static keys: Introduce 'struct static_key', static_key_true()/false() and static_key_...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / events / core.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/rculist.h>
32 #include <linux/uaccess.h>
33 #include <linux/syscalls.h>
34 #include <linux/anon_inodes.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/perf_event.h>
37 #include <linux/ftrace_event.h>
38 #include <linux/hw_breakpoint.h>
39
40 #include "internal.h"
41
42 #include <asm/irq_regs.h>
43
44 struct remote_function_call {
45 struct task_struct *p;
46 int (*func)(void *info);
47 void *info;
48 int ret;
49 };
50
51 static void remote_function(void *data)
52 {
53 struct remote_function_call *tfc = data;
54 struct task_struct *p = tfc->p;
55
56 if (p) {
57 tfc->ret = -EAGAIN;
58 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
59 return;
60 }
61
62 tfc->ret = tfc->func(tfc->info);
63 }
64
65 /**
66 * task_function_call - call a function on the cpu on which a task runs
67 * @p: the task to evaluate
68 * @func: the function to be called
69 * @info: the function call argument
70 *
71 * Calls the function @func when the task is currently running. This might
72 * be on the current CPU, which just calls the function directly
73 *
74 * returns: @func return value, or
75 * -ESRCH - when the process isn't running
76 * -EAGAIN - when the process moved away
77 */
78 static int
79 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
80 {
81 struct remote_function_call data = {
82 .p = p,
83 .func = func,
84 .info = info,
85 .ret = -ESRCH, /* No such (running) process */
86 };
87
88 if (task_curr(p))
89 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
90
91 return data.ret;
92 }
93
94 /**
95 * cpu_function_call - call a function on the cpu
96 * @func: the function to be called
97 * @info: the function call argument
98 *
99 * Calls the function @func on the remote cpu.
100 *
101 * returns: @func return value or -ENXIO when the cpu is offline
102 */
103 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
104 {
105 struct remote_function_call data = {
106 .p = NULL,
107 .func = func,
108 .info = info,
109 .ret = -ENXIO, /* No such CPU */
110 };
111
112 smp_call_function_single(cpu, remote_function, &data, 1);
113
114 return data.ret;
115 }
116
117 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
118 PERF_FLAG_FD_OUTPUT |\
119 PERF_FLAG_PID_CGROUP)
120
121 enum event_type_t {
122 EVENT_FLEXIBLE = 0x1,
123 EVENT_PINNED = 0x2,
124 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
125 };
126
127 /*
128 * perf_sched_events : >0 events exist
129 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
130 */
131 struct static_key_deferred perf_sched_events __read_mostly;
132 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
133
134 static atomic_t nr_mmap_events __read_mostly;
135 static atomic_t nr_comm_events __read_mostly;
136 static atomic_t nr_task_events __read_mostly;
137
138 static LIST_HEAD(pmus);
139 static DEFINE_MUTEX(pmus_lock);
140 static struct srcu_struct pmus_srcu;
141
142 /*
143 * perf event paranoia level:
144 * -1 - not paranoid at all
145 * 0 - disallow raw tracepoint access for unpriv
146 * 1 - disallow cpu events for unpriv
147 * 2 - disallow kernel profiling for unpriv
148 */
149 int sysctl_perf_event_paranoid __read_mostly = 1;
150
151 /* Minimum for 512 kiB + 1 user control page */
152 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
153
154 /*
155 * max perf event sample rate
156 */
157 #define DEFAULT_MAX_SAMPLE_RATE 100000
158 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
159 static int max_samples_per_tick __read_mostly =
160 DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
161
162 int perf_proc_update_handler(struct ctl_table *table, int write,
163 void __user *buffer, size_t *lenp,
164 loff_t *ppos)
165 {
166 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
167
168 if (ret || !write)
169 return ret;
170
171 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
172
173 return 0;
174 }
175
176 static atomic64_t perf_event_id;
177
178 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
179 enum event_type_t event_type);
180
181 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
182 enum event_type_t event_type,
183 struct task_struct *task);
184
185 static void update_context_time(struct perf_event_context *ctx);
186 static u64 perf_event_time(struct perf_event *event);
187
188 static void ring_buffer_attach(struct perf_event *event,
189 struct ring_buffer *rb);
190
191 void __weak perf_event_print_debug(void) { }
192
193 extern __weak const char *perf_pmu_name(void)
194 {
195 return "pmu";
196 }
197
198 static inline u64 perf_clock(void)
199 {
200 return local_clock();
201 }
202
203 static inline struct perf_cpu_context *
204 __get_cpu_context(struct perf_event_context *ctx)
205 {
206 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
207 }
208
209 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
210 struct perf_event_context *ctx)
211 {
212 raw_spin_lock(&cpuctx->ctx.lock);
213 if (ctx)
214 raw_spin_lock(&ctx->lock);
215 }
216
217 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
218 struct perf_event_context *ctx)
219 {
220 if (ctx)
221 raw_spin_unlock(&ctx->lock);
222 raw_spin_unlock(&cpuctx->ctx.lock);
223 }
224
225 #ifdef CONFIG_CGROUP_PERF
226
227 /*
228 * Must ensure cgroup is pinned (css_get) before calling
229 * this function. In other words, we cannot call this function
230 * if there is no cgroup event for the current CPU context.
231 */
232 static inline struct perf_cgroup *
233 perf_cgroup_from_task(struct task_struct *task)
234 {
235 return container_of(task_subsys_state(task, perf_subsys_id),
236 struct perf_cgroup, css);
237 }
238
239 static inline bool
240 perf_cgroup_match(struct perf_event *event)
241 {
242 struct perf_event_context *ctx = event->ctx;
243 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
244
245 return !event->cgrp || event->cgrp == cpuctx->cgrp;
246 }
247
248 static inline void perf_get_cgroup(struct perf_event *event)
249 {
250 css_get(&event->cgrp->css);
251 }
252
253 static inline void perf_put_cgroup(struct perf_event *event)
254 {
255 css_put(&event->cgrp->css);
256 }
257
258 static inline void perf_detach_cgroup(struct perf_event *event)
259 {
260 perf_put_cgroup(event);
261 event->cgrp = NULL;
262 }
263
264 static inline int is_cgroup_event(struct perf_event *event)
265 {
266 return event->cgrp != NULL;
267 }
268
269 static inline u64 perf_cgroup_event_time(struct perf_event *event)
270 {
271 struct perf_cgroup_info *t;
272
273 t = per_cpu_ptr(event->cgrp->info, event->cpu);
274 return t->time;
275 }
276
277 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
278 {
279 struct perf_cgroup_info *info;
280 u64 now;
281
282 now = perf_clock();
283
284 info = this_cpu_ptr(cgrp->info);
285
286 info->time += now - info->timestamp;
287 info->timestamp = now;
288 }
289
290 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
291 {
292 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
293 if (cgrp_out)
294 __update_cgrp_time(cgrp_out);
295 }
296
297 static inline void update_cgrp_time_from_event(struct perf_event *event)
298 {
299 struct perf_cgroup *cgrp;
300
301 /*
302 * ensure we access cgroup data only when needed and
303 * when we know the cgroup is pinned (css_get)
304 */
305 if (!is_cgroup_event(event))
306 return;
307
308 cgrp = perf_cgroup_from_task(current);
309 /*
310 * Do not update time when cgroup is not active
311 */
312 if (cgrp == event->cgrp)
313 __update_cgrp_time(event->cgrp);
314 }
315
316 static inline void
317 perf_cgroup_set_timestamp(struct task_struct *task,
318 struct perf_event_context *ctx)
319 {
320 struct perf_cgroup *cgrp;
321 struct perf_cgroup_info *info;
322
323 /*
324 * ctx->lock held by caller
325 * ensure we do not access cgroup data
326 * unless we have the cgroup pinned (css_get)
327 */
328 if (!task || !ctx->nr_cgroups)
329 return;
330
331 cgrp = perf_cgroup_from_task(task);
332 info = this_cpu_ptr(cgrp->info);
333 info->timestamp = ctx->timestamp;
334 }
335
336 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
337 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
338
339 /*
340 * reschedule events based on the cgroup constraint of task.
341 *
342 * mode SWOUT : schedule out everything
343 * mode SWIN : schedule in based on cgroup for next
344 */
345 void perf_cgroup_switch(struct task_struct *task, int mode)
346 {
347 struct perf_cpu_context *cpuctx;
348 struct pmu *pmu;
349 unsigned long flags;
350
351 /*
352 * disable interrupts to avoid geting nr_cgroup
353 * changes via __perf_event_disable(). Also
354 * avoids preemption.
355 */
356 local_irq_save(flags);
357
358 /*
359 * we reschedule only in the presence of cgroup
360 * constrained events.
361 */
362 rcu_read_lock();
363
364 list_for_each_entry_rcu(pmu, &pmus, entry) {
365 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
366
367 /*
368 * perf_cgroup_events says at least one
369 * context on this CPU has cgroup events.
370 *
371 * ctx->nr_cgroups reports the number of cgroup
372 * events for a context.
373 */
374 if (cpuctx->ctx.nr_cgroups > 0) {
375 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
376 perf_pmu_disable(cpuctx->ctx.pmu);
377
378 if (mode & PERF_CGROUP_SWOUT) {
379 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
380 /*
381 * must not be done before ctxswout due
382 * to event_filter_match() in event_sched_out()
383 */
384 cpuctx->cgrp = NULL;
385 }
386
387 if (mode & PERF_CGROUP_SWIN) {
388 WARN_ON_ONCE(cpuctx->cgrp);
389 /* set cgrp before ctxsw in to
390 * allow event_filter_match() to not
391 * have to pass task around
392 */
393 cpuctx->cgrp = perf_cgroup_from_task(task);
394 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
395 }
396 perf_pmu_enable(cpuctx->ctx.pmu);
397 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
398 }
399 }
400
401 rcu_read_unlock();
402
403 local_irq_restore(flags);
404 }
405
406 static inline void perf_cgroup_sched_out(struct task_struct *task,
407 struct task_struct *next)
408 {
409 struct perf_cgroup *cgrp1;
410 struct perf_cgroup *cgrp2 = NULL;
411
412 /*
413 * we come here when we know perf_cgroup_events > 0
414 */
415 cgrp1 = perf_cgroup_from_task(task);
416
417 /*
418 * next is NULL when called from perf_event_enable_on_exec()
419 * that will systematically cause a cgroup_switch()
420 */
421 if (next)
422 cgrp2 = perf_cgroup_from_task(next);
423
424 /*
425 * only schedule out current cgroup events if we know
426 * that we are switching to a different cgroup. Otherwise,
427 * do no touch the cgroup events.
428 */
429 if (cgrp1 != cgrp2)
430 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
431 }
432
433 static inline void perf_cgroup_sched_in(struct task_struct *prev,
434 struct task_struct *task)
435 {
436 struct perf_cgroup *cgrp1;
437 struct perf_cgroup *cgrp2 = NULL;
438
439 /*
440 * we come here when we know perf_cgroup_events > 0
441 */
442 cgrp1 = perf_cgroup_from_task(task);
443
444 /* prev can never be NULL */
445 cgrp2 = perf_cgroup_from_task(prev);
446
447 /*
448 * only need to schedule in cgroup events if we are changing
449 * cgroup during ctxsw. Cgroup events were not scheduled
450 * out of ctxsw out if that was not the case.
451 */
452 if (cgrp1 != cgrp2)
453 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
454 }
455
456 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
457 struct perf_event_attr *attr,
458 struct perf_event *group_leader)
459 {
460 struct perf_cgroup *cgrp;
461 struct cgroup_subsys_state *css;
462 struct file *file;
463 int ret = 0, fput_needed;
464
465 file = fget_light(fd, &fput_needed);
466 if (!file)
467 return -EBADF;
468
469 css = cgroup_css_from_dir(file, perf_subsys_id);
470 if (IS_ERR(css)) {
471 ret = PTR_ERR(css);
472 goto out;
473 }
474
475 cgrp = container_of(css, struct perf_cgroup, css);
476 event->cgrp = cgrp;
477
478 /* must be done before we fput() the file */
479 perf_get_cgroup(event);
480
481 /*
482 * all events in a group must monitor
483 * the same cgroup because a task belongs
484 * to only one perf cgroup at a time
485 */
486 if (group_leader && group_leader->cgrp != cgrp) {
487 perf_detach_cgroup(event);
488 ret = -EINVAL;
489 }
490 out:
491 fput_light(file, fput_needed);
492 return ret;
493 }
494
495 static inline void
496 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
497 {
498 struct perf_cgroup_info *t;
499 t = per_cpu_ptr(event->cgrp->info, event->cpu);
500 event->shadow_ctx_time = now - t->timestamp;
501 }
502
503 static inline void
504 perf_cgroup_defer_enabled(struct perf_event *event)
505 {
506 /*
507 * when the current task's perf cgroup does not match
508 * the event's, we need to remember to call the
509 * perf_mark_enable() function the first time a task with
510 * a matching perf cgroup is scheduled in.
511 */
512 if (is_cgroup_event(event) && !perf_cgroup_match(event))
513 event->cgrp_defer_enabled = 1;
514 }
515
516 static inline void
517 perf_cgroup_mark_enabled(struct perf_event *event,
518 struct perf_event_context *ctx)
519 {
520 struct perf_event *sub;
521 u64 tstamp = perf_event_time(event);
522
523 if (!event->cgrp_defer_enabled)
524 return;
525
526 event->cgrp_defer_enabled = 0;
527
528 event->tstamp_enabled = tstamp - event->total_time_enabled;
529 list_for_each_entry(sub, &event->sibling_list, group_entry) {
530 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
531 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
532 sub->cgrp_defer_enabled = 0;
533 }
534 }
535 }
536 #else /* !CONFIG_CGROUP_PERF */
537
538 static inline bool
539 perf_cgroup_match(struct perf_event *event)
540 {
541 return true;
542 }
543
544 static inline void perf_detach_cgroup(struct perf_event *event)
545 {}
546
547 static inline int is_cgroup_event(struct perf_event *event)
548 {
549 return 0;
550 }
551
552 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
553 {
554 return 0;
555 }
556
557 static inline void update_cgrp_time_from_event(struct perf_event *event)
558 {
559 }
560
561 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
562 {
563 }
564
565 static inline void perf_cgroup_sched_out(struct task_struct *task,
566 struct task_struct *next)
567 {
568 }
569
570 static inline void perf_cgroup_sched_in(struct task_struct *prev,
571 struct task_struct *task)
572 {
573 }
574
575 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
576 struct perf_event_attr *attr,
577 struct perf_event *group_leader)
578 {
579 return -EINVAL;
580 }
581
582 static inline void
583 perf_cgroup_set_timestamp(struct task_struct *task,
584 struct perf_event_context *ctx)
585 {
586 }
587
588 void
589 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
590 {
591 }
592
593 static inline void
594 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
595 {
596 }
597
598 static inline u64 perf_cgroup_event_time(struct perf_event *event)
599 {
600 return 0;
601 }
602
603 static inline void
604 perf_cgroup_defer_enabled(struct perf_event *event)
605 {
606 }
607
608 static inline void
609 perf_cgroup_mark_enabled(struct perf_event *event,
610 struct perf_event_context *ctx)
611 {
612 }
613 #endif
614
615 void perf_pmu_disable(struct pmu *pmu)
616 {
617 int *count = this_cpu_ptr(pmu->pmu_disable_count);
618 if (!(*count)++)
619 pmu->pmu_disable(pmu);
620 }
621
622 void perf_pmu_enable(struct pmu *pmu)
623 {
624 int *count = this_cpu_ptr(pmu->pmu_disable_count);
625 if (!--(*count))
626 pmu->pmu_enable(pmu);
627 }
628
629 static DEFINE_PER_CPU(struct list_head, rotation_list);
630
631 /*
632 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
633 * because they're strictly cpu affine and rotate_start is called with IRQs
634 * disabled, while rotate_context is called from IRQ context.
635 */
636 static void perf_pmu_rotate_start(struct pmu *pmu)
637 {
638 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
639 struct list_head *head = &__get_cpu_var(rotation_list);
640
641 WARN_ON(!irqs_disabled());
642
643 if (list_empty(&cpuctx->rotation_list))
644 list_add(&cpuctx->rotation_list, head);
645 }
646
647 static void get_ctx(struct perf_event_context *ctx)
648 {
649 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
650 }
651
652 static void put_ctx(struct perf_event_context *ctx)
653 {
654 if (atomic_dec_and_test(&ctx->refcount)) {
655 if (ctx->parent_ctx)
656 put_ctx(ctx->parent_ctx);
657 if (ctx->task)
658 put_task_struct(ctx->task);
659 kfree_rcu(ctx, rcu_head);
660 }
661 }
662
663 static void unclone_ctx(struct perf_event_context *ctx)
664 {
665 if (ctx->parent_ctx) {
666 put_ctx(ctx->parent_ctx);
667 ctx->parent_ctx = NULL;
668 }
669 }
670
671 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
672 {
673 /*
674 * only top level events have the pid namespace they were created in
675 */
676 if (event->parent)
677 event = event->parent;
678
679 return task_tgid_nr_ns(p, event->ns);
680 }
681
682 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
683 {
684 /*
685 * only top level events have the pid namespace they were created in
686 */
687 if (event->parent)
688 event = event->parent;
689
690 return task_pid_nr_ns(p, event->ns);
691 }
692
693 /*
694 * If we inherit events we want to return the parent event id
695 * to userspace.
696 */
697 static u64 primary_event_id(struct perf_event *event)
698 {
699 u64 id = event->id;
700
701 if (event->parent)
702 id = event->parent->id;
703
704 return id;
705 }
706
707 /*
708 * Get the perf_event_context for a task and lock it.
709 * This has to cope with with the fact that until it is locked,
710 * the context could get moved to another task.
711 */
712 static struct perf_event_context *
713 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
714 {
715 struct perf_event_context *ctx;
716
717 rcu_read_lock();
718 retry:
719 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
720 if (ctx) {
721 /*
722 * If this context is a clone of another, it might
723 * get swapped for another underneath us by
724 * perf_event_task_sched_out, though the
725 * rcu_read_lock() protects us from any context
726 * getting freed. Lock the context and check if it
727 * got swapped before we could get the lock, and retry
728 * if so. If we locked the right context, then it
729 * can't get swapped on us any more.
730 */
731 raw_spin_lock_irqsave(&ctx->lock, *flags);
732 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
733 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
734 goto retry;
735 }
736
737 if (!atomic_inc_not_zero(&ctx->refcount)) {
738 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
739 ctx = NULL;
740 }
741 }
742 rcu_read_unlock();
743 return ctx;
744 }
745
746 /*
747 * Get the context for a task and increment its pin_count so it
748 * can't get swapped to another task. This also increments its
749 * reference count so that the context can't get freed.
750 */
751 static struct perf_event_context *
752 perf_pin_task_context(struct task_struct *task, int ctxn)
753 {
754 struct perf_event_context *ctx;
755 unsigned long flags;
756
757 ctx = perf_lock_task_context(task, ctxn, &flags);
758 if (ctx) {
759 ++ctx->pin_count;
760 raw_spin_unlock_irqrestore(&ctx->lock, flags);
761 }
762 return ctx;
763 }
764
765 static void perf_unpin_context(struct perf_event_context *ctx)
766 {
767 unsigned long flags;
768
769 raw_spin_lock_irqsave(&ctx->lock, flags);
770 --ctx->pin_count;
771 raw_spin_unlock_irqrestore(&ctx->lock, flags);
772 }
773
774 /*
775 * Update the record of the current time in a context.
776 */
777 static void update_context_time(struct perf_event_context *ctx)
778 {
779 u64 now = perf_clock();
780
781 ctx->time += now - ctx->timestamp;
782 ctx->timestamp = now;
783 }
784
785 static u64 perf_event_time(struct perf_event *event)
786 {
787 struct perf_event_context *ctx = event->ctx;
788
789 if (is_cgroup_event(event))
790 return perf_cgroup_event_time(event);
791
792 return ctx ? ctx->time : 0;
793 }
794
795 /*
796 * Update the total_time_enabled and total_time_running fields for a event.
797 * The caller of this function needs to hold the ctx->lock.
798 */
799 static void update_event_times(struct perf_event *event)
800 {
801 struct perf_event_context *ctx = event->ctx;
802 u64 run_end;
803
804 if (event->state < PERF_EVENT_STATE_INACTIVE ||
805 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
806 return;
807 /*
808 * in cgroup mode, time_enabled represents
809 * the time the event was enabled AND active
810 * tasks were in the monitored cgroup. This is
811 * independent of the activity of the context as
812 * there may be a mix of cgroup and non-cgroup events.
813 *
814 * That is why we treat cgroup events differently
815 * here.
816 */
817 if (is_cgroup_event(event))
818 run_end = perf_cgroup_event_time(event);
819 else if (ctx->is_active)
820 run_end = ctx->time;
821 else
822 run_end = event->tstamp_stopped;
823
824 event->total_time_enabled = run_end - event->tstamp_enabled;
825
826 if (event->state == PERF_EVENT_STATE_INACTIVE)
827 run_end = event->tstamp_stopped;
828 else
829 run_end = perf_event_time(event);
830
831 event->total_time_running = run_end - event->tstamp_running;
832
833 }
834
835 /*
836 * Update total_time_enabled and total_time_running for all events in a group.
837 */
838 static void update_group_times(struct perf_event *leader)
839 {
840 struct perf_event *event;
841
842 update_event_times(leader);
843 list_for_each_entry(event, &leader->sibling_list, group_entry)
844 update_event_times(event);
845 }
846
847 static struct list_head *
848 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
849 {
850 if (event->attr.pinned)
851 return &ctx->pinned_groups;
852 else
853 return &ctx->flexible_groups;
854 }
855
856 /*
857 * Add a event from the lists for its context.
858 * Must be called with ctx->mutex and ctx->lock held.
859 */
860 static void
861 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
862 {
863 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
864 event->attach_state |= PERF_ATTACH_CONTEXT;
865
866 /*
867 * If we're a stand alone event or group leader, we go to the context
868 * list, group events are kept attached to the group so that
869 * perf_group_detach can, at all times, locate all siblings.
870 */
871 if (event->group_leader == event) {
872 struct list_head *list;
873
874 if (is_software_event(event))
875 event->group_flags |= PERF_GROUP_SOFTWARE;
876
877 list = ctx_group_list(event, ctx);
878 list_add_tail(&event->group_entry, list);
879 }
880
881 if (is_cgroup_event(event))
882 ctx->nr_cgroups++;
883
884 list_add_rcu(&event->event_entry, &ctx->event_list);
885 if (!ctx->nr_events)
886 perf_pmu_rotate_start(ctx->pmu);
887 ctx->nr_events++;
888 if (event->attr.inherit_stat)
889 ctx->nr_stat++;
890 }
891
892 /*
893 * Called at perf_event creation and when events are attached/detached from a
894 * group.
895 */
896 static void perf_event__read_size(struct perf_event *event)
897 {
898 int entry = sizeof(u64); /* value */
899 int size = 0;
900 int nr = 1;
901
902 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
903 size += sizeof(u64);
904
905 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
906 size += sizeof(u64);
907
908 if (event->attr.read_format & PERF_FORMAT_ID)
909 entry += sizeof(u64);
910
911 if (event->attr.read_format & PERF_FORMAT_GROUP) {
912 nr += event->group_leader->nr_siblings;
913 size += sizeof(u64);
914 }
915
916 size += entry * nr;
917 event->read_size = size;
918 }
919
920 static void perf_event__header_size(struct perf_event *event)
921 {
922 struct perf_sample_data *data;
923 u64 sample_type = event->attr.sample_type;
924 u16 size = 0;
925
926 perf_event__read_size(event);
927
928 if (sample_type & PERF_SAMPLE_IP)
929 size += sizeof(data->ip);
930
931 if (sample_type & PERF_SAMPLE_ADDR)
932 size += sizeof(data->addr);
933
934 if (sample_type & PERF_SAMPLE_PERIOD)
935 size += sizeof(data->period);
936
937 if (sample_type & PERF_SAMPLE_READ)
938 size += event->read_size;
939
940 event->header_size = size;
941 }
942
943 static void perf_event__id_header_size(struct perf_event *event)
944 {
945 struct perf_sample_data *data;
946 u64 sample_type = event->attr.sample_type;
947 u16 size = 0;
948
949 if (sample_type & PERF_SAMPLE_TID)
950 size += sizeof(data->tid_entry);
951
952 if (sample_type & PERF_SAMPLE_TIME)
953 size += sizeof(data->time);
954
955 if (sample_type & PERF_SAMPLE_ID)
956 size += sizeof(data->id);
957
958 if (sample_type & PERF_SAMPLE_STREAM_ID)
959 size += sizeof(data->stream_id);
960
961 if (sample_type & PERF_SAMPLE_CPU)
962 size += sizeof(data->cpu_entry);
963
964 event->id_header_size = size;
965 }
966
967 static void perf_group_attach(struct perf_event *event)
968 {
969 struct perf_event *group_leader = event->group_leader, *pos;
970
971 /*
972 * We can have double attach due to group movement in perf_event_open.
973 */
974 if (event->attach_state & PERF_ATTACH_GROUP)
975 return;
976
977 event->attach_state |= PERF_ATTACH_GROUP;
978
979 if (group_leader == event)
980 return;
981
982 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
983 !is_software_event(event))
984 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
985
986 list_add_tail(&event->group_entry, &group_leader->sibling_list);
987 group_leader->nr_siblings++;
988
989 perf_event__header_size(group_leader);
990
991 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
992 perf_event__header_size(pos);
993 }
994
995 /*
996 * Remove a event from the lists for its context.
