[MMC] Add mmc_detect_change() delay support for wbsd driver
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / cpuset.c
1 /*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004 Silicon Graphics, Inc.
8 *
9 * Portions derived from Patrick Mochel's sysfs code.
10 * sysfs is Copyright (c) 2001-3 Patrick Mochel
11 * Portions Copyright (c) 2004 Silicon Graphics, Inc.
12 *
13 * 2003-10-10 Written by Simon Derr <simon.derr@bull.net>
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson <pj@sgi.com>
16 *
17 * This file is subject to the terms and conditions of the GNU General Public
18 * License. See the file COPYING in the main directory of the Linux
19 * distribution for more details.
20 */
21
22 #include <linux/config.h>
23 #include <linux/cpu.h>
24 #include <linux/cpumask.h>
25 #include <linux/cpuset.h>
26 #include <linux/err.h>
27 #include <linux/errno.h>
28 #include <linux/file.h>
29 #include <linux/fs.h>
30 #include <linux/init.h>
31 #include <linux/interrupt.h>
32 #include <linux/kernel.h>
33 #include <linux/kmod.h>
34 #include <linux/list.h>
35 #include <linux/mm.h>
36 #include <linux/module.h>
37 #include <linux/mount.h>
38 #include <linux/namei.h>
39 #include <linux/pagemap.h>
40 #include <linux/proc_fs.h>
41 #include <linux/sched.h>
42 #include <linux/seq_file.h>
43 #include <linux/slab.h>
44 #include <linux/smp_lock.h>
45 #include <linux/spinlock.h>
46 #include <linux/stat.h>
47 #include <linux/string.h>
48 #include <linux/time.h>
49 #include <linux/backing-dev.h>
50 #include <linux/sort.h>
51
52 #include <asm/uaccess.h>
53 #include <asm/atomic.h>
54 #include <asm/semaphore.h>
55
56 #define CPUSET_SUPER_MAGIC 0x27e0eb
57
58 struct cpuset {
59 unsigned long flags; /* "unsigned long" so bitops work */
60 cpumask_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
61 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
62
63 atomic_t count; /* count tasks using this cpuset */
64
65 /*
66 * We link our 'sibling' struct into our parents 'children'.
67 * Our children link their 'sibling' into our 'children'.
68 */
69 struct list_head sibling; /* my parents children */
70 struct list_head children; /* my children */
71
72 struct cpuset *parent; /* my parent */
73 struct dentry *dentry; /* cpuset fs entry */
74
75 /*
76 * Copy of global cpuset_mems_generation as of the most
77 * recent time this cpuset changed its mems_allowed.
78 */
79 int mems_generation;
80 };
81
82 /* bits in struct cpuset flags field */
83 typedef enum {
84 CS_CPU_EXCLUSIVE,
85 CS_MEM_EXCLUSIVE,
86 CS_REMOVED,
87 CS_NOTIFY_ON_RELEASE
88 } cpuset_flagbits_t;
89
90 /* convenient tests for these bits */
91 static inline int is_cpu_exclusive(const struct cpuset *cs)
92 {
93 return !!test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
94 }
95
96 static inline int is_mem_exclusive(const struct cpuset *cs)
97 {
98 return !!test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
99 }
100
101 static inline int is_removed(const struct cpuset *cs)
102 {
103 return !!test_bit(CS_REMOVED, &cs->flags);
104 }
105
106 static inline int notify_on_release(const struct cpuset *cs)
107 {
108 return !!test_bit(CS_NOTIFY_ON_RELEASE, &cs->flags);
109 }
110
111 /*
112 * Increment this atomic integer everytime any cpuset changes its
113 * mems_allowed value. Users of cpusets can track this generation
114 * number, and avoid having to lock and reload mems_allowed unless
115 * the cpuset they're using changes generation.
116 *
117 * A single, global generation is needed because attach_task() could
118 * reattach a task to a different cpuset, which must not have its
119 * generation numbers aliased with those of that tasks previous cpuset.
120 *
121 * Generations are needed for mems_allowed because one task cannot
122 * modify anothers memory placement. So we must enable every task,
123 * on every visit to __alloc_pages(), to efficiently check whether
124 * its current->cpuset->mems_allowed has changed, requiring an update
125 * of its current->mems_allowed.
126 */
127 static atomic_t cpuset_mems_generation = ATOMIC_INIT(1);
128
129 static struct cpuset top_cpuset = {
130 .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
131 .cpus_allowed = CPU_MASK_ALL,
132 .mems_allowed = NODE_MASK_ALL,
133 .count = ATOMIC_INIT(0),
134 .sibling = LIST_HEAD_INIT(top_cpuset.sibling),
135 .children = LIST_HEAD_INIT(top_cpuset.children),
136 .parent = NULL,
137 .dentry = NULL,
138 .mems_generation = 0,
139 };
140
141 static struct vfsmount *cpuset_mount;
142 static struct super_block *cpuset_sb = NULL;
143
144 /*
145 * cpuset_sem should be held by anyone who is depending on the children
146 * or sibling lists of any cpuset, or performing non-atomic operations
147 * on the flags or *_allowed values of a cpuset, such as raising the
148 * CS_REMOVED flag bit iff it is not already raised, or reading and
149 * conditionally modifying the *_allowed values. One kernel global
150 * cpuset semaphore should be sufficient - these things don't change
151 * that much.
152 *
153 * The code that modifies cpusets holds cpuset_sem across the entire
154 * operation, from cpuset_common_file_write() down, single threading
155 * all cpuset modifications (except for counter manipulations from
156 * fork and exit) across the system. This presumes that cpuset
157 * modifications are rare - better kept simple and safe, even if slow.
158 *
159 * The code that reads cpusets, such as in cpuset_common_file_read()
160 * and below, only holds cpuset_sem across small pieces of code, such
161 * as when reading out possibly multi-word cpumasks and nodemasks, as
162 * the risks are less, and the desire for performance a little greater.
163 * The proc_cpuset_show() routine needs to hold cpuset_sem to insure
164 * that no cs->dentry is NULL, as it walks up the cpuset tree to root.
165 *
166 * The hooks from fork and exit, cpuset_fork() and cpuset_exit(), don't
167 * (usually) grab cpuset_sem. These are the two most performance
168 * critical pieces of code here. The exception occurs on exit(),
169 * when a task in a notify_on_release cpuset exits. Then cpuset_sem
170 * is taken, and if the cpuset count is zero, a usermode call made
171 * to /sbin/cpuset_release_agent with the name of the cpuset (path
172 * relative to the root of cpuset file system) as the argument.
173 *
174 * A cpuset can only be deleted if both its 'count' of using tasks is
175 * zero, and its list of 'children' cpusets is empty. Since all tasks
176 * in the system use _some_ cpuset, and since there is always at least
177 * one task in the system (init, pid == 1), therefore, top_cpuset
178 * always has either children cpusets and/or using tasks. So no need
179 * for any special hack to ensure that top_cpuset cannot be deleted.
180 */
181
182 static DECLARE_MUTEX(cpuset_sem);
183
184 /*
185 * A couple of forward declarations required, due to cyclic reference loop:
186 * cpuset_mkdir -> cpuset_create -> cpuset_populate_dir -> cpuset_add_file
187 * -> cpuset_create_file -> cpuset_dir_inode_operations -> cpuset_mkdir.
