Merge branch 'slab/next' into slab/for-linus
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / cpuset.c
1 /*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
12 *
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/list.h>
37 #include <linux/mempolicy.h>
38 #include <linux/mm.h>
39 #include <linux/memory.h>
40 #include <linux/export.h>
41 #include <linux/mount.h>
42 #include <linux/namei.h>
43 #include <linux/pagemap.h>
44 #include <linux/proc_fs.h>
45 #include <linux/rcupdate.h>
46 #include <linux/sched.h>
47 #include <linux/seq_file.h>
48 #include <linux/security.h>
49 #include <linux/slab.h>
50 #include <linux/spinlock.h>
51 #include <linux/stat.h>
52 #include <linux/string.h>
53 #include <linux/time.h>
54 #include <linux/backing-dev.h>
55 #include <linux/sort.h>
56
57 #include <asm/uaccess.h>
58 #include <linux/atomic.h>
59 #include <linux/mutex.h>
60 #include <linux/workqueue.h>
61 #include <linux/cgroup.h>
62
63 /*
64 * Tracks how many cpusets are currently defined in system.
65 * When there is only one cpuset (the root cpuset) we can
66 * short circuit some hooks.
67 */
68 int number_of_cpusets __read_mostly;
69
70 /* Forward declare cgroup structures */
71 struct cgroup_subsys cpuset_subsys;
72 struct cpuset;
73
74 /* See "Frequency meter" comments, below. */
75
76 struct fmeter {
77 int cnt; /* unprocessed events count */
78 int val; /* most recent output value */
79 time_t time; /* clock (secs) when val computed */
80 spinlock_t lock; /* guards read or write of above */
81 };
82
83 struct cpuset {
84 struct cgroup_subsys_state css;
85
86 unsigned long flags; /* "unsigned long" so bitops work */
87 cpumask_var_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
88 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
89
90 struct fmeter fmeter; /* memory_pressure filter */
91
92 /*
93 * Tasks are being attached to this cpuset. Used to prevent
94 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
95 */
96 int attach_in_progress;
97
98 /* partition number for rebuild_sched_domains() */
99 int pn;
100
101 /* for custom sched domain */
102 int relax_domain_level;
103
104 struct work_struct hotplug_work;
105 };
106
107 /* Retrieve the cpuset for a cgroup */
108 static inline struct cpuset *cgroup_cs(struct cgroup *cont)
109 {
110 return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
111 struct cpuset, css);
112 }
113
114 /* Retrieve the cpuset for a task */
115 static inline struct cpuset *task_cs(struct task_struct *task)
116 {
117 return container_of(task_subsys_state(task, cpuset_subsys_id),
118 struct cpuset, css);
119 }
120
121 static inline struct cpuset *parent_cs(const struct cpuset *cs)
122 {
123 struct cgroup *pcgrp = cs->css.cgroup->parent;
124
125 if (pcgrp)
126 return cgroup_cs(pcgrp);
127 return NULL;
128 }
129
130 #ifdef CONFIG_NUMA
131 static inline bool task_has_mempolicy(struct task_struct *task)
132 {
133 return task->mempolicy;
134 }
135 #else
136 static inline bool task_has_mempolicy(struct task_struct *task)
137 {
138 return false;
139 }
140 #endif
141
142
143 /* bits in struct cpuset flags field */
144 typedef enum {
145 CS_ONLINE,
146 CS_CPU_EXCLUSIVE,
147 CS_MEM_EXCLUSIVE,
148 CS_MEM_HARDWALL,
149 CS_MEMORY_MIGRATE,
150 CS_SCHED_LOAD_BALANCE,
151 CS_SPREAD_PAGE,
152 CS_SPREAD_SLAB,
153 } cpuset_flagbits_t;
154
155 /* convenient tests for these bits */
156 static inline bool is_cpuset_online(const struct cpuset *cs)
157 {
158 return test_bit(CS_ONLINE, &cs->flags);
159 }
160
161 static inline int is_cpu_exclusive(const struct cpuset *cs)
162 {
163 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
164 }
165
166 static inline int is_mem_exclusive(const struct cpuset *cs)
167 {
168 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
169 }
170
171 static inline int is_mem_hardwall(const struct cpuset *cs)
172 {
173 return test_bit(CS_MEM_HARDWALL, &cs->flags);
174 }
175
176 static inline int is_sched_load_balance(const struct cpuset *cs)
177 {
178 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
179 }
180
181 static inline int is_memory_migrate(const struct cpuset *cs)
182 {
183 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
184 }
185
186 static inline int is_spread_page(const struct cpuset *cs)
187 {
188 return test_bit(CS_SPREAD_PAGE, &cs->flags);
189 }
190
191 static inline int is_spread_slab(const struct cpuset *cs)
192 {
193 return test_bit(CS_SPREAD_SLAB, &cs->flags);
194 }
195
196 static struct cpuset top_cpuset = {
197 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
198 (1 << CS_MEM_EXCLUSIVE)),
199 };
200
201 /**
202 * cpuset_for_each_child - traverse online children of a cpuset
203 * @child_cs: loop cursor pointing to the current child
204 * @pos_cgrp: used for iteration
205 * @parent_cs: target cpuset to walk children of
206 *
207 * Walk @child_cs through the online children of @parent_cs. Must be used
208 * with RCU read locked.
209 */
210 #define cpuset_for_each_child(child_cs, pos_cgrp, parent_cs) \
211 cgroup_for_each_child((pos_cgrp), (parent_cs)->css.cgroup) \
212 if (is_cpuset_online(((child_cs) = cgroup_cs((pos_cgrp)))))
213
214 /**
215 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
216 * @des_cs: loop cursor pointing to the current descendant
217 * @pos_cgrp: used for iteration
218 * @root_cs: target cpuset to walk ancestor of
219 *
220 * Walk @des_cs through the online descendants of @root_cs. Must be used
221 * with RCU read locked. The caller may modify @pos_cgrp by calling
222 * cgroup_rightmost_descendant() to skip subtree.
223 */
224 #define cpuset_for_each_descendant_pre(des_cs, pos_cgrp, root_cs) \
225 cgroup_for_each_descendant_pre((pos_cgrp), (root_cs)->css.cgroup) \
226 if (is_cpuset_online(((des_cs) = cgroup_cs((pos_cgrp)))))
227
228 /*
229 * There are two global mutexes guarding cpuset structures - cpuset_mutex
230 * and callback_mutex. The latter may nest inside the former. We also
231 * require taking task_lock() when dereferencing a task's cpuset pointer.
232 * See "The task_lock() exception", at the end of this comment.
233 *
234 * A task must hold both mutexes to modify cpusets. If a task holds
235 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
236 * is the only task able to also acquire callback_mutex and be able to
237 * modify cpusets. It can perform various checks on the cpuset structure
238 * first, knowing nothing will change. It can also allocate memory while
239 * just holding cpuset_mutex. While it is performing these checks, various
240 * callback routines can briefly acquire callback_mutex to query cpusets.
241 * Once it is ready to make the changes, it takes callback_mutex, blocking
242 * everyone else.
243 *
244 * Calls to the kernel memory allocator can not be made while holding
245 * callback_mutex, as that would risk double tripping on callback_mutex
246 * from one of the callbacks into the cpuset code from within
247 * __alloc_pages().
248 *
249 * If a task is only holding callback_mutex, then it has read-only
250 * access to cpusets.
251 *
252 * Now, the task_struct fields mems_allowed and mempolicy may be changed
253 * by other task, we use alloc_lock in the task_struct fields to protect
254 * them.
255 *
256 * The cpuset_common_file_read() handlers only hold callback_mutex across
257 * small pieces of code, such as when reading out possibly multi-word
258 * cpumasks and nodemasks.
259 *
260 * Accessing a task's cpuset should be done in accordance with the
261 * guidelines for accessing subsystem state in kernel/cgroup.c
262 */
263
264 static DEFINE_MUTEX(cpuset_mutex);
265 static DEFINE_MUTEX(callback_mutex);
266
267 /*
268 * cpuset_buffer_lock protects both the cpuset_name and cpuset_nodelist
269 * buffers. They are statically allocated to prevent using excess stack
270 * when calling cpuset_print_task_mems_allowed().
271 */
272 #define CPUSET_NAME_LEN (128)
273 #define CPUSET_NODELIST_LEN (256)
274 static char cpuset_name[CPUSET_NAME_LEN];
275 static char cpuset_nodelist[CPUSET_NODELIST_LEN];
276 static DEFINE_SPINLOCK(cpuset_buffer_lock);
277
278 /*
279 * CPU / memory hotplug is handled asynchronously.
280 */
281 static struct workqueue_struct *cpuset_propagate_hotplug_wq;
282
283 static void cpuset_hotplug_workfn(struct work_struct *work);
284 static void cpuset_propagate_hotplug_workfn(struct work_struct *work);
285 static void schedule_cpuset_propagate_hotplug(struct cpuset *cs);
286
287 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
288
289 /*
290 * This is ugly, but preserves the userspace API for existing cpuset
291 * users. If someone tries to mount the "cpuset" filesystem, we
292 * silently switch it to mount "cgroup" instead
293 */
294 static struct dentry *cpuset_mount(struct file_system_type *fs_type,
295 int flags, const char *unused_dev_name, void *data)
296 {
297 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
298 struct dentry *ret = ERR_PTR(-ENODEV);
299 if (cgroup_fs) {
300 char mountopts[] =
301 "cpuset,noprefix,"
302 "release_agent=/sbin/cpuset_release_agent";
303 ret = cgroup_fs->mount(cgroup_fs, flags,
304 unused_dev_name, mountopts);
305 put_filesystem(cgroup_fs);
306 }
307 return ret;
308 }
309
310 static struct file_system_type cpuset_fs_type = {
311 .name = "cpuset",
312 .mount = cpuset_mount,
313 };
314
315 /*
316 * Return in pmask the portion of a cpusets's cpus_allowed that
317 * are online. If none are online, walk up the cpuset hierarchy
318 * until we find one that does have some online cpus. If we get
319 * all the way to the top and still haven't found any online cpus,
320 * return cpu_online_mask. Or if passed a NULL cs from an exit'ing
321 * task, return cpu_online_mask.
322 *
323 * One way or another, we guarantee to return some non-empty subset
324 * of cpu_online_mask.
325 *
326 * Call with callback_mutex held.
327 */
328
329 static void guarantee_online_cpus(const struct cpuset *cs,
330 struct cpumask *pmask)
331 {
332 while (cs && !cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
333 cs = parent_cs(cs);
334 if (cs)
335 cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
336 else
337 cpumask_copy(pmask, cpu_online_mask);
338 BUG_ON(!cpumask_intersects(pmask, cpu_online_mask));
339 }
340
341 /*
342 * Return in *pmask the portion of a cpusets's mems_allowed that
343 * are online, with memory. If none are online with memory, walk
344 * up the cpuset hierarchy until we find one that does have some
345 * online mems. If we get all the way to the top and still haven't
346 * found any online mems, return node_states[N_MEMORY].