997 * Must be called with ctx->mutex and ctx->lock held.
998 */
999 static void
1000 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1001 {
1002 struct perf_cpu_context *cpuctx;
1003 /*
1004 * We can have double detach due to exit/hot-unplug + close.
1005 */
1006 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1007 return;
1008
1009 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1010
1011 if (is_cgroup_event(event)) {
1012 ctx->nr_cgroups--;
1013 cpuctx = __get_cpu_context(ctx);
1014 /*
1015 * if there are no more cgroup events
1016 * then cler cgrp to avoid stale pointer
1017 * in update_cgrp_time_from_cpuctx()
1018 */
1019 if (!ctx->nr_cgroups)
1020 cpuctx->cgrp = NULL;
1021 }
1022
1023 ctx->nr_events--;
1024 if (event->attr.inherit_stat)
1025 ctx->nr_stat--;
1026
1027 list_del_rcu(&event->event_entry);
1028
1029 if (event->group_leader == event)
1030 list_del_init(&event->group_entry);
1031
1032 update_group_times(event);
1033
1034 /*
1035 * If event was in error state, then keep it
1036 * that way, otherwise bogus counts will be
1037 * returned on read(). The only way to get out
1038 * of error state is by explicit re-enabling
1039 * of the event
1040 */
1041 if (event->state > PERF_EVENT_STATE_OFF)
1042 event->state = PERF_EVENT_STATE_OFF;
1043 }
1044
1045 static void perf_group_detach(struct perf_event *event)
1046 {
1047 struct perf_event *sibling, *tmp;
1048 struct list_head *list = NULL;
1049
1050 /*
1051 * We can have double detach due to exit/hot-unplug + close.
1052 */
1053 if (!(event->attach_state & PERF_ATTACH_GROUP))
1054 return;
1055
1056 event->attach_state &= ~PERF_ATTACH_GROUP;
1057
1058 /*
1059 * If this is a sibling, remove it from its group.
1060 */
1061 if (event->group_leader != event) {
1062 list_del_init(&event->group_entry);
1063 event->group_leader->nr_siblings--;
1064 goto out;
1065 }
1066
1067 if (!list_empty(&event->group_entry))
1068 list = &event->group_entry;
1069
1070 /*
1071 * If this was a group event with sibling events then
1072 * upgrade the siblings to singleton events by adding them
1073 * to whatever list we are on.
1074 */
1075 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1076 if (list)
1077 list_move_tail(&sibling->group_entry, list);
1078 sibling->group_leader = sibling;
1079
1080 /* Inherit group flags from the previous leader */
1081 sibling->group_flags = event->group_flags;
1082 }
1083
1084 out:
1085 perf_event__header_size(event->group_leader);
1086
1087 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1088 perf_event__header_size(tmp);
1089 }
1090
1091 static inline int
1092 event_filter_match(struct perf_event *event)
1093 {
1094 return (event->cpu == -1 || event->cpu == smp_processor_id())
1095 && perf_cgroup_match(event);
1096 }
1097
1098 static void
1099 event_sched_out(struct perf_event *event,
1100 struct perf_cpu_context *cpuctx,
1101 struct perf_event_context *ctx)
1102 {
1103 u64 tstamp = perf_event_time(event);
1104 u64 delta;
1105 /*
1106 * An event which could not be activated because of
1107 * filter mismatch still needs to have its timings
1108 * maintained, otherwise bogus information is return
1109 * via read() for time_enabled, time_running:
1110 */
1111 if (event->state == PERF_EVENT_STATE_INACTIVE
1112 && !event_filter_match(event)) {
1113 delta = tstamp - event->tstamp_stopped;
1114 event->tstamp_running += delta;
1115 event->tstamp_stopped = tstamp;
1116 }
1117
1118 if (event->state != PERF_EVENT_STATE_ACTIVE)
1119 return;
1120
1121 event->state = PERF_EVENT_STATE_INACTIVE;
1122 if (event->pending_disable) {
1123 event->pending_disable = 0;
1124 event->state = PERF_EVENT_STATE_OFF;
1125 }
1126 event->tstamp_stopped = tstamp;
1127 event->pmu->del(event, 0);
1128 event->oncpu = -1;
1129
1130 if (!is_software_event(event))
1131 cpuctx->active_oncpu--;
1132 ctx->nr_active--;
1133 if (event->attr.freq && event->attr.sample_freq)
1134 ctx->nr_freq--;
1135 if (event->attr.exclusive || !cpuctx->active_oncpu)
1136 cpuctx->exclusive = 0;
1137 }
1138
1139 static void
1140 group_sched_out(struct perf_event *group_event,
1141 struct perf_cpu_context *cpuctx,
1142 struct perf_event_context *ctx)
1143 {
1144 struct perf_event *event;
1145 int state = group_event->state;
1146
1147 event_sched_out(group_event, cpuctx, ctx);
1148
1149 /*
1150 * Schedule out siblings (if any):
1151 */
1152 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1153 event_sched_out(event, cpuctx, ctx);
1154
1155 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1156 cpuctx->exclusive = 0;
1157 }
1158
1159 /*
1160 * Cross CPU call to remove a performance event
1161 *
1162 * We disable the event on the hardware level first. After that we
1163 * remove it from the context list.
1164 */
1165 static int __perf_remove_from_context(void *info)
1166 {
1167 struct perf_event *event = info;
1168 struct perf_event_context *ctx = event->ctx;
1169 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1170
1171 raw_spin_lock(&ctx->lock);
1172 event_sched_out(event, cpuctx, ctx);
1173 list_del_event(event, ctx);
1174 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1175 ctx->is_active = 0;
1176 cpuctx->task_ctx = NULL;
1177 }
1178 raw_spin_unlock(&ctx->lock);
1179
1180 return 0;
1181 }
1182
1183
1184 /*
1185 * Remove the event from a task's (or a CPU's) list of events.
1186 *
1187 * CPU events are removed with a smp call. For task events we only
1188 * call when the task is on a CPU.
1189 *
1190 * If event->ctx is a cloned context, callers must make sure that
1191 * every task struct that event->ctx->task could possibly point to
1192 * remains valid. This is OK when called from perf_release since
1193 * that only calls us on the top-level context, which can't be a clone.
1194 * When called from perf_event_exit_task, it's OK because the
1195 * context has been detached from its task.
1196 */
1197 static void perf_remove_from_context(struct perf_event *event)
1198 {
1199 struct perf_event_context *ctx = event->ctx;
1200 struct task_struct *task = ctx->task;
1201
1202 lockdep_assert_held(&ctx->mutex);
1203
1204 if (!task) {
1205 /*
1206 * Per cpu events are removed via an smp call and
1207 * the removal is always successful.
1208 */
1209 cpu_function_call(event->cpu, __perf_remove_from_context, event);
1210 return;
1211 }
1212
1213 retry:
1214 if (!task_function_call(task, __perf_remove_from_context, event))
1215 return;
1216
1217 raw_spin_lock_irq(&ctx->lock);
1218 /*
1219 * If we failed to find a running task, but find the context active now
1220 * that we've acquired the ctx->lock, retry.
1221 */
1222 if (ctx->is_active) {
1223 raw_spin_unlock_irq(&ctx->lock);
1224 goto retry;
1225 }
1226
1227 /*
1228 * Since the task isn't running, its safe to remove the event, us
1229 * holding the ctx->lock ensures the task won't get scheduled in.
1230 */
1231 list_del_event(event, ctx);
1232 raw_spin_unlock_irq(&ctx->lock);
1233 }
1234
1235 /*
1236 * Cross CPU call to disable a performance event
1237 */
1238 static int __perf_event_disable(void *info)
1239 {
1240 struct perf_event *event = info;
1241 struct perf_event_context *ctx = event->ctx;
1242 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1243
1244 /*
1245 * If this is a per-task event, need to check whether this
1246 * event's task is the current task on this cpu.
1247 *
1248 * Can trigger due to concurrent perf_event_context_sched_out()
1249 * flipping contexts around.
1250 */
1251 if (ctx->task && cpuctx->task_ctx != ctx)
1252 return -EINVAL;
1253
1254 raw_spin_lock(&ctx->lock);
1255
1256 /*
1257 * If the event is on, turn it off.
1258 * If it is in error state, leave it in error state.
1259 */
1260 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1261 update_context_time(ctx);
1262 update_cgrp_time_from_event(event);
1263 update_group_times(event);
1264 if (event == event->group_leader)
1265 group_sched_out(event, cpuctx, ctx);
1266 else
1267 event_sched_out(event, cpuctx, ctx);
1268 event->state = PERF_EVENT_STATE_OFF;
1269 }
1270
1271 raw_spin_unlock(&ctx->lock);
1272
1273 return 0;
1274 }
1275
1276 /*
1277 * Disable a event.
1278 *
1279 * If event->ctx is a cloned context, callers must make sure that
1280 * every task struct that event->ctx->task could possibly point to
1281 * remains valid. This condition is satisifed when called through
1282 * perf_event_for_each_child or perf_event_for_each because they
1283 * hold the top-level event's child_mutex, so any descendant that
1284 * goes to exit will block in sync_child_event.
1285 * When called from perf_pending_event it's OK because event->ctx
1286 * is the current context on this CPU and preemption is disabled,
1287 * hence we can't get into perf_event_task_sched_out for this context.
1288 */
1289 void perf_event_disable(struct perf_event *event)
1290 {
1291 struct perf_event_context *ctx = event->ctx;
1292 struct task_struct *task = ctx->task;
1293
1294 if (!task) {
1295 /*
1296 * Disable the event on the cpu that it's on
1297 */
1298 cpu_function_call(event->cpu, __perf_event_disable, event);
1299 return;
1300 }
1301
1302 retry:
1303 if (!task_function_call(task, __perf_event_disable, event))
1304 return;
1305
1306 raw_spin_lock_irq(&ctx->lock);
1307 /*
1308 * If the event is still active, we need to retry the cross-call.
1309 */
1310 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1311 raw_spin_unlock_irq(&ctx->lock);
1312 /*
1313 * Reload the task pointer, it might have been changed by
1314 * a concurrent perf_event_context_sched_out().
1315 */
1316 task = ctx->task;
1317 goto retry;
1318 }
1319
1320 /*
1321 * Since we have the lock this context can't be scheduled
1322 * in, so we can change the state safely.
1323 */
1324 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1325 update_group_times(event);
1326 event->state = PERF_EVENT_STATE_OFF;
1327 }
1328 raw_spin_unlock_irq(&ctx->lock);
1329 }
1330 EXPORT_SYMBOL_GPL(perf_event_disable);
1331
1332 static void perf_set_shadow_time(struct perf_event *event,
1333 struct perf_event_context *ctx,
1334 u64 tstamp)
1335 {
1336 /*
1337 * use the correct time source for the time snapshot
1338 *
1339 * We could get by without this by leveraging the
1340 * fact that to get to this function, the caller
1341 * has most likely already called update_context_time()
1342 * and update_cgrp_time_xx() and thus both timestamp
1343 * are identical (or very close). Given that tstamp is,
1344 * already adjusted for cgroup, we could say that:
1345 * tstamp - ctx->timestamp
1346 * is equivalent to
1347 * tstamp - cgrp->timestamp.
1348 *
1349 * Then, in perf_output_read(), the calculation would
1350 * work with no changes because:
1351 * - event is guaranteed scheduled in
1352 * - no scheduled out in between
1353 * - thus the timestamp would be the same
1354 *
1355 * But this is a bit hairy.
1356 *
1357 * So instead, we have an explicit cgroup call to remain
1358 * within the time time source all along. We believe it
1359 * is cleaner and simpler to understand.
1360 */
1361 if (is_cgroup_event(event))
1362 perf_cgroup_set_shadow_time(event, tstamp);
1363 else
1364 event->shadow_ctx_time = tstamp - ctx->timestamp;
1365 }
1366
1367 #define MAX_INTERRUPTS (~0ULL)
1368
1369 static void perf_log_throttle(struct perf_event *event, int enable);
1370
1371 static int
1372 event_sched_in(struct perf_event *event,
1373 struct perf_cpu_context *cpuctx,
1374 struct perf_event_context *ctx)
1375 {
1376 u64 tstamp = perf_event_time(event);
1377
1378 if (event->state <= PERF_EVENT_STATE_OFF)
1379 return 0;
1380
1381 event->state = PERF_EVENT_STATE_ACTIVE;
1382 event->oncpu = smp_processor_id();
1383
1384 /*
1385 * Unthrottle events, since we scheduled we might have missed several
1386 * ticks already, also for a heavily scheduling task there is little
1387 * guarantee it'll get a tick in a timely manner.
1388 */
1389 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1390 perf_log_throttle(event, 1);
1391 event->hw.interrupts = 0;
1392 }
1393
1394 /*
1395 * The new state must be visible before we turn it on in the hardware:
1396 */
1397 smp_wmb();
1398
1399 if (event->pmu->add(event, PERF_EF_START)) {
1400 event->state = PERF_EVENT_STATE_INACTIVE;
1401 event->oncpu = -1;
1402 return -EAGAIN;
1403 }
1404
1405 event->tstamp_running += tstamp - event->tstamp_stopped;
1406
1407 perf_set_shadow_time(event, ctx, tstamp);
1408
1409 if (!is_software_event(event))
1410 cpuctx->active_oncpu++;
1411 ctx->nr_active++;
1412 if (event->attr.freq && event->attr.sample_freq)
1413 ctx->nr_freq++;
1414
1415 if (event->attr.exclusive)
1416 cpuctx->exclusive = 1;
1417
1418 return 0;
1419 }
1420
1421 static int
1422 group_sched_in(struct perf_event *group_event,
1423 struct perf_cpu_context *cpuctx,
1424 struct perf_event_context *ctx)
1425 {
1426 struct perf_event *event, *partial_group = NULL;
1427 struct pmu *pmu = group_event->pmu;
1428 u64 now = ctx->time;
1429 bool simulate = false;
1430
1431 if (group_event->state == PERF_EVENT_STATE_OFF)
1432 return 0;
1433
1434 pmu->start_txn(pmu);
1435
1436 if (event_sched_in(group_event, cpuctx, ctx)) {
1437 pmu->cancel_txn(pmu);
1438 return -EAGAIN;
1439 }
1440
1441 /*
1442 * Schedule in siblings as one group (if any):
1443 */
1444 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1445 if (event_sched_in(event, cpuctx, ctx)) {
1446 partial_group = event;
1447 goto group_error;
1448 }
1449 }
1450
1451 if (!pmu->commit_txn(pmu))
1452 return 0;
1453
1454 group_error:
1455 /*
1456 * Groups can be scheduled in as one unit only, so undo any
1457 * partial group before returning:
1458 * The events up to the failed event are scheduled out normally,
1459 * tstamp_stopped will be updated.
1460 *
1461 * The failed events and the remaining siblings need to have
1462 * their timings updated as if they had gone thru event_sched_in()
1463 * and event_sched_out(). This is required to get consistent timings
1464 * across the group. This also takes care of the case where the group
1465 * could never be scheduled by ensuring tstamp_stopped is set to mark
1466 * the time the event was actually stopped, such that time delta
1467 * calculation in update_event_times() is correct.
1468 */
1469 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1470 if (event == partial_group)
1471 simulate = true;
1472
1473 if (simulate) {
1474 event->tstamp_running += now - event->tstamp_stopped;
1475 event->tstamp_stopped = now;
1476 } else {
1477 event_sched_out(event, cpuctx, ctx);
1478 }
1479 }
1480 event_sched_out(group_event, cpuctx, ctx);
1481
1482 pmu->cancel_txn(pmu);
1483
1484 return -EAGAIN;
1485 }
1486
1487 /*
1488 * Work out whether we can put this event group on the CPU now.
1489 */
1490 static int group_can_go_on(struct perf_event *event,
1491 struct perf_cpu_context *cpuctx,
1492 int can_add_hw)
1493 {
1494 /*
1495 * Groups consisting entirely of software events can always go on.
1496 */
1497 if (event->group_flags & PERF_GROUP_SOFTWARE)
1498 return 1;
1499 /*
1500 * If an exclusive group is already on, no other hardware
1501 * events can go on.
1502 */
1503 if (cpuctx->exclusive)
1504 return 0;
1505 /*
1506 * If this group is exclusive and there are already
1507 * events on the CPU, it can't go on.
1508 */
1509 if (event->attr.exclusive && cpuctx->active_oncpu)
1510 return 0;
1511 /*
1512 * Otherwise, try to add it if all previous groups were able
1513 * to go on.
1514 */
1515 return can_add_hw;
1516 }
1517
1518 static void add_event_to_ctx(struct perf_event *event,
1519 struct perf_event_context *ctx)
1520 {
1521 u64 tstamp = perf_event_time(event);
1522
1523 list_add_event(event, ctx);
1524 perf_group_attach(event);
1525 event->tstamp_enabled = tstamp;
1526 event->tstamp_running = tstamp;
1527 event->tstamp_stopped = tstamp;
1528 }
1529
1530 static void task_ctx_sched_out(struct perf_event_context *ctx);
1531 static void
1532 ctx_sched_in(struct perf_event_context *ctx,
1533 struct perf_cpu_context *cpuctx,
1534 enum event_type_t event_type,
1535 struct task_struct *task);
1536
1537 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1538 struct perf_event_context *ctx,
1539 struct task_struct *task)
1540 {
1541 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1542 if (ctx)
1543 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1544 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1545 if (ctx)
1546 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1547 }
1548
1549 /*
1550 * Cross CPU call to install and enable a performance event
1551 *
1552 * Must be called with ctx->mutex held
1553 */
1554 static int __perf_install_in_context(void *info)
1555 {
1556 struct perf_event *event = info;
1557 struct perf_event_context *ctx = event->ctx;
1558 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1559 struct perf_event_context *task_ctx = cpuctx->task_ctx;
1560 struct task_struct *task = current;
1561
1562 perf_ctx_lock(cpuctx, task_ctx);
1563 perf_pmu_disable(cpuctx->ctx.pmu);
1564
1565 /*
1566 * If there was an active task_ctx schedule it out.
1567 */
1568 if (task_ctx)
1569 task_ctx_sched_out(task_ctx);
1570
1571 /*
1572 * If the context we're installing events in is not the
1573 * active task_ctx, flip them.
1574 */
1575 if (ctx->task && task_ctx != ctx) {
1576 if (task_ctx)
1577 raw_spin_unlock(&task_ctx->lock);
1578 raw_spin_lock(&ctx->lock);
1579 task_ctx = ctx;
1580 }
1581
1582 if (task_ctx) {
1583 cpuctx->task_ctx = task_ctx;
1584 task = task_ctx->task;
1585 }
1586
1587 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1588
1589 update_context_time(ctx);
1590 /*
1591 * update cgrp time only if current cgrp
1592 * matches event->cgrp. Must be done before
1593 * calling add_event_to_ctx()
1594 */
1595 update_cgrp_time_from_event(event);
1596
1597 add_event_to_ctx(event, ctx);
1598
1599 /*
1600 * Schedule everything back in
1601 */
1602 perf_event_sched_in(cpuctx, task_ctx, task);
1603
1604 perf_pmu_enable(cpuctx->ctx.pmu);
1605 perf_ctx_unlock(cpuctx, task_ctx);
1606
1607 return 0;
1608 }
1609
1610 /*
1611 * Attach a performance event to a context
1612 *
1613 * First we add the event to the list with the hardware enable bit
1614 * in event->hw_config cleared.
1615 *
1616 * If the event is attached to a task which is on a CPU we use a smp
1617 * call to enable it in the task context. The task might have been
1618 * scheduled away, but we check this in the smp call again.
1619 */
1620 static void
1621 perf_install_in_context(struct perf_event_context *ctx,
1622 struct perf_event *event,
1623 int cpu)
1624 {
1625 struct task_struct *task = ctx->task;
1626
1627 lockdep_assert_held(&ctx->mutex);
1628
1629 event->ctx = ctx;
1630
1631 if (!task) {
1632 /*
1633 * Per cpu events are installed via an smp call and
1634 * the install is always successful.
1635 */
1636 cpu_function_call(cpu, __perf_install_in_context, event);
1637 return;
1638 }
1639
1640 retry:
1641 if (!task_function_call(task, __perf_install_in_context, event))
1642 return;
1643
1644 raw_spin_lock_irq(&ctx->lock);
1645 /*
1646 * If we failed to find a running task, but find the context active now
1647 * that we've acquired the ctx->lock, retry.
1648 */
1649 if (ctx->is_active) {
1650 raw_spin_unlock_irq(&ctx->lock);
1651 goto retry;
1652 }
1653
1654 /*
1655 * Since the task isn't running, its safe to add the event, us holding
1656 * the ctx->lock ensures the task won't get scheduled in.
1657 */
1658 add_event_to_ctx(event, ctx);
1659 raw_spin_unlock_irq(&ctx->lock);
1660 }
1661
1662 /*
1663 * Put a event into inactive state and update time fields.
1664 * Enabling the leader of a group effectively enables all
1665 * the group members that aren't explicitly disabled, so we
1666 * have to update their ->tstamp_enabled also.
1667 * Note: this works for group members as well as group leaders
1668 * since the non-leader members' sibling_lists will be empty.
1669 */
1670 static void __perf_event_mark_enabled(struct perf_event *event)
1671 {
1672 struct perf_event *sub;
1673 u64 tstamp = perf_event_time(event);
1674
1675 event->state = PERF_EVENT_STATE_INACTIVE;
1676 event->tstamp_enabled = tstamp - event->total_time_enabled;
1677 list_for_each_entry(sub, &event->sibling_list, group_entry) {
1678 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1679 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1680 }
1681 }
1682
1683 /*
1684 * Cross CPU call to enable a performance event
1685 */
1686 static int __perf_event_enable(void *info)
1687 {
1688 struct perf_event *event = info;
1689 struct perf_event_context *ctx = event->ctx;
1690 struct perf_event *leader = event->group_leader;
1691 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1692 int err;
1693
1694 if (WARN_ON_ONCE(!ctx->is_active))
1695 return -EINVAL;
1696
1697 raw_spin_lock(&ctx->lock);
1698 update_context_time(ctx);
1699
1700 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1701 goto unlock;
1702
1703 /*
1704 * set current task's cgroup time reference point
1705 */
1706 perf_cgroup_set_timestamp(current, ctx);
1707
1708 __perf_event_mark_enabled(event);
1709
1710 if (!event_filter_match(event)) {
1711 if (is_cgroup_event(event))
1712 perf_cgroup_defer_enabled(event);
1713 goto unlock;
1714 }
1715
1716 /*
1717 * If the event is in a group and isn't the group leader,
1718 * then don't put it on unless the group is on.
1719 */
1720 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1721 goto unlock;
1722
1723 if (!group_can_go_on(event, cpuctx, 1)) {
1724 err = -EEXIST;
1725 } else {
1726 if (event == leader)
1727 err = group_sched_in(event, cpuctx, ctx);
1728 else
1729 err = event_sched_in(event, cpuctx, ctx);
1730 }
1731
1732 if (err) {
1733 /*
1734 * If this event can't go on and it's part of a
1735 * group, then the whole group has to come off.
1736 */
1737 if (leader != event)
1738 group_sched_out(leader, cpuctx, ctx);
1739 if (leader->attr.pinned) {
1740 update_group_times(leader);
1741 leader->state = PERF_EVENT_STATE_ERROR;
1742 }
1743 }
1744
1745 unlock:
1746 raw_spin_unlock(&ctx->lock);
1747
1748 return 0;
1749 }
1750
1751 /*
1752 * Enable a event.
1753 *
1754 * If event->ctx is a cloned context, callers must make sure that
1755 * every task struct that event->ctx->task could possibly point to
1756 * remains valid. This condition is satisfied when called through
1757 * perf_event_for_each_child or perf_event_for_each as described
1758 * for perf_event_disable.
1759 */
1760 void perf_event_enable(struct perf_event *event)
1761 {
1762 struct perf_event_context *ctx = event->ctx;
1763 struct task_struct *task = ctx->task;
1764
1765 if (!task) {
1766 /*
1767 * Enable the event on the cpu that it's on
1768 */
1769 cpu_function_call(event->cpu, __perf_event_enable, event);
1770 return;
1771 }
1772
1773 raw_spin_lock_irq(&ctx->lock);
1774 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1775 goto out;
1776
1777 /*
1778 * If the event is in error state, clear that first.
1779 * That way, if we see the event in error state below, we
1780 * know that it has gone back into error state, as distinct
1781 * from the task having been scheduled away before the
1782 * cross-call arrived.
1783 */
1784 if (event->state == PERF_EVENT_STATE_ERROR)
1785 event->state = PERF_EVENT_STATE_OFF;
1786
1787 retry:
1788 if (!ctx->is_active) {
1789 __perf_event_mark_enabled(event);
1790 goto out;
1791 }
1792
1793 raw_spin_unlock_irq(&ctx->lock);
1794
1795 if (!task_function_call(task, __perf_event_enable, event))
1796 return;
1797
1798 raw_spin_lock_irq(&ctx->lock);
1799
1800 /*
1801 * If the context is active and the event is still off,
1802 * we need to retry the cross-call.
