CRED: Separate task security context from task_struct
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / cgroup.c
1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Copyright notices from the original cpuset code:
8 * --------------------------------------------------
9 * Copyright (C) 2003 BULL SA.
10 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
11 *
12 * Portions derived from Patrick Mochel's sysfs code.
13 * sysfs is Copyright (c) 2001-3 Patrick Mochel
14 *
15 * 2003-10-10 Written by Simon Derr.
16 * 2003-10-22 Updates by Stephen Hemminger.
17 * 2004 May-July Rework by Paul Jackson.
18 * ---------------------------------------------------
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
25 #include <linux/cgroup.h>
26 #include <linux/errno.h>
27 #include <linux/fs.h>
28 #include <linux/kernel.h>
29 #include <linux/list.h>
30 #include <linux/mm.h>
31 #include <linux/mutex.h>
32 #include <linux/mount.h>
33 #include <linux/pagemap.h>
34 #include <linux/proc_fs.h>
35 #include <linux/rcupdate.h>
36 #include <linux/sched.h>
37 #include <linux/backing-dev.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/magic.h>
41 #include <linux/spinlock.h>
42 #include <linux/string.h>
43 #include <linux/sort.h>
44 #include <linux/kmod.h>
45 #include <linux/delayacct.h>
46 #include <linux/cgroupstats.h>
47 #include <linux/hash.h>
48 #include <linux/namei.h>
49
50 #include <asm/atomic.h>
51
52 static DEFINE_MUTEX(cgroup_mutex);
53
54 /* Generate an array of cgroup subsystem pointers */
55 #define SUBSYS(_x) &_x ## _subsys,
56
57 static struct cgroup_subsys *subsys[] = {
58 #include <linux/cgroup_subsys.h>
59 };
60
61 /*
62 * A cgroupfs_root represents the root of a cgroup hierarchy,
63 * and may be associated with a superblock to form an active
64 * hierarchy
65 */
66 struct cgroupfs_root {
67 struct super_block *sb;
68
69 /*
70 * The bitmask of subsystems intended to be attached to this
71 * hierarchy
72 */
73 unsigned long subsys_bits;
74
75 /* The bitmask of subsystems currently attached to this hierarchy */
76 unsigned long actual_subsys_bits;
77
78 /* A list running through the attached subsystems */
79 struct list_head subsys_list;
80
81 /* The root cgroup for this hierarchy */
82 struct cgroup top_cgroup;
83
84 /* Tracks how many cgroups are currently defined in hierarchy.*/
85 int number_of_cgroups;
86
87 /* A list running through the mounted hierarchies */
88 struct list_head root_list;
89
90 /* Hierarchy-specific flags */
91 unsigned long flags;
92
93 /* The path to use for release notifications. */
94 char release_agent_path[PATH_MAX];
95 };
96
97
98 /*
99 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
100 * subsystems that are otherwise unattached - it never has more than a
101 * single cgroup, and all tasks are part of that cgroup.
102 */
103 static struct cgroupfs_root rootnode;
104
105 /* The list of hierarchy roots */
106
107 static LIST_HEAD(roots);
108 static int root_count;
109
110 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
111 #define dummytop (&rootnode.top_cgroup)
112
113 /* This flag indicates whether tasks in the fork and exit paths should
114 * check for fork/exit handlers to call. This avoids us having to do
115 * extra work in the fork/exit path if none of the subsystems need to
116 * be called.
117 */
118 static int need_forkexit_callback __read_mostly;
119 static int need_mm_owner_callback __read_mostly;
120
121 /* convenient tests for these bits */
122 inline int cgroup_is_removed(const struct cgroup *cgrp)
123 {
124 return test_bit(CGRP_REMOVED, &cgrp->flags);
125 }
126
127 /* bits in struct cgroupfs_root flags field */
128 enum {
129 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
130 };
131
132 static int cgroup_is_releasable(const struct cgroup *cgrp)
133 {
134 const int bits =
135 (1 << CGRP_RELEASABLE) |
136 (1 << CGRP_NOTIFY_ON_RELEASE);
137 return (cgrp->flags & bits) == bits;
138 }
139
140 static int notify_on_release(const struct cgroup *cgrp)
141 {
142 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
143 }
144
145 /*
146 * for_each_subsys() allows you to iterate on each subsystem attached to
147 * an active hierarchy
148 */
149 #define for_each_subsys(_root, _ss) \
150 list_for_each_entry(_ss, &_root->subsys_list, sibling)
151
152 /* for_each_root() allows you to iterate across the active hierarchies */
153 #define for_each_root(_root) \
154 list_for_each_entry(_root, &roots, root_list)
155
156 /* the list of cgroups eligible for automatic release. Protected by
157 * release_list_lock */
158 static LIST_HEAD(release_list);
159 static DEFINE_SPINLOCK(release_list_lock);
160 static void cgroup_release_agent(struct work_struct *work);
161 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
162 static void check_for_release(struct cgroup *cgrp);
163
164 /* Link structure for associating css_set objects with cgroups */
165 struct cg_cgroup_link {
166 /*
167 * List running through cg_cgroup_links associated with a
168 * cgroup, anchored on cgroup->css_sets
169 */
170 struct list_head cgrp_link_list;
171 /*
172 * List running through cg_cgroup_links pointing at a
173 * single css_set object, anchored on css_set->cg_links
174 */
175 struct list_head cg_link_list;
176 struct css_set *cg;
177 };
178
179 /* The default css_set - used by init and its children prior to any
180 * hierarchies being mounted. It contains a pointer to the root state
181 * for each subsystem. Also used to anchor the list of css_sets. Not
182 * reference-counted, to improve performance when child cgroups
183 * haven't been created.
184 */
185
186 static struct css_set init_css_set;
187 static struct cg_cgroup_link init_css_set_link;
188
189 /* css_set_lock protects the list of css_set objects, and the
190 * chain of tasks off each css_set. Nests outside task->alloc_lock
191 * due to cgroup_iter_start() */
192 static DEFINE_RWLOCK(css_set_lock);
193 static int css_set_count;
194
195 /* hash table for cgroup groups. This improves the performance to
196 * find an existing css_set */
197 #define CSS_SET_HASH_BITS 7
198 #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
199 static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
200
201 static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
202 {
203 int i;
204 int index;
205 unsigned long tmp = 0UL;
206
207 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
208 tmp += (unsigned long)css[i];
209 tmp = (tmp >> 16) ^ tmp;
210
211 index = hash_long(tmp, CSS_SET_HASH_BITS);
212
213 return &css_set_table[index];
214 }
215
216 /* We don't maintain the lists running through each css_set to its
217 * task until after the first call to cgroup_iter_start(). This
218 * reduces the fork()/exit() overhead for people who have cgroups
219 * compiled into their kernel but not actually in use */
220 static int use_task_css_set_links __read_mostly;
221
222 /* When we create or destroy a css_set, the operation simply
223 * takes/releases a reference count on all the cgroups referenced
224 * by subsystems in this css_set. This can end up multiple-counting
225 * some cgroups, but that's OK - the ref-count is just a
226 * busy/not-busy indicator; ensuring that we only count each cgroup
227 * once would require taking a global lock to ensure that no
228 * subsystems moved between hierarchies while we were doing so.
229 *
230 * Possible TODO: decide at boot time based on the number of
231 * registered subsystems and the number of CPUs or NUMA nodes whether
232 * it's better for performance to ref-count every subsystem, or to
233 * take a global lock and only add one ref count to each hierarchy.
234 */
235
236 /*
237 * unlink a css_set from the list and free it
238 */
239 static void unlink_css_set(struct css_set *cg)
240 {
241 struct cg_cgroup_link *link;
242 struct cg_cgroup_link *saved_link;
243
244 hlist_del(&cg->hlist);
245 css_set_count--;
246
247 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
248 cg_link_list) {
249 list_del(&link->cg_link_list);
250 list_del(&link->cgrp_link_list);
251 kfree(link);
252 }
253 }
254
255 static void __put_css_set(struct css_set *cg, int taskexit)
256 {
257 int i;
258 /*
259 * Ensure that the refcount doesn't hit zero while any readers
260 * can see it. Similar to atomic_dec_and_lock(), but for an
261 * rwlock
262 */
263 if (atomic_add_unless(&cg->refcount, -1, 1))
264 return;
265 write_lock(&css_set_lock);
266 if (!atomic_dec_and_test(&cg->refcount)) {
267 write_unlock(&css_set_lock);
268 return;
269 }
270 unlink_css_set(cg);
271 write_unlock(&css_set_lock);
272
273 rcu_read_lock();
274 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
275 struct cgroup *cgrp = cg->subsys[i]->cgroup;
276 if (atomic_dec_and_test(&cgrp->count) &&
277 notify_on_release(cgrp)) {
278 if (taskexit)
279 set_bit(CGRP_RELEASABLE, &cgrp->flags);
280 check_for_release(cgrp);
281 }
282 }
283 rcu_read_unlock();
284 kfree(cg);
285 }
286
287 /*
288 * refcounted get/put for css_set objects
289 */
290 static inline void get_css_set(struct css_set *cg)
291 {
292 atomic_inc(&cg->refcount);
293 }
294
295 static inline void put_css_set(struct css_set *cg)
296 {
297 __put_css_set(cg, 0);
298 }
299
300 static inline void put_css_set_taskexit(struct css_set *cg)
301 {
302 __put_css_set(cg, 1);
303 }
304
305 /*
306 * find_existing_css_set() is a helper for
307 * find_css_set(), and checks to see whether an existing
308 * css_set is suitable.
309 *
310 * oldcg: the cgroup group that we're using before the cgroup
311 * transition
312 *
313 * cgrp: the cgroup that we're moving into
314 *
315 * template: location in which to build the desired set of subsystem
316 * state objects for the new cgroup group
317 */
318 static struct css_set *find_existing_css_set(
319 struct css_set *oldcg,
320 struct cgroup *cgrp,
321 struct cgroup_subsys_state *template[])
322 {
323 int i;
324 struct cgroupfs_root *root = cgrp->root;
325 struct hlist_head *hhead;
326 struct hlist_node *node;
327 struct css_set *cg;
328
329 /* Built the set of subsystem state objects that we want to
330 * see in the new css_set */
331 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
332 if (root->subsys_bits & (1UL << i)) {
333 /* Subsystem is in this hierarchy. So we want
334 * the subsystem state from the new
335 * cgroup */
336 template[i] = cgrp->subsys[i];
337 } else {
338 /* Subsystem is not in this hierarchy, so we
339 * don't want to change the subsystem state */
340 template[i] = oldcg->subsys[i];
341 }
342 }
343
344 hhead = css_set_hash(template);
345 hlist_for_each_entry(cg, node, hhead, hlist) {
346 if (!memcmp(template, cg->subsys, sizeof(cg->subsys))) {
347 /* All subsystems matched */
348 return cg;
349 }
350 }
351
352 /* No existing cgroup group matched */
353 return NULL;
354 }
355
356 static void free_cg_links(struct list_head *tmp)
357 {
358 struct cg_cgroup_link *link;
359 struct cg_cgroup_link *saved_link;
360
361 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
362 list_del(&link->cgrp_link_list);
363 kfree(link);
364 }
365 }
366
367 /*
368 * allocate_cg_links() allocates "count" cg_cgroup_link structures
369 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
370 * success or a negative error
371 */
372 static int allocate_cg_links(int count, struct list_head *tmp)
373 {
374 struct cg_cgroup_link *link;
375 int i;
376 INIT_LIST_HEAD(tmp);
377 for (i = 0; i < count; i++) {
378 link = kmalloc(sizeof(*link), GFP_KERNEL);
379 if (!link) {
380 free_cg_links(tmp);
381 return -ENOMEM;
382 }
383 list_add(&link->cgrp_link_list, tmp);
384 }
385 return 0;
386 }
387
388 /*
389 * find_css_set() takes an existing cgroup group and a
390 * cgroup object, and returns a css_set object that's
391 * equivalent to the old group, but with the given cgroup
392 * substituted into the appropriate hierarchy. Must be called with
393 * cgroup_mutex held
394 */
395 static struct css_set *find_css_set(
396 struct css_set *oldcg, struct cgroup *cgrp)
397 {
398 struct css_set *res;
399 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
400 int i;
401
402 struct list_head tmp_cg_links;
403 struct cg_cgroup_link *link;
404
405 struct hlist_head *hhead;
406
407 /* First see if we already have a cgroup group that matches
408 * the desired set */
409 read_lock(&css_set_lock);
410 res = find_existing_css_set(oldcg, cgrp, template);
411 if (res)
412 get_css_set(res);
413 read_unlock(&css_set_lock);
414
415 if (res)
416 return res;
417
418 res = kmalloc(sizeof(*res), GFP_KERNEL);
419 if (!res)
420 return NULL;
421
422 /* Allocate all the cg_cgroup_link objects that we'll need */
423 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
424 kfree(res);
425 return NULL;
426 }
427
428 atomic_set(&res->refcount, 1);
429 INIT_LIST_HEAD(&res->cg_links);
430 INIT_LIST_HEAD(&res->tasks);
431 INIT_HLIST_NODE(&res->hlist);
432
433 /* Copy the set of subsystem state objects generated in
434 * find_existing_css_set() */
435 memcpy(res->subsys, template, sizeof(res->subsys));
436
437 write_lock(&css_set_lock);
438 /* Add reference counts and links from the new css_set. */
439 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
440 struct cgroup *cgrp = res->subsys[i]->cgroup;
441 struct cgroup_subsys *ss = subsys[i];
442 atomic_inc(&cgrp->count);
443 /*
444 * We want to add a link once per cgroup, so we
445 * only do it for the first subsystem in each
446 * hierarchy
447 */
448 if (ss->root->subsys_list.next == &ss->sibling) {
449 BUG_ON(list_empty(&tmp_cg_links));
450 link = list_entry(tmp_cg_links.next,
451 struct cg_cgroup_link,
452 cgrp_link_list);
453 list_del(&link->cgrp_link_list);
454 list_add(&link->cgrp_link_list, &cgrp->css_sets);
455 link->cg = res;
456 list_add(&link->cg_link_list, &res->cg_links);
457 }
458 }
459 if (list_empty(&rootnode.subsys_list)) {
460 link = list_entry(tmp_cg_links.next,
461 struct cg_cgroup_link,
462 cgrp_link_list);
463 list_del(&link->cgrp_link_list);
464 list_add(&link->cgrp_link_list, &dummytop->css_sets);
465 link->cg = res;
466 list_add(&link->cg_link_list, &res->cg_links);
467 }
468
469 BUG_ON(!list_empty(&tmp_cg_links));
470
471 css_set_count++;
472
473 /* Add this cgroup group to the hash table */
474 hhead = css_set_hash(res->subsys);
475 hlist_add_head(&res->hlist, hhead);
476
477 write_unlock(&css_set_lock);
478
479 return res;
480 }
481
482 /*
483 * There is one global cgroup mutex. We also require taking
484 * task_lock() when dereferencing a task's cgroup subsys pointers.
