tracing: Allocate the snapshot buffer before enabling probe
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / cpu.c
1 /* CPU control.
2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
3 *
4 * This code is licenced under the GPL.
5 */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched.h>
11 #include <linux/unistd.h>
12 #include <linux/cpu.h>
13 #include <linux/oom.h>
14 #include <linux/rcupdate.h>
15 #include <linux/export.h>
16 #include <linux/bug.h>
17 #include <linux/kthread.h>
18 #include <linux/stop_machine.h>
19 #include <linux/mutex.h>
20 #include <linux/gfp.h>
21 #include <linux/suspend.h>
22
23 #include "smpboot.h"
24
25 #ifdef CONFIG_SMP
26 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
27 static DEFINE_MUTEX(cpu_add_remove_lock);
28
29 /*
30 * The following two API's must be used when attempting
31 * to serialize the updates to cpu_online_mask, cpu_present_mask.
32 */
33 void cpu_maps_update_begin(void)
34 {
35 mutex_lock(&cpu_add_remove_lock);
36 }
37
38 void cpu_maps_update_done(void)
39 {
40 mutex_unlock(&cpu_add_remove_lock);
41 }
42
43 static RAW_NOTIFIER_HEAD(cpu_chain);
44
45 /* If set, cpu_up and cpu_down will return -EBUSY and do nothing.
46 * Should always be manipulated under cpu_add_remove_lock
47 */
48 static int cpu_hotplug_disabled;
49
50 #ifdef CONFIG_HOTPLUG_CPU
51
52 static struct {
53 struct task_struct *active_writer;
54 struct mutex lock; /* Synchronizes accesses to refcount, */
55 /*
56 * Also blocks the new readers during
57 * an ongoing cpu hotplug operation.
58 */
59 int refcount;
60 } cpu_hotplug = {
61 .active_writer = NULL,
62 .lock = __MUTEX_INITIALIZER(cpu_hotplug.lock),
63 .refcount = 0,
64 };
65
66 void get_online_cpus(void)
67 {
68 might_sleep();
69 if (cpu_hotplug.active_writer == current)
70 return;
71 mutex_lock(&cpu_hotplug.lock);
72 cpu_hotplug.refcount++;
73 mutex_unlock(&cpu_hotplug.lock);
74
75 }
76 EXPORT_SYMBOL_GPL(get_online_cpus);
77
78 void put_online_cpus(void)
79 {
80 if (cpu_hotplug.active_writer == current)
81 return;
82 mutex_lock(&cpu_hotplug.lock);
83
84 if (WARN_ON(!cpu_hotplug.refcount))
85 cpu_hotplug.refcount++; /* try to fix things up */
86
87 if (!--cpu_hotplug.refcount && unlikely(cpu_hotplug.active_writer))
88 wake_up_process(cpu_hotplug.active_writer);
89 mutex_unlock(&cpu_hotplug.lock);
90
91 }
92 EXPORT_SYMBOL_GPL(put_online_cpus);
93
94 /*
95 * This ensures that the hotplug operation can begin only when the
96 * refcount goes to zero.
97 *
98 * Note that during a cpu-hotplug operation, the new readers, if any,
99 * will be blocked by the cpu_hotplug.lock
100 *
101 * Since cpu_hotplug_begin() is always called after invoking
102 * cpu_maps_update_begin(), we can be sure that only one writer is active.
103 *
104 * Note that theoretically, there is a possibility of a livelock:
105 * - Refcount goes to zero, last reader wakes up the sleeping
106 * writer.
107 * - Last reader unlocks the cpu_hotplug.lock.
108 * - A new reader arrives at this moment, bumps up the refcount.
109 * - The writer acquires the cpu_hotplug.lock finds the refcount
110 * non zero and goes to sleep again.
111 *
112 * However, this is very difficult to achieve in practice since
113 * get_online_cpus() not an api which is called all that often.