1803 */
1804 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
1805 /*
1806 * task could have been flipped by a concurrent
1807 * perf_event_context_sched_out()
1808 */
1809 task = ctx->task;
1810 goto retry;
1811 }
1812
1813 out:
1814 raw_spin_unlock_irq(&ctx->lock);
1815 }
1816 EXPORT_SYMBOL_GPL(perf_event_enable);
1817
1818 int perf_event_refresh(struct perf_event *event, int refresh)
1819 {
1820 /*
1821 * not supported on inherited events
1822 */
1823 if (event->attr.inherit || !is_sampling_event(event))
1824 return -EINVAL;
1825
1826 atomic_add(refresh, &event->event_limit);
1827 perf_event_enable(event);
1828
1829 return 0;
1830 }
1831 EXPORT_SYMBOL_GPL(perf_event_refresh);
1832
1833 static void ctx_sched_out(struct perf_event_context *ctx,
1834 struct perf_cpu_context *cpuctx,
1835 enum event_type_t event_type)
1836 {
1837 struct perf_event *event;
1838 int is_active = ctx->is_active;
1839
1840 ctx->is_active &= ~event_type;
1841 if (likely(!ctx->nr_events))
1842 return;
1843
1844 update_context_time(ctx);
1845 update_cgrp_time_from_cpuctx(cpuctx);
1846 if (!ctx->nr_active)
1847 return;
1848
1849 perf_pmu_disable(ctx->pmu);
1850 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
1851 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1852 group_sched_out(event, cpuctx, ctx);
1853 }
1854
1855 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
1856 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1857 group_sched_out(event, cpuctx, ctx);
1858 }
1859 perf_pmu_enable(ctx->pmu);
1860 }
1861
1862 /*
1863 * Test whether two contexts are equivalent, i.e. whether they
1864 * have both been cloned from the same version of the same context
1865 * and they both have the same number of enabled events.
1866 * If the number of enabled events is the same, then the set
1867 * of enabled events should be the same, because these are both
1868 * inherited contexts, therefore we can't access individual events
1869 * in them directly with an fd; we can only enable/disable all
1870 * events via prctl, or enable/disable all events in a family
1871 * via ioctl, which will have the same effect on both contexts.
1872 */
1873 static int context_equiv(struct perf_event_context *ctx1,
1874 struct perf_event_context *ctx2)
1875 {
1876 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1877 && ctx1->parent_gen == ctx2->parent_gen
1878 && !ctx1->pin_count && !ctx2->pin_count;
1879 }
1880
1881 static void __perf_event_sync_stat(struct perf_event *event,
1882 struct perf_event *next_event)
1883 {
1884 u64 value;
1885
1886 if (!event->attr.inherit_stat)
1887 return;
1888
1889 /*
1890 * Update the event value, we cannot use perf_event_read()
1891 * because we're in the middle of a context switch and have IRQs
1892 * disabled, which upsets smp_call_function_single(), however
1893 * we know the event must be on the current CPU, therefore we
1894 * don't need to use it.
1895 */
1896 switch (event->state) {
1897 case PERF_EVENT_STATE_ACTIVE:
1898 event->pmu->read(event);
1899 /* fall-through */
1900
1901 case PERF_EVENT_STATE_INACTIVE:
1902 update_event_times(event);
1903 break;
1904
1905 default:
1906 break;
1907 }
1908
1909 /*
1910 * In order to keep per-task stats reliable we need to flip the event
1911 * values when we flip the contexts.
1912 */
1913 value = local64_read(&next_event->count);
1914 value = local64_xchg(&event->count, value);
1915 local64_set(&next_event->count, value);
1916
1917 swap(event->total_time_enabled, next_event->total_time_enabled);
1918 swap(event->total_time_running, next_event->total_time_running);
1919
1920 /*
1921 * Since we swizzled the values, update the user visible data too.
1922 */
1923 perf_event_update_userpage(event);
1924 perf_event_update_userpage(next_event);
1925 }
1926
1927 #define list_next_entry(pos, member) \
1928 list_entry(pos->member.next, typeof(*pos), member)
1929
1930 static void perf_event_sync_stat(struct perf_event_context *ctx,
1931 struct perf_event_context *next_ctx)
1932 {
1933 struct perf_event *event, *next_event;
1934
1935 if (!ctx->nr_stat)
1936 return;
1937
1938 update_context_time(ctx);
1939
1940 event = list_first_entry(&ctx->event_list,
1941 struct perf_event, event_entry);
1942
1943 next_event = list_first_entry(&next_ctx->event_list,
1944 struct perf_event, event_entry);
1945
1946 while (&event->event_entry != &ctx->event_list &&
1947 &next_event->event_entry != &next_ctx->event_list) {
1948
1949 __perf_event_sync_stat(event, next_event);
1950
1951 event = list_next_entry(event, event_entry);
1952 next_event = list_next_entry(next_event, event_entry);
1953 }
1954 }
1955
1956 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1957 struct task_struct *next)
1958 {
1959 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1960 struct perf_event_context *next_ctx;
1961 struct perf_event_context *parent;
1962 struct perf_cpu_context *cpuctx;
1963 int do_switch = 1;
1964
1965 if (likely(!ctx))
1966 return;
1967
1968 cpuctx = __get_cpu_context(ctx);
1969 if (!cpuctx->task_ctx)
1970 return;
1971
1972 rcu_read_lock();
1973 parent = rcu_dereference(ctx->parent_ctx);
1974 next_ctx = next->perf_event_ctxp[ctxn];
1975 if (parent && next_ctx &&
1976 rcu_dereference(next_ctx->parent_ctx) == parent) {
1977 /*
1978 * Looks like the two contexts are clones, so we might be
1979 * able to optimize the context switch. We lock both
1980 * contexts and check that they are clones under the
1981 * lock (including re-checking that neither has been
1982 * uncloned in the meantime). It doesn't matter which
1983 * order we take the locks because no other cpu could
1984 * be trying to lock both of these tasks.
1985 */
1986 raw_spin_lock(&ctx->lock);
1987 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1988 if (context_equiv(ctx, next_ctx)) {
1989 /*
1990 * XXX do we need a memory barrier of sorts
1991 * wrt to rcu_dereference() of perf_event_ctxp
1992 */
1993 task->perf_event_ctxp[ctxn] = next_ctx;
1994 next->perf_event_ctxp[ctxn] = ctx;
1995 ctx->task = next;
1996 next_ctx->task = task;
1997 do_switch = 0;
1998
1999 perf_event_sync_stat(ctx, next_ctx);
2000 }
2001 raw_spin_unlock(&next_ctx->lock);
2002 raw_spin_unlock(&ctx->lock);
2003 }
2004 rcu_read_unlock();
2005
2006 if (do_switch) {
2007 raw_spin_lock(&ctx->lock);
2008 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2009 cpuctx->task_ctx = NULL;
2010 raw_spin_unlock(&ctx->lock);
2011 }
2012 }
2013
2014 #define for_each_task_context_nr(ctxn) \
2015 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2016
2017 /*
2018 * Called from scheduler to remove the events of the current task,
2019 * with interrupts disabled.
2020 *
2021 * We stop each event and update the event value in event->count.
2022 *
2023 * This does not protect us against NMI, but disable()
2024 * sets the disabled bit in the control field of event _before_
2025 * accessing the event control register. If a NMI hits, then it will
2026 * not restart the event.
2027 */
2028 void __perf_event_task_sched_out(struct task_struct *task,
2029 struct task_struct *next)
2030 {
2031 int ctxn;
2032
2033 for_each_task_context_nr(ctxn)
2034 perf_event_context_sched_out(task, ctxn, next);
2035
2036 /*
2037 * if cgroup events exist on this CPU, then we need
2038 * to check if we have to switch out PMU state.
2039 * cgroup event are system-wide mode only
2040 */
2041 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2042 perf_cgroup_sched_out(task, next);
2043 }
2044
2045 static void task_ctx_sched_out(struct perf_event_context *ctx)
2046 {
2047 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2048
2049 if (!cpuctx->task_ctx)
2050 return;
2051
2052 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2053 return;
2054
2055 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2056 cpuctx->task_ctx = NULL;
2057 }
2058
2059 /*
2060 * Called with IRQs disabled
2061 */
2062 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2063 enum event_type_t event_type)
2064 {
2065 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2066 }
2067
2068 static void
2069 ctx_pinned_sched_in(struct perf_event_context *ctx,
2070 struct perf_cpu_context *cpuctx)
2071 {
2072 struct perf_event *event;
2073
2074 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2075 if (event->state <= PERF_EVENT_STATE_OFF)
2076 continue;
2077 if (!event_filter_match(event))
2078 continue;
2079
2080 /* may need to reset tstamp_enabled */
2081 if (is_cgroup_event(event))
2082 perf_cgroup_mark_enabled(event, ctx);
2083
2084 if (group_can_go_on(event, cpuctx, 1))
2085 group_sched_in(event, cpuctx, ctx);
2086
2087 /*
2088 * If this pinned group hasn't been scheduled,
2089 * put it in error state.
2090 */
2091 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2092 update_group_times(event);
2093 event->state = PERF_EVENT_STATE_ERROR;
2094 }
2095 }
2096 }
2097
2098 static void
2099 ctx_flexible_sched_in(struct perf_event_context *ctx,
2100 struct perf_cpu_context *cpuctx)
2101 {
2102 struct perf_event *event;
2103 int can_add_hw = 1;
2104
2105 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2106 /* Ignore events in OFF or ERROR state */
2107 if (event->state <= PERF_EVENT_STATE_OFF)
2108 continue;
2109 /*
2110 * Listen to the 'cpu' scheduling filter constraint
2111 * of events:
2112 */
2113 if (!event_filter_match(event))
2114 continue;
2115
2116 /* may need to reset tstamp_enabled */
2117 if (is_cgroup_event(event))
2118 perf_cgroup_mark_enabled(event, ctx);
2119
2120 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2121 if (group_sched_in(event, cpuctx, ctx))
2122 can_add_hw = 0;
2123 }
2124 }
2125 }
2126
2127 static void
2128 ctx_sched_in(struct perf_event_context *ctx,
2129 struct perf_cpu_context *cpuctx,
2130 enum event_type_t event_type,
2131 struct task_struct *task)
2132 {
2133 u64 now;
2134 int is_active = ctx->is_active;
2135
2136 ctx->is_active |= event_type;
2137 if (likely(!ctx->nr_events))
2138 return;
2139
2140 now = perf_clock();
2141 ctx->timestamp = now;
2142 perf_cgroup_set_timestamp(task, ctx);
2143 /*
2144 * First go through the list and put on any pinned groups
2145 * in order to give them the best chance of going on.
2146 */
2147 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2148 ctx_pinned_sched_in(ctx, cpuctx);
2149
2150 /* Then walk through the lower prio flexible groups */
2151 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2152 ctx_flexible_sched_in(ctx, cpuctx);
2153 }
2154
2155 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2156 enum event_type_t event_type,
2157 struct task_struct *task)
2158 {
2159 struct perf_event_context *ctx = &cpuctx->ctx;
2160
2161 ctx_sched_in(ctx, cpuctx, event_type, task);
2162 }
2163
2164 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2165 struct task_struct *task)
2166 {
2167 struct perf_cpu_context *cpuctx;
2168
2169 cpuctx = __get_cpu_context(ctx);
2170 if (cpuctx->task_ctx == ctx)
2171 return;
2172
2173 perf_ctx_lock(cpuctx, ctx);
2174 perf_pmu_disable(ctx->pmu);
2175 /*
2176 * We want to keep the following priority order:
2177 * cpu pinned (that don't need to move), task pinned,
2178 * cpu flexible, task flexible.
2179 */
2180 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2181
2182 if (ctx->nr_events)
2183 cpuctx->task_ctx = ctx;
2184
2185 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2186
2187 perf_pmu_enable(ctx->pmu);
2188 perf_ctx_unlock(cpuctx, ctx);
2189
2190 /*
2191 * Since these rotations are per-cpu, we need to ensure the
2192 * cpu-context we got scheduled on is actually rotating.
2193 */
2194 perf_pmu_rotate_start(ctx->pmu);
2195 }
2196
2197 /*
2198 * Called from scheduler to add the events of the current task
2199 * with interrupts disabled.
2200 *
2201 * We restore the event value and then enable it.
2202 *
2203 * This does not protect us against NMI, but enable()
2204 * sets the enabled bit in the control field of event _before_
2205 * accessing the event control register. If a NMI hits, then it will
2206 * keep the event running.
2207 */
2208 void __perf_event_task_sched_in(struct task_struct *prev,
2209 struct task_struct *task)
2210 {
2211 struct perf_event_context *ctx;
2212 int ctxn;
2213
2214 for_each_task_context_nr(ctxn) {
2215 ctx = task->perf_event_ctxp[ctxn];
2216 if (likely(!ctx))
2217 continue;
2218
2219 perf_event_context_sched_in(ctx, task);
2220 }
2221 /*
2222 * if cgroup events exist on this CPU, then we need
2223 * to check if we have to switch in PMU state.
2224 * cgroup event are system-wide mode only
2225 */
2226 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2227 perf_cgroup_sched_in(prev, task);
2228 }
2229
2230 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2231 {
2232 u64 frequency = event->attr.sample_freq;
2233 u64 sec = NSEC_PER_SEC;
2234 u64 divisor, dividend;
2235
2236 int count_fls, nsec_fls, frequency_fls, sec_fls;
2237
2238 count_fls = fls64(count);
2239 nsec_fls = fls64(nsec);
2240 frequency_fls = fls64(frequency);
2241 sec_fls = 30;
2242
2243 /*
2244 * We got @count in @nsec, with a target of sample_freq HZ
2245 * the target period becomes:
2246 *
2247 * @count * 10^9
2248 * period = -------------------
2249 * @nsec * sample_freq
2250 *
2251 */
2252
2253 /*
2254 * Reduce accuracy by one bit such that @a and @b converge
2255 * to a similar magnitude.
2256 */
2257 #define REDUCE_FLS(a, b) \
2258 do { \
2259 if (a##_fls > b##_fls) { \
2260 a >>= 1; \
2261 a##_fls--; \
2262 } else { \
2263 b >>= 1; \
2264 b##_fls--; \
2265 } \
2266 } while (0)
2267
2268 /*
2269 * Reduce accuracy until either term fits in a u64, then proceed with
2270 * the other, so that finally we can do a u64/u64 division.
2271 */
2272 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2273 REDUCE_FLS(nsec, frequency);
2274 REDUCE_FLS(sec, count);
2275 }
2276
2277 if (count_fls + sec_fls > 64) {
2278 divisor = nsec * frequency;
2279
2280 while (count_fls + sec_fls > 64) {
2281 REDUCE_FLS(count, sec);
2282 divisor >>= 1;
2283 }
2284
2285 dividend = count * sec;
2286 } else {
2287 dividend = count * sec;
2288
2289 while (nsec_fls + frequency_fls > 64) {
2290 REDUCE_FLS(nsec, frequency);
2291 dividend >>= 1;
2292 }
2293
2294 divisor = nsec * frequency;
2295 }
2296
2297 if (!divisor)
2298 return dividend;
2299
2300 return div64_u64(dividend, divisor);
2301 }
2302
2303 static DEFINE_PER_CPU(int, perf_throttled_count);
2304 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2305
2306 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
2307 {
2308 struct hw_perf_event *hwc = &event->hw;
2309 s64 period, sample_period;
2310 s64 delta;
2311
2312 period = perf_calculate_period(event, nsec, count);
2313
2314 delta = (s64)(period - hwc->sample_period);
2315 delta = (delta + 7) / 8; /* low pass filter */
2316
2317 sample_period = hwc->sample_period + delta;
2318
2319 if (!sample_period)
2320 sample_period = 1;
2321
2322 hwc->sample_period = sample_period;
2323
2324 if (local64_read(&hwc->period_left) > 8*sample_period) {
2325 event->pmu->stop(event, PERF_EF_UPDATE);
2326 local64_set(&hwc->period_left, 0);
2327 event->pmu->start(event, PERF_EF_RELOAD);
2328 }
2329 }
2330
2331 /*
2332 * combine freq adjustment with unthrottling to avoid two passes over the
2333 * events. At the same time, make sure, having freq events does not change
2334 * the rate of unthrottling as that would introduce bias.
2335 */
2336 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2337 int needs_unthr)
2338 {
2339 struct perf_event *event;
2340 struct hw_perf_event *hwc;
2341 u64 now, period = TICK_NSEC;
2342 s64 delta;
2343
2344 /*
2345 * only need to iterate over all events iff:
2346 * - context have events in frequency mode (needs freq adjust)
2347 * - there are events to unthrottle on this cpu
2348 */
2349 if (!(ctx->nr_freq || needs_unthr))
2350 return;
2351
2352 raw_spin_lock(&ctx->lock);
2353
2354 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2355 if (event->state != PERF_EVENT_STATE_ACTIVE)
2356 continue;
2357
2358 if (!event_filter_match(event))
2359 continue;
2360
2361 hwc = &event->hw;
2362
2363 if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
2364 hwc->interrupts = 0;
2365 perf_log_throttle(event, 1);
2366 event->pmu->start(event, 0);
2367 }
2368
2369 if (!event->attr.freq || !event->attr.sample_freq)
2370 continue;
2371
2372 /*
2373 * stop the event and update event->count
2374 */
2375 event->pmu->stop(event, PERF_EF_UPDATE);
2376
2377 now = local64_read(&event->count);
2378 delta = now - hwc->freq_count_stamp;
2379 hwc->freq_count_stamp = now;
2380
2381 /*
2382 * restart the event
2383 * reload only if value has changed
2384 */
2385 if (delta > 0)
2386 perf_adjust_period(event, period, delta);
2387
2388 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2389 }
2390
2391 raw_spin_unlock(&ctx->lock);
2392 }
2393
2394 /*
2395 * Round-robin a context's events:
2396 */
2397 static void rotate_ctx(struct perf_event_context *ctx)
2398 {
2399 /*
2400 * Rotate the first entry last of non-pinned groups. Rotation might be
2401 * disabled by the inheritance code.
2402 */
2403 if (!ctx->rotate_disable)
2404 list_rotate_left(&ctx->flexible_groups);
2405 }
2406
2407 /*
2408 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2409 * because they're strictly cpu affine and rotate_start is called with IRQs
2410 * disabled, while rotate_context is called from IRQ context.
2411 */
2412 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2413 {
2414 struct perf_event_context *ctx = NULL;
2415 int rotate = 0, remove = 1;
2416
2417 if (cpuctx->ctx.nr_events) {
2418 remove = 0;
2419 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2420 rotate = 1;
2421 }
2422
2423 ctx = cpuctx->task_ctx;
2424 if (ctx && ctx->nr_events) {
2425 remove = 0;
2426 if (ctx->nr_events != ctx->nr_active)
2427 rotate = 1;
2428 }
2429
2430 if (!rotate)
2431 goto done;
2432
2433 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2434 perf_pmu_disable(cpuctx->ctx.pmu);
2435
2436 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2437 if (ctx)
2438 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2439
2440 rotate_ctx(&cpuctx->ctx);
2441 if (ctx)
2442 rotate_ctx(ctx);
2443
2444 perf_event_sched_in(cpuctx, ctx, current);
2445
2446 perf_pmu_enable(cpuctx->ctx.pmu);
2447 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2448 done:
2449 if (remove)
2450 list_del_init(&cpuctx->rotation_list);
2451 }
2452
2453 void perf_event_task_tick(void)
2454 {
2455 struct list_head *head = &__get_cpu_var(rotation_list);
2456 struct perf_cpu_context *cpuctx, *tmp;
2457 struct perf_event_context *ctx;
2458 int throttled;
2459
2460 WARN_ON(!irqs_disabled());
2461
2462 __this_cpu_inc(perf_throttled_seq);
2463 throttled = __this_cpu_xchg(perf_throttled_count, 0);
2464
2465 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2466 ctx = &cpuctx->ctx;
2467 perf_adjust_freq_unthr_context(ctx, throttled);
2468
2469 ctx = cpuctx->task_ctx;
2470 if (ctx)
2471 perf_adjust_freq_unthr_context(ctx, throttled);
2472
2473 if (cpuctx->jiffies_interval == 1 ||
2474 !(jiffies % cpuctx->jiffies_interval))
2475 perf_rotate_context(cpuctx);
2476 }
2477 }
2478
2479 static int event_enable_on_exec(struct perf_event *event,
2480 struct perf_event_context *ctx)
2481 {
2482 if (!event->attr.enable_on_exec)
2483 return 0;
2484
2485 event->attr.enable_on_exec = 0;
2486 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2487 return 0;
2488
2489 __perf_event_mark_enabled(event);
2490
2491 return 1;
2492 }
2493
2494 /*
2495 * Enable all of a task's events that have been marked enable-on-exec.
2496 * This expects task == current.
2497 */
2498 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2499 {
2500 struct perf_event *event;
2501 unsigned long flags;
2502 int enabled = 0;
2503 int ret;
2504
2505 local_irq_save(flags);
2506 if (!ctx || !ctx->nr_events)
2507 goto out;
2508
2509 /*
2510 * We must ctxsw out cgroup events to avoid conflict
2511 * when invoking perf_task_event_sched_in() later on
2512 * in this function. Otherwise we end up trying to
2513 * ctxswin cgroup events which are already scheduled
2514 * in.
2515 */
2516 perf_cgroup_sched_out(current, NULL);
2517
2518 raw_spin_lock(&ctx->lock);
2519 task_ctx_sched_out(ctx);
2520
2521 list_for_each_entry(event, &ctx->event_list, event_entry) {
2522 ret = event_enable_on_exec(event, ctx);
2523 if (ret)
2524 enabled = 1;
2525 }
2526
2527 /*
2528 * Unclone this context if we enabled any event.
2529 */
2530 if (enabled)
2531 unclone_ctx(ctx);
2532
2533 raw_spin_unlock(&ctx->lock);
2534
2535 /*
2536 * Also calls ctxswin for cgroup events, if any:
2537 */
2538 perf_event_context_sched_in(ctx, ctx->task);
2539 out:
2540 local_irq_restore(flags);
2541 }
2542
2543 /*
2544 * Cross CPU call to read the hardware event
2545 */
2546 static void __perf_event_read(void *info)
2547 {
2548 struct perf_event *event = info;
2549 struct perf_event_context *ctx = event->ctx;
2550 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2551
2552 /*
2553 * If this is a task context, we need to check whether it is
2554 * the current task context of this cpu. If not it has been
2555 * scheduled out before the smp call arrived. In that case
2556 * event->count would have been updated to a recent sample
2557 * when the event was scheduled out.
2558 */
2559 if (ctx->task && cpuctx->task_ctx != ctx)
2560 return;
2561
2562 raw_spin_lock(&ctx->lock);
2563 if (ctx->is_active) {
2564 update_context_time(ctx);
2565 update_cgrp_time_from_event(event);
2566 }
2567 update_event_times(event);
2568 if (event->state == PERF_EVENT_STATE_ACTIVE)
2569 event->pmu->read(event);
2570 raw_spin_unlock(&ctx->lock);
2571 }
2572
2573 static inline u64 perf_event_count(struct perf_event *event)
2574 {
2575 return local64_read(&event->count) + atomic64_read(&event->child_count);
2576 }
2577
2578 static u64 perf_event_read(struct perf_event *event)
2579 {
2580 /*
2581 * If event is enabled and currently active on a CPU, update the
2582 * value in the event structure:
2583 */
2584 if (event->state == PERF_EVENT_STATE_ACTIVE) {
2585 smp_call_function_single(event->oncpu,
2586 __perf_event_read, event, 1);
2587 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2588 struct perf_event_context *ctx = event->ctx;
2589 unsigned long flags;
2590
2591 raw_spin_lock_irqsave(&ctx->lock, flags);
2592 /*
2593 * may read while context is not active
2594 * (e.g., thread is blocked), in that case
2595 * we cannot update context time
2596 */
2597 if (ctx->is_active) {
2598 update_context_time(ctx);
2599 update_cgrp_time_from_event(event);
2600 }
2601 update_event_times(event);
2602 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2603 }
2604
2605 return perf_event_count(event);
2606 }
2607
2608 /*
2609 * Initialize the perf_event context in a task_struct:
2610 */
2611 static void __perf_event_init_context(struct perf_event_context *ctx)
2612 {
2613 raw_spin_lock_init(&ctx->lock);
2614 mutex_init(&ctx->mutex);
2615 INIT_LIST_HEAD(&ctx->pinned_groups);
2616 INIT_LIST_HEAD(&ctx->flexible_groups);
2617 INIT_LIST_HEAD(&ctx->event_list);
2618 atomic_set(&ctx->refcount, 1);
2619 }
2620
2621 static struct perf_event_context *
2622 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2623 {
2624 struct perf_event_context *ctx;
2625
2626 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2627 if (!ctx)
2628 return NULL;
2629
2630 __perf_event_init_context(ctx);
2631 if (task) {
2632 ctx->task = task;
2633 get_task_struct(task);
2634 }
2635 ctx->pmu = pmu;
2636
2637 return ctx;
2638 }
2639
2640 static struct task_struct *
2641 find_lively_task_by_vpid(pid_t vpid)
2642 {
2643 struct task_struct *task;
2644 int err;
2645
2646 rcu_read_lock();
2647 if (!vpid)
2648 task = current;
2649 else
2650 task = find_task_by_vpid(vpid);
2651 if (task)
2652 get_task_struct(task);
2653 rcu_read_unlock();
2654
2655 if (!task)
2656 return ERR_PTR(-ESRCH);
2657
2658 /* Reuse ptrace permission checks for now. */
2659 err = -EACCES;
2660 if (!ptrace_may_access(task, PTRACE_MODE_READ))
2661 goto errout;
2662
2663 return task;
2664 errout:
2665 put_task_struct(task);
2666 return ERR_PTR(err);
2667
2668 }
2669
2670 /*
2671 * Returns a matching context with refcount and pincount.
2672 */
2673 static struct perf_event_context *
2674 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2675 {
2676 struct perf_event_context *ctx;
2677 struct perf_cpu_context *cpuctx;
2678 unsigned long flags;
2679 int ctxn, err;
2680
2681 if (!task) {
2682 /* Must be root to operate on a CPU event: */
2683 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2684 return ERR_PTR(-EACCES);
2685
2686 /*
2687 * We could be clever and allow to attach a event to an
2688 * offline CPU and activate it when the CPU comes up, but
2689 * that's for later.
