Merge tag 'v3.10.73' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / events / core.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/perf_event.h>
38 #include <linux/ftrace_event.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/mm_types.h>
41 #include <linux/cgroup.h>
42 #include <linux/compat.h>
43
44 #include "internal.h"
45
46 #include <asm/irq_regs.h>
47
48 struct remote_function_call {
49 struct task_struct *p;
50 int (*func)(void *info);
51 void *info;
52 int ret;
53 };
54
55 static void remote_function(void *data)
56 {
57 struct remote_function_call *tfc = data;
58 struct task_struct *p = tfc->p;
59
60 if (p) {
61 tfc->ret = -EAGAIN;
62 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
63 return;
64 }
65
66 tfc->ret = tfc->func(tfc->info);
67 }
68
69 /**
70 * task_function_call - call a function on the cpu on which a task runs
71 * @p: the task to evaluate
72 * @func: the function to be called
73 * @info: the function call argument
74 *
75 * Calls the function @func when the task is currently running. This might
76 * be on the current CPU, which just calls the function directly
77 *
78 * returns: @func return value, or
79 * -ESRCH - when the process isn't running
80 * -EAGAIN - when the process moved away
81 */
82 static int
83 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
84 {
85 struct remote_function_call data = {
86 .p = p,
87 .func = func,
88 .info = info,
89 .ret = -ESRCH, /* No such (running) process */
90 };
91
92 if (task_curr(p))
93 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
94
95 return data.ret;
96 }
97
98 /**
99 * cpu_function_call - call a function on the cpu
100 * @func: the function to be called
101 * @info: the function call argument
102 *
103 * Calls the function @func on the remote cpu.
104 *
105 * returns: @func return value or -ENXIO when the cpu is offline
106 */
107 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
108 {
109 struct remote_function_call data = {
110 .p = NULL,
111 .func = func,
112 .info = info,
113 .ret = -ENXIO, /* No such CPU */
114 };
115
116 smp_call_function_single(cpu, remote_function, &data, 1);
117
118 return data.ret;
119 }
120
121 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
122 PERF_FLAG_FD_OUTPUT |\
123 PERF_FLAG_PID_CGROUP)
124
125 /*
126 * branch priv levels that need permission checks
127 */
128 #define PERF_SAMPLE_BRANCH_PERM_PLM \
129 (PERF_SAMPLE_BRANCH_KERNEL |\
130 PERF_SAMPLE_BRANCH_HV)
131
132 enum event_type_t {
133 EVENT_FLEXIBLE = 0x1,
134 EVENT_PINNED = 0x2,
135 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
136 };
137
138 /*
139 * perf_sched_events : >0 events exist
140 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
141 */
142 struct static_key_deferred perf_sched_events __read_mostly;
143 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
144 static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
145
146 static atomic_t nr_mmap_events __read_mostly;
147 static atomic_t nr_comm_events __read_mostly;
148 static atomic_t nr_task_events __read_mostly;
149
150 static LIST_HEAD(pmus);
151 static DEFINE_MUTEX(pmus_lock);
152 static struct srcu_struct pmus_srcu;
153
154 /*
155 * perf event paranoia level:
156 * -1 - not paranoid at all
157 * 0 - disallow raw tracepoint access for unpriv
158 * 1 - disallow cpu events for unpriv
159 * 2 - disallow kernel profiling for unpriv
160 */
161 int sysctl_perf_event_paranoid __read_mostly = 1;
162
163 /* Minimum for 512 kiB + 1 user control page */
164 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
165
166 /*
167 * max perf event sample rate
168 */
169 #define DEFAULT_MAX_SAMPLE_RATE 100000
170 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
171 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
172
173 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
174
175 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
176 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
177
178 static atomic_t perf_sample_allowed_ns __read_mostly =
179 ATOMIC_INIT( DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100);
180
181 void update_perf_cpu_limits(void)
182 {
183 u64 tmp = perf_sample_period_ns;
184
185 tmp *= sysctl_perf_cpu_time_max_percent;
186 do_div(tmp, 100);
187 atomic_set(&perf_sample_allowed_ns, tmp);
188 }
189
190 int perf_proc_update_handler(struct ctl_table *table, int write,
191 void __user *buffer, size_t *lenp,
192 loff_t *ppos)
193 {
194 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
195
196 if (ret || !write)
197 return ret;
198
199 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
200 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
201 update_perf_cpu_limits();
202
203 return 0;
204 }
205
206 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
207
208 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
209 void __user *buffer, size_t *lenp,
210 loff_t *ppos)
211 {
212 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
213
214 if (ret || !write)
215 return ret;
216
217 update_perf_cpu_limits();
218
219 return 0;
220 }
221
222 /*
223 * perf samples are done in some very critical code paths (NMIs).
224 * If they take too much CPU time, the system can lock up and not
225 * get any real work done. This will drop the sample rate when
226 * we detect that events are taking too long.
227 */
228 #define NR_ACCUMULATED_SAMPLES 128
229 DEFINE_PER_CPU(u64, running_sample_length);
230
231 void perf_sample_event_took(u64 sample_len_ns)
232 {
233 u64 avg_local_sample_len;
234 u64 local_samples_len;
235
236 if (atomic_read(&perf_sample_allowed_ns) == 0)
237 return;
238
239 /* decay the counter by 1 average sample */
240 local_samples_len = __get_cpu_var(running_sample_length);
241 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
242 local_samples_len += sample_len_ns;
243 __get_cpu_var(running_sample_length) = local_samples_len;
244
245 /*
246 * note: this will be biased artifically low until we have
247 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
248 * from having to maintain a count.
249 */
250 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
251
252 if (avg_local_sample_len <= atomic_read(&perf_sample_allowed_ns))
253 return;
254
255 if (max_samples_per_tick <= 1)
256 return;
257
258 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
259 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
260 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
261
262 printk_ratelimited(KERN_WARNING
263 "perf samples too long (%lld > %d), lowering "
264 "kernel.perf_event_max_sample_rate to %d\n",
265 avg_local_sample_len,
266 atomic_read(&perf_sample_allowed_ns),
267 sysctl_perf_event_sample_rate);
268
269 update_perf_cpu_limits();
270 }
271
272 static atomic64_t perf_event_id;
273
274 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
275 enum event_type_t event_type);
276
277 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
278 enum event_type_t event_type,
279 struct task_struct *task);
280
281 static void update_context_time(struct perf_event_context *ctx);
282 static u64 perf_event_time(struct perf_event *event);
283
284 void __weak perf_event_print_debug(void) { }
285
286 extern __weak const char *perf_pmu_name(void)
287 {
288 return "pmu";
289 }
290
291 static inline u64 perf_clock(void)
292 {
293 return local_clock();
294 }
295
296 static inline struct perf_cpu_context *
297 __get_cpu_context(struct perf_event_context *ctx)
298 {
299 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
300 }
301
302 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
303 struct perf_event_context *ctx)
304 {
305 raw_spin_lock(&cpuctx->ctx.lock);
306 if (ctx)
307 raw_spin_lock(&ctx->lock);
308 }
309
310 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
311 struct perf_event_context *ctx)
312 {
313 if (ctx)
314 raw_spin_unlock(&ctx->lock);
315 raw_spin_unlock(&cpuctx->ctx.lock);
316 }
317
318 #ifdef CONFIG_CGROUP_PERF
319
320 /*
321 * perf_cgroup_info keeps track of time_enabled for a cgroup.
322 * This is a per-cpu dynamically allocated data structure.
323 */
324 struct perf_cgroup_info {
325 u64 time;
326 u64 timestamp;
327 };
328
329 struct perf_cgroup {
330 struct cgroup_subsys_state css;
331 struct perf_cgroup_info __percpu *info;
332 };
333
334 /*
335 * Must ensure cgroup is pinned (css_get) before calling
336 * this function. In other words, we cannot call this function
337 * if there is no cgroup event for the current CPU context.
338 */
339 static inline struct perf_cgroup *
340 perf_cgroup_from_task(struct task_struct *task)
341 {
342 return container_of(task_subsys_state(task, perf_subsys_id),
343 struct perf_cgroup, css);
344 }
345
346 static inline bool
347 perf_cgroup_match(struct perf_event *event)
348 {
349 struct perf_event_context *ctx = event->ctx;
350 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
351
352 /* @event doesn't care about cgroup */
353 if (!event->cgrp)
354 return true;
355
356 /* wants specific cgroup scope but @cpuctx isn't associated with any */
357 if (!cpuctx->cgrp)
358 return false;
359
360 /*
361 * Cgroup scoping is recursive. An event enabled for a cgroup is
362 * also enabled for all its descendant cgroups. If @cpuctx's
363 * cgroup is a descendant of @event's (the test covers identity
364 * case), it's a match.
365 */
366 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
367 event->cgrp->css.cgroup);
368 }
369
370 static inline bool perf_tryget_cgroup(struct perf_event *event)
371 {
372 return css_tryget(&event->cgrp->css);
373 }
374
375 static inline void perf_put_cgroup(struct perf_event *event)
376 {
377 css_put(&event->cgrp->css);
378 }
379
380 static inline void perf_detach_cgroup(struct perf_event *event)
381 {
382 perf_put_cgroup(event);
383 event->cgrp = NULL;
384 }
385
386 static inline int is_cgroup_event(struct perf_event *event)
387 {
388 return event->cgrp != NULL;
389 }
390
391 static inline u64 perf_cgroup_event_time(struct perf_event *event)
392 {
393 struct perf_cgroup_info *t;
394
395 t = per_cpu_ptr(event->cgrp->info, event->cpu);
396 return t->time;
397 }
398
399 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
400 {
401 struct perf_cgroup_info *info;
402 u64 now;
403
404 now = perf_clock();
405
406 info = this_cpu_ptr(cgrp->info);
407
408 info->time += now - info->timestamp;
409 info->timestamp = now;
410 }
411
412 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
413 {
414 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
415 if (cgrp_out)
416 __update_cgrp_time(cgrp_out);
417 }
418
419 static inline void update_cgrp_time_from_event(struct perf_event *event)
420 {
421 struct perf_cgroup *cgrp;
422
423 /*
424 * ensure we access cgroup data only when needed and
425 * when we know the cgroup is pinned (css_get)
426 */
427 if (!is_cgroup_event(event))
428 return;
429
430 cgrp = perf_cgroup_from_task(current);
431 /*
432 * Do not update time when cgroup is not active
433 */
434 if (cgrp == event->cgrp)
435 __update_cgrp_time(event->cgrp);
436 }
437
438 static inline void
439 perf_cgroup_set_timestamp(struct task_struct *task,
440 struct perf_event_context *ctx)
441 {
442 struct perf_cgroup *cgrp;
443 struct perf_cgroup_info *info;
444
445 /*
446 * ctx->lock held by caller
447 * ensure we do not access cgroup data
448 * unless we have the cgroup pinned (css_get)
449 */
450 if (!task || !ctx->nr_cgroups)
451 return;
452
453 cgrp = perf_cgroup_from_task(task);
454 info = this_cpu_ptr(cgrp->info);
455 info->timestamp = ctx->timestamp;
456 }
457
458 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
459 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
460
461 /*
462 * reschedule events based on the cgroup constraint of task.
463 *
464 * mode SWOUT : schedule out everything
465 * mode SWIN : schedule in based on cgroup for next
466 */
467 void perf_cgroup_switch(struct task_struct *task, int mode)
468 {
469 struct perf_cpu_context *cpuctx;
470 struct pmu *pmu;
471 unsigned long flags;
472
473 /*
474 * disable interrupts to avoid geting nr_cgroup
475 * changes via __perf_event_disable(). Also
476 * avoids preemption.
477 */
478 local_irq_save(flags);
479
480 /*
481 * we reschedule only in the presence of cgroup
482 * constrained events.
483 */
484 rcu_read_lock();
485
486 list_for_each_entry_rcu(pmu, &pmus, entry) {
487 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
488 if (cpuctx->unique_pmu != pmu)
489 continue; /* ensure we process each cpuctx once */
490
491 /*
492 * perf_cgroup_events says at least one
493 * context on this CPU has cgroup events.
494 *
495 * ctx->nr_cgroups reports the number of cgroup
496 * events for a context.
497 */
498 if (cpuctx->ctx.nr_cgroups > 0) {
499 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
500 perf_pmu_disable(cpuctx->ctx.pmu);
501
502 if (mode & PERF_CGROUP_SWOUT) {
503 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
504 /*
505 * must not be done before ctxswout due
506 * to event_filter_match() in event_sched_out()
507 */
508 cpuctx->cgrp = NULL;
509 }
510
511 if (mode & PERF_CGROUP_SWIN) {
512 WARN_ON_ONCE(cpuctx->cgrp);
513 /*
514 * set cgrp before ctxsw in to allow
515 * event_filter_match() to not have to pass
516 * task around
517 */
518 cpuctx->cgrp = perf_cgroup_from_task(task);
519 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
520 }
521 perf_pmu_enable(cpuctx->ctx.pmu);
522 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
523 }
524 }
525
526 rcu_read_unlock();
527
528 local_irq_restore(flags);
529 }
530
531 static inline void perf_cgroup_sched_out(struct task_struct *task,
532 struct task_struct *next)
533 {
534 struct perf_cgroup *cgrp1;
535 struct perf_cgroup *cgrp2 = NULL;
536
537 /*
538 * we come here when we know perf_cgroup_events > 0
539 */
540 cgrp1 = perf_cgroup_from_task(task);
541
542 /*
543 * next is NULL when called from perf_event_enable_on_exec()
544 * that will systematically cause a cgroup_switch()
545 */
546 if (next)
547 cgrp2 = perf_cgroup_from_task(next);
548
549 /*
550 * only schedule out current cgroup events if we know
551 * that we are switching to a different cgroup. Otherwise,
552 * do no touch the cgroup events.
553 */
554 if (cgrp1 != cgrp2)
555 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
556 }
557
558 static inline void perf_cgroup_sched_in(struct task_struct *prev,
559 struct task_struct *task)
560 {
561 struct perf_cgroup *cgrp1;
562 struct perf_cgroup *cgrp2 = NULL;
563
564 /*
565 * we come here when we know perf_cgroup_events > 0
566 */
567 cgrp1 = perf_cgroup_from_task(task);
568
569 /* prev can never be NULL */
570 cgrp2 = perf_cgroup_from_task(prev);
571
572 /*
573 * only need to schedule in cgroup events if we are changing
574 * cgroup during ctxsw. Cgroup events were not scheduled
575 * out of ctxsw out if that was not the case.
576 */
577 if (cgrp1 != cgrp2)
578 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
579 }
580
581 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
582 struct perf_event_attr *attr,
583 struct perf_event *group_leader)
584 {
585 struct perf_cgroup *cgrp;
586 struct cgroup_subsys_state *css;
587 struct fd f = fdget(fd);
588 int ret = 0;
589
590 if (!f.file)
591 return -EBADF;
592
593 css = cgroup_css_from_dir(f.file, perf_subsys_id);
594 if (IS_ERR(css)) {
595 ret = PTR_ERR(css);
596 goto out;
597 }
598
599 cgrp = container_of(css, struct perf_cgroup, css);
600 event->cgrp = cgrp;
601
602 /* must be done before we fput() the file */
603 if (!perf_tryget_cgroup(event)) {
604 event->cgrp = NULL;
605 ret = -ENOENT;
606 goto out;
607 }
608
609 /*
610 * all events in a group must monitor
611 * the same cgroup because a task belongs
612 * to only one perf cgroup at a time
613 */
614 if (group_leader && group_leader->cgrp != cgrp) {
615 perf_detach_cgroup(event);
616 ret = -EINVAL;
617 }
618 out:
619 fdput(f);
620 return ret;
621 }
622
623 static inline void
624 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
625 {
626 struct perf_cgroup_info *t;
627 t = per_cpu_ptr(event->cgrp->info, event->cpu);
628 event->shadow_ctx_time = now - t->timestamp;
629 }
630
631 static inline void
632 perf_cgroup_defer_enabled(struct perf_event *event)
633 {
634 /*
635 * when the current task's perf cgroup does not match
636 * the event's, we need to remember to call the
637 * perf_mark_enable() function the first time a task with
638 * a matching perf cgroup is scheduled in.
639 */
640 if (is_cgroup_event(event) && !perf_cgroup_match(event))
641 event->cgrp_defer_enabled = 1;
642 }
643
644 static inline void
645 perf_cgroup_mark_enabled(struct perf_event *event,
646 struct perf_event_context *ctx)
647 {
648 struct perf_event *sub;
649 u64 tstamp = perf_event_time(event);
650
651 if (!event->cgrp_defer_enabled)
652 return;
653
654 event->cgrp_defer_enabled = 0;
655
656 event->tstamp_enabled = tstamp - event->total_time_enabled;
657 list_for_each_entry(sub, &event->sibling_list, group_entry) {
658 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
659 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
660 sub->cgrp_defer_enabled = 0;
661 }
662 }
663 }
664 #else /* !CONFIG_CGROUP_PERF */
665
666 static inline bool
667 perf_cgroup_match(struct perf_event *event)
668 {
669 return true;
670 }
671
672 static inline void perf_detach_cgroup(struct perf_event *event)
673 {}
674
675 static inline int is_cgroup_event(struct perf_event *event)
676 {
677 return 0;
678 }
679
680 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
681 {
682 return 0;
683 }
684
685 static inline void update_cgrp_time_from_event(struct perf_event *event)
686 {
687 }
688
689 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
690 {
691 }
692
693 static inline void perf_cgroup_sched_out(struct task_struct *task,
694 struct task_struct *next)
695 {
696 }
697
698 static inline void perf_cgroup_sched_in(struct task_struct *prev,
699 struct task_struct *task)
700 {
701 }
702
703 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
704 struct perf_event_attr *attr,
705 struct perf_event *group_leader)
706 {
707 return -EINVAL;
708 }
709
710 static inline void
711 perf_cgroup_set_timestamp(struct task_struct *task,
712 struct perf_event_context *ctx)
713 {
714 }
715
716 void
717 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
718 {
719 }
720
721 static inline void
722 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
723 {
724 }
725
726 static inline u64 perf_cgroup_event_time(struct perf_event *event)
727 {
728 return 0;
729 }
730
731 static inline void
732 perf_cgroup_defer_enabled(struct perf_event *event)
733 {
734 }
735
736 static inline void
737 perf_cgroup_mark_enabled(struct perf_event *event,
738 struct perf_event_context *ctx)
739 {
740 }
741 #endif
742
743 void perf_pmu_disable(struct pmu *pmu)
744 {
745 int *count = this_cpu_ptr(pmu->pmu_disable_count);
746 if (!(*count)++)
747 pmu->pmu_disable(pmu);
748 }
749
750 void perf_pmu_enable(struct pmu *pmu)
751 {
752 int *count = this_cpu_ptr(pmu->pmu_disable_count);
753 if (!--(*count))
754 pmu->pmu_enable(pmu);
755 }
756
757 static DEFINE_PER_CPU(struct list_head, rotation_list);
758
759 /*
760 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
761 * because they're strictly cpu affine and rotate_start is called with IRQs
762 * disabled, while rotate_context is called from IRQ context.
763 */
764 static void perf_pmu_rotate_start(struct pmu *pmu)
765 {
766 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
767 struct list_head *head = &__get_cpu_var(rotation_list);
768
769 WARN_ON(!irqs_disabled());
770
771 if (list_empty(&cpuctx->rotation_list)) {
772 int was_empty = list_empty(head);
773 list_add(&cpuctx->rotation_list, head);
774 if (was_empty)
775 tick_nohz_full_kick();
776 }
777 }
778
779 static void get_ctx(struct perf_event_context *ctx)
780 {
781 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
782 }
783
784 static void put_ctx(struct perf_event_context *ctx)
785 {
786 if (atomic_dec_and_test(&ctx->refcount)) {
787 if (ctx->parent_ctx)
788 put_ctx(ctx->parent_ctx);
789 if (ctx->task)
790 put_task_struct(ctx->task);
791 kfree_rcu(ctx, rcu_head);
792 }
793 }
794
795 static void unclone_ctx(struct perf_event_context *ctx)
796 {
797 if (ctx->parent_ctx) {
798 put_ctx(ctx->parent_ctx);
799 ctx->parent_ctx = NULL;
800 }
801 }
802
803 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
804 {
805 /*
806 * only top level events have the pid namespace they were created in
807 */
808 if (event->parent)
809 event = event->parent;
810
811 return task_tgid_nr_ns(p, event->ns);
812 }
813
814 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
815 {
816 /*
817 * only top level events have the pid namespace they were created in
818 */
819 if (event->parent)
820 event = event->parent;
821
822 return task_pid_nr_ns(p, event->ns);
823 }
824
825 /*
826 * If we inherit events we want to return the parent event id
827 * to userspace.
828 */
829 static u64 primary_event_id(struct perf_event *event)
830 {
831 u64 id = event->id;
832
833 if (event->parent)
834 id = event->parent->id;
835
836 return id;
837 }
838
839 /*
840 * Get the perf_event_context for a task and lock it.
841 * This has to cope with with the fact that until it is locked,
842 * the context could get moved to another task.
843 */
844 static struct perf_event_context *
845 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
846 {
847 struct perf_event_context *ctx;
848
849 retry:
850 /*
851 * One of the few rules of preemptible RCU is that one cannot do
852 * rcu_read_unlock() while holding a scheduler (or nested) lock when
853 * part of the read side critical section was preemptible -- see
854 * rcu_read_unlock_special().
855 *
856 * Since ctx->lock nests under rq->lock we must ensure the entire read
857 * side critical section is non-preemptible.
858 */
859 preempt_disable();
860 rcu_read_lock();
861 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
862 if (ctx) {
863 /*
864 * If this context is a clone of another, it might
865 * get swapped for another underneath us by
866 * perf_event_task_sched_out, though the
867 * rcu_read_lock() protects us from any context
868 * getting freed. Lock the context and check if it
869 * got swapped before we could get the lock, and retry
870 * if so. If we locked the right context, then it
871 * can't get swapped on us any more.
872 */
873 raw_spin_lock_irqsave(&ctx->lock, *flags);
874 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
875 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
876 rcu_read_unlock();
877 preempt_enable();
878 goto retry;
879 }
880
881 if (!atomic_inc_not_zero(&ctx->refcount)) {
882 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
883 ctx = NULL;
884 }
885 }
886 rcu_read_unlock();
887 preempt_enable();
888 return ctx;
889 }
890
891 /*
892 * Get the context for a task and increment its pin_count so it
893 * can't get swapped to another task. This also increments its
894 * reference count so that the context can't get freed.
895 */
896 static struct perf_event_context *
897 perf_pin_task_context(struct task_struct *task, int ctxn)
898 {
899 struct perf_event_context *ctx;
900 unsigned long flags;
901
902 ctx = perf_lock_task_context(task, ctxn, &flags);
903 if (ctx) {
904 ++ctx->pin_count;
905 raw_spin_unlock_irqrestore(&ctx->lock, flags);
906 }
907 return ctx;
908 }
909
910 static void perf_unpin_context(struct perf_event_context *ctx)
911 {
912 unsigned long flags;
913
914 raw_spin_lock_irqsave(&ctx->lock, flags);
915 --ctx->pin_count;
916 raw_spin_unlock_irqrestore(&ctx->lock, flags);
917 }
918
919 /*
920 * Update the record of the current time in a context.
921 */
922 static void update_context_time(struct perf_event_context *ctx)
923 {
924 u64 now = perf_clock();
925
926 ctx->time += now - ctx->timestamp;
927 ctx->timestamp = now;
928 }
929
930 static u64 perf_event_time(struct perf_event *event)
931 {
932 struct perf_event_context *ctx = event->ctx;
933
934 if (is_cgroup_event(event))
935 return perf_cgroup_event_time(event);
936
937 return ctx ? ctx->time : 0;
938 }
939
940 /*
941 * Update the total_time_enabled and total_time_running fields for a event.
942 * The caller of this function needs to hold the ctx->lock.
943 */
944 static void update_event_times(struct perf_event *event)
945 {
946 struct perf_event_context *ctx = event->ctx;
947 u64 run_end;
948
949 if (event->state < PERF_EVENT_STATE_INACTIVE ||
950 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
951 return;
952 /*
953 * in cgroup mode, time_enabled represents
954 * the time the event was enabled AND active
955 * tasks were in the monitored cgroup. This is
956 * independent of the activity of the context as
957 * there may be a mix of cgroup and non-cgroup events.
958 *
959 * That is why we treat cgroup events differently
960 * here.
961 */
962 if (is_cgroup_event(event))
963 run_end = perf_cgroup_event_time(event);
964 else if (ctx->is_active)
965 run_end = ctx->time;
966 else
967 run_end = event->tstamp_stopped;
968
969 event->total_time_enabled = run_end - event->tstamp_enabled;
970
971 if (event->state == PERF_EVENT_STATE_INACTIVE)
972 run_end = event->tstamp_stopped;
973 else
974 run_end = perf_event_time(event);
975
976 event->total_time_running = run_end - event->tstamp_running;
977
978 }
979
980 /*
981 * Update total_time_enabled and total_time_running for all events in a group.
982 */
983 static void update_group_times(struct perf_event *leader)
984 {
985 struct perf_event *event;
986
987 update_event_times(leader);
988 list_for_each_entry(event, &leader->sibling_list, group_entry)
989 update_event_times(event);
990 }
991
992 static struct list_head *
993 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
994 {
995 if (event->attr.pinned)
996 return &ctx->pinned_groups;
997 else
998 return &ctx->flexible_groups;
999 }
1000
1001 /*
1002 * Add a event from the lists for its context.
1003 * Must be called with ctx->mutex and ctx->lock held.
1004 */
1005 static void
1006 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1007 {
1008 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1009 event->attach_state |= PERF_ATTACH_CONTEXT;
1010
1011 /*
1012 * If we're a stand alone event or group leader, we go to the context
1013 * list, group events are kept attached to the group so that
1014 * perf_group_detach can, at all times, locate all siblings.
1015 */
1016 if (event->group_leader == event) {
1017 struct list_head *list;
1018
1019 if (is_software_event(event))
1020 event->group_flags |= PERF_GROUP_SOFTWARE;
1021
1022 list = ctx_group_list(event, ctx);
1023 list_add_tail(&event->group_entry, list);
1024 }
1025
1026 if (is_cgroup_event(event))
1027 ctx->nr_cgroups++;
1028
1029 if (has_branch_stack(event))
1030 ctx->nr_branch_stack++;
1031
1032 list_add_rcu(&event->event_entry, &ctx->event_list);
1033 if (!ctx->nr_events)
1034 perf_pmu_rotate_start(ctx->pmu);
1035 ctx->nr_events++;
1036 if (event->attr.inherit_stat)
1037 ctx->nr_stat++;
1038 }
1039
1040 /*
1041 * Initialize event state based on the perf_event_attr::disabled.
1042 */
1043 static inline void perf_event__state_init(struct perf_event *event)
1044 {
1045 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1046 PERF_EVENT_STATE_INACTIVE;
1047 }
1048
1049 /*
1050 * Called at perf_event creation and when events are attached/detached from a
1051 * group.
