Merge branch 'perf/urgent' into perf/core
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / cgroup.c
1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #include <linux/cgroup.h>
30 #include <linux/ctype.h>
31 #include <linux/errno.h>
32 #include <linux/fs.h>
33 #include <linux/kernel.h>
34 #include <linux/list.h>
35 #include <linux/mm.h>
36 #include <linux/mutex.h>
37 #include <linux/mount.h>
38 #include <linux/pagemap.h>
39 #include <linux/proc_fs.h>
40 #include <linux/rcupdate.h>
41 #include <linux/sched.h>
42 #include <linux/backing-dev.h>
43 #include <linux/seq_file.h>
44 #include <linux/slab.h>
45 #include <linux/magic.h>
46 #include <linux/spinlock.h>
47 #include <linux/string.h>
48 #include <linux/sort.h>
49 #include <linux/kmod.h>
50 #include <linux/module.h>
51 #include <linux/delayacct.h>
52 #include <linux/cgroupstats.h>
53 #include <linux/hash.h>
54 #include <linux/namei.h>
55 #include <linux/pid_namespace.h>
56 #include <linux/idr.h>
57 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
58 #include <linux/eventfd.h>
59 #include <linux/poll.h>
60
61 #include <asm/atomic.h>
62
63 static DEFINE_MUTEX(cgroup_mutex);
64
65 /*
66 * Generate an array of cgroup subsystem pointers. At boot time, this is
67 * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are
68 * registered after that. The mutable section of this array is protected by
69 * cgroup_mutex.
70 */
71 #define SUBSYS(_x) &_x ## _subsys,
72 static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
73 #include <linux/cgroup_subsys.h>
74 };
75
76 #define MAX_CGROUP_ROOT_NAMELEN 64
77
78 /*
79 * A cgroupfs_root represents the root of a cgroup hierarchy,
80 * and may be associated with a superblock to form an active
81 * hierarchy
82 */
83 struct cgroupfs_root {
84 struct super_block *sb;
85
86 /*
87 * The bitmask of subsystems intended to be attached to this
88 * hierarchy
89 */
90 unsigned long subsys_bits;
91
92 /* Unique id for this hierarchy. */
93 int hierarchy_id;
94
95 /* The bitmask of subsystems currently attached to this hierarchy */
96 unsigned long actual_subsys_bits;
97
98 /* A list running through the attached subsystems */
99 struct list_head subsys_list;
100
101 /* The root cgroup for this hierarchy */
102 struct cgroup top_cgroup;
103
104 /* Tracks how many cgroups are currently defined in hierarchy.*/
105 int number_of_cgroups;
106
107 /* A list running through the active hierarchies */
108 struct list_head root_list;
109
110 /* Hierarchy-specific flags */
111 unsigned long flags;
112
113 /* The path to use for release notifications. */
114 char release_agent_path[PATH_MAX];
115
116 /* The name for this hierarchy - may be empty */
117 char name[MAX_CGROUP_ROOT_NAMELEN];
118 };
119
120 /*
121 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
122 * subsystems that are otherwise unattached - it never has more than a
123 * single cgroup, and all tasks are part of that cgroup.
124 */
125 static struct cgroupfs_root rootnode;
126
127 /*
128 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
129 * cgroup_subsys->use_id != 0.
130 */
131 #define CSS_ID_MAX (65535)
132 struct css_id {
133 /*
134 * The css to which this ID points. This pointer is set to valid value
135 * after cgroup is populated. If cgroup is removed, this will be NULL.
136 * This pointer is expected to be RCU-safe because destroy()
137 * is called after synchronize_rcu(). But for safe use, css_is_removed()
138 * css_tryget() should be used for avoiding race.
139 */
140 struct cgroup_subsys_state __rcu *css;
141 /*
142 * ID of this css.
143 */
144 unsigned short id;
145 /*
146 * Depth in hierarchy which this ID belongs to.
147 */
148 unsigned short depth;
149 /*
150 * ID is freed by RCU. (and lookup routine is RCU safe.)
151 */
152 struct rcu_head rcu_head;
153 /*
154 * Hierarchy of CSS ID belongs to.
155 */
156 unsigned short stack[0]; /* Array of Length (depth+1) */
157 };
158
159 /*
160 * cgroup_event represents events which userspace want to recieve.
161 */
162 struct cgroup_event {
163 /*
164 * Cgroup which the event belongs to.
165 */
166 struct cgroup *cgrp;
167 /*
168 * Control file which the event associated.
169 */
170 struct cftype *cft;
171 /*
172 * eventfd to signal userspace about the event.
173 */
174 struct eventfd_ctx *eventfd;
175 /*
176 * Each of these stored in a list by the cgroup.
177 */
178 struct list_head list;
179 /*
180 * All fields below needed to unregister event when
181 * userspace closes eventfd.
182 */
183 poll_table pt;
184 wait_queue_head_t *wqh;
185 wait_queue_t wait;
186 struct work_struct remove;
187 };
188
189 /* The list of hierarchy roots */
190
191 static LIST_HEAD(roots);
192 static int root_count;
193
194 static DEFINE_IDA(hierarchy_ida);
195 static int next_hierarchy_id;
196 static DEFINE_SPINLOCK(hierarchy_id_lock);
197
198 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
199 #define dummytop (&rootnode.top_cgroup)
200
201 /* This flag indicates whether tasks in the fork and exit paths should
202 * check for fork/exit handlers to call. This avoids us having to do
203 * extra work in the fork/exit path if none of the subsystems need to
204 * be called.
205 */
206 static int need_forkexit_callback __read_mostly;
207
208 #ifdef CONFIG_PROVE_LOCKING
209 int cgroup_lock_is_held(void)
210 {
211 return lockdep_is_held(&cgroup_mutex);
212 }
213 #else /* #ifdef CONFIG_PROVE_LOCKING */
214 int cgroup_lock_is_held(void)
215 {
216 return mutex_is_locked(&cgroup_mutex);
217 }
218 #endif /* #else #ifdef CONFIG_PROVE_LOCKING */
219
220 EXPORT_SYMBOL_GPL(cgroup_lock_is_held);
221
222 /* convenient tests for these bits */
223 inline int cgroup_is_removed(const struct cgroup *cgrp)
224 {
225 return test_bit(CGRP_REMOVED, &cgrp->flags);
226 }
227
228 /* bits in struct cgroupfs_root flags field */
229 enum {
230 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
231 };
232
233 static int cgroup_is_releasable(const struct cgroup *cgrp)
234 {
235 const int bits =
236 (1 << CGRP_RELEASABLE) |
237 (1 << CGRP_NOTIFY_ON_RELEASE);
238 return (cgrp->flags & bits) == bits;
239 }
240
241 static int notify_on_release(const struct cgroup *cgrp)
242 {
243 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
244 }
245
246 static int clone_children(const struct cgroup *cgrp)
247 {
248 return test_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
249 }
250
251 /*
252 * for_each_subsys() allows you to iterate on each subsystem attached to
253 * an active hierarchy
254 */
255 #define for_each_subsys(_root, _ss) \
256 list_for_each_entry(_ss, &_root->subsys_list, sibling)
257
258 /* for_each_active_root() allows you to iterate across the active hierarchies */
259 #define for_each_active_root(_root) \
260 list_for_each_entry(_root, &roots, root_list)
261
262 /* the list of cgroups eligible for automatic release. Protected by
263 * release_list_lock */
264 static LIST_HEAD(release_list);
265 static DEFINE_SPINLOCK(release_list_lock);
266 static void cgroup_release_agent(struct work_struct *work);
267 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
268 static void check_for_release(struct cgroup *cgrp);
269
270 /* Link structure for associating css_set objects with cgroups */
271 struct cg_cgroup_link {
272 /*
273 * List running through cg_cgroup_links associated with a
274 * cgroup, anchored on cgroup->css_sets
275 */
276 struct list_head cgrp_link_list;
277 struct cgroup *cgrp;
278 /*
279 * List running through cg_cgroup_links pointing at a
280 * single css_set object, anchored on css_set->cg_links
281 */
282 struct list_head cg_link_list;
283 struct css_set *cg;
284 };
285
286 /* The default css_set - used by init and its children prior to any
287 * hierarchies being mounted. It contains a pointer to the root state
288 * for each subsystem. Also used to anchor the list of css_sets. Not
289 * reference-counted, to improve performance when child cgroups
290 * haven't been created.
291 */
292
293 static struct css_set init_css_set;
294 static struct cg_cgroup_link init_css_set_link;
295
296 static int cgroup_init_idr(struct cgroup_subsys *ss,
297 struct cgroup_subsys_state *css);
298
299 /* css_set_lock protects the list of css_set objects, and the
300 * chain of tasks off each css_set. Nests outside task->alloc_lock
301 * due to cgroup_iter_start() */
302 static DEFINE_RWLOCK(css_set_lock);
303 static int css_set_count;
304
305 /*
306 * hash table for cgroup groups. This improves the performance to find
307 * an existing css_set. This hash doesn't (currently) take into
308 * account cgroups in empty hierarchies.
309 */
310 #define CSS_SET_HASH_BITS 7
311 #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
312 static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
313
314 static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
315 {
316 int i;
317 int index;
318 unsigned long tmp = 0UL;
319
320 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
321 tmp += (unsigned long)css[i];
322 tmp = (tmp >> 16) ^ tmp;
323
324 index = hash_long(tmp, CSS_SET_HASH_BITS);
325
326 return &css_set_table[index];
327 }
328
329 static void free_css_set_rcu(struct rcu_head *obj)
330 {
331 struct css_set *cg = container_of(obj, struct css_set, rcu_head);
332 kfree(cg);
333 }
334
335 /* We don't maintain the lists running through each css_set to its
336 * task until after the first call to cgroup_iter_start(). This
337 * reduces the fork()/exit() overhead for people who have cgroups
338 * compiled into their kernel but not actually in use */
339 static int use_task_css_set_links __read_mostly;
340
341 static void __put_css_set(struct css_set *cg, int taskexit)
342 {
343 struct cg_cgroup_link *link;
344 struct cg_cgroup_link *saved_link;
345 /*
346 * Ensure that the refcount doesn't hit zero while any readers
347 * can see it. Similar to atomic_dec_and_lock(), but for an
348 * rwlock
349 */
350 if (atomic_add_unless(&cg->refcount, -1, 1))
351 return;
352 write_lock(&css_set_lock);
353 if (!atomic_dec_and_test(&cg->refcount)) {
354 write_unlock(&css_set_lock);
355 return;
356 }
357
358 /* This css_set is dead. unlink it and release cgroup refcounts */
359 hlist_del(&cg->hlist);
360 css_set_count--;
361
362 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
363 cg_link_list) {
364 struct cgroup *cgrp = link->cgrp;
365 list_del(&link->cg_link_list);
366 list_del(&link->cgrp_link_list);
367 if (atomic_dec_and_test(&cgrp->count) &&
368 notify_on_release(cgrp)) {
369 if (taskexit)
370 set_bit(CGRP_RELEASABLE, &cgrp->flags);
371 check_for_release(cgrp);
372 }
373
374 kfree(link);
375 }
376
377 write_unlock(&css_set_lock);
378 call_rcu(&cg->rcu_head, free_css_set_rcu);
379 }
380
381 /*
382 * refcounted get/put for css_set objects
383 */
384 static inline void get_css_set(struct css_set *cg)
385 {
386 atomic_inc(&cg->refcount);
387 }
388
389 static inline void put_css_set(struct css_set *cg)
390 {
391 __put_css_set(cg, 0);
392 }
393
394 static inline void put_css_set_taskexit(struct css_set *cg)
395 {
396 __put_css_set(cg, 1);
397 }
398
399 /*
400 * compare_css_sets - helper function for find_existing_css_set().
401 * @cg: candidate css_set being tested
402 * @old_cg: existing css_set for a task
403 * @new_cgrp: cgroup that's being entered by the task
404 * @template: desired set of css pointers in css_set (pre-calculated)
405 *
406 * Returns true if "cg" matches "old_cg" except for the hierarchy
407 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
408 */
409 static bool compare_css_sets(struct css_set *cg,
410 struct css_set *old_cg,
411 struct cgroup *new_cgrp,
412 struct cgroup_subsys_state *template[])
413 {
414 struct list_head *l1, *l2;
415
416 if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
417 /* Not all subsystems matched */
418 return false;
419 }
420
421 /*
422 * Compare cgroup pointers in order to distinguish between
423 * different cgroups in heirarchies with no subsystems. We
424 * could get by with just this check alone (and skip the
425 * memcmp above) but on most setups the memcmp check will
426 * avoid the need for this more expensive check on almost all
427 * candidates.
428 */
429
430 l1 = &cg->cg_links;
431 l2 = &old_cg->cg_links;
432 while (1) {
433 struct cg_cgroup_link *cgl1, *cgl2;
434 struct cgroup *cg1, *cg2;
435
436 l1 = l1->next;
437 l2 = l2->next;
438 /* See if we reached the end - both lists are equal length. */
439 if (l1 == &cg->cg_links) {
440 BUG_ON(l2 != &old_cg->cg_links);
441 break;
442 } else {
443 BUG_ON(l2 == &old_cg->cg_links);
444 }
445 /* Locate the cgroups associated with these links. */
446 cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
447 cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
448 cg1 = cgl1->cgrp;
449 cg2 = cgl2->cgrp;
450 /* Hierarchies should be linked in the same order. */
451 BUG_ON(cg1->root != cg2->root);
452
453 /*
454 * If this hierarchy is the hierarchy of the cgroup
455 * that's changing, then we need to check that this
456 * css_set points to the new cgroup; if it's any other
457 * hierarchy, then this css_set should point to the
458 * same cgroup as the old css_set.
459 */
460 if (cg1->root == new_cgrp->root) {
461 if (cg1 != new_cgrp)
462 return false;
463 } else {
464 if (cg1 != cg2)
465 return false;
466 }
467 }
468 return true;
469 }
470
471 /*
472 * find_existing_css_set() is a helper for
473 * find_css_set(), and checks to see whether an existing
474 * css_set is suitable.
475 *
476 * oldcg: the cgroup group that we're using before the cgroup
477 * transition
478 *
479 * cgrp: the cgroup that we're moving into
480 *
481 * template: location in which to build the desired set of subsystem
482 * state objects for the new cgroup group
483 */
484 static struct css_set *find_existing_css_set(
485 struct css_set *oldcg,
486 struct cgroup *cgrp,
487 struct cgroup_subsys_state *template[])
488 {
489 int i;
490 struct cgroupfs_root *root = cgrp->root;
491 struct hlist_head *hhead;
492 struct hlist_node *node;
493 struct css_set *cg;
494
495 /*
496 * Build the set of subsystem state objects that we want to see in the
497 * new css_set. while subsystems can change globally, the entries here
498 * won't change, so no need for locking.
499 */
500 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
501 if (root->subsys_bits & (1UL << i)) {
502 /* Subsystem is in this hierarchy. So we want
503 * the subsystem state from the new
504 * cgroup */
505 template[i] = cgrp->subsys[i];
506 } else {
507 /* Subsystem is not in this hierarchy, so we
508 * don't want to change the subsystem state */
509 template[i] = oldcg->subsys[i];
510 }
511 }
512
513 hhead = css_set_hash(template);
514 hlist_for_each_entry(cg, node, hhead, hlist) {
515 if (!compare_css_sets(cg, oldcg, cgrp, template))
516 continue;
517
518 /* This css_set matches what we need */
519 return cg;
520 }
521
522 /* No existing cgroup group matched */
523 return NULL;
524 }
525
526 static void free_cg_links(struct list_head *tmp)
527 {
528 struct cg_cgroup_link *link;
529 struct cg_cgroup_link *saved_link;
530
531 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
532 list_del(&link->cgrp_link_list);
533 kfree(link);
534 }
535 }
536
537 /*
538 * allocate_cg_links() allocates "count" cg_cgroup_link structures
539 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
540 * success or a negative error
541 */
542 static int allocate_cg_links(int count, struct list_head *tmp)
543 {
544 struct cg_cgroup_link *link;
545 int i;
546 INIT_LIST_HEAD(tmp);
547 for (i = 0; i < count; i++) {
548 link = kmalloc(sizeof(*link), GFP_KERNEL);
549 if (!link) {
550 free_cg_links(tmp);
551 return -ENOMEM;
552 }
553 list_add(&link->cgrp_link_list, tmp);
554 }
555 return 0;
556 }
557
558 /**
559 * link_css_set - a helper function to link a css_set to a cgroup
560 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
561 * @cg: the css_set to be linked
562 * @cgrp: the destination cgroup
563 */
564 static void link_css_set(struct list_head *tmp_cg_links,
565 struct css_set *cg, struct cgroup *cgrp)
566 {
567 struct cg_cgroup_link *link;
568
569 BUG_ON(list_empty(tmp_cg_links));
570 link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
571 cgrp_link_list);
572 link->cg = cg;
573 link->cgrp = cgrp;
574 atomic_inc(&cgrp->count);
575 list_move(&link->cgrp_link_list, &cgrp->css_sets);
576 /*
577 * Always add links to the tail of the list so that the list
578 * is sorted by order of hierarchy creation
579 */
580 list_add_tail(&link->cg_link_list, &cg->cg_links);
581 }
582
583 /*
584 * find_css_set() takes an existing cgroup group and a
585 * cgroup object, and returns a css_set object that's
586 * equivalent to the old group, but with the given cgroup
587 * substituted into the appropriate hierarchy. Must be called with
588 * cgroup_mutex held
589 */
590 static struct css_set *find_css_set(
591 struct css_set *oldcg, struct cgroup *cgrp)
592 {
593 struct css_set *res;
594 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
595
596 struct list_head tmp_cg_links;
597
598 struct hlist_head *hhead;
599 struct cg_cgroup_link *link;
600
601 /* First see if we already have a cgroup group that matches
602 * the desired set */
603 read_lock(&css_set_lock);
604 res = find_existing_css_set(oldcg, cgrp, template);
605 if (res)
606 get_css_set(res);
607 read_unlock(&css_set_lock);
608
609 if (res)
610 return res;
611
612 res = kmalloc(sizeof(*res), GFP_KERNEL);
613 if (!res)
614 return NULL;
615
616 /* Allocate all the cg_cgroup_link objects that we'll need */
617 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
618 kfree(res);
619 return NULL;
620 }
621
622 atomic_set(&res->refcount, 1);
623 INIT_LIST_HEAD(&res->cg_links);
624 INIT_LIST_HEAD(&res->tasks);
625 INIT_HLIST_NODE(&res->hlist);
626
627 /* Copy the set of subsystem state objects generated in
628 * find_existing_css_set() */
629 memcpy(res->subsys, template, sizeof(res->subsys));
630
631 write_lock(&css_set_lock);
632 /* Add reference counts and links from the new css_set. */
633 list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
634 struct cgroup *c = link->cgrp;
635 if (c->root == cgrp->root)
636 c = cgrp;
637 link_css_set(&tmp_cg_links, res, c);
638 }
639
640 BUG_ON(!list_empty(&tmp_cg_links));
641
642 css_set_count++;
643
644 /* Add this cgroup group to the hash table */
645 hhead = css_set_hash(res->subsys);
646 hlist_add_head(&res->hlist, hhead);
647
648 write_unlock(&css_set_lock);
649
650 return res;
651 }
652
653 /*
654 * Return the cgroup for "task" from the given hierarchy. Must be
655 * called with cgroup_mutex held.
656 */
657 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
658 struct cgroupfs_root *root)
659 {
660 struct css_set *css;
661 struct cgroup *res = NULL;
662
663 BUG_ON(!mutex_is_locked(&cgroup_mutex));
664 read_lock(&css_set_lock);
665 /*
666 * No need to lock the task - since we hold cgroup_mutex the
667 * task can't change groups, so the only thing that can happen
668 * is that it exits and its css is set back to init_css_set.