2690 */
2691 if (!cpu_online(cpu))
2692 return ERR_PTR(-ENODEV);
2693
2694 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2695 ctx = &cpuctx->ctx;
2696 get_ctx(ctx);
2697 ++ctx->pin_count;
2698
2699 return ctx;
2700 }
2701
2702 err = -EINVAL;
2703 ctxn = pmu->task_ctx_nr;
2704 if (ctxn < 0)
2705 goto errout;
2706
2707 retry:
2708 ctx = perf_lock_task_context(task, ctxn, &flags);
2709 if (ctx) {
2710 unclone_ctx(ctx);
2711 ++ctx->pin_count;
2712 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2713 } else {
2714 ctx = alloc_perf_context(pmu, task);
2715 err = -ENOMEM;
2716 if (!ctx)
2717 goto errout;
2718
2719 err = 0;
2720 mutex_lock(&task->perf_event_mutex);
2721 /*
2722 * If it has already passed perf_event_exit_task().
2723 * we must see PF_EXITING, it takes this mutex too.
2724 */
2725 if (task->flags & PF_EXITING)
2726 err = -ESRCH;
2727 else if (task->perf_event_ctxp[ctxn])
2728 err = -EAGAIN;
2729 else {
2730 get_ctx(ctx);
2731 ++ctx->pin_count;
2732 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2733 }
2734 mutex_unlock(&task->perf_event_mutex);
2735
2736 if (unlikely(err)) {
2737 put_ctx(ctx);
2738
2739 if (err == -EAGAIN)
2740 goto retry;
2741 goto errout;
2742 }
2743 }
2744
2745 return ctx;
2746
2747 errout:
2748 return ERR_PTR(err);
2749 }
2750
2751 static void perf_event_free_filter(struct perf_event *event);
2752
2753 static void free_event_rcu(struct rcu_head *head)
2754 {
2755 struct perf_event *event;
2756
2757 event = container_of(head, struct perf_event, rcu_head);
2758 if (event->ns)
2759 put_pid_ns(event->ns);
2760 perf_event_free_filter(event);
2761 kfree(event);
2762 }
2763
2764 static void ring_buffer_put(struct ring_buffer *rb);
2765
2766 static void free_event(struct perf_event *event)
2767 {
2768 irq_work_sync(&event->pending);
2769
2770 if (!event->parent) {
2771 if (event->attach_state & PERF_ATTACH_TASK)
2772 static_key_slow_dec_deferred(&perf_sched_events);
2773 if (event->attr.mmap || event->attr.mmap_data)
2774 atomic_dec(&nr_mmap_events);
2775 if (event->attr.comm)
2776 atomic_dec(&nr_comm_events);
2777 if (event->attr.task)
2778 atomic_dec(&nr_task_events);
2779 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2780 put_callchain_buffers();
2781 if (is_cgroup_event(event)) {
2782 atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
2783 static_key_slow_dec_deferred(&perf_sched_events);
2784 }
2785 }
2786
2787 if (event->rb) {
2788 ring_buffer_put(event->rb);
2789 event->rb = NULL;
2790 }
2791
2792 if (is_cgroup_event(event))
2793 perf_detach_cgroup(event);
2794
2795 if (event->destroy)
2796 event->destroy(event);
2797
2798 if (event->ctx)
2799 put_ctx(event->ctx);
2800
2801 call_rcu(&event->rcu_head, free_event_rcu);
2802 }
2803
2804 int perf_event_release_kernel(struct perf_event *event)
2805 {
2806 struct perf_event_context *ctx = event->ctx;
2807
2808 WARN_ON_ONCE(ctx->parent_ctx);
2809 /*
2810 * There are two ways this annotation is useful:
2811 *
2812 * 1) there is a lock recursion from perf_event_exit_task
2813 * see the comment there.
2814 *
2815 * 2) there is a lock-inversion with mmap_sem through
2816 * perf_event_read_group(), which takes faults while
2817 * holding ctx->mutex, however this is called after
2818 * the last filedesc died, so there is no possibility
2819 * to trigger the AB-BA case.
2820 */
2821 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2822 raw_spin_lock_irq(&ctx->lock);
2823 perf_group_detach(event);
2824 raw_spin_unlock_irq(&ctx->lock);
2825 perf_remove_from_context(event);
2826 mutex_unlock(&ctx->mutex);
2827
2828 free_event(event);
2829
2830 return 0;
2831 }
2832 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2833
2834 /*
2835 * Called when the last reference to the file is gone.
2836 */
2837 static int perf_release(struct inode *inode, struct file *file)
2838 {
2839 struct perf_event *event = file->private_data;
2840 struct task_struct *owner;
2841
2842 file->private_data = NULL;
2843
2844 rcu_read_lock();
2845 owner = ACCESS_ONCE(event->owner);
2846 /*
2847 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
2848 * !owner it means the list deletion is complete and we can indeed
2849 * free this event, otherwise we need to serialize on
2850 * owner->perf_event_mutex.
2851 */
2852 smp_read_barrier_depends();
2853 if (owner) {
2854 /*
2855 * Since delayed_put_task_struct() also drops the last
2856 * task reference we can safely take a new reference
2857 * while holding the rcu_read_lock().
2858 */
2859 get_task_struct(owner);
2860 }
2861 rcu_read_unlock();
2862
2863 if (owner) {
2864 mutex_lock(&owner->perf_event_mutex);
2865 /*
2866 * We have to re-check the event->owner field, if it is cleared
2867 * we raced with perf_event_exit_task(), acquiring the mutex
2868 * ensured they're done, and we can proceed with freeing the
2869 * event.
2870 */
2871 if (event->owner)
2872 list_del_init(&event->owner_entry);
2873 mutex_unlock(&owner->perf_event_mutex);
2874 put_task_struct(owner);
2875 }
2876
2877 return perf_event_release_kernel(event);
2878 }
2879
2880 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2881 {
2882 struct perf_event *child;
2883 u64 total = 0;
2884
2885 *enabled = 0;
2886 *running = 0;
2887
2888 mutex_lock(&event->child_mutex);
2889 total += perf_event_read(event);
2890 *enabled += event->total_time_enabled +
2891 atomic64_read(&event->child_total_time_enabled);
2892 *running += event->total_time_running +
2893 atomic64_read(&event->child_total_time_running);
2894
2895 list_for_each_entry(child, &event->child_list, child_list) {
2896 total += perf_event_read(child);
2897 *enabled += child->total_time_enabled;
2898 *running += child->total_time_running;
2899 }
2900 mutex_unlock(&event->child_mutex);
2901
2902 return total;
2903 }
2904 EXPORT_SYMBOL_GPL(perf_event_read_value);
2905
2906 static int perf_event_read_group(struct perf_event *event,
2907 u64 read_format, char __user *buf)
2908 {
2909 struct perf_event *leader = event->group_leader, *sub;
2910 int n = 0, size = 0, ret = -EFAULT;
2911 struct perf_event_context *ctx = leader->ctx;
2912 u64 values[5];
2913 u64 count, enabled, running;
2914
2915 mutex_lock(&ctx->mutex);
2916 count = perf_event_read_value(leader, &enabled, &running);
2917
2918 values[n++] = 1 + leader->nr_siblings;
2919 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2920 values[n++] = enabled;
2921 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2922 values[n++] = running;
2923 values[n++] = count;
2924 if (read_format & PERF_FORMAT_ID)
2925 values[n++] = primary_event_id(leader);
2926
2927 size = n * sizeof(u64);
2928
2929 if (copy_to_user(buf, values, size))
2930 goto unlock;
2931
2932 ret = size;
2933
2934 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2935 n = 0;
2936
2937 values[n++] = perf_event_read_value(sub, &enabled, &running);
2938 if (read_format & PERF_FORMAT_ID)
2939 values[n++] = primary_event_id(sub);
2940
2941 size = n * sizeof(u64);
2942
2943 if (copy_to_user(buf + ret, values, size)) {
2944 ret = -EFAULT;
2945 goto unlock;
2946 }
2947
2948 ret += size;
2949 }
2950 unlock:
2951 mutex_unlock(&ctx->mutex);
2952
2953 return ret;
2954 }
2955
2956 static int perf_event_read_one(struct perf_event *event,
2957 u64 read_format, char __user *buf)
2958 {
2959 u64 enabled, running;
2960 u64 values[4];
2961 int n = 0;
2962
2963 values[n++] = perf_event_read_value(event, &enabled, &running);
2964 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2965 values[n++] = enabled;
2966 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2967 values[n++] = running;
2968 if (read_format & PERF_FORMAT_ID)
2969 values[n++] = primary_event_id(event);
2970
2971 if (copy_to_user(buf, values, n * sizeof(u64)))
2972 return -EFAULT;
2973
2974 return n * sizeof(u64);
2975 }
2976
2977 /*
2978 * Read the performance event - simple non blocking version for now
2979 */
2980 static ssize_t
2981 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2982 {
2983 u64 read_format = event->attr.read_format;
2984 int ret;
2985
2986 /*
2987 * Return end-of-file for a read on a event that is in
2988 * error state (i.e. because it was pinned but it couldn't be
2989 * scheduled on to the CPU at some point).
2990 */
2991 if (event->state == PERF_EVENT_STATE_ERROR)
2992 return 0;
2993
2994 if (count < event->read_size)
2995 return -ENOSPC;
2996
2997 WARN_ON_ONCE(event->ctx->parent_ctx);
2998 if (read_format & PERF_FORMAT_GROUP)
2999 ret = perf_event_read_group(event, read_format, buf);
3000 else
3001 ret = perf_event_read_one(event, read_format, buf);
3002
3003 return ret;
3004 }
3005
3006 static ssize_t
3007 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3008 {
3009 struct perf_event *event = file->private_data;
3010
3011 return perf_read_hw(event, buf, count);
3012 }
3013
3014 static unsigned int perf_poll(struct file *file, poll_table *wait)
3015 {
3016 struct perf_event *event = file->private_data;
3017 struct ring_buffer *rb;
3018 unsigned int events = POLL_HUP;
3019
3020 /*
3021 * Race between perf_event_set_output() and perf_poll(): perf_poll()
3022 * grabs the rb reference but perf_event_set_output() overrides it.
3023 * Here is the timeline for two threads T1, T2:
3024 * t0: T1, rb = rcu_dereference(event->rb)
3025 * t1: T2, old_rb = event->rb
3026 * t2: T2, event->rb = new rb
3027 * t3: T2, ring_buffer_detach(old_rb)
3028 * t4: T1, ring_buffer_attach(rb1)
3029 * t5: T1, poll_wait(event->waitq)
3030 *
3031 * To avoid this problem, we grab mmap_mutex in perf_poll()
3032 * thereby ensuring that the assignment of the new ring buffer
3033 * and the detachment of the old buffer appear atomic to perf_poll()
3034 */
3035 mutex_lock(&event->mmap_mutex);
3036
3037 rcu_read_lock();
3038 rb = rcu_dereference(event->rb);
3039 if (rb) {
3040 ring_buffer_attach(event, rb);
3041 events = atomic_xchg(&rb->poll, 0);
3042 }
3043 rcu_read_unlock();
3044
3045 mutex_unlock(&event->mmap_mutex);
3046
3047 poll_wait(file, &event->waitq, wait);
3048
3049 return events;
3050 }
3051
3052 static void perf_event_reset(struct perf_event *event)
3053 {
3054 (void)perf_event_read(event);
3055 local64_set(&event->count, 0);
3056 perf_event_update_userpage(event);
3057 }
3058
3059 /*
3060 * Holding the top-level event's child_mutex means that any
3061 * descendant process that has inherited this event will block
3062 * in sync_child_event if it goes to exit, thus satisfying the
3063 * task existence requirements of perf_event_enable/disable.
3064 */
3065 static void perf_event_for_each_child(struct perf_event *event,
3066 void (*func)(struct perf_event *))
3067 {
3068 struct perf_event *child;
3069
3070 WARN_ON_ONCE(event->ctx->parent_ctx);
3071 mutex_lock(&event->child_mutex);
3072 func(event);
3073 list_for_each_entry(child, &event->child_list, child_list)
3074 func(child);
3075 mutex_unlock(&event->child_mutex);
3076 }
3077
3078 static void perf_event_for_each(struct perf_event *event,
3079 void (*func)(struct perf_event *))
3080 {
3081 struct perf_event_context *ctx = event->ctx;
3082 struct perf_event *sibling;
3083
3084 WARN_ON_ONCE(ctx->parent_ctx);
3085 mutex_lock(&ctx->mutex);
3086 event = event->group_leader;
3087
3088 perf_event_for_each_child(event, func);
3089 func(event);
3090 list_for_each_entry(sibling, &event->sibling_list, group_entry)
3091 perf_event_for_each_child(event, func);
3092 mutex_unlock(&ctx->mutex);
3093 }
3094
3095 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3096 {
3097 struct perf_event_context *ctx = event->ctx;
3098 int ret = 0;
3099 u64 value;
3100
3101 if (!is_sampling_event(event))
3102 return -EINVAL;
3103
3104 if (copy_from_user(&value, arg, sizeof(value)))
3105 return -EFAULT;
3106
3107 if (!value)
3108 return -EINVAL;
3109
3110 raw_spin_lock_irq(&ctx->lock);
3111 if (event->attr.freq) {
3112 if (value > sysctl_perf_event_sample_rate) {
3113 ret = -EINVAL;
3114 goto unlock;
3115 }
3116
3117 event->attr.sample_freq = value;
3118 } else {
3119 event->attr.sample_period = value;
3120 event->hw.sample_period = value;
3121 }
3122 unlock:
3123 raw_spin_unlock_irq(&ctx->lock);
3124
3125 return ret;
3126 }
3127
3128 static const struct file_operations perf_fops;
3129
3130 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
3131 {
3132 struct file *file;
3133
3134 file = fget_light(fd, fput_needed);
3135 if (!file)
3136 return ERR_PTR(-EBADF);
3137
3138 if (file->f_op != &perf_fops) {
3139 fput_light(file, *fput_needed);
3140 *fput_needed = 0;
3141 return ERR_PTR(-EBADF);
3142 }
3143
3144 return file->private_data;
3145 }
3146
3147 static int perf_event_set_output(struct perf_event *event,
3148 struct perf_event *output_event);
3149 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3150
3151 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3152 {
3153 struct perf_event *event = file->private_data;
3154 void (*func)(struct perf_event *);
3155 u32 flags = arg;
3156
3157 switch (cmd) {
3158 case PERF_EVENT_IOC_ENABLE:
3159 func = perf_event_enable;
3160 break;
3161 case PERF_EVENT_IOC_DISABLE:
3162 func = perf_event_disable;
3163 break;
3164 case PERF_EVENT_IOC_RESET:
3165 func = perf_event_reset;
3166 break;
3167
3168 case PERF_EVENT_IOC_REFRESH:
3169 return perf_event_refresh(event, arg);
3170
3171 case PERF_EVENT_IOC_PERIOD:
3172 return perf_event_period(event, (u64 __user *)arg);
3173
3174 case PERF_EVENT_IOC_SET_OUTPUT:
3175 {
3176 struct perf_event *output_event = NULL;
3177 int fput_needed = 0;
3178 int ret;
3179
3180 if (arg != -1) {
3181 output_event = perf_fget_light(arg, &fput_needed);
3182 if (IS_ERR(output_event))
3183 return PTR_ERR(output_event);
3184 }
3185
3186 ret = perf_event_set_output(event, output_event);
3187 if (output_event)
3188 fput_light(output_event->filp, fput_needed);
3189
3190 return ret;
3191 }
3192
3193 case PERF_EVENT_IOC_SET_FILTER:
3194 return perf_event_set_filter(event, (void __user *)arg);
3195
3196 default:
3197 return -ENOTTY;
3198 }
3199
3200 if (flags & PERF_IOC_FLAG_GROUP)
3201 perf_event_for_each(event, func);
3202 else
3203 perf_event_for_each_child(event, func);
3204
3205 return 0;
3206 }
3207
3208 int perf_event_task_enable(void)
3209 {
3210 struct perf_event *event;
3211
3212 mutex_lock(&current->perf_event_mutex);
3213 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3214 perf_event_for_each_child(event, perf_event_enable);
3215 mutex_unlock(&current->perf_event_mutex);
3216
3217 return 0;
3218 }
3219
3220 int perf_event_task_disable(void)
3221 {
3222 struct perf_event *event;
3223
3224 mutex_lock(&current->perf_event_mutex);
3225 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3226 perf_event_for_each_child(event, perf_event_disable);
3227 mutex_unlock(&current->perf_event_mutex);
3228
3229 return 0;
3230 }
3231
3232 static int perf_event_index(struct perf_event *event)
3233 {
3234 if (event->hw.state & PERF_HES_STOPPED)
3235 return 0;
3236
3237 if (event->state != PERF_EVENT_STATE_ACTIVE)
3238 return 0;
3239
3240 return event->pmu->event_idx(event);
3241 }
3242
3243 static void calc_timer_values(struct perf_event *event,
3244 u64 *now,
3245 u64 *enabled,
3246 u64 *running)
3247 {
3248 u64 ctx_time;
3249
3250 *now = perf_clock();
3251 ctx_time = event->shadow_ctx_time + *now;
3252 *enabled = ctx_time - event->tstamp_enabled;
3253 *running = ctx_time - event->tstamp_running;
3254 }
3255
3256 void __weak perf_update_user_clock(struct perf_event_mmap_page *userpg, u64 now)
3257 {
3258 }
3259
3260 /*
3261 * Callers need to ensure there can be no nesting of this function, otherwise
3262 * the seqlock logic goes bad. We can not serialize this because the arch
3263 * code calls this from NMI context.
3264 */
3265 void perf_event_update_userpage(struct perf_event *event)
3266 {
3267 struct perf_event_mmap_page *userpg;
3268 struct ring_buffer *rb;
3269 u64 enabled, running, now;
3270
3271 rcu_read_lock();
3272 /*
3273 * compute total_time_enabled, total_time_running
3274 * based on snapshot values taken when the event
3275 * was last scheduled in.
3276 *
3277 * we cannot simply called update_context_time()
3278 * because of locking issue as we can be called in
3279 * NMI context
3280 */
3281 calc_timer_values(event, &now, &enabled, &running);
3282 rb = rcu_dereference(event->rb);
3283 if (!rb)
3284 goto unlock;
3285
3286 userpg = rb->user_page;
3287
3288 /*
3289 * Disable preemption so as to not let the corresponding user-space
3290 * spin too long if we get preempted.
3291 */
3292 preempt_disable();
3293 ++userpg->lock;
3294 barrier();
3295 userpg->index = perf_event_index(event);
3296 userpg->offset = perf_event_count(event);
3297 if (userpg->index)
3298 userpg->offset -= local64_read(&event->hw.prev_count);
3299
3300 userpg->time_enabled = enabled +
3301 atomic64_read(&event->child_total_time_enabled);
3302
3303 userpg->time_running = running +
3304 atomic64_read(&event->child_total_time_running);
3305
3306 perf_update_user_clock(userpg, now);
3307
3308 barrier();
3309 ++userpg->lock;
3310 preempt_enable();
3311 unlock:
3312 rcu_read_unlock();
3313 }
3314
3315 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3316 {
3317 struct perf_event *event = vma->vm_file->private_data;
3318 struct ring_buffer *rb;
3319 int ret = VM_FAULT_SIGBUS;
3320
3321 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3322 if (vmf->pgoff == 0)
3323 ret = 0;
3324 return ret;
3325 }
3326
3327 rcu_read_lock();
3328 rb = rcu_dereference(event->rb);
3329 if (!rb)
3330 goto unlock;
3331
3332 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3333 goto unlock;
3334
3335 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3336 if (!vmf->page)
3337 goto unlock;
3338
3339 get_page(vmf->page);
3340 vmf->page->mapping = vma->vm_file->f_mapping;
3341 vmf->page->index = vmf->pgoff;
3342
3343 ret = 0;
3344 unlock:
3345 rcu_read_unlock();
3346
3347 return ret;
3348 }
3349
3350 static void ring_buffer_attach(struct perf_event *event,
3351 struct ring_buffer *rb)
3352 {
3353 unsigned long flags;
3354
3355 if (!list_empty(&event->rb_entry))
3356 return;
3357
3358 spin_lock_irqsave(&rb->event_lock, flags);
3359 if (!list_empty(&event->rb_entry))
3360 goto unlock;
3361
3362 list_add(&event->rb_entry, &rb->event_list);
3363 unlock:
3364 spin_unlock_irqrestore(&rb->event_lock, flags);
3365 }
3366
3367 static void ring_buffer_detach(struct perf_event *event,
3368 struct ring_buffer *rb)
3369 {
3370 unsigned long flags;
3371
3372 if (list_empty(&event->rb_entry))
3373 return;
3374
3375 spin_lock_irqsave(&rb->event_lock, flags);
3376 list_del_init(&event->rb_entry);
3377 wake_up_all(&event->waitq);
3378 spin_unlock_irqrestore(&rb->event_lock, flags);
3379 }
3380
3381 static void ring_buffer_wakeup(struct perf_event *event)
3382 {
3383 struct ring_buffer *rb;
3384
3385 rcu_read_lock();
3386 rb = rcu_dereference(event->rb);
3387 if (!rb)
3388 goto unlock;
3389
3390 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3391 wake_up_all(&event->waitq);
3392
3393 unlock:
3394 rcu_read_unlock();
3395 }
3396
3397 static void rb_free_rcu(struct rcu_head *rcu_head)
3398 {
3399 struct ring_buffer *rb;
3400
3401 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3402 rb_free(rb);
3403 }
3404
3405 static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3406 {
3407 struct ring_buffer *rb;
3408
3409 rcu_read_lock();
3410 rb = rcu_dereference(event->rb);
3411 if (rb) {
3412 if (!atomic_inc_not_zero(&rb->refcount))
3413 rb = NULL;
3414 }
3415 rcu_read_unlock();
3416
3417 return rb;
3418 }
3419
3420 static void ring_buffer_put(struct ring_buffer *rb)
3421 {
3422 struct perf_event *event, *n;
3423 unsigned long flags;
3424
3425 if (!atomic_dec_and_test(&rb->refcount))
3426 return;
3427
3428 spin_lock_irqsave(&rb->event_lock, flags);
3429 list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) {
3430 list_del_init(&event->rb_entry);
3431 wake_up_all(&event->waitq);
3432 }
3433 spin_unlock_irqrestore(&rb->event_lock, flags);
3434
3435 call_rcu(&rb->rcu_head, rb_free_rcu);
3436 }
3437
3438 static void perf_mmap_open(struct vm_area_struct *vma)
3439 {
3440 struct perf_event *event = vma->vm_file->private_data;
3441
3442 atomic_inc(&event->mmap_count);
3443 }
3444
3445 static void perf_mmap_close(struct vm_area_struct *vma)
3446 {
3447 struct perf_event *event = vma->vm_file->private_data;
3448
3449 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3450 unsigned long size = perf_data_size(event->rb);
3451 struct user_struct *user = event->mmap_user;
3452 struct ring_buffer *rb = event->rb;
3453
3454 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3455 vma->vm_mm->pinned_vm -= event->mmap_locked;
3456 rcu_assign_pointer(event->rb, NULL);
3457 ring_buffer_detach(event, rb);
3458 mutex_unlock(&event->mmap_mutex);
3459
3460 ring_buffer_put(rb);
3461 free_uid(user);
3462 }
3463 }
3464
3465 static const struct vm_operations_struct perf_mmap_vmops = {
3466 .open = perf_mmap_open,
3467 .close = perf_mmap_close,
3468 .fault = perf_mmap_fault,
3469 .page_mkwrite = perf_mmap_fault,
3470 };
3471
3472 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3473 {
3474 struct perf_event *event = file->private_data;
3475 unsigned long user_locked, user_lock_limit;
3476 struct user_struct *user = current_user();
3477 unsigned long locked, lock_limit;
3478 struct ring_buffer *rb;
3479 unsigned long vma_size;
3480 unsigned long nr_pages;
3481 long user_extra, extra;
3482 int ret = 0, flags = 0;
3483
3484 /*
3485 * Don't allow mmap() of inherited per-task counters. This would
3486 * create a performance issue due to all children writing to the
3487 * same rb.
3488 */
3489 if (event->cpu == -1 && event->attr.inherit)
3490 return -EINVAL;
3491
3492 if (!(vma->vm_flags & VM_SHARED))
3493 return -EINVAL;
3494
3495 vma_size = vma->vm_end - vma->vm_start;
3496 nr_pages = (vma_size / PAGE_SIZE) - 1;
3497
3498 /*
3499 * If we have rb pages ensure they're a power-of-two number, so we
3500 * can do bitmasks instead of modulo.