188 */
189
190 static int cpuset_mkdir(struct inode *dir, struct dentry *dentry, int mode);
191 static int cpuset_rmdir(struct inode *unused_dir, struct dentry *dentry);
192
193 static struct backing_dev_info cpuset_backing_dev_info = {
194 .ra_pages = 0, /* No readahead */
195 .capabilities = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
196 };
197
198 static struct inode *cpuset_new_inode(mode_t mode)
199 {
200 struct inode *inode = new_inode(cpuset_sb);
201
202 if (inode) {
203 inode->i_mode = mode;
204 inode->i_uid = current->fsuid;
205 inode->i_gid = current->fsgid;
206 inode->i_blksize = PAGE_CACHE_SIZE;
207 inode->i_blocks = 0;
208 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
209 inode->i_mapping->backing_dev_info = &cpuset_backing_dev_info;
210 }
211 return inode;
212 }
213
214 static void cpuset_diput(struct dentry *dentry, struct inode *inode)
215 {
216 /* is dentry a directory ? if so, kfree() associated cpuset */
217 if (S_ISDIR(inode->i_mode)) {
218 struct cpuset *cs = dentry->d_fsdata;
219 BUG_ON(!(is_removed(cs)));
220 kfree(cs);
221 }
222 iput(inode);
223 }
224
225 static struct dentry_operations cpuset_dops = {
226 .d_iput = cpuset_diput,
227 };
228
229 static struct dentry *cpuset_get_dentry(struct dentry *parent, const char *name)
230 {
231 struct dentry *d = lookup_one_len(name, parent, strlen(name));
232 if (!IS_ERR(d))
233 d->d_op = &cpuset_dops;
234 return d;
235 }
236
237 static void remove_dir(struct dentry *d)
238 {
239 struct dentry *parent = dget(d->d_parent);
240
241 d_delete(d);
242 simple_rmdir(parent->d_inode, d);
243 dput(parent);
244 }
245
246 /*
247 * NOTE : the dentry must have been dget()'ed
248 */
249 static void cpuset_d_remove_dir(struct dentry *dentry)
250 {
251 struct list_head *node;
252
253 spin_lock(&dcache_lock);
254 node = dentry->d_subdirs.next;
255 while (node != &dentry->d_subdirs) {
256 struct dentry *d = list_entry(node, struct dentry, d_child);
257 list_del_init(node);
258 if (d->d_inode) {
259 d = dget_locked(d);
260 spin_unlock(&dcache_lock);
261 d_delete(d);
262 simple_unlink(dentry->d_inode, d);
263 dput(d);
264 spin_lock(&dcache_lock);
265 }
266 node = dentry->d_subdirs.next;
267 }
268 list_del_init(&dentry->d_child);
269 spin_unlock(&dcache_lock);
270 remove_dir(dentry);
271 }
272
273 static struct super_operations cpuset_ops = {
274 .statfs = simple_statfs,
275 .drop_inode = generic_delete_inode,
276 };
277
278 static int cpuset_fill_super(struct super_block *sb, void *unused_data,
279 int unused_silent)
280 {
281 struct inode *inode;
282 struct dentry *root;
283
284 sb->s_blocksize = PAGE_CACHE_SIZE;
285 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
286 sb->s_magic = CPUSET_SUPER_MAGIC;
287 sb->s_op = &cpuset_ops;
288 cpuset_sb = sb;
289
290 inode = cpuset_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR);
291 if (inode) {
292 inode->i_op = &simple_dir_inode_operations;
293 inode->i_fop = &simple_dir_operations;
294 /* directories start off with i_nlink == 2 (for "." entry) */
295 inode->i_nlink++;
296 } else {
297 return -ENOMEM;
298 }
299
300 root = d_alloc_root(inode);
301 if (!root) {
302 iput(inode);
303 return -ENOMEM;
304 }
305 sb->s_root = root;
306 return 0;
307 }
308
309 static struct super_block *cpuset_get_sb(struct file_system_type *fs_type,
310 int flags, const char *unused_dev_name,
311 void *data)
312 {
313 return get_sb_single(fs_type, flags, data, cpuset_fill_super);
314 }
315
316 static struct file_system_type cpuset_fs_type = {
317 .name = "cpuset",
318 .get_sb = cpuset_get_sb,
319 .kill_sb = kill_litter_super,
320 };
321
322 /* struct cftype:
323 *
324 * The files in the cpuset filesystem mostly have a very simple read/write
325 * handling, some common function will take care of it. Nevertheless some cases
326 * (read tasks) are special and therefore I define this structure for every
327 * kind of file.
328 *
329 *
330 * When reading/writing to a file:
331 * - the cpuset to use in file->f_dentry->d_parent->d_fsdata
332 * - the 'cftype' of the file is file->f_dentry->d_fsdata
333 */
334
335 struct cftype {
336 char *name;
337 int private;
338 int (*open) (struct inode *inode, struct file *file);
339 ssize_t (*read) (struct file *file, char __user *buf, size_t nbytes,
340 loff_t *ppos);
341 int (*write) (struct file *file, const char __user *buf, size_t nbytes,
342 loff_t *ppos);
343 int (*release) (struct inode *inode, struct file *file);
344 };
345
346 static inline struct cpuset *__d_cs(struct dentry *dentry)
347 {
348 return dentry->d_fsdata;
349 }
350
351 static inline struct cftype *__d_cft(struct dentry *dentry)
352 {
353 return dentry->d_fsdata;
354 }
355
356 /*
357 * Call with cpuset_sem held. Writes path of cpuset into buf.
358 * Returns 0 on success, -errno on error.
359 */
360
361 static int cpuset_path(const struct cpuset *cs, char *buf, int buflen)
362 {
363 char *start;
364
365 start = buf + buflen;
366
367 *--start = '\0';
368 for (;;) {
369 int len = cs->dentry->d_name.len;
370 if ((start -= len) < buf)
371 return -ENAMETOOLONG;
372 memcpy(start, cs->dentry->d_name.name, len);
373 cs = cs->parent;
374 if (!cs)
375 break;
376 if (!cs->parent)
377 continue;
378 if (--start < buf)
379 return -ENAMETOOLONG;
380 *start = '/';
381 }
382 memmove(buf, start, buf + buflen - start);
383 return 0;
384 }
385
386 /*
387 * Notify userspace when a cpuset is released, by running
388 * /sbin/cpuset_release_agent with the name of the cpuset (path
389 * relative to the root of cpuset file system) as the argument.
390 *
391 * Most likely, this user command will try to rmdir this cpuset.
392 *
393 * This races with the possibility that some other task will be
394 * attached to this cpuset before it is removed, or that some other
395 * user task will 'mkdir' a child cpuset of this cpuset. That's ok.
396 * The presumed 'rmdir' will fail quietly if this cpuset is no longer
397 * unused, and this cpuset will be reprieved from its death sentence,
398 * to continue to serve a useful existence. Next time it's released,
399 * we will get notified again, if it still has 'notify_on_release' set.
400 *
401 * The final arg to call_usermodehelper() is 0, which means don't
402 * wait. The separate /sbin/cpuset_release_agent task is forked by
403 * call_usermodehelper(), then control in this thread returns here,
404 * without waiting for the release agent task. We don't bother to
405 * wait because the caller of this routine has no use for the exit
406 * status of the /sbin/cpuset_release_agent task, so no sense holding
407 * our caller up for that.
408 *
409 * The simple act of forking that task might require more memory,
410 * which might need cpuset_sem. So this routine must be called while
411 * cpuset_sem is not held, to avoid a possible deadlock. See also
412 * comments for check_for_release(), below.
413 */
414
415 static void cpuset_release_agent(const char *pathbuf)
416 {
417 char *argv[3], *envp[3];
418 int i;
419
420 if (!pathbuf)
421 return;
422
423 i = 0;
424 argv[i++] = "/sbin/cpuset_release_agent";
425 argv[i++] = (char *)pathbuf;
426 argv[i] = NULL;
427
428 i = 0;
429 /* minimal command environment */
430 envp[i++] = "HOME=/";
431 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
432 envp[i] = NULL;
433
434 call_usermodehelper(argv[0], argv, envp, 0);
435 kfree(pathbuf);
436 }
437
438 /*
439 * Either cs->count of using tasks transitioned to zero, or the
440 * cs->children list of child cpusets just became empty. If this
441 * cs is notify_on_release() and now both the user count is zero and
442 * the list of children is empty, prepare cpuset path in a kmalloc'd
443 * buffer, to be returned via ppathbuf, so that the caller can invoke
444 * cpuset_release_agent() with it later on, once cpuset_sem is dropped.