1052 */
1053 static void perf_event__read_size(struct perf_event *event)
1054 {
1055 int entry = sizeof(u64); /* value */
1056 int size = 0;
1057 int nr = 1;
1058
1059 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1060 size += sizeof(u64);
1061
1062 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1063 size += sizeof(u64);
1064
1065 if (event->attr.read_format & PERF_FORMAT_ID)
1066 entry += sizeof(u64);
1067
1068 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1069 nr += event->group_leader->nr_siblings;
1070 size += sizeof(u64);
1071 }
1072
1073 size += entry * nr;
1074 event->read_size = size;
1075 }
1076
1077 static void perf_event__header_size(struct perf_event *event)
1078 {
1079 struct perf_sample_data *data;
1080 u64 sample_type = event->attr.sample_type;
1081 u16 size = 0;
1082
1083 perf_event__read_size(event);
1084
1085 if (sample_type & PERF_SAMPLE_IP)
1086 size += sizeof(data->ip);
1087
1088 if (sample_type & PERF_SAMPLE_ADDR)
1089 size += sizeof(data->addr);
1090
1091 if (sample_type & PERF_SAMPLE_PERIOD)
1092 size += sizeof(data->period);
1093
1094 if (sample_type & PERF_SAMPLE_WEIGHT)
1095 size += sizeof(data->weight);
1096
1097 if (sample_type & PERF_SAMPLE_READ)
1098 size += event->read_size;
1099
1100 if (sample_type & PERF_SAMPLE_DATA_SRC)
1101 size += sizeof(data->data_src.val);
1102
1103 event->header_size = size;
1104 }
1105
1106 static void perf_event__id_header_size(struct perf_event *event)
1107 {
1108 struct perf_sample_data *data;
1109 u64 sample_type = event->attr.sample_type;
1110 u16 size = 0;
1111
1112 if (sample_type & PERF_SAMPLE_TID)
1113 size += sizeof(data->tid_entry);
1114
1115 if (sample_type & PERF_SAMPLE_TIME)
1116 size += sizeof(data->time);
1117
1118 if (sample_type & PERF_SAMPLE_ID)
1119 size += sizeof(data->id);
1120
1121 if (sample_type & PERF_SAMPLE_STREAM_ID)
1122 size += sizeof(data->stream_id);
1123
1124 if (sample_type & PERF_SAMPLE_CPU)
1125 size += sizeof(data->cpu_entry);
1126
1127 event->id_header_size = size;
1128 }
1129
1130 static void perf_group_attach(struct perf_event *event)
1131 {
1132 struct perf_event *group_leader = event->group_leader, *pos;
1133
1134 /*
1135 * We can have double attach due to group movement in perf_event_open.
1136 */
1137 if (event->attach_state & PERF_ATTACH_GROUP)
1138 return;
1139
1140 event->attach_state |= PERF_ATTACH_GROUP;
1141
1142 if (group_leader == event)
1143 return;
1144
1145 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1146 !is_software_event(event))
1147 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1148
1149 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1150 group_leader->nr_siblings++;
1151
1152 perf_event__header_size(group_leader);
1153
1154 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1155 perf_event__header_size(pos);
1156 }
1157
1158 /*
1159 * Remove a event from the lists for its context.
1160 * Must be called with ctx->mutex and ctx->lock held.
1161 */
1162 static void
1163 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1164 {
1165 struct perf_cpu_context *cpuctx;
1166 /*
1167 * We can have double detach due to exit/hot-unplug + close.
1168 */
1169 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1170 return;
1171
1172 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1173
1174 if (is_cgroup_event(event)) {
1175 ctx->nr_cgroups--;
1176 cpuctx = __get_cpu_context(ctx);
1177 /*
1178 * if there are no more cgroup events
1179 * then cler cgrp to avoid stale pointer
1180 * in update_cgrp_time_from_cpuctx()
1181 */
1182 if (!ctx->nr_cgroups)
1183 cpuctx->cgrp = NULL;
1184 }
1185
1186 if (has_branch_stack(event))
1187 ctx->nr_branch_stack--;
1188
1189 ctx->nr_events--;
1190 if (event->attr.inherit_stat)
1191 ctx->nr_stat--;
1192
1193 list_del_rcu(&event->event_entry);
1194
1195 if (event->group_leader == event)
1196 list_del_init(&event->group_entry);
1197
1198 update_group_times(event);
1199
1200 /*
1201 * If event was in error state, then keep it
1202 * that way, otherwise bogus counts will be
1203 * returned on read(). The only way to get out
1204 * of error state is by explicit re-enabling
1205 * of the event
1206 */
1207 if (event->state > PERF_EVENT_STATE_OFF)
1208 event->state = PERF_EVENT_STATE_OFF;
1209 }
1210
1211 static void perf_group_detach(struct perf_event *event)
1212 {
1213 struct perf_event *sibling, *tmp;
1214 struct list_head *list = NULL;
1215
1216 /*
1217 * We can have double detach due to exit/hot-unplug + close.
1218 */
1219 if (!(event->attach_state & PERF_ATTACH_GROUP))
1220 return;
1221
1222 event->attach_state &= ~PERF_ATTACH_GROUP;
1223
1224 /*
1225 * If this is a sibling, remove it from its group.
1226 */
1227 if (event->group_leader != event) {
1228 list_del_init(&event->group_entry);
1229 event->group_leader->nr_siblings--;
1230 goto out;
1231 }
1232
1233 if (!list_empty(&event->group_entry))
1234 list = &event->group_entry;
1235
1236 /*
1237 * If this was a group event with sibling events then
1238 * upgrade the siblings to singleton events by adding them
1239 * to whatever list we are on.
1240 * If this isn't on a list, make sure we still remove the sibling's
1241 * group_entry from this sibling_list; otherwise, when that sibling
1242 * is later deallocated, it will try to remove itself from this
1243 * sibling_list, which may well have been deallocated already,
1244 * resulting in a use-after-free.
1245 */
1246 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1247 if (list)
1248 list_move_tail(&sibling->group_entry, list);
1249 else
1250 list_del_init(&sibling->group_entry);
1251 sibling->group_leader = sibling;
1252
1253 /* Inherit group flags from the previous leader */
1254 sibling->group_flags = event->group_flags;
1255 }
1256
1257 out:
1258 perf_event__header_size(event->group_leader);
1259
1260 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1261 perf_event__header_size(tmp);
1262 }
1263
1264 static inline int
1265 event_filter_match(struct perf_event *event)
1266 {
1267 return (event->cpu == -1 || event->cpu == smp_processor_id())
1268 && perf_cgroup_match(event);
1269 }
1270
1271 static void
1272 event_sched_out(struct perf_event *event,
1273 struct perf_cpu_context *cpuctx,
1274 struct perf_event_context *ctx)
1275 {
1276 u64 tstamp = perf_event_time(event);
1277 u64 delta;
1278 /*
1279 * An event which could not be activated because of
1280 * filter mismatch still needs to have its timings
1281 * maintained, otherwise bogus information is return
1282 * via read() for time_enabled, time_running:
1283 */
1284 if (event->state == PERF_EVENT_STATE_INACTIVE
1285 && !event_filter_match(event)) {
1286 delta = tstamp - event->tstamp_stopped;
1287 event->tstamp_running += delta;
1288 event->tstamp_stopped = tstamp;
1289 }
1290
1291 if (event->state != PERF_EVENT_STATE_ACTIVE)
1292 return;
1293
1294 event->state = PERF_EVENT_STATE_INACTIVE;
1295 if (event->pending_disable) {
1296 event->pending_disable = 0;
1297 event->state = PERF_EVENT_STATE_OFF;
1298 }
1299 event->tstamp_stopped = tstamp;
1300 event->pmu->del(event, 0);
1301 event->oncpu = -1;
1302
1303 if (!is_software_event(event))
1304 cpuctx->active_oncpu--;
1305 ctx->nr_active--;
1306 if (event->attr.freq && event->attr.sample_freq)
1307 ctx->nr_freq--;
1308 if (event->attr.exclusive || !cpuctx->active_oncpu)
1309 cpuctx->exclusive = 0;
1310 }
1311
1312 static void
1313 group_sched_out(struct perf_event *group_event,
1314 struct perf_cpu_context *cpuctx,
1315 struct perf_event_context *ctx)
1316 {
1317 struct perf_event *event;
1318 int state = group_event->state;
1319
1320 event_sched_out(group_event, cpuctx, ctx);
1321
1322 /*
1323 * Schedule out siblings (if any):
1324 */
1325 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1326 event_sched_out(event, cpuctx, ctx);
1327
1328 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1329 cpuctx->exclusive = 0;
1330 }
1331
1332 struct remove_event {
1333 struct perf_event *event;
1334 bool detach_group;
1335 };
1336
1337 /*
1338 * Cross CPU call to remove a performance event
1339 *
1340 * We disable the event on the hardware level first. After that we
1341 * remove it from the context list.
1342 */
1343 static int __perf_remove_from_context(void *info)
1344 {
1345 struct remove_event *re = info;
1346 struct perf_event *event = re->event;
1347 struct perf_event_context *ctx = event->ctx;
1348 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1349
1350 raw_spin_lock(&ctx->lock);
1351 event_sched_out(event, cpuctx, ctx);
1352 if (re->detach_group)
1353 perf_group_detach(event);
1354 list_del_event(event, ctx);
1355 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1356 ctx->is_active = 0;
1357 cpuctx->task_ctx = NULL;
1358 }
1359 raw_spin_unlock(&ctx->lock);
1360
1361 return 0;
1362 }
1363
1364
1365 /*
1366 * Remove the event from a task's (or a CPU's) list of events.
1367 *
1368 * CPU events are removed with a smp call. For task events we only
1369 * call when the task is on a CPU.
1370 *
1371 * If event->ctx is a cloned context, callers must make sure that
1372 * every task struct that event->ctx->task could possibly point to
1373 * remains valid. This is OK when called from perf_release since
1374 * that only calls us on the top-level context, which can't be a clone.
1375 * When called from perf_event_exit_task, it's OK because the
1376 * context has been detached from its task.
1377 */
1378 static void perf_remove_from_context(struct perf_event *event, bool detach_group)
1379 {
1380 struct perf_event_context *ctx = event->ctx;
1381 struct task_struct *task = ctx->task;
1382 struct remove_event re = {
1383 .event = event,
1384 .detach_group = detach_group,
1385 };
1386
1387 lockdep_assert_held(&ctx->mutex);
1388
1389 if (!task) {
1390 /*
1391 * Per cpu events are removed via an smp call and
1392 * the removal is always successful.
1393 */
1394 cpu_function_call(event->cpu, __perf_remove_from_context, &re);
1395 return;
1396 }
1397
1398 retry:
1399 if (!task_function_call(task, __perf_remove_from_context, &re))
1400 return;
1401
1402 raw_spin_lock_irq(&ctx->lock);
1403 /*
1404 * If we failed to find a running task, but find the context active now
1405 * that we've acquired the ctx->lock, retry.
1406 */
1407 if (ctx->is_active) {
1408 raw_spin_unlock_irq(&ctx->lock);
1409 /*
1410 * Reload the task pointer, it might have been changed by
1411 * a concurrent perf_event_context_sched_out().
1412 */
1413 task = ctx->task;
1414 goto retry;
1415 }
1416
1417 /*
1418 * Since the task isn't running, its safe to remove the event, us
1419 * holding the ctx->lock ensures the task won't get scheduled in.
1420 */
1421 if (detach_group)
1422 perf_group_detach(event);
1423 list_del_event(event, ctx);
1424 raw_spin_unlock_irq(&ctx->lock);
1425 }
1426
1427 /*
1428 * Cross CPU call to disable a performance event
1429 */
1430 int __perf_event_disable(void *info)
1431 {
1432 struct perf_event *event = info;
1433 struct perf_event_context *ctx = event->ctx;
1434 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1435
1436 /*
1437 * If this is a per-task event, need to check whether this
1438 * event's task is the current task on this cpu.
1439 *
1440 * Can trigger due to concurrent perf_event_context_sched_out()
1441 * flipping contexts around.
1442 */
1443 if (ctx->task && cpuctx->task_ctx != ctx)
1444 return -EINVAL;
1445
1446 raw_spin_lock(&ctx->lock);
1447
1448 /*
1449 * If the event is on, turn it off.
1450 * If it is in error state, leave it in error state.
1451 */
1452 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1453 update_context_time(ctx);
1454 update_cgrp_time_from_event(event);
1455 update_group_times(event);
1456 if (event == event->group_leader)
1457 group_sched_out(event, cpuctx, ctx);
1458 else
1459 event_sched_out(event, cpuctx, ctx);
1460 event->state = PERF_EVENT_STATE_OFF;
1461 }
1462
1463 raw_spin_unlock(&ctx->lock);
1464
1465 return 0;
1466 }
1467
1468 /*
1469 * Disable a event.
1470 *
1471 * If event->ctx is a cloned context, callers must make sure that
1472 * every task struct that event->ctx->task could possibly point to
1473 * remains valid. This condition is satisifed when called through
1474 * perf_event_for_each_child or perf_event_for_each because they
1475 * hold the top-level event's child_mutex, so any descendant that
1476 * goes to exit will block in sync_child_event.
1477 * When called from perf_pending_event it's OK because event->ctx
1478 * is the current context on this CPU and preemption is disabled,
1479 * hence we can't get into perf_event_task_sched_out for this context.
1480 */
1481 void perf_event_disable(struct perf_event *event)
1482 {
1483 struct perf_event_context *ctx = event->ctx;
1484 struct task_struct *task = ctx->task;
1485
1486 if (!task) {
1487 /*
1488 * Disable the event on the cpu that it's on
1489 */
1490 cpu_function_call(event->cpu, __perf_event_disable, event);
1491 return;
1492 }
1493
1494 retry:
1495 if (!task_function_call(task, __perf_event_disable, event))
1496 return;
1497
1498 raw_spin_lock_irq(&ctx->lock);
1499 /*
1500 * If the event is still active, we need to retry the cross-call.
1501 */
1502 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1503 raw_spin_unlock_irq(&ctx->lock);
1504 /*
1505 * Reload the task pointer, it might have been changed by
1506 * a concurrent perf_event_context_sched_out().
1507 */
1508 task = ctx->task;
1509 goto retry;
1510 }
1511
1512 /*
1513 * Since we have the lock this context can't be scheduled
1514 * in, so we can change the state safely.
1515 */
1516 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1517 update_group_times(event);
1518 event->state = PERF_EVENT_STATE_OFF;
1519 }
1520 raw_spin_unlock_irq(&ctx->lock);
1521 }
1522 EXPORT_SYMBOL_GPL(perf_event_disable);
1523
1524 static void perf_set_shadow_time(struct perf_event *event,
1525 struct perf_event_context *ctx,
1526 u64 tstamp)
1527 {
1528 /*
1529 * use the correct time source for the time snapshot
1530 *
1531 * We could get by without this by leveraging the
1532 * fact that to get to this function, the caller
1533 * has most likely already called update_context_time()
1534 * and update_cgrp_time_xx() and thus both timestamp
1535 * are identical (or very close). Given that tstamp is,
1536 * already adjusted for cgroup, we could say that:
1537 * tstamp - ctx->timestamp
1538 * is equivalent to
1539 * tstamp - cgrp->timestamp.
1540 *
1541 * Then, in perf_output_read(), the calculation would
1542 * work with no changes because:
1543 * - event is guaranteed scheduled in
1544 * - no scheduled out in between
1545 * - thus the timestamp would be the same
1546 *
1547 * But this is a bit hairy.
1548 *
1549 * So instead, we have an explicit cgroup call to remain
1550 * within the time time source all along. We believe it
1551 * is cleaner and simpler to understand.
1552 */
1553 if (is_cgroup_event(event))
1554 perf_cgroup_set_shadow_time(event, tstamp);
1555 else
1556 event->shadow_ctx_time = tstamp - ctx->timestamp;
1557 }
1558
1559 #define MAX_INTERRUPTS (~0ULL)
1560
1561 static void perf_log_throttle(struct perf_event *event, int enable);
1562
1563 static int
1564 event_sched_in(struct perf_event *event,
1565 struct perf_cpu_context *cpuctx,
1566 struct perf_event_context *ctx)
1567 {
1568 u64 tstamp = perf_event_time(event);
1569
1570 if (event->state <= PERF_EVENT_STATE_OFF)
1571 return 0;
1572
1573 event->state = PERF_EVENT_STATE_ACTIVE;
1574 event->oncpu = smp_processor_id();
1575
1576 /*
1577 * Unthrottle events, since we scheduled we might have missed several
1578 * ticks already, also for a heavily scheduling task there is little
1579 * guarantee it'll get a tick in a timely manner.
1580 */
1581 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1582 perf_log_throttle(event, 1);
1583 event->hw.interrupts = 0;
1584 }
1585
1586 /*
1587 * The new state must be visible before we turn it on in the hardware:
1588 */
1589 smp_wmb();
1590
1591 if (event->pmu->add(event, PERF_EF_START)) {
1592 event->state = PERF_EVENT_STATE_INACTIVE;
1593 event->oncpu = -1;
1594 return -EAGAIN;
1595 }
1596
1597 event->tstamp_running += tstamp - event->tstamp_stopped;
1598
1599 perf_set_shadow_time(event, ctx, tstamp);
1600
1601 if (!is_software_event(event))
1602 cpuctx->active_oncpu++;
1603 ctx->nr_active++;
1604 if (event->attr.freq && event->attr.sample_freq)
1605 ctx->nr_freq++;
1606
1607 if (event->attr.exclusive)
1608 cpuctx->exclusive = 1;
1609
1610 return 0;
1611 }
1612
1613 static int
1614 group_sched_in(struct perf_event *group_event,
1615 struct perf_cpu_context *cpuctx,
1616 struct perf_event_context *ctx)
1617 {
1618 struct perf_event *event, *partial_group = NULL;
1619 struct pmu *pmu = group_event->pmu;
1620 u64 now = ctx->time;
1621 bool simulate = false;
1622
1623 if (group_event->state == PERF_EVENT_STATE_OFF)
1624 return 0;
1625
1626 pmu->start_txn(pmu);
1627
1628 if (event_sched_in(group_event, cpuctx, ctx)) {
1629 pmu->cancel_txn(pmu);
1630 return -EAGAIN;
1631 }
1632
1633 /*
1634 * Schedule in siblings as one group (if any):
1635 */
1636 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1637 if (event_sched_in(event, cpuctx, ctx)) {
1638 partial_group = event;
1639 goto group_error;
1640 }
1641 }
1642
1643 if (!pmu->commit_txn(pmu))
1644 return 0;
1645
1646 group_error:
1647 /*
1648 * Groups can be scheduled in as one unit only, so undo any
1649 * partial group before returning:
1650 * The events up to the failed event are scheduled out normally,
1651 * tstamp_stopped will be updated.
1652 *
1653 * The failed events and the remaining siblings need to have
1654 * their timings updated as if they had gone thru event_sched_in()
1655 * and event_sched_out(). This is required to get consistent timings
1656 * across the group. This also takes care of the case where the group
1657 * could never be scheduled by ensuring tstamp_stopped is set to mark
1658 * the time the event was actually stopped, such that time delta
1659 * calculation in update_event_times() is correct.
1660 */
1661 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1662 if (event == partial_group)
1663 simulate = true;
1664
1665 if (simulate) {
1666 event->tstamp_running += now - event->tstamp_stopped;
1667 event->tstamp_stopped = now;
1668 } else {
1669 event_sched_out(event, cpuctx, ctx);
1670 }
1671 }
1672 event_sched_out(group_event, cpuctx, ctx);
1673
1674 pmu->cancel_txn(pmu);
1675
1676 return -EAGAIN;
1677 }
1678
1679 /*
1680 * Work out whether we can put this event group on the CPU now.
1681 */
1682 static int group_can_go_on(struct perf_event *event,
1683 struct perf_cpu_context *cpuctx,
1684 int can_add_hw)
1685 {
1686 /*
1687 * Groups consisting entirely of software events can always go on.
1688 */
1689 if (event->group_flags & PERF_GROUP_SOFTWARE)
1690 return 1;
1691 /*
1692 * If an exclusive group is already on, no other hardware
1693 * events can go on.
1694 */
1695 if (cpuctx->exclusive)
1696 return 0;
1697 /*
1698 * If this group is exclusive and there are already
1699 * events on the CPU, it can't go on.
1700 */
1701 if (event->attr.exclusive && cpuctx->active_oncpu)
1702 return 0;
1703 /*
1704 * Otherwise, try to add it if all previous groups were able
1705 * to go on.
1706 */
1707 return can_add_hw;
1708 }
1709
1710 static void add_event_to_ctx(struct perf_event *event,
1711 struct perf_event_context *ctx)
1712 {
1713 u64 tstamp = perf_event_time(event);
1714
1715 list_add_event(event, ctx);
1716 perf_group_attach(event);
1717 event->tstamp_enabled = tstamp;
1718 event->tstamp_running = tstamp;
1719 event->tstamp_stopped = tstamp;
1720 }
1721
1722 static void task_ctx_sched_out(struct perf_event_context *ctx);
1723 static void
1724 ctx_sched_in(struct perf_event_context *ctx,
1725 struct perf_cpu_context *cpuctx,
1726 enum event_type_t event_type,
1727 struct task_struct *task);
1728
1729 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1730 struct perf_event_context *ctx,
1731 struct task_struct *task)
1732 {
1733 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1734 if (ctx)
1735 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1736 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1737 if (ctx)
1738 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1739 }
1740
1741 /*
1742 * Cross CPU call to install and enable a performance event
1743 *
1744 * Must be called with ctx->mutex held
1745 */
1746 static int __perf_install_in_context(void *info)
1747 {
1748 struct perf_event *event = info;
1749 struct perf_event_context *ctx = event->ctx;
1750 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1751 struct perf_event_context *task_ctx = cpuctx->task_ctx;
1752 struct task_struct *task = current;
1753
1754 perf_ctx_lock(cpuctx, task_ctx);
1755 perf_pmu_disable(cpuctx->ctx.pmu);
1756
1757 /*
1758 * If there was an active task_ctx schedule it out.
1759 */
1760 if (task_ctx)
1761 task_ctx_sched_out(task_ctx);
1762
1763 /*
1764 * If the context we're installing events in is not the
1765 * active task_ctx, flip them.
1766 */
1767 if (ctx->task && task_ctx != ctx) {
1768 if (task_ctx)
1769 raw_spin_unlock(&task_ctx->lock);
1770 raw_spin_lock(&ctx->lock);
1771 task_ctx = ctx;
1772 }
1773
1774 if (task_ctx) {
1775 cpuctx->task_ctx = task_ctx;
1776 task = task_ctx->task;
1777 }
1778
1779 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1780
1781 update_context_time(ctx);
1782 /*
1783 * update cgrp time only if current cgrp
1784 * matches event->cgrp. Must be done before
1785 * calling add_event_to_ctx()
1786 */
1787 update_cgrp_time_from_event(event);
1788
1789 add_event_to_ctx(event, ctx);
1790
1791 /*
1792 * Schedule everything back in
1793 */
1794 perf_event_sched_in(cpuctx, task_ctx, task);
1795
1796 perf_pmu_enable(cpuctx->ctx.pmu);
1797 perf_ctx_unlock(cpuctx, task_ctx);
1798
1799 return 0;
1800 }
1801
1802 /*
1803 * Attach a performance event to a context
1804 *
1805 * First we add the event to the list with the hardware enable bit
1806 * in event->hw_config cleared.
1807 *
1808 * If the event is attached to a task which is on a CPU we use a smp
1809 * call to enable it in the task context. The task might have been
1810 * scheduled away, but we check this in the smp call again.
1811 */
1812 static void
1813 perf_install_in_context(struct perf_event_context *ctx,
1814 struct perf_event *event,
1815 int cpu)
1816 {
1817 struct task_struct *task = ctx->task;
1818
1819 lockdep_assert_held(&ctx->mutex);
1820
1821 event->ctx = ctx;
1822 if (event->cpu != -1)
1823 event->cpu = cpu;
1824
1825 if (!task) {
1826 /*
1827 * Per cpu events are installed via an smp call and
1828 * the install is always successful.
1829 */
1830 cpu_function_call(cpu, __perf_install_in_context, event);
1831 return;
1832 }
1833
1834 retry:
1835 if (!task_function_call(task, __perf_install_in_context, event))
1836 return;
1837
1838 raw_spin_lock_irq(&ctx->lock);
1839 /*
1840 * If we failed to find a running task, but find the context active now
1841 * that we've acquired the ctx->lock, retry.
1842 */
1843 if (ctx->is_active) {
1844 raw_spin_unlock_irq(&ctx->lock);
1845 /*
1846 * Reload the task pointer, it might have been changed by
1847 * a concurrent perf_event_context_sched_out().
1848 */
1849 task = ctx->task;
1850 goto retry;
1851 }
1852
1853 /*
1854 * Since the task isn't running, its safe to add the event, us holding
1855 * the ctx->lock ensures the task won't get scheduled in.
1856 */
1857 add_event_to_ctx(event, ctx);
1858 raw_spin_unlock_irq(&ctx->lock);
1859 }
1860
1861 /*
1862 * Put a event into inactive state and update time fields.
1863 * Enabling the leader of a group effectively enables all
1864 * the group members that aren't explicitly disabled, so we
1865 * have to update their ->tstamp_enabled also.
1866 * Note: this works for group members as well as group leaders
1867 * since the non-leader members' sibling_lists will be empty.
1868 */
1869 static void __perf_event_mark_enabled(struct perf_event *event)
1870 {
1871 struct perf_event *sub;
1872 u64 tstamp = perf_event_time(event);
1873
1874 event->state = PERF_EVENT_STATE_INACTIVE;
1875 event->tstamp_enabled = tstamp - event->total_time_enabled;
1876 list_for_each_entry(sub, &event->sibling_list, group_entry) {
1877 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1878 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1879 }
1880 }
1881
1882 /*
1883 * Cross CPU call to enable a performance event
1884 */
1885 static int __perf_event_enable(void *info)
1886 {
1887 struct perf_event *event = info;
1888 struct perf_event_context *ctx = event->ctx;
1889 struct perf_event *leader = event->group_leader;
1890 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1891 int err;
1892
1893 /*
1894 * There's a time window between 'ctx->is_active' check
1895 * in perf_event_enable function and this place having:
1896 * - IRQs on
1897 * - ctx->lock unlocked
1898 *
1899 * where the task could be killed and 'ctx' deactivated
1900 * by perf_event_exit_task.
1901 */
1902 if (!ctx->is_active)
1903 return -EINVAL;
1904
1905 raw_spin_lock(&ctx->lock);
1906 update_context_time(ctx);
1907
1908 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1909 goto unlock;
1910
1911 /*
1912 * set current task's cgroup time reference point
1913 */
1914 perf_cgroup_set_timestamp(current, ctx);
1915
1916 __perf_event_mark_enabled(event);
1917
1918 if (!event_filter_match(event)) {
1919 if (is_cgroup_event(event))
1920 perf_cgroup_defer_enabled(event);
1921 goto unlock;
1922 }
1923
1924 /*
1925 * If the event is in a group and isn't the group leader,
1926 * then don't put it on unless the group is on.
1927 */
1928 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1929 goto unlock;
1930
1931 if (!group_can_go_on(event, cpuctx, 1)) {
1932 err = -EEXIST;
1933 } else {
1934 if (event == leader)
1935 err = group_sched_in(event, cpuctx, ctx);
1936 else
1937 err = event_sched_in(event, cpuctx, ctx);
1938 }
1939
1940 if (err) {
1941 /*
1942 * If this event can't go on and it's part of a
1943 * group, then the whole group has to come off.
1944 */
1945 if (leader != event)
1946 group_sched_out(leader, cpuctx, ctx);
1947 if (leader->attr.pinned) {
1948 update_group_times(leader);
1949 leader->state = PERF_EVENT_STATE_ERROR;
1950 }
1951 }
1952
1953 unlock:
1954 raw_spin_unlock(&ctx->lock);
1955
1956 return 0;
1957 }
1958
1959 /*
1960 * Enable a event.
1961 *
1962 * If event->ctx is a cloned context, callers must make sure that
1963 * every task struct that event->ctx->task could possibly point to
1964 * remains valid. This condition is satisfied when called through
1965 * perf_event_for_each_child or perf_event_for_each as described
1966 * for perf_event_disable.
1967 */
1968 void perf_event_enable(struct perf_event *event)
1969 {
1970 struct perf_event_context *ctx = event->ctx;
1971 struct task_struct *task = ctx->task;
1972
1973 if (!task) {
1974 /*
1975 * Enable the event on the cpu that it's on
1976 */
1977 cpu_function_call(event->cpu, __perf_event_enable, event);
1978 return;
1979 }
1980
1981 raw_spin_lock_irq(&ctx->lock);
1982 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1983 goto out;
1984
1985 /*
1986 * If the event is in error state, clear that first.
1987 * That way, if we see the event in error state below, we
1988 * know that it has gone back into error state, as distinct
1989 * from the task having been scheduled away before the
1990 * cross-call arrived.
1991 */
1992 if (event->state == PERF_EVENT_STATE_ERROR)
1993 event->state = PERF_EVENT_STATE_OFF;
1994
1995 retry:
1996 if (!ctx->is_active) {
1997 __perf_event_mark_enabled(event);
1998 goto out;
1999 }
2000
2001 raw_spin_unlock_irq(&ctx->lock);
2002
2003 if (!task_function_call(task, __perf_event_enable, event))
2004 return;
2005
2006 raw_spin_lock_irq(&ctx->lock);
2007
2008 /*
2009 * If the context is active and the event is still off,
2010 * we need to retry the cross-call.
