Merge branch 'for-3.10' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / cgroup.c
1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #include <linux/cgroup.h>
30 #include <linux/cred.h>
31 #include <linux/ctype.h>
32 #include <linux/errno.h>
33 #include <linux/fs.h>
34 #include <linux/init_task.h>
35 #include <linux/kernel.h>
36 #include <linux/list.h>
37 #include <linux/mm.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/backing-dev.h>
45 #include <linux/seq_file.h>
46 #include <linux/slab.h>
47 #include <linux/magic.h>
48 #include <linux/spinlock.h>
49 #include <linux/string.h>
50 #include <linux/sort.h>
51 #include <linux/kmod.h>
52 #include <linux/module.h>
53 #include <linux/delayacct.h>
54 #include <linux/cgroupstats.h>
55 #include <linux/hashtable.h>
56 #include <linux/namei.h>
57 #include <linux/pid_namespace.h>
58 #include <linux/idr.h>
59 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
60 #include <linux/eventfd.h>
61 #include <linux/poll.h>
62 #include <linux/flex_array.h> /* used in cgroup_attach_proc */
63 #include <linux/kthread.h>
64
65 #include <linux/atomic.h>
66
67 /* css deactivation bias, makes css->refcnt negative to deny new trygets */
68 #define CSS_DEACT_BIAS INT_MIN
69
70 /*
71 * cgroup_mutex is the master lock. Any modification to cgroup or its
72 * hierarchy must be performed while holding it.
73 *
74 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
75 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
76 * release_agent_path and so on. Modifying requires both cgroup_mutex and
77 * cgroup_root_mutex. Readers can acquire either of the two. This is to
78 * break the following locking order cycle.
79 *
80 * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
81 * B. namespace_sem -> cgroup_mutex
82 *
83 * B happens only through cgroup_show_options() and using cgroup_root_mutex
84 * breaks it.
85 */
86 static DEFINE_MUTEX(cgroup_mutex);
87 static DEFINE_MUTEX(cgroup_root_mutex);
88
89 /*
90 * Generate an array of cgroup subsystem pointers. At boot time, this is
91 * populated with the built in subsystems, and modular subsystems are
92 * registered after that. The mutable section of this array is protected by
93 * cgroup_mutex.
94 */
95 #define SUBSYS(_x) [_x ## _subsys_id] = &_x ## _subsys,
96 #define IS_SUBSYS_ENABLED(option) IS_BUILTIN(option)
97 static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
98 #include <linux/cgroup_subsys.h>
99 };
100
101 #define MAX_CGROUP_ROOT_NAMELEN 64
102
103 /*
104 * A cgroupfs_root represents the root of a cgroup hierarchy,
105 * and may be associated with a superblock to form an active
106 * hierarchy
107 */
108 struct cgroupfs_root {
109 struct super_block *sb;
110
111 /*
112 * The bitmask of subsystems intended to be attached to this
113 * hierarchy
114 */
115 unsigned long subsys_mask;
116
117 /* Unique id for this hierarchy. */
118 int hierarchy_id;
119
120 /* The bitmask of subsystems currently attached to this hierarchy */
121 unsigned long actual_subsys_mask;
122
123 /* A list running through the attached subsystems */
124 struct list_head subsys_list;
125
126 /* The root cgroup for this hierarchy */
127 struct cgroup top_cgroup;
128
129 /* Tracks how many cgroups are currently defined in hierarchy.*/
130 int number_of_cgroups;
131
132 /* A list running through the active hierarchies */
133 struct list_head root_list;
134
135 /* All cgroups on this root, cgroup_mutex protected */
136 struct list_head allcg_list;
137
138 /* Hierarchy-specific flags */
139 unsigned long flags;
140
141 /* IDs for cgroups in this hierarchy */
142 struct ida cgroup_ida;
143
144 /* The path to use for release notifications. */
145 char release_agent_path[PATH_MAX];
146
147 /* The name for this hierarchy - may be empty */
148 char name[MAX_CGROUP_ROOT_NAMELEN];
149 };
150
151 /*
152 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
153 * subsystems that are otherwise unattached - it never has more than a
154 * single cgroup, and all tasks are part of that cgroup.