485 * See "The task_lock() exception", at the end of this comment.
486 *
487 * A task must hold cgroup_mutex to modify cgroups.
488 *
489 * Any task can increment and decrement the count field without lock.
490 * So in general, code holding cgroup_mutex can't rely on the count
491 * field not changing. However, if the count goes to zero, then only
492 * cgroup_attach_task() can increment it again. Because a count of zero
493 * means that no tasks are currently attached, therefore there is no
494 * way a task attached to that cgroup can fork (the other way to
495 * increment the count). So code holding cgroup_mutex can safely
496 * assume that if the count is zero, it will stay zero. Similarly, if
497 * a task holds cgroup_mutex on a cgroup with zero count, it
498 * knows that the cgroup won't be removed, as cgroup_rmdir()
499 * needs that mutex.
500 *
501 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
502 * (usually) take cgroup_mutex. These are the two most performance
503 * critical pieces of code here. The exception occurs on cgroup_exit(),
504 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
505 * is taken, and if the cgroup count is zero, a usermode call made
506 * to the release agent with the name of the cgroup (path relative to
507 * the root of cgroup file system) as the argument.
508 *
509 * A cgroup can only be deleted if both its 'count' of using tasks
510 * is zero, and its list of 'children' cgroups is empty. Since all
511 * tasks in the system use _some_ cgroup, and since there is always at
512 * least one task in the system (init, pid == 1), therefore, top_cgroup
513 * always has either children cgroups and/or using tasks. So we don't
514 * need a special hack to ensure that top_cgroup cannot be deleted.
515 *
516 * The task_lock() exception
517 *
518 * The need for this exception arises from the action of
519 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
520 * another. It does so using cgroup_mutex, however there are
521 * several performance critical places that need to reference
522 * task->cgroup without the expense of grabbing a system global
523 * mutex. Therefore except as noted below, when dereferencing or, as
524 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
525 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
526 * the task_struct routinely used for such matters.
527 *
528 * P.S. One more locking exception. RCU is used to guard the
529 * update of a tasks cgroup pointer by cgroup_attach_task()
530 */
531
532 /**
533 * cgroup_lock - lock out any changes to cgroup structures
534 *
535 */
536 void cgroup_lock(void)
537 {
538 mutex_lock(&cgroup_mutex);
539 }
540
541 /**
542 * cgroup_unlock - release lock on cgroup changes
543 *
544 * Undo the lock taken in a previous cgroup_lock() call.
545 */
546 void cgroup_unlock(void)
547 {
548 mutex_unlock(&cgroup_mutex);
549 }
550
551 /*
552 * A couple of forward declarations required, due to cyclic reference loop:
553 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
554 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
555 * -> cgroup_mkdir.
556 */
557
558 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
559 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
560 static int cgroup_populate_dir(struct cgroup *cgrp);
561 static struct inode_operations cgroup_dir_inode_operations;
562 static struct file_operations proc_cgroupstats_operations;
563
564 static struct backing_dev_info cgroup_backing_dev_info = {
565 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
566 };
567
568 static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
569 {
570 struct inode *inode = new_inode(sb);
571
572 if (inode) {
573 inode->i_mode = mode;
574 inode->i_uid = current_fsuid();
575 inode->i_gid = current_fsgid();
576 inode->i_blocks = 0;
577 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
578 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
579 }
580 return inode;
581 }
582
583 /*
584 * Call subsys's pre_destroy handler.
585 * This is called before css refcnt check.
586 */
587 static void cgroup_call_pre_destroy(struct cgroup *cgrp)
588 {
589 struct cgroup_subsys *ss;
590 for_each_subsys(cgrp->root, ss)
591 if (ss->pre_destroy && cgrp->subsys[ss->subsys_id])
592 ss->pre_destroy(ss, cgrp);
593 return;
594 }
595
596 static void cgroup_diput(struct dentry *dentry, struct inode *inode)
597 {
598 /* is dentry a directory ? if so, kfree() associated cgroup */
599 if (S_ISDIR(inode->i_mode)) {
600 struct cgroup *cgrp = dentry->d_fsdata;
601 struct cgroup_subsys *ss;
602 BUG_ON(!(cgroup_is_removed(cgrp)));
603 /* It's possible for external users to be holding css
604 * reference counts on a cgroup; css_put() needs to
605 * be able to access the cgroup after decrementing
606 * the reference count in order to know if it needs to
607 * queue the cgroup to be handled by the release
608 * agent */
609 synchronize_rcu();
610
611 mutex_lock(&cgroup_mutex);
612 /*
613 * Release the subsystem state objects.
614 */
615 for_each_subsys(cgrp->root, ss) {
616 if (cgrp->subsys[ss->subsys_id])
617 ss->destroy(ss, cgrp);
618 }
619
620 cgrp->root->number_of_cgroups--;
621 mutex_unlock(&cgroup_mutex);
622
623 /* Drop the active superblock reference that we took when we
624 * created the cgroup */
625 deactivate_super(cgrp->root->sb);
626
627 kfree(cgrp);
628 }
629 iput(inode);
630 }
631
632 static void remove_dir(struct dentry *d)
633 {
634 struct dentry *parent = dget(d->d_parent);
635
636 d_delete(d);
637 simple_rmdir(parent->d_inode, d);
638 dput(parent);
639 }
640
641 static void cgroup_clear_directory(struct dentry *dentry)
642 {
643 struct list_head *node;
644
645 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
646 spin_lock(&dcache_lock);
647 node = dentry->d_subdirs.next;
648 while (node != &dentry->d_subdirs) {
649 struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
650 list_del_init(node);
651 if (d->d_inode) {
652 /* This should never be called on a cgroup
653 * directory with child cgroups */
654 BUG_ON(d->d_inode->i_mode & S_IFDIR);
655 d = dget_locked(d);
656 spin_unlock(&dcache_lock);
657 d_delete(d);
658 simple_unlink(dentry->d_inode, d);
659 dput(d);
660 spin_lock(&dcache_lock);
661 }
662 node = dentry->d_subdirs.next;
663 }
664 spin_unlock(&dcache_lock);
665 }
666
667 /*
668 * NOTE : the dentry must have been dget()'ed
669 */
670 static void cgroup_d_remove_dir(struct dentry *dentry)
671 {
672 cgroup_clear_directory(dentry);
673
674 spin_lock(&dcache_lock);
675 list_del_init(&dentry->d_u.d_child);
676 spin_unlock(&dcache_lock);
677 remove_dir(dentry);
678 }
679
680 static int rebind_subsystems(struct cgroupfs_root *root,
681 unsigned long final_bits)
682 {
683 unsigned long added_bits, removed_bits;
684 struct cgroup *cgrp = &root->top_cgroup;
685 int i;
686
687 removed_bits = root->actual_subsys_bits & ~final_bits;
688 added_bits = final_bits & ~root->actual_subsys_bits;
689 /* Check that any added subsystems are currently free */
690 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
691 unsigned long bit = 1UL << i;
692 struct cgroup_subsys *ss = subsys[i];
693 if (!(bit & added_bits))
694 continue;
695 if (ss->root != &rootnode) {
696 /* Subsystem isn't free */
697 return -EBUSY;
698 }
699 }
700
701 /* Currently we don't handle adding/removing subsystems when
702 * any child cgroups exist. This is theoretically supportable
703 * but involves complex error handling, so it's being left until
704 * later */
705 if (!list_empty(&cgrp->children))
706 return -EBUSY;
707
708 /* Process each subsystem */
709 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
710 struct cgroup_subsys *ss = subsys[i];
711 unsigned long bit = 1UL << i;
712 if (bit & added_bits) {
713 /* We're binding this subsystem to this hierarchy */
714 BUG_ON(cgrp->subsys[i]);
715 BUG_ON(!dummytop->subsys[i]);
716 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
717 cgrp->subsys[i] = dummytop->subsys[i];
718 cgrp->subsys[i]->cgroup = cgrp;
719 list_add(&ss->sibling, &root->subsys_list);
720 rcu_assign_pointer(ss->root, root);
721 if (ss->bind)
722 ss->bind(ss, cgrp);
723
724 } else if (bit & removed_bits) {
725 /* We're removing this subsystem */
726 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
727 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
728 if (ss->bind)
729 ss->bind(ss, dummytop);
730 dummytop->subsys[i]->cgroup = dummytop;
731 cgrp->subsys[i] = NULL;
732 rcu_assign_pointer(subsys[i]->root, &rootnode);
733 list_del(&ss->sibling);
734 } else if (bit & final_bits) {
735 /* Subsystem state should already exist */
736 BUG_ON(!cgrp->subsys[i]);
737 } else {
738 /* Subsystem state shouldn't exist */
739 BUG_ON(cgrp->subsys[i]);
740 }
741 }
742 root->subsys_bits = root->actual_subsys_bits = final_bits;
743 synchronize_rcu();
744
745 return 0;
746 }
747
748 static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
749 {
750 struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
751 struct cgroup_subsys *ss;
752
753 mutex_lock(&cgroup_mutex);
754 for_each_subsys(root, ss)
755 seq_printf(seq, ",%s", ss->name);
756 if (test_bit(ROOT_NOPREFIX, &root->flags))
757 seq_puts(seq, ",noprefix");
758 if (strlen(root->release_agent_path))
759 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
760 mutex_unlock(&cgroup_mutex);
761 return 0;
762 }
763
764 struct cgroup_sb_opts {
765 unsigned long subsys_bits;
766 unsigned long flags;
767 char *release_agent;
768 };
769
770 /* Convert a hierarchy specifier into a bitmask of subsystems and
771 * flags. */
772 static int parse_cgroupfs_options(char *data,
773 struct cgroup_sb_opts *opts)
774 {
775 char *token, *o = data ?: "all";
776
777 opts->subsys_bits = 0;
778 opts->flags = 0;
779 opts->release_agent = NULL;
780
781 while ((token = strsep(&o, ",")) != NULL) {
782 if (!*token)
783 return -EINVAL;
784 if (!strcmp(token, "all")) {
785 /* Add all non-disabled subsystems */
786 int i;
787 opts->subsys_bits = 0;
788 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
789 struct cgroup_subsys *ss = subsys[i];
790 if (!ss->disabled)
791 opts->subsys_bits |= 1ul << i;
792 }
793 } else if (!strcmp(token, "noprefix")) {
794 set_bit(ROOT_NOPREFIX, &opts->flags);
795 } else if (!strncmp(token, "release_agent=", 14)) {
796 /* Specifying two release agents is forbidden */
797 if (opts->release_agent)
798 return -EINVAL;
799 opts->release_agent = kzalloc(PATH_MAX, GFP_KERNEL);
800 if (!opts->release_agent)
801 return -ENOMEM;
802 strncpy(opts->release_agent, token + 14, PATH_MAX - 1);
803 opts->release_agent[PATH_MAX - 1] = 0;
804 } else {
805 struct cgroup_subsys *ss;