445 * Call here with cpuset_sem held.
446 *
447 * This check_for_release() routine is responsible for kmalloc'ing
448 * pathbuf. The above cpuset_release_agent() is responsible for
449 * kfree'ing pathbuf. The caller of these routines is responsible
450 * for providing a pathbuf pointer, initialized to NULL, then
451 * calling check_for_release() with cpuset_sem held and the address
452 * of the pathbuf pointer, then dropping cpuset_sem, then calling
453 * cpuset_release_agent() with pathbuf, as set by check_for_release().
454 */
455
456 static void check_for_release(struct cpuset *cs, char **ppathbuf)
457 {
458 if (notify_on_release(cs) && atomic_read(&cs->count) == 0 &&
459 list_empty(&cs->children)) {
460 char *buf;
461
462 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
463 if (!buf)
464 return;
465 if (cpuset_path(cs, buf, PAGE_SIZE) < 0)
466 kfree(buf);
467 else
468 *ppathbuf = buf;
469 }
470 }
471
472 /*
473 * Return in *pmask the portion of a cpusets's cpus_allowed that
474 * are online. If none are online, walk up the cpuset hierarchy
475 * until we find one that does have some online cpus. If we get
476 * all the way to the top and still haven't found any online cpus,
477 * return cpu_online_map. Or if passed a NULL cs from an exit'ing
478 * task, return cpu_online_map.
479 *
480 * One way or another, we guarantee to return some non-empty subset
481 * of cpu_online_map.
482 *
483 * Call with cpuset_sem held.
484 */
485
486 static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask)
487 {
488 while (cs && !cpus_intersects(cs->cpus_allowed, cpu_online_map))
489 cs = cs->parent;
490 if (cs)
491 cpus_and(*pmask, cs->cpus_allowed, cpu_online_map);
492 else
493 *pmask = cpu_online_map;
494 BUG_ON(!cpus_intersects(*pmask, cpu_online_map));
495 }
496
497 /*
498 * Return in *pmask the portion of a cpusets's mems_allowed that
499 * are online. If none are online, walk up the cpuset hierarchy
500 * until we find one that does have some online mems. If we get
501 * all the way to the top and still haven't found any online mems,
502 * return node_online_map.
503 *
504 * One way or another, we guarantee to return some non-empty subset
505 * of node_online_map.
506 *
507 * Call with cpuset_sem held.
508 */
509
510 static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
511 {
512 while (cs && !nodes_intersects(cs->mems_allowed, node_online_map))
513 cs = cs->parent;
514 if (cs)
515 nodes_and(*pmask, cs->mems_allowed, node_online_map);
516 else
517 *pmask = node_online_map;
518 BUG_ON(!nodes_intersects(*pmask, node_online_map));
519 }
520
521 /*
522 * Refresh current tasks mems_allowed and mems_generation from
523 * current tasks cpuset. Call with cpuset_sem held.
524 *
525 * Be sure to call refresh_mems() on any cpuset operation which
526 * (1) holds cpuset_sem, and (2) might possibly alloc memory.
527 * Call after obtaining cpuset_sem lock, before any possible
528 * allocation. Otherwise one risks trying to allocate memory
529 * while the task cpuset_mems_generation is not the same as
530 * the mems_generation in its cpuset, which would deadlock on
531 * cpuset_sem in cpuset_update_current_mems_allowed().
532 *
533 * Since we hold cpuset_sem, once refresh_mems() is called, the
534 * test (current->cpuset_mems_generation != cs->mems_generation)
535 * in cpuset_update_current_mems_allowed() will remain false,
536 * until we drop cpuset_sem. Anyone else who would change our
537 * cpusets mems_generation needs to lock cpuset_sem first.
538 */
539
540 static void refresh_mems(void)
541 {
542 struct cpuset *cs = current->cpuset;
543
544 if (current->cpuset_mems_generation != cs->mems_generation) {
545 guarantee_online_mems(cs, &current->mems_allowed);
546 current->cpuset_mems_generation = cs->mems_generation;
547 }
548 }
549
550 /*
551 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
552 *
553 * One cpuset is a subset of another if all its allowed CPUs and
554 * Memory Nodes are a subset of the other, and its exclusive flags
555 * are only set if the other's are set.
556 */
557
558 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
559 {
560 return cpus_subset(p->cpus_allowed, q->cpus_allowed) &&
561 nodes_subset(p->mems_allowed, q->mems_allowed) &&
562 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
563 is_mem_exclusive(p) <= is_mem_exclusive(q);
564 }
565
566 /*
567 * validate_change() - Used to validate that any proposed cpuset change
568 * follows the structural rules for cpusets.
569 *
570 * If we replaced the flag and mask values of the current cpuset
571 * (cur) with those values in the trial cpuset (trial), would
572 * our various subset and exclusive rules still be valid? Presumes
573 * cpuset_sem held.
574 *
575 * 'cur' is the address of an actual, in-use cpuset. Operations
576 * such as list traversal that depend on the actual address of the
577 * cpuset in the list must use cur below, not trial.
578 *
579 * 'trial' is the address of bulk structure copy of cur, with
580 * perhaps one or more of the fields cpus_allowed, mems_allowed,
581 * or flags changed to new, trial values.
582 *
583 * Return 0 if valid, -errno if not.
584 */
585
586 static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
587 {
588 struct cpuset *c, *par;
589
590 /* Each of our child cpusets must be a subset of us */
591 list_for_each_entry(c, &cur->children, sibling) {
592 if (!is_cpuset_subset(c, trial))
593 return -EBUSY;
594 }
595
596 /* Remaining checks don't apply to root cpuset */
597 if ((par = cur->parent) == NULL)
598 return 0;
599
600 /* We must be a subset of our parent cpuset */
601 if (!is_cpuset_subset(trial, par))
602 return -EACCES;
603
604 /* If either I or some sibling (!= me) is exclusive, we can't overlap */
605 list_for_each_entry(c, &par->children, sibling) {
606 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
607 c != cur &&
608 cpus_intersects(trial->cpus_allowed, c->cpus_allowed))
609 return -EINVAL;
610 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
611 c != cur &&
612 nodes_intersects(trial->mems_allowed, c->mems_allowed))
613 return -EINVAL;
614 }
615
616 return 0;
617 }
618
619 /*
620 * For a given cpuset cur, partition the system as follows
621 * a. All cpus in the parent cpuset's cpus_allowed that are not part of any
622 * exclusive child cpusets
623 * b. All cpus in the current cpuset's cpus_allowed that are not part of any
624 * exclusive child cpusets
625 * Build these two partitions by calling partition_sched_domains
626 *
627 * Call with cpuset_sem held. May nest a call to the
628 * lock_cpu_hotplug()/unlock_cpu_hotplug() pair.
