tracing: Have preempt(irqs)off trace preempt disabled functions
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / cpu.c
1 /* CPU control.
2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
3 *
4 * This code is licenced under the GPL.
5 */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched.h>
11 #include <linux/unistd.h>
12 #include <linux/cpu.h>
13 #include <linux/oom.h>
14 #include <linux/rcupdate.h>
15 #include <linux/export.h>
16 #include <linux/bug.h>
17 #include <linux/kthread.h>
18 #include <linux/stop_machine.h>
19 #include <linux/mutex.h>
20 #include <linux/gfp.h>
21 #include <linux/suspend.h>
22
23 #include "smpboot.h"
24
25 #ifdef CONFIG_SMP
26 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
27 static DEFINE_MUTEX(cpu_add_remove_lock);
28
29 /*
30 * The following two API's must be used when attempting
31 * to serialize the updates to cpu_online_mask, cpu_present_mask.
32 */
33 void cpu_maps_update_begin(void)
34 {
35 mutex_lock(&cpu_add_remove_lock);
36 }
37
38 void cpu_maps_update_done(void)
39 {
40 mutex_unlock(&cpu_add_remove_lock);
41 }
42
43 static RAW_NOTIFIER_HEAD(cpu_chain);
44
45 /* If set, cpu_up and cpu_down will return -EBUSY and do nothing.
46 * Should always be manipulated under cpu_add_remove_lock
47 */
48 static int cpu_hotplug_disabled;
49
50 #ifdef CONFIG_HOTPLUG_CPU
51
52 static struct {
53 struct task_struct *active_writer;
54 struct mutex lock; /* Synchronizes accesses to refcount, */
55 /*
56 * Also blocks the new readers during
57 * an ongoing cpu hotplug operation.
58 */
59 int refcount;
60 } cpu_hotplug = {
61 .active_writer = NULL,
62 .lock = __MUTEX_INITIALIZER(cpu_hotplug.lock),
63 .refcount = 0,
64 };
65
66 void get_online_cpus(void)
67 {
68 might_sleep();
69 if (cpu_hotplug.active_writer == current)
70 return;
71 mutex_lock(&cpu_hotplug.lock);
72 cpu_hotplug.refcount++;
73 mutex_unlock(&cpu_hotplug.lock);
74
75 }
76 EXPORT_SYMBOL_GPL(get_online_cpus);
77
78 void put_online_cpus(void)
79 {
80 if (cpu_hotplug.active_writer == current)
81 return;
82 mutex_lock(&cpu_hotplug.lock);
83
84 if (WARN_ON(!cpu_hotplug.refcount))
85 cpu_hotplug.refcount++; /* try to fix things up */
86
87 if (!--cpu_hotplug.refcount && unlikely(cpu_hotplug.active_writer))
88 wake_up_process(cpu_hotplug.active_writer);
89 mutex_unlock(&cpu_hotplug.lock);
90
91 }
92 EXPORT_SYMBOL_GPL(put_online_cpus);
93
94 /*
95 * This ensures that the hotplug operation can begin only when the
96 * refcount goes to zero.
97 *
98 * Note that during a cpu-hotplug operation, the new readers, if any,
99 * will be blocked by the cpu_hotplug.lock
100 *
101 * Since cpu_hotplug_begin() is always called after invoking
102 * cpu_maps_update_begin(), we can be sure that only one writer is active.
103 *
104 * Note that theoretically, there is a possibility of a livelock:
105 * - Refcount goes to zero, last reader wakes up the sleeping
106 * writer.
107 * - Last reader unlocks the cpu_hotplug.lock.
108 * - A new reader arrives at this moment, bumps up the refcount.
109 * - The writer acquires the cpu_hotplug.lock finds the refcount
110 * non zero and goes to sleep again.
111 *
112 * However, this is very difficult to achieve in practice since
113 * get_online_cpus() not an api which is called all that often.