114 *
115 */
116 static void cpu_hotplug_begin(void)
117 {
118 cpu_hotplug.active_writer = current;
119
120 for (;;) {
121 mutex_lock(&cpu_hotplug.lock);
122 if (likely(!cpu_hotplug.refcount))
123 break;
124 __set_current_state(TASK_UNINTERRUPTIBLE);
125 mutex_unlock(&cpu_hotplug.lock);
126 schedule();
127 }
128 }
129
130 static void cpu_hotplug_done(void)
131 {
132 cpu_hotplug.active_writer = NULL;
133 mutex_unlock(&cpu_hotplug.lock);
134 }
135
136 /*
137 * Wait for currently running CPU hotplug operations to complete (if any) and
138 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
139 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
140 * hotplug path before performing hotplug operations. So acquiring that lock
141 * guarantees mutual exclusion from any currently running hotplug operations.
142 */
143 void cpu_hotplug_disable(void)
144 {
145 cpu_maps_update_begin();
146 cpu_hotplug_disabled = 1;
147 cpu_maps_update_done();
148 }
149
150 void cpu_hotplug_enable(void)
151 {
152 cpu_maps_update_begin();
153 cpu_hotplug_disabled = 0;
154 cpu_maps_update_done();
155 }
156
157 #else /* #if CONFIG_HOTPLUG_CPU */
158 static void cpu_hotplug_begin(void) {}
159 static void cpu_hotplug_done(void) {}
160 #endif /* #else #if CONFIG_HOTPLUG_CPU */
161
162 /* Need to know about CPUs going up/down? */
163 int __ref register_cpu_notifier(struct notifier_block *nb)
164 {
165 int ret;
166 cpu_maps_update_begin();
167 ret = raw_notifier_chain_register(&cpu_chain, nb);
168 cpu_maps_update_done();
169 return ret;
170 }
171
172 static int __cpu_notify(unsigned long val, void *v, int nr_to_call,
173 int *nr_calls)
174 {
175 int ret;
176
177 ret = __raw_notifier_call_chain(&cpu_chain, val, v, nr_to_call,
178 nr_calls);
179
180 return notifier_to_errno(ret);
181 }
182
183 static int cpu_notify(unsigned long val, void *v)
184 {
185 return __cpu_notify(val, v, -1, NULL);
186 }
187
188 static void cpu_notify_nofail(unsigned long val, void *v)
189 {
190 BUG_ON(cpu_notify(val, v));
191 }
192 EXPORT_SYMBOL(register_cpu_notifier);
193
194 void __ref unregister_cpu_notifier(struct notifier_block *nb)
195 {
196 cpu_maps_update_begin();
197 raw_notifier_chain_unregister(&cpu_chain, nb);
198 cpu_maps_update_done();
199 }
200 EXPORT_SYMBOL(unregister_cpu_notifier);
201
202 #ifdef CONFIG_HOTPLUG_CPU
203 /**
204 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
205 * @cpu: a CPU id
206 *
207 * This function walks all processes, finds a valid mm struct for each one and
208 * then clears a corresponding bit in mm's cpumask. While this all sounds
209 * trivial, there are various non-obvious corner cases, which this function
210 * tries to solve in a safe manner.
211 *
212 * Also note that the function uses a somewhat relaxed locking scheme, so it may
213 * be called only for an already offlined CPU.
214 */
215 void clear_tasks_mm_cpumask(int cpu)
216 {
217 struct task_struct *p;
218
219 /*
220 * This function is called after the cpu is taken down and marked
221 * offline, so its not like new tasks will ever get this cpu set in
222 * their mm mask. -- Peter Zijlstra
223 * Thus, we may use rcu_read_lock() here, instead of grabbing
224 * full-fledged tasklist_lock.
225 */
226 WARN_ON(cpu_online(cpu));
227 rcu_read_lock();
228 for_each_process(p) {
229 struct task_struct *t;
230
231 /*
232 * Main thread might exit, but other threads may still have
233 * a valid mm. Find one.