3501 */
3502 if (nr_pages != 0 && !is_power_of_2(nr_pages))
3503 return -EINVAL;
3504
3505 if (vma_size != PAGE_SIZE * (1 + nr_pages))
3506 return -EINVAL;
3507
3508 if (vma->vm_pgoff != 0)
3509 return -EINVAL;
3510
3511 WARN_ON_ONCE(event->ctx->parent_ctx);
3512 mutex_lock(&event->mmap_mutex);
3513 if (event->rb) {
3514 if (event->rb->nr_pages == nr_pages)
3515 atomic_inc(&event->rb->refcount);
3516 else
3517 ret = -EINVAL;
3518 goto unlock;
3519 }
3520
3521 user_extra = nr_pages + 1;
3522 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3523
3524 /*
3525 * Increase the limit linearly with more CPUs:
3526 */
3527 user_lock_limit *= num_online_cpus();
3528
3529 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3530
3531 extra = 0;
3532 if (user_locked > user_lock_limit)
3533 extra = user_locked - user_lock_limit;
3534
3535 lock_limit = rlimit(RLIMIT_MEMLOCK);
3536 lock_limit >>= PAGE_SHIFT;
3537 locked = vma->vm_mm->pinned_vm + extra;
3538
3539 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3540 !capable(CAP_IPC_LOCK)) {
3541 ret = -EPERM;
3542 goto unlock;
3543 }
3544
3545 WARN_ON(event->rb);
3546
3547 if (vma->vm_flags & VM_WRITE)
3548 flags |= RING_BUFFER_WRITABLE;
3549
3550 rb = rb_alloc(nr_pages,
3551 event->attr.watermark ? event->attr.wakeup_watermark : 0,
3552 event->cpu, flags);
3553
3554 if (!rb) {
3555 ret = -ENOMEM;
3556 goto unlock;
3557 }
3558 rcu_assign_pointer(event->rb, rb);
3559
3560 atomic_long_add(user_extra, &user->locked_vm);
3561 event->mmap_locked = extra;
3562 event->mmap_user = get_current_user();
3563 vma->vm_mm->pinned_vm += event->mmap_locked;
3564
3565 perf_event_update_userpage(event);
3566
3567 unlock:
3568 if (!ret)
3569 atomic_inc(&event->mmap_count);
3570 mutex_unlock(&event->mmap_mutex);
3571
3572 vma->vm_flags |= VM_RESERVED;
3573 vma->vm_ops = &perf_mmap_vmops;
3574
3575 return ret;
3576 }
3577
3578 static int perf_fasync(int fd, struct file *filp, int on)
3579 {
3580 struct inode *inode = filp->f_path.dentry->d_inode;
3581 struct perf_event *event = filp->private_data;
3582 int retval;
3583
3584 mutex_lock(&inode->i_mutex);
3585 retval = fasync_helper(fd, filp, on, &event->fasync);
3586 mutex_unlock(&inode->i_mutex);
3587
3588 if (retval < 0)
3589 return retval;
3590
3591 return 0;
3592 }
3593
3594 static const struct file_operations perf_fops = {
3595 .llseek = no_llseek,
3596 .release = perf_release,
3597 .read = perf_read,
3598 .poll = perf_poll,
3599 .unlocked_ioctl = perf_ioctl,
3600 .compat_ioctl = perf_ioctl,
3601 .mmap = perf_mmap,
3602 .fasync = perf_fasync,
3603 };
3604
3605 /*
3606 * Perf event wakeup
3607 *
3608 * If there's data, ensure we set the poll() state and publish everything
3609 * to user-space before waking everybody up.
3610 */
3611
3612 void perf_event_wakeup(struct perf_event *event)
3613 {
3614 ring_buffer_wakeup(event);
3615
3616 if (event->pending_kill) {
3617 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3618 event->pending_kill = 0;
3619 }
3620 }
3621
3622 static void perf_pending_event(struct irq_work *entry)
3623 {
3624 struct perf_event *event = container_of(entry,
3625 struct perf_event, pending);
3626
3627 if (event->pending_disable) {
3628 event->pending_disable = 0;
3629 __perf_event_disable(event);
3630 }
3631
3632 if (event->pending_wakeup) {
3633 event->pending_wakeup = 0;
3634 perf_event_wakeup(event);
3635 }
3636 }
3637
3638 /*
3639 * We assume there is only KVM supporting the callbacks.
3640 * Later on, we might change it to a list if there is
3641 * another virtualization implementation supporting the callbacks.
3642 */
3643 struct perf_guest_info_callbacks *perf_guest_cbs;
3644
3645 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3646 {
3647 perf_guest_cbs = cbs;
3648 return 0;
3649 }
3650 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3651
3652 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3653 {
3654 perf_guest_cbs = NULL;
3655 return 0;
3656 }
3657 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3658
3659 static void __perf_event_header__init_id(struct perf_event_header *header,
3660 struct perf_sample_data *data,
3661 struct perf_event *event)
3662 {
3663 u64 sample_type = event->attr.sample_type;
3664
3665 data->type = sample_type;
3666 header->size += event->id_header_size;
3667
3668 if (sample_type & PERF_SAMPLE_TID) {
3669 /* namespace issues */
3670 data->tid_entry.pid = perf_event_pid(event, current);
3671 data->tid_entry.tid = perf_event_tid(event, current);
3672 }
3673
3674 if (sample_type & PERF_SAMPLE_TIME)
3675 data->time = perf_clock();
3676
3677 if (sample_type & PERF_SAMPLE_ID)
3678 data->id = primary_event_id(event);
3679
3680 if (sample_type & PERF_SAMPLE_STREAM_ID)
3681 data->stream_id = event->id;
3682
3683 if (sample_type & PERF_SAMPLE_CPU) {
3684 data->cpu_entry.cpu = raw_smp_processor_id();
3685 data->cpu_entry.reserved = 0;
3686 }
3687 }
3688
3689 void perf_event_header__init_id(struct perf_event_header *header,
3690 struct perf_sample_data *data,
3691 struct perf_event *event)
3692 {
3693 if (event->attr.sample_id_all)
3694 __perf_event_header__init_id(header, data, event);
3695 }
3696
3697 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
3698 struct perf_sample_data *data)
3699 {
3700 u64 sample_type = data->type;
3701
3702 if (sample_type & PERF_SAMPLE_TID)
3703 perf_output_put(handle, data->tid_entry);
3704
3705 if (sample_type & PERF_SAMPLE_TIME)
3706 perf_output_put(handle, data->time);
3707
3708 if (sample_type & PERF_SAMPLE_ID)
3709 perf_output_put(handle, data->id);
3710
3711 if (sample_type & PERF_SAMPLE_STREAM_ID)
3712 perf_output_put(handle, data->stream_id);
3713
3714 if (sample_type & PERF_SAMPLE_CPU)
3715 perf_output_put(handle, data->cpu_entry);
3716 }
3717
3718 void perf_event__output_id_sample(struct perf_event *event,
3719 struct perf_output_handle *handle,
3720 struct perf_sample_data *sample)
3721 {
3722 if (event->attr.sample_id_all)
3723 __perf_event__output_id_sample(handle, sample);
3724 }
3725
3726 static void perf_output_read_one(struct perf_output_handle *handle,
3727 struct perf_event *event,
3728 u64 enabled, u64 running)
3729 {
3730 u64 read_format = event->attr.read_format;
3731 u64 values[4];
3732 int n = 0;
3733
3734 values[n++] = perf_event_count(event);
3735 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3736 values[n++] = enabled +
3737 atomic64_read(&event->child_total_time_enabled);
3738 }
3739 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3740 values[n++] = running +
3741 atomic64_read(&event->child_total_time_running);
3742 }
3743 if (read_format & PERF_FORMAT_ID)
3744 values[n++] = primary_event_id(event);
3745
3746 __output_copy(handle, values, n * sizeof(u64));
3747 }
3748
3749 /*
3750 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3751 */
3752 static void perf_output_read_group(struct perf_output_handle *handle,
3753 struct perf_event *event,
3754 u64 enabled, u64 running)
3755 {
3756 struct perf_event *leader = event->group_leader, *sub;
3757 u64 read_format = event->attr.read_format;
3758 u64 values[5];
3759 int n = 0;
3760
3761 values[n++] = 1 + leader->nr_siblings;
3762
3763 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3764 values[n++] = enabled;
3765
3766 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3767 values[n++] = running;
3768
3769 if (leader != event)
3770 leader->pmu->read(leader);
3771
3772 values[n++] = perf_event_count(leader);
3773 if (read_format & PERF_FORMAT_ID)
3774 values[n++] = primary_event_id(leader);
3775
3776 __output_copy(handle, values, n * sizeof(u64));
3777
3778 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3779 n = 0;
3780
3781 if (sub != event)
3782 sub->pmu->read(sub);
3783
3784 values[n++] = perf_event_count(sub);
3785 if (read_format & PERF_FORMAT_ID)
3786 values[n++] = primary_event_id(sub);
3787
3788 __output_copy(handle, values, n * sizeof(u64));
3789 }
3790 }
3791
3792 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
3793 PERF_FORMAT_TOTAL_TIME_RUNNING)
3794
3795 static void perf_output_read(struct perf_output_handle *handle,
3796 struct perf_event *event)
3797 {
3798 u64 enabled = 0, running = 0, now;
3799 u64 read_format = event->attr.read_format;
3800
3801 /*
3802 * compute total_time_enabled, total_time_running
3803 * based on snapshot values taken when the event
3804 * was last scheduled in.
3805 *
3806 * we cannot simply called update_context_time()
3807 * because of locking issue as we are called in
3808 * NMI context
3809 */
3810 if (read_format & PERF_FORMAT_TOTAL_TIMES)
3811 calc_timer_values(event, &now, &enabled, &running);
3812
3813 if (event->attr.read_format & PERF_FORMAT_GROUP)
3814 perf_output_read_group(handle, event, enabled, running);
3815 else
3816 perf_output_read_one(handle, event, enabled, running);
3817 }
3818
3819 void perf_output_sample(struct perf_output_handle *handle,
3820 struct perf_event_header *header,
3821 struct perf_sample_data *data,
3822 struct perf_event *event)
3823 {
3824 u64 sample_type = data->type;
3825
3826 perf_output_put(handle, *header);
3827
3828 if (sample_type & PERF_SAMPLE_IP)
3829 perf_output_put(handle, data->ip);
3830
3831 if (sample_type & PERF_SAMPLE_TID)
3832 perf_output_put(handle, data->tid_entry);
3833
3834 if (sample_type & PERF_SAMPLE_TIME)
3835 perf_output_put(handle, data->time);
3836
3837 if (sample_type & PERF_SAMPLE_ADDR)
3838 perf_output_put(handle, data->addr);
3839
3840 if (sample_type & PERF_SAMPLE_ID)
3841 perf_output_put(handle, data->id);
3842
3843 if (sample_type & PERF_SAMPLE_STREAM_ID)
3844 perf_output_put(handle, data->stream_id);
3845
3846 if (sample_type & PERF_SAMPLE_CPU)
3847 perf_output_put(handle, data->cpu_entry);
3848
3849 if (sample_type & PERF_SAMPLE_PERIOD)
3850 perf_output_put(handle, data->period);
3851
3852 if (sample_type & PERF_SAMPLE_READ)
3853 perf_output_read(handle, event);
3854
3855 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3856 if (data->callchain) {
3857 int size = 1;
3858
3859 if (data->callchain)
3860 size += data->callchain->nr;
3861
3862 size *= sizeof(u64);
3863
3864 __output_copy(handle, data->callchain, size);
3865 } else {
3866 u64 nr = 0;
3867 perf_output_put(handle, nr);
3868 }
3869 }
3870
3871 if (sample_type & PERF_SAMPLE_RAW) {
3872 if (data->raw) {
3873 perf_output_put(handle, data->raw->size);
3874 __output_copy(handle, data->raw->data,
3875 data->raw->size);
3876 } else {
3877 struct {
3878 u32 size;
3879 u32 data;
3880 } raw = {
3881 .size = sizeof(u32),
3882 .data = 0,
3883 };
3884 perf_output_put(handle, raw);
3885 }
3886 }
3887
3888 if (!event->attr.watermark) {
3889 int wakeup_events = event->attr.wakeup_events;
3890
3891 if (wakeup_events) {
3892 struct ring_buffer *rb = handle->rb;
3893 int events = local_inc_return(&rb->events);
3894
3895 if (events >= wakeup_events) {
3896 local_sub(wakeup_events, &rb->events);
3897 local_inc(&rb->wakeup);
3898 }
3899 }
3900 }
3901 }
3902
3903 void perf_prepare_sample(struct perf_event_header *header,
3904 struct perf_sample_data *data,
3905 struct perf_event *event,
3906 struct pt_regs *regs)
3907 {
3908 u64 sample_type = event->attr.sample_type;
3909
3910 header->type = PERF_RECORD_SAMPLE;
3911 header->size = sizeof(*header) + event->header_size;
3912
3913 header->misc = 0;
3914 header->misc |= perf_misc_flags(regs);
3915
3916 __perf_event_header__init_id(header, data, event);
3917
3918 if (sample_type & PERF_SAMPLE_IP)
3919 data->ip = perf_instruction_pointer(regs);
3920
3921 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3922 int size = 1;
3923
3924 data->callchain = perf_callchain(regs);
3925
3926 if (data->callchain)
3927 size += data->callchain->nr;
3928
3929 header->size += size * sizeof(u64);
3930 }
3931
3932 if (sample_type & PERF_SAMPLE_RAW) {
3933 int size = sizeof(u32);
3934
3935 if (data->raw)
3936 size += data->raw->size;
3937 else
3938 size += sizeof(u32);
3939
3940 WARN_ON_ONCE(size & (sizeof(u64)-1));
3941 header->size += size;
3942 }
3943 }
3944
3945 static void perf_event_output(struct perf_event *event,
3946 struct perf_sample_data *data,
3947 struct pt_regs *regs)
3948 {
3949 struct perf_output_handle handle;
3950 struct perf_event_header header;
3951
3952 /* protect the callchain buffers */
3953 rcu_read_lock();
3954
3955 perf_prepare_sample(&header, data, event, regs);
3956
3957 if (perf_output_begin(&handle, event, header.size))
3958 goto exit;
3959
3960 perf_output_sample(&handle, &header, data, event);
3961
3962 perf_output_end(&handle);
3963
3964 exit:
3965 rcu_read_unlock();
3966 }
3967
3968 /*
3969 * read event_id
3970 */
3971
3972 struct perf_read_event {
3973 struct perf_event_header header;
3974
3975 u32 pid;
3976 u32 tid;
3977 };
3978
3979 static void
3980 perf_event_read_event(struct perf_event *event,
3981 struct task_struct *task)
3982 {
3983 struct perf_output_handle handle;
3984 struct perf_sample_data sample;
3985 struct perf_read_event read_event = {
3986 .header = {
3987 .type = PERF_RECORD_READ,
3988 .misc = 0,
3989 .size = sizeof(read_event) + event->read_size,
3990 },
3991 .pid = perf_event_pid(event, task),
3992 .tid = perf_event_tid(event, task),
3993 };
3994 int ret;
3995
3996 perf_event_header__init_id(&read_event.header, &sample, event);
3997 ret = perf_output_begin(&handle, event, read_event.header.size);
3998 if (ret)
3999 return;
4000
4001 perf_output_put(&handle, read_event);
4002 perf_output_read(&handle, event);
4003 perf_event__output_id_sample(event, &handle, &sample);
4004
4005 perf_output_end(&handle);
4006 }
4007
4008 /*
4009 * task tracking -- fork/exit
4010 *
4011 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
4012 */
4013
4014 struct perf_task_event {
4015 struct task_struct *task;
4016 struct perf_event_context *task_ctx;
4017
4018 struct {
4019 struct perf_event_header header;
4020
4021 u32 pid;
4022 u32 ppid;
4023 u32 tid;
4024 u32 ptid;
4025 u64 time;
4026 } event_id;
4027 };
4028
4029 static void perf_event_task_output(struct perf_event *event,
4030 struct perf_task_event *task_event)
4031 {
4032 struct perf_output_handle handle;
4033 struct perf_sample_data sample;
4034 struct task_struct *task = task_event->task;
4035 int ret, size = task_event->event_id.header.size;
4036
4037 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4038
4039 ret = perf_output_begin(&handle, event,
4040 task_event->event_id.header.size);
4041 if (ret)
4042 goto out;
4043
4044 task_event->event_id.pid = perf_event_pid(event, task);
4045 task_event->event_id.ppid = perf_event_pid(event, current);
4046
4047 task_event->event_id.tid = perf_event_tid(event, task);
4048 task_event->event_id.ptid = perf_event_tid(event, current);
4049
4050 perf_output_put(&handle, task_event->event_id);
4051
4052 perf_event__output_id_sample(event, &handle, &sample);
4053
4054 perf_output_end(&handle);
4055 out:
4056 task_event->event_id.header.size = size;
4057 }
4058
4059 static int perf_event_task_match(struct perf_event *event)
4060 {
4061 if (event->state < PERF_EVENT_STATE_INACTIVE)
4062 return 0;
4063
4064 if (!event_filter_match(event))
4065 return 0;
4066
4067 if (event->attr.comm || event->attr.mmap ||
4068 event->attr.mmap_data || event->attr.task)
4069 return 1;
4070
4071 return 0;
4072 }
4073
4074 static void perf_event_task_ctx(struct perf_event_context *ctx,
4075 struct perf_task_event *task_event)
4076 {
4077 struct perf_event *event;
4078
4079 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4080 if (perf_event_task_match(event))
4081 perf_event_task_output(event, task_event);
4082 }
4083 }
4084
4085 static void perf_event_task_event(struct perf_task_event *task_event)
4086 {
4087 struct perf_cpu_context *cpuctx;
4088 struct perf_event_context *ctx;
4089 struct pmu *pmu;
4090 int ctxn;
4091
4092 rcu_read_lock();
4093 list_for_each_entry_rcu(pmu, &pmus, entry) {
4094 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4095 if (cpuctx->active_pmu != pmu)
4096 goto next;
4097 perf_event_task_ctx(&cpuctx->ctx, task_event);
4098
4099 ctx = task_event->task_ctx;
4100 if (!ctx) {
4101 ctxn = pmu->task_ctx_nr;
4102 if (ctxn < 0)
4103 goto next;
4104 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4105 }
4106 if (ctx)
4107 perf_event_task_ctx(ctx, task_event);
4108 next:
4109 put_cpu_ptr(pmu->pmu_cpu_context);
4110 }
4111 rcu_read_unlock();
4112 }
4113
4114 static void perf_event_task(struct task_struct *task,
4115 struct perf_event_context *task_ctx,
4116 int new)
4117 {
4118 struct perf_task_event task_event;
4119
4120 if (!atomic_read(&nr_comm_events) &&
4121 !atomic_read(&nr_mmap_events) &&
4122 !atomic_read(&nr_task_events))
4123 return;
4124
4125 task_event = (struct perf_task_event){
4126 .task = task,
4127 .task_ctx = task_ctx,
4128 .event_id = {
4129 .header = {
4130 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4131 .misc = 0,
4132 .size = sizeof(task_event.event_id),
4133 },
4134 /* .pid */
4135 /* .ppid */
4136 /* .tid */
4137 /* .ptid */
4138 .time = perf_clock(),
4139 },
4140 };
4141
4142 perf_event_task_event(&task_event);
4143 }
4144
4145 void perf_event_fork(struct task_struct *task)
4146 {
4147 perf_event_task(task, NULL, 1);
4148 }
4149
4150 /*
4151 * comm tracking
4152 */
4153
4154 struct perf_comm_event {
4155 struct task_struct *task;
4156 char *comm;
4157 int comm_size;
4158
4159 struct {
4160 struct perf_event_header header;
4161
4162 u32 pid;
4163 u32 tid;
4164 } event_id;
4165 };
4166
4167 static void perf_event_comm_output(struct perf_event *event,
4168 struct perf_comm_event *comm_event)
4169 {
4170 struct perf_output_handle handle;
4171 struct perf_sample_data sample;
4172 int size = comm_event->event_id.header.size;
4173 int ret;
4174
4175 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4176 ret = perf_output_begin(&handle, event,
4177 comm_event->event_id.header.size);
4178
4179 if (ret)
4180 goto out;
4181
4182 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4183 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4184
4185 perf_output_put(&handle, comm_event->event_id);
4186 __output_copy(&handle, comm_event->comm,
4187 comm_event->comm_size);
4188
4189 perf_event__output_id_sample(event, &handle, &sample);
4190
4191 perf_output_end(&handle);
4192 out:
4193 comm_event->event_id.header.size = size;
4194 }
4195
4196 static int perf_event_comm_match(struct perf_event *event)
4197 {
4198 if (event->state < PERF_EVENT_STATE_INACTIVE)
4199 return 0;
4200
4201 if (!event_filter_match(event))
4202 return 0;
4203
4204 if (event->attr.comm)
4205 return 1;
4206
4207 return 0;
4208 }
4209
4210 static void perf_event_comm_ctx(struct perf_event_context *ctx,
4211 struct perf_comm_event *comm_event)
4212 {
4213 struct perf_event *event;
4214
4215 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4216 if (perf_event_comm_match(event))
4217 perf_event_comm_output(event, comm_event);
4218 }
4219 }
4220
4221 static void perf_event_comm_event(struct perf_comm_event *comm_event)
4222 {
4223 struct perf_cpu_context *cpuctx;
4224 struct perf_event_context *ctx;
4225 char comm[TASK_COMM_LEN];
4226 unsigned int size;
4227 struct pmu *pmu;
4228 int ctxn;
4229
4230 memset(comm, 0, sizeof(comm));
4231 strlcpy(comm, comm_event->task->comm, sizeof(comm));
4232 size = ALIGN(strlen(comm)+1, sizeof(u64));
4233
4234 comm_event->comm = comm;
4235 comm_event->comm_size = size;
4236
4237 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4238 rcu_read_lock();
4239 list_for_each_entry_rcu(pmu, &pmus, entry) {
4240 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4241 if (cpuctx->active_pmu != pmu)
4242 goto next;
4243 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
4244
4245 ctxn = pmu->task_ctx_nr;
4246 if (ctxn < 0)
4247 goto next;
4248
4249 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4250 if (ctx)
4251 perf_event_comm_ctx(ctx, comm_event);
4252 next:
4253 put_cpu_ptr(pmu->pmu_cpu_context);
4254 }
4255 rcu_read_unlock();
4256 }
4257
4258 void perf_event_comm(struct task_struct *task)
4259 {
4260 struct perf_comm_event comm_event;
4261 struct perf_event_context *ctx;
4262 int ctxn;
4263
4264 for_each_task_context_nr(ctxn) {
4265 ctx = task->perf_event_ctxp[ctxn];
4266 if (!ctx)
4267 continue;
4268
4269 perf_event_enable_on_exec(ctx);
4270 }
4271
4272 if (!atomic_read(&nr_comm_events))
4273 return;
4274
4275 comm_event = (struct perf_comm_event){
4276 .task = task,
4277 /* .comm */
4278 /* .comm_size */
4279 .event_id = {
4280 .header = {
4281 .type = PERF_RECORD_COMM,
4282 .misc = 0,
4283 /* .size */
4284 },
4285 /* .pid */
4286 /* .tid */
4287 },
4288 };
4289
4290 perf_event_comm_event(&comm_event);
4291 }
4292
4293 /*
4294 * mmap tracking
4295 */
4296
4297 struct perf_mmap_event {
4298 struct vm_area_struct *vma;
4299
4300 const char *file_name;
4301 int file_size;
4302
4303 struct {
4304 struct perf_event_header header;
4305
4306 u32 pid;
4307 u32 tid;
4308 u64 start;
4309 u64 len;
4310 u64 pgoff;
4311 } event_id;
4312 };
4313
4314 static void perf_event_mmap_output(struct perf_event *event,
4315 struct perf_mmap_event *mmap_event)
4316 {
4317 struct perf_output_handle handle;
4318 struct perf_sample_data sample;
4319 int size = mmap_event->event_id.header.size;
4320 int ret;
4321
4322 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4323 ret = perf_output_begin(&handle, event,
4324 mmap_event->event_id.header.size);
4325 if (ret)
4326 goto out;
4327
4328 mmap_event->event_id.pid = perf_event_pid(event, current);
4329 mmap_event->event_id.tid = perf_event_tid(event, current);
4330
4331 perf_output_put(&handle, mmap_event->event_id);
4332 __output_copy(&handle, mmap_event->file_name,
4333 mmap_event->file_size);
4334
4335 perf_event__output_id_sample(event, &handle, &sample);
4336
4337 perf_output_end(&handle);
4338 out:
4339 mmap_event->event_id.header.size = size;
4340 }
4341
4342 static int perf_event_mmap_match(struct perf_event *event,
4343 struct perf_mmap_event *mmap_event,
4344 int executable)
4345 {
4346 if (event->state < PERF_EVENT_STATE_INACTIVE)
4347 return 0;
4348
4349 if (!event_filter_match(event))
4350 return 0;
4351
4352 if ((!executable && event->attr.mmap_data) ||
4353 (executable && event->attr.mmap))
4354 return 1;
4355
4356 return 0;
4357 }
4358
4359 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4360 struct perf_mmap_event *mmap_event,
4361 int executable)
4362 {
4363 struct perf_event *event;
4364
4365 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4366 if (perf_event_mmap_match(event, mmap_event, executable))
4367 perf_event_mmap_output(event, mmap_event);
4368 }
4369 }
4370
4371 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4372 {
4373 struct perf_cpu_context *cpuctx;
4374 struct perf_event_context *ctx;
4375 struct vm_area_struct *vma = mmap_event->vma;
4376 struct file *file = vma->vm_file;
4377 unsigned int size;
4378 char tmp[16];
4379 char *buf = NULL;
4380 const char *name;
4381 struct pmu *pmu;
4382 int ctxn;
4383
4384 memset(tmp, 0, sizeof(tmp));
4385
4386 if (file) {
4387 /*
4388 * d_path works from the end of the rb backwards, so we
4389 * need to add enough zero bytes after the string to handle
4390 * the 64bit alignment we do later.