806 int i;
807 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
808 ss = subsys[i];
809 if (!strcmp(token, ss->name)) {
810 if (!ss->disabled)
811 set_bit(i, &opts->subsys_bits);
812 break;
813 }
814 }
815 if (i == CGROUP_SUBSYS_COUNT)
816 return -ENOENT;
817 }
818 }
819
820 /* We can't have an empty hierarchy */
821 if (!opts->subsys_bits)
822 return -EINVAL;
823
824 return 0;
825 }
826
827 static int cgroup_remount(struct super_block *sb, int *flags, char *data)
828 {
829 int ret = 0;
830 struct cgroupfs_root *root = sb->s_fs_info;
831 struct cgroup *cgrp = &root->top_cgroup;
832 struct cgroup_sb_opts opts;
833
834 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
835 mutex_lock(&cgroup_mutex);
836
837 /* See what subsystems are wanted */
838 ret = parse_cgroupfs_options(data, &opts);
839 if (ret)
840 goto out_unlock;
841
842 /* Don't allow flags to change at remount */
843 if (opts.flags != root->flags) {
844 ret = -EINVAL;
845 goto out_unlock;
846 }
847
848 ret = rebind_subsystems(root, opts.subsys_bits);
849
850 /* (re)populate subsystem files */
851 if (!ret)
852 cgroup_populate_dir(cgrp);
853
854 if (opts.release_agent)
855 strcpy(root->release_agent_path, opts.release_agent);
856 out_unlock:
857 if (opts.release_agent)
858 kfree(opts.release_agent);
859 mutex_unlock(&cgroup_mutex);
860 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
861 return ret;
862 }
863
864 static struct super_operations cgroup_ops = {
865 .statfs = simple_statfs,
866 .drop_inode = generic_delete_inode,
867 .show_options = cgroup_show_options,
868 .remount_fs = cgroup_remount,
869 };
870
871 static void init_cgroup_housekeeping(struct cgroup *cgrp)
872 {
873 INIT_LIST_HEAD(&cgrp->sibling);
874 INIT_LIST_HEAD(&cgrp->children);
875 INIT_LIST_HEAD(&cgrp->css_sets);
876 INIT_LIST_HEAD(&cgrp->release_list);
877 init_rwsem(&cgrp->pids_mutex);
878 }
879 static void init_cgroup_root(struct cgroupfs_root *root)
880 {
881 struct cgroup *cgrp = &root->top_cgroup;
882 INIT_LIST_HEAD(&root->subsys_list);
883 INIT_LIST_HEAD(&root->root_list);
884 root->number_of_cgroups = 1;
885 cgrp->root = root;
886 cgrp->top_cgroup = cgrp;
887 init_cgroup_housekeeping(cgrp);
888 }
889
890 static int cgroup_test_super(struct super_block *sb, void *data)
891 {
892 struct cgroupfs_root *new = data;
893 struct cgroupfs_root *root = sb->s_fs_info;
894
895 /* First check subsystems */
896 if (new->subsys_bits != root->subsys_bits)
897 return 0;
898
899 /* Next check flags */
900 if (new->flags != root->flags)
901 return 0;
902
903 return 1;
904 }
905
906 static int cgroup_set_super(struct super_block *sb, void *data)
907 {
908 int ret;
909 struct cgroupfs_root *root = data;
910
911 ret = set_anon_super(sb, NULL);
912 if (ret)
913 return ret;
914
915 sb->s_fs_info = root;
916 root->sb = sb;
917
918 sb->s_blocksize = PAGE_CACHE_SIZE;
919 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
920 sb->s_magic = CGROUP_SUPER_MAGIC;
921 sb->s_op = &cgroup_ops;
922
923 return 0;
924 }
925
926 static int cgroup_get_rootdir(struct super_block *sb)
927 {
928 struct inode *inode =
929 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
930 struct dentry *dentry;
931
932 if (!inode)
933 return -ENOMEM;
934
935 inode->i_fop = &simple_dir_operations;
936 inode->i_op = &cgroup_dir_inode_operations;
937 /* directories start off with i_nlink == 2 (for "." entry) */
938 inc_nlink(inode);
939 dentry = d_alloc_root(inode);
940 if (!dentry) {
941 iput(inode);
942 return -ENOMEM;
943 }
944 sb->s_root = dentry;
945 return 0;
946 }
947
948 static int cgroup_get_sb(struct file_system_type *fs_type,
949 int flags, const char *unused_dev_name,
950 void *data, struct vfsmount *mnt)
951 {
952 struct cgroup_sb_opts opts;
953 int ret = 0;
954 struct super_block *sb;
955 struct cgroupfs_root *root;
956 struct list_head tmp_cg_links;
957
958 /* First find the desired set of subsystems */
959 ret = parse_cgroupfs_options(data, &opts);
960 if (ret) {
961 if (opts.release_agent)
962 kfree(opts.release_agent);
963 return ret;
964 }
965
966 root = kzalloc(sizeof(*root), GFP_KERNEL);
967 if (!root) {
968 if (opts.release_agent)
969 kfree(opts.release_agent);
970 return -ENOMEM;
971 }
972
973 init_cgroup_root(root);
974 root->subsys_bits = opts.subsys_bits;
975 root->flags = opts.flags;
976 if (opts.release_agent) {
977 strcpy(root->release_agent_path, opts.release_agent);
978 kfree(opts.release_agent);
979 }
980
981 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, root);
982
983 if (IS_ERR(sb)) {
984 kfree(root);
985 return PTR_ERR(sb);
986 }
987
988 if (sb->s_fs_info != root) {
989 /* Reusing an existing superblock */
990 BUG_ON(sb->s_root == NULL);
991 kfree(root);
992 root = NULL;
993 } else {
994 /* New superblock */
995 struct cgroup *cgrp = &root->top_cgroup;
996 struct inode *inode;
997 int i;
998
999 BUG_ON(sb->s_root != NULL);
1000
1001 ret = cgroup_get_rootdir(sb);
1002 if (ret)
1003 goto drop_new_super;
1004 inode = sb->s_root->d_inode;
1005
1006 mutex_lock(&inode->i_mutex);
1007 mutex_lock(&cgroup_mutex);
1008
1009 /*
1010 * We're accessing css_set_count without locking
1011 * css_set_lock here, but that's OK - it can only be
1012 * increased by someone holding cgroup_lock, and
1013 * that's us. The worst that can happen is that we
1014 * have some link structures left over
1015 */
1016 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1017 if (ret) {
1018 mutex_unlock(&cgroup_mutex);
1019 mutex_unlock(&inode->i_mutex);
1020 goto drop_new_super;
1021 }
1022
1023 ret = rebind_subsystems(root, root->subsys_bits);
1024 if (ret == -EBUSY) {
1025 mutex_unlock(&cgroup_mutex);
1026 mutex_unlock(&inode->i_mutex);
1027 goto drop_new_super;
1028 }
1029
1030 /* EBUSY should be the only error here */
1031 BUG_ON(ret);
1032
1033 list_add(&root->root_list, &roots);
1034 root_count++;
1035
1036 sb->s_root->d_fsdata = &root->top_cgroup;
1037 root->top_cgroup.dentry = sb->s_root;
1038
1039 /* Link the top cgroup in this hierarchy into all
1040 * the css_set objects */
1041 write_lock(&css_set_lock);
1042 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1043 struct hlist_head *hhead = &css_set_table[i];
1044 struct hlist_node *node;
1045 struct css_set *cg;
1046
1047 hlist_for_each_entry(cg, node, hhead, hlist) {
1048 struct cg_cgroup_link *link;
1049
1050 BUG_ON(list_empty(&tmp_cg_links));
1051 link = list_entry(tmp_cg_links.next,
1052 struct cg_cgroup_link,
1053 cgrp_link_list);
1054 list_del(&link->cgrp_link_list);
1055 link->cg = cg;
1056 list_add(&link->cgrp_link_list,
1057 &root->top_cgroup.css_sets);
1058 list_add(&link->cg_link_list, &cg->cg_links);
1059 }
1060 }
1061 write_unlock(&css_set_lock);
1062
1063 free_cg_links(&tmp_cg_links);
1064
1065 BUG_ON(!list_empty(&cgrp->sibling));
1066 BUG_ON(!list_empty(&cgrp->children));
1067 BUG_ON(root->number_of_cgroups != 1);
1068
1069 cgroup_populate_dir(cgrp);
1070 mutex_unlock(&inode->i_mutex);
1071 mutex_unlock(&cgroup_mutex);
1072 }
1073
1074 return simple_set_mnt(mnt, sb);
1075
1076 drop_new_super:
1077 up_write(&sb->s_umount);
1078 deactivate_super(sb);
1079 free_cg_links(&tmp_cg_links);
1080 return ret;
1081 }
1082
1083 static void cgroup_kill_sb(struct super_block *sb) {
1084 struct cgroupfs_root *root = sb->s_fs_info;
1085 struct cgroup *cgrp = &root->top_cgroup;
1086 int ret;
1087 struct cg_cgroup_link *link;
1088 struct cg_cgroup_link *saved_link;
1089
1090 BUG_ON(!root);
1091
1092 BUG_ON(root->number_of_cgroups != 1);
1093 BUG_ON(!list_empty(&cgrp->children));
1094 BUG_ON(!list_empty(&cgrp->sibling));
1095
1096 mutex_lock(&cgroup_mutex);
1097
1098 /* Rebind all subsystems back to the default hierarchy */
1099 ret = rebind_subsystems(root, 0);
1100 /* Shouldn't be able to fail ... */
1101 BUG_ON(ret);
1102
1103 /*
1104 * Release all the links from css_sets to this hierarchy's
1105 * root cgroup
1106 */
1107 write_lock(&css_set_lock);
1108
1109 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1110 cgrp_link_list) {
1111 list_del(&link->cg_link_list);
1112 list_del(&link->cgrp_link_list);
1113 kfree(link);
1114 }
1115 write_unlock(&css_set_lock);
1116
1117 if (!list_empty(&root->root_list)) {
1118 list_del(&root->root_list);
1119 root_count--;
1120 }
1121 mutex_unlock(&cgroup_mutex);
1122
1123 kfree(root);
1124 kill_litter_super(sb);
1125 }
1126
1127 static struct file_system_type cgroup_fs_type = {
1128 .name = "cgroup",
1129 .get_sb = cgroup_get_sb,
1130 .kill_sb = cgroup_kill_sb,
1131 };
1132
1133 static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1134 {
1135 return dentry->d_fsdata;
1136 }
1137
1138 static inline struct cftype *__d_cft(struct dentry *dentry)
1139 {
1140 return dentry->d_fsdata;
1141 }
1142
1143 /**
1144 * cgroup_path - generate the path of a cgroup
1145 * @cgrp: the cgroup in question
1146 * @buf: the buffer to write the path into
1147 * @buflen: the length of the buffer
1148 *
1149 * Called with cgroup_mutex held. Writes path of cgroup into buf.
1150 * Returns 0 on success, -errno on error.
1151 */
1152 int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1153 {
1154 char *start;
1155
1156 if (cgrp == dummytop) {
1157 /*
1158 * Inactive subsystems have no dentry for their root
1159 * cgroup
1160 */
1161 strcpy(buf, "/");
1162 return 0;
1163 }
1164
1165 start = buf + buflen;
1166
1167 *--start = '\0';
1168 for (;;) {
1169 int len = cgrp->dentry->d_name.len;
1170 if ((start -= len) < buf)
1171 return -ENAMETOOLONG;
1172 memcpy(start, cgrp->dentry->d_name.name, len);
1173 cgrp = cgrp->parent;
1174 if (!cgrp)
1175 break;
1176 if (!cgrp->parent)
1177 continue;
1178 if (--start < buf)
1179 return -ENAMETOOLONG;
1180 *start = '/';
1181 }
1182 memmove(buf, start, buf + buflen - start);
1183 return 0;
1184 }
1185
1186 /*
1187 * Return the first subsystem attached to a cgroup's hierarchy, and
1188 * its subsystem id.
1189 */
1190
1191 static void get_first_subsys(const struct cgroup *cgrp,
1192 struct cgroup_subsys_state **css, int *subsys_id)
1193 {
1194 const struct cgroupfs_root *root = cgrp->root;
1195 const struct cgroup_subsys *test_ss;
1196 BUG_ON(list_empty(&root->subsys_list));
1197 test_ss = list_entry(root->subsys_list.next,
1198 struct cgroup_subsys, sibling);
1199 if (css) {
1200 *css = cgrp->subsys[test_ss->subsys_id];
1201 BUG_ON(!*css);
1202 }
1203 if (subsys_id)
1204 *subsys_id = test_ss->subsys_id;
1205 }
1206
1207 /**
1208 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1209 * @cgrp: the cgroup the task is attaching to
1210 * @tsk: the task to be attached
1211 *
1212 * Call holding cgroup_mutex. May take task_lock of
1213 * the task 'tsk' during call.