234 */
235 t = find_lock_task_mm(p);
236 if (!t)
237 continue;
238 cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
239 task_unlock(t);
240 }
241 rcu_read_unlock();
242 }
243
244 static inline void check_for_tasks(int cpu)
245 {
246 struct task_struct *p;
247 cputime_t utime, stime;
248
249 write_lock_irq(&tasklist_lock);
250 for_each_process(p) {
251 task_cputime(p, &utime, &stime);
252 if (task_cpu(p) == cpu && p->state == TASK_RUNNING &&
253 (utime || stime))
254 printk(KERN_WARNING "Task %s (pid = %d) is on cpu %d "
255 "(state = %ld, flags = %x)\n",
256 p->comm, task_pid_nr(p), cpu,
257 p->state, p->flags);
258 }
259 write_unlock_irq(&tasklist_lock);
260 }
261
262 struct take_cpu_down_param {
263 unsigned long mod;
264 void *hcpu;
265 };
266
267 /* Take this CPU down. */
268 static int __ref take_cpu_down(void *_param)
269 {
270 struct take_cpu_down_param *param = _param;
271 int err;
272
273 /* Ensure this CPU doesn't handle any more interrupts. */
274 err = __cpu_disable();
275 if (err < 0)
276 return err;
277
278 cpu_notify(CPU_DYING | param->mod, param->hcpu);
279 /* Park the stopper thread */
280 kthread_park(current);
281 return 0;
282 }
283
284 /* Requires cpu_add_remove_lock to be held */
285 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen)
286 {
287 int err, nr_calls = 0;
288 void *hcpu = (void *)(long)cpu;
289 unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0;
290 struct take_cpu_down_param tcd_param = {
291 .mod = mod,
292 .hcpu = hcpu,
293 };
294
295 if (num_online_cpus() == 1)
296 return -EBUSY;
297
298 if (!cpu_online(cpu))
299 return -EINVAL;
300
301 cpu_hotplug_begin();
302
303 err = __cpu_notify(CPU_DOWN_PREPARE | mod, hcpu, -1, &nr_calls);
304 if (err) {
305 nr_calls--;
306 __cpu_notify(CPU_DOWN_FAILED | mod, hcpu, nr_calls, NULL);
307 printk("%s: attempt to take down CPU %u failed\n",
308 __func__, cpu);
309 goto out_release;
310 }
311 smpboot_park_threads(cpu);
312
313 err = __stop_machine(take_cpu_down, &tcd_param, cpumask_of(cpu));
314 if (err) {
315 /* CPU didn't die: tell everyone. Can't complain. */
316 smpboot_unpark_threads(cpu);
317 cpu_notify_nofail(CPU_DOWN_FAILED | mod, hcpu);
318 goto out_release;
319 }
320 BUG_ON(cpu_online(cpu));
321
322 /*
323 * The migration_call() CPU_DYING callback will have removed all
324 * runnable tasks from the cpu, there's only the idle task left now
325 * that the migration thread is done doing the stop_machine thing.
326 *
327 * Wait for the stop thread to go away.
328 */
329 while (!idle_cpu(cpu))
330 cpu_relax();
331
332 /* This actually kills the CPU. */
333 __cpu_die(cpu);
334
335 /* CPU is completely dead: tell everyone. Too late to complain. */
336 cpu_notify_nofail(CPU_DEAD | mod, hcpu);
337
338 check_for_tasks(cpu);
339
340 out_release:
341 cpu_hotplug_done();
342 if (!err)
343 cpu_notify_nofail(CPU_POST_DEAD | mod, hcpu);
344 return err;
345 }
346
347 int __ref cpu_down(unsigned int cpu)
348 {
349 int err;
350
351 cpu_maps_update_begin();
352
353 if (cpu_hotplug_disabled) {
354 err = -EBUSY;
355 goto out;
356 }
357
358 err = _cpu_down(cpu, 0);
359
360 out:
361 cpu_maps_update_done();
362 return err;
363 }
364 EXPORT_SYMBOL(cpu_down);
365 #endif /*CONFIG_HOTPLUG_CPU*/
366
367 /* Requires cpu_add_remove_lock to be held */