114 *
115 */
116 static void cpu_hotplug_begin(void)
117 {
118 cpu_hotplug.active_writer = current;
119
120 for (;;) {
121 mutex_lock(&cpu_hotplug.lock);
122 if (likely(!cpu_hotplug.refcount))
123 break;
124 __set_current_state(TASK_UNINTERRUPTIBLE);
125 mutex_unlock(&cpu_hotplug.lock);
126 schedule();
127 }
128 }
129
130 static void cpu_hotplug_done(void)
131 {
132 cpu_hotplug.active_writer = NULL;
133 mutex_unlock(&cpu_hotplug.lock);
134 }
135
136 /*
137 * Wait for currently running CPU hotplug operations to complete (if any) and
138 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
139 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
140 * hotplug path before performing hotplug operations. So acquiring that lock
141 * guarantees mutual exclusion from any currently running hotplug operations.
142 */
143 void cpu_hotplug_disable(void)
144 {
145 cpu_maps_update_begin();
146 cpu_hotplug_disabled = 1;
147 cpu_maps_update_done();
148 }
149
150 void cpu_hotplug_enable(void)
151 {
152 cpu_maps_update_begin();
153 cpu_hotplug_disabled = 0;
154 cpu_maps_update_done();
155 }
156
157 #else /* #if CONFIG_HOTPLUG_CPU */
158 static void cpu_hotplug_begin(void) {}
159 static void cpu_hotplug_done(void) {}
160 #endif /* #else #if CONFIG_HOTPLUG_CPU */
161
162 /* Need to know about CPUs going up/down? */
163 int __ref register_cpu_notifier(struct notifier_block *nb)
164 {
165 int ret;
166 cpu_maps_update_begin();
167 ret = raw_notifier_chain_register(&cpu_chain, nb);
168 cpu_maps_update_done();
169 return ret;
170 }
171
172 static int __cpu_notify(unsigned long val, void *v, int nr_to_call,
173 int *nr_calls)
174 {
175 int ret;
176
177 ret = __raw_notifier_call_chain(&cpu_chain, val, v, nr_to_call,
178 nr_calls);
179
180 return notifier_to_errno(ret);
181 }
182
183 static int cpu_notify(unsigned long val, void *v)
184 {
185 return __cpu_notify(val, v, -1, NULL);
186 }
187
188 #ifdef CONFIG_HOTPLUG_CPU
189
190 static void cpu_notify_nofail(unsigned long val, void *v)
191 {
192 BUG_ON(cpu_notify(val, v));
193 }
194 EXPORT_SYMBOL(register_cpu_notifier);
195
196 void __ref unregister_cpu_notifier(struct notifier_block *nb)
197 {
198 cpu_maps_update_begin();
199 raw_notifier_chain_unregister(&cpu_chain, nb);
200 cpu_maps_update_done();
201 }
202 EXPORT_SYMBOL(unregister_cpu_notifier);
203
204 /**
205 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
206 * @cpu: a CPU id
207 *
208 * This function walks all processes, finds a valid mm struct for each one and
209 * then clears a corresponding bit in mm's cpumask. While this all sounds
210 * trivial, there are various non-obvious corner cases, which this function
211 * tries to solve in a safe manner.
212 *
213 * Also note that the function uses a somewhat relaxed locking scheme, so it may
214 * be called only for an already offlined CPU.
215 */
216 void clear_tasks_mm_cpumask(int cpu)
217 {
218 struct task_struct *p;
219
220 /*
221 * This function is called after the cpu is taken down and marked
222 * offline, so its not like new tasks will ever get this cpu set in
223 * their mm mask. -- Peter Zijlstra
224 * Thus, we may use rcu_read_lock() here, instead of grabbing
225 * full-fledged tasklist_lock.
226 */
227 WARN_ON(cpu_online(cpu));
228 rcu_read_lock();
229 for_each_process(p) {
230 struct task_struct *t;
231
232 /*
233 * Main thread might exit, but other threads may still have
234 * a valid mm. Find one.