1214 */
1215 int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1216 {
1217 int retval = 0;
1218 struct cgroup_subsys *ss;
1219 struct cgroup *oldcgrp;
1220 struct css_set *cg = tsk->cgroups;
1221 struct css_set *newcg;
1222 struct cgroupfs_root *root = cgrp->root;
1223 int subsys_id;
1224
1225 get_first_subsys(cgrp, NULL, &subsys_id);
1226
1227 /* Nothing to do if the task is already in that cgroup */
1228 oldcgrp = task_cgroup(tsk, subsys_id);
1229 if (cgrp == oldcgrp)
1230 return 0;
1231
1232 for_each_subsys(root, ss) {
1233 if (ss->can_attach) {
1234 retval = ss->can_attach(ss, cgrp, tsk);
1235 if (retval)
1236 return retval;
1237 }
1238 }
1239
1240 /*
1241 * Locate or allocate a new css_set for this task,
1242 * based on its final set of cgroups
1243 */
1244 newcg = find_css_set(cg, cgrp);
1245 if (!newcg)
1246 return -ENOMEM;
1247
1248 task_lock(tsk);
1249 if (tsk->flags & PF_EXITING) {
1250 task_unlock(tsk);
1251 put_css_set(newcg);
1252 return -ESRCH;
1253 }
1254 rcu_assign_pointer(tsk->cgroups, newcg);
1255 task_unlock(tsk);
1256
1257 /* Update the css_set linked lists if we're using them */
1258 write_lock(&css_set_lock);
1259 if (!list_empty(&tsk->cg_list)) {
1260 list_del(&tsk->cg_list);
1261 list_add(&tsk->cg_list, &newcg->tasks);
1262 }
1263 write_unlock(&css_set_lock);
1264
1265 for_each_subsys(root, ss) {
1266 if (ss->attach)
1267 ss->attach(ss, cgrp, oldcgrp, tsk);
1268 }
1269 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1270 synchronize_rcu();
1271 put_css_set(cg);
1272 return 0;
1273 }
1274
1275 /*
1276 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with cgroup_mutex
1277 * held. May take task_lock of task
1278 */
1279 static int attach_task_by_pid(struct cgroup *cgrp, u64 pid)
1280 {
1281 struct task_struct *tsk;
1282 uid_t euid;
1283 int ret;
1284
1285 if (pid) {
1286 rcu_read_lock();
1287 tsk = find_task_by_vpid(pid);
1288 if (!tsk || tsk->flags & PF_EXITING) {
1289 rcu_read_unlock();
1290 return -ESRCH;
1291 }
1292 get_task_struct(tsk);
1293 rcu_read_unlock();
1294
1295 euid = current_euid();
1296 if (euid &&
1297 euid != tsk->cred->uid &&
1298 euid != tsk->cred->suid) {
1299 put_task_struct(tsk);
1300 return -EACCES;
1301 }
1302 } else {
1303 tsk = current;
1304 get_task_struct(tsk);
1305 }
1306
1307 ret = cgroup_attach_task(cgrp, tsk);
1308 put_task_struct(tsk);
1309 return ret;
1310 }
1311
1312 static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
1313 {
1314 int ret;
1315 if (!cgroup_lock_live_group(cgrp))
1316 return -ENODEV;
1317 ret = attach_task_by_pid(cgrp, pid);
1318 cgroup_unlock();
1319 return ret;
1320 }
1321
1322 /* The various types of files and directories in a cgroup file system */
1323 enum cgroup_filetype {
1324 FILE_ROOT,
1325 FILE_DIR,
1326 FILE_TASKLIST,
1327 FILE_NOTIFY_ON_RELEASE,
1328 FILE_RELEASE_AGENT,
1329 };
1330
1331 /**
1332 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
1333 * @cgrp: the cgroup to be checked for liveness
1334 *
1335 * On success, returns true; the lock should be later released with
1336 * cgroup_unlock(). On failure returns false with no lock held.
1337 */
1338 bool cgroup_lock_live_group(struct cgroup *cgrp)
1339 {
1340 mutex_lock(&cgroup_mutex);
1341 if (cgroup_is_removed(cgrp)) {
1342 mutex_unlock(&cgroup_mutex);
1343 return false;
1344 }
1345 return true;
1346 }
1347
1348 static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
1349 const char *buffer)
1350 {
1351 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
1352 if (!cgroup_lock_live_group(cgrp))
1353 return -ENODEV;
1354 strcpy(cgrp->root->release_agent_path, buffer);
1355 cgroup_unlock();
1356 return 0;
1357 }
1358
1359 static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
1360 struct seq_file *seq)
1361 {
1362 if (!cgroup_lock_live_group(cgrp))
1363 return -ENODEV;
1364 seq_puts(seq, cgrp->root->release_agent_path);
1365 seq_putc(seq, '\n');
1366 cgroup_unlock();
1367 return 0;
1368 }
1369
1370 /* A buffer size big enough for numbers or short strings */
1371 #define CGROUP_LOCAL_BUFFER_SIZE 64
1372
1373 static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
1374 struct file *file,
1375 const char __user *userbuf,
1376 size_t nbytes, loff_t *unused_ppos)
1377 {
1378 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
1379 int retval = 0;
1380 char *end;
1381
1382 if (!nbytes)
1383 return -EINVAL;
1384 if (nbytes >= sizeof(buffer))
1385 return -E2BIG;
1386 if (copy_from_user(buffer, userbuf, nbytes))
1387 return -EFAULT;
1388
1389 buffer[nbytes] = 0; /* nul-terminate */
1390 strstrip(buffer);
1391 if (cft->write_u64) {
1392 u64 val = simple_strtoull(buffer, &end, 0);
1393 if (*end)
1394 return -EINVAL;
1395 retval = cft->write_u64(cgrp, cft, val);
1396 } else {
1397 s64 val = simple_strtoll(buffer, &end, 0);
1398 if (*end)
1399 return -EINVAL;
1400 retval = cft->write_s64(cgrp, cft, val);
1401 }
1402 if (!retval)
1403 retval = nbytes;
1404 return retval;
1405 }
1406
1407 static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
1408 struct file *file,
1409 const char __user *userbuf,
1410 size_t nbytes, loff_t *unused_ppos)
1411 {
1412 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
1413 int retval = 0;
1414 size_t max_bytes = cft->max_write_len;
1415 char *buffer = local_buffer;
1416
1417 if (!max_bytes)
1418 max_bytes = sizeof(local_buffer) - 1;
1419 if (nbytes >= max_bytes)
1420 return -E2BIG;
1421 /* Allocate a dynamic buffer if we need one */
1422 if (nbytes >= sizeof(local_buffer)) {
1423 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
1424 if (buffer == NULL)
1425 return -ENOMEM;
1426 }
1427 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
1428 retval = -EFAULT;
1429 goto out;
1430 }
1431
1432 buffer[nbytes] = 0; /* nul-terminate */
1433 strstrip(buffer);
1434 retval = cft->write_string(cgrp, cft, buffer);
1435 if (!retval)
1436 retval = nbytes;
1437 out:
1438 if (buffer != local_buffer)
1439 kfree(buffer);
1440 return retval;
1441 }
1442
1443 static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
1444 size_t nbytes, loff_t *ppos)
1445 {
1446 struct cftype *cft = __d_cft(file->f_dentry);
1447 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1448
1449 if (!cft || cgroup_is_removed(cgrp))
1450 return -ENODEV;
1451 if (cft->write)
1452 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
1453 if (cft->write_u64 || cft->write_s64)
1454 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
1455 if (cft->write_string)
1456 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
1457 if (cft->trigger) {
1458 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
1459 return ret ? ret : nbytes;
1460 }
1461 return -EINVAL;
1462 }
1463
1464 static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
1465 struct file *file,
1466 char __user *buf, size_t nbytes,
1467 loff_t *ppos)
1468 {
1469 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
1470 u64 val = cft->read_u64(cgrp, cft);
1471 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
1472
1473 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
1474 }
1475
1476 static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
1477 struct file *file,
1478 char __user *buf, size_t nbytes,
1479 loff_t *ppos)
1480 {
1481 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
1482 s64 val = cft->read_s64(cgrp, cft);
1483 int len = sprintf(tmp, "%lld\n", (long long) val);
1484
1485 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
1486 }
1487
1488 static ssize_t cgroup_file_read(struct file *file, char __user *buf,
1489 size_t nbytes, loff_t *ppos)
1490 {
1491 struct cftype *cft = __d_cft(file->f_dentry);
1492 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1493
1494 if (!cft || cgroup_is_removed(cgrp))
1495 return -ENODEV;
1496
1497 if (cft->read)
1498 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
1499 if (cft->read_u64)
1500 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
1501 if (cft->read_s64)
1502 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
1503 return -EINVAL;
1504 }
1505
1506 /*
1507 * seqfile ops/methods for returning structured data. Currently just
1508 * supports string->u64 maps, but can be extended in future.
1509 */
1510
1511 struct cgroup_seqfile_state {
1512 struct cftype *cft;
1513 struct cgroup *cgroup;
1514 };
1515
1516 static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
1517 {
1518 struct seq_file *sf = cb->state;
1519 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
1520 }
1521
1522 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
1523 {
1524 struct cgroup_seqfile_state *state = m->private;
1525 struct cftype *cft = state->cft;
1526 if (cft->read_map) {
1527 struct cgroup_map_cb cb = {
1528 .fill = cgroup_map_add,
1529 .state = m,
1530 };
1531 return cft->read_map(state->cgroup, cft, &cb);
1532 }
1533 return cft->read_seq_string(state->cgroup, cft, m);
1534 }
1535
1536 static int cgroup_seqfile_release(struct inode *inode, struct file *file)
1537 {
1538 struct seq_file *seq = file->private_data;
1539 kfree(seq->private);
1540 return single_release(inode, file);
1541 }
1542
1543 static struct file_operations cgroup_seqfile_operations = {
1544 .read = seq_read,
1545 .write = cgroup_file_write,
1546 .llseek = seq_lseek,
1547 .release = cgroup_seqfile_release,
1548 };
1549
1550 static int cgroup_file_open(struct inode *inode, struct file *file)
1551 {
1552 int err;
1553 struct cftype *cft;
1554
1555 err = generic_file_open(inode, file);
1556 if (err)
1557 return err;
1558
1559 cft = __d_cft(file->f_dentry);
1560 if (!cft)
1561 return -ENODEV;
1562 if (cft->read_map || cft->read_seq_string) {
1563 struct cgroup_seqfile_state *state =
1564 kzalloc(sizeof(*state), GFP_USER);
1565 if (!state)
1566 return -ENOMEM;
1567 state->cft = cft;
1568 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
1569 file->f_op = &cgroup_seqfile_operations;
1570 err = single_open(file, cgroup_seqfile_show, state);
1571 if (err < 0)
1572 kfree(state);
1573 } else if (cft->open)
1574 err = cft->open(inode, file);
1575 else
1576 err = 0;
1577
1578 return err;
1579 }
1580
1581 static int cgroup_file_release(struct inode *inode, struct file *file)
1582 {
1583 struct cftype *cft = __d_cft(file->f_dentry);
1584 if (cft->release)
1585 return cft->release(inode, file);
1586 return 0;
1587 }
1588
1589 /*
1590 * cgroup_rename - Only allow simple rename of directories in place.
1591 */
1592 static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
1593 struct inode *new_dir, struct dentry *new_dentry)
1594 {
1595 if (!S_ISDIR(old_dentry->d_inode->i_mode))
1596 return -ENOTDIR;
1597 if (new_dentry->d_inode)
1598 return -EEXIST;
1599 if (old_dir != new_dir)
1600 return -EIO;
1601 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
1602 }
1603
1604 static struct file_operations cgroup_file_operations = {
1605 .read = cgroup_file_read,
1606 .write = cgroup_file_write,
1607 .llseek = generic_file_llseek,
1608 .open = cgroup_file_open,
1609 .release = cgroup_file_release,
1610 };
1611
1612 static struct inode_operations cgroup_dir_inode_operations = {
1613 .lookup = simple_lookup,
1614 .mkdir = cgroup_mkdir,
1615 .rmdir = cgroup_rmdir,
1616 .rename = cgroup_rename,
1617 };
1618
1619 static int cgroup_create_file(struct dentry *dentry, int mode,
1620 struct super_block *sb)
1621 {
1622 static struct dentry_operations cgroup_dops = {
1623 .d_iput = cgroup_diput,
1624 };
1625
1626 struct inode *inode;
1627
1628 if (!dentry)
1629 return -ENOENT;
1630 if (dentry->d_inode)
1631 return -EEXIST;
1632
1633 inode = cgroup_new_inode(mode, sb);
1634 if (!inode)
1635 return -ENOMEM;
1636
1637 if (S_ISDIR(mode)) {
1638 inode->i_op = &cgroup_dir_inode_operations;
1639 inode->i_fop = &simple_dir_operations;
1640
1641 /* start off with i_nlink == 2 (for "." entry) */
1642 inc_nlink(inode);
1643
1644 /* start with the directory inode held, so that we can
1645 * populate it without racing with another mkdir */
1646 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1647 } else if (S_ISREG(mode)) {
1648 inode->i_size = 0;
1649 inode->i_fop = &cgroup_file_operations;
1650 }
1651 dentry->d_op = &cgroup_dops;
1652 d_instantiate(dentry, inode);
1653 dget(dentry); /* Extra count - pin the dentry in core */
1654 return 0;
1655 }
1656
1657 /*
1658 * cgroup_create_dir - create a directory for an object.