4391 */
4392 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4393 if (!buf) {
4394 name = strncpy(tmp, "//enomem", sizeof(tmp));
4395 goto got_name;
4396 }
4397 name = d_path(&file->f_path, buf, PATH_MAX);
4398 if (IS_ERR(name)) {
4399 name = strncpy(tmp, "//toolong", sizeof(tmp));
4400 goto got_name;
4401 }
4402 } else {
4403 if (arch_vma_name(mmap_event->vma)) {
4404 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4405 sizeof(tmp));
4406 goto got_name;
4407 }
4408
4409 if (!vma->vm_mm) {
4410 name = strncpy(tmp, "[vdso]", sizeof(tmp));
4411 goto got_name;
4412 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4413 vma->vm_end >= vma->vm_mm->brk) {
4414 name = strncpy(tmp, "[heap]", sizeof(tmp));
4415 goto got_name;
4416 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4417 vma->vm_end >= vma->vm_mm->start_stack) {
4418 name = strncpy(tmp, "[stack]", sizeof(tmp));
4419 goto got_name;
4420 }
4421
4422 name = strncpy(tmp, "//anon", sizeof(tmp));
4423 goto got_name;
4424 }
4425
4426 got_name:
4427 size = ALIGN(strlen(name)+1, sizeof(u64));
4428
4429 mmap_event->file_name = name;
4430 mmap_event->file_size = size;
4431
4432 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4433
4434 rcu_read_lock();
4435 list_for_each_entry_rcu(pmu, &pmus, entry) {
4436 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4437 if (cpuctx->active_pmu != pmu)
4438 goto next;
4439 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4440 vma->vm_flags & VM_EXEC);
4441
4442 ctxn = pmu->task_ctx_nr;
4443 if (ctxn < 0)
4444 goto next;
4445
4446 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4447 if (ctx) {
4448 perf_event_mmap_ctx(ctx, mmap_event,
4449 vma->vm_flags & VM_EXEC);
4450 }
4451 next:
4452 put_cpu_ptr(pmu->pmu_cpu_context);
4453 }
4454 rcu_read_unlock();
4455
4456 kfree(buf);
4457 }
4458
4459 void perf_event_mmap(struct vm_area_struct *vma)
4460 {
4461 struct perf_mmap_event mmap_event;
4462
4463 if (!atomic_read(&nr_mmap_events))
4464 return;
4465
4466 mmap_event = (struct perf_mmap_event){
4467 .vma = vma,
4468 /* .file_name */
4469 /* .file_size */
4470 .event_id = {
4471 .header = {
4472 .type = PERF_RECORD_MMAP,
4473 .misc = PERF_RECORD_MISC_USER,
4474 /* .size */
4475 },
4476 /* .pid */
4477 /* .tid */
4478 .start = vma->vm_start,
4479 .len = vma->vm_end - vma->vm_start,
4480 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
4481 },
4482 };
4483
4484 perf_event_mmap_event(&mmap_event);
4485 }
4486
4487 /*
4488 * IRQ throttle logging
4489 */
4490
4491 static void perf_log_throttle(struct perf_event *event, int enable)
4492 {
4493 struct perf_output_handle handle;
4494 struct perf_sample_data sample;
4495 int ret;
4496
4497 struct {
4498 struct perf_event_header header;
4499 u64 time;
4500 u64 id;
4501 u64 stream_id;
4502 } throttle_event = {
4503 .header = {
4504 .type = PERF_RECORD_THROTTLE,
4505 .misc = 0,
4506 .size = sizeof(throttle_event),
4507 },
4508 .time = perf_clock(),
4509 .id = primary_event_id(event),
4510 .stream_id = event->id,
4511 };
4512
4513 if (enable)
4514 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4515
4516 perf_event_header__init_id(&throttle_event.header, &sample, event);
4517
4518 ret = perf_output_begin(&handle, event,
4519 throttle_event.header.size);
4520 if (ret)
4521 return;
4522
4523 perf_output_put(&handle, throttle_event);
4524 perf_event__output_id_sample(event, &handle, &sample);
4525 perf_output_end(&handle);
4526 }
4527
4528 /*
4529 * Generic event overflow handling, sampling.
4530 */
4531
4532 static int __perf_event_overflow(struct perf_event *event,
4533 int throttle, struct perf_sample_data *data,
4534 struct pt_regs *regs)
4535 {
4536 int events = atomic_read(&event->event_limit);
4537 struct hw_perf_event *hwc = &event->hw;
4538 u64 seq;
4539 int ret = 0;
4540
4541 /*
4542 * Non-sampling counters might still use the PMI to fold short
4543 * hardware counters, ignore those.
4544 */
4545 if (unlikely(!is_sampling_event(event)))
4546 return 0;
4547
4548 seq = __this_cpu_read(perf_throttled_seq);
4549 if (seq != hwc->interrupts_seq) {
4550 hwc->interrupts_seq = seq;
4551 hwc->interrupts = 1;
4552 } else {
4553 hwc->interrupts++;
4554 if (unlikely(throttle
4555 && hwc->interrupts >= max_samples_per_tick)) {
4556 __this_cpu_inc(perf_throttled_count);
4557 hwc->interrupts = MAX_INTERRUPTS;
4558 perf_log_throttle(event, 0);
4559 ret = 1;
4560 }
4561 }
4562
4563 if (event->attr.freq) {
4564 u64 now = perf_clock();
4565 s64 delta = now - hwc->freq_time_stamp;
4566
4567 hwc->freq_time_stamp = now;
4568
4569 if (delta > 0 && delta < 2*TICK_NSEC)
4570 perf_adjust_period(event, delta, hwc->last_period);
4571 }
4572
4573 /*
4574 * XXX event_limit might not quite work as expected on inherited
4575 * events
4576 */
4577
4578 event->pending_kill = POLL_IN;
4579 if (events && atomic_dec_and_test(&event->event_limit)) {
4580 ret = 1;
4581 event->pending_kill = POLL_HUP;
4582 event->pending_disable = 1;
4583 irq_work_queue(&event->pending);
4584 }
4585
4586 if (event->overflow_handler)
4587 event->overflow_handler(event, data, regs);
4588 else
4589 perf_event_output(event, data, regs);
4590
4591 if (event->fasync && event->pending_kill) {
4592 event->pending_wakeup = 1;
4593 irq_work_queue(&event->pending);
4594 }
4595
4596 return ret;
4597 }
4598
4599 int perf_event_overflow(struct perf_event *event,
4600 struct perf_sample_data *data,
4601 struct pt_regs *regs)
4602 {
4603 return __perf_event_overflow(event, 1, data, regs);
4604 }
4605
4606 /*
4607 * Generic software event infrastructure
4608 */
4609
4610 struct swevent_htable {
4611 struct swevent_hlist *swevent_hlist;
4612 struct mutex hlist_mutex;
4613 int hlist_refcount;
4614
4615 /* Recursion avoidance in each contexts */
4616 int recursion[PERF_NR_CONTEXTS];
4617 };
4618
4619 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4620
4621 /*
4622 * We directly increment event->count and keep a second value in
4623 * event->hw.period_left to count intervals. This period event
4624 * is kept in the range [-sample_period, 0] so that we can use the
4625 * sign as trigger.
4626 */
4627
4628 static u64 perf_swevent_set_period(struct perf_event *event)
4629 {
4630 struct hw_perf_event *hwc = &event->hw;
4631 u64 period = hwc->last_period;
4632 u64 nr, offset;
4633 s64 old, val;
4634
4635 hwc->last_period = hwc->sample_period;
4636
4637 again:
4638 old = val = local64_read(&hwc->period_left);
4639 if (val < 0)
4640 return 0;
4641
4642 nr = div64_u64(period + val, period);
4643 offset = nr * period;
4644 val -= offset;
4645 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4646 goto again;
4647
4648 return nr;
4649 }
4650
4651 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4652 struct perf_sample_data *data,
4653 struct pt_regs *regs)
4654 {
4655 struct hw_perf_event *hwc = &event->hw;
4656 int throttle = 0;
4657
4658 if (!overflow)
4659 overflow = perf_swevent_set_period(event);
4660
4661 if (hwc->interrupts == MAX_INTERRUPTS)
4662 return;
4663
4664 for (; overflow; overflow--) {
4665 if (__perf_event_overflow(event, throttle,
4666 data, regs)) {
4667 /*
4668 * We inhibit the overflow from happening when
4669 * hwc->interrupts == MAX_INTERRUPTS.
4670 */
4671 break;
4672 }
4673 throttle = 1;
4674 }
4675 }
4676
4677 static void perf_swevent_event(struct perf_event *event, u64 nr,
4678 struct perf_sample_data *data,
4679 struct pt_regs *regs)
4680 {
4681 struct hw_perf_event *hwc = &event->hw;
4682
4683 local64_add(nr, &event->count);
4684
4685 if (!regs)
4686 return;
4687
4688 if (!is_sampling_event(event))
4689 return;
4690
4691 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
4692 data->period = nr;
4693 return perf_swevent_overflow(event, 1, data, regs);
4694 } else
4695 data->period = event->hw.last_period;
4696
4697 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4698 return perf_swevent_overflow(event, 1, data, regs);
4699
4700 if (local64_add_negative(nr, &hwc->period_left))
4701 return;
4702
4703 perf_swevent_overflow(event, 0, data, regs);
4704 }
4705
4706 static int perf_exclude_event(struct perf_event *event,
4707 struct pt_regs *regs)
4708 {
4709 if (event->hw.state & PERF_HES_STOPPED)
4710 return 1;
4711
4712 if (regs) {
4713 if (event->attr.exclude_user && user_mode(regs))
4714 return 1;
4715
4716 if (event->attr.exclude_kernel && !user_mode(regs))
4717 return 1;
4718 }
4719
4720 return 0;
4721 }
4722
4723 static int perf_swevent_match(struct perf_event *event,
4724 enum perf_type_id type,
4725 u32 event_id,
4726 struct perf_sample_data *data,
4727 struct pt_regs *regs)
4728 {
4729 if (event->attr.type != type)
4730 return 0;
4731
4732 if (event->attr.config != event_id)
4733 return 0;
4734
4735 if (perf_exclude_event(event, regs))
4736 return 0;
4737
4738 return 1;
4739 }
4740
4741 static inline u64 swevent_hash(u64 type, u32 event_id)
4742 {
4743 u64 val = event_id | (type << 32);
4744
4745 return hash_64(val, SWEVENT_HLIST_BITS);
4746 }
4747
4748 static inline struct hlist_head *
4749 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4750 {
4751 u64 hash = swevent_hash(type, event_id);
4752
4753 return &hlist->heads[hash];
4754 }
4755
4756 /* For the read side: events when they trigger */
4757 static inline struct hlist_head *
4758 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4759 {
4760 struct swevent_hlist *hlist;
4761
4762 hlist = rcu_dereference(swhash->swevent_hlist);
4763 if (!hlist)
4764 return NULL;
4765
4766 return __find_swevent_head(hlist, type, event_id);
4767 }
4768
4769 /* For the event head insertion and removal in the hlist */
4770 static inline struct hlist_head *
4771 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4772 {
4773 struct swevent_hlist *hlist;
4774 u32 event_id = event->attr.config;
4775 u64 type = event->attr.type;
4776
4777 /*
4778 * Event scheduling is always serialized against hlist allocation
4779 * and release. Which makes the protected version suitable here.
4780 * The context lock guarantees that.
4781 */
4782 hlist = rcu_dereference_protected(swhash->swevent_hlist,
4783 lockdep_is_held(&event->ctx->lock));
4784 if (!hlist)
4785 return NULL;
4786
4787 return __find_swevent_head(hlist, type, event_id);
4788 }
4789
4790 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4791 u64 nr,
4792 struct perf_sample_data *data,
4793 struct pt_regs *regs)
4794 {
4795 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4796 struct perf_event *event;
4797 struct hlist_node *node;
4798 struct hlist_head *head;
4799
4800 rcu_read_lock();
4801 head = find_swevent_head_rcu(swhash, type, event_id);
4802 if (!head)
4803 goto end;
4804
4805 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4806 if (perf_swevent_match(event, type, event_id, data, regs))
4807 perf_swevent_event(event, nr, data, regs);
4808 }
4809 end:
4810 rcu_read_unlock();
4811 }
4812
4813 int perf_swevent_get_recursion_context(void)
4814 {
4815 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4816
4817 return get_recursion_context(swhash->recursion);
4818 }
4819 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4820
4821 inline void perf_swevent_put_recursion_context(int rctx)
4822 {
4823 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4824
4825 put_recursion_context(swhash->recursion, rctx);
4826 }
4827
4828 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
4829 {
4830 struct perf_sample_data data;
4831 int rctx;
4832
4833 preempt_disable_notrace();
4834 rctx = perf_swevent_get_recursion_context();
4835 if (rctx < 0)
4836 return;
4837
4838 perf_sample_data_init(&data, addr);
4839
4840 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
4841
4842 perf_swevent_put_recursion_context(rctx);
4843 preempt_enable_notrace();
4844 }
4845
4846 static void perf_swevent_read(struct perf_event *event)
4847 {
4848 }
4849
4850 static int perf_swevent_add(struct perf_event *event, int flags)
4851 {
4852 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4853 struct hw_perf_event *hwc = &event->hw;
4854 struct hlist_head *head;
4855
4856 if (is_sampling_event(event)) {
4857 hwc->last_period = hwc->sample_period;
4858 perf_swevent_set_period(event);
4859 }
4860
4861 hwc->state = !(flags & PERF_EF_START);
4862
4863 head = find_swevent_head(swhash, event);
4864 if (WARN_ON_ONCE(!head))
4865 return -EINVAL;
4866
4867 hlist_add_head_rcu(&event->hlist_entry, head);
4868
4869 return 0;
4870 }
4871
4872 static void perf_swevent_del(struct perf_event *event, int flags)
4873 {
4874 hlist_del_rcu(&event->hlist_entry);
4875 }
4876
4877 static void perf_swevent_start(struct perf_event *event, int flags)
4878 {
4879 event->hw.state = 0;
4880 }
4881
4882 static void perf_swevent_stop(struct perf_event *event, int flags)
4883 {
4884 event->hw.state = PERF_HES_STOPPED;
4885 }
4886
4887 /* Deref the hlist from the update side */
4888 static inline struct swevent_hlist *
4889 swevent_hlist_deref(struct swevent_htable *swhash)
4890 {
4891 return rcu_dereference_protected(swhash->swevent_hlist,
4892 lockdep_is_held(&swhash->hlist_mutex));
4893 }
4894
4895 static void swevent_hlist_release(struct swevent_htable *swhash)
4896 {
4897 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4898
4899 if (!hlist)
4900 return;
4901
4902 rcu_assign_pointer(swhash->swevent_hlist, NULL);
4903 kfree_rcu(hlist, rcu_head);
4904 }
4905
4906 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4907 {
4908 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4909
4910 mutex_lock(&swhash->hlist_mutex);
4911
4912 if (!--swhash->hlist_refcount)
4913 swevent_hlist_release(swhash);
4914
4915 mutex_unlock(&swhash->hlist_mutex);
4916 }
4917
4918 static void swevent_hlist_put(struct perf_event *event)
4919 {
4920 int cpu;
4921
4922 if (event->cpu != -1) {
4923 swevent_hlist_put_cpu(event, event->cpu);
4924 return;
4925 }
4926
4927 for_each_possible_cpu(cpu)
4928 swevent_hlist_put_cpu(event, cpu);
4929 }
4930
4931 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4932 {
4933 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4934 int err = 0;
4935
4936 mutex_lock(&swhash->hlist_mutex);
4937
4938 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
4939 struct swevent_hlist *hlist;
4940
4941 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4942 if (!hlist) {
4943 err = -ENOMEM;
4944 goto exit;
4945 }
4946 rcu_assign_pointer(swhash->swevent_hlist, hlist);
4947 }
4948 swhash->hlist_refcount++;
4949 exit:
4950 mutex_unlock(&swhash->hlist_mutex);
4951
4952 return err;
4953 }
4954
4955 static int swevent_hlist_get(struct perf_event *event)
4956 {
4957 int err;
4958 int cpu, failed_cpu;
4959
4960 if (event->cpu != -1)
4961 return swevent_hlist_get_cpu(event, event->cpu);
4962
4963 get_online_cpus();
4964 for_each_possible_cpu(cpu) {
4965 err = swevent_hlist_get_cpu(event, cpu);
4966 if (err) {
4967 failed_cpu = cpu;
4968 goto fail;
4969 }
4970 }
4971 put_online_cpus();
4972
4973 return 0;
4974 fail:
4975 for_each_possible_cpu(cpu) {
4976 if (cpu == failed_cpu)
4977 break;
4978 swevent_hlist_put_cpu(event, cpu);
4979 }
4980
4981 put_online_cpus();
4982 return err;
4983 }
4984
4985 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
4986
4987 static void sw_perf_event_destroy(struct perf_event *event)
4988 {
4989 u64 event_id = event->attr.config;
4990
4991 WARN_ON(event->parent);
4992
4993 static_key_slow_dec(&perf_swevent_enabled[event_id]);
4994 swevent_hlist_put(event);
4995 }
4996
4997 static int perf_swevent_init(struct perf_event *event)
4998 {
4999 int event_id = event->attr.config;
5000
5001 if (event->attr.type != PERF_TYPE_SOFTWARE)
5002 return -ENOENT;
5003
5004 switch (event_id) {
5005 case PERF_COUNT_SW_CPU_CLOCK:
5006 case PERF_COUNT_SW_TASK_CLOCK:
5007 return -ENOENT;
5008
5009 default:
5010 break;
5011 }
5012
5013 if (event_id >= PERF_COUNT_SW_MAX)
5014 return -ENOENT;
5015
5016 if (!event->parent) {
5017 int err;
5018
5019 err = swevent_hlist_get(event);
5020 if (err)
5021 return err;
5022
5023 static_key_slow_inc(&perf_swevent_enabled[event_id]);
5024 event->destroy = sw_perf_event_destroy;
5025 }
5026
5027 return 0;
5028 }
5029
5030 static int perf_swevent_event_idx(struct perf_event *event)
5031 {
5032 return 0;
5033 }
5034
5035 static struct pmu perf_swevent = {
5036 .task_ctx_nr = perf_sw_context,
5037
5038 .event_init = perf_swevent_init,
5039 .add = perf_swevent_add,
5040 .del = perf_swevent_del,
5041 .start = perf_swevent_start,
5042 .stop = perf_swevent_stop,
5043 .read = perf_swevent_read,
5044
5045 .event_idx = perf_swevent_event_idx,
5046 };
5047
5048 #ifdef CONFIG_EVENT_TRACING
5049
5050 static int perf_tp_filter_match(struct perf_event *event,
5051 struct perf_sample_data *data)
5052 {
5053 void *record = data->raw->data;
5054
5055 if (likely(!event->filter) || filter_match_preds(event->filter, record))
5056 return 1;
5057 return 0;
5058 }
5059
5060 static int perf_tp_event_match(struct perf_event *event,
5061 struct perf_sample_data *data,
5062 struct pt_regs *regs)
5063 {
5064 if (event->hw.state & PERF_HES_STOPPED)
5065 return 0;
5066 /*
5067 * All tracepoints are from kernel-space.
5068 */
5069 if (event->attr.exclude_kernel)
5070 return 0;
5071
5072 if (!perf_tp_filter_match(event, data))
5073 return 0;
5074
5075 return 1;
5076 }
5077
5078 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5079 struct pt_regs *regs, struct hlist_head *head, int rctx)
5080 {
5081 struct perf_sample_data data;
5082 struct perf_event *event;
5083 struct hlist_node *node;
5084
5085 struct perf_raw_record raw = {
5086 .size = entry_size,
5087 .data = record,
5088 };
5089
5090 perf_sample_data_init(&data, addr);
5091 data.raw = &raw;
5092
5093 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
5094 if (perf_tp_event_match(event, &data, regs))
5095 perf_swevent_event(event, count, &data, regs);
5096 }
5097
5098 perf_swevent_put_recursion_context(rctx);
5099 }
5100 EXPORT_SYMBOL_GPL(perf_tp_event);
5101
5102 static void tp_perf_event_destroy(struct perf_event *event)
5103 {
5104 perf_trace_destroy(event);
5105 }
5106
5107 static int perf_tp_event_init(struct perf_event *event)
5108 {
5109 int err;
5110
5111 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5112 return -ENOENT;
5113
5114 err = perf_trace_init(event);
5115 if (err)
5116 return err;
5117
5118 event->destroy = tp_perf_event_destroy;
5119
5120 return 0;
5121 }
5122
5123 static struct pmu perf_tracepoint = {
5124 .task_ctx_nr = perf_sw_context,
5125
5126 .event_init = perf_tp_event_init,
5127 .add = perf_trace_add,
5128 .del = perf_trace_del,
5129 .start = perf_swevent_start,
5130 .stop = perf_swevent_stop,
5131 .read = perf_swevent_read,
5132
5133 .event_idx = perf_swevent_event_idx,
5134 };
5135
5136 static inline void perf_tp_register(void)
5137 {
5138 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5139 }
5140
5141 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5142 {
5143 char *filter_str;
5144 int ret;
5145
5146 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5147 return -EINVAL;
5148
5149 filter_str = strndup_user(arg, PAGE_SIZE);
5150 if (IS_ERR(filter_str))
5151 return PTR_ERR(filter_str);
5152
5153 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5154
5155 kfree(filter_str);
5156 return ret;
5157 }
5158
5159 static void perf_event_free_filter(struct perf_event *event)
5160 {
5161 ftrace_profile_free_filter(event);
5162 }
5163
5164 #else
5165
5166 static inline void perf_tp_register(void)
5167 {
5168 }
5169
5170 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5171 {
5172 return -ENOENT;
5173 }
5174
5175 static void perf_event_free_filter(struct perf_event *event)
5176 {
5177 }
5178
5179 #endif /* CONFIG_EVENT_TRACING */
5180
5181 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5182 void perf_bp_event(struct perf_event *bp, void *data)
5183 {
5184 struct perf_sample_data sample;
5185 struct pt_regs *regs = data;
5186
5187 perf_sample_data_init(&sample, bp->attr.bp_addr);
5188
5189 if (!bp->hw.state && !perf_exclude_event(bp, regs))
5190 perf_swevent_event(bp, 1, &sample, regs);
5191 }
5192 #endif
5193
5194 /*
5195 * hrtimer based swevent callback
5196 */
5197
5198 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5199 {
5200 enum hrtimer_restart ret = HRTIMER_RESTART;
5201 struct perf_sample_data data;
5202 struct pt_regs *regs;
5203 struct perf_event *event;
5204 u64 period;
5205
5206 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
5207
5208 if (event->state != PERF_EVENT_STATE_ACTIVE)
5209 return HRTIMER_NORESTART;
5210
5211 event->pmu->read(event);
5212
5213 perf_sample_data_init(&data, 0);
5214 data.period = event->hw.last_period;
5215 regs = get_irq_regs();
5216
5217 if (regs && !perf_exclude_event(event, regs)) {
5218 if (!(event->attr.exclude_idle && is_idle_task(current)))
5219 if (perf_event_overflow(event, &data, regs))
5220 ret = HRTIMER_NORESTART;
5221 }
5222
5223 period = max_t(u64, 10000, event->hw.sample_period);
5224 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5225
5226 return ret;
5227 }
5228
5229 static void perf_swevent_start_hrtimer(struct perf_event *event)
5230 {
5231 struct hw_perf_event *hwc = &event->hw;
5232 s64 period;
5233
5234 if (!is_sampling_event(event))
5235 return;
5236
5237 period = local64_read(&hwc->period_left);
5238 if (period) {
5239 if (period < 0)
5240 period = 10000;
5241
5242 local64_set(&hwc->period_left, 0);
5243 } else {
5244 period = max_t(u64, 10000, hwc->sample_period);
5245 }
5246 __hrtimer_start_range_ns(&hwc->hrtimer,
5247 ns_to_ktime(period), 0,
5248 HRTIMER_MODE_REL_PINNED, 0);
5249 }
5250
5251 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5252 {
5253 struct hw_perf_event *hwc = &event->hw;
5254
5255 if (is_sampling_event(event)) {
5256 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
5257 local64_set(&hwc->period_left, ktime_to_ns(remaining));
5258
5259 hrtimer_cancel(&hwc->hrtimer);
5260 }
5261 }
5262
5263 static void perf_swevent_init_hrtimer(struct perf_event *event)
5264 {
5265 struct hw_perf_event *hwc = &event->hw;
5266
5267 if (!is_sampling_event(event))
5268 return;
5269
5270 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5271 hwc->hrtimer.function = perf_swevent_hrtimer;
5272
5273 /*
5274 * Since hrtimers have a fixed rate, we can do a static freq->period
5275 * mapping and avoid the whole period adjust feedback stuff.