235 */
236 t = find_lock_task_mm(p);
237 if (!t)
238 continue;
239 cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
240 task_unlock(t);
241 }
242 rcu_read_unlock();
243 }
244
245 static inline void check_for_tasks(int cpu)
246 {
247 struct task_struct *p;
248 cputime_t utime, stime;
249
250 write_lock_irq(&tasklist_lock);
251 for_each_process(p) {
252 task_cputime(p, &utime, &stime);
253 if (task_cpu(p) == cpu && p->state == TASK_RUNNING &&
254 (utime || stime))
255 printk(KERN_WARNING "Task %s (pid = %d) is on cpu %d "
256 "(state = %ld, flags = %x)\n",
257 p->comm, task_pid_nr(p), cpu,
258 p->state, p->flags);
259 }
260 write_unlock_irq(&tasklist_lock);
261 }
262
263 struct take_cpu_down_param {
264 unsigned long mod;
265 void *hcpu;
266 };
267
268 /* Take this CPU down. */
269 static int __ref take_cpu_down(void *_param)
270 {
271 struct take_cpu_down_param *param = _param;
272 int err;
273
274 /* Ensure this CPU doesn't handle any more interrupts. */
275 err = __cpu_disable();
276 if (err < 0)
277 return err;
278
279 cpu_notify(CPU_DYING | param->mod, param->hcpu);
280 /* Park the stopper thread */
281 kthread_park(current);
282 return 0;
283 }
284
285 /* Requires cpu_add_remove_lock to be held */
286 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen)
287 {
288 int err, nr_calls = 0;
289 void *hcpu = (void *)(long)cpu;
290 unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0;
291 struct take_cpu_down_param tcd_param = {
292 .mod = mod,
293 .hcpu = hcpu,
294 };
295
296 if (num_online_cpus() == 1)
297 return -EBUSY;
298
299 if (!cpu_online(cpu))
300 return -EINVAL;
301
302 cpu_hotplug_begin();
303
304 err = __cpu_notify(CPU_DOWN_PREPARE | mod, hcpu, -1, &nr_calls);
305 if (err) {
306 nr_calls--;
307 __cpu_notify(CPU_DOWN_FAILED | mod, hcpu, nr_calls, NULL);
308 printk("%s: attempt to take down CPU %u failed\n",
309 __func__, cpu);
310 goto out_release;
311 }
312 smpboot_park_threads(cpu);
313
314 err = __stop_machine(take_cpu_down, &tcd_param, cpumask_of(cpu));
315 if (err) {
316 /* CPU didn't die: tell everyone. Can't complain. */
317 smpboot_unpark_threads(cpu);
318 cpu_notify_nofail(CPU_DOWN_FAILED | mod, hcpu);
319 goto out_release;
320 }
321 BUG_ON(cpu_online(cpu));
322
323 /*
324 * The migration_call() CPU_DYING callback will have removed all
325 * runnable tasks from the cpu, there's only the idle task left now
326 * that the migration thread is done doing the stop_machine thing.
327 *
328 * Wait for the stop thread to go away.
329 */
330 while (!idle_cpu(cpu))
331 cpu_relax();
332
333 /* This actually kills the CPU. */
334 __cpu_die(cpu);
335
336 /* CPU is completely dead: tell everyone. Too late to complain. */
337 cpu_notify_nofail(CPU_DEAD | mod, hcpu);
338
339 check_for_tasks(cpu);
340
341 out_release:
342 cpu_hotplug_done();
343 if (!err)
344 cpu_notify_nofail(CPU_POST_DEAD | mod, hcpu);
345 return err;
346 }
347
348 int __ref cpu_down(unsigned int cpu)
349 {
350 int err;
351
352 cpu_maps_update_begin();
353
354 if (cpu_hotplug_disabled) {
355 err = -EBUSY;
356 goto out;
357 }
358
359 err = _cpu_down(cpu, 0);
360
361 out:
362 cpu_maps_update_done();
363 return err;
364 }
365 EXPORT_SYMBOL(cpu_down);
366 #endif /*CONFIG_HOTPLUG_CPU*/
367
368 /* Requires cpu_add_remove_lock to be held */