1659 * @cgrp: the cgroup we create the directory for. It must have a valid
1660 * ->parent field. And we are going to fill its ->dentry field.
1661 * @dentry: dentry of the new cgroup
1662 * @mode: mode to set on new directory.
1663 */
1664 static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
1665 int mode)
1666 {
1667 struct dentry *parent;
1668 int error = 0;
1669
1670 parent = cgrp->parent->dentry;
1671 error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
1672 if (!error) {
1673 dentry->d_fsdata = cgrp;
1674 inc_nlink(parent->d_inode);
1675 cgrp->dentry = dentry;
1676 dget(dentry);
1677 }
1678 dput(dentry);
1679
1680 return error;
1681 }
1682
1683 int cgroup_add_file(struct cgroup *cgrp,
1684 struct cgroup_subsys *subsys,
1685 const struct cftype *cft)
1686 {
1687 struct dentry *dir = cgrp->dentry;
1688 struct dentry *dentry;
1689 int error;
1690
1691 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
1692 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
1693 strcpy(name, subsys->name);
1694 strcat(name, ".");
1695 }
1696 strcat(name, cft->name);
1697 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
1698 dentry = lookup_one_len(name, dir, strlen(name));
1699 if (!IS_ERR(dentry)) {
1700 error = cgroup_create_file(dentry, 0644 | S_IFREG,
1701 cgrp->root->sb);
1702 if (!error)
1703 dentry->d_fsdata = (void *)cft;
1704 dput(dentry);
1705 } else
1706 error = PTR_ERR(dentry);
1707 return error;
1708 }
1709
1710 int cgroup_add_files(struct cgroup *cgrp,
1711 struct cgroup_subsys *subsys,
1712 const struct cftype cft[],
1713 int count)
1714 {
1715 int i, err;
1716 for (i = 0; i < count; i++) {
1717 err = cgroup_add_file(cgrp, subsys, &cft[i]);
1718 if (err)
1719 return err;
1720 }
1721 return 0;
1722 }
1723
1724 /**
1725 * cgroup_task_count - count the number of tasks in a cgroup.
1726 * @cgrp: the cgroup in question
1727 *
1728 * Return the number of tasks in the cgroup.
1729 */
1730 int cgroup_task_count(const struct cgroup *cgrp)
1731 {
1732 int count = 0;
1733 struct cg_cgroup_link *link;
1734
1735 read_lock(&css_set_lock);
1736 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
1737 count += atomic_read(&link->cg->refcount);
1738 }
1739 read_unlock(&css_set_lock);
1740 return count;
1741 }
1742
1743 /*
1744 * Advance a list_head iterator. The iterator should be positioned at
1745 * the start of a css_set
1746 */
1747 static void cgroup_advance_iter(struct cgroup *cgrp,
1748 struct cgroup_iter *it)
1749 {
1750 struct list_head *l = it->cg_link;
1751 struct cg_cgroup_link *link;
1752 struct css_set *cg;
1753
1754 /* Advance to the next non-empty css_set */
1755 do {
1756 l = l->next;
1757 if (l == &cgrp->css_sets) {
1758 it->cg_link = NULL;
1759 return;
1760 }
1761 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
1762 cg = link->cg;
1763 } while (list_empty(&cg->tasks));
1764 it->cg_link = l;
1765 it->task = cg->tasks.next;
1766 }
1767
1768 /*
1769 * To reduce the fork() overhead for systems that are not actually
1770 * using their cgroups capability, we don't maintain the lists running
1771 * through each css_set to its tasks until we see the list actually
1772 * used - in other words after the first call to cgroup_iter_start().
1773 *
1774 * The tasklist_lock is not held here, as do_each_thread() and
1775 * while_each_thread() are protected by RCU.
1776 */
1777 static void cgroup_enable_task_cg_lists(void)
1778 {
1779 struct task_struct *p, *g;
1780 write_lock(&css_set_lock);
1781 use_task_css_set_links = 1;
1782 do_each_thread(g, p) {
1783 task_lock(p);
1784 /*
1785 * We should check if the process is exiting, otherwise
1786 * it will race with cgroup_exit() in that the list
1787 * entry won't be deleted though the process has exited.
1788 */
1789 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
1790 list_add(&p->cg_list, &p->cgroups->tasks);
1791 task_unlock(p);
1792 } while_each_thread(g, p);
1793 write_unlock(&css_set_lock);
1794 }
1795
1796 void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
1797 {
1798 /*
1799 * The first time anyone tries to iterate across a cgroup,
1800 * we need to enable the list linking each css_set to its
1801 * tasks, and fix up all existing tasks.
1802 */
1803 if (!use_task_css_set_links)
1804 cgroup_enable_task_cg_lists();
1805
1806 read_lock(&css_set_lock);
1807 it->cg_link = &cgrp->css_sets;
1808 cgroup_advance_iter(cgrp, it);
1809 }
1810
1811 struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
1812 struct cgroup_iter *it)
1813 {
1814 struct task_struct *res;
1815 struct list_head *l = it->task;
1816
1817 /* If the iterator cg is NULL, we have no tasks */
1818 if (!it->cg_link)
1819 return NULL;
1820 res = list_entry(l, struct task_struct, cg_list);
1821 /* Advance iterator to find next entry */
1822 l = l->next;
1823 if (l == &res->cgroups->tasks) {
1824 /* We reached the end of this task list - move on to
1825 * the next cg_cgroup_link */
1826 cgroup_advance_iter(cgrp, it);
1827 } else {
1828 it->task = l;
1829 }
1830 return res;
1831 }
1832
1833 void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
1834 {
1835 read_unlock(&css_set_lock);
1836 }
1837
1838 static inline int started_after_time(struct task_struct *t1,
1839 struct timespec *time,
1840 struct task_struct *t2)
1841 {
1842 int start_diff = timespec_compare(&t1->start_time, time);
1843 if (start_diff > 0) {
1844 return 1;
1845 } else if (start_diff < 0) {
1846 return 0;
1847 } else {
1848 /*
1849 * Arbitrarily, if two processes started at the same
1850 * time, we'll say that the lower pointer value
1851 * started first. Note that t2 may have exited by now
1852 * so this may not be a valid pointer any longer, but
1853 * that's fine - it still serves to distinguish
1854 * between two tasks started (effectively) simultaneously.
1855 */
1856 return t1 > t2;
1857 }
1858 }
1859
1860 /*
1861 * This function is a callback from heap_insert() and is used to order
1862 * the heap.
1863 * In this case we order the heap in descending task start time.
1864 */
1865 static inline int started_after(void *p1, void *p2)
1866 {
1867 struct task_struct *t1 = p1;
1868 struct task_struct *t2 = p2;
1869 return started_after_time(t1, &t2->start_time, t2);
1870 }
1871
1872 /**
1873 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
1874 * @scan: struct cgroup_scanner containing arguments for the scan
1875 *
1876 * Arguments include pointers to callback functions test_task() and
1877 * process_task().
1878 * Iterate through all the tasks in a cgroup, calling test_task() for each,
1879 * and if it returns true, call process_task() for it also.
1880 * The test_task pointer may be NULL, meaning always true (select all tasks).
1881 * Effectively duplicates cgroup_iter_{start,next,end}()
1882 * but does not lock css_set_lock for the call to process_task().
1883 * The struct cgroup_scanner may be embedded in any structure of the caller's
1884 * creation.
1885 * It is guaranteed that process_task() will act on every task that
1886 * is a member of the cgroup for the duration of this call. This
1887 * function may or may not call process_task() for tasks that exit
1888 * or move to a different cgroup during the call, or are forked or
1889 * move into the cgroup during the call.
1890 *
1891 * Note that test_task() may be called with locks held, and may in some
1892 * situations be called multiple times for the same task, so it should
1893 * be cheap.
1894 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
1895 * pre-allocated and will be used for heap operations (and its "gt" member will
1896 * be overwritten), else a temporary heap will be used (allocation of which
1897 * may cause this function to fail).
1898 */
1899 int cgroup_scan_tasks(struct cgroup_scanner *scan)
1900 {
1901 int retval, i;
1902 struct cgroup_iter it;
1903 struct task_struct *p, *dropped;
1904 /* Never dereference latest_task, since it's not refcounted */
1905 struct task_struct *latest_task = NULL;
1906 struct ptr_heap tmp_heap;
1907 struct ptr_heap *heap;
1908 struct timespec latest_time = { 0, 0 };
1909
1910 if (scan->heap) {
1911 /* The caller supplied our heap and pre-allocated its memory */
1912 heap = scan->heap;
1913 heap->gt = &started_after;
1914 } else {
1915 /* We need to allocate our own heap memory */
1916 heap = &tmp_heap;
1917 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
1918 if (retval)
1919 /* cannot allocate the heap */
1920 return retval;
1921 }
1922
1923 again:
1924 /*
1925 * Scan tasks in the cgroup, using the scanner's "test_task" callback
1926 * to determine which are of interest, and using the scanner's
1927 * "process_task" callback to process any of them that need an update.
1928 * Since we don't want to hold any locks during the task updates,
1929 * gather tasks to be processed in a heap structure.
1930 * The heap is sorted by descending task start time.
1931 * If the statically-sized heap fills up, we overflow tasks that
1932 * started later, and in future iterations only consider tasks that
1933 * started after the latest task in the previous pass. This
1934 * guarantees forward progress and that we don't miss any tasks.
1935 */
1936 heap->size = 0;
1937 cgroup_iter_start(scan->cg, &it);
1938 while ((p = cgroup_iter_next(scan->cg, &it))) {
1939 /*
1940 * Only affect tasks that qualify per the caller's callback,
1941 * if he provided one
1942 */
1943 if (scan->test_task && !scan->test_task(p, scan))
1944 continue;
1945 /*
1946 * Only process tasks that started after the last task
1947 * we processed
1948 */
1949 if (!started_after_time(p, &latest_time, latest_task))
1950 continue;
1951 dropped = heap_insert(heap, p);
1952 if (dropped == NULL) {
1953 /*
1954 * The new task was inserted; the heap wasn't
1955 * previously full
1956 */
1957 get_task_struct(p);
1958 } else if (dropped != p) {
1959 /*
1960 * The new task was inserted, and pushed out a
1961 * different task
1962 */
1963 get_task_struct(p);
1964 put_task_struct(dropped);
1965 }
1966 /*
1967 * Else the new task was newer than anything already in
1968 * the heap and wasn't inserted
1969 */
1970 }
1971 cgroup_iter_end(scan->cg, &it);
1972
1973 if (heap->size) {
1974 for (i = 0; i < heap->size; i++) {
1975 struct task_struct *q = heap->ptrs[i];
1976 if (i == 0) {
1977 latest_time = q->start_time;
1978 latest_task = q;
1979 }
1980 /* Process the task per the caller's callback */
1981 scan->process_task(q, scan);
1982 put_task_struct(q);
1983 }
1984 /*
1985 * If we had to process any tasks at all, scan again
1986 * in case some of them were in the middle of forking
1987 * children that didn't get processed.
1988 * Not the most efficient way to do it, but it avoids
1989 * having to take callback_mutex in the fork path
1990 */
1991 goto again;
1992 }
1993 if (heap == &tmp_heap)
1994 heap_free(&tmp_heap);
1995 return 0;
1996 }
1997
1998 /*
1999 * Stuff for reading the 'tasks' file.
2000 *
2001 * Reading this file can return large amounts of data if a cgroup has
2002 * *lots* of attached tasks. So it may need several calls to read(),
2003 * but we cannot guarantee that the information we produce is correct
2004 * unless we produce it entirely atomically.
2005 *
2006 */
2007
2008 /*
2009 * Load into 'pidarray' up to 'npids' of the tasks using cgroup
2010 * 'cgrp'. Return actual number of pids loaded. No need to
2011 * task_lock(p) when reading out p->cgroup, since we're in an RCU
2012 * read section, so the css_set can't go away, and is
2013 * immutable after creation.