669 */
670 css = task->cgroups;
671 if (css == &init_css_set) {
672 res = &root->top_cgroup;
673 } else {
674 struct cg_cgroup_link *link;
675 list_for_each_entry(link, &css->cg_links, cg_link_list) {
676 struct cgroup *c = link->cgrp;
677 if (c->root == root) {
678 res = c;
679 break;
680 }
681 }
682 }
683 read_unlock(&css_set_lock);
684 BUG_ON(!res);
685 return res;
686 }
687
688 /*
689 * There is one global cgroup mutex. We also require taking
690 * task_lock() when dereferencing a task's cgroup subsys pointers.
691 * See "The task_lock() exception", at the end of this comment.
692 *
693 * A task must hold cgroup_mutex to modify cgroups.
694 *
695 * Any task can increment and decrement the count field without lock.
696 * So in general, code holding cgroup_mutex can't rely on the count
697 * field not changing. However, if the count goes to zero, then only
698 * cgroup_attach_task() can increment it again. Because a count of zero
699 * means that no tasks are currently attached, therefore there is no
700 * way a task attached to that cgroup can fork (the other way to
701 * increment the count). So code holding cgroup_mutex can safely
702 * assume that if the count is zero, it will stay zero. Similarly, if
703 * a task holds cgroup_mutex on a cgroup with zero count, it
704 * knows that the cgroup won't be removed, as cgroup_rmdir()
705 * needs that mutex.
706 *
707 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
708 * (usually) take cgroup_mutex. These are the two most performance
709 * critical pieces of code here. The exception occurs on cgroup_exit(),
710 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
711 * is taken, and if the cgroup count is zero, a usermode call made
712 * to the release agent with the name of the cgroup (path relative to
713 * the root of cgroup file system) as the argument.
714 *
715 * A cgroup can only be deleted if both its 'count' of using tasks
716 * is zero, and its list of 'children' cgroups is empty. Since all
717 * tasks in the system use _some_ cgroup, and since there is always at
718 * least one task in the system (init, pid == 1), therefore, top_cgroup
719 * always has either children cgroups and/or using tasks. So we don't
720 * need a special hack to ensure that top_cgroup cannot be deleted.
721 *
722 * The task_lock() exception
723 *
724 * The need for this exception arises from the action of
725 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
726 * another. It does so using cgroup_mutex, however there are
727 * several performance critical places that need to reference
728 * task->cgroup without the expense of grabbing a system global
729 * mutex. Therefore except as noted below, when dereferencing or, as
730 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
731 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
732 * the task_struct routinely used for such matters.
733 *
734 * P.S. One more locking exception. RCU is used to guard the
735 * update of a tasks cgroup pointer by cgroup_attach_task()
736 */
737
738 /**
739 * cgroup_lock - lock out any changes to cgroup structures
740 *
741 */
742 void cgroup_lock(void)
743 {
744 mutex_lock(&cgroup_mutex);
745 }
746 EXPORT_SYMBOL_GPL(cgroup_lock);
747
748 /**
749 * cgroup_unlock - release lock on cgroup changes
750 *
751 * Undo the lock taken in a previous cgroup_lock() call.
752 */
753 void cgroup_unlock(void)
754 {
755 mutex_unlock(&cgroup_mutex);
756 }
757 EXPORT_SYMBOL_GPL(cgroup_unlock);
758
759 /*
760 * A couple of forward declarations required, due to cyclic reference loop:
761 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
762 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
763 * -> cgroup_mkdir.
764 */
765
766 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
767 static struct dentry *cgroup_lookup(struct inode *, struct dentry *, struct nameidata *);
768 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
769 static int cgroup_populate_dir(struct cgroup *cgrp);
770 static const struct inode_operations cgroup_dir_inode_operations;
771 static const struct file_operations proc_cgroupstats_operations;
772
773 static struct backing_dev_info cgroup_backing_dev_info = {
774 .name = "cgroup",
775 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
776 };
777
778 static int alloc_css_id(struct cgroup_subsys *ss,
779 struct cgroup *parent, struct cgroup *child);
780
781 static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
782 {
783 struct inode *inode = new_inode(sb);
784
785 if (inode) {
786 inode->i_ino = get_next_ino();
787 inode->i_mode = mode;
788 inode->i_uid = current_fsuid();
789 inode->i_gid = current_fsgid();
790 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
791 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
792 }
793 return inode;
794 }
795
796 /*
797 * Call subsys's pre_destroy handler.
798 * This is called before css refcnt check.
799 */
800 static int cgroup_call_pre_destroy(struct cgroup *cgrp)
801 {
802 struct cgroup_subsys *ss;
803 int ret = 0;
804
805 for_each_subsys(cgrp->root, ss)
806 if (ss->pre_destroy) {
807 ret = ss->pre_destroy(ss, cgrp);
808 if (ret)
809 break;
810 }
811
812 return ret;
813 }
814
815 static void free_cgroup_rcu(struct rcu_head *obj)
816 {
817 struct cgroup *cgrp = container_of(obj, struct cgroup, rcu_head);
818
819 kfree(cgrp);
820 }
821
822 static void cgroup_diput(struct dentry *dentry, struct inode *inode)
823 {
824 /* is dentry a directory ? if so, kfree() associated cgroup */
825 if (S_ISDIR(inode->i_mode)) {
826 struct cgroup *cgrp = dentry->d_fsdata;
827 struct cgroup_subsys *ss;
828 BUG_ON(!(cgroup_is_removed(cgrp)));
829 /* It's possible for external users to be holding css
830 * reference counts on a cgroup; css_put() needs to
831 * be able to access the cgroup after decrementing
832 * the reference count in order to know if it needs to
833 * queue the cgroup to be handled by the release
834 * agent */
835 synchronize_rcu();
836
837 mutex_lock(&cgroup_mutex);
838 /*
839 * Release the subsystem state objects.
840 */
841 for_each_subsys(cgrp->root, ss)
842 ss->destroy(ss, cgrp);
843
844 cgrp->root->number_of_cgroups--;
845 mutex_unlock(&cgroup_mutex);
846
847 /*
848 * Drop the active superblock reference that we took when we
849 * created the cgroup
850 */
851 deactivate_super(cgrp->root->sb);
852
853 /*
854 * if we're getting rid of the cgroup, refcount should ensure
855 * that there are no pidlists left.
856 */
857 BUG_ON(!list_empty(&cgrp->pidlists));
858
859 call_rcu(&cgrp->rcu_head, free_cgroup_rcu);
860 }
861 iput(inode);
862 }
863
864 static int cgroup_delete(const struct dentry *d)
865 {
866 return 1;
867 }
868
869 static void remove_dir(struct dentry *d)
870 {
871 struct dentry *parent = dget(d->d_parent);
872
873 d_delete(d);
874 simple_rmdir(parent->d_inode, d);
875 dput(parent);
876 }
877
878 static void cgroup_clear_directory(struct dentry *dentry)
879 {
880 struct list_head *node;
881
882 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
883 spin_lock(&dentry->d_lock);
884 node = dentry->d_subdirs.next;
885 while (node != &dentry->d_subdirs) {
886 struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
887
888 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
889 list_del_init(node);
890 if (d->d_inode) {
891 /* This should never be called on a cgroup
892 * directory with child cgroups */
893 BUG_ON(d->d_inode->i_mode & S_IFDIR);
894 dget_dlock(d);
895 spin_unlock(&d->d_lock);
896 spin_unlock(&dentry->d_lock);
897 d_delete(d);
898 simple_unlink(dentry->d_inode, d);
899 dput(d);
900 spin_lock(&dentry->d_lock);
901 } else
902 spin_unlock(&d->d_lock);
903 node = dentry->d_subdirs.next;
904 }
905 spin_unlock(&dentry->d_lock);
906 }
907
908 /*
909 * NOTE : the dentry must have been dget()'ed
910 */
911 static void cgroup_d_remove_dir(struct dentry *dentry)
912 {
913 struct dentry *parent;
914
915 cgroup_clear_directory(dentry);
916
917 parent = dentry->d_parent;
918 spin_lock(&parent->d_lock);
919 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
920 list_del_init(&dentry->d_u.d_child);
921 spin_unlock(&dentry->d_lock);
922 spin_unlock(&parent->d_lock);
923 remove_dir(dentry);
924 }
925
926 /*
927 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
928 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
929 * reference to css->refcnt. In general, this refcnt is expected to goes down
930 * to zero, soon.
931 *
932 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
933 */
934 DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);
935
936 static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
937 {
938 if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
939 wake_up_all(&cgroup_rmdir_waitq);
940 }
941
942 void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
943 {
944 css_get(css);
945 }
946
947 void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
948 {
949 cgroup_wakeup_rmdir_waiter(css->cgroup);
950 css_put(css);
951 }
952
953 /*
954 * Call with cgroup_mutex held. Drops reference counts on modules, including
955 * any duplicate ones that parse_cgroupfs_options took. If this function
956 * returns an error, no reference counts are touched.
957 */
958 static int rebind_subsystems(struct cgroupfs_root *root,
959 unsigned long final_bits)
960 {
961 unsigned long added_bits, removed_bits;
962 struct cgroup *cgrp = &root->top_cgroup;
963 int i;
964
965 BUG_ON(!mutex_is_locked(&cgroup_mutex));
966
967 removed_bits = root->actual_subsys_bits & ~final_bits;
968 added_bits = final_bits & ~root->actual_subsys_bits;
969 /* Check that any added subsystems are currently free */
970 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
971 unsigned long bit = 1UL << i;
972 struct cgroup_subsys *ss = subsys[i];
973 if (!(bit & added_bits))
974 continue;
975 /*
976 * Nobody should tell us to do a subsys that doesn't exist:
977 * parse_cgroupfs_options should catch that case and refcounts
978 * ensure that subsystems won't disappear once selected.
979 */
980 BUG_ON(ss == NULL);
981 if (ss->root != &rootnode) {
982 /* Subsystem isn't free */
983 return -EBUSY;
984 }
985 }
986
987 /* Currently we don't handle adding/removing subsystems when
988 * any child cgroups exist. This is theoretically supportable
989 * but involves complex error handling, so it's being left until
990 * later */
991 if (root->number_of_cgroups > 1)
992 return -EBUSY;
993
994 /* Process each subsystem */
995 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
996 struct cgroup_subsys *ss = subsys[i];
997 unsigned long bit = 1UL << i;
998 if (bit & added_bits) {
999 /* We're binding this subsystem to this hierarchy */
1000 BUG_ON(ss == NULL);
1001 BUG_ON(cgrp->subsys[i]);
1002 BUG_ON(!dummytop->subsys[i]);
1003 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
1004 mutex_lock(&ss->hierarchy_mutex);
1005 cgrp->subsys[i] = dummytop->subsys[i];
1006 cgrp->subsys[i]->cgroup = cgrp;
1007 list_move(&ss->sibling, &root->subsys_list);
1008 ss->root = root;
1009 if (ss->bind)
1010 ss->bind(ss, cgrp);
1011 mutex_unlock(&ss->hierarchy_mutex);
1012 /* refcount was already taken, and we're keeping it */
1013 } else if (bit & removed_bits) {
1014 /* We're removing this subsystem */
1015 BUG_ON(ss == NULL);
1016 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
1017 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
1018 mutex_lock(&ss->hierarchy_mutex);
1019 if (ss->bind)
1020 ss->bind(ss, dummytop);
1021 dummytop->subsys[i]->cgroup = dummytop;
1022 cgrp->subsys[i] = NULL;
1023 subsys[i]->root = &rootnode;
1024 list_move(&ss->sibling, &rootnode.subsys_list);
1025 mutex_unlock(&ss->hierarchy_mutex);
1026 /* subsystem is now free - drop reference on module */
1027 module_put(ss->module);
1028 } else if (bit & final_bits) {
1029 /* Subsystem state should already exist */
1030 BUG_ON(ss == NULL);
1031 BUG_ON(!cgrp->subsys[i]);
1032 /*
1033 * a refcount was taken, but we already had one, so
1034 * drop the extra reference.
1035 */
1036 module_put(ss->module);
1037 #ifdef CONFIG_MODULE_UNLOAD
1038 BUG_ON(ss->module && !module_refcount(ss->module));
1039 #endif
1040 } else {
1041 /* Subsystem state shouldn't exist */
1042 BUG_ON(cgrp->subsys[i]);
1043 }
1044 }
1045 root->subsys_bits = root->actual_subsys_bits = final_bits;
1046 synchronize_rcu();
1047
1048 return 0;
1049 }
1050
1051 static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
1052 {
1053 struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
1054 struct cgroup_subsys *ss;
1055
1056 mutex_lock(&cgroup_mutex);
1057 for_each_subsys(root, ss)
1058 seq_printf(seq, ",%s", ss->name);
1059 if (test_bit(ROOT_NOPREFIX, &root->flags))
1060 seq_puts(seq, ",noprefix");
1061 if (strlen(root->release_agent_path))
1062 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1063 if (clone_children(&root->top_cgroup))
1064 seq_puts(seq, ",clone_children");
1065 if (strlen(root->name))
1066 seq_printf(seq, ",name=%s", root->name);
1067 mutex_unlock(&cgroup_mutex);
1068 return 0;
1069 }
1070
1071 struct cgroup_sb_opts {
1072 unsigned long subsys_bits;
1073 unsigned long flags;
1074 char *release_agent;
1075 bool clone_children;
1076 char *name;
1077 /* User explicitly requested empty subsystem */
1078 bool none;
1079
1080 struct cgroupfs_root *new_root;
1081
1082 };
1083
1084 /*
1085 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
1086 * with cgroup_mutex held to protect the subsys[] array. This function takes
1087 * refcounts on subsystems to be used, unless it returns error, in which case
1088 * no refcounts are taken.
1089 */
1090 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1091 {
1092 char *token, *o = data;
1093 bool all_ss = false, one_ss = false;
1094 unsigned long mask = (unsigned long)-1;
1095 int i;
1096 bool module_pin_failed = false;
1097
1098 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1099
1100 #ifdef CONFIG_CPUSETS
1101 mask = ~(1UL << cpuset_subsys_id);
1102 #endif
1103
1104 memset(opts, 0, sizeof(*opts));
1105
1106 while ((token = strsep(&o, ",")) != NULL) {
1107 if (!*token)
1108 return -EINVAL;
1109 if (!strcmp(token, "none")) {
1110 /* Explicitly have no subsystems */
1111 opts->none = true;
1112 continue;
1113 }
1114 if (!strcmp(token, "all")) {
1115 /* Mutually exclusive option 'all' + subsystem name */
1116 if (one_ss)
1117 return -EINVAL;
1118 all_ss = true;
1119 continue;
1120 }
1121 if (!strcmp(token, "noprefix")) {
1122 set_bit(ROOT_NOPREFIX, &opts->flags);
1123 continue;
1124 }
1125 if (!strcmp(token, "clone_children")) {
1126 opts->clone_children = true;
1127 continue;
1128 }
1129 if (!strncmp(token, "release_agent=", 14)) {
1130 /* Specifying two release agents is forbidden */
1131 if (opts->release_agent)
1132 return -EINVAL;
1133 opts->release_agent =
1134 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1135 if (!opts->release_agent)
1136 return -ENOMEM;
1137 continue;
1138 }
1139 if (!strncmp(token, "name=", 5)) {
1140 const char *name = token + 5;
1141 /* Can't specify an empty name */
1142 if (!strlen(name))
1143 return -EINVAL;
1144 /* Must match [\w.-]+ */
1145 for (i = 0; i < strlen(name); i++) {
1146 char c = name[i];
1147 if (isalnum(c))
1148 continue;
1149 if ((c == '.') || (c == '-') || (c == '_'))
1150 continue;
1151 return -EINVAL;
1152 }
1153 /* Specifying two names is forbidden */
1154 if (opts->name)
1155 return -EINVAL;
1156 opts->name = kstrndup(name,
1157 MAX_CGROUP_ROOT_NAMELEN - 1,
1158 GFP_KERNEL);
1159 if (!opts->name)
1160 return -ENOMEM;
1161
1162 continue;
1163 }
1164
1165 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1166 struct cgroup_subsys *ss = subsys[i];
1167 if (ss == NULL)
1168 continue;
1169 if (strcmp(token, ss->name))
1170 continue;
1171 if (ss->disabled)
1172 continue;
1173
1174 /* Mutually exclusive option 'all' + subsystem name */
1175 if (all_ss)
1176 return -EINVAL;
1177 set_bit(i, &opts->subsys_bits);
1178 one_ss = true;
1179
1180 break;
1181 }
1182 if (i == CGROUP_SUBSYS_COUNT)
1183 return -ENOENT;
1184 }
1185
1186 /*
1187 * If the 'all' option was specified select all the subsystems,
1188 * otherwise 'all, 'none' and a subsystem name options were not
1189 * specified, let's default to 'all'
1190 */
1191 if (all_ss || (!all_ss && !one_ss && !opts->none)) {
1192 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1193 struct cgroup_subsys *ss = subsys[i];
1194 if (ss == NULL)
1195 continue;
1196 if (ss->disabled)
1197 continue;
1198 set_bit(i, &opts->subsys_bits);
1199 }
1200 }
1201
1202 /* Consistency checks */
1203
1204 /*
1205 * Option noprefix was introduced just for backward compatibility
1206 * with the old cpuset, so we allow noprefix only if mounting just
1207 * the cpuset subsystem.
1208 */
1209 if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
1210 (opts->subsys_bits & mask))
1211 return -EINVAL;
1212
1213
1214 /* Can't specify "none" and some subsystems */
1215 if (opts->subsys_bits && opts->none)
1216 return -EINVAL;
1217
1218 /*
1219 * We either have to specify by name or by subsystems. (So all
1220 * empty hierarchies must have a name).
1221 */
1222 if (!opts->subsys_bits && !opts->name)
1223 return -EINVAL;
1224
1225 /*
1226 * Grab references on all the modules we'll need, so the subsystems
1227 * don't dance around before rebind_subsystems attaches them. This may
1228 * take duplicate reference counts on a subsystem that's already used,
1229 * but rebind_subsystems handles this case.
1230 */
1231 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1232 unsigned long bit = 1UL << i;
1233
1234 if (!(bit & opts->subsys_bits))
1235 continue;
1236 if (!try_module_get(subsys[i]->module)) {
1237 module_pin_failed = true;
1238 break;
1239 }
1240 }
1241 if (module_pin_failed) {
1242 /*
1243 * oops, one of the modules was going away. this means that we
1244 * raced with a module_delete call, and to the user this is
1245 * essentially a "subsystem doesn't exist" case.
