 */
6132 list_for_each_entry(i, &pmus, entry) {
6133 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
6134 update_pmu_context(i, pmu);
6135 goto out;
6136 }
6137 }
6138
6139 free_percpu(pmu->pmu_cpu_context);
6140 out:
6141 mutex_unlock(&pmus_lock);
6142 }
6143 static struct idr pmu_idr;
6144
6145 static ssize_t
6146 type_show(struct device *dev, struct device_attribute *attr, char *page)
6147 {
6148 struct pmu *pmu = dev_get_drvdata(dev);
6149
6150 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
6151 }
6152
6153 static struct device_attribute pmu_dev_attrs[] = {
6154 __ATTR_RO(type),
6155 __ATTR_NULL,
6156 };
6157
6158 static int pmu_bus_running;
6159 static struct bus_type pmu_bus = {
6160 .name = "event_source",
6161 .dev_attrs = pmu_dev_attrs,
6162 };
6163
6164 static void pmu_dev_release(struct device *dev)
6165 {
6166 kfree(dev);
6167 }
6168
6169 static int pmu_dev_alloc(struct pmu *pmu)
6170 {
6171 int ret = -ENOMEM;
6172
6173 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
6174 if (!pmu->dev)
6175 goto out;
6176
6177 pmu->dev->groups = pmu->attr_groups;
6178 device_initialize(pmu->dev);
6179 ret = dev_set_name(pmu->dev, "%s", pmu->name);
6180 if (ret)
6181 goto free_dev;
6182
6183 dev_set_drvdata(pmu->dev, pmu);
6184 pmu->dev->bus = &pmu_bus;
6185 pmu->dev->release = pmu_dev_release;
6186 ret = device_add(pmu->dev);
6187 if (ret)
6188 goto free_dev;
6189
6190 out:
6191 return ret;
6192
6193 free_dev:
6194 put_device(pmu->dev);
6195 goto out;
6196 }
6197
6198 static struct lock_class_key cpuctx_mutex;
6199 static struct lock_class_key cpuctx_lock;
6200
6201 int perf_pmu_register(struct pmu *pmu, char *name, int type)
6202 {
6203 int cpu, ret;
6204
6205 mutex_lock(&pmus_lock);
6206 ret = -ENOMEM;
6207 pmu->pmu_disable_count = alloc_percpu(int);
6208 if (!pmu->pmu_disable_count)
6209 goto unlock;
6210
6211 pmu->type = -1;
6212 if (!name)
6213 goto skip_type;
6214 pmu->name = name;
6215
6216 if (type < 0) {
6217 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
6218 if (type < 0) {
6219 ret = type;
6220 goto free_pdc;
6221 }
6222 }
6223 pmu->type = type;
6224
6225 if (pmu_bus_running) {
6226 ret = pmu_dev_alloc(pmu);
6227 if (ret)
6228 goto free_idr;
6229 }
6230
6231 skip_type:
6232 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
6233 if (pmu->pmu_cpu_context)
6234 goto got_cpu_context;
6235
6236 ret = -ENOMEM;
6237 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
6238 if (!pmu->pmu_cpu_context)
6239 goto free_dev;
6240
6241 for_each_possible_cpu(cpu) {
6242 struct perf_cpu_context *cpuctx;
6243
6244 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6245 __perf_event_init_context(&cpuctx->ctx);
6246 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6247 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6248 cpuctx->ctx.type = cpu_context;
6249 cpuctx->ctx.pmu = pmu;
6250 cpuctx->jiffies_interval = 1;
6251 INIT_LIST_HEAD(&cpuctx->rotation_list);
6252 cpuctx->unique_pmu = pmu;
6253 }
6254
6255 got_cpu_context:
6256 if (!pmu->start_txn) {
6257 if (pmu->pmu_enable) {
6258 /*
6259 * If we have pmu_enable/pmu_disable calls, install
6260 * transaction stubs that use that to try and batch
6261 * hardware accesses.
6262 */
6263 pmu->start_txn = perf_pmu_start_txn;
6264 pmu->commit_txn = perf_pmu_commit_txn;
6265 pmu->cancel_txn = perf_pmu_cancel_txn;
6266 } else {
6267 pmu->start_txn = perf_pmu_nop_void;
6268 pmu->commit_txn = perf_pmu_nop_int;
6269 pmu->cancel_txn = perf_pmu_nop_void;
6270 }
6271 }
6272
6273 if (!pmu->pmu_enable) {
6274 pmu->pmu_enable = perf_pmu_nop_void;
6275 pmu->pmu_disable = perf_pmu_nop_void;
6276 }
6277
6278 if (!pmu->event_idx)
6279 pmu->event_idx = perf_event_idx_default;
6280
6281 list_add_rcu(&pmu->entry, &pmus);
6282 ret = 0;
6283 unlock:
6284 mutex_unlock(&pmus_lock);
6285
6286 return ret;
6287
6288 free_dev:
6289 device_del(pmu->dev);
6290 put_device(pmu->dev);
6291
6292 free_idr:
6293 if (pmu->type >= PERF_TYPE_MAX)
6294 idr_remove(&pmu_idr, pmu->type);
6295
6296 free_pdc:
6297 free_percpu(pmu->pmu_disable_count);
6298 goto unlock;
6299 }
6300
6301 void perf_pmu_unregister(struct pmu *pmu)
6302 {
6303 mutex_lock(&pmus_lock);
6304 list_del_rcu(&pmu->entry);
6305 mutex_unlock(&pmus_lock);
6306
6307 /*
6308 * We dereference the pmu list under both SRCU and regular RCU, so
6309 * synchronize against both of those.