368 static int __cpuinit _cpu_up(unsigned int cpu, int tasks_frozen)
369 {
370 int ret, nr_calls = 0;
371 void *hcpu = (void *)(long)cpu;
372 unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0;
373 struct task_struct *idle;
374
375 cpu_hotplug_begin();
376
377 if (cpu_online(cpu) || !cpu_present(cpu)) {
378 ret = -EINVAL;
379 goto out;
380 }
381
382 idle = idle_thread_get(cpu);
383 if (IS_ERR(idle)) {
384 ret = PTR_ERR(idle);
385 goto out;
386 }
387
388 ret = smpboot_create_threads(cpu);
389 if (ret)
390 goto out;
391
392 ret = __cpu_notify(CPU_UP_PREPARE | mod, hcpu, -1, &nr_calls);
393 if (ret) {
394 nr_calls--;
395 printk(KERN_WARNING "%s: attempt to bring up CPU %u failed\n",
396 __func__, cpu);
397 goto out_notify;
398 }
399
400 /* Arch-specific enabling code. */
401 ret = __cpu_up(cpu, idle);
402 if (ret != 0)
403 goto out_notify;
404 BUG_ON(!cpu_online(cpu));
405
406 /* Wake the per cpu threads */
407 smpboot_unpark_threads(cpu);
408
409 /* Now call notifier in preparation. */
410 cpu_notify(CPU_ONLINE | mod, hcpu);
411
412 out_notify:
413 if (ret != 0)
414 __cpu_notify(CPU_UP_CANCELED | mod, hcpu, nr_calls, NULL);
415 out:
416 cpu_hotplug_done();
417
418 return ret;
419 }
420
421 int __cpuinit cpu_up(unsigned int cpu)
422 {
423 int err = 0;
424
425 #ifdef CONFIG_MEMORY_HOTPLUG
426 int nid;
427 pg_data_t *pgdat;
428 #endif
429
430 if (!cpu_possible(cpu)) {
431 printk(KERN_ERR "can't online cpu %d because it is not "
432 "configured as may-hotadd at boot time\n", cpu);
433 #if defined(CONFIG_IA64)
434 printk(KERN_ERR "please check additional_cpus= boot "
435 "parameter\n");
436 #endif
437 return -EINVAL;
438 }
439
440 #ifdef CONFIG_MEMORY_HOTPLUG
441 nid = cpu_to_node(cpu);
442 if (!node_online(nid)) {
443 err = mem_online_node(nid);
444 if (err)
445 return err;
446 }
447
448 pgdat = NODE_DATA(nid);
449 if (!pgdat) {
450 printk(KERN_ERR
451 "Can't online cpu %d due to NULL pgdat\n", cpu);
452 return -ENOMEM;
453 }
454
455 if (pgdat->node_zonelists->_zonerefs->zone == NULL) {
456 mutex_lock(&zonelists_mutex);
457 build_all_zonelists(NULL, NULL);
458 mutex_unlock(&zonelists_mutex);
459 }
460 #endif
461
462 cpu_maps_update_begin();
463
464 if (cpu_hotplug_disabled) {
465 err = -EBUSY;
466 goto out;
467 }
468
469 err = _cpu_up(cpu, 0);
470
471 out:
472 cpu_maps_update_done();
473 return err;
474 }
475 EXPORT_SYMBOL_GPL(cpu_up);
476
477 #ifdef CONFIG_PM_SLEEP_SMP
478 static cpumask_var_t frozen_cpus;
479
480 int disable_nonboot_cpus(void)
481 {
482 int cpu, first_cpu, error = 0;
483
484 cpu_maps_update_begin();
485 first_cpu = cpumask_first(cpu_online_mask);
486 /*
487 * We take down all of the non-boot CPUs in one shot to avoid races
488 * with the userspace trying to use the CPU hotplug at the same time
489 */
490 cpumask_clear(frozen_cpus);
491
492 printk("Disabling non-boot CPUs ...\n");
493 for_each_online_cpu(cpu) {
494 if (cpu == first_cpu)
495 continue;
496 error = _cpu_down(cpu, 1);
497 if (!error)
498 cpumask_set_cpu(cpu, frozen_cpus);
499 else {
500 printk(KERN_ERR "Error taking CPU%d down: %d\n",
501 cpu, error);
502 break;
503 }
504 }
505
506 if (!error) {
507 BUG_ON(num_online_cpus() > 1);
508 /* Make sure the CPUs won't be enabled by someone else */
509 cpu_hotplug_disabled = 1;
510 } else {
511 printk(KERN_ERR "Non-boot CPUs are not disabled\n");