2011 */
2012 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2013 /*
2014 * task could have been flipped by a concurrent
2015 * perf_event_context_sched_out()
2016 */
2017 task = ctx->task;
2018 goto retry;
2019 }
2020
2021 out:
2022 raw_spin_unlock_irq(&ctx->lock);
2023 }
2024 EXPORT_SYMBOL_GPL(perf_event_enable);
2025
2026 int perf_event_refresh(struct perf_event *event, int refresh)
2027 {
2028 /*
2029 * not supported on inherited events
2030 */
2031 if (event->attr.inherit || !is_sampling_event(event))
2032 return -EINVAL;
2033
2034 atomic_add(refresh, &event->event_limit);
2035 perf_event_enable(event);
2036
2037 return 0;
2038 }
2039 EXPORT_SYMBOL_GPL(perf_event_refresh);
2040
2041 static void ctx_sched_out(struct perf_event_context *ctx,
2042 struct perf_cpu_context *cpuctx,
2043 enum event_type_t event_type)
2044 {
2045 struct perf_event *event;
2046 int is_active = ctx->is_active;
2047
2048 ctx->is_active &= ~event_type;
2049 if (likely(!ctx->nr_events))
2050 return;
2051
2052 update_context_time(ctx);
2053 update_cgrp_time_from_cpuctx(cpuctx);
2054 if (!ctx->nr_active)
2055 return;
2056
2057 perf_pmu_disable(ctx->pmu);
2058 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2059 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2060 group_sched_out(event, cpuctx, ctx);
2061 }
2062
2063 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2064 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2065 group_sched_out(event, cpuctx, ctx);
2066 }
2067 perf_pmu_enable(ctx->pmu);
2068 }
2069
2070 /*
2071 * Test whether two contexts are equivalent, i.e. whether they
2072 * have both been cloned from the same version of the same context
2073 * and they both have the same number of enabled events.
2074 * If the number of enabled events is the same, then the set
2075 * of enabled events should be the same, because these are both
2076 * inherited contexts, therefore we can't access individual events
2077 * in them directly with an fd; we can only enable/disable all
2078 * events via prctl, or enable/disable all events in a family
2079 * via ioctl, which will have the same effect on both contexts.
2080 */
2081 static int context_equiv(struct perf_event_context *ctx1,
2082 struct perf_event_context *ctx2)
2083 {
2084 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
2085 && ctx1->parent_gen == ctx2->parent_gen
2086 && !ctx1->pin_count && !ctx2->pin_count;
2087 }
2088
2089 static void __perf_event_sync_stat(struct perf_event *event,
2090 struct perf_event *next_event)
2091 {
2092 u64 value;
2093
2094 if (!event->attr.inherit_stat)
2095 return;
2096
2097 /*
2098 * Update the event value, we cannot use perf_event_read()
2099 * because we're in the middle of a context switch and have IRQs
2100 * disabled, which upsets smp_call_function_single(), however
2101 * we know the event must be on the current CPU, therefore we
2102 * don't need to use it.
2103 */
2104 switch (event->state) {
2105 case PERF_EVENT_STATE_ACTIVE:
2106 event->pmu->read(event);
2107 /* fall-through */
2108
2109 case PERF_EVENT_STATE_INACTIVE:
2110 update_event_times(event);
2111 break;
2112
2113 default:
2114 break;
2115 }
2116
2117 /*
2118 * In order to keep per-task stats reliable we need to flip the event
2119 * values when we flip the contexts.
2120 */
2121 value = local64_read(&next_event->count);
2122 value = local64_xchg(&event->count, value);
2123 local64_set(&next_event->count, value);
2124
2125 swap(event->total_time_enabled, next_event->total_time_enabled);
2126 swap(event->total_time_running, next_event->total_time_running);
2127
2128 /*
2129 * Since we swizzled the values, update the user visible data too.
2130 */
2131 perf_event_update_userpage(event);
2132 perf_event_update_userpage(next_event);
2133 }
2134
2135 static void perf_event_sync_stat(struct perf_event_context *ctx,
2136 struct perf_event_context *next_ctx)
2137 {
2138 struct perf_event *event, *next_event;
2139
2140 if (!ctx->nr_stat)
2141 return;
2142
2143 update_context_time(ctx);
2144
2145 event = list_first_entry(&ctx->event_list,
2146 struct perf_event, event_entry);
2147
2148 next_event = list_first_entry(&next_ctx->event_list,
2149 struct perf_event, event_entry);
2150
2151 while (&event->event_entry != &ctx->event_list &&
2152 &next_event->event_entry != &next_ctx->event_list) {
2153
2154 __perf_event_sync_stat(event, next_event);
2155
2156 event = list_next_entry(event, event_entry);
2157 next_event = list_next_entry(next_event, event_entry);
2158 }
2159 }
2160
2161 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2162 struct task_struct *next)
2163 {
2164 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2165 struct perf_event_context *next_ctx;
2166 struct perf_event_context *parent;
2167 struct perf_cpu_context *cpuctx;
2168 int do_switch = 1;
2169
2170 if (likely(!ctx))
2171 return;
2172
2173 cpuctx = __get_cpu_context(ctx);
2174 if (!cpuctx->task_ctx)
2175 return;
2176
2177 rcu_read_lock();
2178 parent = rcu_dereference(ctx->parent_ctx);
2179 next_ctx = next->perf_event_ctxp[ctxn];
2180 if (parent && next_ctx &&
2181 rcu_dereference(next_ctx->parent_ctx) == parent) {
2182 /*
2183 * Looks like the two contexts are clones, so we might be
2184 * able to optimize the context switch. We lock both
2185 * contexts and check that they are clones under the
2186 * lock (including re-checking that neither has been
2187 * uncloned in the meantime). It doesn't matter which
2188 * order we take the locks because no other cpu could
2189 * be trying to lock both of these tasks.
2190 */
2191 raw_spin_lock(&ctx->lock);
2192 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2193 if (context_equiv(ctx, next_ctx)) {
2194 /*
2195 * XXX do we need a memory barrier of sorts
2196 * wrt to rcu_dereference() of perf_event_ctxp
2197 */
2198 task->perf_event_ctxp[ctxn] = next_ctx;
2199 next->perf_event_ctxp[ctxn] = ctx;
2200 ctx->task = next;
2201 next_ctx->task = task;
2202 do_switch = 0;
2203
2204 perf_event_sync_stat(ctx, next_ctx);
2205 }
2206 raw_spin_unlock(&next_ctx->lock);
2207 raw_spin_unlock(&ctx->lock);
2208 }
2209 rcu_read_unlock();
2210
2211 if (do_switch) {
2212 raw_spin_lock(&ctx->lock);
2213 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2214 cpuctx->task_ctx = NULL;
2215 raw_spin_unlock(&ctx->lock);
2216 }
2217 }
2218
2219 #define for_each_task_context_nr(ctxn) \
2220 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2221
2222 /*
2223 * Called from scheduler to remove the events of the current task,
2224 * with interrupts disabled.
2225 *
2226 * We stop each event and update the event value in event->count.
2227 *
2228 * This does not protect us against NMI, but disable()
2229 * sets the disabled bit in the control field of event _before_
2230 * accessing the event control register. If a NMI hits, then it will
2231 * not restart the event.
2232 */
2233 void __perf_event_task_sched_out(struct task_struct *task,
2234 struct task_struct *next)
2235 {
2236 int ctxn;
2237
2238 for_each_task_context_nr(ctxn)
2239 perf_event_context_sched_out(task, ctxn, next);
2240
2241 /*
2242 * if cgroup events exist on this CPU, then we need
2243 * to check if we have to switch out PMU state.
2244 * cgroup event are system-wide mode only
2245 */
2246 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2247 perf_cgroup_sched_out(task, next);
2248 }
2249
2250 static void task_ctx_sched_out(struct perf_event_context *ctx)
2251 {
2252 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2253
2254 if (!cpuctx->task_ctx)
2255 return;
2256
2257 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2258 return;
2259
2260 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2261 cpuctx->task_ctx = NULL;
2262 }
2263
2264 /*
2265 * Called with IRQs disabled
2266 */
2267 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2268 enum event_type_t event_type)
2269 {
2270 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2271 }
2272
2273 static void
2274 ctx_pinned_sched_in(struct perf_event_context *ctx,
2275 struct perf_cpu_context *cpuctx)
2276 {
2277 struct perf_event *event;
2278
2279 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2280 if (event->state <= PERF_EVENT_STATE_OFF)
2281 continue;
2282 if (!event_filter_match(event))
2283 continue;
2284
2285 /* may need to reset tstamp_enabled */
2286 if (is_cgroup_event(event))
2287 perf_cgroup_mark_enabled(event, ctx);
2288
2289 if (group_can_go_on(event, cpuctx, 1))
2290 group_sched_in(event, cpuctx, ctx);
2291
2292 /*
2293 * If this pinned group hasn't been scheduled,
2294 * put it in error state.
2295 */
2296 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2297 update_group_times(event);
2298 event->state = PERF_EVENT_STATE_ERROR;
2299 }
2300 }
2301 }
2302
2303 static void
2304 ctx_flexible_sched_in(struct perf_event_context *ctx,
2305 struct perf_cpu_context *cpuctx)
2306 {
2307 struct perf_event *event;
2308 int can_add_hw = 1;
2309
2310 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2311 /* Ignore events in OFF or ERROR state */
2312 if (event->state <= PERF_EVENT_STATE_OFF)
2313 continue;
2314 /*
2315 * Listen to the 'cpu' scheduling filter constraint
2316 * of events:
2317 */
2318 if (!event_filter_match(event))
2319 continue;
2320
2321 /* may need to reset tstamp_enabled */
2322 if (is_cgroup_event(event))
2323 perf_cgroup_mark_enabled(event, ctx);
2324
2325 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2326 if (group_sched_in(event, cpuctx, ctx))
2327 can_add_hw = 0;
2328 }
2329 }
2330 }
2331
2332 static void
2333 ctx_sched_in(struct perf_event_context *ctx,
2334 struct perf_cpu_context *cpuctx,
2335 enum event_type_t event_type,
2336 struct task_struct *task)
2337 {
2338 u64 now;
2339 int is_active = ctx->is_active;
2340
2341 ctx->is_active |= event_type;
2342 if (likely(!ctx->nr_events))
2343 return;
2344
2345 now = perf_clock();
2346 ctx->timestamp = now;
2347 perf_cgroup_set_timestamp(task, ctx);
2348 /*
2349 * First go through the list and put on any pinned groups
2350 * in order to give them the best chance of going on.
2351 */
2352 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2353 ctx_pinned_sched_in(ctx, cpuctx);
2354
2355 /* Then walk through the lower prio flexible groups */
2356 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2357 ctx_flexible_sched_in(ctx, cpuctx);
2358 }
2359
2360 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2361 enum event_type_t event_type,
2362 struct task_struct *task)
2363 {
2364 struct perf_event_context *ctx = &cpuctx->ctx;
2365
2366 ctx_sched_in(ctx, cpuctx, event_type, task);
2367 }
2368
2369 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2370 struct task_struct *task)
2371 {
2372 struct perf_cpu_context *cpuctx;
2373
2374 cpuctx = __get_cpu_context(ctx);
2375 if (cpuctx->task_ctx == ctx)
2376 return;
2377
2378 perf_ctx_lock(cpuctx, ctx);
2379 perf_pmu_disable(ctx->pmu);
2380 /*
2381 * We want to keep the following priority order:
2382 * cpu pinned (that don't need to move), task pinned,
2383 * cpu flexible, task flexible.
2384 */
2385 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2386
2387 if (ctx->nr_events)
2388 cpuctx->task_ctx = ctx;
2389
2390 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2391
2392 perf_pmu_enable(ctx->pmu);
2393 perf_ctx_unlock(cpuctx, ctx);
2394
2395 /*
2396 * Since these rotations are per-cpu, we need to ensure the
2397 * cpu-context we got scheduled on is actually rotating.
2398 */
2399 perf_pmu_rotate_start(ctx->pmu);
2400 }
2401
2402 /*
2403 * When sampling the branck stack in system-wide, it may be necessary
2404 * to flush the stack on context switch. This happens when the branch
2405 * stack does not tag its entries with the pid of the current task.
2406 * Otherwise it becomes impossible to associate a branch entry with a
2407 * task. This ambiguity is more likely to appear when the branch stack
2408 * supports priv level filtering and the user sets it to monitor only
2409 * at the user level (which could be a useful measurement in system-wide
2410 * mode). In that case, the risk is high of having a branch stack with
2411 * branch from multiple tasks. Flushing may mean dropping the existing
2412 * entries or stashing them somewhere in the PMU specific code layer.
2413 *
2414 * This function provides the context switch callback to the lower code
2415 * layer. It is invoked ONLY when there is at least one system-wide context
2416 * with at least one active event using taken branch sampling.
2417 */
2418 static void perf_branch_stack_sched_in(struct task_struct *prev,
2419 struct task_struct *task)
2420 {
2421 struct perf_cpu_context *cpuctx;
2422 struct pmu *pmu;
2423 unsigned long flags;
2424
2425 /* no need to flush branch stack if not changing task */
2426 if (prev == task)
2427 return;
2428
2429 local_irq_save(flags);
2430
2431 rcu_read_lock();
2432
2433 list_for_each_entry_rcu(pmu, &pmus, entry) {
2434 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2435
2436 /*
2437 * check if the context has at least one
2438 * event using PERF_SAMPLE_BRANCH_STACK
2439 */
2440 if (cpuctx->ctx.nr_branch_stack > 0
2441 && pmu->flush_branch_stack) {
2442
2443 pmu = cpuctx->ctx.pmu;
2444
2445 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2446
2447 perf_pmu_disable(pmu);
2448
2449 pmu->flush_branch_stack();
2450
2451 perf_pmu_enable(pmu);
2452
2453 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2454 }
2455 }
2456
2457 rcu_read_unlock();
2458
2459 local_irq_restore(flags);
2460 }
2461
2462 /*
2463 * Called from scheduler to add the events of the current task
2464 * with interrupts disabled.
2465 *
2466 * We restore the event value and then enable it.
2467 *
2468 * This does not protect us against NMI, but enable()
2469 * sets the enabled bit in the control field of event _before_
2470 * accessing the event control register. If a NMI hits, then it will
2471 * keep the event running.
2472 */
2473 void __perf_event_task_sched_in(struct task_struct *prev,
2474 struct task_struct *task)
2475 {
2476 struct perf_event_context *ctx;
2477 int ctxn;
2478
2479 for_each_task_context_nr(ctxn) {
2480 ctx = task->perf_event_ctxp[ctxn];
2481 if (likely(!ctx))
2482 continue;
2483
2484 perf_event_context_sched_in(ctx, task);
2485 }
2486 /*
2487 * if cgroup events exist on this CPU, then we need
2488 * to check if we have to switch in PMU state.
2489 * cgroup event are system-wide mode only
2490 */
2491 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2492 perf_cgroup_sched_in(prev, task);
2493
2494 /* check for system-wide branch_stack events */
2495 if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2496 perf_branch_stack_sched_in(prev, task);
2497 }
2498
2499 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2500 {
2501 u64 frequency = event->attr.sample_freq;
2502 u64 sec = NSEC_PER_SEC;
2503 u64 divisor, dividend;
2504
2505 int count_fls, nsec_fls, frequency_fls, sec_fls;
2506
2507 count_fls = fls64(count);
2508 nsec_fls = fls64(nsec);
2509 frequency_fls = fls64(frequency);
2510 sec_fls = 30;
2511
2512 /*
2513 * We got @count in @nsec, with a target of sample_freq HZ
2514 * the target period becomes:
2515 *
2516 * @count * 10^9
2517 * period = -------------------
2518 * @nsec * sample_freq
2519 *
2520 */
2521
2522 /*
2523 * Reduce accuracy by one bit such that @a and @b converge
2524 * to a similar magnitude.
2525 */
2526 #define REDUCE_FLS(a, b) \
2527 do { \
2528 if (a##_fls > b##_fls) { \
2529 a >>= 1; \
2530 a##_fls--; \
2531 } else { \
2532 b >>= 1; \
2533 b##_fls--; \
2534 } \
2535 } while (0)
2536
2537 /*
2538 * Reduce accuracy until either term fits in a u64, then proceed with
2539 * the other, so that finally we can do a u64/u64 division.
2540 */
2541 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2542 REDUCE_FLS(nsec, frequency);
2543 REDUCE_FLS(sec, count);
2544 }
2545
2546 if (count_fls + sec_fls > 64) {
2547 divisor = nsec * frequency;
2548
2549 while (count_fls + sec_fls > 64) {
2550 REDUCE_FLS(count, sec);
2551 divisor >>= 1;
2552 }
2553
2554 dividend = count * sec;
2555 } else {
2556 dividend = count * sec;
2557
2558 while (nsec_fls + frequency_fls > 64) {
2559 REDUCE_FLS(nsec, frequency);
2560 dividend >>= 1;
2561 }
2562
2563 divisor = nsec * frequency;
2564 }
2565
2566 if (!divisor)
2567 return dividend;
2568
2569 return div64_u64(dividend, divisor);
2570 }
2571
2572 static DEFINE_PER_CPU(int, perf_throttled_count);
2573 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2574
2575 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2576 {
2577 struct hw_perf_event *hwc = &event->hw;
2578 s64 period, sample_period;
2579 s64 delta;
2580
2581 period = perf_calculate_period(event, nsec, count);
2582
2583 delta = (s64)(period - hwc->sample_period);
2584 delta = (delta + 7) / 8; /* low pass filter */
2585
2586 sample_period = hwc->sample_period + delta;
2587
2588 if (!sample_period)
2589 sample_period = 1;
2590
2591 hwc->sample_period = sample_period;
2592
2593 if (local64_read(&hwc->period_left) > 8*sample_period) {
2594 if (disable)
2595 event->pmu->stop(event, PERF_EF_UPDATE);
2596
2597 local64_set(&hwc->period_left, 0);
2598
2599 if (disable)
2600 event->pmu->start(event, PERF_EF_RELOAD);
2601 }
2602 }
2603
2604 /*
2605 * combine freq adjustment with unthrottling to avoid two passes over the
2606 * events. At the same time, make sure, having freq events does not change
2607 * the rate of unthrottling as that would introduce bias.
2608 */
2609 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2610 int needs_unthr)
2611 {
2612 struct perf_event *event;
2613 struct hw_perf_event *hwc;
2614 u64 now, period = TICK_NSEC;
2615 s64 delta;
2616
2617 /*
2618 * only need to iterate over all events iff:
2619 * - context have events in frequency mode (needs freq adjust)
2620 * - there are events to unthrottle on this cpu
2621 */
2622 if (!(ctx->nr_freq || needs_unthr))
2623 return;
2624
2625 raw_spin_lock(&ctx->lock);
2626 perf_pmu_disable(ctx->pmu);
2627
2628 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2629 if (event->state != PERF_EVENT_STATE_ACTIVE)
2630 continue;
2631
2632 if (!event_filter_match(event))
2633 continue;
2634
2635 hwc = &event->hw;
2636
2637 if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
2638 hwc->interrupts = 0;
2639 perf_log_throttle(event, 1);
2640 event->pmu->start(event, 0);
2641 }
2642
2643 if (!event->attr.freq || !event->attr.sample_freq)
2644 continue;
2645
2646 /*
2647 * stop the event and update event->count
2648 */
2649 event->pmu->stop(event, PERF_EF_UPDATE);
2650
2651 now = local64_read(&event->count);
2652 delta = now - hwc->freq_count_stamp;
2653 hwc->freq_count_stamp = now;
2654
2655 /*
2656 * restart the event
2657 * reload only if value has changed
2658 * we have stopped the event so tell that
2659 * to perf_adjust_period() to avoid stopping it
2660 * twice.
2661 */
2662 if (delta > 0)
2663 perf_adjust_period(event, period, delta, false);
2664
2665 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2666 }
2667
2668 perf_pmu_enable(ctx->pmu);
2669 raw_spin_unlock(&ctx->lock);
2670 }
2671
2672 /*
2673 * Round-robin a context's events:
2674 */
2675 static void rotate_ctx(struct perf_event_context *ctx)
2676 {
2677 /*
2678 * Rotate the first entry last of non-pinned groups. Rotation might be
2679 * disabled by the inheritance code.
2680 */
2681 if (!ctx->rotate_disable)
2682 list_rotate_left(&ctx->flexible_groups);
2683 }
2684
2685 /*
2686 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2687 * because they're strictly cpu affine and rotate_start is called with IRQs
2688 * disabled, while rotate_context is called from IRQ context.
2689 */
2690 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2691 {
2692 struct perf_event_context *ctx = NULL;
2693 int rotate = 0, remove = 1;
2694
2695 if (cpuctx->ctx.nr_events) {
2696 remove = 0;
2697 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2698 rotate = 1;
2699 }
2700
2701 ctx = cpuctx->task_ctx;
2702 if (ctx && ctx->nr_events) {
2703 remove = 0;
2704 if (ctx->nr_events != ctx->nr_active)
2705 rotate = 1;
2706 }
2707
2708 if (!rotate)
2709 goto done;
2710
2711 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2712 perf_pmu_disable(cpuctx->ctx.pmu);
2713
2714 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2715 if (ctx)
2716 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2717
2718 rotate_ctx(&cpuctx->ctx);
2719 if (ctx)
2720 rotate_ctx(ctx);
2721
2722 perf_event_sched_in(cpuctx, ctx, current);
2723
2724 perf_pmu_enable(cpuctx->ctx.pmu);
2725 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2726 done:
2727 if (remove)
2728 list_del_init(&cpuctx->rotation_list);
2729 }
2730
2731 #ifdef CONFIG_NO_HZ_FULL
2732 bool perf_event_can_stop_tick(void)
2733 {
2734 if (list_empty(&__get_cpu_var(rotation_list)))
2735 return true;
2736 else
2737 return false;
2738 }
2739 #endif
2740
2741 void perf_event_task_tick(void)
2742 {
2743 struct list_head *head = &__get_cpu_var(rotation_list);
2744 struct perf_cpu_context *cpuctx, *tmp;
2745 struct perf_event_context *ctx;
2746 int throttled;
2747
2748 WARN_ON(!irqs_disabled());
2749
2750 __this_cpu_inc(perf_throttled_seq);
2751 throttled = __this_cpu_xchg(perf_throttled_count, 0);
2752
2753 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2754 ctx = &cpuctx->ctx;
2755 perf_adjust_freq_unthr_context(ctx, throttled);
2756
2757 ctx = cpuctx->task_ctx;
2758 if (ctx)
2759 perf_adjust_freq_unthr_context(ctx, throttled);
2760
2761 if (cpuctx->jiffies_interval == 1 ||
2762 !(jiffies % cpuctx->jiffies_interval))
2763 perf_rotate_context(cpuctx);
2764 }
2765 }
2766
2767 static int event_enable_on_exec(struct perf_event *event,
2768 struct perf_event_context *ctx)
2769 {
2770 if (!event->attr.enable_on_exec)
2771 return 0;
2772
2773 event->attr.enable_on_exec = 0;
2774 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2775 return 0;
2776
2777 __perf_event_mark_enabled(event);
2778
2779 return 1;
2780 }
2781
2782 /*
2783 * Enable all of a task's events that have been marked enable-on-exec.
2784 * This expects task == current.
2785 */
2786 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2787 {
2788 struct perf_event *event;
2789 unsigned long flags;
2790 int enabled = 0;
2791 int ret;
2792
2793 local_irq_save(flags);
2794 if (!ctx || !ctx->nr_events)
2795 goto out;
2796
2797 /*
2798 * We must ctxsw out cgroup events to avoid conflict
2799 * when invoking perf_task_event_sched_in() later on
2800 * in this function. Otherwise we end up trying to
2801 * ctxswin cgroup events which are already scheduled
2802 * in.
2803 */
2804 perf_cgroup_sched_out(current, NULL);
2805
2806 raw_spin_lock(&ctx->lock);
2807 task_ctx_sched_out(ctx);
2808
2809 list_for_each_entry(event, &ctx->event_list, event_entry) {
2810 ret = event_enable_on_exec(event, ctx);
2811 if (ret)
2812 enabled = 1;
2813 }
2814
2815 /*
2816 * Unclone this context if we enabled any event.
2817 */
2818 if (enabled)
2819 unclone_ctx(ctx);
2820
2821 raw_spin_unlock(&ctx->lock);
2822
2823 /*
2824 * Also calls ctxswin for cgroup events, if any:
2825 */
2826 perf_event_context_sched_in(ctx, ctx->task);
2827 out:
2828 local_irq_restore(flags);
2829 }
2830
2831 /*
2832 * Cross CPU call to read the hardware event
2833 */
2834 static void __perf_event_read(void *info)
2835 {
2836 struct perf_event *event = info;
2837 struct perf_event_context *ctx = event->ctx;
2838 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2839
2840 /*
2841 * If this is a task context, we need to check whether it is
2842 * the current task context of this cpu. If not it has been
2843 * scheduled out before the smp call arrived. In that case
2844 * event->count would have been updated to a recent sample
2845 * when the event was scheduled out.
2846 */
2847 if (ctx->task && cpuctx->task_ctx != ctx)
2848 return;
2849
2850 raw_spin_lock(&ctx->lock);
2851 if (ctx->is_active) {
2852 update_context_time(ctx);
2853 update_cgrp_time_from_event(event);
2854 }
2855 update_event_times(event);
2856 if (event->state == PERF_EVENT_STATE_ACTIVE)
2857 event->pmu->read(event);
2858 raw_spin_unlock(&ctx->lock);
2859 }
2860
2861 static inline u64 perf_event_count(struct perf_event *event)
2862 {
2863 return local64_read(&event->count) + atomic64_read(&event->child_count);
2864 }
2865
2866 static u64 perf_event_read(struct perf_event *event)
2867 {
2868 /*
2869 * If event is enabled and currently active on a CPU, update the
2870 * value in the event structure:
2871 */
2872 if (event->state == PERF_EVENT_STATE_ACTIVE) {
2873 smp_call_function_single(event->oncpu,
2874 __perf_event_read, event, 1);
2875 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2876 struct perf_event_context *ctx = event->ctx;
2877 unsigned long flags;
2878
2879 raw_spin_lock_irqsave(&ctx->lock, flags);
2880 /*
2881 * may read while context is not active
2882 * (e.g., thread is blocked), in that case
2883 * we cannot update context time
2884 */
2885 if (ctx->is_active) {
2886 update_context_time(ctx);
2887 update_cgrp_time_from_event(event);
2888 }
2889 update_event_times(event);
2890 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2891 }
2892
2893 return perf_event_count(event);
2894 }
2895
2896 /*
2897 * Initialize the perf_event context in a task_struct:
2898 */
2899 static void __perf_event_init_context(struct perf_event_context *ctx)
2900 {
2901 raw_spin_lock_init(&ctx->lock);
2902 mutex_init(&ctx->mutex);
2903 INIT_LIST_HEAD(&ctx->pinned_groups);
2904 INIT_LIST_HEAD(&ctx->flexible_groups);
2905 INIT_LIST_HEAD(&ctx->event_list);
2906 atomic_set(&ctx->refcount, 1);
2907 }
2908
2909 static struct perf_event_context *
2910 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2911 {
2912 struct perf_event_context *ctx;
2913
2914 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2915 if (!ctx)
2916 return NULL;
2917
2918 __perf_event_init_context(ctx);
2919 if (task) {
2920 ctx->task = task;
2921 get_task_struct(task);
2922 }
2923 ctx->pmu = pmu;
2924
2925 return ctx;
2926 }
2927
2928 static struct task_struct *
2929 find_lively_task_by_vpid(pid_t vpid)
2930 {
2931 struct task_struct *task;
2932 int err;
2933
2934 rcu_read_lock();
2935 if (!vpid)
2936 task = current;
2937 else
2938 task = find_task_by_vpid(vpid);
2939 if (task)
2940 get_task_struct(task);
2941 rcu_read_unlock();
2942
2943 if (!task)
2944 return ERR_PTR(-ESRCH);
2945
2946 /* Reuse ptrace permission checks for now. */
2947 err = -EACCES;
2948 if (!ptrace_may_access(task, PTRACE_MODE_READ))
2949 goto errout;
2950
2951 return task;
2952 errout:
2953 put_task_struct(task);
2954 return ERR_PTR(err);
2955
2956 }
2957
2958 /*
2959 * Returns a matching context with refcount and pincount.