6310 */
6311 synchronize_srcu(&pmus_srcu);
6312 synchronize_rcu();
6313
6314 free_percpu(pmu->pmu_disable_count);
6315 if (pmu->type >= PERF_TYPE_MAX)
6316 idr_remove(&pmu_idr, pmu->type);
6317 device_del(pmu->dev);
6318 put_device(pmu->dev);
6319 free_pmu_context(pmu);
6320 }
6321
6322 struct pmu *perf_init_event(struct perf_event *event)
6323 {
6324 struct pmu *pmu = NULL;
6325 int idx;
6326 int ret;
6327
6328 idx = srcu_read_lock(&pmus_srcu);
6329
6330 rcu_read_lock();
6331 pmu = idr_find(&pmu_idr, event->attr.type);
6332 rcu_read_unlock();
6333 if (pmu) {
6334 event->pmu = pmu;
6335 ret = pmu->event_init(event);
6336 if (ret)
6337 pmu = ERR_PTR(ret);
6338 goto unlock;
6339 }
6340
6341 list_for_each_entry_rcu(pmu, &pmus, entry) {
6342 event->pmu = pmu;
6343 ret = pmu->event_init(event);
6344 if (!ret)
6345 goto unlock;
6346
6347 if (ret != -ENOENT) {
6348 pmu = ERR_PTR(ret);
6349 goto unlock;
6350 }
6351 }
6352 pmu = ERR_PTR(-ENOENT);
6353 unlock:
6354 srcu_read_unlock(&pmus_srcu, idx);
6355
6356 return pmu;
6357 }
6358
6359 /*
6360 * Allocate and initialize a event structure
6361 */
6362 static struct perf_event *
6363 perf_event_alloc(struct perf_event_attr *attr, int cpu,
6364 struct task_struct *task,
6365 struct perf_event *group_leader,
6366 struct perf_event *parent_event,
6367 perf_overflow_handler_t overflow_handler,
6368 void *context)
6369 {
6370 struct pmu *pmu;
6371 struct perf_event *event;
6372 struct hw_perf_event *hwc;
6373 long err;
6374
6375 if ((unsigned)cpu >= nr_cpu_ids) {
6376 if (!task || cpu != -1)
6377 return ERR_PTR(-EINVAL);
6378 }
6379
6380 event = kzalloc(sizeof(*event), GFP_KERNEL);
6381 if (!event)
6382 return ERR_PTR(-ENOMEM);
6383
6384 /*
6385 * Single events are their own group leaders, with an
6386 * empty sibling list:
6387 */
6388 if (!group_leader)
6389 group_leader = event;
6390
6391 mutex_init(&event->child_mutex);
6392 INIT_LIST_HEAD(&event->child_list);
6393
6394 INIT_LIST_HEAD(&event->group_entry);
6395 INIT_LIST_HEAD(&event->event_entry);
6396 INIT_LIST_HEAD(&event->sibling_list);
6397 INIT_LIST_HEAD(&event->rb_entry);
6398
6399 init_waitqueue_head(&event->waitq);
6400 init_irq_work(&event->pending, perf_pending_event);
6401
6402 mutex_init(&event->mmap_mutex);
6403
6404 atomic_long_set(&event->refcount, 1);
6405 event->cpu = cpu;
6406 event->attr = *attr;
6407 event->group_leader = group_leader;
6408 event->pmu = NULL;
6409 event->oncpu = -1;
6410
6411 event->parent = parent_event;
6412
6413 event->ns = get_pid_ns(task_active_pid_ns(current));
6414 event->id = atomic64_inc_return(&perf_event_id);
6415
6416 event->state = PERF_EVENT_STATE_INACTIVE;
6417
6418 if (task) {
6419 event->attach_state = PERF_ATTACH_TASK;
6420
6421 if (attr->type == PERF_TYPE_TRACEPOINT)
6422 event->hw.tp_target = task;
6423 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6424 /*
6425 * hw_breakpoint is a bit difficult here..
6426 */
6427 else if (attr->type == PERF_TYPE_BREAKPOINT)
6428 event->hw.bp_target = task;
6429 #endif
6430 }
6431
6432 if (!overflow_handler && parent_event) {
6433 overflow_handler = parent_event->overflow_handler;
6434 context = parent_event->overflow_handler_context;
6435 }
6436
6437 event->overflow_handler = overflow_handler;
6438 event->overflow_handler_context = context;
6439
6440 perf_event__state_init(event);
6441
6442 pmu = NULL;
6443
6444 hwc = &event->hw;
6445 hwc->sample_period = attr->sample_period;
6446 if (attr->freq && attr->sample_freq)
6447 hwc->sample_period = 1;
6448 hwc->last_period = hwc->sample_period;
6449
6450 local64_set(&hwc->period_left, hwc->sample_period);
6451
6452 /*
6453 * we currently do not support PERF_FORMAT_GROUP on inherited events
6454 */
6455 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6456 goto done;
6457
6458 pmu = perf_init_event(event);
6459
6460 done:
6461 err = 0;
6462 if (!pmu)
6463 err = -EINVAL;
6464 else if (IS_ERR(pmu))
6465 err = PTR_ERR(pmu);
6466
6467 if (err) {
6468 if (event->ns)
6469 put_pid_ns(event->ns);
6470 kfree(event);
6471 return ERR_PTR(err);
6472 }
6473
6474 if (!event->parent) {
6475 if (event->attach_state & PERF_ATTACH_TASK)
6476 static_key_slow_inc(&perf_sched_events.key);
6477 if (event->attr.mmap || event->attr.mmap_data)
6478 atomic_inc(&nr_mmap_events);
6479 if (event->attr.comm)
6480 atomic_inc(&nr_comm_events);
6481 if (event->attr.task)
6482 atomic_inc(&nr_task_events);
6483 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6484 err = get_callchain_buffers();
6485 if (err) {
6486 free_event(event);
6487 return ERR_PTR(err);
6488 }
6489 }
6490 if (has_branch_stack(event)) {
6491 static_key_slow_inc(&perf_sched_events.key);
6492 if (!(event->attach_state & PERF_ATTACH_TASK))
6493 atomic_inc(&per_cpu(perf_branch_stack_events,
6494 event->cpu));
6495 }
6496 }
6497
6498 return event;
6499 }
6500
6501 static int perf_copy_attr(struct perf_event_attr __user *uattr,
6502 struct perf_event_attr *attr)
6503 {
6504 u32 size;
6505 int ret;
6506
6507 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6508 return -EFAULT;
6509
6510 /*
6511 * zero the full structure, so that a short copy will be nice.
6512 */
6513 memset(attr, 0, sizeof(*attr));
6514
6515 ret = get_user(size, &uattr->size);
6516 if (ret)
6517 return ret;
6518
6519 if (size > PAGE_SIZE) /* silly large */
6520 goto err_size;
6521
6522 if (!size) /* abi compat */
6523 size = PERF_ATTR_SIZE_VER0;
6524
6525 if (size < PERF_ATTR_SIZE_VER0)
6526 goto err_size;
6527
6528 /*
6529 * If we're handed a bigger struct than we know of,
6530 * ensure all the unknown bits are 0 - i.e. new
6531 * user-space does not rely on any kernel feature
6532 * extensions we dont know about yet.