347 *
348 * One way or another, we guarantee to return some non-empty subset
349 * of node_states[N_MEMORY].
350 *
351 * Call with callback_mutex held.
352 */
353
354 static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
355 {
356 while (cs && !nodes_intersects(cs->mems_allowed,
357 node_states[N_MEMORY]))
358 cs = parent_cs(cs);
359 if (cs)
360 nodes_and(*pmask, cs->mems_allowed,
361 node_states[N_MEMORY]);
362 else
363 *pmask = node_states[N_MEMORY];
364 BUG_ON(!nodes_intersects(*pmask, node_states[N_MEMORY]));
365 }
366
367 /*
368 * update task's spread flag if cpuset's page/slab spread flag is set
369 *
370 * Called with callback_mutex/cpuset_mutex held
371 */
372 static void cpuset_update_task_spread_flag(struct cpuset *cs,
373 struct task_struct *tsk)
374 {
375 if (is_spread_page(cs))
376 tsk->flags |= PF_SPREAD_PAGE;
377 else
378 tsk->flags &= ~PF_SPREAD_PAGE;
379 if (is_spread_slab(cs))
380 tsk->flags |= PF_SPREAD_SLAB;
381 else
382 tsk->flags &= ~PF_SPREAD_SLAB;
383 }
384
385 /*
386 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
387 *
388 * One cpuset is a subset of another if all its allowed CPUs and
389 * Memory Nodes are a subset of the other, and its exclusive flags
390 * are only set if the other's are set. Call holding cpuset_mutex.
391 */
392
393 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
394 {
395 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
396 nodes_subset(p->mems_allowed, q->mems_allowed) &&
397 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
398 is_mem_exclusive(p) <= is_mem_exclusive(q);
399 }
400
401 /**
402 * alloc_trial_cpuset - allocate a trial cpuset
403 * @cs: the cpuset that the trial cpuset duplicates
404 */
405 static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs)
406 {
407 struct cpuset *trial;
408
409 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
410 if (!trial)
411 return NULL;
412
413 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
414 kfree(trial);
415 return NULL;
416 }
417 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
418
419 return trial;
420 }
421
422 /**
423 * free_trial_cpuset - free the trial cpuset
424 * @trial: the trial cpuset to be freed
425 */
426 static void free_trial_cpuset(struct cpuset *trial)
427 {
428 free_cpumask_var(trial->cpus_allowed);
429 kfree(trial);
430 }
431
432 /*
433 * validate_change() - Used to validate that any proposed cpuset change
434 * follows the structural rules for cpusets.
435 *
436 * If we replaced the flag and mask values of the current cpuset
437 * (cur) with those values in the trial cpuset (trial), would
438 * our various subset and exclusive rules still be valid? Presumes
439 * cpuset_mutex held.
440 *
441 * 'cur' is the address of an actual, in-use cpuset. Operations
442 * such as list traversal that depend on the actual address of the
443 * cpuset in the list must use cur below, not trial.
444 *
445 * 'trial' is the address of bulk structure copy of cur, with
446 * perhaps one or more of the fields cpus_allowed, mems_allowed,
447 * or flags changed to new, trial values.
448 *
449 * Return 0 if valid, -errno if not.
450 */
451
452 static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
453 {
454 struct cgroup *cont;
455 struct cpuset *c, *par;
456 int ret;
457
458 rcu_read_lock();
459
460 /* Each of our child cpusets must be a subset of us */
461 ret = -EBUSY;
462 cpuset_for_each_child(c, cont, cur)
463 if (!is_cpuset_subset(c, trial))
464 goto out;
465
466 /* Remaining checks don't apply to root cpuset */
467 ret = 0;
468 if (cur == &top_cpuset)
469 goto out;
470
471 par = parent_cs(cur);
472
473 /* We must be a subset of our parent cpuset */
474 ret = -EACCES;
475 if (!is_cpuset_subset(trial, par))
476 goto out;
477
478 /*
479 * If either I or some sibling (!= me) is exclusive, we can't
480 * overlap
481 */
482 ret = -EINVAL;
483 cpuset_for_each_child(c, cont, par) {
484 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
485 c != cur &&
486 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
487 goto out;
488 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
489 c != cur &&
490 nodes_intersects(trial->mems_allowed, c->mems_allowed))
491 goto out;
492 }
493
494 /*
495 * Cpusets with tasks - existing or newly being attached - can't
496 * have empty cpus_allowed or mems_allowed.
497 */
498 ret = -ENOSPC;
499 if ((cgroup_task_count(cur->css.cgroup) || cur->attach_in_progress) &&
500 (cpumask_empty(trial->cpus_allowed) ||
501 nodes_empty(trial->mems_allowed)))
502 goto out;
503
504 ret = 0;
505 out:
506 rcu_read_unlock();
507 return ret;
508 }
509
510 #ifdef CONFIG_SMP
511 /*
512 * Helper routine for generate_sched_domains().
513 * Do cpusets a, b have overlapping cpus_allowed masks?
514 */
515 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
516 {
517 return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
518 }
519
520 static void
521 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
522 {
523 if (dattr->relax_domain_level < c->relax_domain_level)
524 dattr->relax_domain_level = c->relax_domain_level;
525 return;
526 }
527
528 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
529 struct cpuset *root_cs)
530 {
531 struct cpuset *cp;
532 struct cgroup *pos_cgrp;
533
534 rcu_read_lock();
535 cpuset_for_each_descendant_pre(cp, pos_cgrp, root_cs) {
536 /* skip the whole subtree if @cp doesn't have any CPU */
537 if (cpumask_empty(cp->cpus_allowed)) {
538 pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
539 continue;
540 }
541
542 if (is_sched_load_balance(cp))
543 update_domain_attr(dattr, cp);
544 }
545 rcu_read_unlock();
546 }
547
548 /*
549 * generate_sched_domains()
550 *
551 * This function builds a partial partition of the systems CPUs
552 * A 'partial partition' is a set of non-overlapping subsets whose
553 * union is a subset of that set.
554 * The output of this function needs to be passed to kernel/sched.c
555 * partition_sched_domains() routine, which will rebuild the scheduler's
556 * load balancing domains (sched domains) as specified by that partial
557 * partition.
558 *
559 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
560 * for a background explanation of this.
561 *
562 * Does not return errors, on the theory that the callers of this
563 * routine would rather not worry about failures to rebuild sched
564 * domains when operating in the severe memory shortage situations
565 * that could cause allocation failures below.
566 *
567 * Must be called with cpuset_mutex held.
568 *
569 * The three key local variables below are:
570 * q - a linked-list queue of cpuset pointers, used to implement a
571 * top-down scan of all cpusets. This scan loads a pointer
572 * to each cpuset marked is_sched_load_balance into the
573 * array 'csa'. For our purposes, rebuilding the schedulers
574 * sched domains, we can ignore !is_sched_load_balance cpusets.
575 * csa - (for CpuSet Array) Array of pointers to all the cpusets
576 * that need to be load balanced, for convenient iterative
577 * access by the subsequent code that finds the best partition,
578 * i.e the set of domains (subsets) of CPUs such that the
579 * cpus_allowed of every cpuset marked is_sched_load_balance
580 * is a subset of one of these domains, while there are as
581 * many such domains as possible, each as small as possible.
582 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
583 * the kernel/sched.c routine partition_sched_domains() in a
584 * convenient format, that can be easily compared to the prior
585 * value to determine what partition elements (sched domains)
586 * were changed (added or removed.)
587 *
588 * Finding the best partition (set of domains):
589 * The triple nested loops below over i, j, k scan over the
590 * load balanced cpusets (using the array of cpuset pointers in
591 * csa[]) looking for pairs of cpusets that have overlapping
592 * cpus_allowed, but which don't have the same 'pn' partition
593 * number and gives them in the same partition number. It keeps
594 * looping on the 'restart' label until it can no longer find
595 * any such pairs.
596 *
597 * The union of the cpus_allowed masks from the set of
598 * all cpusets having the same 'pn' value then form the one
599 * element of the partition (one sched domain) to be passed to
600 * partition_sched_domains().
601 */
602 static int generate_sched_domains(cpumask_var_t **domains,
603 struct sched_domain_attr **attributes)
604 {
605 struct cpuset *cp; /* scans q */
606 struct cpuset **csa; /* array of all cpuset ptrs */
607 int csn; /* how many cpuset ptrs in csa so far */
608 int i, j, k; /* indices for partition finding loops */
609 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
610 struct sched_domain_attr *dattr; /* attributes for custom domains */
611 int ndoms = 0; /* number of sched domains in result */
612 int nslot; /* next empty doms[] struct cpumask slot */
613 struct cgroup *pos_cgrp;
614
615 doms = NULL;
616 dattr = NULL;
617 csa = NULL;
618
619 /* Special case for the 99% of systems with one, full, sched domain */
620 if (is_sched_load_balance(&top_cpuset)) {
621 ndoms = 1;
622 doms = alloc_sched_domains(ndoms);
623 if (!doms)
624 goto done;
625
626 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
627 if (dattr) {
628 *dattr = SD_ATTR_INIT;
629 update_domain_attr_tree(dattr, &top_cpuset);
630 }
631 cpumask_copy(doms[0], top_cpuset.cpus_allowed);
632
633 goto done;
634 }
635
636 csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
637 if (!csa)
638 goto done;
639 csn = 0;
640
641 rcu_read_lock();
642 cpuset_for_each_descendant_pre(cp, pos_cgrp, &top_cpuset) {
643 /*
644 * Continue traversing beyond @cp iff @cp has some CPUs and
645 * isn't load balancing. The former is obvious. The
646 * latter: All child cpusets contain a subset of the
647 * parent's cpus, so just skip them, and then we call
648 * update_domain_attr_tree() to calc relax_domain_level of
649 * the corresponding sched domain.
650 */
651 if (!cpumask_empty(cp->cpus_allowed) &&
652 !is_sched_load_balance(cp))
653 continue;
654
655 if (is_sched_load_balance(cp))
656 csa[csn++] = cp;
657
658 /* skip @cp's subtree */
659 pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
660 }
661 rcu_read_unlock();
662
663 for (i = 0; i < csn; i++)
664 csa[i]->pn = i;
665 ndoms = csn;
666
667 restart:
668 /* Find the best partition (set of sched domains) */
669 for (i = 0; i < csn; i++) {
670 struct cpuset *a = csa[i];
671 int apn = a->pn;
672
673 for (j = 0; j < csn; j++) {
674 struct cpuset *b = csa[j];
675 int bpn = b->pn;
676
677 if (apn != bpn && cpusets_overlap(a, b)) {
678 for (k = 0; k < csn; k++) {
679 struct cpuset *c = csa[k];
680
681 if (c->pn == bpn)
682 c->pn = apn;
683 }
684 ndoms--; /* one less element */
685 goto restart;
686 }
687 }
688 }
689
690 /*
691 * Now we know how many domains to create.
692 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
693 */
694 doms = alloc_sched_domains(ndoms);
695 if (!doms)
696 goto done;
697
698 /*
699 * The rest of the code, including the scheduler, can deal with
700 * dattr==NULL case. No need to abort if alloc fails.