629 */
630
631 static void update_cpu_domains(struct cpuset *cur)
632 {
633 struct cpuset *c, *par = cur->parent;
634 cpumask_t pspan, cspan;
635
636 if (par == NULL || cpus_empty(cur->cpus_allowed))
637 return;
638
639 /*
640 * Get all cpus from parent's cpus_allowed not part of exclusive
641 * children
642 */
643 pspan = par->cpus_allowed;
644 list_for_each_entry(c, &par->children, sibling) {
645 if (is_cpu_exclusive(c))
646 cpus_andnot(pspan, pspan, c->cpus_allowed);
647 }
648 if (is_removed(cur) || !is_cpu_exclusive(cur)) {
649 cpus_or(pspan, pspan, cur->cpus_allowed);
650 if (cpus_equal(pspan, cur->cpus_allowed))
651 return;
652 cspan = CPU_MASK_NONE;
653 } else {
654 if (cpus_empty(pspan))
655 return;
656 cspan = cur->cpus_allowed;
657 /*
658 * Get all cpus from current cpuset's cpus_allowed not part
659 * of exclusive children
660 */
661 list_for_each_entry(c, &cur->children, sibling) {
662 if (is_cpu_exclusive(c))
663 cpus_andnot(cspan, cspan, c->cpus_allowed);
664 }
665 }
666
667 lock_cpu_hotplug();
668 partition_sched_domains(&pspan, &cspan);
669 unlock_cpu_hotplug();
670 }
671
672 static int update_cpumask(struct cpuset *cs, char *buf)
673 {
674 struct cpuset trialcs;
675 int retval, cpus_unchanged;
676
677 trialcs = *cs;
678 retval = cpulist_parse(buf, trialcs.cpus_allowed);
679 if (retval < 0)
680 return retval;
681 cpus_and(trialcs.cpus_allowed, trialcs.cpus_allowed, cpu_online_map);
682 if (cpus_empty(trialcs.cpus_allowed))
683 return -ENOSPC;
684 retval = validate_change(cs, &trialcs);
685 if (retval < 0)
686 return retval;
687 cpus_unchanged = cpus_equal(cs->cpus_allowed, trialcs.cpus_allowed);
688 cs->cpus_allowed = trialcs.cpus_allowed;
689 if (is_cpu_exclusive(cs) && !cpus_unchanged)
690 update_cpu_domains(cs);
691 return 0;
692 }
693
694 static int update_nodemask(struct cpuset *cs, char *buf)
695 {
696 struct cpuset trialcs;
697 int retval;
698
699 trialcs = *cs;
700 retval = nodelist_parse(buf, trialcs.mems_allowed);
701 if (retval < 0)
702 return retval;
703 nodes_and(trialcs.mems_allowed, trialcs.mems_allowed, node_online_map);
704 if (nodes_empty(trialcs.mems_allowed))
705 return -ENOSPC;
706 retval = validate_change(cs, &trialcs);
707 if (retval == 0) {
708 cs->mems_allowed = trialcs.mems_allowed;
709 atomic_inc(&cpuset_mems_generation);
710 cs->mems_generation = atomic_read(&cpuset_mems_generation);
711 }
712 return retval;
713 }
714
715 /*
716 * update_flag - read a 0 or a 1 in a file and update associated flag
717 * bit: the bit to update (CS_CPU_EXCLUSIVE, CS_MEM_EXCLUSIVE,
718 * CS_NOTIFY_ON_RELEASE)
719 * cs: the cpuset to update
720 * buf: the buffer where we read the 0 or 1
721 */
722
723 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, char *buf)
724 {
725 int turning_on;
726 struct cpuset trialcs;
727 int err, cpu_exclusive_changed;
728
729 turning_on = (simple_strtoul(buf, NULL, 10) != 0);
730
731 trialcs = *cs;
732 if (turning_on)
733 set_bit(bit, &trialcs.flags);
734 else
735 clear_bit(bit, &trialcs.flags);
736
737 err = validate_change(cs, &trialcs);
738 if (err < 0)
739 return err;
740 cpu_exclusive_changed =
741 (is_cpu_exclusive(cs) != is_cpu_exclusive(&trialcs));
742 if (turning_on)
743 set_bit(bit, &cs->flags);
744 else
745 clear_bit(bit, &cs->flags);
746
747 if (cpu_exclusive_changed)
748 update_cpu_domains(cs);
749 return 0;
750 }
751
752 static int attach_task(struct cpuset *cs, char *pidbuf, char **ppathbuf)
753 {
754 pid_t pid;
755 struct task_struct *tsk;
756 struct cpuset *oldcs;
757 cpumask_t cpus;
758
759 if (sscanf(pidbuf, "%d", &pid) != 1)
760 return -EIO;
761 if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
762 return -ENOSPC;
763
764 if (pid) {
765 read_lock(&tasklist_lock);
766
767 tsk = find_task_by_pid(pid);
768 if (!tsk) {
769 read_unlock(&tasklist_lock);
770 return -ESRCH;
771 }
772
773 get_task_struct(tsk);
774 read_unlock(&tasklist_lock);
775
776 if ((current->euid) && (current->euid != tsk->uid)
777 && (current->euid != tsk->suid)) {
778 put_task_struct(tsk);
779 return -EACCES;
780 }
781 } else {
782 tsk = current;
783 get_task_struct(tsk);
784 }
785
786 task_lock(tsk);
787 oldcs = tsk->cpuset;
788 if (!oldcs) {
789 task_unlock(tsk);
790 put_task_struct(tsk);
791 return -ESRCH;
792 }
793 atomic_inc(&cs->count);
794 tsk->cpuset = cs;
795 task_unlock(tsk);
796
797 guarantee_online_cpus(cs, &cpus);
798 set_cpus_allowed(tsk, cpus);
799
800 put_task_struct(tsk);
801 if (atomic_dec_and_test(&oldcs->count))
802 check_for_release(oldcs, ppathbuf);
803 return 0;
804 }
805
806 /* The various types of files and directories in a cpuset file system */
807
808 typedef enum {
809 FILE_ROOT,
810 FILE_DIR,
811 FILE_CPULIST,
812 FILE_MEMLIST,
813 FILE_CPU_EXCLUSIVE,
814 FILE_MEM_EXCLUSIVE,
815 FILE_NOTIFY_ON_RELEASE,
816 FILE_TASKLIST,
817 } cpuset_filetype_t;
818
819 static ssize_t cpuset_common_file_write(struct file *file, const char __user *userbuf,
820 size_t nbytes, loff_t *unused_ppos)
821 {
822 struct cpuset *cs = __d_cs(file->f_dentry->d_parent);
823 struct cftype *cft = __d_cft(file->f_dentry);
824 cpuset_filetype_t type = cft->private;
825 char *buffer;
826 char *pathbuf = NULL;
827 int retval = 0;
828
829 /* Crude upper limit on largest legitimate cpulist user might write. */
830 if (nbytes > 100 + 6 * NR_CPUS)
831 return -E2BIG;
832
833 /* +1 for nul-terminator */
834 if ((buffer = kmalloc(nbytes + 1, GFP_KERNEL)) == 0)
835 return -ENOMEM;
836
837 if (copy_from_user(buffer, userbuf, nbytes)) {
838 retval = -EFAULT;
839 goto out1;
840 }
841 buffer[nbytes] = 0; /* nul-terminate */
842
843 down(&cpuset_sem);
844
845 if (is_removed(cs)) {
846 retval = -ENODEV;
847 goto out2;
848 }
849
850 switch (type) {
851 case FILE_CPULIST:
852 retval = update_cpumask(cs, buffer);
853 break;
854 case FILE_MEMLIST:
855 retval = update_nodemask(cs, buffer);
856 break;
857 case FILE_CPU_EXCLUSIVE:
858 retval = update_flag(CS_CPU_EXCLUSIVE, cs, buffer);
859 break;
860 case FILE_MEM_EXCLUSIVE:
861 retval = update_flag(CS_MEM_EXCLUSIVE, cs, buffer);
862 break;
863 case FILE_NOTIFY_ON_RELEASE:
864 retval = update_flag(CS_NOTIFY_ON_RELEASE, cs, buffer);
865 break;
866 case FILE_TASKLIST:
867 retval = attach_task(cs, buffer, &pathbuf);
868 break;
869 default:
870 retval = -EINVAL;
871 goto out2;
872 }
873
874 if (retval == 0)
875 retval = nbytes;
876 out2:
877 up(&cpuset_sem);
878 cpuset_release_agent(pathbuf);
879 out1:
880 kfree(buffer);
881 return retval;
882 }
883
884 static ssize_t cpuset_file_write(struct file *file, const char __user *buf,
885 size_t nbytes, loff_t *ppos)
886 {
887 ssize_t retval = 0;
888 struct cftype *cft = __d_cft(file->f_dentry);
889 if (!cft)
890 return -ENODEV;
891
892 /* special function ? */
893 if (cft->write)
894 retval = cft->write(file, buf, nbytes, ppos);
895 else
896 retval = cpuset_common_file_write(file, buf, nbytes, ppos);
897
898 return retval;
899 }
900
901 /*
902 * These ascii lists should be read in a single call, by using a user
903 * buffer large enough to hold the entire map. If read in smaller
904 * chunks, there is no guarantee of atomicity. Since the display format
905 * used, list of ranges of sequential numbers, is variable length,
906 * and since these maps can change value dynamically, one could read
907 * gibberish by doing partial reads while a list was changing.