6533 */
6534 if (size > sizeof(*attr)) {
6535 unsigned char __user *addr;
6536 unsigned char __user *end;
6537 unsigned char val;
6538
6539 addr = (void __user *)uattr + sizeof(*attr);
6540 end = (void __user *)uattr + size;
6541
6542 for (; addr < end; addr++) {
6543 ret = get_user(val, addr);
6544 if (ret)
6545 return ret;
6546 if (val)
6547 goto err_size;
6548 }
6549 size = sizeof(*attr);
6550 }
6551
6552 ret = copy_from_user(attr, uattr, size);
6553 if (ret)
6554 return -EFAULT;
6555
6556 if (attr->__reserved_1)
6557 return -EINVAL;
6558
6559 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6560 return -EINVAL;
6561
6562 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6563 return -EINVAL;
6564
6565 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6566 u64 mask = attr->branch_sample_type;
6567
6568 /* only using defined bits */
6569 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6570 return -EINVAL;
6571
6572 /* at least one branch bit must be set */
6573 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6574 return -EINVAL;
6575
6576 /* kernel level capture: check permissions */
6577 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6578 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6579 return -EACCES;
6580
6581 /* propagate priv level, when not set for branch */
6582 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6583
6584 /* exclude_kernel checked on syscall entry */
6585 if (!attr->exclude_kernel)
6586 mask |= PERF_SAMPLE_BRANCH_KERNEL;
6587
6588 if (!attr->exclude_user)
6589 mask |= PERF_SAMPLE_BRANCH_USER;
6590
6591 if (!attr->exclude_hv)
6592 mask |= PERF_SAMPLE_BRANCH_HV;
6593 /*
6594 * adjust user setting (for HW filter setup)
6595 */
6596 attr->branch_sample_type = mask;
6597 }
6598 }
6599
6600 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
6601 ret = perf_reg_validate(attr->sample_regs_user);
6602 if (ret)
6603 return ret;
6604 }
6605
6606 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
6607 if (!arch_perf_have_user_stack_dump())
6608 return -ENOSYS;
6609
6610 /*
6611 * We have __u32 type for the size, but so far
6612 * we can only use __u16 as maximum due to the
6613 * __u16 sample size limit.
6614 */
6615 if (attr->sample_stack_user >= USHRT_MAX)
6616 ret = -EINVAL;
6617 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
6618 ret = -EINVAL;
6619 }
6620
6621 out:
6622 return ret;
6623
6624 err_size:
6625 put_user(sizeof(*attr), &uattr->size);
6626 ret = -E2BIG;
6627 goto out;
6628 }
6629
6630 static int
6631 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6632 {
6633 struct ring_buffer *rb = NULL, *old_rb = NULL;
6634 int ret = -EINVAL;
6635
6636 if (!output_event)
6637 goto set;
6638
6639 /* don't allow circular references */
6640 if (event == output_event)
6641 goto out;
6642
6643 /*
6644 * Don't allow cross-cpu buffers
6645 */
6646 if (output_event->cpu != event->cpu)
6647 goto out;
6648
6649 /*
6650 * If its not a per-cpu rb, it must be the same task.
6651 */
6652 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6653 goto out;
6654
6655 set:
6656 mutex_lock(&event->mmap_mutex);
6657 /* Can't redirect output if we've got an active mmap() */
6658 if (atomic_read(&event->mmap_count))
6659 goto unlock;
6660
6661 old_rb = event->rb;
6662
6663 if (output_event) {
6664 /* get the rb we want to redirect to */
6665 rb = ring_buffer_get(output_event);
6666 if (!rb)
6667 goto unlock;
6668 }
6669
6670 if (old_rb)
6671 ring_buffer_detach(event, old_rb);
6672
6673 if (rb)
6674 ring_buffer_attach(event, rb);
6675
6676 rcu_assign_pointer(event->rb, rb);
6677
6678 if (old_rb) {
6679 ring_buffer_put(old_rb);
6680 /*
6681 * Since we detached before setting the new rb, so that we
6682 * could attach the new rb, we could have missed a wakeup.
6683 * Provide it now.
6684 */
6685 wake_up_all(&event->waitq);
6686 }
6687
6688 ret = 0;
6689 unlock:
6690 mutex_unlock(&event->mmap_mutex);
6691
6692 out:
6693 return ret;
6694 }
6695
6696 /**
6697 * sys_perf_event_open - open a performance event, associate it to a task/cpu
6698 *
6699 * @attr_uptr: event_id type attributes for monitoring/sampling
6700 * @pid: target pid
6701 * @cpu: target cpu
6702 * @group_fd: group leader event fd
6703 */
6704 SYSCALL_DEFINE5(perf_event_open,
6705 struct perf_event_attr __user *, attr_uptr,
6706 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
6707 {
6708 struct perf_event *group_leader = NULL, *output_event = NULL;
6709 struct perf_event *event, *sibling;
6710 struct perf_event_attr attr;
6711 struct perf_event_context *ctx;
6712 struct file *event_file = NULL;
6713 struct fd group = {NULL, 0};
6714 struct task_struct *task = NULL;
6715 struct pmu *pmu;
6716 int event_fd;
6717 int move_group = 0;
6718 int err;
6719
6720 /* for future expandability... */
6721 if (flags & ~PERF_FLAG_ALL)
6722 return -EINVAL;
6723
6724 err = perf_copy_attr(attr_uptr, &attr);
6725 if (err)
6726 return err;
6727
6728 if (!attr.exclude_kernel) {
6729 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6730 return -EACCES;
6731 }
6732
6733 if (attr.freq) {
6734 if (attr.sample_freq > sysctl_perf_event_sample_rate)
6735 return -EINVAL;
6736 } else {
6737 if (attr.sample_period & (1ULL << 63))
6738 return -EINVAL;
6739 }
6740
6741 /*
6742 * In cgroup mode, the pid argument is used to pass the fd
6743 * opened to the cgroup directory in cgroupfs. The cpu argument
6744 * designates the cpu on which to monitor threads from that
6745 * cgroup.