701 */
702 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
703
704 for (nslot = 0, i = 0; i < csn; i++) {
705 struct cpuset *a = csa[i];
706 struct cpumask *dp;
707 int apn = a->pn;
708
709 if (apn < 0) {
710 /* Skip completed partitions */
711 continue;
712 }
713
714 dp = doms[nslot];
715
716 if (nslot == ndoms) {
717 static int warnings = 10;
718 if (warnings) {
719 printk(KERN_WARNING
720 "rebuild_sched_domains confused:"
721 " nslot %d, ndoms %d, csn %d, i %d,"
722 " apn %d\n",
723 nslot, ndoms, csn, i, apn);
724 warnings--;
725 }
726 continue;
727 }
728
729 cpumask_clear(dp);
730 if (dattr)
731 *(dattr + nslot) = SD_ATTR_INIT;
732 for (j = i; j < csn; j++) {
733 struct cpuset *b = csa[j];
734
735 if (apn == b->pn) {
736 cpumask_or(dp, dp, b->cpus_allowed);
737 if (dattr)
738 update_domain_attr_tree(dattr + nslot, b);
739
740 /* Done with this partition */
741 b->pn = -1;
742 }
743 }
744 nslot++;
745 }
746 BUG_ON(nslot != ndoms);
747
748 done:
749 kfree(csa);
750
751 /*
752 * Fallback to the default domain if kmalloc() failed.
753 * See comments in partition_sched_domains().
754 */
755 if (doms == NULL)
756 ndoms = 1;
757
758 *domains = doms;
759 *attributes = dattr;
760 return ndoms;
761 }
762
763 /*
764 * Rebuild scheduler domains.
765 *
766 * If the flag 'sched_load_balance' of any cpuset with non-empty
767 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
768 * which has that flag enabled, or if any cpuset with a non-empty
769 * 'cpus' is removed, then call this routine to rebuild the
770 * scheduler's dynamic sched domains.
771 *
772 * Call with cpuset_mutex held. Takes get_online_cpus().
773 */
774 static void rebuild_sched_domains_locked(void)
775 {
776 struct sched_domain_attr *attr;
777 cpumask_var_t *doms;
778 int ndoms;
779
780 lockdep_assert_held(&cpuset_mutex);
781 get_online_cpus();
782
783 /* Generate domain masks and attrs */
784 ndoms = generate_sched_domains(&doms, &attr);
785
786 /* Have scheduler rebuild the domains */
787 partition_sched_domains(ndoms, doms, attr);
788
789 put_online_cpus();
790 }
791 #else /* !CONFIG_SMP */
792 static void rebuild_sched_domains_locked(void)
793 {
794 }
795
796 static int generate_sched_domains(cpumask_var_t **domains,
797 struct sched_domain_attr **attributes)
798 {
799 *domains = NULL;
800 return 1;
801 }
802 #endif /* CONFIG_SMP */
803
804 void rebuild_sched_domains(void)
805 {
806 mutex_lock(&cpuset_mutex);
807 rebuild_sched_domains_locked();
808 mutex_unlock(&cpuset_mutex);
809 }
810
811 /**
812 * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
813 * @tsk: task to test
814 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
815 *
816 * Call with cpuset_mutex held. May take callback_mutex during call.
817 * Called for each task in a cgroup by cgroup_scan_tasks().
818 * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
819 * words, if its mask is not equal to its cpuset's mask).
820 */
821 static int cpuset_test_cpumask(struct task_struct *tsk,
822 struct cgroup_scanner *scan)
823 {
824 return !cpumask_equal(&tsk->cpus_allowed,
825 (cgroup_cs(scan->cg))->cpus_allowed);
826 }
827
828 /**
829 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
830 * @tsk: task to test
831 * @scan: struct cgroup_scanner containing the cgroup of the task
832 *
833 * Called by cgroup_scan_tasks() for each task in a cgroup whose
834 * cpus_allowed mask needs to be changed.
835 *
836 * We don't need to re-check for the cgroup/cpuset membership, since we're
837 * holding cpuset_mutex at this point.
838 */
839 static void cpuset_change_cpumask(struct task_struct *tsk,
840 struct cgroup_scanner *scan)
841 {
842 set_cpus_allowed_ptr(tsk, ((cgroup_cs(scan->cg))->cpus_allowed));
843 }
844
845 /**
846 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
847 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
848 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
849 *
850 * Called with cpuset_mutex held
851 *
852 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
853 * calling callback functions for each.
854 *
855 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
856 * if @heap != NULL.
857 */
858 static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
859 {
860 struct cgroup_scanner scan;
861
862 scan.cg = cs->css.cgroup;
863 scan.test_task = cpuset_test_cpumask;
864 scan.process_task = cpuset_change_cpumask;
865 scan.heap = heap;
866 cgroup_scan_tasks(&scan);
867 }
868
869 /**
870 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
871 * @cs: the cpuset to consider
872 * @buf: buffer of cpu numbers written to this cpuset
873 */
874 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
875 const char *buf)
876 {
877 struct ptr_heap heap;
878 int retval;
879 int is_load_balanced;
880
881 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
882 if (cs == &top_cpuset)
883 return -EACCES;
884
885 /*
886 * An empty cpus_allowed is ok only if the cpuset has no tasks.
887 * Since cpulist_parse() fails on an empty mask, we special case
888 * that parsing. The validate_change() call ensures that cpusets
889 * with tasks have cpus.
890 */
891 if (!*buf) {
892 cpumask_clear(trialcs->cpus_allowed);
893 } else {
894 retval = cpulist_parse(buf, trialcs->cpus_allowed);
895 if (retval < 0)
896 return retval;
897
898 if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
899 return -EINVAL;
900 }
901 retval = validate_change(cs, trialcs);
902 if (retval < 0)
903 return retval;
904
905 /* Nothing to do if the cpus didn't change */
906 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
907 return 0;
908
909 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
910 if (retval)
911 return retval;
912
913 is_load_balanced = is_sched_load_balance(trialcs);
914
915 mutex_lock(&callback_mutex);
916 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
917 mutex_unlock(&callback_mutex);
918
919 /*
920 * Scan tasks in the cpuset, and update the cpumasks of any
921 * that need an update.
922 */
923 update_tasks_cpumask(cs, &heap);
924
925 heap_free(&heap);
926
927 if (is_load_balanced)
928 rebuild_sched_domains_locked();
929 return 0;
930 }
931
932 /*
933 * cpuset_migrate_mm
934 *
935 * Migrate memory region from one set of nodes to another.
936 *
937 * Temporarilly set tasks mems_allowed to target nodes of migration,
938 * so that the migration code can allocate pages on these nodes.
939 *
940 * Call holding cpuset_mutex, so current's cpuset won't change
941 * during this call, as manage_mutex holds off any cpuset_attach()
942 * calls. Therefore we don't need to take task_lock around the
943 * call to guarantee_online_mems(), as we know no one is changing
944 * our task's cpuset.
945 *
946 * While the mm_struct we are migrating is typically from some
947 * other task, the task_struct mems_allowed that we are hacking
948 * is for our current task, which must allocate new pages for that
949 * migrating memory region.
950 */
951
952 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
953 const nodemask_t *to)
954 {
955 struct task_struct *tsk = current;
956
957 tsk->mems_allowed = *to;
958
959 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
960
961 guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
962 }
963
964 /*
965 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
966 * @tsk: the task to change
967 * @newmems: new nodes that the task will be set
968 *
969 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
970 * we structure updates as setting all new allowed nodes, then clearing newly
971 * disallowed ones.
972 */
973 static void cpuset_change_task_nodemask(struct task_struct *tsk,
974 nodemask_t *newmems)
975 {
976 bool need_loop;
977
978 /*
979 * Allow tasks that have access to memory reserves because they have
980 * been OOM killed to get memory anywhere.
981 */
982 if (unlikely(test_thread_flag(TIF_MEMDIE)))
983 return;
984 if (current->flags & PF_EXITING) /* Let dying task have memory */
985 return;
986
987 task_lock(tsk);
988 /*
989 * Determine if a loop is necessary if another thread is doing
990 * get_mems_allowed(). If at least one node remains unchanged and
991 * tsk does not have a mempolicy, then an empty nodemask will not be
992 * possible when mems_allowed is larger than a word.
993 */
994 need_loop = task_has_mempolicy(tsk) ||
995 !nodes_intersects(*newmems, tsk->mems_allowed);
996
997 if (need_loop)
998 write_seqcount_begin(&tsk->mems_allowed_seq);
999
1000 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1001 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
1002
1003 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
1004 tsk->mems_allowed = *newmems;
1005
1006 if (need_loop)
1007 write_seqcount_end(&tsk->mems_allowed_seq);
1008
1009 task_unlock(tsk);
1010 }
1011
1012 /*
1013 * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy
1014 * of it to cpuset's new mems_allowed, and migrate pages to new nodes if
1015 * memory_migrate flag is set. Called with cpuset_mutex held.
1016 */
1017 static void cpuset_change_nodemask(struct task_struct *p,
1018 struct cgroup_scanner *scan)
1019 {
1020 struct mm_struct *mm;
1021 struct cpuset *cs;
1022 int migrate;
1023 const nodemask_t *oldmem = scan->data;
1024 static nodemask_t newmems; /* protected by cpuset_mutex */
1025
1026 cs = cgroup_cs(scan->cg);
1027 guarantee_online_mems(cs, &newmems);
1028
1029 cpuset_change_task_nodemask(p, &newmems);
1030
1031 mm = get_task_mm(p);
1032 if (!mm)
1033 return;
1034
1035 migrate = is_memory_migrate(cs);
1036
1037 mpol_rebind_mm(mm, &cs->mems_allowed);
1038 if (migrate)
1039 cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
1040 mmput(mm);
1041 }
1042
1043 static void *cpuset_being_rebound;
1044
1045 /**
1046 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1047 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1048 * @oldmem: old mems_allowed of cpuset cs
1049 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
1050 *
1051 * Called with cpuset_mutex held
1052 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1053 * if @heap != NULL.
1054 */
1055 static void update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem,
1056 struct ptr_heap *heap)
1057 {
1058 struct cgroup_scanner scan;
1059
1060 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
1061
1062 scan.cg = cs->css.cgroup;
1063 scan.test_task = NULL;
1064 scan.process_task = cpuset_change_nodemask;
1065 scan.heap = heap;
1066 scan.data = (nodemask_t *)oldmem;
1067
1068 /*
1069 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1070 * take while holding tasklist_lock. Forks can happen - the
1071 * mpol_dup() cpuset_being_rebound check will catch such forks,
1072 * and rebind their vma mempolicies too. Because we still hold
1073 * the global cpuset_mutex, we know that no other rebind effort
1074 * will be contending for the global variable cpuset_being_rebound.
1075 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1076 * is idempotent. Also migrate pages in each mm to new nodes.