1246 */
1247 for (i--; i >= CGROUP_BUILTIN_SUBSYS_COUNT; i--) {
1248 /* drop refcounts only on the ones we took */
1249 unsigned long bit = 1UL << i;
1250
1251 if (!(bit & opts->subsys_bits))
1252 continue;
1253 module_put(subsys[i]->module);
1254 }
1255 return -ENOENT;
1256 }
1257
1258 return 0;
1259 }
1260
1261 static void drop_parsed_module_refcounts(unsigned long subsys_bits)
1262 {
1263 int i;
1264 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1265 unsigned long bit = 1UL << i;
1266
1267 if (!(bit & subsys_bits))
1268 continue;
1269 module_put(subsys[i]->module);
1270 }
1271 }
1272
1273 static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1274 {
1275 int ret = 0;
1276 struct cgroupfs_root *root = sb->s_fs_info;
1277 struct cgroup *cgrp = &root->top_cgroup;
1278 struct cgroup_sb_opts opts;
1279
1280 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1281 mutex_lock(&cgroup_mutex);
1282
1283 /* See what subsystems are wanted */
1284 ret = parse_cgroupfs_options(data, &opts);
1285 if (ret)
1286 goto out_unlock;
1287
1288 /* Don't allow flags or name to change at remount */
1289 if (opts.flags != root->flags ||
1290 (opts.name && strcmp(opts.name, root->name))) {
1291 ret = -EINVAL;
1292 drop_parsed_module_refcounts(opts.subsys_bits);
1293 goto out_unlock;
1294 }
1295
1296 ret = rebind_subsystems(root, opts.subsys_bits);
1297 if (ret) {
1298 drop_parsed_module_refcounts(opts.subsys_bits);
1299 goto out_unlock;
1300 }
1301
1302 /* (re)populate subsystem files */
1303 cgroup_populate_dir(cgrp);
1304
1305 if (opts.release_agent)
1306 strcpy(root->release_agent_path, opts.release_agent);
1307 out_unlock:
1308 kfree(opts.release_agent);
1309 kfree(opts.name);
1310 mutex_unlock(&cgroup_mutex);
1311 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1312 return ret;
1313 }
1314
1315 static const struct super_operations cgroup_ops = {
1316 .statfs = simple_statfs,
1317 .drop_inode = generic_delete_inode,
1318 .show_options = cgroup_show_options,
1319 .remount_fs = cgroup_remount,
1320 };
1321
1322 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1323 {
1324 INIT_LIST_HEAD(&cgrp->sibling);
1325 INIT_LIST_HEAD(&cgrp->children);
1326 INIT_LIST_HEAD(&cgrp->css_sets);
1327 INIT_LIST_HEAD(&cgrp->release_list);
1328 INIT_LIST_HEAD(&cgrp->pidlists);
1329 mutex_init(&cgrp->pidlist_mutex);
1330 INIT_LIST_HEAD(&cgrp->event_list);
1331 spin_lock_init(&cgrp->event_list_lock);
1332 }
1333
1334 static void init_cgroup_root(struct cgroupfs_root *root)
1335 {
1336 struct cgroup *cgrp = &root->top_cgroup;
1337 INIT_LIST_HEAD(&root->subsys_list);
1338 INIT_LIST_HEAD(&root->root_list);
1339 root->number_of_cgroups = 1;
1340 cgrp->root = root;
1341 cgrp->top_cgroup = cgrp;
1342 init_cgroup_housekeeping(cgrp);
1343 }
1344
1345 static bool init_root_id(struct cgroupfs_root *root)
1346 {
1347 int ret = 0;
1348
1349 do {
1350 if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
1351 return false;
1352 spin_lock(&hierarchy_id_lock);
1353 /* Try to allocate the next unused ID */
1354 ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
1355 &root->hierarchy_id);
1356 if (ret == -ENOSPC)
1357 /* Try again starting from 0 */
1358 ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
1359 if (!ret) {
1360 next_hierarchy_id = root->hierarchy_id + 1;
1361 } else if (ret != -EAGAIN) {
1362 /* Can only get here if the 31-bit IDR is full ... */
1363 BUG_ON(ret);
1364 }
1365 spin_unlock(&hierarchy_id_lock);
1366 } while (ret);
1367 return true;
1368 }
1369
1370 static int cgroup_test_super(struct super_block *sb, void *data)
1371 {
1372 struct cgroup_sb_opts *opts = data;
1373 struct cgroupfs_root *root = sb->s_fs_info;
1374
1375 /* If we asked for a name then it must match */
1376 if (opts->name && strcmp(opts->name, root->name))
1377 return 0;
1378
1379 /*
1380 * If we asked for subsystems (or explicitly for no
1381 * subsystems) then they must match
1382 */
1383 if ((opts->subsys_bits || opts->none)
1384 && (opts->subsys_bits != root->subsys_bits))
1385 return 0;
1386
1387 return 1;
1388 }
1389
1390 static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1391 {
1392 struct cgroupfs_root *root;
1393
1394 if (!opts->subsys_bits && !opts->none)
1395 return NULL;
1396
1397 root = kzalloc(sizeof(*root), GFP_KERNEL);
1398 if (!root)
1399 return ERR_PTR(-ENOMEM);
1400
1401 if (!init_root_id(root)) {
1402 kfree(root);
1403 return ERR_PTR(-ENOMEM);
1404 }
1405 init_cgroup_root(root);
1406
1407 root->subsys_bits = opts->subsys_bits;
1408 root->flags = opts->flags;
1409 if (opts->release_agent)
1410 strcpy(root->release_agent_path, opts->release_agent);
1411 if (opts->name)
1412 strcpy(root->name, opts->name);
1413 if (opts->clone_children)
1414 set_bit(CGRP_CLONE_CHILDREN, &root->top_cgroup.flags);
1415 return root;
1416 }
1417
1418 static void cgroup_drop_root(struct cgroupfs_root *root)
1419 {
1420 if (!root)
1421 return;
1422
1423 BUG_ON(!root->hierarchy_id);
1424 spin_lock(&hierarchy_id_lock);
1425 ida_remove(&hierarchy_ida, root->hierarchy_id);
1426 spin_unlock(&hierarchy_id_lock);
1427 kfree(root);
1428 }
1429
1430 static int cgroup_set_super(struct super_block *sb, void *data)
1431 {
1432 int ret;
1433 struct cgroup_sb_opts *opts = data;
1434
1435 /* If we don't have a new root, we can't set up a new sb */
1436 if (!opts->new_root)
1437 return -EINVAL;
1438
1439 BUG_ON(!opts->subsys_bits && !opts->none);
1440
1441 ret = set_anon_super(sb, NULL);
1442 if (ret)
1443 return ret;
1444
1445 sb->s_fs_info = opts->new_root;
1446 opts->new_root->sb = sb;
1447
1448 sb->s_blocksize = PAGE_CACHE_SIZE;
1449 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1450 sb->s_magic = CGROUP_SUPER_MAGIC;
1451 sb->s_op = &cgroup_ops;
1452
1453 return 0;
1454 }
1455
1456 static int cgroup_get_rootdir(struct super_block *sb)
1457 {
1458 static const struct dentry_operations cgroup_dops = {
1459 .d_iput = cgroup_diput,
1460 .d_delete = cgroup_delete,
1461 };
1462
1463 struct inode *inode =
1464 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
1465 struct dentry *dentry;
1466
1467 if (!inode)
1468 return -ENOMEM;
1469
1470 inode->i_fop = &simple_dir_operations;
1471 inode->i_op = &cgroup_dir_inode_operations;
1472 /* directories start off with i_nlink == 2 (for "." entry) */
1473 inc_nlink(inode);
1474 dentry = d_alloc_root(inode);
1475 if (!dentry) {
1476 iput(inode);
1477 return -ENOMEM;
1478 }
1479 sb->s_root = dentry;
1480 /* for everything else we want ->d_op set */
1481 sb->s_d_op = &cgroup_dops;
1482 return 0;
1483 }
1484
1485 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1486 int flags, const char *unused_dev_name,
1487 void *data)
1488 {
1489 struct cgroup_sb_opts opts;
1490 struct cgroupfs_root *root;
1491 int ret = 0;
1492 struct super_block *sb;
1493 struct cgroupfs_root *new_root;
1494
1495 /* First find the desired set of subsystems */
1496 mutex_lock(&cgroup_mutex);
1497 ret = parse_cgroupfs_options(data, &opts);
1498 mutex_unlock(&cgroup_mutex);
1499 if (ret)
1500 goto out_err;
1501
1502 /*
1503 * Allocate a new cgroup root. We may not need it if we're
1504 * reusing an existing hierarchy.
1505 */
1506 new_root = cgroup_root_from_opts(&opts);
1507 if (IS_ERR(new_root)) {
1508 ret = PTR_ERR(new_root);
1509 goto drop_modules;
1510 }
1511 opts.new_root = new_root;
1512
1513 /* Locate an existing or new sb for this hierarchy */
1514 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts);
1515 if (IS_ERR(sb)) {
1516 ret = PTR_ERR(sb);
1517 cgroup_drop_root(opts.new_root);
1518 goto drop_modules;
1519 }
1520
1521 root = sb->s_fs_info;
1522 BUG_ON(!root);
1523 if (root == opts.new_root) {
1524 /* We used the new root structure, so this is a new hierarchy */
1525 struct list_head tmp_cg_links;
1526 struct cgroup *root_cgrp = &root->top_cgroup;
1527 struct inode *inode;
1528 struct cgroupfs_root *existing_root;
1529 int i;
1530
1531 BUG_ON(sb->s_root != NULL);
1532
1533 ret = cgroup_get_rootdir(sb);
1534 if (ret)
1535 goto drop_new_super;
1536 inode = sb->s_root->d_inode;
1537
1538 mutex_lock(&inode->i_mutex);
1539 mutex_lock(&cgroup_mutex);
1540
1541 if (strlen(root->name)) {
1542 /* Check for name clashes with existing mounts */
1543 for_each_active_root(existing_root) {
1544 if (!strcmp(existing_root->name, root->name)) {
1545 ret = -EBUSY;
1546 mutex_unlock(&cgroup_mutex);
1547 mutex_unlock(&inode->i_mutex);
1548 goto drop_new_super;
1549 }
1550 }
1551 }
1552
1553 /*
1554 * We're accessing css_set_count without locking
1555 * css_set_lock here, but that's OK - it can only be
1556 * increased by someone holding cgroup_lock, and
1557 * that's us. The worst that can happen is that we
1558 * have some link structures left over
1559 */
1560 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1561 if (ret) {
1562 mutex_unlock(&cgroup_mutex);
1563 mutex_unlock(&inode->i_mutex);
1564 goto drop_new_super;
1565 }
1566
1567 ret = rebind_subsystems(root, root->subsys_bits);
1568 if (ret == -EBUSY) {
1569 mutex_unlock(&cgroup_mutex);
1570 mutex_unlock(&inode->i_mutex);
1571 free_cg_links(&tmp_cg_links);
1572 goto drop_new_super;
1573 }
1574 /*
1575 * There must be no failure case after here, since rebinding
1576 * takes care of subsystems' refcounts, which are explicitly
1577 * dropped in the failure exit path.
1578 */
1579
1580 /* EBUSY should be the only error here */
1581 BUG_ON(ret);
1582
1583 list_add(&root->root_list, &roots);
1584 root_count++;
1585
1586 sb->s_root->d_fsdata = root_cgrp;
1587 root->top_cgroup.dentry = sb->s_root;
1588
1589 /* Link the top cgroup in this hierarchy into all
1590 * the css_set objects */
1591 write_lock(&css_set_lock);
1592 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1593 struct hlist_head *hhead = &css_set_table[i];
1594 struct hlist_node *node;
1595 struct css_set *cg;
1596
1597 hlist_for_each_entry(cg, node, hhead, hlist)
1598 link_css_set(&tmp_cg_links, cg, root_cgrp);
1599 }
1600 write_unlock(&css_set_lock);
1601
1602 free_cg_links(&tmp_cg_links);
1603
1604 BUG_ON(!list_empty(&root_cgrp->sibling));
1605 BUG_ON(!list_empty(&root_cgrp->children));
1606 BUG_ON(root->number_of_cgroups != 1);
1607
1608 cgroup_populate_dir(root_cgrp);
1609 mutex_unlock(&cgroup_mutex);
1610 mutex_unlock(&inode->i_mutex);
1611 } else {
1612 /*
1613 * We re-used an existing hierarchy - the new root (if
1614 * any) is not needed
1615 */
1616 cgroup_drop_root(opts.new_root);
1617 /* no subsys rebinding, so refcounts don't change */
1618 drop_parsed_module_refcounts(opts.subsys_bits);
1619 }
1620
1621 kfree(opts.release_agent);
1622 kfree(opts.name);
1623 return dget(sb->s_root);
1624
1625 drop_new_super:
1626 deactivate_locked_super(sb);
1627 drop_modules:
1628 drop_parsed_module_refcounts(opts.subsys_bits);
1629 out_err:
1630 kfree(opts.release_agent);
1631 kfree(opts.name);
1632 return ERR_PTR(ret);
1633 }
1634
1635 static void cgroup_kill_sb(struct super_block *sb) {
1636 struct cgroupfs_root *root = sb->s_fs_info;
1637 struct cgroup *cgrp = &root->top_cgroup;
1638 int ret;
1639 struct cg_cgroup_link *link;
1640 struct cg_cgroup_link *saved_link;
1641
1642 BUG_ON(!root);
1643
1644 BUG_ON(root->number_of_cgroups != 1);
1645 BUG_ON(!list_empty(&cgrp->children));
1646 BUG_ON(!list_empty(&cgrp->sibling));
1647
1648 mutex_lock(&cgroup_mutex);
1649
1650 /* Rebind all subsystems back to the default hierarchy */
1651 ret = rebind_subsystems(root, 0);
1652 /* Shouldn't be able to fail ... */
1653 BUG_ON(ret);
1654
1655 /*
1656 * Release all the links from css_sets to this hierarchy's
1657 * root cgroup
1658 */
1659 write_lock(&css_set_lock);
1660
1661 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1662 cgrp_link_list) {
1663 list_del(&link->cg_link_list);
1664 list_del(&link->cgrp_link_list);
1665 kfree(link);
1666 }
1667 write_unlock(&css_set_lock);
1668
1669 if (!list_empty(&root->root_list)) {
1670 list_del(&root->root_list);
1671 root_count--;
1672 }
1673
1674 mutex_unlock(&cgroup_mutex);
1675
1676 kill_litter_super(sb);
1677 cgroup_drop_root(root);
1678 }
1679
1680 static struct file_system_type cgroup_fs_type = {
1681 .name = "cgroup",
1682 .mount = cgroup_mount,
1683 .kill_sb = cgroup_kill_sb,
1684 };
1685
1686 static struct kobject *cgroup_kobj;
1687
1688 static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1689 {
1690 return dentry->d_fsdata;
1691 }
1692
1693 static inline struct cftype *__d_cft(struct dentry *dentry)
1694 {
1695 return dentry->d_fsdata;
1696 }
1697
1698 /**
1699 * cgroup_path - generate the path of a cgroup
1700 * @cgrp: the cgroup in question
1701 * @buf: the buffer to write the path into
1702 * @buflen: the length of the buffer
1703 *
1704 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1705 * reference. Writes path of cgroup into buf. Returns 0 on success,
1706 * -errno on error.
1707 */
1708 int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1709 {
1710 char *start;
1711 struct dentry *dentry = rcu_dereference_check(cgrp->dentry,
1712 rcu_read_lock_held() ||
1713 cgroup_lock_is_held());
1714
1715 if (!dentry || cgrp == dummytop) {
1716 /*
1717 * Inactive subsystems have no dentry for their root
1718 * cgroup
1719 */
1720 strcpy(buf, "/");
1721 return 0;
1722 }
1723
1724 start = buf + buflen;
1725
1726 *--start = '\0';
1727 for (;;) {
1728 int len = dentry->d_name.len;
1729
1730 if ((start -= len) < buf)
1731 return -ENAMETOOLONG;
1732 memcpy(start, dentry->d_name.name, len);
1733 cgrp = cgrp->parent;
1734 if (!cgrp)
1735 break;
1736
1737 dentry = rcu_dereference_check(cgrp->dentry,
1738 rcu_read_lock_held() ||
1739 cgroup_lock_is_held());
1740 if (!cgrp->parent)
1741 continue;
1742 if (--start < buf)
1743 return -ENAMETOOLONG;
1744 *start = '/';
1745 }
1746 memmove(buf, start, buf + buflen - start);
1747 return 0;
1748 }
1749 EXPORT_SYMBOL_GPL(cgroup_path);
1750
1751 /**
1752 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1753 * @cgrp: the cgroup the task is attaching to
1754 * @tsk: the task to be attached
1755 *
1756 * Call holding cgroup_mutex. May take task_lock of
1757 * the task 'tsk' during call.
1758 */
1759 int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1760 {
1761 int retval = 0;
1762 struct cgroup_subsys *ss, *failed_ss = NULL;
1763 struct cgroup *oldcgrp;
1764 struct css_set *cg;
1765 struct css_set *newcg;
1766 struct cgroupfs_root *root = cgrp->root;
1767
1768 /* Nothing to do if the task is already in that cgroup */
1769 oldcgrp = task_cgroup_from_root(tsk, root);
1770 if (cgrp == oldcgrp)
1771 return 0;
1772
1773 for_each_subsys(root, ss) {
1774 if (ss->can_attach) {
1775 retval = ss->can_attach(ss, cgrp, tsk, false);
1776 if (retval) {
1777 /*
1778 * Remember on which subsystem the can_attach()
1779 * failed, so that we only call cancel_attach()
1780 * against the subsystems whose can_attach()
1781 * succeeded. (See below)
1782 */
1783 failed_ss = ss;
1784 goto out;
1785 }
1786 }
1787 }
1788
1789 task_lock(tsk);
1790 cg = tsk->cgroups;
1791 get_css_set(cg);
1792 task_unlock(tsk);
1793 /*
1794 * Locate or allocate a new css_set for this task,
1795 * based on its final set of cgroups
1796 */
1797 newcg = find_css_set(cg, cgrp);
1798 put_css_set(cg);
1799 if (!newcg) {
1800 retval = -ENOMEM;
1801 goto out;
1802 }
1803
1804 task_lock(tsk);
1805 if (tsk->flags & PF_EXITING) {
1806 task_unlock(tsk);
1807 put_css_set(newcg);
1808 retval = -ESRCH;
1809 goto out;
1810 }
1811 rcu_assign_pointer(tsk->cgroups, newcg);
1812 task_unlock(tsk);
1813
1814 /* Update the css_set linked lists if we're using them */
1815 write_lock(&css_set_lock);
1816 if (!list_empty(&tsk->cg_list)) {
1817 list_del(&tsk->cg_list);
1818 list_add(&tsk->cg_list, &newcg->tasks);
1819 }
1820 write_unlock(&css_set_lock);
1821
1822 for_each_subsys(root, ss) {
1823 if (ss->attach)
1824 ss->attach(ss, cgrp, oldcgrp, tsk, false);
1825 }
1826 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1827 synchronize_rcu();
1828 put_css_set(cg);
1829
1830 /*
1831 * wake up rmdir() waiter. the rmdir should fail since the cgroup
1832 * is no longer empty.
1833 */
1834 cgroup_wakeup_rmdir_waiter(cgrp);
1835 out:
1836 if (retval) {
1837 for_each_subsys(root, ss) {
1838 if (ss == failed_ss)
1839 /*
1840 * This subsystem was the one that failed the
1841 * can_attach() check earlier, so we don't need
1842 * to call cancel_attach() against it or any
1843 * remaining subsystems.
1844 */
1845 break;
1846 if (ss->cancel_attach)
1847 ss->cancel_attach(ss, cgrp, tsk, false);
1848 }
1849 }
1850 return retval;
1851 }
1852
1853 /**
1854 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
1855 * @from: attach to all cgroups of a given task
1856 * @tsk: the task to be attached
1857 */
1858 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
1859 {
1860 struct cgroupfs_root *root;
1861 int retval = 0;
1862
1863 cgroup_lock();
1864 for_each_active_root(root) {
1865 struct cgroup *from_cg = task_cgroup_from_root(from, root);
1866
1867 retval = cgroup_attach_task(from_cg, tsk);
1868 if (retval)
1869 break;
1870 }
1871 cgroup_unlock();
1872
1873 return retval;
1874 }
1875 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
1876
1877 /*
1878 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with cgroup_mutex
1879 * held. May take task_lock of task
1880 */
1881 static int attach_task_by_pid(struct cgroup *cgrp, u64 pid)
1882 {
1883 struct task_struct *tsk;
1884 const struct cred *cred = current_cred(), *tcred;
1885 int ret;
1886
1887 if (pid) {
1888 rcu_read_lock();
1889 tsk = find_task_by_vpid(pid);
1890 if (!tsk || tsk->flags & PF_EXITING) {
1891 rcu_read_unlock();
1892 return -ESRCH;
1893 }
1894
1895 tcred = __task_cred(tsk);
1896 if (cred->euid &&
1897 cred->euid != tcred->uid &&
1898 cred->euid != tcred->suid) {
1899 rcu_read_unlock();
1900 return -EACCES;
1901 }
1902 get_task_struct(tsk);
1903 rcu_read_unlock();
1904 } else {
1905 tsk = current;
1906 get_task_struct(tsk);
1907 }
1908
1909 ret = cgroup_attach_task(cgrp, tsk);
1910 put_task_struct(tsk);
1911 return ret;
1912 }
1913
1914 static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
1915 {
1916 int ret;
1917 if (!cgroup_lock_live_group(cgrp))
1918 return -ENODEV;
1919 ret = attach_task_by_pid(cgrp, pid);
1920 cgroup_unlock();
1921 return ret;
1922 }
1923
1924 /**
1925 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
1926 * @cgrp: the cgroup to be checked for liveness
1927 *
1928 * On success, returns true; the lock should be later released with
1929 * cgroup_unlock(). On failure returns false with no lock held.