155 */
156 static struct cgroupfs_root rootnode;
157
158 /*
159 * cgroupfs file entry, pointed to from leaf dentry->d_fsdata.
160 */
161 struct cfent {
162 struct list_head node;
163 struct dentry *dentry;
164 struct cftype *type;
165 };
166
167 /*
168 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
169 * cgroup_subsys->use_id != 0.
170 */
171 #define CSS_ID_MAX (65535)
172 struct css_id {
173 /*
174 * The css to which this ID points. This pointer is set to valid value
175 * after cgroup is populated. If cgroup is removed, this will be NULL.
176 * This pointer is expected to be RCU-safe because destroy()
177 * is called after synchronize_rcu(). But for safe use, css_tryget()
178 * should be used for avoiding race.
179 */
180 struct cgroup_subsys_state __rcu *css;
181 /*
182 * ID of this css.
183 */
184 unsigned short id;
185 /*
186 * Depth in hierarchy which this ID belongs to.
187 */
188 unsigned short depth;
189 /*
190 * ID is freed by RCU. (and lookup routine is RCU safe.)
191 */
192 struct rcu_head rcu_head;
193 /*
194 * Hierarchy of CSS ID belongs to.
195 */
196 unsigned short stack[0]; /* Array of Length (depth+1) */
197 };
198
199 /*
200 * cgroup_event represents events which userspace want to receive.
201 */
202 struct cgroup_event {
203 /*
204 * Cgroup which the event belongs to.
205 */
206 struct cgroup *cgrp;
207 /*
208 * Control file which the event associated.
209 */
210 struct cftype *cft;
211 /*
212 * eventfd to signal userspace about the event.
213 */
214 struct eventfd_ctx *eventfd;
215 /*
216 * Each of these stored in a list by the cgroup.
217 */
218 struct list_head list;
219 /*
220 * All fields below needed to unregister event when
221 * userspace closes eventfd.
222 */
223 poll_table pt;
224 wait_queue_head_t *wqh;
225 wait_queue_t wait;
226 struct work_struct remove;
227 };
228
229 /* The list of hierarchy roots */
230
231 static LIST_HEAD(roots);
232 static int root_count;
233
234 static DEFINE_IDA(hierarchy_ida);
235 static int next_hierarchy_id;
236 static DEFINE_SPINLOCK(hierarchy_id_lock);
237
238 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
239 #define dummytop (&rootnode.top_cgroup)
240
241 /* This flag indicates whether tasks in the fork and exit paths should
242 * check for fork/exit handlers to call. This avoids us having to do
243 * extra work in the fork/exit path if none of the subsystems need to
244 * be called.