6746 */
6747 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6748 return -EINVAL;
6749
6750 event_fd = get_unused_fd();
6751 if (event_fd < 0)
6752 return event_fd;
6753
6754 if (group_fd != -1) {
6755 err = perf_fget_light(group_fd, &group);
6756 if (err)
6757 goto err_fd;
6758 group_leader = group.file->private_data;
6759 if (flags & PERF_FLAG_FD_OUTPUT)
6760 output_event = group_leader;
6761 if (flags & PERF_FLAG_FD_NO_GROUP)
6762 group_leader = NULL;
6763 }
6764
6765 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6766 task = find_lively_task_by_vpid(pid);
6767 if (IS_ERR(task)) {
6768 err = PTR_ERR(task);
6769 goto err_group_fd;
6770 }
6771 }
6772
6773 get_online_cpus();
6774
6775 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6776 NULL, NULL);
6777 if (IS_ERR(event)) {
6778 err = PTR_ERR(event);
6779 goto err_task;
6780 }
6781
6782 if (flags & PERF_FLAG_PID_CGROUP) {
6783 err = perf_cgroup_connect(pid, event, &attr, group_leader);
6784 if (err)
6785 goto err_alloc;
6786 /*
6787 * one more event:
6788 * - that has cgroup constraint on event->cpu
6789 * - that may need work on context switch
6790 */
6791 atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
6792 static_key_slow_inc(&perf_sched_events.key);
6793 }
6794
6795 /*
6796 * Special case software events and allow them to be part of
6797 * any hardware group.
6798 */
6799 pmu = event->pmu;
6800
6801 if (group_leader &&
6802 (is_software_event(event) != is_software_event(group_leader))) {
6803 if (is_software_event(event)) {
6804 /*
6805 * If event and group_leader are not both a software
6806 * event, and event is, then group leader is not.
6807 *
6808 * Allow the addition of software events to !software
6809 * groups, this is safe because software events never
6810 * fail to schedule.
6811 */
6812 pmu = group_leader->pmu;
6813 } else if (is_software_event(group_leader) &&
6814 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6815 /*
6816 * In case the group is a pure software group, and we
6817 * try to add a hardware event, move the whole group to
6818 * the hardware context.
6819 */
6820 move_group = 1;
6821 }
6822 }
6823
6824 /*
6825 * Get the target context (task or percpu):
6826 */
6827 ctx = find_get_context(pmu, task, event->cpu);
6828 if (IS_ERR(ctx)) {
6829 err = PTR_ERR(ctx);
6830 goto err_alloc;
6831 }
6832
6833 if (task) {
6834 put_task_struct(task);
6835 task = NULL;
6836 }
6837
6838 /*
6839 * Look up the group leader (we will attach this event to it):
6840 */
6841 if (group_leader) {
6842 err = -EINVAL;
6843
6844 /*
6845 * Do not allow a recursive hierarchy (this new sibling
6846 * becoming part of another group-sibling):
6847 */
6848 if (group_leader->group_leader != group_leader)
6849 goto err_context;
6850 /*
6851 * Do not allow to attach to a group in a different
6852 * task or CPU context:
6853 */
6854 if (move_group) {
6855 if (group_leader->ctx->type != ctx->type)
6856 goto err_context;
6857 } else {
6858 if (group_leader->ctx != ctx)
6859 goto err_context;
6860 }
6861
6862 /*
6863 * Only a group leader can be exclusive or pinned
6864 */
6865 if (attr.exclusive || attr.pinned)
6866 goto err_context;
6867 }
6868
6869 if (output_event) {
6870 err = perf_event_set_output(event, output_event);
6871 if (err)
6872 goto err_context;
6873 }
6874
6875 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
6876 if (IS_ERR(event_file)) {
6877 err = PTR_ERR(event_file);
6878 goto err_context;
6879 }
6880
6881 if (move_group) {
6882 struct perf_event_context *gctx = group_leader->ctx;
6883
6884 mutex_lock(&gctx->mutex);
6885 perf_remove_from_context(group_leader, false);
6886
6887 /*
6888 * Removing from the context ends up with disabled
6889 * event. What we want here is event in the initial
6890 * startup state, ready to be add into new context.
6891 */
6892 perf_event__state_init(group_leader);
6893 list_for_each_entry(sibling, &group_leader->sibling_list,
6894 group_entry) {
6895 perf_remove_from_context(sibling, false);
6896 perf_event__state_init(sibling);
6897 put_ctx(gctx);
6898 }
6899 mutex_unlock(&gctx->mutex);
6900 put_ctx(gctx);
6901 }
6902
6903 WARN_ON_ONCE(ctx->parent_ctx);
6904 mutex_lock(&ctx->mutex);
6905
6906 if (move_group) {
6907 synchronize_rcu();
6908 perf_install_in_context(ctx, group_leader, group_leader->cpu);
6909 get_ctx(ctx);
6910 list_for_each_entry(sibling, &group_leader->sibling_list,
6911 group_entry) {
6912 perf_install_in_context(ctx, sibling, sibling->cpu);
6913 get_ctx(ctx);
6914 }
6915 }
6916
6917 perf_install_in_context(ctx, event, event->cpu);
6918 ++ctx->generation;
6919 perf_unpin_context(ctx);
6920 mutex_unlock(&ctx->mutex);
6921
6922 put_online_cpus();
6923
6924 event->owner = current;
6925
6926 mutex_lock(&current->perf_event_mutex);
6927 list_add_tail(&event->owner_entry, &current->perf_event_list);
6928 mutex_unlock(&current->perf_event_mutex);
6929
6930 /*
6931 * Precalculate sample_data sizes
6932 */
6933 perf_event__header_size(event);
6934 perf_event__id_header_size(event);
6935
6936 /*
6937 * Drop the reference on the group_event after placing the
6938 * new event on the sibling_list. This ensures destruction
6939 * of the group leader will find the pointer to itself in
6940 * perf_group_detach().