1930 */
1931 bool cgroup_lock_live_group(struct cgroup *cgrp)
1932 {
1933 mutex_lock(&cgroup_mutex);
1934 if (cgroup_is_removed(cgrp)) {
1935 mutex_unlock(&cgroup_mutex);
1936 return false;
1937 }
1938 return true;
1939 }
1940 EXPORT_SYMBOL_GPL(cgroup_lock_live_group);
1941
1942 static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
1943 const char *buffer)
1944 {
1945 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
1946 if (strlen(buffer) >= PATH_MAX)
1947 return -EINVAL;
1948 if (!cgroup_lock_live_group(cgrp))
1949 return -ENODEV;
1950 strcpy(cgrp->root->release_agent_path, buffer);
1951 cgroup_unlock();
1952 return 0;
1953 }
1954
1955 static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
1956 struct seq_file *seq)
1957 {
1958 if (!cgroup_lock_live_group(cgrp))
1959 return -ENODEV;
1960 seq_puts(seq, cgrp->root->release_agent_path);
1961 seq_putc(seq, '\n');
1962 cgroup_unlock();
1963 return 0;
1964 }
1965
1966 /* A buffer size big enough for numbers or short strings */
1967 #define CGROUP_LOCAL_BUFFER_SIZE 64
1968
1969 static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
1970 struct file *file,
1971 const char __user *userbuf,
1972 size_t nbytes, loff_t *unused_ppos)
1973 {
1974 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
1975 int retval = 0;
1976 char *end;
1977
1978 if (!nbytes)
1979 return -EINVAL;
1980 if (nbytes >= sizeof(buffer))
1981 return -E2BIG;
1982 if (copy_from_user(buffer, userbuf, nbytes))
1983 return -EFAULT;
1984
1985 buffer[nbytes] = 0; /* nul-terminate */
1986 if (cft->write_u64) {
1987 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
1988 if (*end)
1989 return -EINVAL;
1990 retval = cft->write_u64(cgrp, cft, val);
1991 } else {
1992 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
1993 if (*end)
1994 return -EINVAL;
1995 retval = cft->write_s64(cgrp, cft, val);
1996 }
1997 if (!retval)
1998 retval = nbytes;
1999 return retval;
2000 }
2001
2002 static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
2003 struct file *file,
2004 const char __user *userbuf,
2005 size_t nbytes, loff_t *unused_ppos)
2006 {
2007 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
2008 int retval = 0;
2009 size_t max_bytes = cft->max_write_len;
2010 char *buffer = local_buffer;
2011
2012 if (!max_bytes)
2013 max_bytes = sizeof(local_buffer) - 1;
2014 if (nbytes >= max_bytes)
2015 return -E2BIG;
2016 /* Allocate a dynamic buffer if we need one */
2017 if (nbytes >= sizeof(local_buffer)) {
2018 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2019 if (buffer == NULL)
2020 return -ENOMEM;
2021 }
2022 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2023 retval = -EFAULT;
2024 goto out;
2025 }
2026
2027 buffer[nbytes] = 0; /* nul-terminate */
2028 retval = cft->write_string(cgrp, cft, strstrip(buffer));
2029 if (!retval)
2030 retval = nbytes;
2031 out:
2032 if (buffer != local_buffer)
2033 kfree(buffer);
2034 return retval;
2035 }
2036
2037 static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2038 size_t nbytes, loff_t *ppos)
2039 {
2040 struct cftype *cft = __d_cft(file->f_dentry);
2041 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2042
2043 if (cgroup_is_removed(cgrp))
2044 return -ENODEV;
2045 if (cft->write)
2046 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
2047 if (cft->write_u64 || cft->write_s64)
2048 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
2049 if (cft->write_string)
2050 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
2051 if (cft->trigger) {
2052 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
2053 return ret ? ret : nbytes;
2054 }
2055 return -EINVAL;
2056 }
2057
2058 static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
2059 struct file *file,
2060 char __user *buf, size_t nbytes,
2061 loff_t *ppos)
2062 {
2063 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2064 u64 val = cft->read_u64(cgrp, cft);
2065 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2066
2067 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2068 }
2069
2070 static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2071 struct file *file,
2072 char __user *buf, size_t nbytes,
2073 loff_t *ppos)
2074 {
2075 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2076 s64 val = cft->read_s64(cgrp, cft);
2077 int len = sprintf(tmp, "%lld\n", (long long) val);
2078
2079 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2080 }
2081
2082 static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2083 size_t nbytes, loff_t *ppos)
2084 {
2085 struct cftype *cft = __d_cft(file->f_dentry);
2086 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2087
2088 if (cgroup_is_removed(cgrp))
2089 return -ENODEV;
2090
2091 if (cft->read)
2092 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
2093 if (cft->read_u64)
2094 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
2095 if (cft->read_s64)
2096 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
2097 return -EINVAL;
2098 }
2099
2100 /*
2101 * seqfile ops/methods for returning structured data. Currently just
2102 * supports string->u64 maps, but can be extended in future.
2103 */
2104
2105 struct cgroup_seqfile_state {
2106 struct cftype *cft;
2107 struct cgroup *cgroup;
2108 };
2109
2110 static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2111 {
2112 struct seq_file *sf = cb->state;
2113 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2114 }
2115
2116 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2117 {
2118 struct cgroup_seqfile_state *state = m->private;
2119 struct cftype *cft = state->cft;
2120 if (cft->read_map) {
2121 struct cgroup_map_cb cb = {
2122 .fill = cgroup_map_add,
2123 .state = m,
2124 };
2125 return cft->read_map(state->cgroup, cft, &cb);
2126 }
2127 return cft->read_seq_string(state->cgroup, cft, m);
2128 }
2129
2130 static int cgroup_seqfile_release(struct inode *inode, struct file *file)
2131 {
2132 struct seq_file *seq = file->private_data;
2133 kfree(seq->private);
2134 return single_release(inode, file);
2135 }
2136
2137 static const struct file_operations cgroup_seqfile_operations = {
2138 .read = seq_read,
2139 .write = cgroup_file_write,
2140 .llseek = seq_lseek,
2141 .release = cgroup_seqfile_release,
2142 };
2143
2144 static int cgroup_file_open(struct inode *inode, struct file *file)
2145 {
2146 int err;
2147 struct cftype *cft;
2148
2149 err = generic_file_open(inode, file);
2150 if (err)
2151 return err;
2152 cft = __d_cft(file->f_dentry);
2153
2154 if (cft->read_map || cft->read_seq_string) {
2155 struct cgroup_seqfile_state *state =
2156 kzalloc(sizeof(*state), GFP_USER);
2157 if (!state)
2158 return -ENOMEM;
2159 state->cft = cft;
2160 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2161 file->f_op = &cgroup_seqfile_operations;
2162 err = single_open(file, cgroup_seqfile_show, state);
2163 if (err < 0)
2164 kfree(state);
2165 } else if (cft->open)
2166 err = cft->open(inode, file);
2167 else
2168 err = 0;
2169
2170 return err;
2171 }
2172
2173 static int cgroup_file_release(struct inode *inode, struct file *file)
2174 {
2175 struct cftype *cft = __d_cft(file->f_dentry);
2176 if (cft->release)
2177 return cft->release(inode, file);
2178 return 0;
2179 }
2180
2181 /*
2182 * cgroup_rename - Only allow simple rename of directories in place.
2183 */
2184 static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2185 struct inode *new_dir, struct dentry *new_dentry)
2186 {
2187 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2188 return -ENOTDIR;
2189 if (new_dentry->d_inode)
2190 return -EEXIST;
2191 if (old_dir != new_dir)
2192 return -EIO;
2193 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2194 }
2195
2196 static const struct file_operations cgroup_file_operations = {
2197 .read = cgroup_file_read,
2198 .write = cgroup_file_write,
2199 .llseek = generic_file_llseek,
2200 .open = cgroup_file_open,
2201 .release = cgroup_file_release,
2202 };
2203
2204 static const struct inode_operations cgroup_dir_inode_operations = {
2205 .lookup = cgroup_lookup,
2206 .mkdir = cgroup_mkdir,
2207 .rmdir = cgroup_rmdir,
2208 .rename = cgroup_rename,
2209 };
2210
2211 static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
2212 {
2213 if (dentry->d_name.len > NAME_MAX)
2214 return ERR_PTR(-ENAMETOOLONG);
2215 d_add(dentry, NULL);
2216 return NULL;
2217 }
2218
2219 /*
2220 * Check if a file is a control file
2221 */
2222 static inline struct cftype *__file_cft(struct file *file)
2223 {
2224 if (file->f_dentry->d_inode->i_fop != &cgroup_file_operations)
2225 return ERR_PTR(-EINVAL);
2226 return __d_cft(file->f_dentry);
2227 }
2228
2229 static int cgroup_create_file(struct dentry *dentry, mode_t mode,
2230 struct super_block *sb)
2231 {
2232 struct inode *inode;
2233
2234 if (!dentry)
2235 return -ENOENT;
2236 if (dentry->d_inode)
2237 return -EEXIST;
2238
2239 inode = cgroup_new_inode(mode, sb);
2240 if (!inode)
2241 return -ENOMEM;
2242
2243 if (S_ISDIR(mode)) {
2244 inode->i_op = &cgroup_dir_inode_operations;
2245 inode->i_fop = &simple_dir_operations;
2246
2247 /* start off with i_nlink == 2 (for "." entry) */
2248 inc_nlink(inode);
2249
2250 /* start with the directory inode held, so that we can
2251 * populate it without racing with another mkdir */
2252 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2253 } else if (S_ISREG(mode)) {
2254 inode->i_size = 0;
2255 inode->i_fop = &cgroup_file_operations;
2256 }
2257 d_instantiate(dentry, inode);
2258 dget(dentry); /* Extra count - pin the dentry in core */
2259 return 0;
2260 }
2261
2262 /*
2263 * cgroup_create_dir - create a directory for an object.
2264 * @cgrp: the cgroup we create the directory for. It must have a valid
2265 * ->parent field. And we are going to fill its ->dentry field.
2266 * @dentry: dentry of the new cgroup
2267 * @mode: mode to set on new directory.
2268 */
2269 static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
2270 mode_t mode)
2271 {
2272 struct dentry *parent;
2273 int error = 0;
2274
2275 parent = cgrp->parent->dentry;
2276 error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
2277 if (!error) {
2278 dentry->d_fsdata = cgrp;
2279 inc_nlink(parent->d_inode);
2280 rcu_assign_pointer(cgrp->dentry, dentry);
2281 dget(dentry);
2282 }
2283 dput(dentry);
2284
2285 return error;
2286 }
2287
2288 /**
2289 * cgroup_file_mode - deduce file mode of a control file
2290 * @cft: the control file in question
2291 *
2292 * returns cft->mode if ->mode is not 0
2293 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2294 * returns S_IRUGO if it has only a read handler
2295 * returns S_IWUSR if it has only a write hander
2296 */
2297 static mode_t cgroup_file_mode(const struct cftype *cft)
2298 {
2299 mode_t mode = 0;
2300
2301 if (cft->mode)
2302 return cft->mode;
2303
2304 if (cft->read || cft->read_u64 || cft->read_s64 ||
2305 cft->read_map || cft->read_seq_string)
2306 mode |= S_IRUGO;
2307
2308 if (cft->write || cft->write_u64 || cft->write_s64 ||
2309 cft->write_string || cft->trigger)
2310 mode |= S_IWUSR;
2311
2312 return mode;
2313 }
2314
2315 int cgroup_add_file(struct cgroup *cgrp,
2316 struct cgroup_subsys *subsys,
2317 const struct cftype *cft)
2318 {
2319 struct dentry *dir = cgrp->dentry;
2320 struct dentry *dentry;
2321 int error;
2322 mode_t mode;
2323
2324 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2325 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
2326 strcpy(name, subsys->name);
2327 strcat(name, ".");
2328 }
2329 strcat(name, cft->name);
2330 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
2331 dentry = lookup_one_len(name, dir, strlen(name));
2332 if (!IS_ERR(dentry)) {
2333 mode = cgroup_file_mode(cft);
2334 error = cgroup_create_file(dentry, mode | S_IFREG,
2335 cgrp->root->sb);
2336 if (!error)
2337 dentry->d_fsdata = (void *)cft;
2338 dput(dentry);
2339 } else
2340 error = PTR_ERR(dentry);
2341 return error;
2342 }
2343 EXPORT_SYMBOL_GPL(cgroup_add_file);
2344
2345 int cgroup_add_files(struct cgroup *cgrp,
2346 struct cgroup_subsys *subsys,
2347 const struct cftype cft[],
2348 int count)
2349 {
2350 int i, err;
2351 for (i = 0; i < count; i++) {
2352 err = cgroup_add_file(cgrp, subsys, &cft[i]);
2353 if (err)
2354 return err;
2355 }
2356 return 0;
2357 }
2358 EXPORT_SYMBOL_GPL(cgroup_add_files);
2359
2360 /**
2361 * cgroup_task_count - count the number of tasks in a cgroup.
2362 * @cgrp: the cgroup in question
2363 *
2364 * Return the number of tasks in the cgroup.
2365 */
2366 int cgroup_task_count(const struct cgroup *cgrp)
2367 {
2368 int count = 0;
2369 struct cg_cgroup_link *link;
2370
2371 read_lock(&css_set_lock);
2372 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
2373 count += atomic_read(&link->cg->refcount);
2374 }
2375 read_unlock(&css_set_lock);
2376 return count;
2377 }
2378
2379 /*
2380 * Advance a list_head iterator. The iterator should be positioned at
2381 * the start of a css_set
2382 */
2383 static void cgroup_advance_iter(struct cgroup *cgrp,
2384 struct cgroup_iter *it)
2385 {
2386 struct list_head *l = it->cg_link;
2387 struct cg_cgroup_link *link;
2388 struct css_set *cg;
2389
2390 /* Advance to the next non-empty css_set */
2391 do {
2392 l = l->next;
2393 if (l == &cgrp->css_sets) {
2394 it->cg_link = NULL;
2395 return;
2396 }
2397 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
2398 cg = link->cg;
2399 } while (list_empty(&cg->tasks));
2400 it->cg_link = l;
2401 it->task = cg->tasks.next;
2402 }
2403
2404 /*
2405 * To reduce the fork() overhead for systems that are not actually
2406 * using their cgroups capability, we don't maintain the lists running
2407 * through each css_set to its tasks until we see the list actually
2408 * used - in other words after the first call to cgroup_iter_start().
2409 *
2410 * The tasklist_lock is not held here, as do_each_thread() and
2411 * while_each_thread() are protected by RCU.
2412 */
2413 static void cgroup_enable_task_cg_lists(void)
2414 {
2415 struct task_struct *p, *g;
2416 write_lock(&css_set_lock);
2417 use_task_css_set_links = 1;
2418 do_each_thread(g, p) {
2419 task_lock(p);
2420 /*
2421 * We should check if the process is exiting, otherwise
2422 * it will race with cgroup_exit() in that the list
2423 * entry won't be deleted though the process has exited.
2424 */
2425 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
2426 list_add(&p->cg_list, &p->cgroups->tasks);
2427 task_unlock(p);
2428 } while_each_thread(g, p);
2429 write_unlock(&css_set_lock);
2430 }
2431
2432 void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
2433 {
2434 /*
2435 * The first time anyone tries to iterate across a cgroup,
2436 * we need to enable the list linking each css_set to its
2437 * tasks, and fix up all existing tasks.
2438 */
2439 if (!use_task_css_set_links)
2440 cgroup_enable_task_cg_lists();
2441
2442 read_lock(&css_set_lock);
2443 it->cg_link = &cgrp->css_sets;
2444 cgroup_advance_iter(cgrp, it);
2445 }
2446
2447 struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
2448 struct cgroup_iter *it)
2449 {
2450 struct task_struct *res;
2451 struct list_head *l = it->task;
2452 struct cg_cgroup_link *link;
2453
2454 /* If the iterator cg is NULL, we have no tasks */
2455 if (!it->cg_link)
2456 return NULL;
2457 res = list_entry(l, struct task_struct, cg_list);
2458 /* Advance iterator to find next entry */
2459 l = l->next;
2460 link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
2461 if (l == &link->cg->tasks) {
2462 /* We reached the end of this task list - move on to
2463 * the next cg_cgroup_link */
2464 cgroup_advance_iter(cgrp, it);
2465 } else {
2466 it->task = l;
2467 }
2468 return res;
2469 }
2470
2471 void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
2472 {
2473 read_unlock(&css_set_lock);
2474 }
2475
2476 static inline int started_after_time(struct task_struct *t1,
2477 struct timespec *time,
2478 struct task_struct *t2)
2479 {
2480 int start_diff = timespec_compare(&t1->start_time, time);
2481 if (start_diff > 0) {
2482 return 1;
2483 } else if (start_diff < 0) {
2484 return 0;
2485 } else {
2486 /*
2487 * Arbitrarily, if two processes started at the same
2488 * time, we'll say that the lower pointer value
2489 * started first. Note that t2 may have exited by now
2490 * so this may not be a valid pointer any longer, but
2491 * that's fine - it still serves to distinguish
2492 * between two tasks started (effectively) simultaneously.
2493 */
2494 return t1 > t2;
2495 }
2496 }
2497
2498 /*
2499 * This function is a callback from heap_insert() and is used to order
2500 * the heap.
2501 * In this case we order the heap in descending task start time.
2502 */
2503 static inline int started_after(void *p1, void *p2)
2504 {
2505 struct task_struct *t1 = p1;
2506 struct task_struct *t2 = p2;
2507 return started_after_time(t1, &t2->start_time, t2);
2508 }
2509
2510 /**
2511 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
2512 * @scan: struct cgroup_scanner containing arguments for the scan
2513 *
2514 * Arguments include pointers to callback functions test_task() and
2515 * process_task().
2516 * Iterate through all the tasks in a cgroup, calling test_task() for each,
2517 * and if it returns true, call process_task() for it also.
2518 * The test_task pointer may be NULL, meaning always true (select all tasks).
2519 * Effectively duplicates cgroup_iter_{start,next,end}()
2520 * but does not lock css_set_lock for the call to process_task().
2521 * The struct cgroup_scanner may be embedded in any structure of the caller's
2522 * creation.
2523 * It is guaranteed that process_task() will act on every task that
2524 * is a member of the cgroup for the duration of this call. This
2525 * function may or may not call process_task() for tasks that exit
2526 * or move to a different cgroup during the call, or are forked or
2527 * move into the cgroup during the call.
2528 *
2529 * Note that test_task() may be called with locks held, and may in some
2530 * situations be called multiple times for the same task, so it should
2531 * be cheap.