1077 */
1078 cgroup_scan_tasks(&scan);
1079
1080 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1081 cpuset_being_rebound = NULL;
1082 }
1083
1084 /*
1085 * Handle user request to change the 'mems' memory placement
1086 * of a cpuset. Needs to validate the request, update the
1087 * cpusets mems_allowed, and for each task in the cpuset,
1088 * update mems_allowed and rebind task's mempolicy and any vma
1089 * mempolicies and if the cpuset is marked 'memory_migrate',
1090 * migrate the tasks pages to the new memory.
1091 *
1092 * Call with cpuset_mutex held. May take callback_mutex during call.
1093 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1094 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1095 * their mempolicies to the cpusets new mems_allowed.
1096 */
1097 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1098 const char *buf)
1099 {
1100 NODEMASK_ALLOC(nodemask_t, oldmem, GFP_KERNEL);
1101 int retval;
1102 struct ptr_heap heap;
1103
1104 if (!oldmem)
1105 return -ENOMEM;
1106
1107 /*
1108 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1109 * it's read-only
1110 */
1111 if (cs == &top_cpuset) {
1112 retval = -EACCES;
1113 goto done;
1114 }
1115
1116 /*
1117 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1118 * Since nodelist_parse() fails on an empty mask, we special case
1119 * that parsing. The validate_change() call ensures that cpusets
1120 * with tasks have memory.
1121 */
1122 if (!*buf) {
1123 nodes_clear(trialcs->mems_allowed);
1124 } else {
1125 retval = nodelist_parse(buf, trialcs->mems_allowed);
1126 if (retval < 0)
1127 goto done;
1128
1129 if (!nodes_subset(trialcs->mems_allowed,
1130 node_states[N_MEMORY])) {
1131 retval = -EINVAL;
1132 goto done;
1133 }
1134 }
1135 *oldmem = cs->mems_allowed;
1136 if (nodes_equal(*oldmem, trialcs->mems_allowed)) {
1137 retval = 0; /* Too easy - nothing to do */
1138 goto done;
1139 }
1140 retval = validate_change(cs, trialcs);
1141 if (retval < 0)
1142 goto done;
1143
1144 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1145 if (retval < 0)
1146 goto done;
1147
1148 mutex_lock(&callback_mutex);
1149 cs->mems_allowed = trialcs->mems_allowed;
1150 mutex_unlock(&callback_mutex);
1151
1152 update_tasks_nodemask(cs, oldmem, &heap);
1153
1154 heap_free(&heap);
1155 done:
1156 NODEMASK_FREE(oldmem);
1157 return retval;
1158 }
1159
1160 int current_cpuset_is_being_rebound(void)
1161 {
1162 return task_cs(current) == cpuset_being_rebound;
1163 }
1164
1165 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1166 {
1167 #ifdef CONFIG_SMP
1168 if (val < -1 || val >= sched_domain_level_max)
1169 return -EINVAL;
1170 #endif
1171
1172 if (val != cs->relax_domain_level) {
1173 cs->relax_domain_level = val;
1174 if (!cpumask_empty(cs->cpus_allowed) &&
1175 is_sched_load_balance(cs))
1176 rebuild_sched_domains_locked();
1177 }
1178
1179 return 0;
1180 }
1181
1182 /*
1183 * cpuset_change_flag - make a task's spread flags the same as its cpuset's
1184 * @tsk: task to be updated
1185 * @scan: struct cgroup_scanner containing the cgroup of the task
1186 *
1187 * Called by cgroup_scan_tasks() for each task in a cgroup.
1188 *
1189 * We don't need to re-check for the cgroup/cpuset membership, since we're
1190 * holding cpuset_mutex at this point.
1191 */
1192 static void cpuset_change_flag(struct task_struct *tsk,
1193 struct cgroup_scanner *scan)
1194 {
1195 cpuset_update_task_spread_flag(cgroup_cs(scan->cg), tsk);
1196 }
1197
1198 /*
1199 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1200 * @cs: the cpuset in which each task's spread flags needs to be changed
1201 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
1202 *
1203 * Called with cpuset_mutex held
1204 *
1205 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1206 * calling callback functions for each.
1207 *
1208 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1209 * if @heap != NULL.
1210 */
1211 static void update_tasks_flags(struct cpuset *cs, struct ptr_heap *heap)
1212 {
1213 struct cgroup_scanner scan;
1214
1215 scan.cg = cs->css.cgroup;
1216 scan.test_task = NULL;
1217 scan.process_task = cpuset_change_flag;
1218 scan.heap = heap;
1219 cgroup_scan_tasks(&scan);
1220 }
1221
1222 /*
1223 * update_flag - read a 0 or a 1 in a file and update associated flag
1224 * bit: the bit to update (see cpuset_flagbits_t)
1225 * cs: the cpuset to update
1226 * turning_on: whether the flag is being set or cleared
1227 *
1228 * Call with cpuset_mutex held.
1229 */
1230
1231 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1232 int turning_on)
1233 {
1234 struct cpuset *trialcs;
1235 int balance_flag_changed;
1236 int spread_flag_changed;
1237 struct ptr_heap heap;
1238 int err;
1239
1240 trialcs = alloc_trial_cpuset(cs);
1241 if (!trialcs)
1242 return -ENOMEM;
1243
1244 if (turning_on)
1245 set_bit(bit, &trialcs->flags);
1246 else
1247 clear_bit(bit, &trialcs->flags);
1248
1249 err = validate_change(cs, trialcs);
1250 if (err < 0)
1251 goto out;
1252
1253 err = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1254 if (err < 0)
1255 goto out;
1256
1257 balance_flag_changed = (is_sched_load_balance(cs) !=
1258 is_sched_load_balance(trialcs));
1259
1260 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1261 || (is_spread_page(cs) != is_spread_page(trialcs)));
1262
1263 mutex_lock(&callback_mutex);
1264 cs->flags = trialcs->flags;
1265 mutex_unlock(&callback_mutex);
1266
1267 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1268 rebuild_sched_domains_locked();
1269
1270 if (spread_flag_changed)
1271 update_tasks_flags(cs, &heap);
1272 heap_free(&heap);
1273 out:
1274 free_trial_cpuset(trialcs);
1275 return err;
1276 }
1277
1278 /*
1279 * Frequency meter - How fast is some event occurring?
1280 *
1281 * These routines manage a digitally filtered, constant time based,
1282 * event frequency meter. There are four routines:
1283 * fmeter_init() - initialize a frequency meter.
1284 * fmeter_markevent() - called each time the event happens.
1285 * fmeter_getrate() - returns the recent rate of such events.
1286 * fmeter_update() - internal routine used to update fmeter.
1287 *
1288 * A common data structure is passed to each of these routines,
1289 * which is used to keep track of the state required to manage the
1290 * frequency meter and its digital filter.
1291 *
1292 * The filter works on the number of events marked per unit time.
1293 * The filter is single-pole low-pass recursive (IIR). The time unit
1294 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1295 * simulate 3 decimal digits of precision (multiplied by 1000).
1296 *
1297 * With an FM_COEF of 933, and a time base of 1 second, the filter
1298 * has a half-life of 10 seconds, meaning that if the events quit
1299 * happening, then the rate returned from the fmeter_getrate()
1300 * will be cut in half each 10 seconds, until it converges to zero.
1301 *
1302 * It is not worth doing a real infinitely recursive filter. If more
1303 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1304 * just compute FM_MAXTICKS ticks worth, by which point the level
1305 * will be stable.
1306 *
1307 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1308 * arithmetic overflow in the fmeter_update() routine.
1309 *
1310 * Given the simple 32 bit integer arithmetic used, this meter works
1311 * best for reporting rates between one per millisecond (msec) and
1312 * one per 32 (approx) seconds. At constant rates faster than one
1313 * per msec it maxes out at values just under 1,000,000. At constant
1314 * rates between one per msec, and one per second it will stabilize
1315 * to a value N*1000, where N is the rate of events per second.
1316 * At constant rates between one per second and one per 32 seconds,
1317 * it will be choppy, moving up on the seconds that have an event,
1318 * and then decaying until the next event. At rates slower than
1319 * about one in 32 seconds, it decays all the way back to zero between
1320 * each event.
1321 */
1322
1323 #define FM_COEF 933 /* coefficient for half-life of 10 secs */
1324 #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1325 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1326 #define FM_SCALE 1000 /* faux fixed point scale */
1327
1328 /* Initialize a frequency meter */
1329 static void fmeter_init(struct fmeter *fmp)
1330 {
1331 fmp->cnt = 0;
1332 fmp->val = 0;
1333 fmp->time = 0;
1334 spin_lock_init(&fmp->lock);
1335 }
1336
1337 /* Internal meter update - process cnt events and update value */
1338 static void fmeter_update(struct fmeter *fmp)
1339 {
1340 time_t now = get_seconds();
1341 time_t ticks = now - fmp->time;
1342
1343 if (ticks == 0)
1344 return;
1345
1346 ticks = min(FM_MAXTICKS, ticks);
1347 while (ticks-- > 0)
1348 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1349 fmp->time = now;
1350
1351 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1352 fmp->cnt = 0;
1353 }
1354
1355 /* Process any previous ticks, then bump cnt by one (times scale). */
1356 static void fmeter_markevent(struct fmeter *fmp)
1357 {
1358 spin_lock(&fmp->lock);
1359 fmeter_update(fmp);
1360 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1361 spin_unlock(&fmp->lock);
1362 }
1363
1364 /* Process any previous ticks, then return current value. */
1365 static int fmeter_getrate(struct fmeter *fmp)
1366 {
1367 int val;
1368
1369 spin_lock(&fmp->lock);
1370 fmeter_update(fmp);
1371 val = fmp->val;
1372 spin_unlock(&fmp->lock);
1373 return val;
1374 }
1375
1376 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1377 static int cpuset_can_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
1378 {
1379 struct cpuset *cs = cgroup_cs(cgrp);
1380 struct task_struct *task;
1381 int ret;
1382
1383 mutex_lock(&cpuset_mutex);
1384
1385 ret = -ENOSPC;
1386 if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
1387 goto out_unlock;
1388
1389 cgroup_taskset_for_each(task, cgrp, tset) {
1390 /*
1391 * Kthreads bound to specific cpus cannot be moved to a new
1392 * cpuset; we cannot change their cpu affinity and
1393 * isolating such threads by their set of allowed nodes is
1394 * unnecessary. Thus, cpusets are not applicable for such
1395 * threads. This prevents checking for success of
1396 * set_cpus_allowed_ptr() on all attached tasks before
1397 * cpus_allowed may be changed.
1398 */
1399 ret = -EINVAL;
1400 if (task->flags & PF_THREAD_BOUND)
1401 goto out_unlock;
1402 ret = security_task_setscheduler(task);
1403 if (ret)
1404 goto out_unlock;
1405 }
1406
1407 /*
1408 * Mark attach is in progress. This makes validate_change() fail
1409 * changes which zero cpus/mems_allowed.