6941 */
6942 fdput(group);
6943 fd_install(event_fd, event_file);
6944 return event_fd;
6945
6946 err_context:
6947 perf_unpin_context(ctx);
6948 put_ctx(ctx);
6949 err_alloc:
6950 free_event(event);
6951 err_task:
6952 put_online_cpus();
6953 if (task)
6954 put_task_struct(task);
6955 err_group_fd:
6956 fdput(group);
6957 err_fd:
6958 put_unused_fd(event_fd);
6959 return err;
6960 }
6961
6962 /**
6963 * perf_event_create_kernel_counter
6964 *
6965 * @attr: attributes of the counter to create
6966 * @cpu: cpu in which the counter is bound
6967 * @task: task to profile (NULL for percpu)
6968 */
6969 struct perf_event *
6970 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
6971 struct task_struct *task,
6972 perf_overflow_handler_t overflow_handler,
6973 void *context)
6974 {
6975 struct perf_event_context *ctx;
6976 struct perf_event *event;
6977 int err;
6978
6979 /*
6980 * Get the target context (task or percpu):
6981 */
6982
6983 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
6984 overflow_handler, context);
6985 if (IS_ERR(event)) {
6986 err = PTR_ERR(event);
6987 goto err;
6988 }
6989
6990 ctx = find_get_context(event->pmu, task, cpu);
6991 if (IS_ERR(ctx)) {
6992 err = PTR_ERR(ctx);
6993 goto err_free;
6994 }
6995
6996 WARN_ON_ONCE(ctx->parent_ctx);
6997 mutex_lock(&ctx->mutex);
6998 perf_install_in_context(ctx, event, cpu);
6999 ++ctx->generation;
7000 perf_unpin_context(ctx);
7001 mutex_unlock(&ctx->mutex);
7002
7003 return event;
7004
7005 err_free:
7006 free_event(event);
7007 err:
7008 return ERR_PTR(err);
7009 }
7010 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
7011
7012 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
7013 {
7014 struct perf_event_context *src_ctx;
7015 struct perf_event_context *dst_ctx;
7016 struct perf_event *event, *tmp;
7017 LIST_HEAD(events);
7018
7019 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
7020 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
7021
7022 mutex_lock(&src_ctx->mutex);
7023 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
7024 event_entry) {
7025 perf_remove_from_context(event, false);
7026 put_ctx(src_ctx);
7027 list_add(&event->event_entry, &events);
7028 }
7029 mutex_unlock(&src_ctx->mutex);
7030
7031 synchronize_rcu();
7032
7033 mutex_lock(&dst_ctx->mutex);
7034 list_for_each_entry_safe(event, tmp, &events, event_entry) {
7035 list_del(&event->event_entry);
7036 if (event->state >= PERF_EVENT_STATE_OFF)
7037 event->state = PERF_EVENT_STATE_INACTIVE;
7038 perf_install_in_context(dst_ctx, event, dst_cpu);
7039 get_ctx(dst_ctx);
7040 }
7041 mutex_unlock(&dst_ctx->mutex);
7042 }
7043 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
7044
7045 static void sync_child_event(struct perf_event *child_event,
7046 struct task_struct *child)
7047 {
7048 struct perf_event *parent_event = child_event->parent;
7049 u64 child_val;
7050
7051 if (child_event->attr.inherit_stat)
7052 perf_event_read_event(child_event, child);
7053
7054 child_val = perf_event_count(child_event);
7055
7056 /*
7057 * Add back the child's count to the parent's count:
7058 */
7059 atomic64_add(child_val, &parent_event->child_count);
7060 atomic64_add(child_event->total_time_enabled,
7061 &parent_event->child_total_time_enabled);
7062 atomic64_add(child_event->total_time_running,
7063 &parent_event->child_total_time_running);
7064
7065 /*
7066 * Remove this event from the parent's list
7067 */
7068 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7069 mutex_lock(&parent_event->child_mutex);
7070 list_del_init(&child_event->child_list);
7071 mutex_unlock(&parent_event->child_mutex);
7072
7073 /*
7074 * Release the parent event, if this was the last
7075 * reference to it.
7076 */
7077 put_event(parent_event);
7078 }
7079
7080 static void
7081 __perf_event_exit_task(struct perf_event *child_event,
7082 struct perf_event_context *child_ctx,
7083 struct task_struct *child)
7084 {
7085 perf_remove_from_context(child_event, !!child_event->parent);
7086
7087 /*
7088 * It can happen that the parent exits first, and has events
7089 * that are still around due to the child reference. These
7090 * events need to be zapped.
7091 */
7092 if (child_event->parent) {
7093 sync_child_event(child_event, child);
7094 free_event(child_event);
7095 }
7096 }
7097
7098 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
7099 {
7100 struct perf_event *child_event, *tmp;
7101 struct perf_event_context *child_ctx;
7102 unsigned long flags;
7103
7104 if (likely(!child->perf_event_ctxp[ctxn])) {
7105 perf_event_task(child, NULL, 0);
7106 return;
7107 }
7108
7109 local_irq_save(flags);
7110 /*
7111 * We can't reschedule here because interrupts are disabled,
7112 * and either child is current or it is a task that can't be
7113 * scheduled, so we are now safe from rescheduling changing
7114 * our context.
7115 */
7116 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
7117
7118 /*
7119 * Take the context lock here so that if find_get_context is
7120 * reading child->perf_event_ctxp, we wait until it has
7121 * incremented the context's refcount before we do put_ctx below.
7122 */
7123 raw_spin_lock(&child_ctx->lock);
7124 task_ctx_sched_out(child_ctx);
7125 child->perf_event_ctxp[ctxn] = NULL;
7126 /*
7127 * If this context is a clone; unclone it so it can't get
7128 * swapped to another process while we're removing all
7129 * the events from it.
7130 */
7131 unclone_ctx(child_ctx);
7132 update_context_time(child_ctx);
7133 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7134
7135 /*
7136 * Report the task dead after unscheduling the events so that we
7137 * won't get any samples after PERF_RECORD_EXIT. We can however still
7138 * get a few PERF_RECORD_READ events.
7139 */
7140 perf_event_task(child, child_ctx, 0);
7141
7142 /*
7143 * We can recurse on the same lock type through:
7144 *
7145 * __perf_event_exit_task()
7146 * sync_child_event()
7147 * put_event()
7148 * mutex_lock(&ctx->mutex)
7149 *
7150 * But since its the parent context it won't be the same instance.
7151 */
7152 mutex_lock(&child_ctx->mutex);
7153
7154 again:
7155 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
7156 group_entry)
7157 __perf_event_exit_task(child_event, child_ctx, child);
7158
7159 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
7160 group_entry)
7161 __perf_event_exit_task(child_event, child_ctx, child);
7162
7163 /*
7164 * If the last event was a group event, it will have appended all
7165 * its siblings to the list, but we obtained 'tmp' before that which
7166 * will still point to the list head terminating the iteration.