2532 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
2533 * pre-allocated and will be used for heap operations (and its "gt" member will
2534 * be overwritten), else a temporary heap will be used (allocation of which
2535 * may cause this function to fail).
2536 */
2537 int cgroup_scan_tasks(struct cgroup_scanner *scan)
2538 {
2539 int retval, i;
2540 struct cgroup_iter it;
2541 struct task_struct *p, *dropped;
2542 /* Never dereference latest_task, since it's not refcounted */
2543 struct task_struct *latest_task = NULL;
2544 struct ptr_heap tmp_heap;
2545 struct ptr_heap *heap;
2546 struct timespec latest_time = { 0, 0 };
2547
2548 if (scan->heap) {
2549 /* The caller supplied our heap and pre-allocated its memory */
2550 heap = scan->heap;
2551 heap->gt = &started_after;
2552 } else {
2553 /* We need to allocate our own heap memory */
2554 heap = &tmp_heap;
2555 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
2556 if (retval)
2557 /* cannot allocate the heap */
2558 return retval;
2559 }
2560
2561 again:
2562 /*
2563 * Scan tasks in the cgroup, using the scanner's "test_task" callback
2564 * to determine which are of interest, and using the scanner's
2565 * "process_task" callback to process any of them that need an update.
2566 * Since we don't want to hold any locks during the task updates,
2567 * gather tasks to be processed in a heap structure.
2568 * The heap is sorted by descending task start time.
2569 * If the statically-sized heap fills up, we overflow tasks that
2570 * started later, and in future iterations only consider tasks that
2571 * started after the latest task in the previous pass. This
2572 * guarantees forward progress and that we don't miss any tasks.
2573 */
2574 heap->size = 0;
2575 cgroup_iter_start(scan->cg, &it);
2576 while ((p = cgroup_iter_next(scan->cg, &it))) {
2577 /*
2578 * Only affect tasks that qualify per the caller's callback,
2579 * if he provided one
2580 */
2581 if (scan->test_task && !scan->test_task(p, scan))
2582 continue;
2583 /*
2584 * Only process tasks that started after the last task
2585 * we processed
2586 */
2587 if (!started_after_time(p, &latest_time, latest_task))
2588 continue;
2589 dropped = heap_insert(heap, p);
2590 if (dropped == NULL) {
2591 /*
2592 * The new task was inserted; the heap wasn't
2593 * previously full
2594 */
2595 get_task_struct(p);
2596 } else if (dropped != p) {
2597 /*
2598 * The new task was inserted, and pushed out a
2599 * different task
2600 */
2601 get_task_struct(p);
2602 put_task_struct(dropped);
2603 }
2604 /*
2605 * Else the new task was newer than anything already in
2606 * the heap and wasn't inserted
2607 */
2608 }
2609 cgroup_iter_end(scan->cg, &it);
2610
2611 if (heap->size) {
2612 for (i = 0; i < heap->size; i++) {
2613 struct task_struct *q = heap->ptrs[i];
2614 if (i == 0) {
2615 latest_time = q->start_time;
2616 latest_task = q;
2617 }
2618 /* Process the task per the caller's callback */
2619 scan->process_task(q, scan);
2620 put_task_struct(q);
2621 }
2622 /*
2623 * If we had to process any tasks at all, scan again
2624 * in case some of them were in the middle of forking
2625 * children that didn't get processed.
2626 * Not the most efficient way to do it, but it avoids
2627 * having to take callback_mutex in the fork path
2628 */
2629 goto again;
2630 }
2631 if (heap == &tmp_heap)
2632 heap_free(&tmp_heap);
2633 return 0;
2634 }
2635
2636 /*
2637 * Stuff for reading the 'tasks'/'procs' files.
2638 *
2639 * Reading this file can return large amounts of data if a cgroup has
2640 * *lots* of attached tasks. So it may need several calls to read(),
2641 * but we cannot guarantee that the information we produce is correct
2642 * unless we produce it entirely atomically.
2643 *
2644 */
2645
2646 /*
2647 * The following two functions "fix" the issue where there are more pids
2648 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
2649 * TODO: replace with a kernel-wide solution to this problem
2650 */
2651 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
2652 static void *pidlist_allocate(int count)
2653 {
2654 if (PIDLIST_TOO_LARGE(count))
2655 return vmalloc(count * sizeof(pid_t));
2656 else
2657 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
2658 }
2659 static void pidlist_free(void *p)
2660 {
2661 if (is_vmalloc_addr(p))
2662 vfree(p);
2663 else
2664 kfree(p);
2665 }
2666 static void *pidlist_resize(void *p, int newcount)
2667 {
2668 void *newlist;
2669 /* note: if new alloc fails, old p will still be valid either way */
2670 if (is_vmalloc_addr(p)) {
2671 newlist = vmalloc(newcount * sizeof(pid_t));
2672 if (!newlist)
2673 return NULL;
2674 memcpy(newlist, p, newcount * sizeof(pid_t));
2675 vfree(p);
2676 } else {
2677 newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
2678 }
2679 return newlist;
2680 }
2681
2682 /*
2683 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
2684 * If the new stripped list is sufficiently smaller and there's enough memory
2685 * to allocate a new buffer, will let go of the unneeded memory. Returns the
2686 * number of unique elements.
2687 */
2688 /* is the size difference enough that we should re-allocate the array? */
2689 #define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
2690 static int pidlist_uniq(pid_t **p, int length)
2691 {
2692 int src, dest = 1;
2693 pid_t *list = *p;
2694 pid_t *newlist;
2695
2696 /*
2697 * we presume the 0th element is unique, so i starts at 1. trivial
2698 * edge cases first; no work needs to be done for either
2699 */
2700 if (length == 0 || length == 1)
2701 return length;
2702 /* src and dest walk down the list; dest counts unique elements */
2703 for (src = 1; src < length; src++) {
2704 /* find next unique element */
2705 while (list[src] == list[src-1]) {
2706 src++;
2707 if (src == length)
2708 goto after;
2709 }
2710 /* dest always points to where the next unique element goes */
2711 list[dest] = list[src];
2712 dest++;
2713 }
2714 after:
2715 /*
2716 * if the length difference is large enough, we want to allocate a
2717 * smaller buffer to save memory. if this fails due to out of memory,
2718 * we'll just stay with what we've got.
2719 */
2720 if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
2721 newlist = pidlist_resize(list, dest);
2722 if (newlist)
2723 *p = newlist;
2724 }
2725 return dest;
2726 }
2727
2728 static int cmppid(const void *a, const void *b)
2729 {
2730 return *(pid_t *)a - *(pid_t *)b;
2731 }
2732
2733 /*
2734 * find the appropriate pidlist for our purpose (given procs vs tasks)
2735 * returns with the lock on that pidlist already held, and takes care
2736 * of the use count, or returns NULL with no locks held if we're out of
2737 * memory.
2738 */
2739 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
2740 enum cgroup_filetype type)
2741 {
2742 struct cgroup_pidlist *l;
2743 /* don't need task_nsproxy() if we're looking at ourself */
2744 struct pid_namespace *ns = current->nsproxy->pid_ns;
2745
2746 /*
2747 * We can't drop the pidlist_mutex before taking the l->mutex in case
2748 * the last ref-holder is trying to remove l from the list at the same
2749 * time. Holding the pidlist_mutex precludes somebody taking whichever
2750 * list we find out from under us - compare release_pid_array().
2751 */
2752 mutex_lock(&cgrp->pidlist_mutex);
2753 list_for_each_entry(l, &cgrp->pidlists, links) {
2754 if (l->key.type == type && l->key.ns == ns) {
2755 /* make sure l doesn't vanish out from under us */
2756 down_write(&l->mutex);
2757 mutex_unlock(&cgrp->pidlist_mutex);
2758 return l;
2759 }
2760 }
2761 /* entry not found; create a new one */
2762 l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
2763 if (!l) {
2764 mutex_unlock(&cgrp->pidlist_mutex);
2765 return l;
2766 }
2767 init_rwsem(&l->mutex);
2768 down_write(&l->mutex);
2769 l->key.type = type;
2770 l->key.ns = get_pid_ns(ns);
2771 l->use_count = 0; /* don't increment here */
2772 l->list = NULL;
2773 l->owner = cgrp;
2774 list_add(&l->links, &cgrp->pidlists);
2775 mutex_unlock(&cgrp->pidlist_mutex);
2776 return l;
2777 }
2778
2779 /*
2780 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
2781 */
2782 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
2783 struct cgroup_pidlist **lp)
2784 {
2785 pid_t *array;
2786 int length;
2787 int pid, n = 0; /* used for populating the array */
2788 struct cgroup_iter it;
2789 struct task_struct *tsk;
2790 struct cgroup_pidlist *l;
2791
2792 /*
2793 * If cgroup gets more users after we read count, we won't have
2794 * enough space - tough. This race is indistinguishable to the
2795 * caller from the case that the additional cgroup users didn't
2796 * show up until sometime later on.
2797 */
2798 length = cgroup_task_count(cgrp);
2799 array = pidlist_allocate(length);
2800 if (!array)
2801 return -ENOMEM;
2802 /* now, populate the array */
2803 cgroup_iter_start(cgrp, &it);
2804 while ((tsk = cgroup_iter_next(cgrp, &it))) {
2805 if (unlikely(n == length))
2806 break;
2807 /* get tgid or pid for procs or tasks file respectively */
2808 if (type == CGROUP_FILE_PROCS)
2809 pid = task_tgid_vnr(tsk);
2810 else
2811 pid = task_pid_vnr(tsk);
2812 if (pid > 0) /* make sure to only use valid results */
2813 array[n++] = pid;
2814 }
2815 cgroup_iter_end(cgrp, &it);
2816 length = n;
2817 /* now sort & (if procs) strip out duplicates */
2818 sort(array, length, sizeof(pid_t), cmppid, NULL);
2819 if (type == CGROUP_FILE_PROCS)
2820 length = pidlist_uniq(&array, length);
2821 l = cgroup_pidlist_find(cgrp, type);
2822 if (!l) {
2823 pidlist_free(array);
2824 return -ENOMEM;
2825 }
2826 /* store array, freeing old if necessary - lock already held */
2827 pidlist_free(l->list);
2828 l->list = array;
2829 l->length = length;
2830 l->use_count++;
2831 up_write(&l->mutex);
2832 *lp = l;
2833 return 0;
2834 }
2835
2836 /**
2837 * cgroupstats_build - build and fill cgroupstats
2838 * @stats: cgroupstats to fill information into
2839 * @dentry: A dentry entry belonging to the cgroup for which stats have
2840 * been requested.
2841 *
2842 * Build and fill cgroupstats so that taskstats can export it to user
2843 * space.
2844 */
2845 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
2846 {
2847 int ret = -EINVAL;
2848 struct cgroup *cgrp;
2849 struct cgroup_iter it;
2850 struct task_struct *tsk;
2851
2852 /*
2853 * Validate dentry by checking the superblock operations,
2854 * and make sure it's a directory.
2855 */
2856 if (dentry->d_sb->s_op != &cgroup_ops ||
2857 !S_ISDIR(dentry->d_inode->i_mode))
2858 goto err;
2859
2860 ret = 0;
2861 cgrp = dentry->d_fsdata;
2862
2863 cgroup_iter_start(cgrp, &it);
2864 while ((tsk = cgroup_iter_next(cgrp, &it))) {
2865 switch (tsk->state) {
2866 case TASK_RUNNING:
2867 stats->nr_running++;
2868 break;
2869 case TASK_INTERRUPTIBLE:
2870 stats->nr_sleeping++;
2871 break;
2872 case TASK_UNINTERRUPTIBLE:
2873 stats->nr_uninterruptible++;
2874 break;
2875 case TASK_STOPPED:
2876 stats->nr_stopped++;
2877 break;
2878 default:
2879 if (delayacct_is_task_waiting_on_io(tsk))
2880 stats->nr_io_wait++;
2881 break;
2882 }
2883 }
2884 cgroup_iter_end(cgrp, &it);
2885
2886 err:
2887 return ret;
2888 }
2889
2890
2891 /*
2892 * seq_file methods for the tasks/procs files. The seq_file position is the
2893 * next pid to display; the seq_file iterator is a pointer to the pid
2894 * in the cgroup->l->list array.
2895 */
2896
2897 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
2898 {
2899 /*
2900 * Initially we receive a position value that corresponds to
2901 * one more than the last pid shown (or 0 on the first call or
2902 * after a seek to the start). Use a binary-search to find the
2903 * next pid to display, if any
2904 */
2905 struct cgroup_pidlist *l = s->private;
2906 int index = 0, pid = *pos;
2907 int *iter;
2908
2909 down_read(&l->mutex);
2910 if (pid) {
2911 int end = l->length;
2912
2913 while (index < end) {
2914 int mid = (index + end) / 2;
2915 if (l->list[mid] == pid) {
2916 index = mid;
2917 break;
2918 } else if (l->list[mid] <= pid)
2919 index = mid + 1;
2920 else
2921 end = mid;
2922 }
2923 }
2924 /* If we're off the end of the array, we're done */
2925 if (index >= l->length)
2926 return NULL;
2927 /* Update the abstract position to be the actual pid that we found */
2928 iter = l->list + index;
2929 *pos = *iter;
2930 return iter;
2931 }
2932
2933 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
2934 {
2935 struct cgroup_pidlist *l = s->private;
2936 up_read(&l->mutex);
2937 }
2938
2939 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
2940 {
2941 struct cgroup_pidlist *l = s->private;
2942 pid_t *p = v;
2943 pid_t *end = l->list + l->length;
2944 /*
2945 * Advance to the next pid in the array. If this goes off the
2946 * end, we're done
2947 */
2948 p++;
2949 if (p >= end) {
2950 return NULL;
2951 } else {
2952 *pos = *p;
2953 return p;
2954 }
2955 }
2956
2957 static int cgroup_pidlist_show(struct seq_file *s, void *v)
2958 {
2959 return seq_printf(s, "%d\n", *(int *)v);
2960 }
2961
2962 /*
2963 * seq_operations functions for iterating on pidlists through seq_file -
2964 * independent of whether it's tasks or procs
2965 */
2966 static const struct seq_operations cgroup_pidlist_seq_operations = {
2967 .start = cgroup_pidlist_start,
2968 .stop = cgroup_pidlist_stop,
2969 .next = cgroup_pidlist_next,
2970 .show = cgroup_pidlist_show,
2971 };
2972
2973 static void cgroup_release_pid_array(struct cgroup_pidlist *l)
2974 {
2975 /*
2976 * the case where we're the last user of this particular pidlist will
2977 * have us remove it from the cgroup's list, which entails taking the
2978 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
2979 * pidlist_mutex, we have to take pidlist_mutex first.
2980 */
2981 mutex_lock(&l->owner->pidlist_mutex);
2982 down_write(&l->mutex);
2983 BUG_ON(!l->use_count);
2984 if (!--l->use_count) {
2985 /* we're the last user if refcount is 0; remove and free */
2986 list_del(&l->links);
2987 mutex_unlock(&l->owner->pidlist_mutex);
2988 pidlist_free(l->list);
2989 put_pid_ns(l->key.ns);
2990 up_write(&l->mutex);
2991 kfree(l);
2992 return;
2993 }
2994 mutex_unlock(&l->owner->pidlist_mutex);
2995 up_write(&l->mutex);
2996 }
2997
2998 static int cgroup_pidlist_release(struct inode *inode, struct file *file)
2999 {
3000 struct cgroup_pidlist *l;
3001 if (!(file->f_mode & FMODE_READ))
3002 return 0;
3003 /*
3004 * the seq_file will only be initialized if the file was opened for
3005 * reading; hence we check if it's not null only in that case.
3006 */
3007 l = ((struct seq_file *)file->private_data)->private;
3008 cgroup_release_pid_array(l);
3009 return seq_release(inode, file);
3010 }
3011
3012 static const struct file_operations cgroup_pidlist_operations = {
3013 .read = seq_read,
3014 .llseek = seq_lseek,
3015 .write = cgroup_file_write,
3016 .release = cgroup_pidlist_release,
3017 };
3018
3019 /*
3020 * The following functions handle opens on a file that displays a pidlist
3021 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3022 * in the cgroup.
3023 */
3024 /* helper function for the two below it */
3025 static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
3026 {
3027 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
3028 struct cgroup_pidlist *l;
3029 int retval;
3030
3031 /* Nothing to do for write-only files */
3032 if (!(file->f_mode & FMODE_READ))
3033 return 0;
3034
3035 /* have the array populated */
3036 retval = pidlist_array_load(cgrp, type, &l);
3037 if (retval)
3038 return retval;
3039 /* configure file information */
3040 file->f_op = &cgroup_pidlist_operations;
3041
3042 retval = seq_open(file, &cgroup_pidlist_seq_operations);
3043 if (retval) {
3044 cgroup_release_pid_array(l);
3045 return retval;
3046 }
3047 ((struct seq_file *)file->private_data)->private = l;
3048 return 0;
3049 }
3050 static int cgroup_tasks_open(struct inode *unused, struct file *file)
3051 {
3052 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
3053 }
3054 static int cgroup_procs_open(struct inode *unused, struct file *file)
3055 {
3056 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
3057 }
3058
3059 static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
3060 struct cftype *cft)
3061 {
3062 return notify_on_release(cgrp);
3063 }
3064
3065 static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3066 struct cftype *cft,
3067 u64 val)
3068 {
3069 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3070 if (val)
3071 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3072 else
3073 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3074 return 0;
3075 }
3076
3077 /*
3078 * Unregister event and free resources.
3079 *
3080 * Gets called from workqueue.
3081 */
3082 static void cgroup_event_remove(struct work_struct *work)
3083 {
3084 struct cgroup_event *event = container_of(work, struct cgroup_event,
3085 remove);
3086 struct cgroup *cgrp = event->cgrp;
3087
3088 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3089
3090 eventfd_ctx_put(event->eventfd);
3091 kfree(event);
3092 dput(cgrp->dentry);
3093 }
3094
3095 /*
3096 * Gets called on POLLHUP on eventfd when user closes it.
3097 *
3098 * Called with wqh->lock held and interrupts disabled.
3099 */
3100 static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3101 int sync, void *key)
3102 {
3103 struct cgroup_event *event = container_of(wait,
3104 struct cgroup_event, wait);
3105 struct cgroup *cgrp = event->cgrp;
3106 unsigned long flags = (unsigned long)key;
3107
3108 if (flags & POLLHUP) {
3109 __remove_wait_queue(event->wqh, &event->wait);
3110 spin_lock(&cgrp->event_list_lock);
3111 list_del(&event->list);
3112 spin_unlock(&cgrp->event_list_lock);
3113 /*
3114 * We are in atomic context, but cgroup_event_remove() may
3115 * sleep, so we have to call it in workqueue.
3116 */
3117 schedule_work(&event->remove);
3118 }
3119
3120 return 0;
3121 }
3122
3123 static void cgroup_event_ptable_queue_proc(struct file *file,
3124 wait_queue_head_t *wqh, poll_table *pt)
3125 {
3126 struct cgroup_event *event = container_of(pt,
3127 struct cgroup_event, pt);
3128
3129 event->wqh = wqh;
3130 add_wait_queue(wqh, &event->wait);
3131 }
3132
3133 /*
3134 * Parse input and register new cgroup event handler.
3135 *
3136 * Input must be in format '<event_fd> <control_fd> <args>'.
3137 * Interpretation of args is defined by control file implementation.