2960 */
2961 static struct perf_event_context *
2962 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2963 {
2964 struct perf_event_context *ctx;
2965 struct perf_cpu_context *cpuctx;
2966 unsigned long flags;
2967 int ctxn, err;
2968
2969 if (!task) {
2970 /* Must be root to operate on a CPU event: */
2971 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2972 return ERR_PTR(-EACCES);
2973
2974 /*
2975 * We could be clever and allow to attach a event to an
2976 * offline CPU and activate it when the CPU comes up, but
2977 * that's for later.
2978 */
2979 if (!cpu_online(cpu))
2980 return ERR_PTR(-ENODEV);
2981
2982 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2983 ctx = &cpuctx->ctx;
2984 get_ctx(ctx);
2985 ++ctx->pin_count;
2986
2987 return ctx;
2988 }
2989
2990 err = -EINVAL;
2991 ctxn = pmu->task_ctx_nr;
2992 if (ctxn < 0)
2993 goto errout;
2994
2995 retry:
2996 ctx = perf_lock_task_context(task, ctxn, &flags);
2997 if (ctx) {
2998 unclone_ctx(ctx);
2999 ++ctx->pin_count;
3000 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3001 } else {
3002 ctx = alloc_perf_context(pmu, task);
3003 err = -ENOMEM;
3004 if (!ctx)
3005 goto errout;
3006
3007 err = 0;
3008 mutex_lock(&task->perf_event_mutex);
3009 /*
3010 * If it has already passed perf_event_exit_task().
3011 * we must see PF_EXITING, it takes this mutex too.
3012 */
3013 if (task->flags & PF_EXITING)
3014 err = -ESRCH;
3015 else if (task->perf_event_ctxp[ctxn])
3016 err = -EAGAIN;
3017 else {
3018 get_ctx(ctx);
3019 ++ctx->pin_count;
3020 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3021 }
3022 mutex_unlock(&task->perf_event_mutex);
3023
3024 if (unlikely(err)) {
3025 put_ctx(ctx);
3026
3027 if (err == -EAGAIN)
3028 goto retry;
3029 goto errout;
3030 }
3031 }
3032
3033 return ctx;
3034
3035 errout:
3036 return ERR_PTR(err);
3037 }
3038
3039 static void perf_event_free_filter(struct perf_event *event);
3040
3041 static void free_event_rcu(struct rcu_head *head)
3042 {
3043 struct perf_event *event;
3044
3045 event = container_of(head, struct perf_event, rcu_head);
3046 if (event->ns)
3047 put_pid_ns(event->ns);
3048 perf_event_free_filter(event);
3049 kfree(event);
3050 }
3051
3052 static void ring_buffer_put(struct ring_buffer *rb);
3053 static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb);
3054
3055 static void free_event(struct perf_event *event)
3056 {
3057 irq_work_sync(&event->pending);
3058
3059 if (!event->parent) {
3060 if (event->attach_state & PERF_ATTACH_TASK)
3061 static_key_slow_dec_deferred(&perf_sched_events);
3062 if (event->attr.mmap || event->attr.mmap_data)
3063 atomic_dec(&nr_mmap_events);
3064 if (event->attr.comm)
3065 atomic_dec(&nr_comm_events);
3066 if (event->attr.task)
3067 atomic_dec(&nr_task_events);
3068 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3069 put_callchain_buffers();
3070 if (is_cgroup_event(event)) {
3071 atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
3072 static_key_slow_dec_deferred(&perf_sched_events);
3073 }
3074
3075 if (has_branch_stack(event)) {
3076 static_key_slow_dec_deferred(&perf_sched_events);
3077 /* is system-wide event */
3078 if (!(event->attach_state & PERF_ATTACH_TASK)) {
3079 atomic_dec(&per_cpu(perf_branch_stack_events,
3080 event->cpu));
3081 }
3082 }
3083 }
3084
3085 if (event->rb) {
3086 struct ring_buffer *rb;
3087
3088 /*
3089 * Can happen when we close an event with re-directed output.
3090 *
3091 * Since we have a 0 refcount, perf_mmap_close() will skip
3092 * over us; possibly making our ring_buffer_put() the last.
3093 */
3094 mutex_lock(&event->mmap_mutex);
3095 rb = event->rb;
3096 if (rb) {
3097 rcu_assign_pointer(event->rb, NULL);
3098 ring_buffer_detach(event, rb);
3099 ring_buffer_put(rb); /* could be last */
3100 }
3101 mutex_unlock(&event->mmap_mutex);
3102 }
3103
3104 if (is_cgroup_event(event))
3105 perf_detach_cgroup(event);
3106
3107 if (event->destroy)
3108 event->destroy(event);
3109
3110 if (event->ctx)
3111 put_ctx(event->ctx);
3112
3113 call_rcu(&event->rcu_head, free_event_rcu);
3114 }
3115
3116 int perf_event_release_kernel(struct perf_event *event)
3117 {
3118 struct perf_event_context *ctx = event->ctx;
3119
3120 WARN_ON_ONCE(ctx->parent_ctx);
3121 /*
3122 * There are two ways this annotation is useful:
3123 *
3124 * 1) there is a lock recursion from perf_event_exit_task
3125 * see the comment there.
3126 *
3127 * 2) there is a lock-inversion with mmap_sem through
3128 * perf_event_read_group(), which takes faults while
3129 * holding ctx->mutex, however this is called after
3130 * the last filedesc died, so there is no possibility
3131 * to trigger the AB-BA case.
3132 */
3133 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
3134 perf_remove_from_context(event, true);
3135 mutex_unlock(&ctx->mutex);
3136
3137 free_event(event);
3138
3139 return 0;
3140 }
3141 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3142
3143 /*
3144 * Called when the last reference to the file is gone.
3145 */
3146 static void put_event(struct perf_event *event)
3147 {
3148 struct task_struct *owner;
3149
3150 if (!atomic_long_dec_and_test(&event->refcount))
3151 return;
3152
3153 rcu_read_lock();
3154 owner = ACCESS_ONCE(event->owner);
3155 /*
3156 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3157 * !owner it means the list deletion is complete and we can indeed
3158 * free this event, otherwise we need to serialize on
3159 * owner->perf_event_mutex.
3160 */
3161 smp_read_barrier_depends();
3162 if (owner) {
3163 /*
3164 * Since delayed_put_task_struct() also drops the last
3165 * task reference we can safely take a new reference
3166 * while holding the rcu_read_lock().
3167 */
3168 get_task_struct(owner);
3169 }
3170 rcu_read_unlock();
3171
3172 if (owner) {
3173 mutex_lock(&owner->perf_event_mutex);
3174 /*
3175 * We have to re-check the event->owner field, if it is cleared
3176 * we raced with perf_event_exit_task(), acquiring the mutex
3177 * ensured they're done, and we can proceed with freeing the
3178 * event.
3179 */
3180 if (event->owner)
3181 list_del_init(&event->owner_entry);
3182 mutex_unlock(&owner->perf_event_mutex);
3183 put_task_struct(owner);
3184 }
3185
3186 perf_event_release_kernel(event);
3187 }
3188
3189 static int perf_release(struct inode *inode, struct file *file)
3190 {
3191 put_event(file->private_data);
3192 return 0;
3193 }
3194
3195 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3196 {
3197 struct perf_event *child;
3198 u64 total = 0;
3199
3200 *enabled = 0;
3201 *running = 0;
3202
3203 mutex_lock(&event->child_mutex);
3204 total += perf_event_read(event);
3205 *enabled += event->total_time_enabled +
3206 atomic64_read(&event->child_total_time_enabled);
3207 *running += event->total_time_running +
3208 atomic64_read(&event->child_total_time_running);
3209
3210 list_for_each_entry(child, &event->child_list, child_list) {
3211 total += perf_event_read(child);
3212 *enabled += child->total_time_enabled;
3213 *running += child->total_time_running;
3214 }
3215 mutex_unlock(&event->child_mutex);
3216
3217 return total;
3218 }
3219 EXPORT_SYMBOL_GPL(perf_event_read_value);
3220
3221 static int perf_event_read_group(struct perf_event *event,
3222 u64 read_format, char __user *buf)
3223 {
3224 struct perf_event *leader = event->group_leader, *sub;
3225 int n = 0, size = 0, ret = -EFAULT;
3226 struct perf_event_context *ctx = leader->ctx;
3227 u64 values[5];
3228 u64 count, enabled, running;
3229
3230 mutex_lock(&ctx->mutex);
3231 count = perf_event_read_value(leader, &enabled, &running);
3232
3233 values[n++] = 1 + leader->nr_siblings;
3234 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3235 values[n++] = enabled;
3236 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3237 values[n++] = running;
3238 values[n++] = count;
3239 if (read_format & PERF_FORMAT_ID)
3240 values[n++] = primary_event_id(leader);
3241
3242 size = n * sizeof(u64);
3243
3244 if (copy_to_user(buf, values, size))
3245 goto unlock;
3246
3247 ret = size;
3248
3249 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3250 n = 0;
3251
3252 values[n++] = perf_event_read_value(sub, &enabled, &running);
3253 if (read_format & PERF_FORMAT_ID)
3254 values[n++] = primary_event_id(sub);
3255
3256 size = n * sizeof(u64);
3257
3258 if (copy_to_user(buf + ret, values, size)) {
3259 ret = -EFAULT;
3260 goto unlock;
3261 }
3262
3263 ret += size;
3264 }
3265 unlock:
3266 mutex_unlock(&ctx->mutex);
3267
3268 return ret;
3269 }
3270
3271 static int perf_event_read_one(struct perf_event *event,
3272 u64 read_format, char __user *buf)
3273 {
3274 u64 enabled, running;
3275 u64 values[4];
3276 int n = 0;
3277
3278 values[n++] = perf_event_read_value(event, &enabled, &running);
3279 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3280 values[n++] = enabled;
3281 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3282 values[n++] = running;
3283 if (read_format & PERF_FORMAT_ID)
3284 values[n++] = primary_event_id(event);
3285
3286 if (copy_to_user(buf, values, n * sizeof(u64)))
3287 return -EFAULT;
3288
3289 return n * sizeof(u64);
3290 }
3291
3292 /*
3293 * Read the performance event - simple non blocking version for now
3294 */
3295 static ssize_t
3296 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3297 {
3298 u64 read_format = event->attr.read_format;
3299 int ret;
3300
3301 /*
3302 * Return end-of-file for a read on a event that is in
3303 * error state (i.e. because it was pinned but it couldn't be
3304 * scheduled on to the CPU at some point).
3305 */
3306 if (event->state == PERF_EVENT_STATE_ERROR)
3307 return 0;
3308
3309 if (count < event->read_size)
3310 return -ENOSPC;
3311
3312 WARN_ON_ONCE(event->ctx->parent_ctx);
3313 if (read_format & PERF_FORMAT_GROUP)
3314 ret = perf_event_read_group(event, read_format, buf);
3315 else
3316 ret = perf_event_read_one(event, read_format, buf);
3317
3318 return ret;
3319 }
3320
3321 static ssize_t
3322 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3323 {
3324 struct perf_event *event = file->private_data;
3325
3326 return perf_read_hw(event, buf, count);
3327 }
3328
3329 static unsigned int perf_poll(struct file *file, poll_table *wait)
3330 {
3331 struct perf_event *event = file->private_data;
3332 struct ring_buffer *rb;
3333 unsigned int events = POLL_HUP;
3334
3335 /*
3336 * Pin the event->rb by taking event->mmap_mutex; otherwise
3337 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3338 */
3339 mutex_lock(&event->mmap_mutex);
3340 rb = event->rb;
3341 if (rb)
3342 events = atomic_xchg(&rb->poll, 0);
3343 mutex_unlock(&event->mmap_mutex);
3344
3345 poll_wait(file, &event->waitq, wait);
3346
3347 return events;
3348 }
3349
3350 static void perf_event_reset(struct perf_event *event)
3351 {
3352 (void)perf_event_read(event);
3353 local64_set(&event->count, 0);
3354 perf_event_update_userpage(event);
3355 }
3356
3357 /*
3358 * Holding the top-level event's child_mutex means that any
3359 * descendant process that has inherited this event will block
3360 * in sync_child_event if it goes to exit, thus satisfying the
3361 * task existence requirements of perf_event_enable/disable.
3362 */
3363 static void perf_event_for_each_child(struct perf_event *event,
3364 void (*func)(struct perf_event *))
3365 {
3366 struct perf_event *child;
3367
3368 WARN_ON_ONCE(event->ctx->parent_ctx);
3369 mutex_lock(&event->child_mutex);
3370 func(event);
3371 list_for_each_entry(child, &event->child_list, child_list)
3372 func(child);
3373 mutex_unlock(&event->child_mutex);
3374 }
3375
3376 static void perf_event_for_each(struct perf_event *event,
3377 void (*func)(struct perf_event *))
3378 {
3379 struct perf_event_context *ctx = event->ctx;
3380 struct perf_event *sibling;
3381
3382 WARN_ON_ONCE(ctx->parent_ctx);
3383 mutex_lock(&ctx->mutex);
3384 event = event->group_leader;
3385
3386 perf_event_for_each_child(event, func);
3387 list_for_each_entry(sibling, &event->sibling_list, group_entry)
3388 perf_event_for_each_child(sibling, func);
3389 mutex_unlock(&ctx->mutex);
3390 }
3391
3392 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3393 {
3394 struct perf_event_context *ctx = event->ctx;
3395 int ret = 0;
3396 u64 value;
3397
3398 if (!is_sampling_event(event))
3399 return -EINVAL;
3400
3401 if (copy_from_user(&value, arg, sizeof(value)))
3402 return -EFAULT;
3403
3404 if (!value)
3405 return -EINVAL;
3406
3407 raw_spin_lock_irq(&ctx->lock);
3408 if (event->attr.freq) {
3409 if (value > sysctl_perf_event_sample_rate) {
3410 ret = -EINVAL;
3411 goto unlock;
3412 }
3413
3414 event->attr.sample_freq = value;
3415 } else {
3416 event->attr.sample_period = value;
3417 event->hw.sample_period = value;
3418 }
3419 unlock:
3420 raw_spin_unlock_irq(&ctx->lock);
3421
3422 return ret;
3423 }
3424
3425 static const struct file_operations perf_fops;
3426
3427 static inline int perf_fget_light(int fd, struct fd *p)
3428 {
3429 struct fd f = fdget(fd);
3430 if (!f.file)
3431 return -EBADF;
3432
3433 if (f.file->f_op != &perf_fops) {
3434 fdput(f);
3435 return -EBADF;
3436 }
3437 *p = f;
3438 return 0;
3439 }
3440
3441 static int perf_event_set_output(struct perf_event *event,
3442 struct perf_event *output_event);
3443 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3444
3445 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3446 {
3447 struct perf_event *event = file->private_data;
3448 void (*func)(struct perf_event *);
3449 u32 flags = arg;
3450
3451 switch (cmd) {
3452 case PERF_EVENT_IOC_ENABLE:
3453 func = perf_event_enable;
3454 break;
3455 case PERF_EVENT_IOC_DISABLE:
3456 func = perf_event_disable;
3457 break;
3458 case PERF_EVENT_IOC_RESET:
3459 func = perf_event_reset;
3460 break;
3461
3462 case PERF_EVENT_IOC_REFRESH:
3463 return perf_event_refresh(event, arg);
3464
3465 case PERF_EVENT_IOC_PERIOD:
3466 return perf_event_period(event, (u64 __user *)arg);
3467
3468 case PERF_EVENT_IOC_SET_OUTPUT:
3469 {
3470 int ret;
3471 if (arg != -1) {
3472 struct perf_event *output_event;
3473 struct fd output;
3474 ret = perf_fget_light(arg, &output);
3475 if (ret)
3476 return ret;
3477 output_event = output.file->private_data;
3478 ret = perf_event_set_output(event, output_event);
3479 fdput(output);
3480 } else {
3481 ret = perf_event_set_output(event, NULL);
3482 }
3483 return ret;
3484 }
3485
3486 case PERF_EVENT_IOC_SET_FILTER:
3487 return perf_event_set_filter(event, (void __user *)arg);
3488
3489 default:
3490 return -ENOTTY;
3491 }
3492
3493 if (flags & PERF_IOC_FLAG_GROUP)
3494 perf_event_for_each(event, func);
3495 else
3496 perf_event_for_each_child(event, func);
3497
3498 return 0;
3499 }
3500
3501 #ifdef CONFIG_COMPAT
3502 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
3503 unsigned long arg)
3504 {
3505 switch (_IOC_NR(cmd)) {
3506 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
3507 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
3508 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
3509 cmd &= ~IOCSIZE_MASK;
3510 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
3511 }
3512 break;
3513 }
3514 return perf_ioctl(file, cmd, arg);
3515 }
3516 #else
3517 # define perf_compat_ioctl NULL
3518 #endif
3519
3520 int perf_event_task_enable(void)
3521 {
3522 struct perf_event *event;
3523
3524 mutex_lock(&current->perf_event_mutex);
3525 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3526 perf_event_for_each_child(event, perf_event_enable);
3527 mutex_unlock(&current->perf_event_mutex);
3528
3529 return 0;
3530 }
3531
3532 int perf_event_task_disable(void)
3533 {
3534 struct perf_event *event;
3535
3536 mutex_lock(&current->perf_event_mutex);
3537 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3538 perf_event_for_each_child(event, perf_event_disable);
3539 mutex_unlock(&current->perf_event_mutex);
3540
3541 return 0;
3542 }
3543
3544 static int perf_event_index(struct perf_event *event)
3545 {
3546 if (event->hw.state & PERF_HES_STOPPED)
3547 return 0;
3548
3549 if (event->state != PERF_EVENT_STATE_ACTIVE)
3550 return 0;
3551
3552 return event->pmu->event_idx(event);
3553 }
3554
3555 static void calc_timer_values(struct perf_event *event,
3556 u64 *now,
3557 u64 *enabled,
3558 u64 *running)
3559 {
3560 u64 ctx_time;
3561
3562 *now = perf_clock();
3563 ctx_time = event->shadow_ctx_time + *now;
3564 *enabled = ctx_time - event->tstamp_enabled;
3565 *running = ctx_time - event->tstamp_running;
3566 }
3567
3568 void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3569 {
3570 }
3571
3572 /*
3573 * Callers need to ensure there can be no nesting of this function, otherwise
3574 * the seqlock logic goes bad. We can not serialize this because the arch
3575 * code calls this from NMI context.
3576 */
3577 void perf_event_update_userpage(struct perf_event *event)
3578 {
3579 struct perf_event_mmap_page *userpg;
3580 struct ring_buffer *rb;
3581 u64 enabled, running, now;
3582
3583 rcu_read_lock();
3584 /*
3585 * compute total_time_enabled, total_time_running
3586 * based on snapshot values taken when the event
3587 * was last scheduled in.
3588 *
3589 * we cannot simply called update_context_time()
3590 * because of locking issue as we can be called in
3591 * NMI context
3592 */
3593 calc_timer_values(event, &now, &enabled, &running);
3594 rb = rcu_dereference(event->rb);
3595 if (!rb)
3596 goto unlock;
3597
3598 userpg = rb->user_page;
3599
3600 /*
3601 * Disable preemption so as to not let the corresponding user-space
3602 * spin too long if we get preempted.
3603 */
3604 preempt_disable();
3605 ++userpg->lock;
3606 barrier();
3607 userpg->index = perf_event_index(event);
3608 userpg->offset = perf_event_count(event);
3609 if (userpg->index)
3610 userpg->offset -= local64_read(&event->hw.prev_count);
3611
3612 userpg->time_enabled = enabled +
3613 atomic64_read(&event->child_total_time_enabled);
3614
3615 userpg->time_running = running +
3616 atomic64_read(&event->child_total_time_running);
3617
3618 arch_perf_update_userpage(userpg, now);
3619
3620 barrier();
3621 ++userpg->lock;
3622 preempt_enable();
3623 unlock:
3624 rcu_read_unlock();
3625 }
3626
3627 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3628 {
3629 struct perf_event *event = vma->vm_file->private_data;
3630 struct ring_buffer *rb;
3631 int ret = VM_FAULT_SIGBUS;
3632
3633 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3634 if (vmf->pgoff == 0)
3635 ret = 0;
3636 return ret;
3637 }
3638
3639 rcu_read_lock();
3640 rb = rcu_dereference(event->rb);
3641 if (!rb)
3642 goto unlock;
3643
3644 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3645 goto unlock;
3646
3647 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3648 if (!vmf->page)
3649 goto unlock;
3650
3651 get_page(vmf->page);
3652 vmf->page->mapping = vma->vm_file->f_mapping;
3653 vmf->page->index = vmf->pgoff;
3654
3655 ret = 0;
3656 unlock:
3657 rcu_read_unlock();
3658
3659 return ret;
3660 }
3661
3662 static void ring_buffer_attach(struct perf_event *event,
3663 struct ring_buffer *rb)
3664 {
3665 unsigned long flags;
3666
3667 if (!list_empty(&event->rb_entry))
3668 return;
3669
3670 spin_lock_irqsave(&rb->event_lock, flags);
3671 if (list_empty(&event->rb_entry))
3672 list_add(&event->rb_entry, &rb->event_list);
3673 spin_unlock_irqrestore(&rb->event_lock, flags);
3674 }
3675
3676 static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb)
3677 {
3678 unsigned long flags;
3679
3680 if (list_empty(&event->rb_entry))
3681 return;
3682
3683 spin_lock_irqsave(&rb->event_lock, flags);
3684 list_del_init(&event->rb_entry);
3685 wake_up_all(&event->waitq);
3686 spin_unlock_irqrestore(&rb->event_lock, flags);
3687 }
3688
3689 static void ring_buffer_wakeup(struct perf_event *event)
3690 {
3691 struct ring_buffer *rb;
3692
3693 rcu_read_lock();
3694 rb = rcu_dereference(event->rb);
3695 if (rb) {
3696 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3697 wake_up_all(&event->waitq);
3698 }
3699 rcu_read_unlock();
3700 }
3701
3702 static void rb_free_rcu(struct rcu_head *rcu_head)
3703 {
3704 struct ring_buffer *rb;
3705
3706 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3707 rb_free(rb);
3708 }
3709
3710 static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3711 {
3712 struct ring_buffer *rb;
3713
3714 rcu_read_lock();
3715 rb = rcu_dereference(event->rb);
3716 if (rb) {
3717 if (!atomic_inc_not_zero(&rb->refcount))
3718 rb = NULL;
3719 }
3720 rcu_read_unlock();
3721
3722 return rb;
3723 }
3724
3725 static void ring_buffer_put(struct ring_buffer *rb)
3726 {
3727 if (!atomic_dec_and_test(&rb->refcount))
3728 return;
3729
3730 WARN_ON_ONCE(!list_empty(&rb->event_list));
3731
3732 call_rcu(&rb->rcu_head, rb_free_rcu);
3733 }
3734
3735 static void perf_mmap_open(struct vm_area_struct *vma)
3736 {
3737 struct perf_event *event = vma->vm_file->private_data;
3738
3739 atomic_inc(&event->mmap_count);
3740 atomic_inc(&event->rb->mmap_count);
3741 }
3742
3743 /*
3744 * A buffer can be mmap()ed multiple times; either directly through the same
3745 * event, or through other events by use of perf_event_set_output().
3746 *
3747 * In order to undo the VM accounting done by perf_mmap() we need to destroy
3748 * the buffer here, where we still have a VM context. This means we need
3749 * to detach all events redirecting to us.
3750 */
3751 static void perf_mmap_close(struct vm_area_struct *vma)
3752 {
3753 struct perf_event *event = vma->vm_file->private_data;
3754
3755 struct ring_buffer *rb = event->rb;
3756 struct user_struct *mmap_user = rb->mmap_user;
3757 int mmap_locked = rb->mmap_locked;
3758 unsigned long size = perf_data_size(rb);
3759
3760 atomic_dec(&rb->mmap_count);
3761
3762 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
3763 return;
3764
3765 /* Detach current event from the buffer. */
3766 rcu_assign_pointer(event->rb, NULL);
3767 ring_buffer_detach(event, rb);
3768 mutex_unlock(&event->mmap_mutex);
3769
3770 /* If there's still other mmap()s of this buffer, we're done. */
3771 if (atomic_read(&rb->mmap_count)) {
3772 ring_buffer_put(rb); /* can't be last */
3773 return;
3774 }
3775
3776 /*
3777 * No other mmap()s, detach from all other events that might redirect
3778 * into the now unreachable buffer. Somewhat complicated by the
3779 * fact that rb::event_lock otherwise nests inside mmap_mutex.
3780 */
3781 again:
3782 rcu_read_lock();
3783 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
3784 if (!atomic_long_inc_not_zero(&event->refcount)) {
3785 /*
3786 * This event is en-route to free_event() which will
3787 * detach it and remove it from the list.
3788 */
3789 continue;
3790 }
3791 rcu_read_unlock();
3792
3793 mutex_lock(&event->mmap_mutex);
3794 /*
3795 * Check we didn't race with perf_event_set_output() which can
3796 * swizzle the rb from under us while we were waiting to
3797 * acquire mmap_mutex.
3798 *
3799 * If we find a different rb; ignore this event, a next
3800 * iteration will no longer find it on the list. We have to
3801 * still restart the iteration to make sure we're not now
3802 * iterating the wrong list.
3803 */
3804 if (event->rb == rb) {
3805 rcu_assign_pointer(event->rb, NULL);
3806 ring_buffer_detach(event, rb);
3807 ring_buffer_put(rb); /* can't be last, we still have one */
3808 }
3809 mutex_unlock(&event->mmap_mutex);
3810 put_event(event);
3811
3812 /*
3813 * Restart the iteration; either we're on the wrong list or
3814 * destroyed its integrity by doing a deletion.
3815 */
3816 goto again;
3817 }
3818 rcu_read_unlock();
3819
3820 /*
3821 * It could be there's still a few 0-ref events on the list; they'll
3822 * get cleaned up by free_event() -- they'll also still have their
3823 * ref on the rb and will free it whenever they are done with it.
3824 *
3825 * Aside from that, this buffer is 'fully' detached and unmapped,
3826 * undo the VM accounting.
3827 */
3828
3829 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
3830 vma->vm_mm->pinned_vm -= mmap_locked;
3831 free_uid(mmap_user);
3832
3833 ring_buffer_put(rb); /* could be last */
3834 }
3835
3836 static const struct vm_operations_struct perf_mmap_vmops = {
3837 .open = perf_mmap_open,
3838 .close = perf_mmap_close,
3839 .fault = perf_mmap_fault,
3840 .page_mkwrite = perf_mmap_fault,
3841 };
3842
3843 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3844 {
3845 struct perf_event *event = file->private_data;
3846 unsigned long user_locked, user_lock_limit;
3847 struct user_struct *user = current_user();
3848 unsigned long locked, lock_limit;
3849 struct ring_buffer *rb;
3850 unsigned long vma_size;
3851 unsigned long nr_pages;
3852 long user_extra, extra;
3853 int ret = 0, flags = 0;
3854
3855 /*
3856 * Don't allow mmap() of inherited per-task counters. This would
3857 * create a performance issue due to all children writing to the
3858 * same rb.
3859 */
3860 if (event->cpu == -1 && event->attr.inherit)
3861 return -EINVAL;
3862
3863 if (!(vma->vm_flags & VM_SHARED))
3864 return -EINVAL;
3865
3866 vma_size = vma->vm_end - vma->vm_start;
3867 nr_pages = (vma_size / PAGE_SIZE) - 1;
3868
3869 /*
3870 * If we have rb pages ensure they're a power-of-two number, so we
3871 * can do bitmasks instead of modulo.