908 * A single large read to a buffer that crosses a page boundary is
909 * ok, because the result being copied to user land is not recomputed
910 * across a page fault.
911 */
912
913 static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
914 {
915 cpumask_t mask;
916
917 down(&cpuset_sem);
918 mask = cs->cpus_allowed;
919 up(&cpuset_sem);
920
921 return cpulist_scnprintf(page, PAGE_SIZE, mask);
922 }
923
924 static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
925 {
926 nodemask_t mask;
927
928 down(&cpuset_sem);
929 mask = cs->mems_allowed;
930 up(&cpuset_sem);
931
932 return nodelist_scnprintf(page, PAGE_SIZE, mask);
933 }
934
935 static ssize_t cpuset_common_file_read(struct file *file, char __user *buf,
936 size_t nbytes, loff_t *ppos)
937 {
938 struct cftype *cft = __d_cft(file->f_dentry);
939 struct cpuset *cs = __d_cs(file->f_dentry->d_parent);
940 cpuset_filetype_t type = cft->private;
941 char *page;
942 ssize_t retval = 0;
943 char *s;
944 char *start;
945 size_t n;
946
947 if (!(page = (char *)__get_free_page(GFP_KERNEL)))
948 return -ENOMEM;
949
950 s = page;
951
952 switch (type) {
953 case FILE_CPULIST:
954 s += cpuset_sprintf_cpulist(s, cs);
955 break;
956 case FILE_MEMLIST:
957 s += cpuset_sprintf_memlist(s, cs);
958 break;
959 case FILE_CPU_EXCLUSIVE:
960 *s++ = is_cpu_exclusive(cs) ? '1' : '0';
961 break;
962 case FILE_MEM_EXCLUSIVE:
963 *s++ = is_mem_exclusive(cs) ? '1' : '0';
964 break;
965 case FILE_NOTIFY_ON_RELEASE:
966 *s++ = notify_on_release(cs) ? '1' : '0';
967 break;
968 default:
969 retval = -EINVAL;
970 goto out;
971 }
972 *s++ = '\n';
973 *s = '\0';
974
975 /* Do nothing if *ppos is at the eof or beyond the eof. */
976 if (s - page <= *ppos)
977 return 0;
978
979 start = page + *ppos;
980 n = s - start;
981 retval = n - copy_to_user(buf, start, min(n, nbytes));
982 *ppos += retval;
983 out:
984 free_page((unsigned long)page);
985 return retval;
986 }
987
988 static ssize_t cpuset_file_read(struct file *file, char __user *buf, size_t nbytes,
989 loff_t *ppos)
990 {
991 ssize_t retval = 0;
992 struct cftype *cft = __d_cft(file->f_dentry);
993 if (!cft)
994 return -ENODEV;
995
996 /* special function ? */
997 if (cft->read)
998 retval = cft->read(file, buf, nbytes, ppos);
999 else
1000 retval = cpuset_common_file_read(file, buf, nbytes, ppos);
1001
1002 return retval;
1003 }
1004
1005 static int cpuset_file_open(struct inode *inode, struct file *file)
1006 {
1007 int err;
1008 struct cftype *cft;
1009
1010 err = generic_file_open(inode, file);
1011 if (err)
1012 return err;
1013
1014 cft = __d_cft(file->f_dentry);
1015 if (!cft)
1016 return -ENODEV;
1017 if (cft->open)
1018 err = cft->open(inode, file);
1019 else
1020 err = 0;
1021
1022 return err;
1023 }
1024
1025 static int cpuset_file_release(struct inode *inode, struct file *file)
1026 {
1027 struct cftype *cft = __d_cft(file->f_dentry);
1028 if (cft->release)
1029 return cft->release(inode, file);
1030 return 0;
1031 }
1032
1033 static struct file_operations cpuset_file_operations = {
1034 .read = cpuset_file_read,
1035 .write = cpuset_file_write,
1036 .llseek = generic_file_llseek,
1037 .open = cpuset_file_open,
1038 .release = cpuset_file_release,
1039 };
1040
1041 static struct inode_operations cpuset_dir_inode_operations = {
1042 .lookup = simple_lookup,
1043 .mkdir = cpuset_mkdir,
1044 .rmdir = cpuset_rmdir,
1045 };
1046
1047 static int cpuset_create_file(struct dentry *dentry, int mode)
1048 {
1049 struct inode *inode;
1050
1051 if (!dentry)
1052 return -ENOENT;
1053 if (dentry->d_inode)
1054 return -EEXIST;
1055
1056 inode = cpuset_new_inode(mode);
1057 if (!inode)
1058 return -ENOMEM;
1059
1060 if (S_ISDIR(mode)) {
1061 inode->i_op = &cpuset_dir_inode_operations;
1062 inode->i_fop = &simple_dir_operations;
1063
1064 /* start off with i_nlink == 2 (for "." entry) */
1065 inode->i_nlink++;
1066 } else if (S_ISREG(mode)) {
1067 inode->i_size = 0;
1068 inode->i_fop = &cpuset_file_operations;
1069 }
1070
1071 d_instantiate(dentry, inode);
1072 dget(dentry); /* Extra count - pin the dentry in core */
1073 return 0;
1074 }
1075
1076 /*
1077 * cpuset_create_dir - create a directory for an object.
1078 * cs: the cpuset we create the directory for.
1079 * It must have a valid ->parent field
1080 * And we are going to fill its ->dentry field.
1081 * name: The name to give to the cpuset directory. Will be copied.
1082 * mode: mode to set on new directory.
1083 */
1084
1085 static int cpuset_create_dir(struct cpuset *cs, const char *name, int mode)
1086 {
1087 struct dentry *dentry = NULL;
1088 struct dentry *parent;
1089 int error = 0;
1090
1091 parent = cs->parent->dentry;
1092 dentry = cpuset_get_dentry(parent, name);
1093 if (IS_ERR(dentry))
1094 return PTR_ERR(dentry);
1095 error = cpuset_create_file(dentry, S_IFDIR | mode);
1096 if (!error) {
1097 dentry->d_fsdata = cs;
1098 parent->d_inode->i_nlink++;
1099 cs->dentry = dentry;
1100 }
1101 dput(dentry);
1102
1103 return error;
1104 }
1105
1106 static int cpuset_add_file(struct dentry *dir, const struct cftype *cft)
1107 {
1108 struct dentry *dentry;
1109 int error;
1110
1111 down(&dir->d_inode->i_sem);
1112 dentry = cpuset_get_dentry(dir, cft->name);
1113 if (!IS_ERR(dentry)) {
1114 error = cpuset_create_file(dentry, 0644 | S_IFREG);
1115 if (!error)
1116 dentry->d_fsdata = (void *)cft;
1117 dput(dentry);
1118 } else
1119 error = PTR_ERR(dentry);
1120 up(&dir->d_inode->i_sem);
1121 return error;
1122 }
1123
1124 /*
1125 * Stuff for reading the 'tasks' file.
1126 *
1127 * Reading this file can return large amounts of data if a cpuset has
1128 * *lots* of attached tasks. So it may need several calls to read(),
1129 * but we cannot guarantee that the information we produce is correct
1130 * unless we produce it entirely atomically.
1131 *
1132 * Upon tasks file open(), a struct ctr_struct is allocated, that
1133 * will have a pointer to an array (also allocated here). The struct
1134 * ctr_struct * is stored in file->private_data. Its resources will
1135 * be freed by release() when the file is closed. The array is used
1136 * to sprintf the PIDs and then used by read().