7167 */
7168 if (!list_empty(&child_ctx->pinned_groups) ||
7169 !list_empty(&child_ctx->flexible_groups))
7170 goto again;
7171
7172 mutex_unlock(&child_ctx->mutex);
7173
7174 put_ctx(child_ctx);
7175 }
7176
7177 /*
7178 * When a child task exits, feed back event values to parent events.
7179 */
7180 void perf_event_exit_task(struct task_struct *child)
7181 {
7182 struct perf_event *event, *tmp;
7183 int ctxn;
7184
7185 mutex_lock(&child->perf_event_mutex);
7186 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
7187 owner_entry) {
7188 list_del_init(&event->owner_entry);
7189
7190 /*
7191 * Ensure the list deletion is visible before we clear
7192 * the owner, closes a race against perf_release() where
7193 * we need to serialize on the owner->perf_event_mutex.
7194 */
7195 smp_wmb();
7196 event->owner = NULL;
7197 }
7198 mutex_unlock(&child->perf_event_mutex);
7199
7200 for_each_task_context_nr(ctxn)
7201 perf_event_exit_task_context(child, ctxn);
7202 }
7203
7204 static void perf_free_event(struct perf_event *event,
7205 struct perf_event_context *ctx)
7206 {
7207 struct perf_event *parent = event->parent;
7208
7209 if (WARN_ON_ONCE(!parent))
7210 return;
7211
7212 mutex_lock(&parent->child_mutex);
7213 list_del_init(&event->child_list);
7214 mutex_unlock(&parent->child_mutex);
7215
7216 put_event(parent);
7217
7218 perf_group_detach(event);
7219 list_del_event(event, ctx);
7220 free_event(event);
7221 }
7222
7223 /*
7224 * free an unexposed, unused context as created by inheritance by
7225 * perf_event_init_task below, used by fork() in case of fail.
7226 */
7227 void perf_event_free_task(struct task_struct *task)
7228 {
7229 struct perf_event_context *ctx;
7230 struct perf_event *event, *tmp;
7231 int ctxn;
7232
7233 for_each_task_context_nr(ctxn) {
7234 ctx = task->perf_event_ctxp[ctxn];
7235 if (!ctx)
7236 continue;
7237
7238 mutex_lock(&ctx->mutex);
7239 again:
7240 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
7241 group_entry)
7242 perf_free_event(event, ctx);
7243
7244 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
7245 group_entry)
7246 perf_free_event(event, ctx);
7247
7248 if (!list_empty(&ctx->pinned_groups) ||
7249 !list_empty(&ctx->flexible_groups))
7250 goto again;
7251
7252 mutex_unlock(&ctx->mutex);
7253
7254 put_ctx(ctx);
7255 }
7256 }
7257
7258 void perf_event_delayed_put(struct task_struct *task)
7259 {
7260 int ctxn;
7261
7262 for_each_task_context_nr(ctxn)
7263 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
7264 }
7265
7266 /*
7267 * inherit a event from parent task to child task:
7268 */
7269 static struct perf_event *
7270 inherit_event(struct perf_event *parent_event,
7271 struct task_struct *parent,
7272 struct perf_event_context *parent_ctx,
7273 struct task_struct *child,
7274 struct perf_event *group_leader,
7275 struct perf_event_context *child_ctx)
7276 {
7277 struct perf_event *child_event;
7278 unsigned long flags;
7279
7280 /*
7281 * Instead of creating recursive hierarchies of events,
7282 * we link inherited events back to the original parent,
7283 * which has a filp for sure, which we use as the reference
7284 * count:
7285 */
7286 if (parent_event->parent)
7287 parent_event = parent_event->parent;
7288
7289 child_event = perf_event_alloc(&parent_event->attr,
7290 parent_event->cpu,
7291 child,
7292 group_leader, parent_event,
7293 NULL, NULL);
7294 if (IS_ERR(child_event))
7295 return child_event;
7296
7297 if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
7298 free_event(child_event);
7299 return NULL;
7300 }
7301
7302 get_ctx(child_ctx);
7303
7304 /*
7305 * Make the child state follow the state of the parent event,
7306 * not its attr.disabled bit. We hold the parent's mutex,
7307 * so we won't race with perf_event_{en, dis}able_family.
7308 */
7309 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
7310 child_event->state = PERF_EVENT_STATE_INACTIVE;
7311 else
7312 child_event->state = PERF_EVENT_STATE_OFF;
7313
7314 if (parent_event->attr.freq) {
7315 u64 sample_period = parent_event->hw.sample_period;
7316 struct hw_perf_event *hwc = &child_event->hw;
7317
7318 hwc->sample_period = sample_period;
7319 hwc->last_period = sample_period;
7320
7321 local64_set(&hwc->period_left, sample_period);
7322 }
7323
7324 child_event->ctx = child_ctx;
7325 child_event->overflow_handler = parent_event->overflow_handler;
7326 child_event->overflow_handler_context
7327 = parent_event->overflow_handler_context;
7328
7329 /*
7330 * Precalculate sample_data sizes
7331 */
7332 perf_event__header_size(child_event);
7333 perf_event__id_header_size(child_event);
7334
7335 /*
7336 * Link it up in the child's context:
7337 */
7338 raw_spin_lock_irqsave(&child_ctx->lock, flags);
7339 add_event_to_ctx(child_event, child_ctx);
7340 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7341
7342 /*
7343 * Link this into the parent event's child list
7344 */
7345 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7346 mutex_lock(&parent_event->child_mutex);
7347 list_add_tail(&child_event->child_list, &parent_event->child_list);
7348 mutex_unlock(&parent_event->child_mutex);
7349
7350 return child_event;
7351 }
7352
7353 static int inherit_group(struct perf_event *parent_event,
7354 struct task_struct *parent,
7355 struct perf_event_context *parent_ctx,
7356 struct task_struct *child,
7357 struct perf_event_context *child_ctx)
7358 {
7359 struct perf_event *leader;
7360 struct perf_event *sub;
7361 struct perf_event *child_ctr;
7362
7363 leader = inherit_event(parent_event, parent, parent_ctx,
7364 child, NULL, child_ctx);
7365 if (IS_ERR(leader))
7366 return PTR_ERR(leader);
7367 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
7368 child_ctr = inherit_event(sub, parent, parent_ctx,
7369 child, leader, child_ctx);
7370 if (IS_ERR(child_ctr))
7371 return PTR_ERR(child_ctr);
7372 }
7373 return 0;
7374 }
7375
7376 static int
7377 inherit_task_group(struct perf_event *event, struct task_struct *parent,
7378 struct perf_event_context *parent_ctx,
7379 struct task_struct *child, int ctxn,
7380 int *inherited_all)
7381 {
7382 int ret;
7383 struct perf_event_context *child_ctx;
7384
7385 if (!event->attr.inherit) {
7386 *inherited_all = 0;
7387 return 0;
7388 }
7389
7390 child_ctx = child->perf_event_ctxp[ctxn];
7391 if (!child_ctx) {
7392 /*
7393 * This is executed from the parent task context, so
7394 * inherit events that have been marked for cloning.