2014 */
2015 static int pid_array_load(pid_t *pidarray, int npids, struct cgroup *cgrp)
2016 {
2017 int n = 0;
2018 struct cgroup_iter it;
2019 struct task_struct *tsk;
2020 cgroup_iter_start(cgrp, &it);
2021 while ((tsk = cgroup_iter_next(cgrp, &it))) {
2022 if (unlikely(n == npids))
2023 break;
2024 pidarray[n++] = task_pid_vnr(tsk);
2025 }
2026 cgroup_iter_end(cgrp, &it);
2027 return n;
2028 }
2029
2030 /**
2031 * cgroupstats_build - build and fill cgroupstats
2032 * @stats: cgroupstats to fill information into
2033 * @dentry: A dentry entry belonging to the cgroup for which stats have
2034 * been requested.
2035 *
2036 * Build and fill cgroupstats so that taskstats can export it to user
2037 * space.
2038 */
2039 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
2040 {
2041 int ret = -EINVAL;
2042 struct cgroup *cgrp;
2043 struct cgroup_iter it;
2044 struct task_struct *tsk;
2045 /*
2046 * Validate dentry by checking the superblock operations
2047 */
2048 if (dentry->d_sb->s_op != &cgroup_ops)
2049 goto err;
2050
2051 ret = 0;
2052 cgrp = dentry->d_fsdata;
2053 rcu_read_lock();
2054
2055 cgroup_iter_start(cgrp, &it);
2056 while ((tsk = cgroup_iter_next(cgrp, &it))) {
2057 switch (tsk->state) {
2058 case TASK_RUNNING:
2059 stats->nr_running++;
2060 break;
2061 case TASK_INTERRUPTIBLE:
2062 stats->nr_sleeping++;
2063 break;
2064 case TASK_UNINTERRUPTIBLE:
2065 stats->nr_uninterruptible++;
2066 break;
2067 case TASK_STOPPED:
2068 stats->nr_stopped++;
2069 break;
2070 default:
2071 if (delayacct_is_task_waiting_on_io(tsk))
2072 stats->nr_io_wait++;
2073 break;
2074 }
2075 }
2076 cgroup_iter_end(cgrp, &it);
2077
2078 rcu_read_unlock();
2079 err:
2080 return ret;
2081 }
2082
2083 static int cmppid(const void *a, const void *b)
2084 {
2085 return *(pid_t *)a - *(pid_t *)b;
2086 }
2087
2088
2089 /*
2090 * seq_file methods for the "tasks" file. The seq_file position is the
2091 * next pid to display; the seq_file iterator is a pointer to the pid
2092 * in the cgroup->tasks_pids array.
2093 */
2094
2095 static void *cgroup_tasks_start(struct seq_file *s, loff_t *pos)
2096 {
2097 /*
2098 * Initially we receive a position value that corresponds to
2099 * one more than the last pid shown (or 0 on the first call or
2100 * after a seek to the start). Use a binary-search to find the
2101 * next pid to display, if any
2102 */
2103 struct cgroup *cgrp = s->private;
2104 int index = 0, pid = *pos;
2105 int *iter;
2106
2107 down_read(&cgrp->pids_mutex);
2108 if (pid) {
2109 int end = cgrp->pids_length;
2110
2111 while (index < end) {
2112 int mid = (index + end) / 2;
2113 if (cgrp->tasks_pids[mid] == pid) {
2114 index = mid;
2115 break;
2116 } else if (cgrp->tasks_pids[mid] <= pid)
2117 index = mid + 1;
2118 else
2119 end = mid;
2120 }
2121 }
2122 /* If we're off the end of the array, we're done */
2123 if (index >= cgrp->pids_length)
2124 return NULL;
2125 /* Update the abstract position to be the actual pid that we found */
2126 iter = cgrp->tasks_pids + index;
2127 *pos = *iter;
2128 return iter;
2129 }
2130
2131 static void cgroup_tasks_stop(struct seq_file *s, void *v)
2132 {
2133 struct cgroup *cgrp = s->private;
2134 up_read(&cgrp->pids_mutex);
2135 }
2136
2137 static void *cgroup_tasks_next(struct seq_file *s, void *v, loff_t *pos)
2138 {
2139 struct cgroup *cgrp = s->private;
2140 int *p = v;
2141 int *end = cgrp->tasks_pids + cgrp->pids_length;
2142
2143 /*
2144 * Advance to the next pid in the array. If this goes off the
2145 * end, we're done
2146 */
2147 p++;
2148 if (p >= end) {
2149 return NULL;
2150 } else {
2151 *pos = *p;
2152 return p;
2153 }
2154 }
2155
2156 static int cgroup_tasks_show(struct seq_file *s, void *v)
2157 {
2158 return seq_printf(s, "%d\n", *(int *)v);
2159 }
2160
2161 static struct seq_operations cgroup_tasks_seq_operations = {
2162 .start = cgroup_tasks_start,
2163 .stop = cgroup_tasks_stop,
2164 .next = cgroup_tasks_next,
2165 .show = cgroup_tasks_show,
2166 };
2167
2168 static void release_cgroup_pid_array(struct cgroup *cgrp)
2169 {
2170 down_write(&cgrp->pids_mutex);
2171 BUG_ON(!cgrp->pids_use_count);
2172 if (!--cgrp->pids_use_count) {
2173 kfree(cgrp->tasks_pids);
2174 cgrp->tasks_pids = NULL;
2175 cgrp->pids_length = 0;
2176 }
2177 up_write(&cgrp->pids_mutex);
2178 }
2179
2180 static int cgroup_tasks_release(struct inode *inode, struct file *file)
2181 {
2182 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2183
2184 if (!(file->f_mode & FMODE_READ))
2185 return 0;
2186
2187 release_cgroup_pid_array(cgrp);
2188 return seq_release(inode, file);
2189 }
2190
2191 static struct file_operations cgroup_tasks_operations = {
2192 .read = seq_read,
2193 .llseek = seq_lseek,
2194 .write = cgroup_file_write,
2195 .release = cgroup_tasks_release,
2196 };
2197
2198 /*
2199 * Handle an open on 'tasks' file. Prepare an array containing the
2200 * process id's of tasks currently attached to the cgroup being opened.
2201 */
2202
2203 static int cgroup_tasks_open(struct inode *unused, struct file *file)
2204 {
2205 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2206 pid_t *pidarray;
2207 int npids;
2208 int retval;
2209
2210 /* Nothing to do for write-only files */
2211 if (!(file->f_mode & FMODE_READ))
2212 return 0;
2213
2214 /*
2215 * If cgroup gets more users after we read count, we won't have
2216 * enough space - tough. This race is indistinguishable to the
2217 * caller from the case that the additional cgroup users didn't
2218 * show up until sometime later on.
2219 */
2220 npids = cgroup_task_count(cgrp);
2221 pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
2222 if (!pidarray)
2223 return -ENOMEM;
2224 npids = pid_array_load(pidarray, npids, cgrp);
2225 sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
2226
2227 /*
2228 * Store the array in the cgroup, freeing the old
2229 * array if necessary
2230 */
2231 down_write(&cgrp->pids_mutex);
2232 kfree(cgrp->tasks_pids);
2233 cgrp->tasks_pids = pidarray;
2234 cgrp->pids_length = npids;
2235 cgrp->pids_use_count++;
2236 up_write(&cgrp->pids_mutex);
2237
2238 file->f_op = &cgroup_tasks_operations;
2239
2240 retval = seq_open(file, &cgroup_tasks_seq_operations);
2241 if (retval) {
2242 release_cgroup_pid_array(cgrp);
2243 return retval;
2244 }
2245 ((struct seq_file *)file->private_data)->private = cgrp;
2246 return 0;
2247 }
2248
2249 static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
2250 struct cftype *cft)
2251 {
2252 return notify_on_release(cgrp);
2253 }
2254
2255 static int cgroup_write_notify_on_release(struct cgroup *cgrp,
2256 struct cftype *cft,
2257 u64 val)
2258 {
2259 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
2260 if (val)
2261 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
2262 else
2263 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
2264 return 0;
2265 }
2266
2267 /*
2268 * for the common functions, 'private' gives the type of file
2269 */
2270 static struct cftype files[] = {
2271 {
2272 .name = "tasks",
2273 .open = cgroup_tasks_open,
2274 .write_u64 = cgroup_tasks_write,
2275 .release = cgroup_tasks_release,
2276 .private = FILE_TASKLIST,
2277 },
2278
2279 {
2280 .name = "notify_on_release",
2281 .read_u64 = cgroup_read_notify_on_release,
2282 .write_u64 = cgroup_write_notify_on_release,
2283 .private = FILE_NOTIFY_ON_RELEASE,
2284 },
2285 };
2286
2287 static struct cftype cft_release_agent = {
2288 .name = "release_agent",
2289 .read_seq_string = cgroup_release_agent_show,
2290 .write_string = cgroup_release_agent_write,
2291 .max_write_len = PATH_MAX,
2292 .private = FILE_RELEASE_AGENT,
2293 };
2294
2295 static int cgroup_populate_dir(struct cgroup *cgrp)
2296 {
2297 int err;
2298 struct cgroup_subsys *ss;
2299
2300 /* First clear out any existing files */
2301 cgroup_clear_directory(cgrp->dentry);
2302
2303 err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
2304 if (err < 0)
2305 return err;
2306
2307 if (cgrp == cgrp->top_cgroup) {
2308 if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
2309 return err;
2310 }
2311
2312 for_each_subsys(cgrp->root, ss) {
2313 if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
2314 return err;
2315 }
2316
2317 return 0;
2318 }
2319
2320 static void init_cgroup_css(struct cgroup_subsys_state *css,
2321 struct cgroup_subsys *ss,
2322 struct cgroup *cgrp)
2323 {
2324 css->cgroup = cgrp;
2325 atomic_set(&css->refcnt, 0);
2326 css->flags = 0;
2327 if (cgrp == dummytop)
2328 set_bit(CSS_ROOT, &css->flags);
2329 BUG_ON(cgrp->subsys[ss->subsys_id]);
2330 cgrp->subsys[ss->subsys_id] = css;
2331 }
2332
2333 /*
2334 * cgroup_create - create a cgroup
2335 * @parent: cgroup that will be parent of the new cgroup
2336 * @dentry: dentry of the new cgroup
2337 * @mode: mode to set on new inode
2338 *
2339 * Must be called with the mutex on the parent inode held
2340 */
2341 static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
2342 int mode)
2343 {
2344 struct cgroup *cgrp;
2345 struct cgroupfs_root *root = parent->root;
2346 int err = 0;
2347 struct cgroup_subsys *ss;
2348 struct super_block *sb = root->sb;
2349
2350 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
2351 if (!cgrp)
2352 return -ENOMEM;
2353
2354 /* Grab a reference on the superblock so the hierarchy doesn't
2355 * get deleted on unmount if there are child cgroups. This
2356 * can be done outside cgroup_mutex, since the sb can't
2357 * disappear while someone has an open control file on the
2358 * fs */
2359 atomic_inc(&sb->s_active);
2360
2361 mutex_lock(&cgroup_mutex);
2362
2363 init_cgroup_housekeeping(cgrp);
2364
2365 cgrp->parent = parent;
2366 cgrp->root = parent->root;
2367 cgrp->top_cgroup = parent->top_cgroup;
2368
2369 if (notify_on_release(parent))
2370 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
2371
2372 for_each_subsys(root, ss) {
2373 struct cgroup_subsys_state *css = ss->create(ss, cgrp);
2374 if (IS_ERR(css)) {
2375 err = PTR_ERR(css);
2376 goto err_destroy;
2377 }
2378 init_cgroup_css(css, ss, cgrp);
2379 }
2380
2381 list_add(&cgrp->sibling, &cgrp->parent->children);
2382 root->number_of_cgroups++;
2383
2384 err = cgroup_create_dir(cgrp, dentry, mode);
2385 if (err < 0)
2386 goto err_remove;
2387
2388 /* The cgroup directory was pre-locked for us */
2389 BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
2390
2391 err = cgroup_populate_dir(cgrp);
2392 /* If err < 0, we have a half-filled directory - oh well ;) */
2393
2394 mutex_unlock(&cgroup_mutex);
2395 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
2396
2397 return 0;
2398
2399 err_remove:
2400
2401 list_del(&cgrp->sibling);
2402 root->number_of_cgroups--;
2403
2404 err_destroy:
2405
2406 for_each_subsys(root, ss) {
2407 if (cgrp->subsys[ss->subsys_id])
2408 ss->destroy(ss, cgrp);
2409 }
2410
2411 mutex_unlock(&cgroup_mutex);
2412
2413 /* Release the reference count that we took on the superblock */
2414 deactivate_super(sb);
2415
2416 kfree(cgrp);
2417 return err;
2418 }
2419
2420 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2421 {
2422 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
2423
2424 /* the vfs holds inode->i_mutex already */
2425 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
2426 }
2427
2428 static int cgroup_has_css_refs(struct cgroup *cgrp)
2429 {
2430 /* Check the reference count on each subsystem. Since we
2431 * already established that there are no tasks in the
2432 * cgroup, if the css refcount is also 0, then there should
2433 * be no outstanding references, so the subsystem is safe to
2434 * destroy. We scan across all subsystems rather than using
2435 * the per-hierarchy linked list of mounted subsystems since
2436 * we can be called via check_for_release() with no
2437 * synchronization other than RCU, and the subsystem linked
2438 * list isn't RCU-safe */
2439 int i;
2440 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2441 struct cgroup_subsys *ss = subsys[i];
2442 struct cgroup_subsys_state *css;
2443 /* Skip subsystems not in this hierarchy */
2444 if (ss->root != cgrp->root)
2445 continue;
2446 css = cgrp->subsys[ss->subsys_id];
2447 /* When called from check_for_release() it's possible
2448 * that by this point the cgroup has been removed
2449 * and the css deleted. But a false-positive doesn't
2450 * matter, since it can only happen if the cgroup
2451 * has been deleted and hence no longer needs the
2452 * release agent to be called anyway. */
2453 if (css && atomic_read(&css->refcnt))
2454 return 1;
2455 }
2456 return 0;
2457 }
2458
2459 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
2460 {
2461 struct cgroup *cgrp = dentry->d_fsdata;
2462 struct dentry *d;
2463 struct cgroup *parent;
2464 struct super_block *sb;
2465 struct cgroupfs_root *root;
2466
2467 /* the vfs holds both inode->i_mutex already */
2468
2469 mutex_lock(&cgroup_mutex);
2470 if (atomic_read(&cgrp->count) != 0) {
2471 mutex_unlock(&cgroup_mutex);
2472 return -EBUSY;
2473 }
2474 if (!list_empty(&cgrp->children)) {
2475 mutex_unlock(&cgroup_mutex);
2476 return -EBUSY;
2477 }
2478
2479 parent = cgrp->parent;
2480 root = cgrp->root;
2481 sb = root->sb;
2482
2483 /*
2484 * Call pre_destroy handlers of subsys. Notify subsystems
2485 * that rmdir() request comes.