369 static int __cpuinit _cpu_up(unsigned int cpu, int tasks_frozen)
370 {
371 int ret, nr_calls = 0;
372 void *hcpu = (void *)(long)cpu;
373 unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0;
374 struct task_struct *idle;
375
376 cpu_hotplug_begin();
377
378 if (cpu_online(cpu) || !cpu_present(cpu)) {
379 ret = -EINVAL;
380 goto out;
381 }
382
383 idle = idle_thread_get(cpu);
384 if (IS_ERR(idle)) {
385 ret = PTR_ERR(idle);
386 goto out;
387 }
388
389 ret = smpboot_create_threads(cpu);
390 if (ret)
391 goto out;
392
393 ret = __cpu_notify(CPU_UP_PREPARE | mod, hcpu, -1, &nr_calls);
394 if (ret) {
395 nr_calls--;
396 printk(KERN_WARNING "%s: attempt to bring up CPU %u failed\n",
397 __func__, cpu);
398 goto out_notify;
399 }
400
401 /* Arch-specific enabling code. */
402 ret = __cpu_up(cpu, idle);
403 if (ret != 0)
404 goto out_notify;
405 BUG_ON(!cpu_online(cpu));
406
407 /* Wake the per cpu threads */
408 smpboot_unpark_threads(cpu);
409
410 /* Now call notifier in preparation. */
411 cpu_notify(CPU_ONLINE | mod, hcpu);
412
413 out_notify:
414 if (ret != 0)
415 __cpu_notify(CPU_UP_CANCELED | mod, hcpu, nr_calls, NULL);
416 out:
417 cpu_hotplug_done();
418
419 return ret;
420 }
421
422 int __cpuinit cpu_up(unsigned int cpu)
423 {
424 int err = 0;
425
426 #ifdef CONFIG_MEMORY_HOTPLUG
427 int nid;
428 pg_data_t *pgdat;
429 #endif
430
431 if (!cpu_possible(cpu)) {
432 printk(KERN_ERR "can't online cpu %d because it is not "
433 "configured as may-hotadd at boot time\n", cpu);
434 #if defined(CONFIG_IA64)
435 printk(KERN_ERR "please check additional_cpus= boot "
436 "parameter\n");
437 #endif
438 return -EINVAL;
439 }
440
441 #ifdef CONFIG_MEMORY_HOTPLUG
442 nid = cpu_to_node(cpu);
443 if (!node_online(nid)) {
444 err = mem_online_node(nid);
445 if (err)
446 return err;
447 }
448
449 pgdat = NODE_DATA(nid);
450 if (!pgdat) {
451 printk(KERN_ERR
452 "Can't online cpu %d due to NULL pgdat\n", cpu);
453 return -ENOMEM;
454 }
455
456 if (pgdat->node_zonelists->_zonerefs->zone == NULL) {
457 mutex_lock(&zonelists_mutex);
458 build_all_zonelists(NULL, NULL);
459 mutex_unlock(&zonelists_mutex);
460 }
461 #endif
462
463 cpu_maps_update_begin();
464
465 if (cpu_hotplug_disabled) {
466 err = -EBUSY;
467 goto out;
468 }
469
470 err = _cpu_up(cpu, 0);
471
472 out:
473 cpu_maps_update_done();
474 return err;
475 }
476 EXPORT_SYMBOL_GPL(cpu_up);
477
478 #ifdef CONFIG_PM_SLEEP_SMP
479 static cpumask_var_t frozen_cpus;
480
481 int disable_nonboot_cpus(void)
482 {
483 int cpu, first_cpu, error = 0;
484
485 cpu_maps_update_begin();
486 first_cpu = cpumask_first(cpu_online_mask);
487 /*
488 * We take down all of the non-boot CPUs in one shot to avoid races
489 * with the userspace trying to use the CPU hotplug at the same time
490 */
491 cpumask_clear(frozen_cpus);
492
493 printk("Disabling non-boot CPUs ...\n");
494 for_each_online_cpu(cpu) {
495 if (cpu == first_cpu)
496 continue;
497 error = _cpu_down(cpu, 1);
498 if (!error)
499 cpumask_set_cpu(cpu, frozen_cpus);
500 else {
501 printk(KERN_ERR "Error taking CPU%d down: %d\n",
502 cpu, error);
503 break;
504 }
505 }
506
507 if (!error) {
508 BUG_ON(num_online_cpus() > 1);
509 /* Make sure the CPUs won't be enabled by someone else */
510 cpu_hotplug_disabled = 1;
511 } else {
512 printk(KERN_ERR "Non-boot CPUs are not disabled\n");