5276 */
5277 if (event->attr.freq) {
5278 long freq = event->attr.sample_freq;
5279
5280 event->attr.sample_period = NSEC_PER_SEC / freq;
5281 hwc->sample_period = event->attr.sample_period;
5282 local64_set(&hwc->period_left, hwc->sample_period);
5283 event->attr.freq = 0;
5284 }
5285 }
5286
5287 /*
5288 * Software event: cpu wall time clock
5289 */
5290
5291 static void cpu_clock_event_update(struct perf_event *event)
5292 {
5293 s64 prev;
5294 u64 now;
5295
5296 now = local_clock();
5297 prev = local64_xchg(&event->hw.prev_count, now);
5298 local64_add(now - prev, &event->count);
5299 }
5300
5301 static void cpu_clock_event_start(struct perf_event *event, int flags)
5302 {
5303 local64_set(&event->hw.prev_count, local_clock());
5304 perf_swevent_start_hrtimer(event);
5305 }
5306
5307 static void cpu_clock_event_stop(struct perf_event *event, int flags)
5308 {
5309 perf_swevent_cancel_hrtimer(event);
5310 cpu_clock_event_update(event);
5311 }
5312
5313 static int cpu_clock_event_add(struct perf_event *event, int flags)
5314 {
5315 if (flags & PERF_EF_START)
5316 cpu_clock_event_start(event, flags);
5317
5318 return 0;
5319 }
5320
5321 static void cpu_clock_event_del(struct perf_event *event, int flags)
5322 {
5323 cpu_clock_event_stop(event, flags);
5324 }
5325
5326 static void cpu_clock_event_read(struct perf_event *event)
5327 {
5328 cpu_clock_event_update(event);
5329 }
5330
5331 static int cpu_clock_event_init(struct perf_event *event)
5332 {
5333 if (event->attr.type != PERF_TYPE_SOFTWARE)
5334 return -ENOENT;
5335
5336 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5337 return -ENOENT;
5338
5339 perf_swevent_init_hrtimer(event);
5340
5341 return 0;
5342 }
5343
5344 static struct pmu perf_cpu_clock = {
5345 .task_ctx_nr = perf_sw_context,
5346
5347 .event_init = cpu_clock_event_init,
5348 .add = cpu_clock_event_add,
5349 .del = cpu_clock_event_del,
5350 .start = cpu_clock_event_start,
5351 .stop = cpu_clock_event_stop,
5352 .read = cpu_clock_event_read,
5353
5354 .event_idx = perf_swevent_event_idx,
5355 };
5356
5357 /*
5358 * Software event: task time clock
5359 */
5360
5361 static void task_clock_event_update(struct perf_event *event, u64 now)
5362 {
5363 u64 prev;
5364 s64 delta;
5365
5366 prev = local64_xchg(&event->hw.prev_count, now);
5367 delta = now - prev;
5368 local64_add(delta, &event->count);
5369 }
5370
5371 static void task_clock_event_start(struct perf_event *event, int flags)
5372 {
5373 local64_set(&event->hw.prev_count, event->ctx->time);
5374 perf_swevent_start_hrtimer(event);
5375 }
5376
5377 static void task_clock_event_stop(struct perf_event *event, int flags)
5378 {
5379 perf_swevent_cancel_hrtimer(event);
5380 task_clock_event_update(event, event->ctx->time);
5381 }
5382
5383 static int task_clock_event_add(struct perf_event *event, int flags)
5384 {
5385 if (flags & PERF_EF_START)
5386 task_clock_event_start(event, flags);
5387
5388 return 0;
5389 }
5390
5391 static void task_clock_event_del(struct perf_event *event, int flags)
5392 {
5393 task_clock_event_stop(event, PERF_EF_UPDATE);
5394 }
5395
5396 static void task_clock_event_read(struct perf_event *event)
5397 {
5398 u64 now = perf_clock();
5399 u64 delta = now - event->ctx->timestamp;
5400 u64 time = event->ctx->time + delta;
5401
5402 task_clock_event_update(event, time);
5403 }
5404
5405 static int task_clock_event_init(struct perf_event *event)
5406 {
5407 if (event->attr.type != PERF_TYPE_SOFTWARE)
5408 return -ENOENT;
5409
5410 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5411 return -ENOENT;
5412
5413 perf_swevent_init_hrtimer(event);
5414
5415 return 0;
5416 }
5417
5418 static struct pmu perf_task_clock = {
5419 .task_ctx_nr = perf_sw_context,
5420
5421 .event_init = task_clock_event_init,
5422 .add = task_clock_event_add,
5423 .del = task_clock_event_del,
5424 .start = task_clock_event_start,
5425 .stop = task_clock_event_stop,
5426 .read = task_clock_event_read,
5427
5428 .event_idx = perf_swevent_event_idx,
5429 };
5430
5431 static void perf_pmu_nop_void(struct pmu *pmu)
5432 {
5433 }
5434
5435 static int perf_pmu_nop_int(struct pmu *pmu)
5436 {
5437 return 0;
5438 }
5439
5440 static void perf_pmu_start_txn(struct pmu *pmu)
5441 {
5442 perf_pmu_disable(pmu);
5443 }
5444
5445 static int perf_pmu_commit_txn(struct pmu *pmu)
5446 {
5447 perf_pmu_enable(pmu);
5448 return 0;
5449 }
5450
5451 static void perf_pmu_cancel_txn(struct pmu *pmu)
5452 {
5453 perf_pmu_enable(pmu);
5454 }
5455
5456 static int perf_event_idx_default(struct perf_event *event)
5457 {
5458 return event->hw.idx + 1;
5459 }
5460
5461 /*
5462 * Ensures all contexts with the same task_ctx_nr have the same
5463 * pmu_cpu_context too.
5464 */
5465 static void *find_pmu_context(int ctxn)
5466 {
5467 struct pmu *pmu;
5468
5469 if (ctxn < 0)
5470 return NULL;
5471
5472 list_for_each_entry(pmu, &pmus, entry) {
5473 if (pmu->task_ctx_nr == ctxn)
5474 return pmu->pmu_cpu_context;
5475 }
5476
5477 return NULL;
5478 }
5479
5480 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5481 {
5482 int cpu;
5483
5484 for_each_possible_cpu(cpu) {
5485 struct perf_cpu_context *cpuctx;
5486
5487 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5488
5489 if (cpuctx->active_pmu == old_pmu)
5490 cpuctx->active_pmu = pmu;
5491 }
5492 }
5493
5494 static void free_pmu_context(struct pmu *pmu)
5495 {
5496 struct pmu *i;
5497
5498 mutex_lock(&pmus_lock);
5499 /*
5500 * Like a real lame refcount.
5501 */
5502 list_for_each_entry(i, &pmus, entry) {
5503 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
5504 update_pmu_context(i, pmu);
5505 goto out;
5506 }
5507 }
5508
5509 free_percpu(pmu->pmu_cpu_context);
5510 out:
5511 mutex_unlock(&pmus_lock);
5512 }
5513 static struct idr pmu_idr;
5514
5515 static ssize_t
5516 type_show(struct device *dev, struct device_attribute *attr, char *page)
5517 {
5518 struct pmu *pmu = dev_get_drvdata(dev);
5519
5520 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
5521 }
5522
5523 static struct device_attribute pmu_dev_attrs[] = {
5524 __ATTR_RO(type),
5525 __ATTR_NULL,
5526 };
5527
5528 static int pmu_bus_running;
5529 static struct bus_type pmu_bus = {
5530 .name = "event_source",
5531 .dev_attrs = pmu_dev_attrs,
5532 };
5533
5534 static void pmu_dev_release(struct device *dev)
5535 {
5536 kfree(dev);
5537 }
5538
5539 static int pmu_dev_alloc(struct pmu *pmu)
5540 {
5541 int ret = -ENOMEM;
5542
5543 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
5544 if (!pmu->dev)
5545 goto out;
5546
5547 pmu->dev->groups = pmu->attr_groups;
5548 device_initialize(pmu->dev);
5549 ret = dev_set_name(pmu->dev, "%s", pmu->name);
5550 if (ret)
5551 goto free_dev;
5552
5553 dev_set_drvdata(pmu->dev, pmu);
5554 pmu->dev->bus = &pmu_bus;
5555 pmu->dev->release = pmu_dev_release;
5556 ret = device_add(pmu->dev);
5557 if (ret)
5558 goto free_dev;
5559
5560 out:
5561 return ret;
5562
5563 free_dev:
5564 put_device(pmu->dev);
5565 goto out;
5566 }
5567
5568 static struct lock_class_key cpuctx_mutex;
5569 static struct lock_class_key cpuctx_lock;
5570
5571 int perf_pmu_register(struct pmu *pmu, char *name, int type)
5572 {
5573 int cpu, ret;
5574
5575 mutex_lock(&pmus_lock);
5576 ret = -ENOMEM;
5577 pmu->pmu_disable_count = alloc_percpu(int);
5578 if (!pmu->pmu_disable_count)
5579 goto unlock;
5580
5581 pmu->type = -1;
5582 if (!name)
5583 goto skip_type;
5584 pmu->name = name;
5585
5586 if (type < 0) {
5587 int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
5588 if (!err)
5589 goto free_pdc;
5590
5591 err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
5592 if (err) {
5593 ret = err;
5594 goto free_pdc;
5595 }
5596 }
5597 pmu->type = type;
5598
5599 if (pmu_bus_running) {
5600 ret = pmu_dev_alloc(pmu);
5601 if (ret)
5602 goto free_idr;
5603 }
5604
5605 skip_type:
5606 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5607 if (pmu->pmu_cpu_context)
5608 goto got_cpu_context;
5609
5610 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5611 if (!pmu->pmu_cpu_context)
5612 goto free_dev;
5613
5614 for_each_possible_cpu(cpu) {
5615 struct perf_cpu_context *cpuctx;
5616
5617 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5618 __perf_event_init_context(&cpuctx->ctx);
5619 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
5620 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
5621 cpuctx->ctx.type = cpu_context;
5622 cpuctx->ctx.pmu = pmu;
5623 cpuctx->jiffies_interval = 1;
5624 INIT_LIST_HEAD(&cpuctx->rotation_list);
5625 cpuctx->active_pmu = pmu;
5626 }
5627
5628 got_cpu_context:
5629 if (!pmu->start_txn) {
5630 if (pmu->pmu_enable) {
5631 /*
5632 * If we have pmu_enable/pmu_disable calls, install
5633 * transaction stubs that use that to try and batch
5634 * hardware accesses.
5635 */
5636 pmu->start_txn = perf_pmu_start_txn;
5637 pmu->commit_txn = perf_pmu_commit_txn;
5638 pmu->cancel_txn = perf_pmu_cancel_txn;
5639 } else {
5640 pmu->start_txn = perf_pmu_nop_void;
5641 pmu->commit_txn = perf_pmu_nop_int;
5642 pmu->cancel_txn = perf_pmu_nop_void;
5643 }
5644 }
5645
5646 if (!pmu->pmu_enable) {
5647 pmu->pmu_enable = perf_pmu_nop_void;
5648 pmu->pmu_disable = perf_pmu_nop_void;
5649 }
5650
5651 if (!pmu->event_idx)
5652 pmu->event_idx = perf_event_idx_default;
5653
5654 list_add_rcu(&pmu->entry, &pmus);
5655 ret = 0;
5656 unlock:
5657 mutex_unlock(&pmus_lock);
5658
5659 return ret;
5660
5661 free_dev:
5662 device_del(pmu->dev);
5663 put_device(pmu->dev);
5664
5665 free_idr:
5666 if (pmu->type >= PERF_TYPE_MAX)
5667 idr_remove(&pmu_idr, pmu->type);
5668
5669 free_pdc:
5670 free_percpu(pmu->pmu_disable_count);
5671 goto unlock;
5672 }
5673
5674 void perf_pmu_unregister(struct pmu *pmu)
5675 {
5676 mutex_lock(&pmus_lock);
5677 list_del_rcu(&pmu->entry);
5678 mutex_unlock(&pmus_lock);
5679
5680 /*
5681 * We dereference the pmu list under both SRCU and regular RCU, so
5682 * synchronize against both of those.
5683 */
5684 synchronize_srcu(&pmus_srcu);
5685 synchronize_rcu();
5686
5687 free_percpu(pmu->pmu_disable_count);
5688 if (pmu->type >= PERF_TYPE_MAX)
5689 idr_remove(&pmu_idr, pmu->type);
5690 device_del(pmu->dev);
5691 put_device(pmu->dev);
5692 free_pmu_context(pmu);
5693 }
5694
5695 struct pmu *perf_init_event(struct perf_event *event)
5696 {
5697 struct pmu *pmu = NULL;
5698 int idx;
5699 int ret;
5700
5701 idx = srcu_read_lock(&pmus_srcu);
5702
5703 rcu_read_lock();
5704 pmu = idr_find(&pmu_idr, event->attr.type);
5705 rcu_read_unlock();
5706 if (pmu) {
5707 event->pmu = pmu;
5708 ret = pmu->event_init(event);
5709 if (ret)
5710 pmu = ERR_PTR(ret);
5711 goto unlock;
5712 }
5713
5714 list_for_each_entry_rcu(pmu, &pmus, entry) {
5715 event->pmu = pmu;
5716 ret = pmu->event_init(event);
5717 if (!ret)
5718 goto unlock;
5719
5720 if (ret != -ENOENT) {
5721 pmu = ERR_PTR(ret);
5722 goto unlock;
5723 }
5724 }
5725 pmu = ERR_PTR(-ENOENT);
5726 unlock:
5727 srcu_read_unlock(&pmus_srcu, idx);
5728
5729 return pmu;
5730 }
5731
5732 /*
5733 * Allocate and initialize a event structure
5734 */
5735 static struct perf_event *
5736 perf_event_alloc(struct perf_event_attr *attr, int cpu,
5737 struct task_struct *task,
5738 struct perf_event *group_leader,
5739 struct perf_event *parent_event,
5740 perf_overflow_handler_t overflow_handler,
5741 void *context)
5742 {
5743 struct pmu *pmu;
5744 struct perf_event *event;
5745 struct hw_perf_event *hwc;
5746 long err;
5747
5748 if ((unsigned)cpu >= nr_cpu_ids) {
5749 if (!task || cpu != -1)
5750 return ERR_PTR(-EINVAL);
5751 }
5752
5753 event = kzalloc(sizeof(*event), GFP_KERNEL);
5754 if (!event)
5755 return ERR_PTR(-ENOMEM);
5756
5757 /*
5758 * Single events are their own group leaders, with an
5759 * empty sibling list:
5760 */
5761 if (!group_leader)
5762 group_leader = event;
5763
5764 mutex_init(&event->child_mutex);
5765 INIT_LIST_HEAD(&event->child_list);
5766
5767 INIT_LIST_HEAD(&event->group_entry);
5768 INIT_LIST_HEAD(&event->event_entry);
5769 INIT_LIST_HEAD(&event->sibling_list);
5770 INIT_LIST_HEAD(&event->rb_entry);
5771
5772 init_waitqueue_head(&event->waitq);
5773 init_irq_work(&event->pending, perf_pending_event);
5774
5775 mutex_init(&event->mmap_mutex);
5776
5777 event->cpu = cpu;
5778 event->attr = *attr;
5779 event->group_leader = group_leader;
5780 event->pmu = NULL;
5781 event->oncpu = -1;
5782
5783 event->parent = parent_event;
5784
5785 event->ns = get_pid_ns(current->nsproxy->pid_ns);
5786 event->id = atomic64_inc_return(&perf_event_id);
5787
5788 event->state = PERF_EVENT_STATE_INACTIVE;
5789
5790 if (task) {
5791 event->attach_state = PERF_ATTACH_TASK;
5792 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5793 /*
5794 * hw_breakpoint is a bit difficult here..
5795 */
5796 if (attr->type == PERF_TYPE_BREAKPOINT)
5797 event->hw.bp_target = task;
5798 #endif
5799 }
5800
5801 if (!overflow_handler && parent_event) {
5802 overflow_handler = parent_event->overflow_handler;
5803 context = parent_event->overflow_handler_context;
5804 }
5805
5806 event->overflow_handler = overflow_handler;
5807 event->overflow_handler_context = context;
5808
5809 if (attr->disabled)
5810 event->state = PERF_EVENT_STATE_OFF;
5811
5812 pmu = NULL;
5813
5814 hwc = &event->hw;
5815 hwc->sample_period = attr->sample_period;
5816 if (attr->freq && attr->sample_freq)
5817 hwc->sample_period = 1;
5818 hwc->last_period = hwc->sample_period;
5819
5820 local64_set(&hwc->period_left, hwc->sample_period);
5821
5822 /*
5823 * we currently do not support PERF_FORMAT_GROUP on inherited events
5824 */
5825 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5826 goto done;
5827
5828 pmu = perf_init_event(event);
5829
5830 done:
5831 err = 0;
5832 if (!pmu)
5833 err = -EINVAL;
5834 else if (IS_ERR(pmu))
5835 err = PTR_ERR(pmu);
5836
5837 if (err) {
5838 if (event->ns)
5839 put_pid_ns(event->ns);
5840 kfree(event);
5841 return ERR_PTR(err);
5842 }
5843
5844 if (!event->parent) {
5845 if (event->attach_state & PERF_ATTACH_TASK)
5846 static_key_slow_inc(&perf_sched_events.key);
5847 if (event->attr.mmap || event->attr.mmap_data)
5848 atomic_inc(&nr_mmap_events);
5849 if (event->attr.comm)
5850 atomic_inc(&nr_comm_events);
5851 if (event->attr.task)
5852 atomic_inc(&nr_task_events);
5853 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
5854 err = get_callchain_buffers();
5855 if (err) {
5856 free_event(event);
5857 return ERR_PTR(err);
5858 }
5859 }
5860 }
5861
5862 return event;
5863 }
5864
5865 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5866 struct perf_event_attr *attr)
5867 {
5868 u32 size;
5869 int ret;
5870
5871 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
5872 return -EFAULT;
5873
5874 /*
5875 * zero the full structure, so that a short copy will be nice.
5876 */
5877 memset(attr, 0, sizeof(*attr));
5878
5879 ret = get_user(size, &uattr->size);
5880 if (ret)
5881 return ret;
5882
5883 if (size > PAGE_SIZE) /* silly large */
5884 goto err_size;
5885
5886 if (!size) /* abi compat */
5887 size = PERF_ATTR_SIZE_VER0;
5888
5889 if (size < PERF_ATTR_SIZE_VER0)
5890 goto err_size;
5891
5892 /*
5893 * If we're handed a bigger struct than we know of,
5894 * ensure all the unknown bits are 0 - i.e. new
5895 * user-space does not rely on any kernel feature
5896 * extensions we dont know about yet.
5897 */
5898 if (size > sizeof(*attr)) {
5899 unsigned char __user *addr;
5900 unsigned char __user *end;
5901 unsigned char val;
5902
5903 addr = (void __user *)uattr + sizeof(*attr);
5904 end = (void __user *)uattr + size;
5905
5906 for (; addr < end; addr++) {
5907 ret = get_user(val, addr);
5908 if (ret)
5909 return ret;
5910 if (val)
5911 goto err_size;
5912 }
5913 size = sizeof(*attr);
5914 }
5915
5916 ret = copy_from_user(attr, uattr, size);
5917 if (ret)
5918 return -EFAULT;
5919
5920 if (attr->__reserved_1)
5921 return -EINVAL;
5922
5923 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5924 return -EINVAL;
5925
5926 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5927 return -EINVAL;
5928
5929 out:
5930 return ret;
5931
5932 err_size:
5933 put_user(sizeof(*attr), &uattr->size);
5934 ret = -E2BIG;
5935 goto out;
5936 }
5937
5938 static int
5939 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5940 {
5941 struct ring_buffer *rb = NULL, *old_rb = NULL;
5942 int ret = -EINVAL;
5943
5944 if (!output_event)
5945 goto set;
5946
5947 /* don't allow circular references */
5948 if (event == output_event)
5949 goto out;
5950
5951 /*
5952 * Don't allow cross-cpu buffers
5953 */
5954 if (output_event->cpu != event->cpu)
5955 goto out;
5956
5957 /*
5958 * If its not a per-cpu rb, it must be the same task.
5959 */
5960 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
5961 goto out;
5962
5963 set:
5964 mutex_lock(&event->mmap_mutex);
5965 /* Can't redirect output if we've got an active mmap() */
5966 if (atomic_read(&event->mmap_count))
5967 goto unlock;
5968
5969 if (output_event) {
5970 /* get the rb we want to redirect to */
5971 rb = ring_buffer_get(output_event);
5972 if (!rb)
5973 goto unlock;
5974 }
5975
5976 old_rb = event->rb;
5977 rcu_assign_pointer(event->rb, rb);
5978 if (old_rb)
5979 ring_buffer_detach(event, old_rb);
5980 ret = 0;
5981 unlock:
5982 mutex_unlock(&event->mmap_mutex);
5983
5984 if (old_rb)
5985 ring_buffer_put(old_rb);
5986 out:
5987 return ret;
5988 }
5989
5990 /**
5991 * sys_perf_event_open - open a performance event, associate it to a task/cpu
5992 *
5993 * @attr_uptr: event_id type attributes for monitoring/sampling
5994 * @pid: target pid
5995 * @cpu: target cpu
5996 * @group_fd: group leader event fd
5997 */
5998 SYSCALL_DEFINE5(perf_event_open,
5999 struct perf_event_attr __user *, attr_uptr,
6000 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
6001 {
6002 struct perf_event *group_leader = NULL, *output_event = NULL;
6003 struct perf_event *event, *sibling;
6004 struct perf_event_attr attr;
6005 struct perf_event_context *ctx;
6006 struct file *event_file = NULL;
6007 struct file *group_file = NULL;
6008 struct task_struct *task = NULL;
6009 struct pmu *pmu;
6010 int event_fd;
6011 int move_group = 0;
6012 int fput_needed = 0;
6013 int err;
6014
6015 /* for future expandability... */
6016 if (flags & ~PERF_FLAG_ALL)
6017 return -EINVAL;
6018
6019 err = perf_copy_attr(attr_uptr, &attr);
6020 if (err)
6021 return err;
6022
6023 if (!attr.exclude_kernel) {
6024 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6025 return -EACCES;
6026 }
6027
6028 if (attr.freq) {
6029 if (attr.sample_freq > sysctl_perf_event_sample_rate)
6030 return -EINVAL;
6031 }
6032
6033 /*
6034 * In cgroup mode, the pid argument is used to pass the fd
6035 * opened to the cgroup directory in cgroupfs. The cpu argument
6036 * designates the cpu on which to monitor threads from that
6037 * cgroup.
6038 */
6039 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6040 return -EINVAL;
6041
6042 event_fd = get_unused_fd_flags(O_RDWR);
6043 if (event_fd < 0)
6044 return event_fd;
6045
6046 if (group_fd != -1) {
6047 group_leader = perf_fget_light(group_fd, &fput_needed);
6048 if (IS_ERR(group_leader)) {
6049 err = PTR_ERR(group_leader);
6050 goto err_fd;
6051 }
6052 group_file = group_leader->filp;
6053 if (flags & PERF_FLAG_FD_OUTPUT)
6054 output_event = group_leader;
6055 if (flags & PERF_FLAG_FD_NO_GROUP)
6056 group_leader = NULL;
6057 }
6058
6059 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6060 task = find_lively_task_by_vpid(pid);
6061 if (IS_ERR(task)) {
6062 err = PTR_ERR(task);
6063 goto err_group_fd;
6064 }
6065 }
6066
6067 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6068 NULL, NULL);
6069 if (IS_ERR(event)) {
6070 err = PTR_ERR(event);
6071 goto err_task;
6072 }
6073
6074 if (flags & PERF_FLAG_PID_CGROUP) {
6075 err = perf_cgroup_connect(pid, event, &attr, group_leader);
6076 if (err)
6077 goto err_alloc;
6078 /*
6079 * one more event:
6080 * - that has cgroup constraint on event->cpu
6081 * - that may need work on context switch
6082 */
6083 atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
6084 static_key_slow_inc(&perf_sched_events.key);
6085 }
6086
6087 /*
6088 * Special case software events and allow them to be part of
6089 * any hardware group.
6090 */
6091 pmu = event->pmu;
6092
6093 if (group_leader &&
6094 (is_software_event(event) != is_software_event(group_leader))) {
6095 if (is_software_event(event)) {
6096 /*
6097 * If event and group_leader are not both a software
6098 * event, and event is, then group leader is not.
6099 *
6100 * Allow the addition of software events to !software
6101 * groups, this is safe because software events never
6102 * fail to schedule.
6103 */
6104 pmu = group_leader->pmu;
6105 } else if (is_software_event(group_leader) &&
6106 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6107 /*
6108 * In case the group is a pure software group, and we
6109 * try to add a hardware event, move the whole group to
6110 * the hardware context.
6111 */
6112 move_group = 1;
6113 }
6114 }
6115
6116 /*
6117 * Get the target context (task or percpu):
6118 */
6119 ctx = find_get_context(pmu, task, cpu);
6120 if (IS_ERR(ctx)) {
6121 err = PTR_ERR(ctx);
6122 goto err_alloc;
6123 }
6124
6125 if (task) {
6126 put_task_struct(task);
6127 task = NULL;
6128 }
6129
6130 /*
6131 * Look up the group leader (we will attach this event to it):
6132 */
6133 if (group_leader) {
6134 err = -EINVAL;
6135
6136 /*
6137 * Do not allow a recursive hierarchy (this new sibling
6138 * becoming part of another group-sibling):
6139 */
6140 if (group_leader->group_leader != group_leader)
6141 goto err_context;
6142 /*
6143 * Do not allow to attach to a group in a different
6144 * task or CPU context:
6145 */
6146 if (move_group) {
6147 if (group_leader->ctx->type != ctx->type)
6148 goto err_context;
6149 } else {
6150 if (group_leader->ctx != ctx)
6151 goto err_context;
6152 }
6153
6154 /*
6155 * Only a group leader can be exclusive or pinned
6156 */
6157 if (attr.exclusive || attr.pinned)
6158 goto err_context;
6159 }
6160
6161 if (output_event) {
6162 err = perf_event_set_output(event, output_event);
6163 if (err)
6164 goto err_context;
6165 }
6166
6167 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
6168 if (IS_ERR(event_file)) {
6169 err = PTR_ERR(event_file);
6170 goto err_context;
6171 }
6172
6173 if (move_group) {
6174 struct perf_event_context *gctx = group_leader->ctx;
6175
6176 mutex_lock(&gctx->mutex);
6177 perf_remove_from_context(group_leader);
6178 list_for_each_entry(sibling, &group_leader->sibling_list,
6179 group_entry) {
6180 perf_remove_from_context(sibling);
6181 put_ctx(gctx);
6182 }
6183 mutex_unlock(&gctx->mutex);
6184 put_ctx(gctx);
6185 }
6186
6187 event->filp = event_file;
6188 WARN_ON_ONCE(ctx->parent_ctx);
6189 mutex_lock(&ctx->mutex);
6190
6191 if (move_group) {
6192 perf_install_in_context(ctx, group_leader, cpu);
6193 get_ctx(ctx);
6194 list_for_each_entry(sibling, &group_leader->sibling_list,
6195 group_entry) {
6196 perf_install_in_context(ctx, sibling, cpu);
6197 get_ctx(ctx);
6198 }
6199 }
6200
6201 perf_install_in_context(ctx, event, cpu);
6202 ++ctx->generation;
6203 perf_unpin_context(ctx);
6204 mutex_unlock(&ctx->mutex);
6205
6206 event->owner = current;
6207
6208 mutex_lock(&current->perf_event_mutex);
6209 list_add_tail(&event->owner_entry, &current->perf_event_list);
6210 mutex_unlock(&current->perf_event_mutex);
6211
6212 /*
6213 * Precalculate sample_data sizes
6214 */
6215 perf_event__header_size(event);
6216 perf_event__id_header_size(event);
6217
6218 /*
6219 * Drop the reference on the group_event after placing the
6220 * new event on the sibling_list. This ensures destruction
6221 * of the group leader will find the pointer to itself in
6222 * perf_group_detach().