3138 */
3139 static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3140 const char *buffer)
3141 {
3142 struct cgroup_event *event = NULL;
3143 unsigned int efd, cfd;
3144 struct file *efile = NULL;
3145 struct file *cfile = NULL;
3146 char *endp;
3147 int ret;
3148
3149 efd = simple_strtoul(buffer, &endp, 10);
3150 if (*endp != ' ')
3151 return -EINVAL;
3152 buffer = endp + 1;
3153
3154 cfd = simple_strtoul(buffer, &endp, 10);
3155 if ((*endp != ' ') && (*endp != '\0'))
3156 return -EINVAL;
3157 buffer = endp + 1;
3158
3159 event = kzalloc(sizeof(*event), GFP_KERNEL);
3160 if (!event)
3161 return -ENOMEM;
3162 event->cgrp = cgrp;
3163 INIT_LIST_HEAD(&event->list);
3164 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3165 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3166 INIT_WORK(&event->remove, cgroup_event_remove);
3167
3168 efile = eventfd_fget(efd);
3169 if (IS_ERR(efile)) {
3170 ret = PTR_ERR(efile);
3171 goto fail;
3172 }
3173
3174 event->eventfd = eventfd_ctx_fileget(efile);
3175 if (IS_ERR(event->eventfd)) {
3176 ret = PTR_ERR(event->eventfd);
3177 goto fail;
3178 }
3179
3180 cfile = fget(cfd);
3181 if (!cfile) {
3182 ret = -EBADF;
3183 goto fail;
3184 }
3185
3186 /* the process need read permission on control file */
3187 ret = file_permission(cfile, MAY_READ);
3188 if (ret < 0)
3189 goto fail;
3190
3191 event->cft = __file_cft(cfile);
3192 if (IS_ERR(event->cft)) {
3193 ret = PTR_ERR(event->cft);
3194 goto fail;
3195 }
3196
3197 if (!event->cft->register_event || !event->cft->unregister_event) {
3198 ret = -EINVAL;
3199 goto fail;
3200 }
3201
3202 ret = event->cft->register_event(cgrp, event->cft,
3203 event->eventfd, buffer);
3204 if (ret)
3205 goto fail;
3206
3207 if (efile->f_op->poll(efile, &event->pt) & POLLHUP) {
3208 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3209 ret = 0;
3210 goto fail;
3211 }
3212
3213 /*
3214 * Events should be removed after rmdir of cgroup directory, but before
3215 * destroying subsystem state objects. Let's take reference to cgroup
3216 * directory dentry to do that.
3217 */
3218 dget(cgrp->dentry);
3219
3220 spin_lock(&cgrp->event_list_lock);
3221 list_add(&event->list, &cgrp->event_list);
3222 spin_unlock(&cgrp->event_list_lock);
3223
3224 fput(cfile);
3225 fput(efile);
3226
3227 return 0;
3228
3229 fail:
3230 if (cfile)
3231 fput(cfile);
3232
3233 if (event && event->eventfd && !IS_ERR(event->eventfd))
3234 eventfd_ctx_put(event->eventfd);
3235
3236 if (!IS_ERR_OR_NULL(efile))
3237 fput(efile);
3238
3239 kfree(event);
3240
3241 return ret;
3242 }
3243
3244 static u64 cgroup_clone_children_read(struct cgroup *cgrp,
3245 struct cftype *cft)
3246 {
3247 return clone_children(cgrp);
3248 }
3249
3250 static int cgroup_clone_children_write(struct cgroup *cgrp,
3251 struct cftype *cft,
3252 u64 val)
3253 {
3254 if (val)
3255 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3256 else
3257 clear_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3258 return 0;
3259 }
3260
3261 /*
3262 * for the common functions, 'private' gives the type of file
3263 */
3264 /* for hysterical raisins, we can't put this on the older files */
3265 #define CGROUP_FILE_GENERIC_PREFIX "cgroup."
3266 static struct cftype files[] = {
3267 {
3268 .name = "tasks",
3269 .open = cgroup_tasks_open,
3270 .write_u64 = cgroup_tasks_write,
3271 .release = cgroup_pidlist_release,
3272 .mode = S_IRUGO | S_IWUSR,
3273 },
3274 {
3275 .name = CGROUP_FILE_GENERIC_PREFIX "procs",
3276 .open = cgroup_procs_open,
3277 /* .write_u64 = cgroup_procs_write, TODO */
3278 .release = cgroup_pidlist_release,
3279 .mode = S_IRUGO,
3280 },
3281 {
3282 .name = "notify_on_release",
3283 .read_u64 = cgroup_read_notify_on_release,
3284 .write_u64 = cgroup_write_notify_on_release,
3285 },
3286 {
3287 .name = CGROUP_FILE_GENERIC_PREFIX "event_control",
3288 .write_string = cgroup_write_event_control,
3289 .mode = S_IWUGO,
3290 },
3291 {
3292 .name = "cgroup.clone_children",
3293 .read_u64 = cgroup_clone_children_read,
3294 .write_u64 = cgroup_clone_children_write,
3295 },
3296 };
3297
3298 static struct cftype cft_release_agent = {
3299 .name = "release_agent",
3300 .read_seq_string = cgroup_release_agent_show,
3301 .write_string = cgroup_release_agent_write,
3302 .max_write_len = PATH_MAX,
3303 };
3304
3305 static int cgroup_populate_dir(struct cgroup *cgrp)
3306 {
3307 int err;
3308 struct cgroup_subsys *ss;
3309
3310 /* First clear out any existing files */
3311 cgroup_clear_directory(cgrp->dentry);
3312
3313 err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
3314 if (err < 0)
3315 return err;
3316
3317 if (cgrp == cgrp->top_cgroup) {
3318 if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
3319 return err;
3320 }
3321
3322 for_each_subsys(cgrp->root, ss) {
3323 if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
3324 return err;
3325 }
3326 /* This cgroup is ready now */
3327 for_each_subsys(cgrp->root, ss) {
3328 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3329 /*
3330 * Update id->css pointer and make this css visible from
3331 * CSS ID functions. This pointer will be dereferened
3332 * from RCU-read-side without locks.
3333 */
3334 if (css->id)
3335 rcu_assign_pointer(css->id->css, css);
3336 }
3337
3338 return 0;
3339 }
3340
3341 static void init_cgroup_css(struct cgroup_subsys_state *css,
3342 struct cgroup_subsys *ss,
3343 struct cgroup *cgrp)
3344 {
3345 css->cgroup = cgrp;
3346 atomic_set(&css->refcnt, 1);
3347 css->flags = 0;
3348 css->id = NULL;
3349 if (cgrp == dummytop)
3350 set_bit(CSS_ROOT, &css->flags);
3351 BUG_ON(cgrp->subsys[ss->subsys_id]);
3352 cgrp->subsys[ss->subsys_id] = css;
3353 }
3354
3355 static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
3356 {
3357 /* We need to take each hierarchy_mutex in a consistent order */
3358 int i;
3359
3360 /*
3361 * No worry about a race with rebind_subsystems that might mess up the
3362 * locking order, since both parties are under cgroup_mutex.
3363 */
3364 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3365 struct cgroup_subsys *ss = subsys[i];
3366 if (ss == NULL)
3367 continue;
3368 if (ss->root == root)
3369 mutex_lock(&ss->hierarchy_mutex);
3370 }
3371 }
3372
3373 static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
3374 {
3375 int i;
3376
3377 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3378 struct cgroup_subsys *ss = subsys[i];
3379 if (ss == NULL)
3380 continue;
3381 if (ss->root == root)
3382 mutex_unlock(&ss->hierarchy_mutex);
3383 }
3384 }
3385
3386 /*
3387 * cgroup_create - create a cgroup
3388 * @parent: cgroup that will be parent of the new cgroup
3389 * @dentry: dentry of the new cgroup
3390 * @mode: mode to set on new inode
3391 *
3392 * Must be called with the mutex on the parent inode held
3393 */
3394 static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
3395 mode_t mode)
3396 {
3397 struct cgroup *cgrp;
3398 struct cgroupfs_root *root = parent->root;
3399 int err = 0;
3400 struct cgroup_subsys *ss;
3401 struct super_block *sb = root->sb;
3402
3403 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
3404 if (!cgrp)
3405 return -ENOMEM;
3406
3407 /* Grab a reference on the superblock so the hierarchy doesn't
3408 * get deleted on unmount if there are child cgroups. This
3409 * can be done outside cgroup_mutex, since the sb can't
3410 * disappear while someone has an open control file on the
3411 * fs */
3412 atomic_inc(&sb->s_active);
3413
3414 mutex_lock(&cgroup_mutex);
3415
3416 init_cgroup_housekeeping(cgrp);
3417
3418 cgrp->parent = parent;
3419 cgrp->root = parent->root;
3420 cgrp->top_cgroup = parent->top_cgroup;
3421
3422 if (notify_on_release(parent))
3423 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3424
3425 if (clone_children(parent))
3426 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3427
3428 for_each_subsys(root, ss) {
3429 struct cgroup_subsys_state *css = ss->create(ss, cgrp);
3430
3431 if (IS_ERR(css)) {
3432 err = PTR_ERR(css);
3433 goto err_destroy;
3434 }
3435 init_cgroup_css(css, ss, cgrp);
3436 if (ss->use_id) {
3437 err = alloc_css_id(ss, parent, cgrp);
3438 if (err)
3439 goto err_destroy;
3440 }
3441 /* At error, ->destroy() callback has to free assigned ID. */
3442 if (clone_children(parent) && ss->post_clone)
3443 ss->post_clone(ss, cgrp);
3444 }
3445
3446 cgroup_lock_hierarchy(root);
3447 list_add(&cgrp->sibling, &cgrp->parent->children);
3448 cgroup_unlock_hierarchy(root);
3449 root->number_of_cgroups++;
3450
3451 err = cgroup_create_dir(cgrp, dentry, mode);
3452 if (err < 0)
3453 goto err_remove;
3454
3455 /* The cgroup directory was pre-locked for us */
3456 BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
3457
3458 err = cgroup_populate_dir(cgrp);
3459 /* If err < 0, we have a half-filled directory - oh well ;) */
3460
3461 mutex_unlock(&cgroup_mutex);
3462 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
3463
3464 return 0;
3465
3466 err_remove:
3467
3468 cgroup_lock_hierarchy(root);
3469 list_del(&cgrp->sibling);
3470 cgroup_unlock_hierarchy(root);
3471 root->number_of_cgroups--;
3472
3473 err_destroy:
3474
3475 for_each_subsys(root, ss) {
3476 if (cgrp->subsys[ss->subsys_id])
3477 ss->destroy(ss, cgrp);
3478 }
3479
3480 mutex_unlock(&cgroup_mutex);
3481
3482 /* Release the reference count that we took on the superblock */
3483 deactivate_super(sb);
3484
3485 kfree(cgrp);
3486 return err;
3487 }
3488
3489 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
3490 {
3491 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
3492
3493 /* the vfs holds inode->i_mutex already */
3494 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
3495 }
3496
3497 static int cgroup_has_css_refs(struct cgroup *cgrp)
3498 {
3499 /* Check the reference count on each subsystem. Since we
3500 * already established that there are no tasks in the
3501 * cgroup, if the css refcount is also 1, then there should
3502 * be no outstanding references, so the subsystem is safe to
3503 * destroy. We scan across all subsystems rather than using
3504 * the per-hierarchy linked list of mounted subsystems since
3505 * we can be called via check_for_release() with no
3506 * synchronization other than RCU, and the subsystem linked
3507 * list isn't RCU-safe */
3508 int i;
3509 /*
3510 * We won't need to lock the subsys array, because the subsystems
3511 * we're concerned about aren't going anywhere since our cgroup root
3512 * has a reference on them.
3513 */
3514 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3515 struct cgroup_subsys *ss = subsys[i];
3516 struct cgroup_subsys_state *css;
3517 /* Skip subsystems not present or not in this hierarchy */
3518 if (ss == NULL || ss->root != cgrp->root)
3519 continue;
3520 css = cgrp->subsys[ss->subsys_id];
3521 /* When called from check_for_release() it's possible
3522 * that by this point the cgroup has been removed
3523 * and the css deleted. But a false-positive doesn't
3524 * matter, since it can only happen if the cgroup
3525 * has been deleted and hence no longer needs the
3526 * release agent to be called anyway. */
3527 if (css && (atomic_read(&css->refcnt) > 1))
3528 return 1;
3529 }
3530 return 0;
3531 }
3532
3533 /*
3534 * Atomically mark all (or else none) of the cgroup's CSS objects as
3535 * CSS_REMOVED. Return true on success, or false if the cgroup has
3536 * busy subsystems. Call with cgroup_mutex held
3537 */
3538
3539 static int cgroup_clear_css_refs(struct cgroup *cgrp)
3540 {
3541 struct cgroup_subsys *ss;
3542 unsigned long flags;
3543 bool failed = false;
3544 local_irq_save(flags);
3545 for_each_subsys(cgrp->root, ss) {
3546 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3547 int refcnt;
3548 while (1) {
3549 /* We can only remove a CSS with a refcnt==1 */
3550 refcnt = atomic_read(&css->refcnt);
3551 if (refcnt > 1) {
3552 failed = true;
3553 goto done;
3554 }
3555 BUG_ON(!refcnt);
3556 /*
3557 * Drop the refcnt to 0 while we check other
3558 * subsystems. This will cause any racing
3559 * css_tryget() to spin until we set the
3560 * CSS_REMOVED bits or abort
3561 */
3562 if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt)
3563 break;
3564 cpu_relax();
3565 }
3566 }
3567 done:
3568 for_each_subsys(cgrp->root, ss) {
3569 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3570 if (failed) {
3571 /*
3572 * Restore old refcnt if we previously managed
3573 * to clear it from 1 to 0
3574 */
3575 if (!atomic_read(&css->refcnt))
3576 atomic_set(&css->refcnt, 1);
3577 } else {
3578 /* Commit the fact that the CSS is removed */
3579 set_bit(CSS_REMOVED, &css->flags);
3580 }
3581 }
3582 local_irq_restore(flags);
3583 return !failed;
3584 }
3585
3586 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
3587 {
3588 struct cgroup *cgrp = dentry->d_fsdata;
3589 struct dentry *d;
3590 struct cgroup *parent;
3591 DEFINE_WAIT(wait);
3592 struct cgroup_event *event, *tmp;
3593 int ret;
3594
3595 /* the vfs holds both inode->i_mutex already */
3596 again:
3597 mutex_lock(&cgroup_mutex);
3598 if (atomic_read(&cgrp->count) != 0) {
3599 mutex_unlock(&cgroup_mutex);
3600 return -EBUSY;
3601 }
3602 if (!list_empty(&cgrp->children)) {
3603 mutex_unlock(&cgroup_mutex);
3604 return -EBUSY;
3605 }
3606 mutex_unlock(&cgroup_mutex);
3607
3608 /*
3609 * In general, subsystem has no css->refcnt after pre_destroy(). But
3610 * in racy cases, subsystem may have to get css->refcnt after
3611 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
3612 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
3613 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
3614 * and subsystem's reference count handling. Please see css_get/put
3615 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
3616 */
3617 set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3618
3619 /*
3620 * Call pre_destroy handlers of subsys. Notify subsystems
3621 * that rmdir() request comes.
3622 */
3623 ret = cgroup_call_pre_destroy(cgrp);
3624 if (ret) {
3625 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3626 return ret;
3627 }
3628
3629 mutex_lock(&cgroup_mutex);
3630 parent = cgrp->parent;
3631 if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
3632 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3633 mutex_unlock(&cgroup_mutex);
3634 return -EBUSY;
3635 }
3636 prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
3637 if (!cgroup_clear_css_refs(cgrp)) {
3638 mutex_unlock(&cgroup_mutex);
3639 /*
3640 * Because someone may call cgroup_wakeup_rmdir_waiter() before
3641 * prepare_to_wait(), we need to check this flag.
3642 */
3643 if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))
3644 schedule();
3645 finish_wait(&cgroup_rmdir_waitq, &wait);
3646 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3647 if (signal_pending(current))
3648 return -EINTR;
3649 goto again;
3650 }
3651 /* NO css_tryget() can success after here. */
3652 finish_wait(&cgroup_rmdir_waitq, &wait);
3653 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3654
3655 spin_lock(&release_list_lock);
3656 set_bit(CGRP_REMOVED, &cgrp->flags);
3657 if (!list_empty(&cgrp->release_list))
3658 list_del(&cgrp->release_list);
3659 spin_unlock(&release_list_lock);
3660
3661 cgroup_lock_hierarchy(cgrp->root);
3662 /* delete this cgroup from parent->children */
3663 list_del(&cgrp->sibling);
3664 cgroup_unlock_hierarchy(cgrp->root);
3665
3666 d = dget(cgrp->dentry);
3667
3668 cgroup_d_remove_dir(d);
3669 dput(d);
3670
3671 set_bit(CGRP_RELEASABLE, &parent->flags);
3672 check_for_release(parent);
3673
3674 /*
3675 * Unregister events and notify userspace.
3676 * Notify userspace about cgroup removing only after rmdir of cgroup
3677 * directory to avoid race between userspace and kernelspace
3678 */
3679 spin_lock(&cgrp->event_list_lock);
3680 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
3681 list_del(&event->list);
3682 remove_wait_queue(event->wqh, &event->wait);
3683 eventfd_signal(event->eventfd, 1);
3684 schedule_work(&event->remove);
3685 }
3686 spin_unlock(&cgrp->event_list_lock);
3687
3688 mutex_unlock(&cgroup_mutex);
3689 return 0;
3690 }
3691
3692 static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
3693 {
3694 struct cgroup_subsys_state *css;
3695
3696 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
3697
3698 /* Create the top cgroup state for this subsystem */
3699 list_add(&ss->sibling, &rootnode.subsys_list);
3700 ss->root = &rootnode;
3701 css = ss->create(ss, dummytop);
3702 /* We don't handle early failures gracefully */
3703 BUG_ON(IS_ERR(css));
3704 init_cgroup_css(css, ss, dummytop);
3705
3706 /* Update the init_css_set to contain a subsys
3707 * pointer to this state - since the subsystem is
3708 * newly registered, all tasks and hence the
3709 * init_css_set is in the subsystem's top cgroup. */
3710 init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
3711
3712 need_forkexit_callback |= ss->fork || ss->exit;
3713
3714 /* At system boot, before all subsystems have been
3715 * registered, no tasks have been forked, so we don't
3716 * need to invoke fork callbacks here. */
3717 BUG_ON(!list_empty(&init_task.tasks));
3718
3719 mutex_init(&ss->hierarchy_mutex);
3720 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
3721 ss->active = 1;
3722
3723 /* this function shouldn't be used with modular subsystems, since they
3724 * need to register a subsys_id, among other things */
3725 BUG_ON(ss->module);
3726 }
3727
3728 /**
3729 * cgroup_load_subsys: load and register a modular subsystem at runtime
3730 * @ss: the subsystem to load
3731 *
3732 * This function should be called in a modular subsystem's initcall. If the
3733 * subsystem is built as a module, it will be assigned a new subsys_id and set
3734 * up for use. If the subsystem is built-in anyway, work is delegated to the
3735 * simpler cgroup_init_subsys.
3736 */
3737 int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
3738 {
3739 int i;
3740 struct cgroup_subsys_state *css;
3741
3742 /* check name and function validity */
3743 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
3744 ss->create == NULL || ss->destroy == NULL)
3745 return -EINVAL;
3746
3747 /*
3748 * we don't support callbacks in modular subsystems. this check is
3749 * before the ss->module check for consistency; a subsystem that could
3750 * be a module should still have no callbacks even if the user isn't
3751 * compiling it as one.
3752 */
3753 if (ss->fork || ss->exit)
3754 return -EINVAL;
3755
3756 /*
3757 * an optionally modular subsystem is built-in: we want to do nothing,
3758 * since cgroup_init_subsys will have already taken care of it.