1410 */
1411 cs->attach_in_progress++;
1412 ret = 0;
1413 out_unlock:
1414 mutex_unlock(&cpuset_mutex);
1415 return ret;
1416 }
1417
1418 static void cpuset_cancel_attach(struct cgroup *cgrp,
1419 struct cgroup_taskset *tset)
1420 {
1421 mutex_lock(&cpuset_mutex);
1422 cgroup_cs(cgrp)->attach_in_progress--;
1423 mutex_unlock(&cpuset_mutex);
1424 }
1425
1426 /*
1427 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
1428 * but we can't allocate it dynamically there. Define it global and
1429 * allocate from cpuset_init().
1430 */
1431 static cpumask_var_t cpus_attach;
1432
1433 static void cpuset_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
1434 {
1435 /* static bufs protected by cpuset_mutex */
1436 static nodemask_t cpuset_attach_nodemask_from;
1437 static nodemask_t cpuset_attach_nodemask_to;
1438 struct mm_struct *mm;
1439 struct task_struct *task;
1440 struct task_struct *leader = cgroup_taskset_first(tset);
1441 struct cgroup *oldcgrp = cgroup_taskset_cur_cgroup(tset);
1442 struct cpuset *cs = cgroup_cs(cgrp);
1443 struct cpuset *oldcs = cgroup_cs(oldcgrp);
1444
1445 mutex_lock(&cpuset_mutex);
1446
1447 /* prepare for attach */
1448 if (cs == &top_cpuset)
1449 cpumask_copy(cpus_attach, cpu_possible_mask);
1450 else
1451 guarantee_online_cpus(cs, cpus_attach);
1452
1453 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
1454
1455 cgroup_taskset_for_each(task, cgrp, tset) {
1456 /*
1457 * can_attach beforehand should guarantee that this doesn't
1458 * fail. TODO: have a better way to handle failure here
1459 */
1460 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1461
1462 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1463 cpuset_update_task_spread_flag(cs, task);
1464 }
1465
1466 /*
1467 * Change mm, possibly for multiple threads in a threadgroup. This is
1468 * expensive and may sleep.
1469 */
1470 cpuset_attach_nodemask_from = oldcs->mems_allowed;
1471 cpuset_attach_nodemask_to = cs->mems_allowed;
1472 mm = get_task_mm(leader);
1473 if (mm) {
1474 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
1475 if (is_memory_migrate(cs))
1476 cpuset_migrate_mm(mm, &cpuset_attach_nodemask_from,
1477 &cpuset_attach_nodemask_to);
1478 mmput(mm);
1479 }
1480
1481 cs->attach_in_progress--;
1482
1483 /*
1484 * We may have raced with CPU/memory hotunplug. Trigger hotplug
1485 * propagation if @cs doesn't have any CPU or memory. It will move
1486 * the newly added tasks to the nearest parent which can execute.
1487 */
1488 if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
1489 schedule_cpuset_propagate_hotplug(cs);
1490
1491 mutex_unlock(&cpuset_mutex);
1492 }
1493
1494 /* The various types of files and directories in a cpuset file system */
1495
1496 typedef enum {
1497 FILE_MEMORY_MIGRATE,
1498 FILE_CPULIST,
1499 FILE_MEMLIST,
1500 FILE_CPU_EXCLUSIVE,
1501 FILE_MEM_EXCLUSIVE,
1502 FILE_MEM_HARDWALL,
1503 FILE_SCHED_LOAD_BALANCE,
1504 FILE_SCHED_RELAX_DOMAIN_LEVEL,
1505 FILE_MEMORY_PRESSURE_ENABLED,
1506 FILE_MEMORY_PRESSURE,
1507 FILE_SPREAD_PAGE,
1508 FILE_SPREAD_SLAB,
1509 } cpuset_filetype_t;
1510
1511 static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
1512 {
1513 struct cpuset *cs = cgroup_cs(cgrp);
1514 cpuset_filetype_t type = cft->private;
1515 int retval = -ENODEV;
1516
1517 mutex_lock(&cpuset_mutex);
1518 if (!is_cpuset_online(cs))
1519 goto out_unlock;
1520
1521 switch (type) {
1522 case FILE_CPU_EXCLUSIVE:
1523 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1524 break;
1525 case FILE_MEM_EXCLUSIVE:
1526 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1527 break;
1528 case FILE_MEM_HARDWALL:
1529 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1530 break;
1531 case FILE_SCHED_LOAD_BALANCE:
1532 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1533 break;
1534 case FILE_MEMORY_MIGRATE:
1535 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1536 break;
1537 case FILE_MEMORY_PRESSURE_ENABLED:
1538 cpuset_memory_pressure_enabled = !!val;
1539 break;
1540 case FILE_MEMORY_PRESSURE:
1541 retval = -EACCES;
1542 break;
1543 case FILE_SPREAD_PAGE:
1544 retval = update_flag(CS_SPREAD_PAGE, cs, val);
1545 break;
1546 case FILE_SPREAD_SLAB:
1547 retval = update_flag(CS_SPREAD_SLAB, cs, val);
1548 break;
1549 default:
1550 retval = -EINVAL;
1551 break;
1552 }
1553 out_unlock:
1554 mutex_unlock(&cpuset_mutex);
1555 return retval;
1556 }
1557
1558 static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
1559 {
1560 struct cpuset *cs = cgroup_cs(cgrp);
1561 cpuset_filetype_t type = cft->private;
1562 int retval = -ENODEV;
1563
1564 mutex_lock(&cpuset_mutex);
1565 if (!is_cpuset_online(cs))
1566 goto out_unlock;
1567
1568 switch (type) {
1569 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1570 retval = update_relax_domain_level(cs, val);
1571 break;
1572 default:
1573 retval = -EINVAL;
1574 break;
1575 }
1576 out_unlock:
1577 mutex_unlock(&cpuset_mutex);
1578 return retval;
1579 }
1580
1581 /*
1582 * Common handling for a write to a "cpus" or "mems" file.
1583 */
1584 static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
1585 const char *buf)
1586 {
1587 struct cpuset *cs = cgroup_cs(cgrp);
1588 struct cpuset *trialcs;
1589 int retval = -ENODEV;
1590
1591 /*
1592 * CPU or memory hotunplug may leave @cs w/o any execution
1593 * resources, in which case the hotplug code asynchronously updates
1594 * configuration and transfers all tasks to the nearest ancestor
1595 * which can execute.
1596 *
1597 * As writes to "cpus" or "mems" may restore @cs's execution
1598 * resources, wait for the previously scheduled operations before
1599 * proceeding, so that we don't end up keep removing tasks added
1600 * after execution capability is restored.
1601 *
1602 * Flushing cpuset_hotplug_work is enough to synchronize against
1603 * hotplug hanlding; however, cpuset_attach() may schedule
1604 * propagation work directly. Flush the workqueue too.
1605 */
1606 flush_work(&cpuset_hotplug_work);
1607 flush_workqueue(cpuset_propagate_hotplug_wq);
1608
1609 mutex_lock(&cpuset_mutex);
1610 if (!is_cpuset_online(cs))
1611 goto out_unlock;
1612
1613 trialcs = alloc_trial_cpuset(cs);
1614 if (!trialcs) {
1615 retval = -ENOMEM;
1616 goto out_unlock;
1617 }
1618
1619 switch (cft->private) {
1620 case FILE_CPULIST:
1621 retval = update_cpumask(cs, trialcs, buf);
1622 break;
1623 case FILE_MEMLIST:
1624 retval = update_nodemask(cs, trialcs, buf);
1625 break;
1626 default:
1627 retval = -EINVAL;
1628 break;
1629 }
1630
1631 free_trial_cpuset(trialcs);
1632 out_unlock:
1633 mutex_unlock(&cpuset_mutex);
1634 return retval;
1635 }
1636
1637 /*
1638 * These ascii lists should be read in a single call, by using a user
1639 * buffer large enough to hold the entire map. If read in smaller
1640 * chunks, there is no guarantee of atomicity. Since the display format
1641 * used, list of ranges of sequential numbers, is variable length,
1642 * and since these maps can change value dynamically, one could read
1643 * gibberish by doing partial reads while a list was changing.
1644 * A single large read to a buffer that crosses a page boundary is
1645 * ok, because the result being copied to user land is not recomputed
1646 * across a page fault.