1137 */
1138
1139 /* cpusets_tasks_read array */
1140
1141 struct ctr_struct {
1142 char *buf;
1143 int bufsz;
1144 };
1145
1146 /*
1147 * Load into 'pidarray' up to 'npids' of the tasks using cpuset 'cs'.
1148 * Return actual number of pids loaded.
1149 */
1150 static inline int pid_array_load(pid_t *pidarray, int npids, struct cpuset *cs)
1151 {
1152 int n = 0;
1153 struct task_struct *g, *p;
1154
1155 read_lock(&tasklist_lock);
1156
1157 do_each_thread(g, p) {
1158 if (p->cpuset == cs) {
1159 pidarray[n++] = p->pid;
1160 if (unlikely(n == npids))
1161 goto array_full;
1162 }
1163 } while_each_thread(g, p);
1164
1165 array_full:
1166 read_unlock(&tasklist_lock);
1167 return n;
1168 }
1169
1170 static int cmppid(const void *a, const void *b)
1171 {
1172 return *(pid_t *)a - *(pid_t *)b;
1173 }
1174
1175 /*
1176 * Convert array 'a' of 'npids' pid_t's to a string of newline separated
1177 * decimal pids in 'buf'. Don't write more than 'sz' chars, but return
1178 * count 'cnt' of how many chars would be written if buf were large enough.
1179 */
1180 static int pid_array_to_buf(char *buf, int sz, pid_t *a, int npids)
1181 {
1182 int cnt = 0;
1183 int i;
1184
1185 for (i = 0; i < npids; i++)
1186 cnt += snprintf(buf + cnt, max(sz - cnt, 0), "%d\n", a[i]);
1187 return cnt;
1188 }
1189
1190 static int cpuset_tasks_open(struct inode *unused, struct file *file)
1191 {
1192 struct cpuset *cs = __d_cs(file->f_dentry->d_parent);
1193 struct ctr_struct *ctr;
1194 pid_t *pidarray;
1195 int npids;
1196 char c;
1197
1198 if (!(file->f_mode & FMODE_READ))
1199 return 0;
1200
1201 ctr = kmalloc(sizeof(*ctr), GFP_KERNEL);
1202 if (!ctr)
1203 goto err0;
1204
1205 /*
1206 * If cpuset gets more users after we read count, we won't have
1207 * enough space - tough. This race is indistinguishable to the
1208 * caller from the case that the additional cpuset users didn't
1209 * show up until sometime later on.
1210 */
1211 npids = atomic_read(&cs->count);
1212 pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
1213 if (!pidarray)
1214 goto err1;
1215
1216 npids = pid_array_load(pidarray, npids, cs);
1217 sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
1218
1219 /* Call pid_array_to_buf() twice, first just to get bufsz */
1220 ctr->bufsz = pid_array_to_buf(&c, sizeof(c), pidarray, npids) + 1;
1221 ctr->buf = kmalloc(ctr->bufsz, GFP_KERNEL);
1222 if (!ctr->buf)
1223 goto err2;
1224 ctr->bufsz = pid_array_to_buf(ctr->buf, ctr->bufsz, pidarray, npids);
1225
1226 kfree(pidarray);
1227 file->private_data = ctr;
1228 return 0;
1229
1230 err2:
1231 kfree(pidarray);
1232 err1:
1233 kfree(ctr);
1234 err0:
1235 return -ENOMEM;
1236 }
1237
1238 static ssize_t cpuset_tasks_read(struct file *file, char __user *buf,
1239 size_t nbytes, loff_t *ppos)
1240 {
1241 struct ctr_struct *ctr = file->private_data;
1242
1243 if (*ppos + nbytes > ctr->bufsz)
1244 nbytes = ctr->bufsz - *ppos;
1245 if (copy_to_user(buf, ctr->buf + *ppos, nbytes))
1246 return -EFAULT;
1247 *ppos += nbytes;
1248 return nbytes;
1249 }
1250
1251 static int cpuset_tasks_release(struct inode *unused_inode, struct file *file)
1252 {
1253 struct ctr_struct *ctr;
1254
1255 if (file->f_mode & FMODE_READ) {
1256 ctr = file->private_data;
1257 kfree(ctr->buf);
1258 kfree(ctr);
1259 }
1260 return 0;
1261 }
1262
1263 /*
1264 * for the common functions, 'private' gives the type of file
1265 */
1266
1267 static struct cftype cft_tasks = {
1268 .name = "tasks",
1269 .open = cpuset_tasks_open,
1270 .read = cpuset_tasks_read,
1271 .release = cpuset_tasks_release,
1272 .private = FILE_TASKLIST,
1273 };
1274
1275 static struct cftype cft_cpus = {
1276 .name = "cpus",
1277 .private = FILE_CPULIST,
1278 };
1279
1280 static struct cftype cft_mems = {
1281 .name = "mems",
1282 .private = FILE_MEMLIST,
1283 };
1284
1285 static struct cftype cft_cpu_exclusive = {
1286 .name = "cpu_exclusive",
1287 .private = FILE_CPU_EXCLUSIVE,
1288 };
1289
1290 static struct cftype cft_mem_exclusive = {
1291 .name = "mem_exclusive",
1292 .private = FILE_MEM_EXCLUSIVE,
1293 };
1294
1295 static struct cftype cft_notify_on_release = {
1296 .name = "notify_on_release",
1297 .private = FILE_NOTIFY_ON_RELEASE,
1298 };
1299
1300 static int cpuset_populate_dir(struct dentry *cs_dentry)
1301 {
1302 int err;
1303
1304 if ((err = cpuset_add_file(cs_dentry, &cft_cpus)) < 0)
1305 return err;
1306 if ((err = cpuset_add_file(cs_dentry, &cft_mems)) < 0)
1307 return err;
1308 if ((err = cpuset_add_file(cs_dentry, &cft_cpu_exclusive)) < 0)
1309 return err;
1310 if ((err = cpuset_add_file(cs_dentry, &cft_mem_exclusive)) < 0)
1311 return err;
1312 if ((err = cpuset_add_file(cs_dentry, &cft_notify_on_release)) < 0)
1313 return err;
1314 if ((err = cpuset_add_file(cs_dentry, &cft_tasks)) < 0)
1315 return err;
1316 return 0;
1317 }
1318
1319 /*
1320 * cpuset_create - create a cpuset
1321 * parent: cpuset that will be parent of the new cpuset.
1322 * name: name of the new cpuset. Will be strcpy'ed.
1323 * mode: mode to set on new inode
1324 *
1325 * Must be called with the semaphore on the parent inode held
1326 */
1327
1328 static long cpuset_create(struct cpuset *parent, const char *name, int mode)
1329 {
1330 struct cpuset *cs;
1331 int err;
1332
1333 cs = kmalloc(sizeof(*cs), GFP_KERNEL);
1334 if (!cs)
1335 return -ENOMEM;
1336
1337 down(&cpuset_sem);
1338 refresh_mems();
1339 cs->flags = 0;
1340 if (notify_on_release(parent))
1341 set_bit(CS_NOTIFY_ON_RELEASE, &cs->flags);
1342 cs->cpus_allowed = CPU_MASK_NONE;
1343 cs->mems_allowed = NODE_MASK_NONE;
1344 atomic_set(&cs->count, 0);
1345 INIT_LIST_HEAD(&cs->sibling);
1346 INIT_LIST_HEAD(&cs->children);
1347 atomic_inc(&cpuset_mems_generation);
1348 cs->mems_generation = atomic_read(&cpuset_mems_generation);
1349
1350 cs->parent = parent;
1351
1352 list_add(&cs->sibling, &cs->parent->children);
1353
1354 err = cpuset_create_dir(cs, name, mode);
1355 if (err < 0)
1356 goto err;
1357
1358 /*
1359 * Release cpuset_sem before cpuset_populate_dir() because it
1360 * will down() this new directory's i_sem and if we race with
1361 * another mkdir, we might deadlock.