3872 */
3873 if (nr_pages != 0 && !is_power_of_2(nr_pages))
3874 return -EINVAL;
3875
3876 if (vma_size != PAGE_SIZE * (1 + nr_pages))
3877 return -EINVAL;
3878
3879 if (vma->vm_pgoff != 0)
3880 return -EINVAL;
3881
3882 WARN_ON_ONCE(event->ctx->parent_ctx);
3883 again:
3884 mutex_lock(&event->mmap_mutex);
3885 if (event->rb) {
3886 if (event->rb->nr_pages != nr_pages) {
3887 ret = -EINVAL;
3888 goto unlock;
3889 }
3890
3891 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
3892 /*
3893 * Raced against perf_mmap_close() through
3894 * perf_event_set_output(). Try again, hope for better
3895 * luck.
3896 */
3897 mutex_unlock(&event->mmap_mutex);
3898 goto again;
3899 }
3900
3901 goto unlock;
3902 }
3903
3904 user_extra = nr_pages + 1;
3905 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3906
3907 /*
3908 * Increase the limit linearly with more CPUs:
3909 */
3910 user_lock_limit *= num_online_cpus();
3911
3912 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3913
3914 extra = 0;
3915 if (user_locked > user_lock_limit)
3916 extra = user_locked - user_lock_limit;
3917
3918 lock_limit = rlimit(RLIMIT_MEMLOCK);
3919 lock_limit >>= PAGE_SHIFT;
3920 locked = vma->vm_mm->pinned_vm + extra;
3921
3922 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3923 !capable(CAP_IPC_LOCK)) {
3924 ret = -EPERM;
3925 goto unlock;
3926 }
3927
3928 WARN_ON(event->rb);
3929
3930 if (vma->vm_flags & VM_WRITE)
3931 flags |= RING_BUFFER_WRITABLE;
3932
3933 rb = rb_alloc(nr_pages,
3934 event->attr.watermark ? event->attr.wakeup_watermark : 0,
3935 event->cpu, flags);
3936
3937 if (!rb) {
3938 ret = -ENOMEM;
3939 goto unlock;
3940 }
3941
3942 atomic_set(&rb->mmap_count, 1);
3943 rb->mmap_locked = extra;
3944 rb->mmap_user = get_current_user();
3945
3946 atomic_long_add(user_extra, &user->locked_vm);
3947 vma->vm_mm->pinned_vm += extra;
3948
3949 ring_buffer_attach(event, rb);
3950 rcu_assign_pointer(event->rb, rb);
3951
3952 perf_event_update_userpage(event);
3953
3954 unlock:
3955 if (!ret)
3956 atomic_inc(&event->mmap_count);
3957 mutex_unlock(&event->mmap_mutex);
3958
3959 /*
3960 * Since pinned accounting is per vm we cannot allow fork() to copy our
3961 * vma.
3962 */
3963 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
3964 vma->vm_ops = &perf_mmap_vmops;
3965
3966 return ret;
3967 }
3968
3969 static int perf_fasync(int fd, struct file *filp, int on)
3970 {
3971 struct inode *inode = file_inode(filp);
3972 struct perf_event *event = filp->private_data;
3973 int retval;
3974
3975 mutex_lock(&inode->i_mutex);
3976 retval = fasync_helper(fd, filp, on, &event->fasync);
3977 mutex_unlock(&inode->i_mutex);
3978
3979 if (retval < 0)
3980 return retval;
3981
3982 return 0;
3983 }
3984
3985 static const struct file_operations perf_fops = {
3986 .llseek = no_llseek,
3987 .release = perf_release,
3988 .read = perf_read,
3989 .poll = perf_poll,
3990 .unlocked_ioctl = perf_ioctl,
3991 .compat_ioctl = perf_compat_ioctl,
3992 .mmap = perf_mmap,
3993 .fasync = perf_fasync,
3994 };
3995
3996 /*
3997 * Perf event wakeup
3998 *
3999 * If there's data, ensure we set the poll() state and publish everything
4000 * to user-space before waking everybody up.
4001 */
4002
4003 void perf_event_wakeup(struct perf_event *event)
4004 {
4005 ring_buffer_wakeup(event);
4006
4007 if (event->pending_kill) {
4008 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
4009 event->pending_kill = 0;
4010 }
4011 }
4012
4013 static void perf_pending_event(struct irq_work *entry)
4014 {
4015 struct perf_event *event = container_of(entry,
4016 struct perf_event, pending);
4017
4018 if (event->pending_disable) {
4019 event->pending_disable = 0;
4020 __perf_event_disable(event);
4021 }
4022
4023 if (event->pending_wakeup) {
4024 event->pending_wakeup = 0;
4025 perf_event_wakeup(event);
4026 }
4027 }
4028
4029 /*
4030 * We assume there is only KVM supporting the callbacks.
4031 * Later on, we might change it to a list if there is
4032 * another virtualization implementation supporting the callbacks.
4033 */
4034 struct perf_guest_info_callbacks *perf_guest_cbs;
4035
4036 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4037 {
4038 perf_guest_cbs = cbs;
4039 return 0;
4040 }
4041 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4042
4043 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4044 {
4045 perf_guest_cbs = NULL;
4046 return 0;
4047 }
4048 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4049
4050 static void
4051 perf_output_sample_regs(struct perf_output_handle *handle,
4052 struct pt_regs *regs, u64 mask)
4053 {
4054 int bit;
4055
4056 for_each_set_bit(bit, (const unsigned long *) &mask,
4057 sizeof(mask) * BITS_PER_BYTE) {
4058 u64 val;
4059
4060 val = perf_reg_value(regs, bit);
4061 perf_output_put(handle, val);
4062 }
4063 }
4064
4065 static void perf_sample_regs_user(struct perf_regs_user *regs_user,
4066 struct pt_regs *regs)
4067 {
4068 if (!user_mode(regs)) {
4069 if (current->mm)
4070 regs = task_pt_regs(current);
4071 else
4072 regs = NULL;
4073 }
4074
4075 if (regs) {
4076 regs_user->regs = regs;
4077 regs_user->abi = perf_reg_abi(current);
4078 }
4079 }
4080
4081 /*
4082 * Get remaining task size from user stack pointer.
4083 *
4084 * It'd be better to take stack vma map and limit this more
4085 * precisly, but there's no way to get it safely under interrupt,
4086 * so using TASK_SIZE as limit.
4087 */
4088 static u64 perf_ustack_task_size(struct pt_regs *regs)
4089 {
4090 unsigned long addr = perf_user_stack_pointer(regs);
4091
4092 if (!addr || addr >= TASK_SIZE)
4093 return 0;
4094
4095 return TASK_SIZE - addr;
4096 }
4097
4098 static u16
4099 perf_sample_ustack_size(u16 stack_size, u16 header_size,
4100 struct pt_regs *regs)
4101 {
4102 u64 task_size;
4103
4104 /* No regs, no stack pointer, no dump. */
4105 if (!regs)
4106 return 0;
4107
4108 /*
4109 * Check if we fit in with the requested stack size into the:
4110 * - TASK_SIZE
4111 * If we don't, we limit the size to the TASK_SIZE.
4112 *
4113 * - remaining sample size
4114 * If we don't, we customize the stack size to
4115 * fit in to the remaining sample size.
4116 */
4117
4118 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4119 stack_size = min(stack_size, (u16) task_size);
4120
4121 /* Current header size plus static size and dynamic size. */
4122 header_size += 2 * sizeof(u64);
4123
4124 /* Do we fit in with the current stack dump size? */
4125 if ((u16) (header_size + stack_size) < header_size) {
4126 /*
4127 * If we overflow the maximum size for the sample,
4128 * we customize the stack dump size to fit in.
4129 */
4130 stack_size = USHRT_MAX - header_size - sizeof(u64);
4131 stack_size = round_up(stack_size, sizeof(u64));
4132 }
4133
4134 return stack_size;
4135 }
4136
4137 static void
4138 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4139 struct pt_regs *regs)
4140 {
4141 /* Case of a kernel thread, nothing to dump */
4142 if (!regs) {
4143 u64 size = 0;
4144 perf_output_put(handle, size);
4145 } else {
4146 unsigned long sp;
4147 unsigned int rem;
4148 u64 dyn_size;
4149
4150 /*
4151 * We dump:
4152 * static size
4153 * - the size requested by user or the best one we can fit
4154 * in to the sample max size
4155 * data
4156 * - user stack dump data
4157 * dynamic size
4158 * - the actual dumped size
4159 */
4160
4161 /* Static size. */
4162 perf_output_put(handle, dump_size);
4163
4164 /* Data. */
4165 sp = perf_user_stack_pointer(regs);
4166 rem = __output_copy_user(handle, (void *) sp, dump_size);
4167 dyn_size = dump_size - rem;
4168
4169 perf_output_skip(handle, rem);
4170
4171 /* Dynamic size. */
4172 perf_output_put(handle, dyn_size);
4173 }
4174 }
4175
4176 static void __perf_event_header__init_id(struct perf_event_header *header,
4177 struct perf_sample_data *data,
4178 struct perf_event *event)
4179 {
4180 u64 sample_type = event->attr.sample_type;
4181
4182 data->type = sample_type;
4183 header->size += event->id_header_size;
4184
4185 if (sample_type & PERF_SAMPLE_TID) {
4186 /* namespace issues */
4187 data->tid_entry.pid = perf_event_pid(event, current);
4188 data->tid_entry.tid = perf_event_tid(event, current);
4189 }
4190
4191 if (sample_type & PERF_SAMPLE_TIME)
4192 data->time = perf_clock();
4193
4194 if (sample_type & PERF_SAMPLE_ID)
4195 data->id = primary_event_id(event);
4196
4197 if (sample_type & PERF_SAMPLE_STREAM_ID)
4198 data->stream_id = event->id;
4199
4200 if (sample_type & PERF_SAMPLE_CPU) {
4201 data->cpu_entry.cpu = raw_smp_processor_id();
4202 data->cpu_entry.reserved = 0;
4203 }
4204 }
4205
4206 void perf_event_header__init_id(struct perf_event_header *header,
4207 struct perf_sample_data *data,
4208 struct perf_event *event)
4209 {
4210 if (event->attr.sample_id_all)
4211 __perf_event_header__init_id(header, data, event);
4212 }
4213
4214 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4215 struct perf_sample_data *data)
4216 {
4217 u64 sample_type = data->type;
4218
4219 if (sample_type & PERF_SAMPLE_TID)
4220 perf_output_put(handle, data->tid_entry);
4221
4222 if (sample_type & PERF_SAMPLE_TIME)
4223 perf_output_put(handle, data->time);
4224
4225 if (sample_type & PERF_SAMPLE_ID)
4226 perf_output_put(handle, data->id);
4227
4228 if (sample_type & PERF_SAMPLE_STREAM_ID)
4229 perf_output_put(handle, data->stream_id);
4230
4231 if (sample_type & PERF_SAMPLE_CPU)
4232 perf_output_put(handle, data->cpu_entry);
4233 }
4234
4235 void perf_event__output_id_sample(struct perf_event *event,
4236 struct perf_output_handle *handle,
4237 struct perf_sample_data *sample)
4238 {
4239 if (event->attr.sample_id_all)
4240 __perf_event__output_id_sample(handle, sample);
4241 }
4242
4243 static void perf_output_read_one(struct perf_output_handle *handle,
4244 struct perf_event *event,
4245 u64 enabled, u64 running)
4246 {
4247 u64 read_format = event->attr.read_format;
4248 u64 values[4];
4249 int n = 0;
4250
4251 values[n++] = perf_event_count(event);
4252 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4253 values[n++] = enabled +
4254 atomic64_read(&event->child_total_time_enabled);
4255 }
4256 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4257 values[n++] = running +
4258 atomic64_read(&event->child_total_time_running);
4259 }
4260 if (read_format & PERF_FORMAT_ID)
4261 values[n++] = primary_event_id(event);
4262
4263 __output_copy(handle, values, n * sizeof(u64));
4264 }
4265
4266 /*
4267 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4268 */
4269 static void perf_output_read_group(struct perf_output_handle *handle,
4270 struct perf_event *event,
4271 u64 enabled, u64 running)
4272 {
4273 struct perf_event *leader = event->group_leader, *sub;
4274 u64 read_format = event->attr.read_format;
4275 u64 values[5];
4276 int n = 0;
4277
4278 values[n++] = 1 + leader->nr_siblings;
4279
4280 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4281 values[n++] = enabled;
4282
4283 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4284 values[n++] = running;
4285
4286 if (leader != event)
4287 leader->pmu->read(leader);
4288
4289 values[n++] = perf_event_count(leader);
4290 if (read_format & PERF_FORMAT_ID)
4291 values[n++] = primary_event_id(leader);
4292
4293 __output_copy(handle, values, n * sizeof(u64));
4294
4295 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4296 n = 0;
4297
4298 if (sub != event)
4299 sub->pmu->read(sub);
4300
4301 values[n++] = perf_event_count(sub);
4302 if (read_format & PERF_FORMAT_ID)
4303 values[n++] = primary_event_id(sub);
4304
4305 __output_copy(handle, values, n * sizeof(u64));
4306 }
4307 }
4308
4309 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4310 PERF_FORMAT_TOTAL_TIME_RUNNING)
4311
4312 static void perf_output_read(struct perf_output_handle *handle,
4313 struct perf_event *event)
4314 {
4315 u64 enabled = 0, running = 0, now;
4316 u64 read_format = event->attr.read_format;
4317
4318 /*
4319 * compute total_time_enabled, total_time_running
4320 * based on snapshot values taken when the event
4321 * was last scheduled in.
4322 *
4323 * we cannot simply called update_context_time()
4324 * because of locking issue as we are called in
4325 * NMI context
4326 */
4327 if (read_format & PERF_FORMAT_TOTAL_TIMES)
4328 calc_timer_values(event, &now, &enabled, &running);
4329
4330 if (event->attr.read_format & PERF_FORMAT_GROUP)
4331 perf_output_read_group(handle, event, enabled, running);
4332 else
4333 perf_output_read_one(handle, event, enabled, running);
4334 }
4335
4336 void perf_output_sample(struct perf_output_handle *handle,
4337 struct perf_event_header *header,
4338 struct perf_sample_data *data,
4339 struct perf_event *event)
4340 {
4341 u64 sample_type = data->type;
4342
4343 perf_output_put(handle, *header);
4344
4345 if (sample_type & PERF_SAMPLE_IP)
4346 perf_output_put(handle, data->ip);
4347
4348 if (sample_type & PERF_SAMPLE_TID)
4349 perf_output_put(handle, data->tid_entry);
4350
4351 if (sample_type & PERF_SAMPLE_TIME)
4352 perf_output_put(handle, data->time);
4353
4354 if (sample_type & PERF_SAMPLE_ADDR)
4355 perf_output_put(handle, data->addr);
4356
4357 if (sample_type & PERF_SAMPLE_ID)
4358 perf_output_put(handle, data->id);
4359
4360 if (sample_type & PERF_SAMPLE_STREAM_ID)
4361 perf_output_put(handle, data->stream_id);
4362
4363 if (sample_type & PERF_SAMPLE_CPU)
4364 perf_output_put(handle, data->cpu_entry);
4365
4366 if (sample_type & PERF_SAMPLE_PERIOD)
4367 perf_output_put(handle, data->period);
4368
4369 if (sample_type & PERF_SAMPLE_READ)
4370 perf_output_read(handle, event);
4371
4372 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4373 if (data->callchain) {
4374 int size = 1;
4375
4376 if (data->callchain)
4377 size += data->callchain->nr;
4378
4379 size *= sizeof(u64);
4380
4381 __output_copy(handle, data->callchain, size);
4382 } else {
4383 u64 nr = 0;
4384 perf_output_put(handle, nr);
4385 }
4386 }
4387
4388 if (sample_type & PERF_SAMPLE_RAW) {
4389 if (data->raw) {
4390 perf_output_put(handle, data->raw->size);
4391 __output_copy(handle, data->raw->data,
4392 data->raw->size);
4393 } else {
4394 struct {
4395 u32 size;
4396 u32 data;
4397 } raw = {
4398 .size = sizeof(u32),
4399 .data = 0,
4400 };
4401 perf_output_put(handle, raw);
4402 }
4403 }
4404
4405 if (!event->attr.watermark) {
4406 int wakeup_events = event->attr.wakeup_events;
4407
4408 if (wakeup_events) {
4409 struct ring_buffer *rb = handle->rb;
4410 int events = local_inc_return(&rb->events);
4411
4412 if (events >= wakeup_events) {
4413 local_sub(wakeup_events, &rb->events);
4414 local_inc(&rb->wakeup);
4415 }
4416 }
4417 }
4418
4419 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4420 if (data->br_stack) {
4421 size_t size;
4422
4423 size = data->br_stack->nr
4424 * sizeof(struct perf_branch_entry);
4425
4426 perf_output_put(handle, data->br_stack->nr);
4427 perf_output_copy(handle, data->br_stack->entries, size);
4428 } else {
4429 /*
4430 * we always store at least the value of nr
4431 */
4432 u64 nr = 0;
4433 perf_output_put(handle, nr);
4434 }
4435 }
4436
4437 if (sample_type & PERF_SAMPLE_REGS_USER) {
4438 u64 abi = data->regs_user.abi;
4439
4440 /*
4441 * If there are no regs to dump, notice it through
4442 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4443 */
4444 perf_output_put(handle, abi);
4445
4446 if (abi) {
4447 u64 mask = event->attr.sample_regs_user;
4448 perf_output_sample_regs(handle,
4449 data->regs_user.regs,
4450 mask);
4451 }
4452 }
4453
4454 if (sample_type & PERF_SAMPLE_STACK_USER)
4455 perf_output_sample_ustack(handle,
4456 data->stack_user_size,
4457 data->regs_user.regs);
4458
4459 if (sample_type & PERF_SAMPLE_WEIGHT)
4460 perf_output_put(handle, data->weight);
4461
4462 if (sample_type & PERF_SAMPLE_DATA_SRC)
4463 perf_output_put(handle, data->data_src.val);
4464 }
4465
4466 void perf_prepare_sample(struct perf_event_header *header,
4467 struct perf_sample_data *data,
4468 struct perf_event *event,
4469 struct pt_regs *regs)
4470 {
4471 u64 sample_type = event->attr.sample_type;
4472
4473 header->type = PERF_RECORD_SAMPLE;
4474 header->size = sizeof(*header) + event->header_size;
4475
4476 header->misc = 0;
4477 header->misc |= perf_misc_flags(regs);
4478
4479 __perf_event_header__init_id(header, data, event);
4480
4481 if (sample_type & PERF_SAMPLE_IP)
4482 data->ip = perf_instruction_pointer(regs);
4483
4484 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4485 int size = 1;
4486
4487 data->callchain = perf_callchain(event, regs);
4488
4489 if (data->callchain)
4490 size += data->callchain->nr;
4491
4492 header->size += size * sizeof(u64);
4493 }
4494
4495 if (sample_type & PERF_SAMPLE_RAW) {
4496 int size = sizeof(u32);
4497
4498 if (data->raw)
4499 size += data->raw->size;
4500 else
4501 size += sizeof(u32);
4502
4503 WARN_ON_ONCE(size & (sizeof(u64)-1));
4504 header->size += size;
4505 }
4506
4507 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4508 int size = sizeof(u64); /* nr */
4509 if (data->br_stack) {
4510 size += data->br_stack->nr
4511 * sizeof(struct perf_branch_entry);
4512 }
4513 header->size += size;
4514 }
4515
4516 if (sample_type & PERF_SAMPLE_REGS_USER) {
4517 /* regs dump ABI info */
4518 int size = sizeof(u64);
4519
4520 perf_sample_regs_user(&data->regs_user, regs);
4521
4522 if (data->regs_user.regs) {
4523 u64 mask = event->attr.sample_regs_user;
4524 size += hweight64(mask) * sizeof(u64);
4525 }
4526
4527 header->size += size;
4528 }
4529
4530 if (sample_type & PERF_SAMPLE_STACK_USER) {
4531 /*
4532 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
4533 * processed as the last one or have additional check added
4534 * in case new sample type is added, because we could eat
4535 * up the rest of the sample size.
4536 */
4537 struct perf_regs_user *uregs = &data->regs_user;
4538 u16 stack_size = event->attr.sample_stack_user;
4539 u16 size = sizeof(u64);
4540
4541 if (!uregs->abi)
4542 perf_sample_regs_user(uregs, regs);
4543
4544 stack_size = perf_sample_ustack_size(stack_size, header->size,
4545 uregs->regs);
4546
4547 /*
4548 * If there is something to dump, add space for the dump
4549 * itself and for the field that tells the dynamic size,
4550 * which is how many have been actually dumped.
4551 */
4552 if (stack_size)
4553 size += sizeof(u64) + stack_size;
4554
4555 data->stack_user_size = stack_size;
4556 header->size += size;
4557 }
4558 }
4559
4560 static void perf_event_output(struct perf_event *event,
4561 struct perf_sample_data *data,
4562 struct pt_regs *regs)
4563 {
4564 struct perf_output_handle handle;
4565 struct perf_event_header header;
4566
4567 /* protect the callchain buffers */
4568 rcu_read_lock();
4569
4570 perf_prepare_sample(&header, data, event, regs);
4571
4572 if (perf_output_begin(&handle, event, header.size))
4573 goto exit;
4574
4575 perf_output_sample(&handle, &header, data, event);
4576
4577 perf_output_end(&handle);
4578
4579 exit:
4580 rcu_read_unlock();
4581 }
4582
4583 /*
4584 * read event_id
4585 */
4586
4587 struct perf_read_event {
4588 struct perf_event_header header;
4589
4590 u32 pid;
4591 u32 tid;
4592 };
4593
4594 static void
4595 perf_event_read_event(struct perf_event *event,
4596 struct task_struct *task)
4597 {
4598 struct perf_output_handle handle;
4599 struct perf_sample_data sample;
4600 struct perf_read_event read_event = {
4601 .header = {
4602 .type = PERF_RECORD_READ,
4603 .misc = 0,
4604 .size = sizeof(read_event) + event->read_size,
4605 },
4606 .pid = perf_event_pid(event, task),
4607 .tid = perf_event_tid(event, task),
4608 };
4609 int ret;
4610
4611 perf_event_header__init_id(&read_event.header, &sample, event);
4612 ret = perf_output_begin(&handle, event, read_event.header.size);
4613 if (ret)
4614 return;
4615
4616 perf_output_put(&handle, read_event);
4617 perf_output_read(&handle, event);
4618 perf_event__output_id_sample(event, &handle, &sample);
4619
4620 perf_output_end(&handle);
4621 }
4622
4623 typedef int (perf_event_aux_match_cb)(struct perf_event *event, void *data);
4624 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
4625
4626 static void
4627 perf_event_aux_ctx(struct perf_event_context *ctx,
4628 perf_event_aux_match_cb match,
4629 perf_event_aux_output_cb output,
4630 void *data)
4631 {
4632 struct perf_event *event;
4633
4634 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4635 if (event->state < PERF_EVENT_STATE_INACTIVE)
4636 continue;
4637 if (!event_filter_match(event))
4638 continue;
4639 if (match(event, data))
4640 output(event, data);
4641 }
4642 }
4643
4644 static void
4645 perf_event_aux(perf_event_aux_match_cb match,
4646 perf_event_aux_output_cb output,
4647 void *data,
4648 struct perf_event_context *task_ctx)
4649 {
4650 struct perf_cpu_context *cpuctx;
4651 struct perf_event_context *ctx;
4652 struct pmu *pmu;
4653 int ctxn;
4654
4655 rcu_read_lock();
4656 list_for_each_entry_rcu(pmu, &pmus, entry) {
4657 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4658 if (cpuctx->unique_pmu != pmu)
4659 goto next;
4660 perf_event_aux_ctx(&cpuctx->ctx, match, output, data);
4661 if (task_ctx)
4662 goto next;
4663 ctxn = pmu->task_ctx_nr;
4664 if (ctxn < 0)
4665 goto next;
4666 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4667 if (ctx)
4668 perf_event_aux_ctx(ctx, match, output, data);
4669 next:
4670 put_cpu_ptr(pmu->pmu_cpu_context);
4671 }
4672
4673 if (task_ctx) {
4674 preempt_disable();
4675 perf_event_aux_ctx(task_ctx, match, output, data);
4676 preempt_enable();
4677 }
4678 rcu_read_unlock();
4679 }
4680
4681 /*
4682 * task tracking -- fork/exit
4683 *
4684 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
4685 */
4686
4687 struct perf_task_event {
4688 struct task_struct *task;
4689 struct perf_event_context *task_ctx;
4690
4691 struct {
4692 struct perf_event_header header;
4693
4694 u32 pid;
4695 u32 ppid;
4696 u32 tid;
4697 u32 ptid;
4698 u64 time;
4699 } event_id;
4700 };
4701
4702 static void perf_event_task_output(struct perf_event *event,
4703 void *data)
4704 {
4705 struct perf_task_event *task_event = data;
4706 struct perf_output_handle handle;
4707 struct perf_sample_data sample;
4708 struct task_struct *task = task_event->task;
4709 int ret, size = task_event->event_id.header.size;
4710
4711 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4712
4713 ret = perf_output_begin(&handle, event,
4714 task_event->event_id.header.size);
4715 if (ret)
4716 goto out;
4717
4718 task_event->event_id.pid = perf_event_pid(event, task);
4719 task_event->event_id.ppid = perf_event_pid(event, current);
4720
4721 task_event->event_id.tid = perf_event_tid(event, task);
4722 task_event->event_id.ptid = perf_event_tid(event, current);
4723
4724 perf_output_put(&handle, task_event->event_id);
4725
4726 perf_event__output_id_sample(event, &handle, &sample);
4727
4728 perf_output_end(&handle);
4729 out:
4730 task_event->event_id.header.size = size;
4731 }
4732
4733 static int perf_event_task_match(struct perf_event *event,
4734 void *data __maybe_unused)
4735 {
4736 return event->attr.comm || event->attr.mmap ||
4737 event->attr.mmap_data || event->attr.task;
4738 }
4739
4740 static void perf_event_task(struct task_struct *task,
4741 struct perf_event_context *task_ctx,
4742 int new)
4743 {
4744 struct perf_task_event task_event;
4745
4746 if (!atomic_read(&nr_comm_events) &&
4747 !atomic_read(&nr_mmap_events) &&
4748 !atomic_read(&nr_task_events))
4749 return;
4750
4751 task_event = (struct perf_task_event){
4752 .task = task,
4753 .task_ctx = task_ctx,
4754 .event_id = {
4755 .header = {
4756 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4757 .misc = 0,
4758 .size = sizeof(task_event.event_id),
4759 },
4760 /* .pid */
4761 /* .ppid */
4762 /* .tid */
4763 /* .ptid */
4764 .time = perf_clock(),
4765 },
4766 };
4767
4768 perf_event_aux(perf_event_task_match,
4769 perf_event_task_output,
4770 &task_event,
4771 task_ctx);
4772 }
4773
4774 void perf_event_fork(struct task_struct *task)
4775 {
4776 perf_event_task(task, NULL, 1);
4777 }
4778
4779 /*
4780 * comm tracking
4781 */
4782
4783 struct perf_comm_event {
4784 struct task_struct *task;
4785 char *comm;
4786 int comm_size;
4787
4788 struct {
4789 struct perf_event_header header;
4790
4791 u32 pid;
4792 u32 tid;
4793 } event_id;
4794 };
4795
4796 static void perf_event_comm_output(struct perf_event *event,
4797 void *data)
4798 {
4799 struct perf_comm_event *comm_event = data;
4800 struct perf_output_handle handle;
4801 struct perf_sample_data sample;
4802 int size = comm_event->event_id.header.size;
4803 int ret;
4804
4805 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4806 ret = perf_output_begin(&handle, event,
4807 comm_event->event_id.header.size);
4808
4809 if (ret)
4810 goto out;
4811
4812 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4813 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4814
4815 perf_output_put(&handle, comm_event->event_id);
4816 __output_copy(&handle, comm_event->comm,
4817 comm_event->comm_size);
4818
4819 perf_event__output_id_sample(event, &handle, &sample);
4820
4821 perf_output_end(&handle);
4822 out:
4823 comm_event->event_id.header.size = size;
4824 }
4825
4826 static int perf_event_comm_match(struct perf_event *event,
4827 void *data __maybe_unused)
4828 {
4829 return event->attr.comm;
4830 }
4831
4832 static void perf_event_comm_event(struct perf_comm_event *comm_event)
4833 {
4834 char comm[TASK_COMM_LEN];
4835 unsigned int size;
4836
4837 memset(comm, 0, sizeof(comm));
4838 strlcpy(comm, comm_event->task->comm, sizeof(comm));
4839 size = ALIGN(strlen(comm)+1, sizeof(u64));
4840
4841 comm_event->comm = comm;
4842 comm_event->comm_size = size;
4843
4844 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4845
4846 perf_event_aux(perf_event_comm_match,
4847 perf_event_comm_output,
4848 comm_event,
4849 NULL);
4850 }
4851
4852 void perf_event_comm(struct task_struct *task)
4853 {
4854 struct perf_comm_event comm_event;
4855 struct perf_event_context *ctx;
4856 int ctxn;
4857
4858 rcu_read_lock();
4859 for_each_task_context_nr(ctxn) {
4860 ctx = task->perf_event_ctxp[ctxn];
4861 if (!ctx)
4862 continue;
4863
4864 perf_event_enable_on_exec(ctx);
4865 }
4866 rcu_read_unlock();
4867
4868 if (!atomic_read(&nr_comm_events))
4869 return;
4870
4871 comm_event = (struct perf_comm_event){
4872 .task = task,
4873 /* .comm */
4874 /* .comm_size */
4875 .event_id = {
4876 .header = {
4877 .type = PERF_RECORD_COMM,
4878 .misc = 0,
4879 /* .size */
4880 },
4881 /* .pid */
4882 /* .tid */
4883 },
4884 };
4885
4886 perf_event_comm_event(&comm_event);
4887 }
4888
4889 /*
4890 * mmap tracking
4891 */
4892
4893 struct perf_mmap_event {
4894 struct vm_area_struct *vma;
4895
4896 const char *file_name;
4897 int file_size;
4898
4899 struct {
4900 struct perf_event_header header;
4901
4902 u32 pid;
4903 u32 tid;
4904 u64 start;
4905 u64 len;
4906 u64 pgoff;
4907 } event_id;
4908 };
4909
4910 static void perf_event_mmap_output(struct perf_event *event,
4911 void *data)
4912 {
4913 struct perf_mmap_event *mmap_event = data;
4914 struct perf_output_handle handle;
4915 struct perf_sample_data sample;
4916 int size = mmap_event->event_id.header.size;
4917 int ret;
4918
4919 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4920 ret = perf_output_begin(&handle, event,
4921 mmap_event->event_id.header.size);
4922 if (ret)
4923 goto out;
4924
4925 mmap_event->event_id.pid = perf_event_pid(event, current);
4926 mmap_event->event_id.tid = perf_event_tid(event, current);
4927
4928 perf_output_put(&handle, mmap_event->event_id);
4929 __output_copy(&handle, mmap_event->file_name,
4930 mmap_event->file_size);
4931
4932 perf_event__output_id_sample(event, &handle, &sample);
4933
4934 perf_output_end(&handle);
4935 out:
4936 mmap_event->event_id.header.size = size;
4937 }
4938
4939 static int perf_event_mmap_match(struct perf_event *event,
4940 void *data)
4941 {
4942 struct perf_mmap_event *mmap_event = data;
4943 struct vm_area_struct *vma = mmap_event->vma;
4944 int executable = vma->vm_flags & VM_EXEC;
4945
4946 return (!executable && event->attr.mmap_data) ||
4947 (executable && event->attr.mmap);
4948 }
4949
4950 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4951 {
4952 struct vm_area_struct *vma = mmap_event->vma;
4953 struct file *file = vma->vm_file;
4954 unsigned int size;
4955 char tmp[16];
4956 char *buf = NULL;
4957 const char *name;
4958
4959 memset(tmp, 0, sizeof(tmp));
4960
4961 if (file) {
4962 /*
4963 * d_path works from the end of the rb backwards, so we
4964 * need to add enough zero bytes after the string to handle
4965 * the 64bit alignment we do later.