1647 */
1648
1649 static size_t cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1650 {
1651 size_t count;
1652
1653 mutex_lock(&callback_mutex);
1654 count = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed);
1655 mutex_unlock(&callback_mutex);
1656
1657 return count;
1658 }
1659
1660 static size_t cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1661 {
1662 size_t count;
1663
1664 mutex_lock(&callback_mutex);
1665 count = nodelist_scnprintf(page, PAGE_SIZE, cs->mems_allowed);
1666 mutex_unlock(&callback_mutex);
1667
1668 return count;
1669 }
1670
1671 static ssize_t cpuset_common_file_read(struct cgroup *cont,
1672 struct cftype *cft,
1673 struct file *file,
1674 char __user *buf,
1675 size_t nbytes, loff_t *ppos)
1676 {
1677 struct cpuset *cs = cgroup_cs(cont);
1678 cpuset_filetype_t type = cft->private;
1679 char *page;
1680 ssize_t retval = 0;
1681 char *s;
1682
1683 if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
1684 return -ENOMEM;
1685
1686 s = page;
1687
1688 switch (type) {
1689 case FILE_CPULIST:
1690 s += cpuset_sprintf_cpulist(s, cs);
1691 break;
1692 case FILE_MEMLIST:
1693 s += cpuset_sprintf_memlist(s, cs);
1694 break;
1695 default:
1696 retval = -EINVAL;
1697 goto out;
1698 }
1699 *s++ = '\n';
1700
1701 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1702 out:
1703 free_page((unsigned long)page);
1704 return retval;
1705 }
1706
1707 static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
1708 {
1709 struct cpuset *cs = cgroup_cs(cont);
1710 cpuset_filetype_t type = cft->private;
1711 switch (type) {
1712 case FILE_CPU_EXCLUSIVE:
1713 return is_cpu_exclusive(cs);
1714 case FILE_MEM_EXCLUSIVE:
1715 return is_mem_exclusive(cs);
1716 case FILE_MEM_HARDWALL:
1717 return is_mem_hardwall(cs);
1718 case FILE_SCHED_LOAD_BALANCE:
1719 return is_sched_load_balance(cs);
1720 case FILE_MEMORY_MIGRATE:
1721 return is_memory_migrate(cs);
1722 case FILE_MEMORY_PRESSURE_ENABLED:
1723 return cpuset_memory_pressure_enabled;
1724 case FILE_MEMORY_PRESSURE:
1725 return fmeter_getrate(&cs->fmeter);
1726 case FILE_SPREAD_PAGE:
1727 return is_spread_page(cs);
1728 case FILE_SPREAD_SLAB:
1729 return is_spread_slab(cs);
1730 default:
1731 BUG();
1732 }
1733
1734 /* Unreachable but makes gcc happy */
1735 return 0;
1736 }
1737
1738 static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
1739 {
1740 struct cpuset *cs = cgroup_cs(cont);
1741 cpuset_filetype_t type = cft->private;
1742 switch (type) {
1743 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1744 return cs->relax_domain_level;
1745 default:
1746 BUG();
1747 }
1748
1749 /* Unrechable but makes gcc happy */
1750 return 0;
1751 }
1752
1753
1754 /*
1755 * for the common functions, 'private' gives the type of file
1756 */
1757
1758 static struct cftype files[] = {
1759 {
1760 .name = "cpus",
1761 .read = cpuset_common_file_read,
1762 .write_string = cpuset_write_resmask,
1763 .max_write_len = (100U + 6 * NR_CPUS),
1764 .private = FILE_CPULIST,
1765 },
1766
1767 {
1768 .name = "mems",
1769 .read = cpuset_common_file_read,
1770 .write_string = cpuset_write_resmask,
1771 .max_write_len = (100U + 6 * MAX_NUMNODES),
1772 .private = FILE_MEMLIST,
1773 },
1774
1775 {
1776 .name = "cpu_exclusive",
1777 .read_u64 = cpuset_read_u64,
1778 .write_u64 = cpuset_write_u64,
1779 .private = FILE_CPU_EXCLUSIVE,
1780 },
1781
1782 {
1783 .name = "mem_exclusive",
1784 .read_u64 = cpuset_read_u64,
1785 .write_u64 = cpuset_write_u64,
1786 .private = FILE_MEM_EXCLUSIVE,
1787 },
1788
1789 {
1790 .name = "mem_hardwall",
1791 .read_u64 = cpuset_read_u64,
1792 .write_u64 = cpuset_write_u64,
1793 .private = FILE_MEM_HARDWALL,
1794 },
1795
1796 {
1797 .name = "sched_load_balance",
1798 .read_u64 = cpuset_read_u64,
1799 .write_u64 = cpuset_write_u64,
1800 .private = FILE_SCHED_LOAD_BALANCE,
1801 },
1802
1803 {
1804 .name = "sched_relax_domain_level",
1805 .read_s64 = cpuset_read_s64,
1806 .write_s64 = cpuset_write_s64,
1807 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1808 },
1809
1810 {
1811 .name = "memory_migrate",
1812 .read_u64 = cpuset_read_u64,
1813 .write_u64 = cpuset_write_u64,
1814 .private = FILE_MEMORY_MIGRATE,
1815 },
1816
1817 {
1818 .name = "memory_pressure",
1819 .read_u64 = cpuset_read_u64,
1820 .write_u64 = cpuset_write_u64,
1821 .private = FILE_MEMORY_PRESSURE,
1822 .mode = S_IRUGO,
1823 },
1824
1825 {
1826 .name = "memory_spread_page",
1827 .read_u64 = cpuset_read_u64,
1828 .write_u64 = cpuset_write_u64,
1829 .private = FILE_SPREAD_PAGE,
1830 },
1831
1832 {
1833 .name = "memory_spread_slab",
1834 .read_u64 = cpuset_read_u64,
1835 .write_u64 = cpuset_write_u64,
1836 .private = FILE_SPREAD_SLAB,
1837 },
1838
1839 {
1840 .name = "memory_pressure_enabled",
1841 .flags = CFTYPE_ONLY_ON_ROOT,
1842 .read_u64 = cpuset_read_u64,
1843 .write_u64 = cpuset_write_u64,
1844 .private = FILE_MEMORY_PRESSURE_ENABLED,
1845 },
1846
1847 { } /* terminate */
1848 };
1849
1850 /*
1851 * cpuset_css_alloc - allocate a cpuset css
1852 * cont: control group that the new cpuset will be part of
1853 */
1854
1855 static struct cgroup_subsys_state *cpuset_css_alloc(struct cgroup *cont)
1856 {
1857 struct cpuset *cs;
1858
1859 if (!cont->parent)
1860 return &top_cpuset.css;
1861
1862 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1863 if (!cs)
1864 return ERR_PTR(-ENOMEM);
1865 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
1866 kfree(cs);
1867 return ERR_PTR(-ENOMEM);
1868 }
1869
1870 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1871 cpumask_clear(cs->cpus_allowed);
1872 nodes_clear(cs->mems_allowed);
1873 fmeter_init(&cs->fmeter);
1874 INIT_WORK(&cs->hotplug_work, cpuset_propagate_hotplug_workfn);
1875 cs->relax_domain_level = -1;
1876
1877 return &cs->css;
1878 }
1879
1880 static int cpuset_css_online(struct cgroup *cgrp)
1881 {
1882 struct cpuset *cs = cgroup_cs(cgrp);
1883 struct cpuset *parent = parent_cs(cs);
1884 struct cpuset *tmp_cs;
1885 struct cgroup *pos_cg;
1886
1887 if (!parent)
1888 return 0;
1889
1890 mutex_lock(&cpuset_mutex);
1891
1892 set_bit(CS_ONLINE, &cs->flags);
1893 if (is_spread_page(parent))
1894 set_bit(CS_SPREAD_PAGE, &cs->flags);
1895 if (is_spread_slab(parent))
1896 set_bit(CS_SPREAD_SLAB, &cs->flags);
1897
1898 number_of_cpusets++;
1899
1900 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags))
1901 goto out_unlock;
1902
1903 /*
1904 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
1905 * set. This flag handling is implemented in cgroup core for
1906 * histrical reasons - the flag may be specified during mount.
1907 *
1908 * Currently, if any sibling cpusets have exclusive cpus or mem, we
1909 * refuse to clone the configuration - thereby refusing the task to
1910 * be entered, and as a result refusing the sys_unshare() or
1911 * clone() which initiated it. If this becomes a problem for some
1912 * users who wish to allow that scenario, then this could be
1913 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1914 * (and likewise for mems) to the new cgroup.
1915 */
1916 rcu_read_lock();
1917 cpuset_for_each_child(tmp_cs, pos_cg, parent) {
1918 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
1919 rcu_read_unlock();
1920 goto out_unlock;
1921 }
1922 }
1923 rcu_read_unlock();
1924
1925 mutex_lock(&callback_mutex);
1926 cs->mems_allowed = parent->mems_allowed;
1927 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
1928 mutex_unlock(&callback_mutex);
1929 out_unlock:
1930 mutex_unlock(&cpuset_mutex);
1931 return 0;
1932 }
1933
1934 static void cpuset_css_offline(struct cgroup *cgrp)
1935 {
1936 struct cpuset *cs = cgroup_cs(cgrp);
1937
1938 mutex_lock(&cpuset_mutex);
1939
1940 if (is_sched_load_balance(cs))
1941 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
1942
1943 number_of_cpusets--;
1944 clear_bit(CS_ONLINE, &cs->flags);
1945
1946 mutex_unlock(&cpuset_mutex);
1947 }
1948
1949 /*
1950 * If the cpuset being removed has its flag 'sched_load_balance'
1951 * enabled, then simulate turning sched_load_balance off, which
1952 * will call rebuild_sched_domains_locked().
1953 */
1954
1955 static void cpuset_css_free(struct cgroup *cont)
1956 {
1957 struct cpuset *cs = cgroup_cs(cont);
1958
1959 free_cpumask_var(cs->cpus_allowed);
1960 kfree(cs);
1961 }
1962
1963 struct cgroup_subsys cpuset_subsys = {
1964 .name = "cpuset",
1965 .css_alloc = cpuset_css_alloc,
1966 .css_online = cpuset_css_online,
1967 .css_offline = cpuset_css_offline,
1968 .css_free = cpuset_css_free,
1969 .can_attach = cpuset_can_attach,
1970 .cancel_attach = cpuset_cancel_attach,
1971 .attach = cpuset_attach,
1972 .subsys_id = cpuset_subsys_id,
1973 .base_cftypes = files,
1974 .early_init = 1,
1975 };
1976
1977 /**
1978 * cpuset_init - initialize cpusets at system boot
1979 *
1980 * Description: Initialize top_cpuset and the cpuset internal file system,
1981 **/
1982
1983 int __init cpuset_init(void)
1984 {
1985 int err = 0;
1986
1987 if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
1988 BUG();
1989
1990 cpumask_setall(top_cpuset.cpus_allowed);
1991 nodes_setall(top_cpuset.mems_allowed);
1992
1993 fmeter_init(&top_cpuset.fmeter);
1994 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1995 top_cpuset.relax_domain_level = -1;
1996
1997 err = register_filesystem(&cpuset_fs_type);
1998 if (err < 0)
1999 return err;
2000
2001 if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
2002 BUG();
2003
2004 number_of_cpusets = 1;
2005 return 0;
2006 }
2007
2008 /**
2009 * cpuset_do_move_task - move a given task to another cpuset
2010 * @tsk: pointer to task_struct the task to move
2011 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
2012 *
2013 * Called by cgroup_scan_tasks() for each task in a cgroup.
2014 * Return nonzero to stop the walk through the tasks.
2015 */
2016 static void cpuset_do_move_task(struct task_struct *tsk,
2017 struct cgroup_scanner *scan)
2018 {
2019 struct cgroup *new_cgroup = scan->data;
2020
2021 cgroup_lock();
2022 cgroup_attach_task(new_cgroup, tsk);
2023 cgroup_unlock();
2024 }
2025
2026 /**
2027 * move_member_tasks_to_cpuset - move tasks from one cpuset to another
2028 * @from: cpuset in which the tasks currently reside
2029 * @to: cpuset to which the tasks will be moved
2030 *
2031 * Called with cpuset_mutex held
2032 * callback_mutex must not be held, as cpuset_attach() will take it.
2033 *
2034 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
2035 * calling callback functions for each.
2036 */
2037 static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
2038 {
2039 struct cgroup_scanner scan;
2040
2041 scan.cg = from->css.cgroup;
2042 scan.test_task = NULL; /* select all tasks in cgroup */
2043 scan.process_task = cpuset_do_move_task;
2044 scan.heap = NULL;
2045 scan.data = to->css.cgroup;
2046
2047 if (cgroup_scan_tasks(&scan))
2048 printk(KERN_ERR "move_member_tasks_to_cpuset: "
2049 "cgroup_scan_tasks failed\n");
2050 }
2051
2052 /*
2053 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2054 * or memory nodes, we need to walk over the cpuset hierarchy,
2055 * removing that CPU or node from all cpusets. If this removes the
2056 * last CPU or node from a cpuset, then move the tasks in the empty
2057 * cpuset to its next-highest non-empty parent.
2058 */
2059 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2060 {
2061 struct cpuset *parent;
2062
2063 /*
2064 * Find its next-highest non-empty parent, (top cpuset
2065 * has online cpus, so can't be empty).
2066 */
2067 parent = parent_cs(cs);
2068 while (cpumask_empty(parent->cpus_allowed) ||
2069 nodes_empty(parent->mems_allowed))
2070 parent = parent_cs(parent);
2071
2072 move_member_tasks_to_cpuset(cs, parent);
2073 }
2074
2075 /**
2076 * cpuset_propagate_hotplug_workfn - propagate CPU/memory hotplug to a cpuset
2077 * @cs: cpuset in interest
2078 *
2079 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2080 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
2081 * all its tasks are moved to the nearest ancestor with both resources.