512 }
513 cpu_maps_update_done();
514 return error;
515 }
516
517 void __weak arch_enable_nonboot_cpus_begin(void)
518 {
519 }
520
521 void __weak arch_enable_nonboot_cpus_end(void)
522 {
523 }
524
525 void __ref enable_nonboot_cpus(void)
526 {
527 int cpu, error;
528
529 /* Allow everyone to use the CPU hotplug again */
530 cpu_maps_update_begin();
531 cpu_hotplug_disabled = 0;
532 if (cpumask_empty(frozen_cpus))
533 goto out;
534
535 printk(KERN_INFO "Enabling non-boot CPUs ...\n");
536
537 arch_enable_nonboot_cpus_begin();
538
539 for_each_cpu(cpu, frozen_cpus) {
540 error = _cpu_up(cpu, 1);
541 if (!error) {
542 printk(KERN_INFO "CPU%d is up\n", cpu);
543 continue;
544 }
545 printk(KERN_WARNING "Error taking CPU%d up: %d\n", cpu, error);
546 }
547
548 arch_enable_nonboot_cpus_end();
549
550 cpumask_clear(frozen_cpus);
551 out:
552 cpu_maps_update_done();
553 }
554
555 static int __init alloc_frozen_cpus(void)
556 {
557 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
558 return -ENOMEM;
559 return 0;
560 }
561 core_initcall(alloc_frozen_cpus);
562
563 /*
564 * When callbacks for CPU hotplug notifications are being executed, we must
565 * ensure that the state of the system with respect to the tasks being frozen
566 * or not, as reported by the notification, remains unchanged *throughout the
567 * duration* of the execution of the callbacks.
568 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
569 *
570 * This synchronization is implemented by mutually excluding regular CPU
571 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
572 * Hibernate notifications.
573 */
574 static int
575 cpu_hotplug_pm_callback(struct notifier_block *nb,
576 unsigned long action, void *ptr)
577 {
578 switch (action) {
579
580 case PM_SUSPEND_PREPARE:
581 case PM_HIBERNATION_PREPARE:
582 cpu_hotplug_disable();
583 break;
584
585 case PM_POST_SUSPEND:
586 case PM_POST_HIBERNATION:
587 cpu_hotplug_enable();
588 break;
589
590 default:
591 return NOTIFY_DONE;
592 }
593
594 return NOTIFY_OK;
595 }
596
597
598 static int __init cpu_hotplug_pm_sync_init(void)
599 {
600 /*
601 * cpu_hotplug_pm_callback has higher priority than x86
602 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
603 * to disable cpu hotplug to avoid cpu hotplug race.
604 */
605 pm_notifier(cpu_hotplug_pm_callback, 0);
606 return 0;
607 }
608 core_initcall(cpu_hotplug_pm_sync_init);
609
610 #endif /* CONFIG_PM_SLEEP_SMP */
611
612 /**
613 * notify_cpu_starting(cpu) - call the CPU_STARTING notifiers
614 * @cpu: cpu that just started
615 *
616 * This function calls the cpu_chain notifiers with CPU_STARTING.
617 * It must be called by the arch code on the new cpu, before the new cpu
618 * enables interrupts and before the "boot" cpu returns from __cpu_up().
619 */
620 void __cpuinit notify_cpu_starting(unsigned int cpu)
621 {
622 unsigned long val = CPU_STARTING;
623
624 #ifdef CONFIG_PM_SLEEP_SMP
625 if (frozen_cpus != NULL && cpumask_test_cpu(cpu, frozen_cpus))
626 val = CPU_STARTING_FROZEN;
627 #endif /* CONFIG_PM_SLEEP_SMP */
628 cpu_notify(val, (void *)(long)cpu);
629 }
630
631 #endif /* CONFIG_SMP */
632
633 /*
634 * cpu_bit_bitmap[] is a special, "compressed" data structure that
635 * represents all NR_CPUS bits binary values of 1<<nr.