3759 */
3760 if (ss->module == NULL) {
3761 /* a few sanity checks */
3762 BUG_ON(ss->subsys_id >= CGROUP_BUILTIN_SUBSYS_COUNT);
3763 BUG_ON(subsys[ss->subsys_id] != ss);
3764 return 0;
3765 }
3766
3767 /*
3768 * need to register a subsys id before anything else - for example,
3769 * init_cgroup_css needs it.
3770 */
3771 mutex_lock(&cgroup_mutex);
3772 /* find the first empty slot in the array */
3773 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
3774 if (subsys[i] == NULL)
3775 break;
3776 }
3777 if (i == CGROUP_SUBSYS_COUNT) {
3778 /* maximum number of subsystems already registered! */
3779 mutex_unlock(&cgroup_mutex);
3780 return -EBUSY;
3781 }
3782 /* assign ourselves the subsys_id */
3783 ss->subsys_id = i;
3784 subsys[i] = ss;
3785
3786 /*
3787 * no ss->create seems to need anything important in the ss struct, so
3788 * this can happen first (i.e. before the rootnode attachment).
3789 */
3790 css = ss->create(ss, dummytop);
3791 if (IS_ERR(css)) {
3792 /* failure case - need to deassign the subsys[] slot. */
3793 subsys[i] = NULL;
3794 mutex_unlock(&cgroup_mutex);
3795 return PTR_ERR(css);
3796 }
3797
3798 list_add(&ss->sibling, &rootnode.subsys_list);
3799 ss->root = &rootnode;
3800
3801 /* our new subsystem will be attached to the dummy hierarchy. */
3802 init_cgroup_css(css, ss, dummytop);
3803 /* init_idr must be after init_cgroup_css because it sets css->id. */
3804 if (ss->use_id) {
3805 int ret = cgroup_init_idr(ss, css);
3806 if (ret) {
3807 dummytop->subsys[ss->subsys_id] = NULL;
3808 ss->destroy(ss, dummytop);
3809 subsys[i] = NULL;
3810 mutex_unlock(&cgroup_mutex);
3811 return ret;
3812 }
3813 }
3814
3815 /*
3816 * Now we need to entangle the css into the existing css_sets. unlike
3817 * in cgroup_init_subsys, there are now multiple css_sets, so each one
3818 * will need a new pointer to it; done by iterating the css_set_table.
3819 * furthermore, modifying the existing css_sets will corrupt the hash
3820 * table state, so each changed css_set will need its hash recomputed.
3821 * this is all done under the css_set_lock.
3822 */
3823 write_lock(&css_set_lock);
3824 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
3825 struct css_set *cg;
3826 struct hlist_node *node, *tmp;
3827 struct hlist_head *bucket = &css_set_table[i], *new_bucket;
3828
3829 hlist_for_each_entry_safe(cg, node, tmp, bucket, hlist) {
3830 /* skip entries that we already rehashed */
3831 if (cg->subsys[ss->subsys_id])
3832 continue;
3833 /* remove existing entry */
3834 hlist_del(&cg->hlist);
3835 /* set new value */
3836 cg->subsys[ss->subsys_id] = css;
3837 /* recompute hash and restore entry */
3838 new_bucket = css_set_hash(cg->subsys);
3839 hlist_add_head(&cg->hlist, new_bucket);
3840 }
3841 }
3842 write_unlock(&css_set_lock);
3843
3844 mutex_init(&ss->hierarchy_mutex);
3845 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
3846 ss->active = 1;
3847
3848 /* success! */
3849 mutex_unlock(&cgroup_mutex);
3850 return 0;
3851 }
3852 EXPORT_SYMBOL_GPL(cgroup_load_subsys);
3853
3854 /**
3855 * cgroup_unload_subsys: unload a modular subsystem
3856 * @ss: the subsystem to unload
3857 *
3858 * This function should be called in a modular subsystem's exitcall. When this
3859 * function is invoked, the refcount on the subsystem's module will be 0, so
3860 * the subsystem will not be attached to any hierarchy.
3861 */
3862 void cgroup_unload_subsys(struct cgroup_subsys *ss)
3863 {
3864 struct cg_cgroup_link *link;
3865 struct hlist_head *hhead;
3866
3867 BUG_ON(ss->module == NULL);
3868
3869 /*
3870 * we shouldn't be called if the subsystem is in use, and the use of
3871 * try_module_get in parse_cgroupfs_options should ensure that it
3872 * doesn't start being used while we're killing it off.
3873 */
3874 BUG_ON(ss->root != &rootnode);
3875
3876 mutex_lock(&cgroup_mutex);
3877 /* deassign the subsys_id */
3878 BUG_ON(ss->subsys_id < CGROUP_BUILTIN_SUBSYS_COUNT);
3879 subsys[ss->subsys_id] = NULL;
3880
3881 /* remove subsystem from rootnode's list of subsystems */
3882 list_del(&ss->sibling);
3883
3884 /*
3885 * disentangle the css from all css_sets attached to the dummytop. as
3886 * in loading, we need to pay our respects to the hashtable gods.
3887 */
3888 write_lock(&css_set_lock);
3889 list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
3890 struct css_set *cg = link->cg;
3891
3892 hlist_del(&cg->hlist);
3893 BUG_ON(!cg->subsys[ss->subsys_id]);
3894 cg->subsys[ss->subsys_id] = NULL;
3895 hhead = css_set_hash(cg->subsys);
3896 hlist_add_head(&cg->hlist, hhead);
3897 }
3898 write_unlock(&css_set_lock);
3899
3900 /*
3901 * remove subsystem's css from the dummytop and free it - need to free
3902 * before marking as null because ss->destroy needs the cgrp->subsys
3903 * pointer to find their state. note that this also takes care of
3904 * freeing the css_id.
3905 */
3906 ss->destroy(ss, dummytop);
3907 dummytop->subsys[ss->subsys_id] = NULL;
3908
3909 mutex_unlock(&cgroup_mutex);
3910 }
3911 EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
3912
3913 /**
3914 * cgroup_init_early - cgroup initialization at system boot
3915 *
3916 * Initialize cgroups at system boot, and initialize any
3917 * subsystems that request early init.
3918 */
3919 int __init cgroup_init_early(void)
3920 {
3921 int i;
3922 atomic_set(&init_css_set.refcount, 1);
3923 INIT_LIST_HEAD(&init_css_set.cg_links);
3924 INIT_LIST_HEAD(&init_css_set.tasks);
3925 INIT_HLIST_NODE(&init_css_set.hlist);
3926 css_set_count = 1;
3927 init_cgroup_root(&rootnode);
3928 root_count = 1;
3929 init_task.cgroups = &init_css_set;
3930
3931 init_css_set_link.cg = &init_css_set;
3932 init_css_set_link.cgrp = dummytop;
3933 list_add(&init_css_set_link.cgrp_link_list,
3934 &rootnode.top_cgroup.css_sets);
3935 list_add(&init_css_set_link.cg_link_list,
3936 &init_css_set.cg_links);
3937
3938 for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
3939 INIT_HLIST_HEAD(&css_set_table[i]);
3940
3941 /* at bootup time, we don't worry about modular subsystems */
3942 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
3943 struct cgroup_subsys *ss = subsys[i];
3944
3945 BUG_ON(!ss->name);
3946 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
3947 BUG_ON(!ss->create);
3948 BUG_ON(!ss->destroy);
3949 if (ss->subsys_id != i) {
3950 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
3951 ss->name, ss->subsys_id);
3952 BUG();
3953 }
3954
3955 if (ss->early_init)
3956 cgroup_init_subsys(ss);
3957 }
3958 return 0;
3959 }
3960
3961 /**
3962 * cgroup_init - cgroup initialization
3963 *
3964 * Register cgroup filesystem and /proc file, and initialize
3965 * any subsystems that didn't request early init.
3966 */
3967 int __init cgroup_init(void)
3968 {
3969 int err;
3970 int i;
3971 struct hlist_head *hhead;
3972
3973 err = bdi_init(&cgroup_backing_dev_info);
3974 if (err)
3975 return err;
3976
3977 /* at bootup time, we don't worry about modular subsystems */
3978 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
3979 struct cgroup_subsys *ss = subsys[i];
3980 if (!ss->early_init)
3981 cgroup_init_subsys(ss);
3982 if (ss->use_id)
3983 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
3984 }
3985
3986 /* Add init_css_set to the hash table */
3987 hhead = css_set_hash(init_css_set.subsys);
3988 hlist_add_head(&init_css_set.hlist, hhead);
3989 BUG_ON(!init_root_id(&rootnode));
3990
3991 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
3992 if (!cgroup_kobj) {
3993 err = -ENOMEM;
3994 goto out;
3995 }
3996
3997 err = register_filesystem(&cgroup_fs_type);
3998 if (err < 0) {
3999 kobject_put(cgroup_kobj);
4000 goto out;
4001 }
4002
4003 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
4004
4005 out:
4006 if (err)
4007 bdi_destroy(&cgroup_backing_dev_info);
4008
4009 return err;
4010 }
4011
4012 /*
4013 * proc_cgroup_show()
4014 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4015 * - Used for /proc/<pid>/cgroup.
4016 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4017 * doesn't really matter if tsk->cgroup changes after we read it,
4018 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
4019 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4020 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4021 * cgroup to top_cgroup.
4022 */
4023
4024 /* TODO: Use a proper seq_file iterator */
4025 static int proc_cgroup_show(struct seq_file *m, void *v)
4026 {
4027 struct pid *pid;
4028 struct task_struct *tsk;
4029 char *buf;
4030 int retval;
4031 struct cgroupfs_root *root;
4032
4033 retval = -ENOMEM;
4034 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4035 if (!buf)
4036 goto out;
4037
4038 retval = -ESRCH;
4039 pid = m->private;
4040 tsk = get_pid_task(pid, PIDTYPE_PID);
4041 if (!tsk)
4042 goto out_free;
4043
4044 retval = 0;
4045
4046 mutex_lock(&cgroup_mutex);
4047
4048 for_each_active_root(root) {
4049 struct cgroup_subsys *ss;
4050 struct cgroup *cgrp;
4051 int count = 0;
4052
4053 seq_printf(m, "%d:", root->hierarchy_id);
4054 for_each_subsys(root, ss)
4055 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
4056 if (strlen(root->name))
4057 seq_printf(m, "%sname=%s", count ? "," : "",
4058 root->name);
4059 seq_putc(m, ':');
4060 cgrp = task_cgroup_from_root(tsk, root);
4061 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
4062 if (retval < 0)
4063 goto out_unlock;
4064 seq_puts(m, buf);
4065 seq_putc(m, '\n');
4066 }
4067
4068 out_unlock:
4069 mutex_unlock(&cgroup_mutex);
4070 put_task_struct(tsk);
4071 out_free:
4072 kfree(buf);
4073 out:
4074 return retval;
4075 }
4076
4077 static int cgroup_open(struct inode *inode, struct file *file)
4078 {
4079 struct pid *pid = PROC_I(inode)->pid;
4080 return single_open(file, proc_cgroup_show, pid);
4081 }
4082
4083 const struct file_operations proc_cgroup_operations = {
4084 .open = cgroup_open,
4085 .read = seq_read,
4086 .llseek = seq_lseek,
4087 .release = single_release,
4088 };
4089
4090 /* Display information about each subsystem and each hierarchy */
4091 static int proc_cgroupstats_show(struct seq_file *m, void *v)
4092 {
4093 int i;
4094
4095 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
4096 /*
4097 * ideally we don't want subsystems moving around while we do this.
4098 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4099 * subsys/hierarchy state.
4100 */
4101 mutex_lock(&cgroup_mutex);
4102 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4103 struct cgroup_subsys *ss = subsys[i];
4104 if (ss == NULL)
4105 continue;
4106 seq_printf(m, "%s\t%d\t%d\t%d\n",
4107 ss->name, ss->root->hierarchy_id,
4108 ss->root->number_of_cgroups, !ss->disabled);
4109 }
4110 mutex_unlock(&cgroup_mutex);
4111 return 0;
4112 }
4113
4114 static int cgroupstats_open(struct inode *inode, struct file *file)
4115 {
4116 return single_open(file, proc_cgroupstats_show, NULL);
4117 }
4118
4119 static const struct file_operations proc_cgroupstats_operations = {
4120 .open = cgroupstats_open,
4121 .read = seq_read,
4122 .llseek = seq_lseek,
4123 .release = single_release,
4124 };
4125
4126 /**
4127 * cgroup_fork - attach newly forked task to its parents cgroup.
4128 * @child: pointer to task_struct of forking parent process.
4129 *
4130 * Description: A task inherits its parent's cgroup at fork().
4131 *
4132 * A pointer to the shared css_set was automatically copied in
4133 * fork.c by dup_task_struct(). However, we ignore that copy, since
4134 * it was not made under the protection of RCU or cgroup_mutex, so
4135 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
4136 * have already changed current->cgroups, allowing the previously
4137 * referenced cgroup group to be removed and freed.
4138 *
4139 * At the point that cgroup_fork() is called, 'current' is the parent
4140 * task, and the passed argument 'child' points to the child task.
4141 */
4142 void cgroup_fork(struct task_struct *child)
4143 {
4144 task_lock(current);
4145 child->cgroups = current->cgroups;
4146 get_css_set(child->cgroups);
4147 task_unlock(current);
4148 INIT_LIST_HEAD(&child->cg_list);
4149 }
4150
4151 /**
4152 * cgroup_fork_callbacks - run fork callbacks
4153 * @child: the new task
4154 *
4155 * Called on a new task very soon before adding it to the
4156 * tasklist. No need to take any locks since no-one can
4157 * be operating on this task.
4158 */
4159 void cgroup_fork_callbacks(struct task_struct *child)
4160 {
4161 if (need_forkexit_callback) {
4162 int i;
4163 /*
4164 * forkexit callbacks are only supported for builtin
4165 * subsystems, and the builtin section of the subsys array is
4166 * immutable, so we don't need to lock the subsys array here.
4167 */
4168 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4169 struct cgroup_subsys *ss = subsys[i];
4170 if (ss->fork)
4171 ss->fork(ss, child);
4172 }
4173 }
4174 }
4175
4176 /**
4177 * cgroup_post_fork - called on a new task after adding it to the task list
4178 * @child: the task in question
4179 *
4180 * Adds the task to the list running through its css_set if necessary.
4181 * Has to be after the task is visible on the task list in case we race
4182 * with the first call to cgroup_iter_start() - to guarantee that the
4183 * new task ends up on its list.
4184 */
4185 void cgroup_post_fork(struct task_struct *child)
4186 {
4187 if (use_task_css_set_links) {
4188 write_lock(&css_set_lock);
4189 task_lock(child);
4190 if (list_empty(&child->cg_list))
4191 list_add(&child->cg_list, &child->cgroups->tasks);
4192 task_unlock(child);
4193 write_unlock(&css_set_lock);
4194 }
4195 }
4196 /**
4197 * cgroup_exit - detach cgroup from exiting task
4198 * @tsk: pointer to task_struct of exiting process
4199 * @run_callback: run exit callbacks?
4200 *
4201 * Description: Detach cgroup from @tsk and release it.
4202 *
4203 * Note that cgroups marked notify_on_release force every task in
4204 * them to take the global cgroup_mutex mutex when exiting.
4205 * This could impact scaling on very large systems. Be reluctant to
4206 * use notify_on_release cgroups where very high task exit scaling
4207 * is required on large systems.
4208 *
4209 * the_top_cgroup_hack:
4210 *
4211 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4212 *
4213 * We call cgroup_exit() while the task is still competent to
4214 * handle notify_on_release(), then leave the task attached to the
4215 * root cgroup in each hierarchy for the remainder of its exit.
4216 *
4217 * To do this properly, we would increment the reference count on
4218 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4219 * code we would add a second cgroup function call, to drop that
4220 * reference. This would just create an unnecessary hot spot on
4221 * the top_cgroup reference count, to no avail.
4222 *
4223 * Normally, holding a reference to a cgroup without bumping its
4224 * count is unsafe. The cgroup could go away, or someone could
4225 * attach us to a different cgroup, decrementing the count on
4226 * the first cgroup that we never incremented. But in this case,
4227 * top_cgroup isn't going away, and either task has PF_EXITING set,
4228 * which wards off any cgroup_attach_task() attempts, or task is a failed
4229 * fork, never visible to cgroup_attach_task.
4230 */
4231 void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4232 {
4233 int i;
4234 struct css_set *cg;
4235
4236 if (run_callbacks && need_forkexit_callback) {
4237 /*
4238 * modular subsystems can't use callbacks, so no need to lock
4239 * the subsys array
4240 */
4241 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4242 struct cgroup_subsys *ss = subsys[i];
4243 if (ss->exit)
4244 ss->exit(ss, tsk);
4245 }
4246 }
4247
4248 /*
4249 * Unlink from the css_set task list if necessary.
4250 * Optimistically check cg_list before taking
4251 * css_set_lock
4252 */
4253 if (!list_empty(&tsk->cg_list)) {
4254 write_lock(&css_set_lock);
4255 if (!list_empty(&tsk->cg_list))
4256 list_del(&tsk->cg_list);
4257 write_unlock(&css_set_lock);
4258 }
4259
4260 /* Reassign the task to the init_css_set. */
4261 task_lock(tsk);
4262 cg = tsk->cgroups;
4263 tsk->cgroups = &init_css_set;
4264 task_unlock(tsk);
4265 if (cg)
4266 put_css_set_taskexit(cg);
4267 }
4268
4269 /**
4270 * cgroup_clone - clone the cgroup the given subsystem is attached to
4271 * @tsk: the task to be moved
4272 * @subsys: the given subsystem
4273 * @nodename: the name for the new cgroup
4274 *
4275 * Duplicate the current cgroup in the hierarchy that the given
4276 * subsystem is attached to, and move this task into the new
4277 * child.
4278 */
4279 int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys,
4280 char *nodename)
4281 {
4282 struct dentry *dentry;
4283 int ret = 0;
4284 struct cgroup *parent, *child;
4285 struct inode *inode;
4286 struct css_set *cg;
4287 struct cgroupfs_root *root;
4288 struct cgroup_subsys *ss;
4289
4290 /* We shouldn't be called by an unregistered subsystem */
4291 BUG_ON(!subsys->active);
4292
4293 /* First figure out what hierarchy and cgroup we're dealing
4294 * with, and pin them so we can drop cgroup_mutex */
4295 mutex_lock(&cgroup_mutex);
4296 again:
4297 root = subsys->root;
4298 if (root == &rootnode) {
4299 mutex_unlock(&cgroup_mutex);
4300 return 0;
4301 }
4302
4303 /* Pin the hierarchy */
4304 if (!atomic_inc_not_zero(&root->sb->s_active)) {
4305 /* We race with the final deactivate_super() */
4306 mutex_unlock(&cgroup_mutex);
4307 return 0;
4308 }
4309
4310 /* Keep the cgroup alive */
4311 task_lock(tsk);
4312 parent = task_cgroup(tsk, subsys->subsys_id);
4313 cg = tsk->cgroups;
4314 get_css_set(cg);
4315 task_unlock(tsk);
4316
4317 mutex_unlock(&cgroup_mutex);
4318
4319 /* Now do the VFS work to create a cgroup */
4320 inode = parent->dentry->d_inode;
4321
4322 /* Hold the parent directory mutex across this operation to
4323 * stop anyone else deleting the new cgroup */
4324 mutex_lock(&inode->i_mutex);
4325 dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
4326 if (IS_ERR(dentry)) {
4327 printk(KERN_INFO
4328 "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
4329 PTR_ERR(dentry));
4330 ret = PTR_ERR(dentry);
4331 goto out_release;
4332 }
4333
4334 /* Create the cgroup directory, which also creates the cgroup */
4335 ret = vfs_mkdir(inode, dentry, 0755);
4336 child = __d_cgrp(dentry);
4337 dput(dentry);
4338 if (ret) {
4339 printk(KERN_INFO
4340 "Failed to create cgroup %s: %d\n", nodename,
4341 ret);
4342 goto out_release;
4343 }
4344
4345 /* The cgroup now exists. Retake cgroup_mutex and check
4346 * that we're still in the same state that we thought we
4347 * were. */
4348 mutex_lock(&cgroup_mutex);
4349 if ((root != subsys->root) ||
4350 (parent != task_cgroup(tsk, subsys->subsys_id))) {
4351 /* Aargh, we raced ... */
4352 mutex_unlock(&inode->i_mutex);
4353 put_css_set(cg);
4354
4355 deactivate_super(root->sb);
4356 /* The cgroup is still accessible in the VFS, but
4357 * we're not going to try to rmdir() it at this
4358 * point. */
4359 printk(KERN_INFO
4360 "Race in cgroup_clone() - leaking cgroup %s\n",
4361 nodename);
4362 goto again;
4363 }
4364
4365 /* do any required auto-setup */
4366 for_each_subsys(root, ss) {
4367 if (ss->post_clone)
4368 ss->post_clone(ss, child);
4369 }
4370
4371 /* All seems fine. Finish by moving the task into the new cgroup */
4372 ret = cgroup_attach_task(child, tsk);
4373 mutex_unlock(&cgroup_mutex);
4374
4375 out_release:
4376 mutex_unlock(&inode->i_mutex);
4377
4378 mutex_lock(&cgroup_mutex);
4379 put_css_set(cg);
4380 mutex_unlock(&cgroup_mutex);
4381 deactivate_super(root->sb);
4382 return ret;
4383 }
4384
4385 /**
4386 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
4387 * @cgrp: the cgroup in question
4388 * @task: the task in question
4389 *
4390 * See if @cgrp is a descendant of @task's cgroup in the appropriate
4391 * hierarchy.