2486 */
2487 cgroup_call_pre_destroy(cgrp);
2488
2489 if (cgroup_has_css_refs(cgrp)) {
2490 mutex_unlock(&cgroup_mutex);
2491 return -EBUSY;
2492 }
2493
2494 spin_lock(&release_list_lock);
2495 set_bit(CGRP_REMOVED, &cgrp->flags);
2496 if (!list_empty(&cgrp->release_list))
2497 list_del(&cgrp->release_list);
2498 spin_unlock(&release_list_lock);
2499 /* delete my sibling from parent->children */
2500 list_del(&cgrp->sibling);
2501 spin_lock(&cgrp->dentry->d_lock);
2502 d = dget(cgrp->dentry);
2503 cgrp->dentry = NULL;
2504 spin_unlock(&d->d_lock);
2505
2506 cgroup_d_remove_dir(d);
2507 dput(d);
2508
2509 set_bit(CGRP_RELEASABLE, &parent->flags);
2510 check_for_release(parent);
2511
2512 mutex_unlock(&cgroup_mutex);
2513 return 0;
2514 }
2515
2516 static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
2517 {
2518 struct cgroup_subsys_state *css;
2519
2520 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
2521
2522 /* Create the top cgroup state for this subsystem */
2523 ss->root = &rootnode;
2524 css = ss->create(ss, dummytop);
2525 /* We don't handle early failures gracefully */
2526 BUG_ON(IS_ERR(css));
2527 init_cgroup_css(css, ss, dummytop);
2528
2529 /* Update the init_css_set to contain a subsys
2530 * pointer to this state - since the subsystem is
2531 * newly registered, all tasks and hence the
2532 * init_css_set is in the subsystem's top cgroup. */
2533 init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
2534
2535 need_forkexit_callback |= ss->fork || ss->exit;
2536 need_mm_owner_callback |= !!ss->mm_owner_changed;
2537
2538 /* At system boot, before all subsystems have been
2539 * registered, no tasks have been forked, so we don't
2540 * need to invoke fork callbacks here. */
2541 BUG_ON(!list_empty(&init_task.tasks));
2542
2543 ss->active = 1;
2544 }
2545
2546 /**
2547 * cgroup_init_early - cgroup initialization at system boot
2548 *
2549 * Initialize cgroups at system boot, and initialize any
2550 * subsystems that request early init.
2551 */
2552 int __init cgroup_init_early(void)
2553 {
2554 int i;
2555 atomic_set(&init_css_set.refcount, 1);
2556 INIT_LIST_HEAD(&init_css_set.cg_links);
2557 INIT_LIST_HEAD(&init_css_set.tasks);
2558 INIT_HLIST_NODE(&init_css_set.hlist);
2559 css_set_count = 1;
2560 init_cgroup_root(&rootnode);
2561 list_add(&rootnode.root_list, &roots);
2562 root_count = 1;
2563 init_task.cgroups = &init_css_set;
2564
2565 init_css_set_link.cg = &init_css_set;
2566 list_add(&init_css_set_link.cgrp_link_list,
2567 &rootnode.top_cgroup.css_sets);
2568 list_add(&init_css_set_link.cg_link_list,
2569 &init_css_set.cg_links);
2570
2571 for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
2572 INIT_HLIST_HEAD(&css_set_table[i]);
2573
2574 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2575 struct cgroup_subsys *ss = subsys[i];
2576
2577 BUG_ON(!ss->name);
2578 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
2579 BUG_ON(!ss->create);
2580 BUG_ON(!ss->destroy);
2581 if (ss->subsys_id != i) {
2582 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
2583 ss->name, ss->subsys_id);
2584 BUG();
2585 }
2586
2587 if (ss->early_init)
2588 cgroup_init_subsys(ss);
2589 }
2590 return 0;
2591 }
2592
2593 /**
2594 * cgroup_init - cgroup initialization
2595 *
2596 * Register cgroup filesystem and /proc file, and initialize
2597 * any subsystems that didn't request early init.
2598 */
2599 int __init cgroup_init(void)
2600 {
2601 int err;
2602 int i;
2603 struct hlist_head *hhead;
2604
2605 err = bdi_init(&cgroup_backing_dev_info);
2606 if (err)
2607 return err;
2608
2609 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2610 struct cgroup_subsys *ss = subsys[i];
2611 if (!ss->early_init)
2612 cgroup_init_subsys(ss);
2613 }
2614
2615 /* Add init_css_set to the hash table */
2616 hhead = css_set_hash(init_css_set.subsys);
2617 hlist_add_head(&init_css_set.hlist, hhead);
2618
2619 err = register_filesystem(&cgroup_fs_type);
2620 if (err < 0)
2621 goto out;
2622
2623 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
2624
2625 out:
2626 if (err)
2627 bdi_destroy(&cgroup_backing_dev_info);
2628
2629 return err;
2630 }
2631
2632 /*
2633 * proc_cgroup_show()
2634 * - Print task's cgroup paths into seq_file, one line for each hierarchy
2635 * - Used for /proc/<pid>/cgroup.
2636 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
2637 * doesn't really matter if tsk->cgroup changes after we read it,
2638 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
2639 * anyway. No need to check that tsk->cgroup != NULL, thanks to
2640 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
2641 * cgroup to top_cgroup.
2642 */
2643
2644 /* TODO: Use a proper seq_file iterator */
2645 static int proc_cgroup_show(struct seq_file *m, void *v)
2646 {
2647 struct pid *pid;
2648 struct task_struct *tsk;
2649 char *buf;
2650 int retval;
2651 struct cgroupfs_root *root;
2652
2653 retval = -ENOMEM;
2654 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2655 if (!buf)
2656 goto out;
2657
2658 retval = -ESRCH;
2659 pid = m->private;
2660 tsk = get_pid_task(pid, PIDTYPE_PID);
2661 if (!tsk)
2662 goto out_free;
2663
2664 retval = 0;
2665
2666 mutex_lock(&cgroup_mutex);
2667
2668 for_each_root(root) {
2669 struct cgroup_subsys *ss;
2670 struct cgroup *cgrp;
2671 int subsys_id;
2672 int count = 0;
2673
2674 /* Skip this hierarchy if it has no active subsystems */
2675 if (!root->actual_subsys_bits)
2676 continue;
2677 seq_printf(m, "%lu:", root->subsys_bits);
2678 for_each_subsys(root, ss)
2679 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
2680 seq_putc(m, ':');
2681 get_first_subsys(&root->top_cgroup, NULL, &subsys_id);
2682 cgrp = task_cgroup(tsk, subsys_id);
2683 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
2684 if (retval < 0)
2685 goto out_unlock;
2686 seq_puts(m, buf);
2687 seq_putc(m, '\n');
2688 }
2689
2690 out_unlock:
2691 mutex_unlock(&cgroup_mutex);
2692 put_task_struct(tsk);
2693 out_free:
2694 kfree(buf);
2695 out:
2696 return retval;
2697 }
2698
2699 static int cgroup_open(struct inode *inode, struct file *file)
2700 {
2701 struct pid *pid = PROC_I(inode)->pid;
2702 return single_open(file, proc_cgroup_show, pid);
2703 }
2704
2705 struct file_operations proc_cgroup_operations = {
2706 .open = cgroup_open,
2707 .read = seq_read,
2708 .llseek = seq_lseek,
2709 .release = single_release,
2710 };
2711
2712 /* Display information about each subsystem and each hierarchy */
2713 static int proc_cgroupstats_show(struct seq_file *m, void *v)
2714 {
2715 int i;
2716
2717 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
2718 mutex_lock(&cgroup_mutex);
2719 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2720 struct cgroup_subsys *ss = subsys[i];
2721 seq_printf(m, "%s\t%lu\t%d\t%d\n",
2722 ss->name, ss->root->subsys_bits,
2723 ss->root->number_of_cgroups, !ss->disabled);
2724 }
2725 mutex_unlock(&cgroup_mutex);
2726 return 0;
2727 }
2728
2729 static int cgroupstats_open(struct inode *inode, struct file *file)
2730 {
2731 return single_open(file, proc_cgroupstats_show, NULL);
2732 }
2733
2734 static struct file_operations proc_cgroupstats_operations = {
2735 .open = cgroupstats_open,
2736 .read = seq_read,
2737 .llseek = seq_lseek,
2738 .release = single_release,
2739 };
2740
2741 /**
2742 * cgroup_fork - attach newly forked task to its parents cgroup.
2743 * @child: pointer to task_struct of forking parent process.
2744 *
2745 * Description: A task inherits its parent's cgroup at fork().
2746 *
2747 * A pointer to the shared css_set was automatically copied in
2748 * fork.c by dup_task_struct(). However, we ignore that copy, since
2749 * it was not made under the protection of RCU or cgroup_mutex, so
2750 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
2751 * have already changed current->cgroups, allowing the previously
2752 * referenced cgroup group to be removed and freed.
2753 *
2754 * At the point that cgroup_fork() is called, 'current' is the parent
2755 * task, and the passed argument 'child' points to the child task.
2756 */
2757 void cgroup_fork(struct task_struct *child)
2758 {
2759 task_lock(current);
2760 child->cgroups = current->cgroups;
2761 get_css_set(child->cgroups);
2762 task_unlock(current);
2763 INIT_LIST_HEAD(&child->cg_list);
2764 }
2765
2766 /**
2767 * cgroup_fork_callbacks - run fork callbacks
2768 * @child: the new task
2769 *
2770 * Called on a new task very soon before adding it to the
2771 * tasklist. No need to take any locks since no-one can
2772 * be operating on this task.
2773 */
2774 void cgroup_fork_callbacks(struct task_struct *child)
2775 {
2776 if (need_forkexit_callback) {
2777 int i;
2778 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2779 struct cgroup_subsys *ss = subsys[i];
2780 if (ss->fork)
2781 ss->fork(ss, child);
2782 }
2783 }
2784 }
2785
2786 #ifdef CONFIG_MM_OWNER
2787 /**
2788 * cgroup_mm_owner_callbacks - run callbacks when the mm->owner changes
2789 * @p: the new owner
2790 *
2791 * Called on every change to mm->owner. mm_init_owner() does not
2792 * invoke this routine, since it assigns the mm->owner the first time
2793 * and does not change it.
2794 *
2795 * The callbacks are invoked with mmap_sem held in read mode.
2796 */
2797 void cgroup_mm_owner_callbacks(struct task_struct *old, struct task_struct *new)
2798 {
2799 struct cgroup *oldcgrp, *newcgrp = NULL;
2800
2801 if (need_mm_owner_callback) {
2802 int i;
2803 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2804 struct cgroup_subsys *ss = subsys[i];
2805 oldcgrp = task_cgroup(old, ss->subsys_id);
2806 if (new)
2807 newcgrp = task_cgroup(new, ss->subsys_id);
2808 if (oldcgrp == newcgrp)
2809 continue;
2810 if (ss->mm_owner_changed)
2811 ss->mm_owner_changed(ss, oldcgrp, newcgrp, new);
2812 }
2813 }
2814 }
2815 #endif /* CONFIG_MM_OWNER */
2816
2817 /**
2818 * cgroup_post_fork - called on a new task after adding it to the task list
2819 * @child: the task in question
2820 *
2821 * Adds the task to the list running through its css_set if necessary.