513 }
514 cpu_maps_update_done();
515 return error;
516 }
517
518 void __weak arch_enable_nonboot_cpus_begin(void)
519 {
520 }
521
522 void __weak arch_enable_nonboot_cpus_end(void)
523 {
524 }
525
526 void __ref enable_nonboot_cpus(void)
527 {
528 int cpu, error;
529
530 /* Allow everyone to use the CPU hotplug again */
531 cpu_maps_update_begin();
532 cpu_hotplug_disabled = 0;
533 if (cpumask_empty(frozen_cpus))
534 goto out;
535
536 printk(KERN_INFO "Enabling non-boot CPUs ...\n");
537
538 arch_enable_nonboot_cpus_begin();
539
540 for_each_cpu(cpu, frozen_cpus) {
541 error = _cpu_up(cpu, 1);
542 if (!error) {
543 printk(KERN_INFO "CPU%d is up\n", cpu);
544 continue;
545 }
546 printk(KERN_WARNING "Error taking CPU%d up: %d\n", cpu, error);
547 }
548
549 arch_enable_nonboot_cpus_end();
550
551 cpumask_clear(frozen_cpus);
552 out:
553 cpu_maps_update_done();
554 }
555
556 static int __init alloc_frozen_cpus(void)
557 {
558 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
559 return -ENOMEM;
560 return 0;
561 }
562 core_initcall(alloc_frozen_cpus);
563
564 /*
565 * When callbacks for CPU hotplug notifications are being executed, we must
566 * ensure that the state of the system with respect to the tasks being frozen
567 * or not, as reported by the notification, remains unchanged *throughout the
568 * duration* of the execution of the callbacks.
569 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
570 *
571 * This synchronization is implemented by mutually excluding regular CPU
572 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
573 * Hibernate notifications.
574 */
575 static int
576 cpu_hotplug_pm_callback(struct notifier_block *nb,
577 unsigned long action, void *ptr)
578 {
579 switch (action) {
580
581 case PM_SUSPEND_PREPARE:
582 case PM_HIBERNATION_PREPARE:
583 cpu_hotplug_disable();
584 break;
585
586 case PM_POST_SUSPEND:
587 case PM_POST_HIBERNATION:
588 cpu_hotplug_enable();
589 break;
590
591 default:
592 return NOTIFY_DONE;
593 }
594
595 return NOTIFY_OK;
596 }
597
598
599 static int __init cpu_hotplug_pm_sync_init(void)
600 {
601 /*
602 * cpu_hotplug_pm_callback has higher priority than x86
603 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
604 * to disable cpu hotplug to avoid cpu hotplug race.
605 */
606 pm_notifier(cpu_hotplug_pm_callback, 0);
607 return 0;
608 }
609 core_initcall(cpu_hotplug_pm_sync_init);
610
611 #endif /* CONFIG_PM_SLEEP_SMP */
612
613 /**
614 * notify_cpu_starting(cpu) - call the CPU_STARTING notifiers
615 * @cpu: cpu that just started
616 *
617 * This function calls the cpu_chain notifiers with CPU_STARTING.
618 * It must be called by the arch code on the new cpu, before the new cpu
619 * enables interrupts and before the "boot" cpu returns from __cpu_up().
620 */
621 void __cpuinit notify_cpu_starting(unsigned int cpu)
622 {
623 unsigned long val = CPU_STARTING;
624
625 #ifdef CONFIG_PM_SLEEP_SMP
626 if (frozen_cpus != NULL && cpumask_test_cpu(cpu, frozen_cpus))
627 val = CPU_STARTING_FROZEN;
628 #endif /* CONFIG_PM_SLEEP_SMP */
629 cpu_notify(val, (void *)(long)cpu);
630 }
631
632 #endif /* CONFIG_SMP */
633
634 /*
635 * cpu_bit_bitmap[] is a special, "compressed" data structure that
636 * represents all NR_CPUS bits binary values of 1<<nr.