4392 *
4393 * If we are sending in dummytop, then presumably we are creating
4394 * the top cgroup in the subsystem.
4395 *
4396 * Called only by the ns (nsproxy) cgroup.
4397 */
4398 int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
4399 {
4400 int ret;
4401 struct cgroup *target;
4402
4403 if (cgrp == dummytop)
4404 return 1;
4405
4406 target = task_cgroup_from_root(task, cgrp->root);
4407 while (cgrp != target && cgrp!= cgrp->top_cgroup)
4408 cgrp = cgrp->parent;
4409 ret = (cgrp == target);
4410 return ret;
4411 }
4412
4413 static void check_for_release(struct cgroup *cgrp)
4414 {
4415 /* All of these checks rely on RCU to keep the cgroup
4416 * structure alive */
4417 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
4418 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
4419 /* Control Group is currently removeable. If it's not
4420 * already queued for a userspace notification, queue
4421 * it now */
4422 int need_schedule_work = 0;
4423 spin_lock(&release_list_lock);
4424 if (!cgroup_is_removed(cgrp) &&
4425 list_empty(&cgrp->release_list)) {
4426 list_add(&cgrp->release_list, &release_list);
4427 need_schedule_work = 1;
4428 }
4429 spin_unlock(&release_list_lock);
4430 if (need_schedule_work)
4431 schedule_work(&release_agent_work);
4432 }
4433 }
4434
4435 /* Caller must verify that the css is not for root cgroup */
4436 void __css_put(struct cgroup_subsys_state *css, int count)
4437 {
4438 struct cgroup *cgrp = css->cgroup;
4439 int val;
4440 rcu_read_lock();
4441 val = atomic_sub_return(count, &css->refcnt);
4442 if (val == 1) {
4443 if (notify_on_release(cgrp)) {
4444 set_bit(CGRP_RELEASABLE, &cgrp->flags);
4445 check_for_release(cgrp);
4446 }
4447 cgroup_wakeup_rmdir_waiter(cgrp);
4448 }
4449 rcu_read_unlock();
4450 WARN_ON_ONCE(val < 1);
4451 }
4452 EXPORT_SYMBOL_GPL(__css_put);
4453
4454 /*
4455 * Notify userspace when a cgroup is released, by running the
4456 * configured release agent with the name of the cgroup (path
4457 * relative to the root of cgroup file system) as the argument.
4458 *
4459 * Most likely, this user command will try to rmdir this cgroup.
4460 *
4461 * This races with the possibility that some other task will be
4462 * attached to this cgroup before it is removed, or that some other
4463 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
4464 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4465 * unused, and this cgroup will be reprieved from its death sentence,
4466 * to continue to serve a useful existence. Next time it's released,
4467 * we will get notified again, if it still has 'notify_on_release' set.
4468 *
4469 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4470 * means only wait until the task is successfully execve()'d. The
4471 * separate release agent task is forked by call_usermodehelper(),
4472 * then control in this thread returns here, without waiting for the
4473 * release agent task. We don't bother to wait because the caller of
4474 * this routine has no use for the exit status of the release agent
4475 * task, so no sense holding our caller up for that.
4476 */
4477 static void cgroup_release_agent(struct work_struct *work)
4478 {
4479 BUG_ON(work != &release_agent_work);
4480 mutex_lock(&cgroup_mutex);
4481 spin_lock(&release_list_lock);
4482 while (!list_empty(&release_list)) {
4483 char *argv[3], *envp[3];
4484 int i;
4485 char *pathbuf = NULL, *agentbuf = NULL;
4486 struct cgroup *cgrp = list_entry(release_list.next,
4487 struct cgroup,
4488 release_list);
4489 list_del_init(&cgrp->release_list);
4490 spin_unlock(&release_list_lock);
4491 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4492 if (!pathbuf)
4493 goto continue_free;
4494 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
4495 goto continue_free;
4496 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
4497 if (!agentbuf)
4498 goto continue_free;
4499
4500 i = 0;
4501 argv[i++] = agentbuf;
4502 argv[i++] = pathbuf;
4503 argv[i] = NULL;
4504
4505 i = 0;
4506 /* minimal command environment */
4507 envp[i++] = "HOME=/";
4508 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
4509 envp[i] = NULL;
4510
4511 /* Drop the lock while we invoke the usermode helper,
4512 * since the exec could involve hitting disk and hence
4513 * be a slow process */
4514 mutex_unlock(&cgroup_mutex);
4515 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
4516 mutex_lock(&cgroup_mutex);
4517 continue_free:
4518 kfree(pathbuf);
4519 kfree(agentbuf);
4520 spin_lock(&release_list_lock);
4521 }
4522 spin_unlock(&release_list_lock);
4523 mutex_unlock(&cgroup_mutex);
4524 }
4525
4526 static int __init cgroup_disable(char *str)
4527 {
4528 int i;
4529 char *token;
4530
4531 while ((token = strsep(&str, ",")) != NULL) {
4532 if (!*token)
4533 continue;
4534 /*
4535 * cgroup_disable, being at boot time, can't know about module
4536 * subsystems, so we don't worry about them.
4537 */
4538 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4539 struct cgroup_subsys *ss = subsys[i];
4540
4541 if (!strcmp(token, ss->name)) {
4542 ss->disabled = 1;
4543 printk(KERN_INFO "Disabling %s control group"
4544 " subsystem\n", ss->name);
4545 break;
4546 }
4547 }
4548 }
4549 return 1;
4550 }
4551 __setup("cgroup_disable=", cgroup_disable);
4552
4553 /*
4554 * Functons for CSS ID.
4555 */
4556
4557 /*
4558 *To get ID other than 0, this should be called when !cgroup_is_removed().
4559 */
4560 unsigned short css_id(struct cgroup_subsys_state *css)
4561 {
4562 struct css_id *cssid;
4563
4564 /*
4565 * This css_id() can return correct value when somone has refcnt
4566 * on this or this is under rcu_read_lock(). Once css->id is allocated,
4567 * it's unchanged until freed.
4568 */
4569 cssid = rcu_dereference_check(css->id,
4570 rcu_read_lock_held() || atomic_read(&css->refcnt));
4571
4572 if (cssid)
4573 return cssid->id;
4574 return 0;
4575 }
4576 EXPORT_SYMBOL_GPL(css_id);
4577
4578 unsigned short css_depth(struct cgroup_subsys_state *css)
4579 {
4580 struct css_id *cssid;
4581
4582 cssid = rcu_dereference_check(css->id,
4583 rcu_read_lock_held() || atomic_read(&css->refcnt));
4584
4585 if (cssid)
4586 return cssid->depth;
4587 return 0;
4588 }
4589 EXPORT_SYMBOL_GPL(css_depth);
4590
4591 /**
4592 * css_is_ancestor - test "root" css is an ancestor of "child"
4593 * @child: the css to be tested.
4594 * @root: the css supporsed to be an ancestor of the child.
4595 *
4596 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
4597 * this function reads css->id, this use rcu_dereference() and rcu_read_lock().
4598 * But, considering usual usage, the csses should be valid objects after test.
4599 * Assuming that the caller will do some action to the child if this returns
4600 * returns true, the caller must take "child";s reference count.
4601 * If "child" is valid object and this returns true, "root" is valid, too.
4602 */
4603
4604 bool css_is_ancestor(struct cgroup_subsys_state *child,
4605 const struct cgroup_subsys_state *root)
4606 {
4607 struct css_id *child_id;
4608 struct css_id *root_id;
4609 bool ret = true;
4610
4611 rcu_read_lock();
4612 child_id = rcu_dereference(child->id);
4613 root_id = rcu_dereference(root->id);
4614 if (!child_id
4615 || !root_id
4616 || (child_id->depth < root_id->depth)
4617 || (child_id->stack[root_id->depth] != root_id->id))
4618 ret = false;
4619 rcu_read_unlock();
4620 return ret;
4621 }
4622
4623 static void __free_css_id_cb(struct rcu_head *head)
4624 {
4625 struct css_id *id;
4626
4627 id = container_of(head, struct css_id, rcu_head);
4628 kfree(id);
4629 }
4630
4631 void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
4632 {
4633 struct css_id *id = css->id;
4634 /* When this is called before css_id initialization, id can be NULL */
4635 if (!id)
4636 return;
4637
4638 BUG_ON(!ss->use_id);
4639
4640 rcu_assign_pointer(id->css, NULL);
4641 rcu_assign_pointer(css->id, NULL);
4642 spin_lock(&ss->id_lock);
4643 idr_remove(&ss->idr, id->id);
4644 spin_unlock(&ss->id_lock);
4645 call_rcu(&id->rcu_head, __free_css_id_cb);
4646 }
4647 EXPORT_SYMBOL_GPL(free_css_id);
4648
4649 /*
4650 * This is called by init or create(). Then, calls to this function are
4651 * always serialized (By cgroup_mutex() at create()).
4652 */
4653
4654 static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
4655 {
4656 struct css_id *newid;
4657 int myid, error, size;
4658
4659 BUG_ON(!ss->use_id);
4660
4661 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
4662 newid = kzalloc(size, GFP_KERNEL);
4663 if (!newid)
4664 return ERR_PTR(-ENOMEM);
4665 /* get id */
4666 if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
4667 error = -ENOMEM;
4668 goto err_out;
4669 }
4670 spin_lock(&ss->id_lock);
4671 /* Don't use 0. allocates an ID of 1-65535 */
4672 error = idr_get_new_above(&ss->idr, newid, 1, &myid);
4673 spin_unlock(&ss->id_lock);
4674
4675 /* Returns error when there are no free spaces for new ID.*/
4676 if (error) {
4677 error = -ENOSPC;
4678 goto err_out;
4679 }
4680 if (myid > CSS_ID_MAX)
4681 goto remove_idr;
4682
4683 newid->id = myid;
4684 newid->depth = depth;
4685 return newid;
4686 remove_idr:
4687 error = -ENOSPC;
4688 spin_lock(&ss->id_lock);
4689 idr_remove(&ss->idr, myid);
4690 spin_unlock(&ss->id_lock);
4691 err_out:
4692 kfree(newid);
4693 return ERR_PTR(error);
4694
4695 }
4696
4697 static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
4698 struct cgroup_subsys_state *rootcss)
4699 {
4700 struct css_id *newid;
4701
4702 spin_lock_init(&ss->id_lock);
4703 idr_init(&ss->idr);
4704
4705 newid = get_new_cssid(ss, 0);
4706 if (IS_ERR(newid))
4707 return PTR_ERR(newid);
4708
4709 newid->stack[0] = newid->id;
4710 newid->css = rootcss;
4711 rootcss->id = newid;
4712 return 0;
4713 }
4714
4715 static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
4716 struct cgroup *child)
4717 {
4718 int subsys_id, i, depth = 0;
4719 struct cgroup_subsys_state *parent_css, *child_css;
4720 struct css_id *child_id, *parent_id;
4721
4722 subsys_id = ss->subsys_id;
4723 parent_css = parent->subsys[subsys_id];
4724 child_css = child->subsys[subsys_id];
4725 parent_id = parent_css->id;
4726 depth = parent_id->depth + 1;
4727
4728 child_id = get_new_cssid(ss, depth);
4729 if (IS_ERR(child_id))
4730 return PTR_ERR(child_id);
4731
4732 for (i = 0; i < depth; i++)
4733 child_id->stack[i] = parent_id->stack[i];
4734 child_id->stack[depth] = child_id->id;
4735 /*
4736 * child_id->css pointer will be set after this cgroup is available
4737 * see cgroup_populate_dir()
4738 */
4739 rcu_assign_pointer(child_css->id, child_id);
4740
4741 return 0;
4742 }
4743
4744 /**
4745 * css_lookup - lookup css by id
4746 * @ss: cgroup subsys to be looked into.
4747 * @id: the id
4748 *
4749 * Returns pointer to cgroup_subsys_state if there is valid one with id.
4750 * NULL if not. Should be called under rcu_read_lock()
4751 */
4752 struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
4753 {
4754 struct css_id *cssid = NULL;
4755
4756 BUG_ON(!ss->use_id);
4757 cssid = idr_find(&ss->idr, id);
4758
4759 if (unlikely(!cssid))
4760 return NULL;
4761
4762 return rcu_dereference(cssid->css);
4763 }
4764 EXPORT_SYMBOL_GPL(css_lookup);
4765
4766 /**
4767 * css_get_next - lookup next cgroup under specified hierarchy.
4768 * @ss: pointer to subsystem
4769 * @id: current position of iteration.
4770 * @root: pointer to css. search tree under this.
4771 * @foundid: position of found object.
4772 *
4773 * Search next css under the specified hierarchy of rootid. Calling under
4774 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
4775 */
4776 struct cgroup_subsys_state *
4777 css_get_next(struct cgroup_subsys *ss, int id,
4778 struct cgroup_subsys_state *root, int *foundid)
4779 {
4780 struct cgroup_subsys_state *ret = NULL;
4781 struct css_id *tmp;
4782 int tmpid;
4783 int rootid = css_id(root);
4784 int depth = css_depth(root);
4785
4786 if (!rootid)
4787 return NULL;
4788
4789 BUG_ON(!ss->use_id);
4790 /* fill start point for scan */
4791 tmpid = id;
4792 while (1) {
4793 /*
4794 * scan next entry from bitmap(tree), tmpid is updated after
4795 * idr_get_next().
4796 */
4797 spin_lock(&ss->id_lock);
4798 tmp = idr_get_next(&ss->idr, &tmpid);
4799 spin_unlock(&ss->id_lock);
4800
4801 if (!tmp)
4802 break;
4803 if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
4804 ret = rcu_dereference(tmp->css);
4805 if (ret) {
4806 *foundid = tmpid;
4807 break;
4808 }
4809 }
4810 /* continue to scan from next id */
4811 tmpid = tmpid + 1;
4812 }
4813 return ret;
4814 }
4815
4816 #ifdef CONFIG_CGROUP_DEBUG
4817 static struct cgroup_subsys_state *debug_create(struct cgroup_subsys *ss,
4818 struct cgroup *cont)
4819 {
4820 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
4821
4822 if (!css)
4823 return ERR_PTR(-ENOMEM);
4824
4825 return css;
4826 }
4827
4828 static void debug_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
4829 {
4830 kfree(cont->subsys[debug_subsys_id]);
4831 }
4832
4833 static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
4834 {
4835 return atomic_read(&cont->count);
4836 }
4837
4838 static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
4839 {
4840 return cgroup_task_count(cont);
4841 }
4842
4843 static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
4844 {
4845 return (u64)(unsigned long)current->cgroups;
4846 }
4847
4848 static u64 current_css_set_refcount_read(struct cgroup *cont,
4849 struct cftype *cft)
4850 {
4851 u64 count;
4852
4853 rcu_read_lock();
4854 count = atomic_read(&current->cgroups->refcount);
4855 rcu_read_unlock();
4856 return count;
4857 }
4858
4859 static int current_css_set_cg_links_read(struct cgroup *cont,
4860 struct cftype *cft,
4861 struct seq_file *seq)
4862 {
4863 struct cg_cgroup_link *link;
4864 struct css_set *cg;
4865
4866 read_lock(&css_set_lock);
4867 rcu_read_lock();
4868 cg = rcu_dereference(current->cgroups);
4869 list_for_each_entry(link, &cg->cg_links, cg_link_list) {
4870 struct cgroup *c = link->cgrp;
4871 const char *name;
4872
4873 if (c->dentry)
4874 name = c->dentry->d_name.name;
4875 else
4876 name = "?";
4877 seq_printf(seq, "Root %d group %s\n",
4878 c->root->hierarchy_id, name);
4879 }
4880 rcu_read_unlock();
4881 read_unlock(&css_set_lock);
4882 return 0;
4883 }
4884
4885 #define MAX_TASKS_SHOWN_PER_CSS 25
4886 static int cgroup_css_links_read(struct cgroup *cont,
4887 struct cftype *cft,
4888 struct seq_file *seq)
4889 {
4890 struct cg_cgroup_link *link;
4891
4892 read_lock(&css_set_lock);
4893 list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
4894 struct css_set *cg = link->cg;
4895 struct task_struct *task;
4896 int count = 0;
4897 seq_printf(seq, "css_set %p\n", cg);
4898 list_for_each_entry(task, &cg->tasks, cg_list) {
4899 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
4900 seq_puts(seq, " ...\n");
4901 break;
4902 } else {
4903 seq_printf(seq, " task %d\n",
4904 task_pid_vnr(task));
4905 }
4906 }
4907 }
4908 read_unlock(&css_set_lock);
4909 return 0;
4910 }
4911
4912 static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
4913 {
4914 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
4915 }
4916
4917 static struct cftype debug_files[] = {
4918 {
4919 .name = "cgroup_refcount",
4920 .read_u64 = cgroup_refcount_read,
4921 },
4922 {
4923 .name = "taskcount",
4924 .read_u64 = debug_taskcount_read,
4925 },
4926
4927 {
4928 .name = "current_css_set",
4929 .read_u64 = current_css_set_read,
4930 },
4931
4932 {
4933 .name = "current_css_set_refcount",
4934 .read_u64 = current_css_set_refcount_read,
4935 },
4936
4937 {
4938 .name = "current_css_set_cg_links",
4939 .read_seq_string = current_css_set_cg_links_read,
4940 },
4941
4942 {
4943 .name = "cgroup_css_links",
4944 .read_seq_string = cgroup_css_links_read,
4945 },
4946
4947 {
4948 .name = "releasable",
4949 .read_u64 = releasable_read,
4950 },
4951 };
4952
4953 static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont)
4954 {
4955 return cgroup_add_files(cont, ss, debug_files,
4956 ARRAY_SIZE(debug_files));
4957 }
4958
4959 struct cgroup_subsys debug_subsys = {
4960 .name = "debug",
4961 .create = debug_create,
4962 .destroy = debug_destroy,
4963 .populate = debug_populate,
4964 .subsys_id = debug_subsys_id,
4965 };
4966 #endif /* CONFIG_CGROUP_DEBUG */