2082 */
2083 static void cpuset_propagate_hotplug_workfn(struct work_struct *work)
2084 {
2085 static cpumask_t off_cpus;
2086 static nodemask_t off_mems, tmp_mems;
2087 struct cpuset *cs = container_of(work, struct cpuset, hotplug_work);
2088 bool is_empty;
2089
2090 mutex_lock(&cpuset_mutex);
2091
2092 cpumask_andnot(&off_cpus, cs->cpus_allowed, top_cpuset.cpus_allowed);
2093 nodes_andnot(off_mems, cs->mems_allowed, top_cpuset.mems_allowed);
2094
2095 /* remove offline cpus from @cs */
2096 if (!cpumask_empty(&off_cpus)) {
2097 mutex_lock(&callback_mutex);
2098 cpumask_andnot(cs->cpus_allowed, cs->cpus_allowed, &off_cpus);
2099 mutex_unlock(&callback_mutex);
2100 update_tasks_cpumask(cs, NULL);
2101 }
2102
2103 /* remove offline mems from @cs */
2104 if (!nodes_empty(off_mems)) {
2105 tmp_mems = cs->mems_allowed;
2106 mutex_lock(&callback_mutex);
2107 nodes_andnot(cs->mems_allowed, cs->mems_allowed, off_mems);
2108 mutex_unlock(&callback_mutex);
2109 update_tasks_nodemask(cs, &tmp_mems, NULL);
2110 }
2111
2112 is_empty = cpumask_empty(cs->cpus_allowed) ||
2113 nodes_empty(cs->mems_allowed);
2114
2115 mutex_unlock(&cpuset_mutex);
2116
2117 /*
2118 * If @cs became empty, move tasks to the nearest ancestor with
2119 * execution resources. This is full cgroup operation which will
2120 * also call back into cpuset. Should be done outside any lock.
2121 */
2122 if (is_empty)
2123 remove_tasks_in_empty_cpuset(cs);
2124
2125 /* the following may free @cs, should be the last operation */
2126 css_put(&cs->css);
2127 }
2128
2129 /**
2130 * schedule_cpuset_propagate_hotplug - schedule hotplug propagation to a cpuset
2131 * @cs: cpuset of interest
2132 *
2133 * Schedule cpuset_propagate_hotplug_workfn() which will update CPU and
2134 * memory masks according to top_cpuset.
2135 */
2136 static void schedule_cpuset_propagate_hotplug(struct cpuset *cs)
2137 {
2138 /*
2139 * Pin @cs. The refcnt will be released when the work item
2140 * finishes executing.
2141 */
2142 if (!css_tryget(&cs->css))
2143 return;
2144
2145 /*
2146 * Queue @cs->hotplug_work. If already pending, lose the css ref.
2147 * cpuset_propagate_hotplug_wq is ordered and propagation will
2148 * happen in the order this function is called.
2149 */
2150 if (!queue_work(cpuset_propagate_hotplug_wq, &cs->hotplug_work))
2151 css_put(&cs->css);
2152 }
2153
2154 /**
2155 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2156 *
2157 * This function is called after either CPU or memory configuration has
2158 * changed and updates cpuset accordingly. The top_cpuset is always
2159 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2160 * order to make cpusets transparent (of no affect) on systems that are
2161 * actively using CPU hotplug but making no active use of cpusets.
2162 *
2163 * Non-root cpusets are only affected by offlining. If any CPUs or memory
2164 * nodes have been taken down, cpuset_propagate_hotplug() is invoked on all
2165 * descendants.
2166 *
2167 * Note that CPU offlining during suspend is ignored. We don't modify
2168 * cpusets across suspend/resume cycles at all.
2169 */
2170 static void cpuset_hotplug_workfn(struct work_struct *work)
2171 {
2172 static cpumask_t new_cpus, tmp_cpus;
2173 static nodemask_t new_mems, tmp_mems;
2174 bool cpus_updated, mems_updated;
2175 bool cpus_offlined, mems_offlined;
2176
2177 mutex_lock(&cpuset_mutex);
2178
2179 /* fetch the available cpus/mems and find out which changed how */
2180 cpumask_copy(&new_cpus, cpu_active_mask);
2181 new_mems = node_states[N_MEMORY];
2182
2183 cpus_updated = !cpumask_equal(top_cpuset.cpus_allowed, &new_cpus);
2184 cpus_offlined = cpumask_andnot(&tmp_cpus, top_cpuset.cpus_allowed,
2185 &new_cpus);
2186
2187 mems_updated = !nodes_equal(top_cpuset.mems_allowed, new_mems);
2188 nodes_andnot(tmp_mems, top_cpuset.mems_allowed, new_mems);
2189 mems_offlined = !nodes_empty(tmp_mems);
2190
2191 /* synchronize cpus_allowed to cpu_active_mask */
2192 if (cpus_updated) {
2193 mutex_lock(&callback_mutex);
2194 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2195 mutex_unlock(&callback_mutex);
2196 /* we don't mess with cpumasks of tasks in top_cpuset */
2197 }
2198
2199 /* synchronize mems_allowed to N_MEMORY */
2200 if (mems_updated) {
2201 tmp_mems = top_cpuset.mems_allowed;
2202 mutex_lock(&callback_mutex);
2203 top_cpuset.mems_allowed = new_mems;
2204 mutex_unlock(&callback_mutex);
2205 update_tasks_nodemask(&top_cpuset, &tmp_mems, NULL);
2206 }
2207
2208 /* if cpus or mems went down, we need to propagate to descendants */
2209 if (cpus_offlined || mems_offlined) {
2210 struct cpuset *cs;
2211 struct cgroup *pos_cgrp;
2212
2213 rcu_read_lock();
2214 cpuset_for_each_descendant_pre(cs, pos_cgrp, &top_cpuset)
2215 schedule_cpuset_propagate_hotplug(cs);
2216 rcu_read_unlock();
2217 }
2218
2219 mutex_unlock(&cpuset_mutex);
2220
2221 /* wait for propagations to finish */
2222 flush_workqueue(cpuset_propagate_hotplug_wq);
2223
2224 /* rebuild sched domains if cpus_allowed has changed */
2225 if (cpus_updated) {
2226 struct sched_domain_attr *attr;
2227 cpumask_var_t *doms;
2228 int ndoms;
2229
2230 mutex_lock(&cpuset_mutex);
2231 ndoms = generate_sched_domains(&doms, &attr);
2232 mutex_unlock(&cpuset_mutex);
2233
2234 partition_sched_domains(ndoms, doms, attr);
2235 }
2236 }
2237
2238 void cpuset_update_active_cpus(bool cpu_online)
2239 {
2240 /*
2241 * We're inside cpu hotplug critical region which usually nests
2242 * inside cgroup synchronization. Bounce actual hotplug processing
2243 * to a work item to avoid reverse locking order.
2244 *
2245 * We still need to do partition_sched_domains() synchronously;
2246 * otherwise, the scheduler will get confused and put tasks to the
2247 * dead CPU. Fall back to the default single domain.
2248 * cpuset_hotplug_workfn() will rebuild it as necessary.
2249 */
2250 partition_sched_domains(1, NULL, NULL);
2251 schedule_work(&cpuset_hotplug_work);
2252 }
2253
2254 #ifdef CONFIG_MEMORY_HOTPLUG
2255 /*
2256 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2257 * Call this routine anytime after node_states[N_MEMORY] changes.
2258 * See cpuset_update_active_cpus() for CPU hotplug handling.
2259 */
2260 static int cpuset_track_online_nodes(struct notifier_block *self,
2261 unsigned long action, void *arg)
2262 {
2263 schedule_work(&cpuset_hotplug_work);
2264 return NOTIFY_OK;
2265 }
2266 #endif
2267
2268 /**
2269 * cpuset_init_smp - initialize cpus_allowed
2270 *
2271 * Description: Finish top cpuset after cpu, node maps are initialized
2272 **/
2273
2274 void __init cpuset_init_smp(void)
2275 {
2276 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2277 top_cpuset.mems_allowed = node_states[N_MEMORY];
2278
2279 hotplug_memory_notifier(cpuset_track_online_nodes, 10);
2280
2281 cpuset_propagate_hotplug_wq =
2282 alloc_ordered_workqueue("cpuset_hotplug", 0);
2283 BUG_ON(!cpuset_propagate_hotplug_wq);
2284 }
2285
2286 /**
2287 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2288 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2289 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
2290 *
2291 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
2292 * attached to the specified @tsk. Guaranteed to return some non-empty
2293 * subset of cpu_online_mask, even if this means going outside the
2294 * tasks cpuset.
2295 **/
2296
2297 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
2298 {
2299 mutex_lock(&callback_mutex);
2300 task_lock(tsk);
2301 guarantee_online_cpus(task_cs(tsk), pmask);
2302 task_unlock(tsk);
2303 mutex_unlock(&callback_mutex);
2304 }
2305
2306 void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2307 {
2308 const struct cpuset *cs;
2309
2310 rcu_read_lock();
2311 cs = task_cs(tsk);
2312 if (cs)
2313 do_set_cpus_allowed(tsk, cs->cpus_allowed);
2314 rcu_read_unlock();
2315
2316 /*
2317 * We own tsk->cpus_allowed, nobody can change it under us.
2318 *
2319 * But we used cs && cs->cpus_allowed lockless and thus can
2320 * race with cgroup_attach_task() or update_cpumask() and get
2321 * the wrong tsk->cpus_allowed. However, both cases imply the
2322 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2323 * which takes task_rq_lock().
2324 *
2325 * If we are called after it dropped the lock we must see all
2326 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2327 * set any mask even if it is not right from task_cs() pov,
2328 * the pending set_cpus_allowed_ptr() will fix things.
2329 *
2330 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2331 * if required.
2332 */
2333 }
2334
2335 void cpuset_init_current_mems_allowed(void)
2336 {
2337 nodes_setall(current->mems_allowed);
2338 }
2339
2340 /**
2341 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2342 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2343 *
2344 * Description: Returns the nodemask_t mems_allowed of the cpuset
2345 * attached to the specified @tsk. Guaranteed to return some non-empty
2346 * subset of node_states[N_MEMORY], even if this means going outside the
2347 * tasks cpuset.
2348 **/
2349
2350 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2351 {
2352 nodemask_t mask;
2353
2354 mutex_lock(&callback_mutex);
2355 task_lock(tsk);
2356 guarantee_online_mems(task_cs(tsk), &mask);
2357 task_unlock(tsk);
2358 mutex_unlock(&callback_mutex);
2359
2360 return mask;
2361 }
2362
2363 /**
2364 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2365 * @nodemask: the nodemask to be checked
2366 *
2367 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
2368 */
2369 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
2370 {
2371 return nodes_intersects(*nodemask, current->mems_allowed);
2372 }
2373
2374 /*
2375 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2376 * mem_hardwall ancestor to the specified cpuset. Call holding
2377 * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2378 * (an unusual configuration), then returns the root cpuset.
2379 */
2380 static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
2381 {
2382 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
2383 cs = parent_cs(cs);
2384 return cs;
2385 }
2386
2387 /**
2388 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
2389 * @node: is this an allowed node?