1362 */
1363 up(&cpuset_sem);
1364
1365 err = cpuset_populate_dir(cs->dentry);
1366 /* If err < 0, we have a half-filled directory - oh well ;) */
1367 return 0;
1368 err:
1369 list_del(&cs->sibling);
1370 up(&cpuset_sem);
1371 kfree(cs);
1372 return err;
1373 }
1374
1375 static int cpuset_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1376 {
1377 struct cpuset *c_parent = dentry->d_parent->d_fsdata;
1378
1379 /* the vfs holds inode->i_sem already */
1380 return cpuset_create(c_parent, dentry->d_name.name, mode | S_IFDIR);
1381 }
1382
1383 static int cpuset_rmdir(struct inode *unused_dir, struct dentry *dentry)
1384 {
1385 struct cpuset *cs = dentry->d_fsdata;
1386 struct dentry *d;
1387 struct cpuset *parent;
1388 char *pathbuf = NULL;
1389
1390 /* the vfs holds both inode->i_sem already */
1391
1392 down(&cpuset_sem);
1393 refresh_mems();
1394 if (atomic_read(&cs->count) > 0) {
1395 up(&cpuset_sem);
1396 return -EBUSY;
1397 }
1398 if (!list_empty(&cs->children)) {
1399 up(&cpuset_sem);
1400 return -EBUSY;
1401 }
1402 parent = cs->parent;
1403 set_bit(CS_REMOVED, &cs->flags);
1404 if (is_cpu_exclusive(cs))
1405 update_cpu_domains(cs);
1406 list_del(&cs->sibling); /* delete my sibling from parent->children */
1407 if (list_empty(&parent->children))
1408 check_for_release(parent, &pathbuf);
1409 spin_lock(&cs->dentry->d_lock);
1410 d = dget(cs->dentry);
1411 cs->dentry = NULL;
1412 spin_unlock(&d->d_lock);
1413 cpuset_d_remove_dir(d);
1414 dput(d);
1415 up(&cpuset_sem);
1416 cpuset_release_agent(pathbuf);
1417 return 0;
1418 }
1419
1420 /**
1421 * cpuset_init - initialize cpusets at system boot
1422 *
1423 * Description: Initialize top_cpuset and the cpuset internal file system,
1424 **/
1425
1426 int __init cpuset_init(void)
1427 {
1428 struct dentry *root;
1429 int err;
1430
1431 top_cpuset.cpus_allowed = CPU_MASK_ALL;
1432 top_cpuset.mems_allowed = NODE_MASK_ALL;
1433
1434 atomic_inc(&cpuset_mems_generation);
1435 top_cpuset.mems_generation = atomic_read(&cpuset_mems_generation);
1436
1437 init_task.cpuset = &top_cpuset;
1438
1439 err = register_filesystem(&cpuset_fs_type);
1440 if (err < 0)
1441 goto out;
1442 cpuset_mount = kern_mount(&cpuset_fs_type);
1443 if (IS_ERR(cpuset_mount)) {
1444 printk(KERN_ERR "cpuset: could not mount!\n");
1445 err = PTR_ERR(cpuset_mount);
1446 cpuset_mount = NULL;
1447 goto out;
1448 }
1449 root = cpuset_mount->mnt_sb->s_root;
1450 root->d_fsdata = &top_cpuset;
1451 root->d_inode->i_nlink++;
1452 top_cpuset.dentry = root;
1453 root->d_inode->i_op = &cpuset_dir_inode_operations;
1454 err = cpuset_populate_dir(root);
1455 out:
1456 return err;
1457 }
1458
1459 /**
1460 * cpuset_init_smp - initialize cpus_allowed
1461 *
1462 * Description: Finish top cpuset after cpu, node maps are initialized
1463 **/
1464
1465 void __init cpuset_init_smp(void)
1466 {
1467 top_cpuset.cpus_allowed = cpu_online_map;
1468 top_cpuset.mems_allowed = node_online_map;
1469 }
1470
1471 /**
1472 * cpuset_fork - attach newly forked task to its parents cpuset.
1473 * @tsk: pointer to task_struct of forking parent process.
1474 *
1475 * Description: By default, on fork, a task inherits its
1476 * parent's cpuset. The pointer to the shared cpuset is
1477 * automatically copied in fork.c by dup_task_struct().
1478 * This cpuset_fork() routine need only increment the usage
1479 * counter in that cpuset.
1480 **/
1481
1482 void cpuset_fork(struct task_struct *tsk)
1483 {
1484 atomic_inc(&tsk->cpuset->count);
1485 }
1486
1487 /**
1488 * cpuset_exit - detach cpuset from exiting task
1489 * @tsk: pointer to task_struct of exiting process
1490 *
1491 * Description: Detach cpuset from @tsk and release it.
1492 *
1493 * Note that cpusets marked notify_on_release force every task
1494 * in them to take the global cpuset_sem semaphore when exiting.
1495 * This could impact scaling on very large systems. Be reluctant
1496 * to use notify_on_release cpusets where very high task exit
1497 * scaling is required on large systems.
1498 *
1499 * Don't even think about derefencing 'cs' after the cpuset use
1500 * count goes to zero, except inside a critical section guarded
1501 * by the cpuset_sem semaphore. If you don't hold cpuset_sem,
1502 * then a zero cpuset use count is a license to any other task to
1503 * nuke the cpuset immediately.
1504 **/
1505
1506 void cpuset_exit(struct task_struct *tsk)
1507 {
1508 struct cpuset *cs;
1509
1510 task_lock(tsk);
1511 cs = tsk->cpuset;
1512 tsk->cpuset = NULL;
1513 task_unlock(tsk);
1514
1515 if (notify_on_release(cs)) {
1516 char *pathbuf = NULL;
1517
1518 down(&cpuset_sem);
1519 if (atomic_dec_and_test(&cs->count))
1520 check_for_release(cs, &pathbuf);
1521 up(&cpuset_sem);
1522 cpuset_release_agent(pathbuf);
1523 } else {
1524 atomic_dec(&cs->count);
1525 }
1526 }
1527
1528 /**
1529 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
1530 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
1531 *
1532 * Description: Returns the cpumask_t cpus_allowed of the cpuset
1533 * attached to the specified @tsk. Guaranteed to return some non-empty
1534 * subset of cpu_online_map, even if this means going outside the
1535 * tasks cpuset.
1536 **/
1537
1538 cpumask_t cpuset_cpus_allowed(const struct task_struct *tsk)
1539 {
1540 cpumask_t mask;
1541
1542 down(&cpuset_sem);
1543 task_lock((struct task_struct *)tsk);
1544 guarantee_online_cpus(tsk->cpuset, &mask);
1545 task_unlock((struct task_struct *)tsk);
1546 up(&cpuset_sem);
1547
1548 return mask;
1549 }
1550
1551 void cpuset_init_current_mems_allowed(void)
1552 {
1553 current->mems_allowed = NODE_MASK_ALL;
1554 }
1555
1556 /**
1557 * cpuset_update_current_mems_allowed - update mems parameters to new values
1558 *
1559 * If the current tasks cpusets mems_allowed changed behind our backs,
1560 * update current->mems_allowed and mems_generation to the new value.
1561 * Do not call this routine if in_interrupt().
1562 */
1563
1564 void cpuset_update_current_mems_allowed(void)
1565 {
1566 struct cpuset *cs = current->cpuset;
1567
1568 if (!cs)
1569 return; /* task is exiting */
1570 if (current->cpuset_mems_generation != cs->mems_generation) {
1571 down(&cpuset_sem);
1572 refresh_mems();
1573 up(&cpuset_sem);
1574 }
1575 }
1576
1577 /**
1578 * cpuset_restrict_to_mems_allowed - limit nodes to current mems_allowed
1579 * @nodes: pointer to a node bitmap that is and-ed with mems_allowed
1580 */
1581 void cpuset_restrict_to_mems_allowed(unsigned long *nodes)
1582 {
1583 bitmap_and(nodes, nodes, nodes_addr(current->mems_allowed),
1584 MAX_NUMNODES);
1585 }
1586
1587 /**
1588 * cpuset_zonelist_valid_mems_allowed - check zonelist vs. curremt mems_allowed
1589 * @zl: the zonelist to be checked
1590 *
1591 * Are any of the nodes on zonelist zl allowed in current->mems_allowed?