636 *
637 * It is used by cpumask_of() to get a constant address to a CPU
638 * mask value that has a single bit set only.
639 */
640
641 /* cpu_bit_bitmap[0] is empty - so we can back into it */
642 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
643 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
644 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
645 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
646
647 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
648
649 MASK_DECLARE_8(0), MASK_DECLARE_8(8),
650 MASK_DECLARE_8(16), MASK_DECLARE_8(24),
651 #if BITS_PER_LONG > 32
652 MASK_DECLARE_8(32), MASK_DECLARE_8(40),
653 MASK_DECLARE_8(48), MASK_DECLARE_8(56),
654 #endif
655 };
656 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
657
658 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
659 EXPORT_SYMBOL(cpu_all_bits);
660
661 #ifdef CONFIG_INIT_ALL_POSSIBLE
662 static DECLARE_BITMAP(cpu_possible_bits, CONFIG_NR_CPUS) __read_mostly
663 = CPU_BITS_ALL;
664 #else
665 static DECLARE_BITMAP(cpu_possible_bits, CONFIG_NR_CPUS) __read_mostly;
666 #endif
667 const struct cpumask *const cpu_possible_mask = to_cpumask(cpu_possible_bits);
668 EXPORT_SYMBOL(cpu_possible_mask);
669
670 static DECLARE_BITMAP(cpu_online_bits, CONFIG_NR_CPUS) __read_mostly;
671 const struct cpumask *const cpu_online_mask = to_cpumask(cpu_online_bits);
672 EXPORT_SYMBOL(cpu_online_mask);
673
674 static DECLARE_BITMAP(cpu_present_bits, CONFIG_NR_CPUS) __read_mostly;
675 const struct cpumask *const cpu_present_mask = to_cpumask(cpu_present_bits);
676 EXPORT_SYMBOL(cpu_present_mask);
677
678 static DECLARE_BITMAP(cpu_active_bits, CONFIG_NR_CPUS) __read_mostly;
679 const struct cpumask *const cpu_active_mask = to_cpumask(cpu_active_bits);
680 EXPORT_SYMBOL(cpu_active_mask);
681
682 void set_cpu_possible(unsigned int cpu, bool possible)
683 {
684 if (possible)
685 cpumask_set_cpu(cpu, to_cpumask(cpu_possible_bits));
686 else
687 cpumask_clear_cpu(cpu, to_cpumask(cpu_possible_bits));
688 }
689
690 void set_cpu_present(unsigned int cpu, bool present)
691 {
692 if (present)
693 cpumask_set_cpu(cpu, to_cpumask(cpu_present_bits));
694 else
695 cpumask_clear_cpu(cpu, to_cpumask(cpu_present_bits));
696 }
697
698 void set_cpu_online(unsigned int cpu, bool online)
699 {
700 if (online) {
701 cpumask_set_cpu(cpu, to_cpumask(cpu_online_bits));
702 cpumask_set_cpu(cpu, to_cpumask(cpu_active_bits));
703 } else {
704 cpumask_clear_cpu(cpu, to_cpumask(cpu_online_bits));
705 }
706 }
707
708 void set_cpu_active(unsigned int cpu, bool active)
709 {
710 if (active)
711 cpumask_set_cpu(cpu, to_cpumask(cpu_active_bits));
712 else
713 cpumask_clear_cpu(cpu, to_cpumask(cpu_active_bits));
714 }
715
716 void init_cpu_present(const struct cpumask *src)
717 {
718 cpumask_copy(to_cpumask(cpu_present_bits), src);
719 }
720
721 void init_cpu_possible(const struct cpumask *src)
722 {
723 cpumask_copy(to_cpumask(cpu_possible_bits), src);
724 }
725
726 void init_cpu_online(const struct cpumask *src)
727 {
728 cpumask_copy(to_cpumask(cpu_online_bits), src);
729 }