4966 */
4967 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4968 if (!buf) {
4969 name = strncpy(tmp, "//enomem", sizeof(tmp));
4970 goto got_name;
4971 }
4972 name = d_path(&file->f_path, buf, PATH_MAX);
4973 if (IS_ERR(name)) {
4974 name = strncpy(tmp, "//toolong", sizeof(tmp));
4975 goto got_name;
4976 }
4977 } else {
4978 if (arch_vma_name(mmap_event->vma)) {
4979 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4980 sizeof(tmp) - 1);
4981 tmp[sizeof(tmp) - 1] = '\0';
4982 goto got_name;
4983 }
4984
4985 if (!vma->vm_mm) {
4986 name = strncpy(tmp, "[vdso]", sizeof(tmp));
4987 goto got_name;
4988 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4989 vma->vm_end >= vma->vm_mm->brk) {
4990 name = strncpy(tmp, "[heap]", sizeof(tmp));
4991 goto got_name;
4992 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4993 vma->vm_end >= vma->vm_mm->start_stack) {
4994 name = strncpy(tmp, "[stack]", sizeof(tmp));
4995 goto got_name;
4996 }
4997
4998 name = strncpy(tmp, "//anon", sizeof(tmp));
4999 goto got_name;
5000 }
5001
5002 got_name:
5003 size = ALIGN(strlen(name)+1, sizeof(u64));
5004
5005 mmap_event->file_name = name;
5006 mmap_event->file_size = size;
5007
5008 if (!(vma->vm_flags & VM_EXEC))
5009 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5010
5011 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5012
5013 perf_event_aux(perf_event_mmap_match,
5014 perf_event_mmap_output,
5015 mmap_event,
5016 NULL);
5017
5018 kfree(buf);
5019 }
5020
5021 void perf_event_mmap(struct vm_area_struct *vma)
5022 {
5023 struct perf_mmap_event mmap_event;
5024
5025 if (!atomic_read(&nr_mmap_events))
5026 return;
5027
5028 mmap_event = (struct perf_mmap_event){
5029 .vma = vma,
5030 /* .file_name */
5031 /* .file_size */
5032 .event_id = {
5033 .header = {
5034 .type = PERF_RECORD_MMAP,
5035 .misc = PERF_RECORD_MISC_USER,
5036 /* .size */
5037 },
5038 /* .pid */
5039 /* .tid */
5040 .start = vma->vm_start,
5041 .len = vma->vm_end - vma->vm_start,
5042 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
5043 },
5044 };
5045
5046 perf_event_mmap_event(&mmap_event);
5047 }
5048
5049 /*
5050 * IRQ throttle logging
5051 */
5052
5053 static void perf_log_throttle(struct perf_event *event, int enable)
5054 {
5055 struct perf_output_handle handle;
5056 struct perf_sample_data sample;
5057 int ret;
5058
5059 struct {
5060 struct perf_event_header header;
5061 u64 time;
5062 u64 id;
5063 u64 stream_id;
5064 } throttle_event = {
5065 .header = {
5066 .type = PERF_RECORD_THROTTLE,
5067 .misc = 0,
5068 .size = sizeof(throttle_event),
5069 },
5070 .time = perf_clock(),
5071 .id = primary_event_id(event),
5072 .stream_id = event->id,
5073 };
5074
5075 if (enable)
5076 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5077
5078 perf_event_header__init_id(&throttle_event.header, &sample, event);
5079
5080 ret = perf_output_begin(&handle, event,
5081 throttle_event.header.size);
5082 if (ret)
5083 return;
5084
5085 perf_output_put(&handle, throttle_event);
5086 perf_event__output_id_sample(event, &handle, &sample);
5087 perf_output_end(&handle);
5088 }
5089
5090 /*
5091 * Generic event overflow handling, sampling.
5092 */
5093
5094 static int __perf_event_overflow(struct perf_event *event,
5095 int throttle, struct perf_sample_data *data,
5096 struct pt_regs *regs)
5097 {
5098 int events = atomic_read(&event->event_limit);
5099 struct hw_perf_event *hwc = &event->hw;
5100 u64 seq;
5101 int ret = 0;
5102
5103 /*
5104 * Non-sampling counters might still use the PMI to fold short
5105 * hardware counters, ignore those.
5106 */
5107 if (unlikely(!is_sampling_event(event)))
5108 return 0;
5109
5110 seq = __this_cpu_read(perf_throttled_seq);
5111 if (seq != hwc->interrupts_seq) {
5112 hwc->interrupts_seq = seq;
5113 hwc->interrupts = 1;
5114 } else {
5115 hwc->interrupts++;
5116 if (unlikely(throttle
5117 && hwc->interrupts >= max_samples_per_tick)) {
5118 __this_cpu_inc(perf_throttled_count);
5119 hwc->interrupts = MAX_INTERRUPTS;
5120 perf_log_throttle(event, 0);
5121 ret = 1;
5122 }
5123 }
5124
5125 if (event->attr.freq) {
5126 u64 now = perf_clock();
5127 s64 delta = now - hwc->freq_time_stamp;
5128
5129 hwc->freq_time_stamp = now;
5130
5131 if (delta > 0 && delta < 2*TICK_NSEC)
5132 perf_adjust_period(event, delta, hwc->last_period, true);
5133 }
5134
5135 /*
5136 * XXX event_limit might not quite work as expected on inherited
5137 * events
5138 */
5139
5140 event->pending_kill = POLL_IN;
5141 if (events && atomic_dec_and_test(&event->event_limit)) {
5142 ret = 1;
5143 event->pending_kill = POLL_HUP;
5144 event->pending_disable = 1;
5145 irq_work_queue(&event->pending);
5146 }
5147
5148 if (event->overflow_handler)
5149 event->overflow_handler(event, data, regs);
5150 else
5151 perf_event_output(event, data, regs);
5152
5153 if (event->fasync && event->pending_kill) {
5154 event->pending_wakeup = 1;
5155 irq_work_queue(&event->pending);
5156 }
5157
5158 return ret;
5159 }
5160
5161 int perf_event_overflow(struct perf_event *event,
5162 struct perf_sample_data *data,
5163 struct pt_regs *regs)
5164 {
5165 return __perf_event_overflow(event, 1, data, regs);
5166 }
5167
5168 /*
5169 * Generic software event infrastructure
5170 */
5171
5172 struct swevent_htable {
5173 struct swevent_hlist *swevent_hlist;
5174 struct mutex hlist_mutex;
5175 int hlist_refcount;
5176
5177 /* Recursion avoidance in each contexts */
5178 int recursion[PERF_NR_CONTEXTS];
5179 };
5180
5181 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
5182
5183 /*
5184 * We directly increment event->count and keep a second value in
5185 * event->hw.period_left to count intervals. This period event
5186 * is kept in the range [-sample_period, 0] so that we can use the
5187 * sign as trigger.
5188 */
5189
5190 static u64 perf_swevent_set_period(struct perf_event *event)
5191 {
5192 struct hw_perf_event *hwc = &event->hw;
5193 u64 period = hwc->last_period;
5194 u64 nr, offset;
5195 s64 old, val;
5196
5197 hwc->last_period = hwc->sample_period;
5198
5199 again:
5200 old = val = local64_read(&hwc->period_left);
5201 if (val < 0)
5202 return 0;
5203
5204 nr = div64_u64(period + val, period);
5205 offset = nr * period;
5206 val -= offset;
5207 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5208 goto again;
5209
5210 return nr;
5211 }
5212
5213 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5214 struct perf_sample_data *data,
5215 struct pt_regs *regs)
5216 {
5217 struct hw_perf_event *hwc = &event->hw;
5218 int throttle = 0;
5219
5220 if (!overflow)
5221 overflow = perf_swevent_set_period(event);
5222
5223 if (hwc->interrupts == MAX_INTERRUPTS)
5224 return;
5225
5226 for (; overflow; overflow--) {
5227 if (__perf_event_overflow(event, throttle,
5228 data, regs)) {
5229 /*
5230 * We inhibit the overflow from happening when
5231 * hwc->interrupts == MAX_INTERRUPTS.
5232 */
5233 break;
5234 }
5235 throttle = 1;
5236 }
5237 }
5238
5239 static void perf_swevent_event(struct perf_event *event, u64 nr,
5240 struct perf_sample_data *data,
5241 struct pt_regs *regs)
5242 {
5243 struct hw_perf_event *hwc = &event->hw;
5244
5245 local64_add(nr, &event->count);
5246
5247 if (!regs)
5248 return;
5249
5250 if (!is_sampling_event(event))
5251 return;
5252
5253 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5254 data->period = nr;
5255 return perf_swevent_overflow(event, 1, data, regs);
5256 } else
5257 data->period = event->hw.last_period;
5258
5259 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5260 return perf_swevent_overflow(event, 1, data, regs);
5261
5262 if (local64_add_negative(nr, &hwc->period_left))
5263 return;
5264
5265 perf_swevent_overflow(event, 0, data, regs);
5266 }
5267
5268 static int perf_exclude_event(struct perf_event *event,
5269 struct pt_regs *regs)
5270 {
5271 if (event->hw.state & PERF_HES_STOPPED)
5272 return 1;
5273
5274 if (regs) {
5275 if (event->attr.exclude_user && user_mode(regs))
5276 return 1;
5277
5278 if (event->attr.exclude_kernel && !user_mode(regs))
5279 return 1;
5280 }
5281
5282 return 0;
5283 }
5284
5285 static int perf_swevent_match(struct perf_event *event,
5286 enum perf_type_id type,
5287 u32 event_id,
5288 struct perf_sample_data *data,
5289 struct pt_regs *regs)
5290 {
5291 if (event->attr.type != type)
5292 return 0;
5293
5294 if (event->attr.config != event_id)
5295 return 0;
5296
5297 if (perf_exclude_event(event, regs))
5298 return 0;
5299
5300 return 1;
5301 }
5302
5303 static inline u64 swevent_hash(u64 type, u32 event_id)
5304 {
5305 u64 val = event_id | (type << 32);
5306
5307 return hash_64(val, SWEVENT_HLIST_BITS);
5308 }
5309
5310 static inline struct hlist_head *
5311 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5312 {
5313 u64 hash = swevent_hash(type, event_id);
5314
5315 return &hlist->heads[hash];
5316 }
5317
5318 /* For the read side: events when they trigger */
5319 static inline struct hlist_head *
5320 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5321 {
5322 struct swevent_hlist *hlist;
5323
5324 hlist = rcu_dereference(swhash->swevent_hlist);
5325 if (!hlist)
5326 return NULL;
5327
5328 return __find_swevent_head(hlist, type, event_id);
5329 }
5330
5331 /* For the event head insertion and removal in the hlist */
5332 static inline struct hlist_head *
5333 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5334 {
5335 struct swevent_hlist *hlist;
5336 u32 event_id = event->attr.config;
5337 u64 type = event->attr.type;
5338
5339 /*
5340 * Event scheduling is always serialized against hlist allocation
5341 * and release. Which makes the protected version suitable here.
5342 * The context lock guarantees that.
5343 */
5344 hlist = rcu_dereference_protected(swhash->swevent_hlist,
5345 lockdep_is_held(&event->ctx->lock));
5346 if (!hlist)
5347 return NULL;
5348
5349 return __find_swevent_head(hlist, type, event_id);
5350 }
5351
5352 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5353 u64 nr,
5354 struct perf_sample_data *data,
5355 struct pt_regs *regs)
5356 {
5357 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5358 struct perf_event *event;
5359 struct hlist_head *head;
5360
5361 rcu_read_lock();
5362 head = find_swevent_head_rcu(swhash, type, event_id);
5363 if (!head)
5364 goto end;
5365
5366 hlist_for_each_entry_rcu(event, head, hlist_entry) {
5367 if (perf_swevent_match(event, type, event_id, data, regs))
5368 perf_swevent_event(event, nr, data, regs);
5369 }
5370 end:
5371 rcu_read_unlock();
5372 }
5373
5374 int perf_swevent_get_recursion_context(void)
5375 {
5376 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5377
5378 return get_recursion_context(swhash->recursion);
5379 }
5380 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
5381
5382 inline void perf_swevent_put_recursion_context(int rctx)
5383 {
5384 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5385
5386 put_recursion_context(swhash->recursion, rctx);
5387 }
5388
5389 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5390 {
5391 struct perf_sample_data data;
5392 int rctx;
5393
5394 preempt_disable_notrace();
5395 rctx = perf_swevent_get_recursion_context();
5396 if (rctx < 0)
5397 return;
5398
5399 perf_sample_data_init(&data, addr, 0);
5400
5401 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5402
5403 perf_swevent_put_recursion_context(rctx);
5404 preempt_enable_notrace();
5405 }
5406
5407 static void perf_swevent_read(struct perf_event *event)
5408 {
5409 }
5410
5411 static int perf_swevent_add(struct perf_event *event, int flags)
5412 {
5413 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5414 struct hw_perf_event *hwc = &event->hw;
5415 struct hlist_head *head;
5416
5417 if (is_sampling_event(event)) {
5418 hwc->last_period = hwc->sample_period;
5419 perf_swevent_set_period(event);
5420 }
5421
5422 hwc->state = !(flags & PERF_EF_START);
5423
5424 head = find_swevent_head(swhash, event);
5425 if (WARN_ON_ONCE(!head))
5426 return -EINVAL;
5427
5428 hlist_add_head_rcu(&event->hlist_entry, head);
5429
5430 return 0;
5431 }
5432
5433 static void perf_swevent_del(struct perf_event *event, int flags)
5434 {
5435 hlist_del_rcu(&event->hlist_entry);
5436 }
5437
5438 static void perf_swevent_start(struct perf_event *event, int flags)
5439 {
5440 event->hw.state = 0;
5441 }
5442
5443 static void perf_swevent_stop(struct perf_event *event, int flags)
5444 {
5445 event->hw.state = PERF_HES_STOPPED;
5446 }
5447
5448 /* Deref the hlist from the update side */
5449 static inline struct swevent_hlist *
5450 swevent_hlist_deref(struct swevent_htable *swhash)
5451 {
5452 return rcu_dereference_protected(swhash->swevent_hlist,
5453 lockdep_is_held(&swhash->hlist_mutex));
5454 }
5455
5456 static void swevent_hlist_release(struct swevent_htable *swhash)
5457 {
5458 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5459
5460 if (!hlist)
5461 return;
5462
5463 rcu_assign_pointer(swhash->swevent_hlist, NULL);
5464 kfree_rcu(hlist, rcu_head);
5465 }
5466
5467 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5468 {
5469 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5470
5471 mutex_lock(&swhash->hlist_mutex);
5472
5473 if (!--swhash->hlist_refcount)
5474 swevent_hlist_release(swhash);
5475
5476 mutex_unlock(&swhash->hlist_mutex);
5477 }
5478
5479 static void swevent_hlist_put(struct perf_event *event)
5480 {
5481 int cpu;
5482
5483 if (event->cpu != -1) {
5484 swevent_hlist_put_cpu(event, event->cpu);
5485 return;
5486 }
5487
5488 for_each_possible_cpu(cpu)
5489 swevent_hlist_put_cpu(event, cpu);
5490 }
5491
5492 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5493 {
5494 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5495 int err = 0;
5496
5497 mutex_lock(&swhash->hlist_mutex);
5498 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5499 struct swevent_hlist *hlist;
5500
5501 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5502 if (!hlist) {
5503 err = -ENOMEM;
5504 goto exit;
5505 }
5506 rcu_assign_pointer(swhash->swevent_hlist, hlist);
5507 }
5508 swhash->hlist_refcount++;
5509 exit:
5510 mutex_unlock(&swhash->hlist_mutex);
5511
5512 return err;
5513 }
5514
5515 static int swevent_hlist_get(struct perf_event *event)
5516 {
5517 int err;
5518 int cpu, failed_cpu;
5519
5520 if (event->cpu != -1)
5521 return swevent_hlist_get_cpu(event, event->cpu);
5522
5523 get_online_cpus();
5524 for_each_possible_cpu(cpu) {
5525 err = swevent_hlist_get_cpu(event, cpu);
5526 if (err) {
5527 failed_cpu = cpu;
5528 goto fail;
5529 }
5530 }
5531 put_online_cpus();
5532
5533 return 0;
5534 fail:
5535 for_each_possible_cpu(cpu) {
5536 if (cpu == failed_cpu)
5537 break;
5538 swevent_hlist_put_cpu(event, cpu);
5539 }
5540
5541 put_online_cpus();
5542 return err;
5543 }
5544
5545 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5546
5547 static void sw_perf_event_destroy(struct perf_event *event)
5548 {
5549 u64 event_id = event->attr.config;
5550
5551 WARN_ON(event->parent);
5552
5553 static_key_slow_dec(&perf_swevent_enabled[event_id]);
5554 swevent_hlist_put(event);
5555 }
5556
5557 static int perf_swevent_init(struct perf_event *event)
5558 {
5559 u64 event_id = event->attr.config;
5560
5561 if (event->attr.type != PERF_TYPE_SOFTWARE)
5562 return -ENOENT;
5563
5564 /*
5565 * no branch sampling for software events
5566 */
5567 if (has_branch_stack(event))
5568 return -EOPNOTSUPP;
5569
5570 switch (event_id) {
5571 case PERF_COUNT_SW_CPU_CLOCK:
5572 case PERF_COUNT_SW_TASK_CLOCK:
5573 return -ENOENT;
5574
5575 default:
5576 break;
5577 }
5578
5579 if (event_id >= PERF_COUNT_SW_MAX)
5580 return -ENOENT;
5581
5582 if (!event->parent) {
5583 int err;
5584
5585 err = swevent_hlist_get(event);
5586 if (err)
5587 return err;
5588
5589 static_key_slow_inc(&perf_swevent_enabled[event_id]);
5590 event->destroy = sw_perf_event_destroy;
5591 }
5592
5593 return 0;
5594 }
5595
5596 static int perf_swevent_event_idx(struct perf_event *event)
5597 {
5598 return 0;
5599 }
5600
5601 static struct pmu perf_swevent = {
5602 .task_ctx_nr = perf_sw_context,
5603
5604 .event_init = perf_swevent_init,
5605 .add = perf_swevent_add,
5606 .del = perf_swevent_del,
5607 .start = perf_swevent_start,
5608 .stop = perf_swevent_stop,
5609 .read = perf_swevent_read,
5610
5611 .event_idx = perf_swevent_event_idx,
5612 };
5613
5614 #ifdef CONFIG_EVENT_TRACING
5615
5616 static int perf_tp_filter_match(struct perf_event *event,
5617 struct perf_sample_data *data)
5618 {
5619 void *record = data->raw->data;
5620
5621 if (likely(!event->filter) || filter_match_preds(event->filter, record))
5622 return 1;
5623 return 0;
5624 }
5625
5626 static int perf_tp_event_match(struct perf_event *event,
5627 struct perf_sample_data *data,
5628 struct pt_regs *regs)
5629 {
5630 if (event->hw.state & PERF_HES_STOPPED)
5631 return 0;
5632 /*
5633 * All tracepoints are from kernel-space.
5634 */
5635 if (event->attr.exclude_kernel)
5636 return 0;
5637
5638 if (!perf_tp_filter_match(event, data))
5639 return 0;
5640
5641 return 1;
5642 }
5643
5644 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5645 struct pt_regs *regs, struct hlist_head *head, int rctx,
5646 struct task_struct *task)
5647 {
5648 struct perf_sample_data data;
5649 struct perf_event *event;
5650
5651 struct perf_raw_record raw = {
5652 .size = entry_size,
5653 .data = record,
5654 };
5655
5656 perf_sample_data_init(&data, addr, 0);
5657 data.raw = &raw;
5658
5659 hlist_for_each_entry_rcu(event, head, hlist_entry) {
5660 if (perf_tp_event_match(event, &data, regs))
5661 perf_swevent_event(event, count, &data, regs);
5662 }
5663
5664 /*
5665 * If we got specified a target task, also iterate its context and
5666 * deliver this event there too.
5667 */
5668 if (task && task != current) {
5669 struct perf_event_context *ctx;
5670 struct trace_entry *entry = record;
5671
5672 rcu_read_lock();
5673 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
5674 if (!ctx)
5675 goto unlock;
5676
5677 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5678 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5679 continue;
5680 if (event->attr.config != entry->type)
5681 continue;
5682 if (perf_tp_event_match(event, &data, regs))
5683 perf_swevent_event(event, count, &data, regs);
5684 }
5685 unlock:
5686 rcu_read_unlock();
5687 }
5688
5689 perf_swevent_put_recursion_context(rctx);
5690 }
5691 EXPORT_SYMBOL_GPL(perf_tp_event);
5692
5693 static void tp_perf_event_destroy(struct perf_event *event)
5694 {
5695 perf_trace_destroy(event);
5696 }
5697
5698 static int perf_tp_event_init(struct perf_event *event)
5699 {
5700 int err;
5701
5702 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5703 return -ENOENT;
5704
5705 /*
5706 * no branch sampling for tracepoint events
5707 */
5708 if (has_branch_stack(event))
5709 return -EOPNOTSUPP;
5710
5711 err = perf_trace_init(event);
5712 if (err)
5713 return err;
5714
5715 event->destroy = tp_perf_event_destroy;
5716
5717 return 0;
5718 }
5719
5720 static struct pmu perf_tracepoint = {
5721 .task_ctx_nr = perf_sw_context,
5722
5723 .event_init = perf_tp_event_init,
5724 .add = perf_trace_add,
5725 .del = perf_trace_del,
5726 .start = perf_swevent_start,
5727 .stop = perf_swevent_stop,
5728 .read = perf_swevent_read,
5729
5730 .event_idx = perf_swevent_event_idx,
5731 };
5732
5733 static inline void perf_tp_register(void)
5734 {
5735 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5736 }
5737
5738 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5739 {
5740 char *filter_str;
5741 int ret;
5742
5743 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5744 return -EINVAL;
5745
5746 filter_str = strndup_user(arg, PAGE_SIZE);
5747 if (IS_ERR(filter_str))
5748 return PTR_ERR(filter_str);
5749
5750 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5751
5752 kfree(filter_str);
5753 return ret;
5754 }
5755
5756 static void perf_event_free_filter(struct perf_event *event)
5757 {
5758 ftrace_profile_free_filter(event);
5759 }
5760
5761 #else
5762
5763 static inline void perf_tp_register(void)
5764 {
5765 }
5766
5767 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5768 {
5769 return -ENOENT;
5770 }
5771
5772 static void perf_event_free_filter(struct perf_event *event)
5773 {
5774 }
5775
5776 #endif /* CONFIG_EVENT_TRACING */
5777
5778 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5779 void perf_bp_event(struct perf_event *bp, void *data)
5780 {
5781 struct perf_sample_data sample;
5782 struct pt_regs *regs = data;
5783
5784 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
5785
5786 if (!bp->hw.state && !perf_exclude_event(bp, regs))
5787 perf_swevent_event(bp, 1, &sample, regs);
5788 }
5789 #endif
5790
5791 /*
5792 * hrtimer based swevent callback
5793 */
5794
5795 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5796 {
5797 enum hrtimer_restart ret = HRTIMER_RESTART;
5798 struct perf_sample_data data;
5799 struct pt_regs *regs;
5800 struct perf_event *event;
5801 u64 period;
5802
5803 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
5804
5805 if (event->state != PERF_EVENT_STATE_ACTIVE)
5806 return HRTIMER_NORESTART;
5807
5808 event->pmu->read(event);
5809
5810 perf_sample_data_init(&data, 0, event->hw.last_period);
5811 regs = get_irq_regs();
5812
5813 if (regs && !perf_exclude_event(event, regs)) {
5814 if (!(event->attr.exclude_idle && is_idle_task(current)))
5815 if (__perf_event_overflow(event, 1, &data, regs))
5816 ret = HRTIMER_NORESTART;
5817 }
5818
5819 period = max_t(u64, 10000, event->hw.sample_period);
5820 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5821
5822 return ret;
5823 }
5824
5825 static void perf_swevent_start_hrtimer(struct perf_event *event)
5826 {
5827 struct hw_perf_event *hwc = &event->hw;
5828 s64 period;
5829
5830 if (!is_sampling_event(event))
5831 return;
5832
5833 period = local64_read(&hwc->period_left);
5834 if (period) {
5835 if (period < 0)
5836 period = 10000;
5837
5838 local64_set(&hwc->period_left, 0);
5839 } else {
5840 period = max_t(u64, 10000, hwc->sample_period);
5841 }
5842 __hrtimer_start_range_ns(&hwc->hrtimer,
5843 ns_to_ktime(period), 0,
5844 HRTIMER_MODE_REL_PINNED, 0);
5845 }
5846
5847 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5848 {
5849 struct hw_perf_event *hwc = &event->hw;
5850
5851 if (is_sampling_event(event)) {
5852 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
5853 local64_set(&hwc->period_left, ktime_to_ns(remaining));
5854
5855 hrtimer_cancel(&hwc->hrtimer);
5856 }
5857 }
5858
5859 static void perf_swevent_init_hrtimer(struct perf_event *event)
5860 {
5861 struct hw_perf_event *hwc = &event->hw;
5862
5863 if (!is_sampling_event(event))
5864 return;
5865
5866 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5867 hwc->hrtimer.function = perf_swevent_hrtimer;
5868
5869 /*
5870 * Since hrtimers have a fixed rate, we can do a static freq->period
5871 * mapping and avoid the whole period adjust feedback stuff.