2390 * @gfp_mask: memory allocation flags
2391 *
2392 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2393 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2394 * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
2395 * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
2396 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
2397 * flag, yes.
2398 * Otherwise, no.
2399 *
2400 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
2401 * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall()
2402 * might sleep, and might allow a node from an enclosing cpuset.
2403 *
2404 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
2405 * cpusets, and never sleeps.
2406 *
2407 * The __GFP_THISNODE placement logic is really handled elsewhere,
2408 * by forcibly using a zonelist starting at a specified node, and by
2409 * (in get_page_from_freelist()) refusing to consider the zones for
2410 * any node on the zonelist except the first. By the time any such
2411 * calls get to this routine, we should just shut up and say 'yes'.
2412 *
2413 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2414 * and do not allow allocations outside the current tasks cpuset
2415 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2416 * GFP_KERNEL allocations are not so marked, so can escape to the
2417 * nearest enclosing hardwalled ancestor cpuset.
2418 *
2419 * Scanning up parent cpusets requires callback_mutex. The
2420 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2421 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2422 * current tasks mems_allowed came up empty on the first pass over
2423 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2424 * cpuset are short of memory, might require taking the callback_mutex
2425 * mutex.
2426 *
2427 * The first call here from mm/page_alloc:get_page_from_freelist()
2428 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2429 * so no allocation on a node outside the cpuset is allowed (unless
2430 * in interrupt, of course).
2431 *
2432 * The second pass through get_page_from_freelist() doesn't even call
2433 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2434 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2435 * in alloc_flags. That logic and the checks below have the combined
2436 * affect that:
2437 * in_interrupt - any node ok (current task context irrelevant)
2438 * GFP_ATOMIC - any node ok
2439 * TIF_MEMDIE - any node ok
2440 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
2441 * GFP_USER - only nodes in current tasks mems allowed ok.
2442 *
2443 * Rule:
2444 * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
2445 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2446 * the code that might scan up ancestor cpusets and sleep.
2447 */
2448 int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
2449 {
2450 const struct cpuset *cs; /* current cpuset ancestors */
2451 int allowed; /* is allocation in zone z allowed? */
2452
2453 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2454 return 1;
2455 might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
2456 if (node_isset(node, current->mems_allowed))
2457 return 1;
2458 /*
2459 * Allow tasks that have access to memory reserves because they have
2460 * been OOM killed to get memory anywhere.
2461 */
2462 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2463 return 1;
2464 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2465 return 0;
2466
2467 if (current->flags & PF_EXITING) /* Let dying task have memory */
2468 return 1;
2469
2470 /* Not hardwall and node outside mems_allowed: scan up cpusets */
2471 mutex_lock(&callback_mutex);
2472
2473 task_lock(current);
2474 cs = nearest_hardwall_ancestor(task_cs(current));
2475 task_unlock(current);
2476
2477 allowed = node_isset(node, cs->mems_allowed);
2478 mutex_unlock(&callback_mutex);
2479 return allowed;
2480 }
2481
2482 /*
2483 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
2484 * @node: is this an allowed node?
2485 * @gfp_mask: memory allocation flags
2486 *
2487 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2488 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2489 * yes. If the task has been OOM killed and has access to memory reserves as
2490 * specified by the TIF_MEMDIE flag, yes.
2491 * Otherwise, no.
2492 *
2493 * The __GFP_THISNODE placement logic is really handled elsewhere,
2494 * by forcibly using a zonelist starting at a specified node, and by
2495 * (in get_page_from_freelist()) refusing to consider the zones for
2496 * any node on the zonelist except the first. By the time any such
2497 * calls get to this routine, we should just shut up and say 'yes'.
2498 *
2499 * Unlike the cpuset_node_allowed_softwall() variant, above,
2500 * this variant requires that the node be in the current task's
2501 * mems_allowed or that we're in interrupt. It does not scan up the
2502 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2503 * It never sleeps.
2504 */
2505 int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
2506 {
2507 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2508 return 1;
2509 if (node_isset(node, current->mems_allowed))
2510 return 1;
2511 /*
2512 * Allow tasks that have access to memory reserves because they have
2513 * been OOM killed to get memory anywhere.
2514 */
2515 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2516 return 1;
2517 return 0;
2518 }
2519
2520 /**
2521 * cpuset_mem_spread_node() - On which node to begin search for a file page
2522 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2523 *
2524 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2525 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2526 * and if the memory allocation used cpuset_mem_spread_node()
2527 * to determine on which node to start looking, as it will for
2528 * certain page cache or slab cache pages such as used for file
2529 * system buffers and inode caches, then instead of starting on the
2530 * local node to look for a free page, rather spread the starting
2531 * node around the tasks mems_allowed nodes.
2532 *
2533 * We don't have to worry about the returned node being offline
2534 * because "it can't happen", and even if it did, it would be ok.
2535 *
2536 * The routines calling guarantee_online_mems() are careful to
2537 * only set nodes in task->mems_allowed that are online. So it
2538 * should not be possible for the following code to return an
2539 * offline node. But if it did, that would be ok, as this routine
2540 * is not returning the node where the allocation must be, only
2541 * the node where the search should start. The zonelist passed to
2542 * __alloc_pages() will include all nodes. If the slab allocator
2543 * is passed an offline node, it will fall back to the local node.
2544 * See kmem_cache_alloc_node().
2545 */
2546
2547 static int cpuset_spread_node(int *rotor)
2548 {
2549 int node;
2550
2551 node = next_node(*rotor, current->mems_allowed);
2552 if (node == MAX_NUMNODES)
2553 node = first_node(current->mems_allowed);
2554 *rotor = node;
2555 return node;
2556 }
2557
2558 int cpuset_mem_spread_node(void)
2559 {
2560 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2561 current->cpuset_mem_spread_rotor =
2562 node_random(&current->mems_allowed);
2563
2564 return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2565 }
2566
2567 int cpuset_slab_spread_node(void)
2568 {
2569 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2570 current->cpuset_slab_spread_rotor =
2571 node_random(&current->mems_allowed);
2572
2573 return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2574 }
2575
2576 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2577
2578 /**
2579 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2580 * @tsk1: pointer to task_struct of some task.
2581 * @tsk2: pointer to task_struct of some other task.
2582 *
2583 * Description: Return true if @tsk1's mems_allowed intersects the
2584 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2585 * one of the task's memory usage might impact the memory available
2586 * to the other.
2587 **/
2588
2589 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2590 const struct task_struct *tsk2)
2591 {
2592 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2593 }
2594
2595 /**
2596 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2597 * @task: pointer to task_struct of some task.
2598 *
2599 * Description: Prints @task's name, cpuset name, and cached copy of its
2600 * mems_allowed to the kernel log. Must hold task_lock(task) to allow
2601 * dereferencing task_cs(task).
2602 */
2603 void cpuset_print_task_mems_allowed(struct task_struct *tsk)
2604 {
2605 struct dentry *dentry;
2606
2607 dentry = task_cs(tsk)->css.cgroup->dentry;
2608 spin_lock(&cpuset_buffer_lock);
2609
2610 if (!dentry) {
2611 strcpy(cpuset_name, "/");
2612 } else {
2613 spin_lock(&dentry->d_lock);
2614 strlcpy(cpuset_name, (const char *)dentry->d_name.name,
2615 CPUSET_NAME_LEN);
2616 spin_unlock(&dentry->d_lock);
2617 }
2618
2619 nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
2620 tsk->mems_allowed);
2621 printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
2622 tsk->comm, cpuset_name, cpuset_nodelist);
2623 spin_unlock(&cpuset_buffer_lock);
2624 }
2625
2626 /*
2627 * Collection of memory_pressure is suppressed unless
2628 * this flag is enabled by writing "1" to the special
2629 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2630 */
2631
2632 int cpuset_memory_pressure_enabled __read_mostly;
2633
2634 /**
2635 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2636 *
2637 * Keep a running average of the rate of synchronous (direct)
2638 * page reclaim efforts initiated by tasks in each cpuset.
2639 *
2640 * This represents the rate at which some task in the cpuset
2641 * ran low on memory on all nodes it was allowed to use, and
2642 * had to enter the kernels page reclaim code in an effort to
2643 * create more free memory by tossing clean pages or swapping
2644 * or writing dirty pages.
2645 *
2646 * Display to user space in the per-cpuset read-only file
2647 * "memory_pressure". Value displayed is an integer
2648 * representing the recent rate of entry into the synchronous
2649 * (direct) page reclaim by any task attached to the cpuset.
2650 **/
2651
2652 void __cpuset_memory_pressure_bump(void)
2653 {
2654 task_lock(current);
2655 fmeter_markevent(&task_cs(current)->fmeter);
2656 task_unlock(current);
2657 }
2658
2659 #ifdef CONFIG_PROC_PID_CPUSET
2660 /*
2661 * proc_cpuset_show()
2662 * - Print tasks cpuset path into seq_file.
2663 * - Used for /proc/<pid>/cpuset.
2664 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2665 * doesn't really matter if tsk->cpuset changes after we read it,
2666 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
2667 * anyway.
2668 */
2669 static int proc_cpuset_show(struct seq_file *m, void *unused_v)
2670 {
2671 struct pid *pid;
2672 struct task_struct *tsk;
2673 char *buf;
2674 struct cgroup_subsys_state *css;
2675 int retval;
2676
2677 retval = -ENOMEM;
2678 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2679 if (!buf)
2680 goto out;
2681
2682 retval = -ESRCH;
2683 pid = m->private;
2684 tsk = get_pid_task(pid, PIDTYPE_PID);
2685 if (!tsk)
2686 goto out_free;
2687
2688 rcu_read_lock();
2689 css = task_subsys_state(tsk, cpuset_subsys_id);
2690 retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
2691 rcu_read_unlock();
2692 if (retval < 0)
2693 goto out_put_task;
2694 seq_puts(m, buf);
2695 seq_putc(m, '\n');
2696 out_put_task:
2697 put_task_struct(tsk);
2698 out_free:
2699 kfree(buf);
2700 out:
2701 return retval;
2702 }
2703
2704 static int cpuset_open(struct inode *inode, struct file *file)
2705 {
2706 struct pid *pid = PROC_I(inode)->pid;
2707 return single_open(file, proc_cpuset_show, pid);
2708 }
2709
2710 const struct file_operations proc_cpuset_operations = {
2711 .open = cpuset_open,
2712 .read = seq_read,
2713 .llseek = seq_lseek,
2714 .release = single_release,
2715 };
2716 #endif /* CONFIG_PROC_PID_CPUSET */
2717
2718 /* Display task mems_allowed in /proc/<pid>/status file. */
2719 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2720 {
2721 seq_printf(m, "Mems_allowed:\t");
2722 seq_nodemask(m, &task->mems_allowed);
2723 seq_printf(m, "\n");
2724 seq_printf(m, "Mems_allowed_list:\t");
2725 seq_nodemask_list(m, &task->mems_allowed);
2726 seq_printf(m, "\n");
2727 }