2822 * Has to be after the task is visible on the task list in case we race
2823 * with the first call to cgroup_iter_start() - to guarantee that the
2824 * new task ends up on its list.
2825 */
2826 void cgroup_post_fork(struct task_struct *child)
2827 {
2828 if (use_task_css_set_links) {
2829 write_lock(&css_set_lock);
2830 if (list_empty(&child->cg_list))
2831 list_add(&child->cg_list, &child->cgroups->tasks);
2832 write_unlock(&css_set_lock);
2833 }
2834 }
2835 /**
2836 * cgroup_exit - detach cgroup from exiting task
2837 * @tsk: pointer to task_struct of exiting process
2838 * @run_callback: run exit callbacks?
2839 *
2840 * Description: Detach cgroup from @tsk and release it.
2841 *
2842 * Note that cgroups marked notify_on_release force every task in
2843 * them to take the global cgroup_mutex mutex when exiting.
2844 * This could impact scaling on very large systems. Be reluctant to
2845 * use notify_on_release cgroups where very high task exit scaling
2846 * is required on large systems.
2847 *
2848 * the_top_cgroup_hack:
2849 *
2850 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
2851 *
2852 * We call cgroup_exit() while the task is still competent to
2853 * handle notify_on_release(), then leave the task attached to the
2854 * root cgroup in each hierarchy for the remainder of its exit.
2855 *
2856 * To do this properly, we would increment the reference count on
2857 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
2858 * code we would add a second cgroup function call, to drop that
2859 * reference. This would just create an unnecessary hot spot on
2860 * the top_cgroup reference count, to no avail.
2861 *
2862 * Normally, holding a reference to a cgroup without bumping its
2863 * count is unsafe. The cgroup could go away, or someone could
2864 * attach us to a different cgroup, decrementing the count on
2865 * the first cgroup that we never incremented. But in this case,
2866 * top_cgroup isn't going away, and either task has PF_EXITING set,
2867 * which wards off any cgroup_attach_task() attempts, or task is a failed
2868 * fork, never visible to cgroup_attach_task.
2869 */
2870 void cgroup_exit(struct task_struct *tsk, int run_callbacks)
2871 {
2872 int i;
2873 struct css_set *cg;
2874
2875 if (run_callbacks && need_forkexit_callback) {
2876 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2877 struct cgroup_subsys *ss = subsys[i];
2878 if (ss->exit)
2879 ss->exit(ss, tsk);
2880 }
2881 }
2882
2883 /*
2884 * Unlink from the css_set task list if necessary.
2885 * Optimistically check cg_list before taking
2886 * css_set_lock
2887 */
2888 if (!list_empty(&tsk->cg_list)) {
2889 write_lock(&css_set_lock);
2890 if (!list_empty(&tsk->cg_list))
2891 list_del(&tsk->cg_list);
2892 write_unlock(&css_set_lock);
2893 }
2894
2895 /* Reassign the task to the init_css_set. */
2896 task_lock(tsk);
2897 cg = tsk->cgroups;
2898 tsk->cgroups = &init_css_set;
2899 task_unlock(tsk);
2900 if (cg)
2901 put_css_set_taskexit(cg);
2902 }
2903
2904 /**
2905 * cgroup_clone - clone the cgroup the given subsystem is attached to
2906 * @tsk: the task to be moved
2907 * @subsys: the given subsystem
2908 * @nodename: the name for the new cgroup
2909 *
2910 * Duplicate the current cgroup in the hierarchy that the given
2911 * subsystem is attached to, and move this task into the new
2912 * child.
2913 */
2914 int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys,
2915 char *nodename)
2916 {
2917 struct dentry *dentry;
2918 int ret = 0;
2919 struct cgroup *parent, *child;
2920 struct inode *inode;
2921 struct css_set *cg;
2922 struct cgroupfs_root *root;
2923 struct cgroup_subsys *ss;
2924
2925 /* We shouldn't be called by an unregistered subsystem */
2926 BUG_ON(!subsys->active);
2927
2928 /* First figure out what hierarchy and cgroup we're dealing
2929 * with, and pin them so we can drop cgroup_mutex */
2930 mutex_lock(&cgroup_mutex);
2931 again:
2932 root = subsys->root;
2933 if (root == &rootnode) {
2934 printk(KERN_INFO
2935 "Not cloning cgroup for unused subsystem %s\n",
2936 subsys->name);
2937 mutex_unlock(&cgroup_mutex);
2938 return 0;
2939 }
2940 cg = tsk->cgroups;
2941 parent = task_cgroup(tsk, subsys->subsys_id);
2942
2943 /* Pin the hierarchy */
2944 atomic_inc(&parent->root->sb->s_active);
2945
2946 /* Keep the cgroup alive */
2947 get_css_set(cg);
2948 mutex_unlock(&cgroup_mutex);
2949
2950 /* Now do the VFS work to create a cgroup */
2951 inode = parent->dentry->d_inode;
2952
2953 /* Hold the parent directory mutex across this operation to
2954 * stop anyone else deleting the new cgroup */
2955 mutex_lock(&inode->i_mutex);
2956 dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
2957 if (IS_ERR(dentry)) {
2958 printk(KERN_INFO
2959 "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
2960 PTR_ERR(dentry));
2961 ret = PTR_ERR(dentry);
2962 goto out_release;
2963 }
2964
2965 /* Create the cgroup directory, which also creates the cgroup */
2966 ret = vfs_mkdir(inode, dentry, S_IFDIR | 0755);
2967 child = __d_cgrp(dentry);
2968 dput(dentry);
2969 if (ret) {
2970 printk(KERN_INFO
2971 "Failed to create cgroup %s: %d\n", nodename,
2972 ret);
2973 goto out_release;
2974 }
2975
2976 if (!child) {
2977 printk(KERN_INFO
2978 "Couldn't find new cgroup %s\n", nodename);
2979 ret = -ENOMEM;
2980 goto out_release;
2981 }
2982
2983 /* The cgroup now exists. Retake cgroup_mutex and check
2984 * that we're still in the same state that we thought we
2985 * were. */
2986 mutex_lock(&cgroup_mutex);
2987 if ((root != subsys->root) ||
2988 (parent != task_cgroup(tsk, subsys->subsys_id))) {
2989 /* Aargh, we raced ... */
2990 mutex_unlock(&inode->i_mutex);
2991 put_css_set(cg);
2992
2993 deactivate_super(parent->root->sb);
2994 /* The cgroup is still accessible in the VFS, but
2995 * we're not going to try to rmdir() it at this
2996 * point. */
2997 printk(KERN_INFO
2998 "Race in cgroup_clone() - leaking cgroup %s\n",
2999 nodename);
3000 goto again;
3001 }
3002
3003 /* do any required auto-setup */
3004 for_each_subsys(root, ss) {
3005 if (ss->post_clone)
3006 ss->post_clone(ss, child);
3007 }
3008
3009 /* All seems fine. Finish by moving the task into the new cgroup */
3010 ret = cgroup_attach_task(child, tsk);
3011 mutex_unlock(&cgroup_mutex);
3012
3013 out_release:
3014 mutex_unlock(&inode->i_mutex);
3015
3016 mutex_lock(&cgroup_mutex);
3017 put_css_set(cg);
3018 mutex_unlock(&cgroup_mutex);
3019 deactivate_super(parent->root->sb);
3020 return ret;
3021 }
3022
3023 /**
3024 * cgroup_is_descendant - see if @cgrp is a descendant of current task's cgrp
3025 * @cgrp: the cgroup in question
3026 *
3027 * See if @cgrp is a descendant of the current task's cgroup in
3028 * the appropriate hierarchy.
3029 *
3030 * If we are sending in dummytop, then presumably we are creating
3031 * the top cgroup in the subsystem.
3032 *
3033 * Called only by the ns (nsproxy) cgroup.
3034 */
3035 int cgroup_is_descendant(const struct cgroup *cgrp)
3036 {
3037 int ret;
3038 struct cgroup *target;
3039 int subsys_id;
3040
3041 if (cgrp == dummytop)
3042 return 1;
3043
3044 get_first_subsys(cgrp, NULL, &subsys_id);
3045 target = task_cgroup(current, subsys_id);
3046 while (cgrp != target && cgrp!= cgrp->top_cgroup)
3047 cgrp = cgrp->parent;
3048 ret = (cgrp == target);
3049 return ret;
3050 }
3051
3052 static void check_for_release(struct cgroup *cgrp)
3053 {
3054 /* All of these checks rely on RCU to keep the cgroup
3055 * structure alive */
3056 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
3057 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
3058 /* Control Group is currently removeable. If it's not
3059 * already queued for a userspace notification, queue
3060 * it now */
3061 int need_schedule_work = 0;
3062 spin_lock(&release_list_lock);
3063 if (!cgroup_is_removed(cgrp) &&
3064 list_empty(&cgrp->release_list)) {
3065 list_add(&cgrp->release_list, &release_list);
3066 need_schedule_work = 1;
3067 }
3068 spin_unlock(&release_list_lock);
3069 if (need_schedule_work)
3070 schedule_work(&release_agent_work);
3071 }
3072 }
3073
3074 void __css_put(struct cgroup_subsys_state *css)
3075 {
3076 struct cgroup *cgrp = css->cgroup;
3077 rcu_read_lock();
3078 if (atomic_dec_and_test(&css->refcnt) && notify_on_release(cgrp)) {
3079 set_bit(CGRP_RELEASABLE, &cgrp->flags);
3080 check_for_release(cgrp);
3081 }
3082 rcu_read_unlock();
3083 }
3084
3085 /*
3086 * Notify userspace when a cgroup is released, by running the
3087 * configured release agent with the name of the cgroup (path
3088 * relative to the root of cgroup file system) as the argument.
3089 *
3090 * Most likely, this user command will try to rmdir this cgroup.
3091 *
3092 * This races with the possibility that some other task will be
3093 * attached to this cgroup before it is removed, or that some other
3094 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
3095 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
3096 * unused, and this cgroup will be reprieved from its death sentence,
3097 * to continue to serve a useful existence. Next time it's released,
3098 * we will get notified again, if it still has 'notify_on_release' set.
3099 *
3100 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
3101 * means only wait until the task is successfully execve()'d. The
3102 * separate release agent task is forked by call_usermodehelper(),
3103 * then control in this thread returns here, without waiting for the
3104 * release agent task. We don't bother to wait because the caller of
3105 * this routine has no use for the exit status of the release agent
3106 * task, so no sense holding our caller up for that.
3107 */
3108 static void cgroup_release_agent(struct work_struct *work)
3109 {
3110 BUG_ON(work != &release_agent_work);
3111 mutex_lock(&cgroup_mutex);
3112 spin_lock(&release_list_lock);
3113 while (!list_empty(&release_list)) {
3114 char *argv[3], *envp[3];
3115 int i;
3116 char *pathbuf = NULL, *agentbuf = NULL;
3117 struct cgroup *cgrp = list_entry(release_list.next,
3118 struct cgroup,
3119 release_list);
3120 list_del_init(&cgrp->release_list);
3121 spin_unlock(&release_list_lock);
3122 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3123 if (!pathbuf)
3124 goto continue_free;
3125 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
3126 goto continue_free;
3127 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
3128 if (!agentbuf)
3129 goto continue_free;
3130
3131 i = 0;
3132 argv[i++] = agentbuf;
3133 argv[i++] = pathbuf;
3134 argv[i] = NULL;
3135
3136 i = 0;
3137 /* minimal command environment */
3138 envp[i++] = "HOME=/";
3139 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
3140 envp[i] = NULL;
3141
3142 /* Drop the lock while we invoke the usermode helper,
3143 * since the exec could involve hitting disk and hence
3144 * be a slow process */
3145 mutex_unlock(&cgroup_mutex);
3146 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
3147 mutex_lock(&cgroup_mutex);
3148 continue_free:
3149 kfree(pathbuf);
3150 kfree(agentbuf);
3151 spin_lock(&release_list_lock);
3152 }
3153 spin_unlock(&release_list_lock);
3154 mutex_unlock(&cgroup_mutex);
3155 }
3156
3157 static int __init cgroup_disable(char *str)
3158 {
3159 int i;
3160 char *token;
3161
3162 while ((token = strsep(&str, ",")) != NULL) {
3163 if (!*token)
3164 continue;
3165
3166 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3167 struct cgroup_subsys *ss = subsys[i];
3168
3169 if (!strcmp(token, ss->name)) {
3170 ss->disabled = 1;
3171 printk(KERN_INFO "Disabling %s control group"
3172 " subsystem\n", ss->name);
3173 break;
3174 }
3175 }
3176 }
3177 return 1;
3178 }
3179 __setup("cgroup_disable=", cgroup_disable);