7395 * First allocate and initialize a context for the
7396 * child.
7397 */
7398
7399 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
7400 if (!child_ctx)
7401 return -ENOMEM;
7402
7403 child->perf_event_ctxp[ctxn] = child_ctx;
7404 }
7405
7406 ret = inherit_group(event, parent, parent_ctx,
7407 child, child_ctx);
7408
7409 if (ret)
7410 *inherited_all = 0;
7411
7412 return ret;
7413 }
7414
7415 /*
7416 * Initialize the perf_event context in task_struct
7417 */
7418 int perf_event_init_context(struct task_struct *child, int ctxn)
7419 {
7420 struct perf_event_context *child_ctx, *parent_ctx;
7421 struct perf_event_context *cloned_ctx;
7422 struct perf_event *event;
7423 struct task_struct *parent = current;
7424 int inherited_all = 1;
7425 unsigned long flags;
7426 int ret = 0;
7427
7428 if (likely(!parent->perf_event_ctxp[ctxn]))
7429 return 0;
7430
7431 /*
7432 * If the parent's context is a clone, pin it so it won't get
7433 * swapped under us.
7434 */
7435 parent_ctx = perf_pin_task_context(parent, ctxn);
7436
7437 /*
7438 * No need to check if parent_ctx != NULL here; since we saw
7439 * it non-NULL earlier, the only reason for it to become NULL
7440 * is if we exit, and since we're currently in the middle of
7441 * a fork we can't be exiting at the same time.
7442 */
7443
7444 /*
7445 * Lock the parent list. No need to lock the child - not PID
7446 * hashed yet and not running, so nobody can access it.
7447 */
7448 mutex_lock(&parent_ctx->mutex);
7449
7450 /*
7451 * We dont have to disable NMIs - we are only looking at
7452 * the list, not manipulating it:
7453 */
7454 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
7455 ret = inherit_task_group(event, parent, parent_ctx,
7456 child, ctxn, &inherited_all);
7457 if (ret)
7458 break;
7459 }
7460
7461 /*
7462 * We can't hold ctx->lock when iterating the ->flexible_group list due
7463 * to allocations, but we need to prevent rotation because
7464 * rotate_ctx() will change the list from interrupt context.
7465 */
7466 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7467 parent_ctx->rotate_disable = 1;
7468 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7469
7470 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
7471 ret = inherit_task_group(event, parent, parent_ctx,
7472 child, ctxn, &inherited_all);
7473 if (ret)
7474 break;
7475 }
7476
7477 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7478 parent_ctx->rotate_disable = 0;
7479
7480 child_ctx = child->perf_event_ctxp[ctxn];
7481
7482 if (child_ctx && inherited_all) {
7483 /*
7484 * Mark the child context as a clone of the parent
7485 * context, or of whatever the parent is a clone of.
7486 *
7487 * Note that if the parent is a clone, the holding of
7488 * parent_ctx->lock avoids it from being uncloned.
7489 */
7490 cloned_ctx = parent_ctx->parent_ctx;
7491 if (cloned_ctx) {
7492 child_ctx->parent_ctx = cloned_ctx;
7493 child_ctx->parent_gen = parent_ctx->parent_gen;
7494 } else {
7495 child_ctx->parent_ctx = parent_ctx;
7496 child_ctx->parent_gen = parent_ctx->generation;
7497 }
7498 get_ctx(child_ctx->parent_ctx);
7499 }
7500
7501 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7502 mutex_unlock(&parent_ctx->mutex);
7503
7504 perf_unpin_context(parent_ctx);
7505 put_ctx(parent_ctx);
7506
7507 return ret;
7508 }
7509
7510 /*
7511 * Initialize the perf_event context in task_struct
7512 */
7513 int perf_event_init_task(struct task_struct *child)
7514 {
7515 int ctxn, ret;
7516
7517 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
7518 mutex_init(&child->perf_event_mutex);
7519 INIT_LIST_HEAD(&child->perf_event_list);
7520
7521 for_each_task_context_nr(ctxn) {
7522 ret = perf_event_init_context(child, ctxn);
7523 if (ret) {
7524 perf_event_free_task(child);
7525 return ret;
7526 }
7527 }
7528
7529 return 0;
7530 }
7531
7532 static void __init perf_event_init_all_cpus(void)
7533 {
7534 struct swevent_htable *swhash;
7535 int cpu;
7536
7537 for_each_possible_cpu(cpu) {
7538 swhash = &per_cpu(swevent_htable, cpu);
7539 mutex_init(&swhash->hlist_mutex);
7540 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7541 }
7542 }
7543
7544 static void __cpuinit perf_event_init_cpu(int cpu)
7545 {
7546 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7547
7548 mutex_lock(&swhash->hlist_mutex);
7549 swhash->online = true;
7550 if (swhash->hlist_refcount > 0) {
7551 struct swevent_hlist *hlist;
7552
7553 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
7554 WARN_ON(!hlist);
7555 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7556 }
7557 mutex_unlock(&swhash->hlist_mutex);
7558 }
7559
7560 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7561 static void perf_pmu_rotate_stop(struct pmu *pmu)
7562 {
7563 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7564
7565 WARN_ON(!irqs_disabled());
7566
7567 list_del_init(&cpuctx->rotation_list);
7568 }
7569
7570 static void __perf_event_exit_context(void *__info)
7571 {
7572 struct remove_event re = { .detach_group = false };
7573 struct perf_event_context *ctx = __info;
7574
7575 perf_pmu_rotate_stop(ctx->pmu);
7576
7577 rcu_read_lock();
7578 list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
7579 __perf_remove_from_context(&re);
7580 rcu_read_unlock();
7581 }
7582
7583 static void perf_event_exit_cpu_context(int cpu)
7584 {
7585 struct perf_event_context *ctx;
7586 struct pmu *pmu;
7587 int idx;
7588
7589 idx = srcu_read_lock(&pmus_srcu);
7590 list_for_each_entry_rcu(pmu, &pmus, entry) {
7591 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
7592
7593 mutex_lock(&ctx->mutex);
7594 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7595 mutex_unlock(&ctx->mutex);
7596 }
7597 srcu_read_unlock(&pmus_srcu, idx);
7598 }
7599
7600 static void perf_event_exit_cpu(int cpu)
7601 {
7602 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7603
7604 perf_event_exit_cpu_context(cpu);
7605
7606 mutex_lock(&swhash->hlist_mutex);
7607 swhash->online = false;
7608 swevent_hlist_release(swhash);
7609 mutex_unlock(&swhash->hlist_mutex);
7610 }
7611 #else
7612 static inline void perf_event_exit_cpu(int cpu) { }
7613 #endif
7614
7615 static int
7616 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7617 {
7618 int cpu;
7619
7620 for_each_online_cpu(cpu)
7621 perf_event_exit_cpu(cpu);
7622
7623 return NOTIFY_OK;
7624 }
7625
7626 /*
7627 * Run the perf reboot notifier at the very last possible moment so that
7628 * the generic watchdog code runs as long as possible.