6223 */
6224 fput_light(group_file, fput_needed);
6225 fd_install(event_fd, event_file);
6226 return event_fd;
6227
6228 err_context:
6229 perf_unpin_context(ctx);
6230 put_ctx(ctx);
6231 err_alloc:
6232 free_event(event);
6233 err_task:
6234 if (task)
6235 put_task_struct(task);
6236 err_group_fd:
6237 fput_light(group_file, fput_needed);
6238 err_fd:
6239 put_unused_fd(event_fd);
6240 return err;
6241 }
6242
6243 /**
6244 * perf_event_create_kernel_counter
6245 *
6246 * @attr: attributes of the counter to create
6247 * @cpu: cpu in which the counter is bound
6248 * @task: task to profile (NULL for percpu)
6249 */
6250 struct perf_event *
6251 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
6252 struct task_struct *task,
6253 perf_overflow_handler_t overflow_handler,
6254 void *context)
6255 {
6256 struct perf_event_context *ctx;
6257 struct perf_event *event;
6258 int err;
6259
6260 /*
6261 * Get the target context (task or percpu):
6262 */
6263
6264 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
6265 overflow_handler, context);
6266 if (IS_ERR(event)) {
6267 err = PTR_ERR(event);
6268 goto err;
6269 }
6270
6271 ctx = find_get_context(event->pmu, task, cpu);
6272 if (IS_ERR(ctx)) {
6273 err = PTR_ERR(ctx);
6274 goto err_free;
6275 }
6276
6277 event->filp = NULL;
6278 WARN_ON_ONCE(ctx->parent_ctx);
6279 mutex_lock(&ctx->mutex);
6280 perf_install_in_context(ctx, event, cpu);
6281 ++ctx->generation;
6282 perf_unpin_context(ctx);
6283 mutex_unlock(&ctx->mutex);
6284
6285 return event;
6286
6287 err_free:
6288 free_event(event);
6289 err:
6290 return ERR_PTR(err);
6291 }
6292 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6293
6294 static void sync_child_event(struct perf_event *child_event,
6295 struct task_struct *child)
6296 {
6297 struct perf_event *parent_event = child_event->parent;
6298 u64 child_val;
6299
6300 if (child_event->attr.inherit_stat)
6301 perf_event_read_event(child_event, child);
6302
6303 child_val = perf_event_count(child_event);
6304
6305 /*
6306 * Add back the child's count to the parent's count:
6307 */
6308 atomic64_add(child_val, &parent_event->child_count);
6309 atomic64_add(child_event->total_time_enabled,
6310 &parent_event->child_total_time_enabled);
6311 atomic64_add(child_event->total_time_running,
6312 &parent_event->child_total_time_running);
6313
6314 /*
6315 * Remove this event from the parent's list
6316 */
6317 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6318 mutex_lock(&parent_event->child_mutex);
6319 list_del_init(&child_event->child_list);
6320 mutex_unlock(&parent_event->child_mutex);
6321
6322 /*
6323 * Release the parent event, if this was the last
6324 * reference to it.
6325 */
6326 fput(parent_event->filp);
6327 }
6328
6329 static void
6330 __perf_event_exit_task(struct perf_event *child_event,
6331 struct perf_event_context *child_ctx,
6332 struct task_struct *child)
6333 {
6334 if (child_event->parent) {
6335 raw_spin_lock_irq(&child_ctx->lock);
6336 perf_group_detach(child_event);
6337 raw_spin_unlock_irq(&child_ctx->lock);
6338 }
6339
6340 perf_remove_from_context(child_event);
6341
6342 /*
6343 * It can happen that the parent exits first, and has events
6344 * that are still around due to the child reference. These
6345 * events need to be zapped.
6346 */
6347 if (child_event->parent) {
6348 sync_child_event(child_event, child);
6349 free_event(child_event);
6350 }
6351 }
6352
6353 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6354 {
6355 struct perf_event *child_event, *tmp;
6356 struct perf_event_context *child_ctx;
6357 unsigned long flags;
6358
6359 if (likely(!child->perf_event_ctxp[ctxn])) {
6360 perf_event_task(child, NULL, 0);
6361 return;
6362 }
6363
6364 local_irq_save(flags);
6365 /*
6366 * We can't reschedule here because interrupts are disabled,
6367 * and either child is current or it is a task that can't be
6368 * scheduled, so we are now safe from rescheduling changing
6369 * our context.
6370 */
6371 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6372
6373 /*
6374 * Take the context lock here so that if find_get_context is
6375 * reading child->perf_event_ctxp, we wait until it has
6376 * incremented the context's refcount before we do put_ctx below.
6377 */
6378 raw_spin_lock(&child_ctx->lock);
6379 task_ctx_sched_out(child_ctx);
6380 child->perf_event_ctxp[ctxn] = NULL;
6381 /*
6382 * If this context is a clone; unclone it so it can't get
6383 * swapped to another process while we're removing all
6384 * the events from it.
6385 */
6386 unclone_ctx(child_ctx);
6387 update_context_time(child_ctx);
6388 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6389
6390 /*
6391 * Report the task dead after unscheduling the events so that we
6392 * won't get any samples after PERF_RECORD_EXIT. We can however still
6393 * get a few PERF_RECORD_READ events.
6394 */
6395 perf_event_task(child, child_ctx, 0);
6396
6397 /*
6398 * We can recurse on the same lock type through:
6399 *
6400 * __perf_event_exit_task()
6401 * sync_child_event()
6402 * fput(parent_event->filp)
6403 * perf_release()
6404 * mutex_lock(&ctx->mutex)
6405 *
6406 * But since its the parent context it won't be the same instance.
6407 */
6408 mutex_lock(&child_ctx->mutex);
6409
6410 again:
6411 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
6412 group_entry)
6413 __perf_event_exit_task(child_event, child_ctx, child);
6414
6415 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6416 group_entry)
6417 __perf_event_exit_task(child_event, child_ctx, child);
6418
6419 /*
6420 * If the last event was a group event, it will have appended all
6421 * its siblings to the list, but we obtained 'tmp' before that which
6422 * will still point to the list head terminating the iteration.
6423 */
6424 if (!list_empty(&child_ctx->pinned_groups) ||
6425 !list_empty(&child_ctx->flexible_groups))
6426 goto again;
6427
6428 mutex_unlock(&child_ctx->mutex);
6429
6430 put_ctx(child_ctx);
6431 }
6432
6433 /*
6434 * When a child task exits, feed back event values to parent events.
6435 */
6436 void perf_event_exit_task(struct task_struct *child)
6437 {
6438 struct perf_event *event, *tmp;
6439 int ctxn;
6440
6441 mutex_lock(&child->perf_event_mutex);
6442 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
6443 owner_entry) {
6444 list_del_init(&event->owner_entry);
6445
6446 /*
6447 * Ensure the list deletion is visible before we clear
6448 * the owner, closes a race against perf_release() where
6449 * we need to serialize on the owner->perf_event_mutex.
6450 */
6451 smp_wmb();
6452 event->owner = NULL;
6453 }
6454 mutex_unlock(&child->perf_event_mutex);
6455
6456 for_each_task_context_nr(ctxn)
6457 perf_event_exit_task_context(child, ctxn);
6458 }
6459
6460 static void perf_free_event(struct perf_event *event,
6461 struct perf_event_context *ctx)
6462 {
6463 struct perf_event *parent = event->parent;
6464
6465 if (WARN_ON_ONCE(!parent))
6466 return;
6467
6468 mutex_lock(&parent->child_mutex);
6469 list_del_init(&event->child_list);
6470 mutex_unlock(&parent->child_mutex);
6471
6472 fput(parent->filp);
6473
6474 perf_group_detach(event);
6475 list_del_event(event, ctx);
6476 free_event(event);
6477 }
6478
6479 /*
6480 * free an unexposed, unused context as created by inheritance by
6481 * perf_event_init_task below, used by fork() in case of fail.
6482 */
6483 void perf_event_free_task(struct task_struct *task)
6484 {
6485 struct perf_event_context *ctx;
6486 struct perf_event *event, *tmp;
6487 int ctxn;
6488
6489 for_each_task_context_nr(ctxn) {
6490 ctx = task->perf_event_ctxp[ctxn];
6491 if (!ctx)
6492 continue;
6493
6494 mutex_lock(&ctx->mutex);
6495 again:
6496 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
6497 group_entry)
6498 perf_free_event(event, ctx);
6499
6500 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
6501 group_entry)
6502 perf_free_event(event, ctx);
6503
6504 if (!list_empty(&ctx->pinned_groups) ||
6505 !list_empty(&ctx->flexible_groups))
6506 goto again;
6507
6508 mutex_unlock(&ctx->mutex);
6509
6510 put_ctx(ctx);
6511 }
6512 }
6513
6514 void perf_event_delayed_put(struct task_struct *task)
6515 {
6516 int ctxn;
6517
6518 for_each_task_context_nr(ctxn)
6519 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
6520 }
6521
6522 /*
6523 * inherit a event from parent task to child task:
6524 */
6525 static struct perf_event *
6526 inherit_event(struct perf_event *parent_event,
6527 struct task_struct *parent,
6528 struct perf_event_context *parent_ctx,
6529 struct task_struct *child,
6530 struct perf_event *group_leader,
6531 struct perf_event_context *child_ctx)
6532 {
6533 struct perf_event *child_event;
6534 unsigned long flags;
6535
6536 /*
6537 * Instead of creating recursive hierarchies of events,
6538 * we link inherited events back to the original parent,
6539 * which has a filp for sure, which we use as the reference
6540 * count:
6541 */
6542 if (parent_event->parent)
6543 parent_event = parent_event->parent;
6544
6545 child_event = perf_event_alloc(&parent_event->attr,
6546 parent_event->cpu,
6547 child,
6548 group_leader, parent_event,
6549 NULL, NULL);
6550 if (IS_ERR(child_event))
6551 return child_event;
6552 get_ctx(child_ctx);
6553
6554 /*
6555 * Make the child state follow the state of the parent event,
6556 * not its attr.disabled bit. We hold the parent's mutex,
6557 * so we won't race with perf_event_{en, dis}able_family.
6558 */
6559 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
6560 child_event->state = PERF_EVENT_STATE_INACTIVE;
6561 else
6562 child_event->state = PERF_EVENT_STATE_OFF;
6563
6564 if (parent_event->attr.freq) {
6565 u64 sample_period = parent_event->hw.sample_period;
6566 struct hw_perf_event *hwc = &child_event->hw;
6567
6568 hwc->sample_period = sample_period;
6569 hwc->last_period = sample_period;
6570
6571 local64_set(&hwc->period_left, sample_period);
6572 }
6573
6574 child_event->ctx = child_ctx;
6575 child_event->overflow_handler = parent_event->overflow_handler;
6576 child_event->overflow_handler_context
6577 = parent_event->overflow_handler_context;
6578
6579 /*
6580 * Precalculate sample_data sizes
6581 */
6582 perf_event__header_size(child_event);
6583 perf_event__id_header_size(child_event);
6584
6585 /*
6586 * Link it up in the child's context:
6587 */
6588 raw_spin_lock_irqsave(&child_ctx->lock, flags);
6589 add_event_to_ctx(child_event, child_ctx);
6590 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6591
6592 /*
6593 * Get a reference to the parent filp - we will fput it
6594 * when the child event exits. This is safe to do because
6595 * we are in the parent and we know that the filp still
6596 * exists and has a nonzero count:
6597 */
6598 atomic_long_inc(&parent_event->filp->f_count);
6599
6600 /*
6601 * Link this into the parent event's child list
6602 */
6603 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6604 mutex_lock(&parent_event->child_mutex);
6605 list_add_tail(&child_event->child_list, &parent_event->child_list);
6606 mutex_unlock(&parent_event->child_mutex);
6607
6608 return child_event;
6609 }
6610
6611 static int inherit_group(struct perf_event *parent_event,
6612 struct task_struct *parent,
6613 struct perf_event_context *parent_ctx,
6614 struct task_struct *child,
6615 struct perf_event_context *child_ctx)
6616 {
6617 struct perf_event *leader;
6618 struct perf_event *sub;
6619 struct perf_event *child_ctr;
6620
6621 leader = inherit_event(parent_event, parent, parent_ctx,
6622 child, NULL, child_ctx);
6623 if (IS_ERR(leader))
6624 return PTR_ERR(leader);
6625 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6626 child_ctr = inherit_event(sub, parent, parent_ctx,
6627 child, leader, child_ctx);
6628 if (IS_ERR(child_ctr))
6629 return PTR_ERR(child_ctr);
6630 }
6631 return 0;
6632 }
6633
6634 static int
6635 inherit_task_group(struct perf_event *event, struct task_struct *parent,
6636 struct perf_event_context *parent_ctx,
6637 struct task_struct *child, int ctxn,
6638 int *inherited_all)
6639 {
6640 int ret;
6641 struct perf_event_context *child_ctx;
6642
6643 if (!event->attr.inherit) {
6644 *inherited_all = 0;
6645 return 0;
6646 }
6647
6648 child_ctx = child->perf_event_ctxp[ctxn];
6649 if (!child_ctx) {
6650 /*
6651 * This is executed from the parent task context, so
6652 * inherit events that have been marked for cloning.
6653 * First allocate and initialize a context for the
6654 * child.
6655 */
6656
6657 child_ctx = alloc_perf_context(event->pmu, child);
6658 if (!child_ctx)
6659 return -ENOMEM;
6660
6661 child->perf_event_ctxp[ctxn] = child_ctx;
6662 }
6663
6664 ret = inherit_group(event, parent, parent_ctx,
6665 child, child_ctx);
6666
6667 if (ret)
6668 *inherited_all = 0;
6669
6670 return ret;
6671 }
6672
6673 /*
6674 * Initialize the perf_event context in task_struct
6675 */
6676 int perf_event_init_context(struct task_struct *child, int ctxn)
6677 {
6678 struct perf_event_context *child_ctx, *parent_ctx;
6679 struct perf_event_context *cloned_ctx;
6680 struct perf_event *event;
6681 struct task_struct *parent = current;
6682 int inherited_all = 1;
6683 unsigned long flags;
6684 int ret = 0;
6685
6686 if (likely(!parent->perf_event_ctxp[ctxn]))
6687 return 0;
6688
6689 /*
6690 * If the parent's context is a clone, pin it so it won't get
6691 * swapped under us.
6692 */
6693 parent_ctx = perf_pin_task_context(parent, ctxn);
6694
6695 /*
6696 * No need to check if parent_ctx != NULL here; since we saw
6697 * it non-NULL earlier, the only reason for it to become NULL
6698 * is if we exit, and since we're currently in the middle of
6699 * a fork we can't be exiting at the same time.
6700 */
6701
6702 /*
6703 * Lock the parent list. No need to lock the child - not PID
6704 * hashed yet and not running, so nobody can access it.
6705 */
6706 mutex_lock(&parent_ctx->mutex);
6707
6708 /*
6709 * We dont have to disable NMIs - we are only looking at
6710 * the list, not manipulating it:
6711 */
6712 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
6713 ret = inherit_task_group(event, parent, parent_ctx,
6714 child, ctxn, &inherited_all);
6715 if (ret)
6716 break;
6717 }
6718
6719 /*
6720 * We can't hold ctx->lock when iterating the ->flexible_group list due
6721 * to allocations, but we need to prevent rotation because
6722 * rotate_ctx() will change the list from interrupt context.
6723 */
6724 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6725 parent_ctx->rotate_disable = 1;
6726 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6727
6728 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
6729 ret = inherit_task_group(event, parent, parent_ctx,
6730 child, ctxn, &inherited_all);
6731 if (ret)
6732 break;
6733 }
6734
6735 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6736 parent_ctx->rotate_disable = 0;
6737
6738 child_ctx = child->perf_event_ctxp[ctxn];
6739
6740 if (child_ctx && inherited_all) {
6741 /*
6742 * Mark the child context as a clone of the parent
6743 * context, or of whatever the parent is a clone of.
6744 *
6745 * Note that if the parent is a clone, the holding of
6746 * parent_ctx->lock avoids it from being uncloned.
6747 */
6748 cloned_ctx = parent_ctx->parent_ctx;
6749 if (cloned_ctx) {
6750 child_ctx->parent_ctx = cloned_ctx;
6751 child_ctx->parent_gen = parent_ctx->parent_gen;
6752 } else {
6753 child_ctx->parent_ctx = parent_ctx;
6754 child_ctx->parent_gen = parent_ctx->generation;
6755 }
6756 get_ctx(child_ctx->parent_ctx);
6757 }
6758
6759 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6760 mutex_unlock(&parent_ctx->mutex);
6761
6762 perf_unpin_context(parent_ctx);
6763 put_ctx(parent_ctx);
6764
6765 return ret;
6766 }
6767
6768 /*
6769 * Initialize the perf_event context in task_struct
6770 */
6771 int perf_event_init_task(struct task_struct *child)
6772 {
6773 int ctxn, ret;
6774
6775 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
6776 mutex_init(&child->perf_event_mutex);
6777 INIT_LIST_HEAD(&child->perf_event_list);
6778
6779 for_each_task_context_nr(ctxn) {
6780 ret = perf_event_init_context(child, ctxn);
6781 if (ret)
6782 return ret;
6783 }
6784
6785 return 0;
6786 }
6787
6788 static void __init perf_event_init_all_cpus(void)
6789 {
6790 struct swevent_htable *swhash;
6791 int cpu;
6792
6793 for_each_possible_cpu(cpu) {
6794 swhash = &per_cpu(swevent_htable, cpu);
6795 mutex_init(&swhash->hlist_mutex);
6796 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6797 }
6798 }
6799
6800 static void __cpuinit perf_event_init_cpu(int cpu)
6801 {
6802 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6803
6804 mutex_lock(&swhash->hlist_mutex);
6805 if (swhash->hlist_refcount > 0) {
6806 struct swevent_hlist *hlist;
6807
6808 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
6809 WARN_ON(!hlist);
6810 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6811 }
6812 mutex_unlock(&swhash->hlist_mutex);
6813 }
6814
6815 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
6816 static void perf_pmu_rotate_stop(struct pmu *pmu)
6817 {
6818 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6819
6820 WARN_ON(!irqs_disabled());
6821
6822 list_del_init(&cpuctx->rotation_list);
6823 }
6824
6825 static void __perf_event_exit_context(void *__info)
6826 {
6827 struct perf_event_context *ctx = __info;
6828 struct perf_event *event, *tmp;
6829
6830 perf_pmu_rotate_stop(ctx->pmu);
6831
6832 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
6833 __perf_remove_from_context(event);
6834 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6835 __perf_remove_from_context(event);
6836 }
6837
6838 static void perf_event_exit_cpu_context(int cpu)
6839 {
6840 struct perf_event_context *ctx;
6841 struct pmu *pmu;
6842 int idx;
6843
6844 idx = srcu_read_lock(&pmus_srcu);
6845 list_for_each_entry_rcu(pmu, &pmus, entry) {
6846 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
6847
6848 mutex_lock(&ctx->mutex);
6849 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
6850 mutex_unlock(&ctx->mutex);
6851 }
6852 srcu_read_unlock(&pmus_srcu, idx);
6853 }
6854
6855 static void perf_event_exit_cpu(int cpu)
6856 {
6857 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6858
6859 mutex_lock(&swhash->hlist_mutex);
6860 swevent_hlist_release(swhash);
6861 mutex_unlock(&swhash->hlist_mutex);
6862
6863 perf_event_exit_cpu_context(cpu);
6864 }
6865 #else
6866 static inline void perf_event_exit_cpu(int cpu) { }
6867 #endif
6868
6869 static int
6870 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
6871 {
6872 int cpu;
6873
6874 for_each_online_cpu(cpu)
6875 perf_event_exit_cpu(cpu);
6876
6877 return NOTIFY_OK;
6878 }
6879
6880 /*
6881 * Run the perf reboot notifier at the very last possible moment so that
6882 * the generic watchdog code runs as long as possible.
6883 */
6884 static struct notifier_block perf_reboot_notifier = {
6885 .notifier_call = perf_reboot,
6886 .priority = INT_MIN,
6887 };
6888
6889 static int __cpuinit
6890 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
6891 {
6892 unsigned int cpu = (long)hcpu;
6893
6894 switch (action & ~CPU_TASKS_FROZEN) {
6895
6896 case CPU_UP_PREPARE:
6897 case CPU_DOWN_FAILED:
6898 perf_event_init_cpu(cpu);
6899 break;
6900
6901 case CPU_UP_CANCELED:
6902 case CPU_DOWN_PREPARE:
6903 perf_event_exit_cpu(cpu);
6904 break;
6905
6906 default:
6907 break;
6908 }
6909
6910 return NOTIFY_OK;
6911 }
6912
6913 void __init perf_event_init(void)
6914 {
6915 int ret;
6916
6917 idr_init(&pmu_idr);
6918
6919 perf_event_init_all_cpus();
6920 init_srcu_struct(&pmus_srcu);
6921 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
6922 perf_pmu_register(&perf_cpu_clock, NULL, -1);
6923 perf_pmu_register(&perf_task_clock, NULL, -1);
6924 perf_tp_register();
6925 perf_cpu_notifier(perf_cpu_notify);
6926 register_reboot_notifier(&perf_reboot_notifier);
6927
6928 ret = init_hw_breakpoint();
6929 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
6930
6931 /* do not patch jump label more than once per second */
6932 jump_label_rate_limit(&perf_sched_events, HZ);
6933 }
6934
6935 static int __init perf_event_sysfs_init(void)
6936 {
6937 struct pmu *pmu;
6938 int ret;
6939
6940 mutex_lock(&pmus_lock);
6941
6942 ret = bus_register(&pmu_bus);
6943 if (ret)
6944 goto unlock;
6945
6946 list_for_each_entry(pmu, &pmus, entry) {
6947 if (!pmu->name || pmu->type < 0)
6948 continue;
6949
6950 ret = pmu_dev_alloc(pmu);
6951 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
6952 }
6953 pmu_bus_running = 1;
6954 ret = 0;
6955
6956 unlock:
6957 mutex_unlock(&pmus_lock);
6958
6959 return ret;
6960 }
6961 device_initcall(perf_event_sysfs_init);
6962
6963 #ifdef CONFIG_CGROUP_PERF
6964 static struct cgroup_subsys_state *perf_cgroup_create(
6965 struct cgroup_subsys *ss, struct cgroup *cont)
6966 {
6967 struct perf_cgroup *jc;
6968
6969 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
6970 if (!jc)
6971 return ERR_PTR(-ENOMEM);
6972
6973 jc->info = alloc_percpu(struct perf_cgroup_info);
6974 if (!jc->info) {
6975 kfree(jc);
6976 return ERR_PTR(-ENOMEM);
6977 }
6978
6979 return &jc->css;
6980 }
6981
6982 static void perf_cgroup_destroy(struct cgroup_subsys *ss,
6983 struct cgroup *cont)
6984 {
6985 struct perf_cgroup *jc;
6986 jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
6987 struct perf_cgroup, css);
6988 free_percpu(jc->info);
6989 kfree(jc);
6990 }
6991
6992 static int __perf_cgroup_move(void *info)
6993 {
6994 struct task_struct *task = info;
6995 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
6996 return 0;
6997 }
6998
6999 static void perf_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7000 struct cgroup_taskset *tset)
7001 {
7002 struct task_struct *task;
7003
7004 cgroup_taskset_for_each(task, cgrp, tset)
7005 task_function_call(task, __perf_cgroup_move, task);
7006 }
7007
7008 static void perf_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
7009 struct cgroup *old_cgrp, struct task_struct *task)
7010 {
7011 /*
7012 * cgroup_exit() is called in the copy_process() failure path.
7013 * Ignore this case since the task hasn't ran yet, this avoids
7014 * trying to poke a half freed task state from generic code.
7015 */
7016 if (!(task->flags & PF_EXITING))
7017 return;
7018
7019 task_function_call(task, __perf_cgroup_move, task);
7020 }
7021
7022 struct cgroup_subsys perf_subsys = {
7023 .name = "perf_event",
7024 .subsys_id = perf_subsys_id,
7025 .create = perf_cgroup_create,
7026 .destroy = perf_cgroup_destroy,
7027 .exit = perf_cgroup_exit,
7028 .attach = perf_cgroup_attach,
7029 };
7030 #endif /* CONFIG_CGROUP_PERF */