5872 */
5873 if (event->attr.freq) {
5874 long freq = event->attr.sample_freq;
5875
5876 event->attr.sample_period = NSEC_PER_SEC / freq;
5877 hwc->sample_period = event->attr.sample_period;
5878 local64_set(&hwc->period_left, hwc->sample_period);
5879 hwc->last_period = hwc->sample_period;
5880 event->attr.freq = 0;
5881 }
5882 }
5883
5884 /*
5885 * Software event: cpu wall time clock
5886 */
5887
5888 static void cpu_clock_event_update(struct perf_event *event)
5889 {
5890 s64 prev;
5891 u64 now;
5892
5893 now = local_clock();
5894 prev = local64_xchg(&event->hw.prev_count, now);
5895 local64_add(now - prev, &event->count);
5896 }
5897
5898 static void cpu_clock_event_start(struct perf_event *event, int flags)
5899 {
5900 local64_set(&event->hw.prev_count, local_clock());
5901 perf_swevent_start_hrtimer(event);
5902 }
5903
5904 static void cpu_clock_event_stop(struct perf_event *event, int flags)
5905 {
5906 perf_swevent_cancel_hrtimer(event);
5907 cpu_clock_event_update(event);
5908 }
5909
5910 static int cpu_clock_event_add(struct perf_event *event, int flags)
5911 {
5912 if (flags & PERF_EF_START)
5913 cpu_clock_event_start(event, flags);
5914
5915 return 0;
5916 }
5917
5918 static void cpu_clock_event_del(struct perf_event *event, int flags)
5919 {
5920 cpu_clock_event_stop(event, flags);
5921 }
5922
5923 static void cpu_clock_event_read(struct perf_event *event)
5924 {
5925 cpu_clock_event_update(event);
5926 }
5927
5928 static int cpu_clock_event_init(struct perf_event *event)
5929 {
5930 if (event->attr.type != PERF_TYPE_SOFTWARE)
5931 return -ENOENT;
5932
5933 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5934 return -ENOENT;
5935
5936 /*
5937 * no branch sampling for software events
5938 */
5939 if (has_branch_stack(event))
5940 return -EOPNOTSUPP;
5941
5942 perf_swevent_init_hrtimer(event);
5943
5944 return 0;
5945 }
5946
5947 static struct pmu perf_cpu_clock = {
5948 .task_ctx_nr = perf_sw_context,
5949
5950 .event_init = cpu_clock_event_init,
5951 .add = cpu_clock_event_add,
5952 .del = cpu_clock_event_del,
5953 .start = cpu_clock_event_start,
5954 .stop = cpu_clock_event_stop,
5955 .read = cpu_clock_event_read,
5956
5957 .event_idx = perf_swevent_event_idx,
5958 };
5959
5960 /*
5961 * Software event: task time clock
5962 */
5963
5964 static void task_clock_event_update(struct perf_event *event, u64 now)
5965 {
5966 u64 prev;
5967 s64 delta;
5968
5969 prev = local64_xchg(&event->hw.prev_count, now);
5970 delta = now - prev;
5971 local64_add(delta, &event->count);
5972 }
5973
5974 static void task_clock_event_start(struct perf_event *event, int flags)
5975 {
5976 local64_set(&event->hw.prev_count, event->ctx->time);
5977 perf_swevent_start_hrtimer(event);
5978 }
5979
5980 static void task_clock_event_stop(struct perf_event *event, int flags)
5981 {
5982 perf_swevent_cancel_hrtimer(event);
5983 task_clock_event_update(event, event->ctx->time);
5984 }
5985
5986 static int task_clock_event_add(struct perf_event *event, int flags)
5987 {
5988 if (flags & PERF_EF_START)
5989 task_clock_event_start(event, flags);
5990
5991 return 0;
5992 }
5993
5994 static void task_clock_event_del(struct perf_event *event, int flags)
5995 {
5996 task_clock_event_stop(event, PERF_EF_UPDATE);
5997 }
5998
5999 static void task_clock_event_read(struct perf_event *event)
6000 {
6001 u64 now = perf_clock();
6002 u64 delta = now - event->ctx->timestamp;
6003 u64 time = event->ctx->time + delta;
6004
6005 task_clock_event_update(event, time);
6006 }
6007
6008 static int task_clock_event_init(struct perf_event *event)
6009 {
6010 if (event->attr.type != PERF_TYPE_SOFTWARE)
6011 return -ENOENT;
6012
6013 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
6014 return -ENOENT;
6015
6016 /*
6017 * no branch sampling for software events
6018 */
6019 if (has_branch_stack(event))
6020 return -EOPNOTSUPP;
6021
6022 perf_swevent_init_hrtimer(event);
6023
6024 return 0;
6025 }
6026
6027 static struct pmu perf_task_clock = {
6028 .task_ctx_nr = perf_sw_context,
6029
6030 .event_init = task_clock_event_init,
6031 .add = task_clock_event_add,
6032 .del = task_clock_event_del,
6033 .start = task_clock_event_start,
6034 .stop = task_clock_event_stop,
6035 .read = task_clock_event_read,
6036
6037 .event_idx = perf_swevent_event_idx,
6038 };
6039
6040 static void perf_pmu_nop_void(struct pmu *pmu)
6041 {
6042 }
6043
6044 static int perf_pmu_nop_int(struct pmu *pmu)
6045 {
6046 return 0;
6047 }
6048
6049 static void perf_pmu_start_txn(struct pmu *pmu)
6050 {
6051 perf_pmu_disable(pmu);
6052 }
6053
6054 static int perf_pmu_commit_txn(struct pmu *pmu)
6055 {
6056 perf_pmu_enable(pmu);
6057 return 0;
6058 }
6059
6060 static void perf_pmu_cancel_txn(struct pmu *pmu)
6061 {
6062 perf_pmu_enable(pmu);
6063 }
6064
6065 static int perf_event_idx_default(struct perf_event *event)
6066 {
6067 return event->hw.idx + 1;
6068 }
6069
6070 /*
6071 * Ensures all contexts with the same task_ctx_nr have the same
6072 * pmu_cpu_context too.
6073 */
6074 static void *find_pmu_context(int ctxn)
6075 {
6076 struct pmu *pmu;
6077
6078 if (ctxn < 0)
6079 return NULL;
6080
6081 list_for_each_entry(pmu, &pmus, entry) {
6082 if (pmu->task_ctx_nr == ctxn)
6083 return pmu->pmu_cpu_context;
6084 }
6085
6086 return NULL;
6087 }
6088
6089 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
6090 {
6091 int cpu;
6092
6093 for_each_possible_cpu(cpu) {
6094 struct perf_cpu_context *cpuctx;
6095
6096 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6097
6098 if (cpuctx->unique_pmu == old_pmu)
6099 cpuctx->unique_pmu = pmu;
6100 }
6101 }
6102
6103 static void free_pmu_context(struct pmu *pmu)
6104 {
6105 struct pmu *i;
6106
6107 mutex_lock(&pmus_lock);
6108 /*
6109 * Like a real lame refcount.
6110 */
6111 list_for_each_entry(i, &pmus, entry) {
6112 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
6113 update_pmu_context(i, pmu);
6114 goto out;
6115 }
6116 }
6117
6118 free_percpu(pmu->pmu_cpu_context);
6119 out:
6120 mutex_unlock(&pmus_lock);
6121 }
6122 static struct idr pmu_idr;
6123
6124 static ssize_t
6125 type_show(struct device *dev, struct device_attribute *attr, char *page)
6126 {
6127 struct pmu *pmu = dev_get_drvdata(dev);
6128
6129 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
6130 }
6131
6132 static struct device_attribute pmu_dev_attrs[] = {
6133 __ATTR_RO(type),
6134 __ATTR_NULL,
6135 };
6136
6137 static int pmu_bus_running;
6138 static struct bus_type pmu_bus = {
6139 .name = "event_source",
6140 .dev_attrs = pmu_dev_attrs,
6141 };
6142
6143 static void pmu_dev_release(struct device *dev)
6144 {
6145 kfree(dev);
6146 }
6147
6148 static int pmu_dev_alloc(struct pmu *pmu)
6149 {
6150 int ret = -ENOMEM;
6151
6152 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
6153 if (!pmu->dev)
6154 goto out;
6155
6156 pmu->dev->groups = pmu->attr_groups;
6157 device_initialize(pmu->dev);
6158 ret = dev_set_name(pmu->dev, "%s", pmu->name);
6159 if (ret)
6160 goto free_dev;
6161
6162 dev_set_drvdata(pmu->dev, pmu);
6163 pmu->dev->bus = &pmu_bus;
6164 pmu->dev->release = pmu_dev_release;
6165 ret = device_add(pmu->dev);
6166 if (ret)
6167 goto free_dev;
6168
6169 out:
6170 return ret;
6171
6172 free_dev:
6173 put_device(pmu->dev);
6174 goto out;
6175 }
6176
6177 static struct lock_class_key cpuctx_mutex;
6178 static struct lock_class_key cpuctx_lock;
6179
6180 int perf_pmu_register(struct pmu *pmu, char *name, int type)
6181 {
6182 int cpu, ret;
6183
6184 mutex_lock(&pmus_lock);
6185 ret = -ENOMEM;
6186 pmu->pmu_disable_count = alloc_percpu(int);
6187 if (!pmu->pmu_disable_count)
6188 goto unlock;
6189
6190 pmu->type = -1;
6191 if (!name)
6192 goto skip_type;
6193 pmu->name = name;
6194
6195 if (type < 0) {
6196 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
6197 if (type < 0) {
6198 ret = type;
6199 goto free_pdc;
6200 }
6201 }
6202 pmu->type = type;
6203
6204 if (pmu_bus_running) {
6205 ret = pmu_dev_alloc(pmu);
6206 if (ret)
6207 goto free_idr;
6208 }
6209
6210 skip_type:
6211 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
6212 if (pmu->pmu_cpu_context)
6213 goto got_cpu_context;
6214
6215 ret = -ENOMEM;
6216 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
6217 if (!pmu->pmu_cpu_context)
6218 goto free_dev;
6219
6220 for_each_possible_cpu(cpu) {
6221 struct perf_cpu_context *cpuctx;
6222
6223 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6224 __perf_event_init_context(&cpuctx->ctx);
6225 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6226 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6227 cpuctx->ctx.type = cpu_context;
6228 cpuctx->ctx.pmu = pmu;
6229 cpuctx->jiffies_interval = 1;
6230 INIT_LIST_HEAD(&cpuctx->rotation_list);
6231 cpuctx->unique_pmu = pmu;
6232 }
6233
6234 got_cpu_context:
6235 if (!pmu->start_txn) {
6236 if (pmu->pmu_enable) {
6237 /*
6238 * If we have pmu_enable/pmu_disable calls, install
6239 * transaction stubs that use that to try and batch
6240 * hardware accesses.
6241 */
6242 pmu->start_txn = perf_pmu_start_txn;
6243 pmu->commit_txn = perf_pmu_commit_txn;
6244 pmu->cancel_txn = perf_pmu_cancel_txn;
6245 } else {
6246 pmu->start_txn = perf_pmu_nop_void;
6247 pmu->commit_txn = perf_pmu_nop_int;
6248 pmu->cancel_txn = perf_pmu_nop_void;
6249 }
6250 }
6251
6252 if (!pmu->pmu_enable) {
6253 pmu->pmu_enable = perf_pmu_nop_void;
6254 pmu->pmu_disable = perf_pmu_nop_void;
6255 }
6256
6257 if (!pmu->event_idx)
6258 pmu->event_idx = perf_event_idx_default;
6259
6260 list_add_rcu(&pmu->entry, &pmus);
6261 ret = 0;
6262 unlock:
6263 mutex_unlock(&pmus_lock);
6264
6265 return ret;
6266
6267 free_dev:
6268 device_del(pmu->dev);
6269 put_device(pmu->dev);
6270
6271 free_idr:
6272 if (pmu->type >= PERF_TYPE_MAX)
6273 idr_remove(&pmu_idr, pmu->type);
6274
6275 free_pdc:
6276 free_percpu(pmu->pmu_disable_count);
6277 goto unlock;
6278 }
6279
6280 void perf_pmu_unregister(struct pmu *pmu)
6281 {
6282 mutex_lock(&pmus_lock);
6283 list_del_rcu(&pmu->entry);
6284 mutex_unlock(&pmus_lock);
6285
6286 /*
6287 * We dereference the pmu list under both SRCU and regular RCU, so
6288 * synchronize against both of those.
6289 */
6290 synchronize_srcu(&pmus_srcu);
6291 synchronize_rcu();
6292
6293 free_percpu(pmu->pmu_disable_count);
6294 if (pmu->type >= PERF_TYPE_MAX)
6295 idr_remove(&pmu_idr, pmu->type);
6296 device_del(pmu->dev);
6297 put_device(pmu->dev);
6298 free_pmu_context(pmu);
6299 }
6300
6301 struct pmu *perf_init_event(struct perf_event *event)
6302 {
6303 struct pmu *pmu = NULL;
6304 int idx;
6305 int ret;
6306
6307 idx = srcu_read_lock(&pmus_srcu);
6308
6309 rcu_read_lock();
6310 pmu = idr_find(&pmu_idr, event->attr.type);
6311 rcu_read_unlock();
6312 if (pmu) {
6313 event->pmu = pmu;
6314 ret = pmu->event_init(event);
6315 if (ret)
6316 pmu = ERR_PTR(ret);
6317 goto unlock;
6318 }
6319
6320 list_for_each_entry_rcu(pmu, &pmus, entry) {
6321 event->pmu = pmu;
6322 ret = pmu->event_init(event);
6323 if (!ret)
6324 goto unlock;
6325
6326 if (ret != -ENOENT) {
6327 pmu = ERR_PTR(ret);
6328 goto unlock;
6329 }
6330 }
6331 pmu = ERR_PTR(-ENOENT);
6332 unlock:
6333 srcu_read_unlock(&pmus_srcu, idx);
6334
6335 return pmu;
6336 }
6337
6338 /*
6339 * Allocate and initialize a event structure
6340 */
6341 static struct perf_event *
6342 perf_event_alloc(struct perf_event_attr *attr, int cpu,
6343 struct task_struct *task,
6344 struct perf_event *group_leader,
6345 struct perf_event *parent_event,
6346 perf_overflow_handler_t overflow_handler,
6347 void *context)
6348 {
6349 struct pmu *pmu;
6350 struct perf_event *event;
6351 struct hw_perf_event *hwc;
6352 long err;
6353
6354 if ((unsigned)cpu >= nr_cpu_ids) {
6355 if (!task || cpu != -1)
6356 return ERR_PTR(-EINVAL);
6357 }
6358
6359 event = kzalloc(sizeof(*event), GFP_KERNEL);
6360 if (!event)
6361 return ERR_PTR(-ENOMEM);
6362
6363 /*
6364 * Single events are their own group leaders, with an
6365 * empty sibling list:
6366 */
6367 if (!group_leader)
6368 group_leader = event;
6369
6370 mutex_init(&event->child_mutex);
6371 INIT_LIST_HEAD(&event->child_list);
6372
6373 INIT_LIST_HEAD(&event->group_entry);
6374 INIT_LIST_HEAD(&event->event_entry);
6375 INIT_LIST_HEAD(&event->sibling_list);
6376 INIT_LIST_HEAD(&event->rb_entry);
6377
6378 init_waitqueue_head(&event->waitq);
6379 init_irq_work(&event->pending, perf_pending_event);
6380
6381 mutex_init(&event->mmap_mutex);
6382
6383 atomic_long_set(&event->refcount, 1);
6384 event->cpu = cpu;
6385 event->attr = *attr;
6386 event->group_leader = group_leader;
6387 event->pmu = NULL;
6388 event->oncpu = -1;
6389
6390 event->parent = parent_event;
6391
6392 event->ns = get_pid_ns(task_active_pid_ns(current));
6393 event->id = atomic64_inc_return(&perf_event_id);
6394
6395 event->state = PERF_EVENT_STATE_INACTIVE;
6396
6397 if (task) {
6398 event->attach_state = PERF_ATTACH_TASK;
6399
6400 if (attr->type == PERF_TYPE_TRACEPOINT)
6401 event->hw.tp_target = task;
6402 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6403 /*
6404 * hw_breakpoint is a bit difficult here..
6405 */
6406 else if (attr->type == PERF_TYPE_BREAKPOINT)
6407 event->hw.bp_target = task;
6408 #endif
6409 }
6410
6411 if (!overflow_handler && parent_event) {
6412 overflow_handler = parent_event->overflow_handler;
6413 context = parent_event->overflow_handler_context;
6414 }
6415
6416 event->overflow_handler = overflow_handler;
6417 event->overflow_handler_context = context;
6418
6419 perf_event__state_init(event);
6420
6421 pmu = NULL;
6422
6423 hwc = &event->hw;
6424 hwc->sample_period = attr->sample_period;
6425 if (attr->freq && attr->sample_freq)
6426 hwc->sample_period = 1;
6427 hwc->last_period = hwc->sample_period;
6428
6429 local64_set(&hwc->period_left, hwc->sample_period);
6430
6431 /*
6432 * we currently do not support PERF_FORMAT_GROUP on inherited events
6433 */
6434 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6435 goto done;
6436
6437 pmu = perf_init_event(event);
6438
6439 done:
6440 err = 0;
6441 if (!pmu)
6442 err = -EINVAL;
6443 else if (IS_ERR(pmu))
6444 err = PTR_ERR(pmu);
6445
6446 if (err) {
6447 if (event->ns)
6448 put_pid_ns(event->ns);
6449 kfree(event);
6450 return ERR_PTR(err);
6451 }
6452
6453 if (!event->parent) {
6454 if (event->attach_state & PERF_ATTACH_TASK)
6455 static_key_slow_inc(&perf_sched_events.key);
6456 if (event->attr.mmap || event->attr.mmap_data)
6457 atomic_inc(&nr_mmap_events);
6458 if (event->attr.comm)
6459 atomic_inc(&nr_comm_events);
6460 if (event->attr.task)
6461 atomic_inc(&nr_task_events);
6462 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6463 err = get_callchain_buffers();
6464 if (err) {
6465 free_event(event);
6466 return ERR_PTR(err);
6467 }
6468 }
6469 if (has_branch_stack(event)) {
6470 static_key_slow_inc(&perf_sched_events.key);
6471 if (!(event->attach_state & PERF_ATTACH_TASK))
6472 atomic_inc(&per_cpu(perf_branch_stack_events,
6473 event->cpu));
6474 }
6475 }
6476
6477 return event;
6478 }
6479
6480 static int perf_copy_attr(struct perf_event_attr __user *uattr,
6481 struct perf_event_attr *attr)
6482 {
6483 u32 size;
6484 int ret;
6485
6486 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6487 return -EFAULT;
6488
6489 /*
6490 * zero the full structure, so that a short copy will be nice.
6491 */
6492 memset(attr, 0, sizeof(*attr));
6493
6494 ret = get_user(size, &uattr->size);
6495 if (ret)
6496 return ret;
6497
6498 if (size > PAGE_SIZE) /* silly large */
6499 goto err_size;
6500
6501 if (!size) /* abi compat */
6502 size = PERF_ATTR_SIZE_VER0;
6503
6504 if (size < PERF_ATTR_SIZE_VER0)
6505 goto err_size;
6506
6507 /*
6508 * If we're handed a bigger struct than we know of,
6509 * ensure all the unknown bits are 0 - i.e. new
6510 * user-space does not rely on any kernel feature
6511 * extensions we dont know about yet.
6512 */
6513 if (size > sizeof(*attr)) {
6514 unsigned char __user *addr;
6515 unsigned char __user *end;
6516 unsigned char val;
6517
6518 addr = (void __user *)uattr + sizeof(*attr);
6519 end = (void __user *)uattr + size;
6520
6521 for (; addr < end; addr++) {
6522 ret = get_user(val, addr);
6523 if (ret)
6524 return ret;
6525 if (val)
6526 goto err_size;
6527 }
6528 size = sizeof(*attr);
6529 }
6530
6531 ret = copy_from_user(attr, uattr, size);
6532 if (ret)
6533 return -EFAULT;
6534
6535 if (attr->__reserved_1)
6536 return -EINVAL;
6537
6538 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6539 return -EINVAL;
6540
6541 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6542 return -EINVAL;
6543
6544 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6545 u64 mask = attr->branch_sample_type;
6546
6547 /* only using defined bits */
6548 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6549 return -EINVAL;
6550
6551 /* at least one branch bit must be set */
6552 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6553 return -EINVAL;
6554
6555 /* kernel level capture: check permissions */
6556 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6557 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6558 return -EACCES;
6559
6560 /* propagate priv level, when not set for branch */
6561 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6562
6563 /* exclude_kernel checked on syscall entry */
6564 if (!attr->exclude_kernel)
6565 mask |= PERF_SAMPLE_BRANCH_KERNEL;
6566
6567 if (!attr->exclude_user)
6568 mask |= PERF_SAMPLE_BRANCH_USER;
6569
6570 if (!attr->exclude_hv)
6571 mask |= PERF_SAMPLE_BRANCH_HV;
6572 /*
6573 * adjust user setting (for HW filter setup)
6574 */
6575 attr->branch_sample_type = mask;
6576 }
6577 }
6578
6579 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
6580 ret = perf_reg_validate(attr->sample_regs_user);
6581 if (ret)
6582 return ret;
6583 }
6584
6585 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
6586 if (!arch_perf_have_user_stack_dump())
6587 return -ENOSYS;
6588
6589 /*
6590 * We have __u32 type for the size, but so far
6591 * we can only use __u16 as maximum due to the
6592 * __u16 sample size limit.
6593 */
6594 if (attr->sample_stack_user >= USHRT_MAX)
6595 ret = -EINVAL;
6596 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
6597 ret = -EINVAL;
6598 }
6599
6600 out:
6601 return ret;
6602
6603 err_size:
6604 put_user(sizeof(*attr), &uattr->size);
6605 ret = -E2BIG;
6606 goto out;
6607 }
6608
6609 static int
6610 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6611 {
6612 struct ring_buffer *rb = NULL, *old_rb = NULL;
6613 int ret = -EINVAL;
6614
6615 if (!output_event)
6616 goto set;
6617
6618 /* don't allow circular references */
6619 if (event == output_event)
6620 goto out;
6621
6622 /*
6623 * Don't allow cross-cpu buffers
6624 */
6625 if (output_event->cpu != event->cpu)
6626 goto out;
6627
6628 /*
6629 * If its not a per-cpu rb, it must be the same task.
6630 */
6631 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6632 goto out;
6633
6634 set:
6635 mutex_lock(&event->mmap_mutex);
6636 /* Can't redirect output if we've got an active mmap() */
6637 if (atomic_read(&event->mmap_count))
6638 goto unlock;
6639
6640 old_rb = event->rb;
6641
6642 if (output_event) {
6643 /* get the rb we want to redirect to */
6644 rb = ring_buffer_get(output_event);
6645 if (!rb)
6646 goto unlock;
6647 }
6648
6649 if (old_rb)
6650 ring_buffer_detach(event, old_rb);
6651
6652 if (rb)
6653 ring_buffer_attach(event, rb);
6654
6655 rcu_assign_pointer(event->rb, rb);
6656
6657 if (old_rb) {
6658 ring_buffer_put(old_rb);
6659 /*
6660 * Since we detached before setting the new rb, so that we
6661 * could attach the new rb, we could have missed a wakeup.
6662 * Provide it now.
6663 */
6664 wake_up_all(&event->waitq);
6665 }
6666
6667 ret = 0;
6668 unlock:
6669 mutex_unlock(&event->mmap_mutex);
6670
6671 out:
6672 return ret;
6673 }
6674
6675 /**
6676 * sys_perf_event_open - open a performance event, associate it to a task/cpu
6677 *
6678 * @attr_uptr: event_id type attributes for monitoring/sampling
6679 * @pid: target pid
6680 * @cpu: target cpu
6681 * @group_fd: group leader event fd
6682 */
6683 SYSCALL_DEFINE5(perf_event_open,
6684 struct perf_event_attr __user *, attr_uptr,
6685 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
6686 {
6687 struct perf_event *group_leader = NULL, *output_event = NULL;
6688 struct perf_event *event, *sibling;
6689 struct perf_event_attr attr;
6690 struct perf_event_context *ctx;
6691 struct file *event_file = NULL;
6692 struct fd group = {NULL, 0};
6693 struct task_struct *task = NULL;
6694 struct pmu *pmu;
6695 int event_fd;
6696 int move_group = 0;
6697 int err;
6698
6699 /* for future expandability... */
6700 if (flags & ~PERF_FLAG_ALL)
6701 return -EINVAL;
6702
6703 err = perf_copy_attr(attr_uptr, &attr);
6704 if (err)
6705 return err;
6706
6707 if (!attr.exclude_kernel) {
6708 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6709 return -EACCES;
6710 }
6711
6712 if (attr.freq) {
6713 if (attr.sample_freq > sysctl_perf_event_sample_rate)
6714 return -EINVAL;
6715 } else {
6716 if (attr.sample_period & (1ULL << 63))
6717 return -EINVAL;
6718 }
6719
6720 /*
6721 * In cgroup mode, the pid argument is used to pass the fd
6722 * opened to the cgroup directory in cgroupfs. The cpu argument
6723 * designates the cpu on which to monitor threads from that
6724 * cgroup.
6725 */
6726 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6727 return -EINVAL;
6728
6729 event_fd = get_unused_fd();
6730 if (event_fd < 0)
6731 return event_fd;
6732
6733 if (group_fd != -1) {
6734 err = perf_fget_light(group_fd, &group);
6735 if (err)
6736 goto err_fd;
6737 group_leader = group.file->private_data;
6738 if (flags & PERF_FLAG_FD_OUTPUT)
6739 output_event = group_leader;
6740 if (flags & PERF_FLAG_FD_NO_GROUP)
6741 group_leader = NULL;
6742 }
6743
6744 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6745 task = find_lively_task_by_vpid(pid);
6746 if (IS_ERR(task)) {
6747 err = PTR_ERR(task);
6748 goto err_group_fd;
6749 }
6750 }
6751
6752 get_online_cpus();
6753
6754 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6755 NULL, NULL);
6756 if (IS_ERR(event)) {
6757 err = PTR_ERR(event);
6758 goto err_task;
6759 }
6760
6761 if (flags & PERF_FLAG_PID_CGROUP) {
6762 err = perf_cgroup_connect(pid, event, &attr, group_leader);
6763 if (err)
6764 goto err_alloc;
6765 /*
6766 * one more event:
6767 * - that has cgroup constraint on event->cpu
6768 * - that may need work on context switch
6769 */
6770 atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
6771 static_key_slow_inc(&perf_sched_events.key);
6772 }
6773
6774 /*
6775 * Special case software events and allow them to be part of
6776 * any hardware group.
6777 */
6778 pmu = event->pmu;
6779
6780 if (group_leader &&
6781 (is_software_event(event) != is_software_event(group_leader))) {
6782 if (is_software_event(event)) {
6783 /*
6784 * If event and group_leader are not both a software
6785 * event, and event is, then group leader is not.
6786 *
6787 * Allow the addition of software events to !software
6788 * groups, this is safe because software events never
6789 * fail to schedule.
6790 */
6791 pmu = group_leader->pmu;
6792 } else if (is_software_event(group_leader) &&
6793 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6794 /*
6795 * In case the group is a pure software group, and we
6796 * try to add a hardware event, move the whole group to
6797 * the hardware context.