7629 */
7630 static struct notifier_block perf_reboot_notifier = {
7631 .notifier_call = perf_reboot,
7632 .priority = INT_MIN,
7633 };
7634
7635 static int __cpuinit
7636 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7637 {
7638 unsigned int cpu = (long)hcpu;
7639
7640 switch (action & ~CPU_TASKS_FROZEN) {
7641
7642 case CPU_UP_PREPARE:
7643 case CPU_DOWN_FAILED:
7644 perf_event_init_cpu(cpu);
7645 break;
7646
7647 case CPU_UP_CANCELED:
7648 case CPU_DOWN_PREPARE:
7649 perf_event_exit_cpu(cpu);
7650 break;
7651
7652 default:
7653 break;
7654 }
7655
7656 return NOTIFY_OK;
7657 }
7658
7659 void __init perf_event_init(void)
7660 {
7661 int ret;
7662
7663 idr_init(&pmu_idr);
7664
7665 perf_event_init_all_cpus();
7666 init_srcu_struct(&pmus_srcu);
7667 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7668 perf_pmu_register(&perf_cpu_clock, NULL, -1);
7669 perf_pmu_register(&perf_task_clock, NULL, -1);
7670 perf_tp_register();
7671 perf_cpu_notifier(perf_cpu_notify);
7672 register_reboot_notifier(&perf_reboot_notifier);
7673
7674 ret = init_hw_breakpoint();
7675 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7676
7677 /* do not patch jump label more than once per second */
7678 jump_label_rate_limit(&perf_sched_events, HZ);
7679
7680 /*
7681 * Build time assertion that we keep the data_head at the intended
7682 * location. IOW, validation we got the __reserved[] size right.
7683 */
7684 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
7685 != 1024);
7686 }
7687
7688 static int __init perf_event_sysfs_init(void)
7689 {
7690 struct pmu *pmu;
7691 int ret;
7692
7693 mutex_lock(&pmus_lock);
7694
7695 ret = bus_register(&pmu_bus);
7696 if (ret)
7697 goto unlock;
7698
7699 list_for_each_entry(pmu, &pmus, entry) {
7700 if (!pmu->name || pmu->type < 0)
7701 continue;
7702
7703 ret = pmu_dev_alloc(pmu);
7704 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
7705 }
7706 pmu_bus_running = 1;
7707 ret = 0;
7708
7709 unlock:
7710 mutex_unlock(&pmus_lock);
7711
7712 return ret;
7713 }
7714 device_initcall(perf_event_sysfs_init);
7715
7716 #ifdef CONFIG_CGROUP_PERF
7717 static struct cgroup_subsys_state *perf_cgroup_css_alloc(struct cgroup *cont)
7718 {
7719 struct perf_cgroup *jc;
7720
7721 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
7722 if (!jc)
7723 return ERR_PTR(-ENOMEM);
7724
7725 jc->info = alloc_percpu(struct perf_cgroup_info);
7726 if (!jc->info) {
7727 kfree(jc);
7728 return ERR_PTR(-ENOMEM);
7729 }
7730
7731 return &jc->css;
7732 }
7733
7734 static void perf_cgroup_css_free(struct cgroup *cont)
7735 {
7736 struct perf_cgroup *jc;
7737 jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
7738 struct perf_cgroup, css);
7739 free_percpu(jc->info);
7740 kfree(jc);
7741 }
7742
7743 static int __perf_cgroup_move(void *info)
7744 {
7745 struct task_struct *task = info;
7746 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7747 return 0;
7748 }
7749
7750 static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
7751 {
7752 struct task_struct *task;
7753
7754 cgroup_taskset_for_each(task, cgrp, tset)
7755 task_function_call(task, __perf_cgroup_move, task);
7756 }
7757
7758 static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7759 struct task_struct *task)
7760 {
7761 /*
7762 * cgroup_exit() is called in the copy_process() failure path.
7763 * Ignore this case since the task hasn't ran yet, this avoids
7764 * trying to poke a half freed task state from generic code.
7765 */
7766 if (!(task->flags & PF_EXITING))
7767 return;
7768
7769 task_function_call(task, __perf_cgroup_move, task);
7770 }
7771
7772 struct cgroup_subsys perf_subsys = {
7773 .name = "perf_event",
7774 .subsys_id = perf_subsys_id,
7775 .css_alloc = perf_cgroup_css_alloc,
7776 .css_free = perf_cgroup_css_free,
7777 .exit = perf_cgroup_exit,
7778 .attach = perf_cgroup_attach,
7779 };
7780 #endif /* CONFIG_CGROUP_PERF */