637 *
638 * It is used by cpumask_of() to get a constant address to a CPU
639 * mask value that has a single bit set only.
640 */
641
642 /* cpu_bit_bitmap[0] is empty - so we can back into it */
643 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
644 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
645 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
646 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
647
648 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
649
650 MASK_DECLARE_8(0), MASK_DECLARE_8(8),
651 MASK_DECLARE_8(16), MASK_DECLARE_8(24),
652 #if BITS_PER_LONG > 32
653 MASK_DECLARE_8(32), MASK_DECLARE_8(40),
654 MASK_DECLARE_8(48), MASK_DECLARE_8(56),
655 #endif
656 };
657 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
658
659 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
660 EXPORT_SYMBOL(cpu_all_bits);
661
662 #ifdef CONFIG_INIT_ALL_POSSIBLE
663 static DECLARE_BITMAP(cpu_possible_bits, CONFIG_NR_CPUS) __read_mostly
664 = CPU_BITS_ALL;
665 #else
666 static DECLARE_BITMAP(cpu_possible_bits, CONFIG_NR_CPUS) __read_mostly;
667 #endif
668 const struct cpumask *const cpu_possible_mask = to_cpumask(cpu_possible_bits);
669 EXPORT_SYMBOL(cpu_possible_mask);
670
671 static DECLARE_BITMAP(cpu_online_bits, CONFIG_NR_CPUS) __read_mostly;
672 const struct cpumask *const cpu_online_mask = to_cpumask(cpu_online_bits);
673 EXPORT_SYMBOL(cpu_online_mask);
674
675 static DECLARE_BITMAP(cpu_present_bits, CONFIG_NR_CPUS) __read_mostly;
676 const struct cpumask *const cpu_present_mask = to_cpumask(cpu_present_bits);
677 EXPORT_SYMBOL(cpu_present_mask);
678
679 static DECLARE_BITMAP(cpu_active_bits, CONFIG_NR_CPUS) __read_mostly;
680 const struct cpumask *const cpu_active_mask = to_cpumask(cpu_active_bits);
681 EXPORT_SYMBOL(cpu_active_mask);
682
683 void set_cpu_possible(unsigned int cpu, bool possible)
684 {
685 if (possible)
686 cpumask_set_cpu(cpu, to_cpumask(cpu_possible_bits));
687 else
688 cpumask_clear_cpu(cpu, to_cpumask(cpu_possible_bits));
689 }
690
691 void set_cpu_present(unsigned int cpu, bool present)
692 {
693 if (present)
694 cpumask_set_cpu(cpu, to_cpumask(cpu_present_bits));
695 else
696 cpumask_clear_cpu(cpu, to_cpumask(cpu_present_bits));
697 }
698
699 void set_cpu_online(unsigned int cpu, bool online)
700 {
701 if (online) {
702 cpumask_set_cpu(cpu, to_cpumask(cpu_online_bits));
703 cpumask_set_cpu(cpu, to_cpumask(cpu_active_bits));
704 } else {
705 cpumask_clear_cpu(cpu, to_cpumask(cpu_online_bits));
706 }
707 }
708
709 void set_cpu_active(unsigned int cpu, bool active)
710 {
711 if (active)
712 cpumask_set_cpu(cpu, to_cpumask(cpu_active_bits));
713 else
714 cpumask_clear_cpu(cpu, to_cpumask(cpu_active_bits));
715 }
716
717 void init_cpu_present(const struct cpumask *src)
718 {
719 cpumask_copy(to_cpumask(cpu_present_bits), src);
720 }
721
722 void init_cpu_possible(const struct cpumask *src)
723 {
724 cpumask_copy(to_cpumask(cpu_possible_bits), src);
725 }
726
727 void init_cpu_online(const struct cpumask *src)
728 {
729 cpumask_copy(to_cpumask(cpu_online_bits), src);
730 }