6798 */
6799 move_group = 1;
6800 }
6801 }
6802
6803 /*
6804 * Get the target context (task or percpu):
6805 */
6806 ctx = find_get_context(pmu, task, event->cpu);
6807 if (IS_ERR(ctx)) {
6808 err = PTR_ERR(ctx);
6809 goto err_alloc;
6810 }
6811
6812 if (task) {
6813 put_task_struct(task);
6814 task = NULL;
6815 }
6816
6817 /*
6818 * Look up the group leader (we will attach this event to it):
6819 */
6820 if (group_leader) {
6821 err = -EINVAL;
6822
6823 /*
6824 * Do not allow a recursive hierarchy (this new sibling
6825 * becoming part of another group-sibling):
6826 */
6827 if (group_leader->group_leader != group_leader)
6828 goto err_context;
6829 /*
6830 * Do not allow to attach to a group in a different
6831 * task or CPU context:
6832 */
6833 if (move_group) {
6834 if (group_leader->ctx->type != ctx->type)
6835 goto err_context;
6836 } else {
6837 if (group_leader->ctx != ctx)
6838 goto err_context;
6839 }
6840
6841 /*
6842 * Only a group leader can be exclusive or pinned
6843 */
6844 if (attr.exclusive || attr.pinned)
6845 goto err_context;
6846 }
6847
6848 if (output_event) {
6849 err = perf_event_set_output(event, output_event);
6850 if (err)
6851 goto err_context;
6852 }
6853
6854 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
6855 if (IS_ERR(event_file)) {
6856 err = PTR_ERR(event_file);
6857 goto err_context;
6858 }
6859
6860 if (move_group) {
6861 struct perf_event_context *gctx = group_leader->ctx;
6862
6863 mutex_lock(&gctx->mutex);
6864 perf_remove_from_context(group_leader, false);
6865
6866 /*
6867 * Removing from the context ends up with disabled
6868 * event. What we want here is event in the initial
6869 * startup state, ready to be add into new context.
6870 */
6871 perf_event__state_init(group_leader);
6872 list_for_each_entry(sibling, &group_leader->sibling_list,
6873 group_entry) {
6874 perf_remove_from_context(sibling, false);
6875 perf_event__state_init(sibling);
6876 put_ctx(gctx);
6877 }
6878 mutex_unlock(&gctx->mutex);
6879 put_ctx(gctx);
6880 }
6881
6882 WARN_ON_ONCE(ctx->parent_ctx);
6883 mutex_lock(&ctx->mutex);
6884
6885 if (move_group) {
6886 synchronize_rcu();
6887 perf_install_in_context(ctx, group_leader, group_leader->cpu);
6888 get_ctx(ctx);
6889 list_for_each_entry(sibling, &group_leader->sibling_list,
6890 group_entry) {
6891 perf_install_in_context(ctx, sibling, sibling->cpu);
6892 get_ctx(ctx);
6893 }
6894 }
6895
6896 perf_install_in_context(ctx, event, event->cpu);
6897 ++ctx->generation;
6898 perf_unpin_context(ctx);
6899 mutex_unlock(&ctx->mutex);
6900
6901 put_online_cpus();
6902
6903 event->owner = current;
6904
6905 mutex_lock(&current->perf_event_mutex);
6906 list_add_tail(&event->owner_entry, &current->perf_event_list);
6907 mutex_unlock(&current->perf_event_mutex);
6908
6909 /*
6910 * Precalculate sample_data sizes
6911 */
6912 perf_event__header_size(event);
6913 perf_event__id_header_size(event);
6914
6915 /*
6916 * Drop the reference on the group_event after placing the
6917 * new event on the sibling_list. This ensures destruction
6918 * of the group leader will find the pointer to itself in
6919 * perf_group_detach().
6920 */
6921 fdput(group);
6922 fd_install(event_fd, event_file);
6923 return event_fd;
6924
6925 err_context:
6926 perf_unpin_context(ctx);
6927 put_ctx(ctx);
6928 err_alloc:
6929 free_event(event);
6930 err_task:
6931 put_online_cpus();
6932 if (task)
6933 put_task_struct(task);
6934 err_group_fd:
6935 fdput(group);
6936 err_fd:
6937 put_unused_fd(event_fd);
6938 return err;
6939 }
6940
6941 /**
6942 * perf_event_create_kernel_counter
6943 *
6944 * @attr: attributes of the counter to create
6945 * @cpu: cpu in which the counter is bound
6946 * @task: task to profile (NULL for percpu)
6947 */
6948 struct perf_event *
6949 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
6950 struct task_struct *task,
6951 perf_overflow_handler_t overflow_handler,
6952 void *context)
6953 {
6954 struct perf_event_context *ctx;
6955 struct perf_event *event;
6956 int err;
6957
6958 /*
6959 * Get the target context (task or percpu):
6960 */
6961
6962 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
6963 overflow_handler, context);
6964 if (IS_ERR(event)) {
6965 err = PTR_ERR(event);
6966 goto err;
6967 }
6968
6969 ctx = find_get_context(event->pmu, task, cpu);
6970 if (IS_ERR(ctx)) {
6971 err = PTR_ERR(ctx);
6972 goto err_free;
6973 }
6974
6975 WARN_ON_ONCE(ctx->parent_ctx);
6976 mutex_lock(&ctx->mutex);
6977 perf_install_in_context(ctx, event, cpu);
6978 ++ctx->generation;
6979 perf_unpin_context(ctx);
6980 mutex_unlock(&ctx->mutex);
6981
6982 return event;
6983
6984 err_free:
6985 free_event(event);
6986 err:
6987 return ERR_PTR(err);
6988 }
6989 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6990
6991 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
6992 {
6993 struct perf_event_context *src_ctx;
6994 struct perf_event_context *dst_ctx;
6995 struct perf_event *event, *tmp;
6996 LIST_HEAD(events);
6997
6998 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
6999 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
7000
7001 mutex_lock(&src_ctx->mutex);
7002 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
7003 event_entry) {
7004 perf_remove_from_context(event, false);
7005 put_ctx(src_ctx);
7006 list_add(&event->event_entry, &events);
7007 }
7008 mutex_unlock(&src_ctx->mutex);
7009
7010 synchronize_rcu();
7011
7012 mutex_lock(&dst_ctx->mutex);
7013 list_for_each_entry_safe(event, tmp, &events, event_entry) {
7014 list_del(&event->event_entry);
7015 if (event->state >= PERF_EVENT_STATE_OFF)
7016 event->state = PERF_EVENT_STATE_INACTIVE;
7017 perf_install_in_context(dst_ctx, event, dst_cpu);
7018 get_ctx(dst_ctx);
7019 }
7020 mutex_unlock(&dst_ctx->mutex);
7021 }
7022 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
7023
7024 static void sync_child_event(struct perf_event *child_event,
7025 struct task_struct *child)
7026 {
7027 struct perf_event *parent_event = child_event->parent;
7028 u64 child_val;
7029
7030 if (child_event->attr.inherit_stat)
7031 perf_event_read_event(child_event, child);
7032
7033 child_val = perf_event_count(child_event);
7034
7035 /*
7036 * Add back the child's count to the parent's count:
7037 */
7038 atomic64_add(child_val, &parent_event->child_count);
7039 atomic64_add(child_event->total_time_enabled,
7040 &parent_event->child_total_time_enabled);
7041 atomic64_add(child_event->total_time_running,
7042 &parent_event->child_total_time_running);
7043
7044 /*
7045 * Remove this event from the parent's list
7046 */
7047 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7048 mutex_lock(&parent_event->child_mutex);
7049 list_del_init(&child_event->child_list);
7050 mutex_unlock(&parent_event->child_mutex);
7051
7052 /*
7053 * Release the parent event, if this was the last
7054 * reference to it.
7055 */
7056 put_event(parent_event);
7057 }
7058
7059 static void
7060 __perf_event_exit_task(struct perf_event *child_event,
7061 struct perf_event_context *child_ctx,
7062 struct task_struct *child)
7063 {
7064 perf_remove_from_context(child_event, !!child_event->parent);
7065
7066 /*
7067 * It can happen that the parent exits first, and has events
7068 * that are still around due to the child reference. These
7069 * events need to be zapped.
7070 */
7071 if (child_event->parent) {
7072 sync_child_event(child_event, child);
7073 free_event(child_event);
7074 }
7075 }
7076
7077 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
7078 {
7079 struct perf_event *child_event, *tmp;
7080 struct perf_event_context *child_ctx;
7081 unsigned long flags;
7082
7083 if (likely(!child->perf_event_ctxp[ctxn])) {
7084 perf_event_task(child, NULL, 0);
7085 return;
7086 }
7087
7088 local_irq_save(flags);
7089 /*
7090 * We can't reschedule here because interrupts are disabled,
7091 * and either child is current or it is a task that can't be
7092 * scheduled, so we are now safe from rescheduling changing
7093 * our context.
7094 */
7095 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
7096
7097 /*
7098 * Take the context lock here so that if find_get_context is
7099 * reading child->perf_event_ctxp, we wait until it has
7100 * incremented the context's refcount before we do put_ctx below.
7101 */
7102 raw_spin_lock(&child_ctx->lock);
7103 task_ctx_sched_out(child_ctx);
7104 child->perf_event_ctxp[ctxn] = NULL;
7105 /*
7106 * If this context is a clone; unclone it so it can't get
7107 * swapped to another process while we're removing all
7108 * the events from it.
7109 */
7110 unclone_ctx(child_ctx);
7111 update_context_time(child_ctx);
7112 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7113
7114 /*
7115 * Report the task dead after unscheduling the events so that we
7116 * won't get any samples after PERF_RECORD_EXIT. We can however still
7117 * get a few PERF_RECORD_READ events.
7118 */
7119 perf_event_task(child, child_ctx, 0);
7120
7121 /*
7122 * We can recurse on the same lock type through:
7123 *
7124 * __perf_event_exit_task()
7125 * sync_child_event()
7126 * put_event()
7127 * mutex_lock(&ctx->mutex)
7128 *
7129 * But since its the parent context it won't be the same instance.
7130 */
7131 mutex_lock(&child_ctx->mutex);
7132
7133 again:
7134 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
7135 group_entry)
7136 __perf_event_exit_task(child_event, child_ctx, child);
7137
7138 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
7139 group_entry)
7140 __perf_event_exit_task(child_event, child_ctx, child);
7141
7142 /*
7143 * If the last event was a group event, it will have appended all
7144 * its siblings to the list, but we obtained 'tmp' before that which
7145 * will still point to the list head terminating the iteration.
7146 */
7147 if (!list_empty(&child_ctx->pinned_groups) ||
7148 !list_empty(&child_ctx->flexible_groups))
7149 goto again;
7150
7151 mutex_unlock(&child_ctx->mutex);
7152
7153 put_ctx(child_ctx);
7154 }
7155
7156 /*
7157 * When a child task exits, feed back event values to parent events.
7158 */
7159 void perf_event_exit_task(struct task_struct *child)
7160 {
7161 struct perf_event *event, *tmp;
7162 int ctxn;
7163
7164 mutex_lock(&child->perf_event_mutex);
7165 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
7166 owner_entry) {
7167 list_del_init(&event->owner_entry);
7168
7169 /*
7170 * Ensure the list deletion is visible before we clear
7171 * the owner, closes a race against perf_release() where
7172 * we need to serialize on the owner->perf_event_mutex.
7173 */
7174 smp_wmb();
7175 event->owner = NULL;
7176 }
7177 mutex_unlock(&child->perf_event_mutex);
7178
7179 for_each_task_context_nr(ctxn)
7180 perf_event_exit_task_context(child, ctxn);
7181 }
7182
7183 static void perf_free_event(struct perf_event *event,
7184 struct perf_event_context *ctx)
7185 {
7186 struct perf_event *parent = event->parent;
7187
7188 if (WARN_ON_ONCE(!parent))
7189 return;
7190
7191 mutex_lock(&parent->child_mutex);
7192 list_del_init(&event->child_list);
7193 mutex_unlock(&parent->child_mutex);
7194
7195 put_event(parent);
7196
7197 perf_group_detach(event);
7198 list_del_event(event, ctx);
7199 free_event(event);
7200 }
7201
7202 /*
7203 * free an unexposed, unused context as created by inheritance by
7204 * perf_event_init_task below, used by fork() in case of fail.
7205 */
7206 void perf_event_free_task(struct task_struct *task)
7207 {
7208 struct perf_event_context *ctx;
7209 struct perf_event *event, *tmp;
7210 int ctxn;
7211
7212 for_each_task_context_nr(ctxn) {
7213 ctx = task->perf_event_ctxp[ctxn];
7214 if (!ctx)
7215 continue;
7216
7217 mutex_lock(&ctx->mutex);
7218 again:
7219 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
7220 group_entry)
7221 perf_free_event(event, ctx);
7222
7223 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
7224 group_entry)
7225 perf_free_event(event, ctx);
7226
7227 if (!list_empty(&ctx->pinned_groups) ||
7228 !list_empty(&ctx->flexible_groups))
7229 goto again;
7230
7231 mutex_unlock(&ctx->mutex);
7232
7233 put_ctx(ctx);
7234 }
7235 }
7236
7237 void perf_event_delayed_put(struct task_struct *task)
7238 {
7239 int ctxn;
7240
7241 for_each_task_context_nr(ctxn)
7242 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
7243 }
7244
7245 /*
7246 * inherit a event from parent task to child task:
7247 */
7248 static struct perf_event *
7249 inherit_event(struct perf_event *parent_event,
7250 struct task_struct *parent,
7251 struct perf_event_context *parent_ctx,
7252 struct task_struct *child,
7253 struct perf_event *group_leader,
7254 struct perf_event_context *child_ctx)
7255 {
7256 struct perf_event *child_event;
7257 unsigned long flags;
7258
7259 /*
7260 * Instead of creating recursive hierarchies of events,
7261 * we link inherited events back to the original parent,
7262 * which has a filp for sure, which we use as the reference
7263 * count:
7264 */
7265 if (parent_event->parent)
7266 parent_event = parent_event->parent;
7267
7268 child_event = perf_event_alloc(&parent_event->attr,
7269 parent_event->cpu,
7270 child,
7271 group_leader, parent_event,
7272 NULL, NULL);
7273 if (IS_ERR(child_event))
7274 return child_event;
7275
7276 if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
7277 free_event(child_event);
7278 return NULL;
7279 }
7280
7281 get_ctx(child_ctx);
7282
7283 /*
7284 * Make the child state follow the state of the parent event,
7285 * not its attr.disabled bit. We hold the parent's mutex,
7286 * so we won't race with perf_event_{en, dis}able_family.
7287 */
7288 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
7289 child_event->state = PERF_EVENT_STATE_INACTIVE;
7290 else
7291 child_event->state = PERF_EVENT_STATE_OFF;
7292
7293 if (parent_event->attr.freq) {
7294 u64 sample_period = parent_event->hw.sample_period;
7295 struct hw_perf_event *hwc = &child_event->hw;
7296
7297 hwc->sample_period = sample_period;
7298 hwc->last_period = sample_period;
7299
7300 local64_set(&hwc->period_left, sample_period);
7301 }
7302
7303 child_event->ctx = child_ctx;
7304 child_event->overflow_handler = parent_event->overflow_handler;
7305 child_event->overflow_handler_context
7306 = parent_event->overflow_handler_context;
7307
7308 /*
7309 * Precalculate sample_data sizes
7310 */
7311 perf_event__header_size(child_event);
7312 perf_event__id_header_size(child_event);
7313
7314 /*
7315 * Link it up in the child's context:
7316 */
7317 raw_spin_lock_irqsave(&child_ctx->lock, flags);
7318 add_event_to_ctx(child_event, child_ctx);
7319 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7320
7321 /*
7322 * Link this into the parent event's child list
7323 */
7324 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7325 mutex_lock(&parent_event->child_mutex);
7326 list_add_tail(&child_event->child_list, &parent_event->child_list);
7327 mutex_unlock(&parent_event->child_mutex);
7328
7329 return child_event;
7330 }
7331
7332 static int inherit_group(struct perf_event *parent_event,
7333 struct task_struct *parent,
7334 struct perf_event_context *parent_ctx,
7335 struct task_struct *child,
7336 struct perf_event_context *child_ctx)
7337 {
7338 struct perf_event *leader;
7339 struct perf_event *sub;
7340 struct perf_event *child_ctr;
7341
7342 leader = inherit_event(parent_event, parent, parent_ctx,
7343 child, NULL, child_ctx);
7344 if (IS_ERR(leader))
7345 return PTR_ERR(leader);
7346 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
7347 child_ctr = inherit_event(sub, parent, parent_ctx,
7348 child, leader, child_ctx);
7349 if (IS_ERR(child_ctr))
7350 return PTR_ERR(child_ctr);
7351 }
7352 return 0;
7353 }
7354
7355 static int
7356 inherit_task_group(struct perf_event *event, struct task_struct *parent,
7357 struct perf_event_context *parent_ctx,
7358 struct task_struct *child, int ctxn,
7359 int *inherited_all)
7360 {
7361 int ret;
7362 struct perf_event_context *child_ctx;
7363
7364 if (!event->attr.inherit) {
7365 *inherited_all = 0;
7366 return 0;
7367 }
7368
7369 child_ctx = child->perf_event_ctxp[ctxn];
7370 if (!child_ctx) {
7371 /*
7372 * This is executed from the parent task context, so
7373 * inherit events that have been marked for cloning.
7374 * First allocate and initialize a context for the
7375 * child.
7376 */
7377
7378 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
7379 if (!child_ctx)
7380 return -ENOMEM;
7381
7382 child->perf_event_ctxp[ctxn] = child_ctx;
7383 }
7384
7385 ret = inherit_group(event, parent, parent_ctx,
7386 child, child_ctx);
7387
7388 if (ret)
7389 *inherited_all = 0;
7390
7391 return ret;
7392 }
7393
7394 /*
7395 * Initialize the perf_event context in task_struct
7396 */
7397 int perf_event_init_context(struct task_struct *child, int ctxn)
7398 {
7399 struct perf_event_context *child_ctx, *parent_ctx;
7400 struct perf_event_context *cloned_ctx;
7401 struct perf_event *event;
7402 struct task_struct *parent = current;
7403 int inherited_all = 1;
7404 unsigned long flags;
7405 int ret = 0;
7406
7407 if (likely(!parent->perf_event_ctxp[ctxn]))
7408 return 0;
7409
7410 /*
7411 * If the parent's context is a clone, pin it so it won't get
7412 * swapped under us.
7413 */
7414 parent_ctx = perf_pin_task_context(parent, ctxn);
7415
7416 /*
7417 * No need to check if parent_ctx != NULL here; since we saw
7418 * it non-NULL earlier, the only reason for it to become NULL
7419 * is if we exit, and since we're currently in the middle of
7420 * a fork we can't be exiting at the same time.
7421 */
7422
7423 /*
7424 * Lock the parent list. No need to lock the child - not PID
7425 * hashed yet and not running, so nobody can access it.
7426 */
7427 mutex_lock(&parent_ctx->mutex);
7428
7429 /*
7430 * We dont have to disable NMIs - we are only looking at
7431 * the list, not manipulating it:
7432 */
7433 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
7434 ret = inherit_task_group(event, parent, parent_ctx,
7435 child, ctxn, &inherited_all);
7436 if (ret)
7437 break;
7438 }
7439
7440 /*
7441 * We can't hold ctx->lock when iterating the ->flexible_group list due
7442 * to allocations, but we need to prevent rotation because
7443 * rotate_ctx() will change the list from interrupt context.
7444 */
7445 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7446 parent_ctx->rotate_disable = 1;
7447 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7448
7449 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
7450 ret = inherit_task_group(event, parent, parent_ctx,
7451 child, ctxn, &inherited_all);
7452 if (ret)
7453 break;
7454 }
7455
7456 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7457 parent_ctx->rotate_disable = 0;
7458
7459 child_ctx = child->perf_event_ctxp[ctxn];
7460
7461 if (child_ctx && inherited_all) {
7462 /*
7463 * Mark the child context as a clone of the parent
7464 * context, or of whatever the parent is a clone of.
7465 *
7466 * Note that if the parent is a clone, the holding of
7467 * parent_ctx->lock avoids it from being uncloned.
7468 */
7469 cloned_ctx = parent_ctx->parent_ctx;
7470 if (cloned_ctx) {
7471 child_ctx->parent_ctx = cloned_ctx;
7472 child_ctx->parent_gen = parent_ctx->parent_gen;
7473 } else {
7474 child_ctx->parent_ctx = parent_ctx;
7475 child_ctx->parent_gen = parent_ctx->generation;
7476 }
7477 get_ctx(child_ctx->parent_ctx);
7478 }
7479
7480 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7481 mutex_unlock(&parent_ctx->mutex);
7482
7483 perf_unpin_context(parent_ctx);
7484 put_ctx(parent_ctx);
7485
7486 return ret;
7487 }
7488
7489 /*
7490 * Initialize the perf_event context in task_struct
7491 */
7492 int perf_event_init_task(struct task_struct *child)
7493 {
7494 int ctxn, ret;
7495
7496 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
7497 mutex_init(&child->perf_event_mutex);
7498 INIT_LIST_HEAD(&child->perf_event_list);
7499
7500 for_each_task_context_nr(ctxn) {
7501 ret = perf_event_init_context(child, ctxn);
7502 if (ret) {
7503 perf_event_free_task(child);
7504 return ret;
7505 }
7506 }
7507
7508 return 0;
7509 }
7510
7511 static void __init perf_event_init_all_cpus(void)
7512 {
7513 struct swevent_htable *swhash;
7514 int cpu;
7515
7516 for_each_possible_cpu(cpu) {
7517 swhash = &per_cpu(swevent_htable, cpu);
7518 mutex_init(&swhash->hlist_mutex);
7519 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7520 }
7521 }
7522
7523 static void __cpuinit perf_event_init_cpu(int cpu)
7524 {
7525 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7526
7527 mutex_lock(&swhash->hlist_mutex);
7528 if (swhash->hlist_refcount > 0) {
7529 struct swevent_hlist *hlist;
7530
7531 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
7532 WARN_ON(!hlist);
7533 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7534 }
7535 mutex_unlock(&swhash->hlist_mutex);
7536 }
7537
7538 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7539 static void perf_pmu_rotate_stop(struct pmu *pmu)
7540 {
7541 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7542
7543 WARN_ON(!irqs_disabled());
7544
7545 list_del_init(&cpuctx->rotation_list);
7546 }
7547
7548 static void __perf_event_exit_context(void *__info)
7549 {
7550 struct remove_event re = { .detach_group = false };
7551 struct perf_event_context *ctx = __info;
7552
7553 perf_pmu_rotate_stop(ctx->pmu);
7554
7555 rcu_read_lock();
7556 list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
7557 __perf_remove_from_context(&re);
7558 rcu_read_unlock();
7559 }
7560
7561 static void perf_event_exit_cpu_context(int cpu)
7562 {
7563 struct perf_event_context *ctx;
7564 struct pmu *pmu;
7565 int idx;
7566
7567 idx = srcu_read_lock(&pmus_srcu);
7568 list_for_each_entry_rcu(pmu, &pmus, entry) {
7569 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
7570
7571 mutex_lock(&ctx->mutex);
7572 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7573 mutex_unlock(&ctx->mutex);
7574 }
7575 srcu_read_unlock(&pmus_srcu, idx);
7576 }
7577
7578 static void perf_event_exit_cpu(int cpu)
7579 {
7580 perf_event_exit_cpu_context(cpu);
7581 }
7582 #else
7583 static inline void perf_event_exit_cpu(int cpu) { }
7584 #endif
7585
7586 static int
7587 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7588 {
7589 int cpu;
7590
7591 for_each_online_cpu(cpu)
7592 perf_event_exit_cpu(cpu);
7593
7594 return NOTIFY_OK;
7595 }
7596
7597 /*
7598 * Run the perf reboot notifier at the very last possible moment so that
7599 * the generic watchdog code runs as long as possible.
7600 */
7601 static struct notifier_block perf_reboot_notifier = {
7602 .notifier_call = perf_reboot,
7603 .priority = INT_MIN,
7604 };
7605
7606 static int __cpuinit
7607 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7608 {
7609 unsigned int cpu = (long)hcpu;
7610
7611 switch (action & ~CPU_TASKS_FROZEN) {
7612
7613 case CPU_UP_PREPARE:
7614 case CPU_DOWN_FAILED:
7615 perf_event_init_cpu(cpu);
7616 break;
7617
7618 case CPU_UP_CANCELED:
7619 case CPU_DOWN_PREPARE:
7620 perf_event_exit_cpu(cpu);
7621 break;
7622
7623 default:
7624 break;
7625 }
7626
7627 return NOTIFY_OK;
7628 }
7629
7630 void __init perf_event_init(void)
7631 {
7632 int ret;
7633
7634 idr_init(&pmu_idr);
7635
7636 perf_event_init_all_cpus();
7637 init_srcu_struct(&pmus_srcu);
7638 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7639 perf_pmu_register(&perf_cpu_clock, NULL, -1);
7640 perf_pmu_register(&perf_task_clock, NULL, -1);
7641 perf_tp_register();
7642 perf_cpu_notifier(perf_cpu_notify);
7643 register_reboot_notifier(&perf_reboot_notifier);
7644
7645 ret = init_hw_breakpoint();
7646 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7647
7648 /* do not patch jump label more than once per second */
7649 jump_label_rate_limit(&perf_sched_events, HZ);
7650
7651 /*
7652 * Build time assertion that we keep the data_head at the intended
7653 * location. IOW, validation we got the __reserved[] size right.
7654 */
7655 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
7656 != 1024);
7657 }
7658
7659 static int __init perf_event_sysfs_init(void)
7660 {
7661 struct pmu *pmu;
7662 int ret;
7663
7664 mutex_lock(&pmus_lock);
7665
7666 ret = bus_register(&pmu_bus);
7667 if (ret)
7668 goto unlock;
7669
7670 list_for_each_entry(pmu, &pmus, entry) {
7671 if (!pmu->name || pmu->type < 0)
7672 continue;
7673
7674 ret = pmu_dev_alloc(pmu);
7675 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
7676 }
7677 pmu_bus_running = 1;
7678 ret = 0;
7679
7680 unlock:
7681 mutex_unlock(&pmus_lock);
7682
7683 return ret;
7684 }
7685 device_initcall(perf_event_sysfs_init);
7686
7687 #ifdef CONFIG_CGROUP_PERF
7688 static struct cgroup_subsys_state *perf_cgroup_css_alloc(struct cgroup *cont)
7689 {
7690 struct perf_cgroup *jc;
7691
7692 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
7693 if (!jc)
7694 return ERR_PTR(-ENOMEM);
7695
7696 jc->info = alloc_percpu(struct perf_cgroup_info);
7697 if (!jc->info) {
7698 kfree(jc);
7699 return ERR_PTR(-ENOMEM);
7700 }
7701
7702 return &jc->css;
7703 }
7704
7705 static void perf_cgroup_css_free(struct cgroup *cont)
7706 {
7707 struct perf_cgroup *jc;
7708 jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
7709 struct perf_cgroup, css);
7710 free_percpu(jc->info);
7711 kfree(jc);
7712 }
7713
7714 static int __perf_cgroup_move(void *info)
7715 {
7716 struct task_struct *task = info;
7717 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7718 return 0;
7719 }
7720
7721 static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
7722 {
7723 struct task_struct *task;
7724
7725 cgroup_taskset_for_each(task, cgrp, tset)
7726 task_function_call(task, __perf_cgroup_move, task);
7727 }
7728
7729 static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7730 struct task_struct *task)
7731 {
7732 /*
7733 * cgroup_exit() is called in the copy_process() failure path.
7734 * Ignore this case since the task hasn't ran yet, this avoids
7735 * trying to poke a half freed task state from generic code.
7736 */
7737 if (!(task->flags & PF_EXITING))
7738 return;
7739
7740 task_function_call(task, __perf_cgroup_move, task);
7741 }
7742
7743 struct cgroup_subsys perf_subsys = {
7744 .name = "perf_event",
7745 .subsys_id = perf_subsys_id,
7746 .css_alloc = perf_cgroup_css_alloc,
7747 .css_free = perf_cgroup_css_free,
7748 .exit = perf_cgroup_exit,
7749 .attach = perf_cgroup_attach,
7750 };
7751 #endif /* CONFIG_CGROUP_PERF */