1592 */
1593 int cpuset_zonelist_valid_mems_allowed(struct zonelist *zl)
1594 {
1595 int i;
1596
1597 for (i = 0; zl->zones[i]; i++) {
1598 int nid = zl->zones[i]->zone_pgdat->node_id;
1599
1600 if (node_isset(nid, current->mems_allowed))
1601 return 1;
1602 }
1603 return 0;
1604 }
1605
1606 /*
1607 * nearest_exclusive_ancestor() - Returns the nearest mem_exclusive
1608 * ancestor to the specified cpuset. Call while holding cpuset_sem.
1609 * If no ancestor is mem_exclusive (an unusual configuration), then
1610 * returns the root cpuset.
1611 */
1612 static const struct cpuset *nearest_exclusive_ancestor(const struct cpuset *cs)
1613 {
1614 while (!is_mem_exclusive(cs) && cs->parent)
1615 cs = cs->parent;
1616 return cs;
1617 }
1618
1619 /**
1620 * cpuset_zone_allowed - Can we allocate memory on zone z's memory node?
1621 * @z: is this zone on an allowed node?
1622 * @gfp_mask: memory allocation flags (we use __GFP_HARDWALL)
1623 *
1624 * If we're in interrupt, yes, we can always allocate. If zone
1625 * z's node is in our tasks mems_allowed, yes. If it's not a
1626 * __GFP_HARDWALL request and this zone's nodes is in the nearest
1627 * mem_exclusive cpuset ancestor to this tasks cpuset, yes.
1628 * Otherwise, no.
1629 *
1630 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
1631 * and do not allow allocations outside the current tasks cpuset.
1632 * GFP_KERNEL allocations are not so marked, so can escape to the
1633 * nearest mem_exclusive ancestor cpuset.
1634 *
1635 * Scanning up parent cpusets requires cpuset_sem. The __alloc_pages()
1636 * routine only calls here with __GFP_HARDWALL bit _not_ set if
1637 * it's a GFP_KERNEL allocation, and all nodes in the current tasks
1638 * mems_allowed came up empty on the first pass over the zonelist.
1639 * So only GFP_KERNEL allocations, if all nodes in the cpuset are
1640 * short of memory, might require taking the cpuset_sem semaphore.
1641 *
1642 * The first loop over the zonelist in mm/page_alloc.c:__alloc_pages()
1643 * calls here with __GFP_HARDWALL always set in gfp_mask, enforcing
1644 * hardwall cpusets - no allocation on a node outside the cpuset is
1645 * allowed (unless in interrupt, of course).
1646 *
1647 * The second loop doesn't even call here for GFP_ATOMIC requests
1648 * (if the __alloc_pages() local variable 'wait' is set). That check
1649 * and the checks below have the combined affect in the second loop of
1650 * the __alloc_pages() routine that:
1651 * in_interrupt - any node ok (current task context irrelevant)
1652 * GFP_ATOMIC - any node ok
1653 * GFP_KERNEL - any node in enclosing mem_exclusive cpuset ok
1654 * GFP_USER - only nodes in current tasks mems allowed ok.
1655 **/
1656
1657 int cpuset_zone_allowed(struct zone *z, unsigned int __nocast gfp_mask)
1658 {
1659 int node; /* node that zone z is on */
1660 const struct cpuset *cs; /* current cpuset ancestors */
1661 int allowed = 1; /* is allocation in zone z allowed? */
1662
1663 if (in_interrupt())
1664 return 1;
1665 node = z->zone_pgdat->node_id;
1666 if (node_isset(node, current->mems_allowed))
1667 return 1;
1668 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
1669 return 0;
1670
1671 /* Not hardwall and node outside mems_allowed: scan up cpusets */
1672 down(&cpuset_sem);
1673 cs = current->cpuset;
1674 if (!cs)
1675 goto done; /* current task exiting */
1676 cs = nearest_exclusive_ancestor(cs);
1677 allowed = node_isset(node, cs->mems_allowed);
1678 done:
1679 up(&cpuset_sem);
1680 return allowed;
1681 }
1682
1683 /**
1684 * cpuset_excl_nodes_overlap - Do we overlap @p's mem_exclusive ancestors?
1685 * @p: pointer to task_struct of some other task.
1686 *
1687 * Description: Return true if the nearest mem_exclusive ancestor
1688 * cpusets of tasks @p and current overlap. Used by oom killer to
1689 * determine if task @p's memory usage might impact the memory
1690 * available to the current task.
1691 *
1692 * Acquires cpuset_sem - not suitable for calling from a fast path.
1693 **/
1694
1695 int cpuset_excl_nodes_overlap(const struct task_struct *p)
1696 {
1697 const struct cpuset *cs1, *cs2; /* my and p's cpuset ancestors */
1698 int overlap = 0; /* do cpusets overlap? */
1699
1700 down(&cpuset_sem);
1701 cs1 = current->cpuset;
1702 if (!cs1)
1703 goto done; /* current task exiting */
1704 cs2 = p->cpuset;
1705 if (!cs2)
1706 goto done; /* task p is exiting */
1707 cs1 = nearest_exclusive_ancestor(cs1);
1708 cs2 = nearest_exclusive_ancestor(cs2);
1709 overlap = nodes_intersects(cs1->mems_allowed, cs2->mems_allowed);
1710 done:
1711 up(&cpuset_sem);
1712
1713 return overlap;
1714 }
1715
1716 /*
1717 * proc_cpuset_show()
1718 * - Print tasks cpuset path into seq_file.
1719 * - Used for /proc/<pid>/cpuset.
1720 */
1721
1722 static int proc_cpuset_show(struct seq_file *m, void *v)
1723 {
1724 struct cpuset *cs;
1725 struct task_struct *tsk;
1726 char *buf;
1727 int retval = 0;
1728
1729 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1730 if (!buf)
1731 return -ENOMEM;
1732
1733 tsk = m->private;
1734 down(&cpuset_sem);
1735 task_lock(tsk);
1736 cs = tsk->cpuset;
1737 task_unlock(tsk);
1738 if (!cs) {
1739 retval = -EINVAL;
1740 goto out;
1741 }
1742
1743 retval = cpuset_path(cs, buf, PAGE_SIZE);
1744 if (retval < 0)
1745 goto out;
1746 seq_puts(m, buf);
1747 seq_putc(m, '\n');
1748 out:
1749 up(&cpuset_sem);
1750 kfree(buf);
1751 return retval;
1752 }
1753
1754 static int cpuset_open(struct inode *inode, struct file *file)
1755 {
1756 struct task_struct *tsk = PROC_I(inode)->task;
1757 return single_open(file, proc_cpuset_show, tsk);
1758 }
1759
1760 struct file_operations proc_cpuset_operations = {
1761 .open = cpuset_open,
1762 .read = seq_read,
1763 .llseek = seq_lseek,
1764 .release = single_release,
1765 };
1766
1767 /* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
1768 char *cpuset_task_status_allowed(struct task_struct *task, char *buffer)
1769 {
1770 buffer += sprintf(buffer, "Cpus_allowed:\t");
1771 buffer += cpumask_scnprintf(buffer, PAGE_SIZE, task->cpus_allowed);
1772 buffer += sprintf(buffer, "\n");
1773 buffer += sprintf(buffer, "Mems_allowed:\t");
1774 buffer += nodemask_scnprintf(buffer, PAGE_SIZE, task->mems_allowed);
1775 buffer += sprintf(buffer, "\n");
1776 return buffer;
1777 }