245 */
246 static int need_forkexit_callback __read_mostly;
247
248 static int cgroup_destroy_locked(struct cgroup *cgrp);
249 static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
250 struct cftype cfts[], bool is_add);
251
252 #ifdef CONFIG_PROVE_LOCKING
253 int cgroup_lock_is_held(void)
254 {
255 return lockdep_is_held(&cgroup_mutex);
256 }
257 #else /* #ifdef CONFIG_PROVE_LOCKING */
258 int cgroup_lock_is_held(void)
259 {
260 return mutex_is_locked(&cgroup_mutex);
261 }
262 #endif /* #else #ifdef CONFIG_PROVE_LOCKING */
263
264 EXPORT_SYMBOL_GPL(cgroup_lock_is_held);
265
266 static int css_unbias_refcnt(int refcnt)
267 {
268 return refcnt >= 0 ? refcnt : refcnt - CSS_DEACT_BIAS;
269 }
270
271 /* the current nr of refs, always >= 0 whether @css is deactivated or not */
272 static int css_refcnt(struct cgroup_subsys_state *css)
273 {
274 int v = atomic_read(&css->refcnt);
275
276 return css_unbias_refcnt(v);
277 }
278
279 /* convenient tests for these bits */
280 inline int cgroup_is_removed(const struct cgroup *cgrp)
281 {
282 return test_bit(CGRP_REMOVED, &cgrp->flags);
283 }
284
285 /* bits in struct cgroupfs_root flags field */
286 enum {
287 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
288 ROOT_XATTR, /* supports extended attributes */
289 };
290
291 static int cgroup_is_releasable(const struct cgroup *cgrp)
292 {
293 const int bits =
294 (1 << CGRP_RELEASABLE) |
295 (1 << CGRP_NOTIFY_ON_RELEASE);
296 return (cgrp->flags & bits) == bits;
297 }
298
299 static int notify_on_release(const struct cgroup *cgrp)
300 {
301 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
302 }
303
304 /*
305 * for_each_subsys() allows you to iterate on each subsystem attached to
306 * an active hierarchy
307 */
308 #define for_each_subsys(_root, _ss) \
309 list_for_each_entry(_ss, &_root->subsys_list, sibling)
310
311 /* for_each_active_root() allows you to iterate across the active hierarchies */
312 #define for_each_active_root(_root) \
313 list_for_each_entry(_root, &roots, root_list)
314
315 static inline struct cgroup *__d_cgrp(struct dentry *dentry)
316 {
317 return dentry->d_fsdata;
318 }
319
320 static inline struct cfent *__d_cfe(struct dentry *dentry)
321 {
322 return dentry->d_fsdata;
323 }
324
325 static inline struct cftype *__d_cft(struct dentry *dentry)
326 {
327 return __d_cfe(dentry)->type;
328 }
329
330 /* the list of cgroups eligible for automatic release. Protected by
331 * release_list_lock */
332 static LIST_HEAD(release_list);
333 static DEFINE_RAW_SPINLOCK(release_list_lock);
334 static void cgroup_release_agent(struct work_struct *work);
335 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
336 static void check_for_release(struct cgroup *cgrp);
337
338 /* Link structure for associating css_set objects with cgroups */
339 struct cg_cgroup_link {
340 /*
341 * List running through cg_cgroup_links associated with a
342 * cgroup, anchored on cgroup->css_sets
343 */
344 struct list_head cgrp_link_list;
345 struct cgroup *cgrp;
346 /*
347 * List running through cg_cgroup_links pointing at a
348 * single css_set object, anchored on css_set->cg_links
349 */
350 struct list_head cg_link_list;
351 struct css_set *cg;
352 };
353
354 /* The default css_set - used by init and its children prior to any
355 * hierarchies being mounted. It contains a pointer to the root state
356 * for each subsystem. Also used to anchor the list of css_sets. Not
357 * reference-counted, to improve performance when child cgroups
358 * haven't been created.
359 */
360
361 static struct css_set init_css_set;
362 static struct cg_cgroup_link init_css_set_link;
363
364 static int cgroup_init_idr(struct cgroup_subsys *ss,
365 struct cgroup_subsys_state *css);
366
367 /* css_set_lock protects the list of css_set objects, and the
368 * chain of tasks off each css_set. Nests outside task->alloc_lock
369 * due to cgroup_iter_start() */
370 static DEFINE_RWLOCK(css_set_lock);
371 static int css_set_count;
372
373 /*
374 * hash table for cgroup groups. This improves the performance to find
375 * an existing css_set. This hash doesn't (currently) take into
376 * account cgroups in empty hierarchies.
377 */
378 #define CSS_SET_HASH_BITS 7
379 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
380
381 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
382 {
383 int i;
384 unsigned long key = 0UL;
385
386 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
387 key += (unsigned long)css[i];
388 key = (key >> 16) ^ key;
389
390 return key;
391 }
392
393 /* We don't maintain the lists running through each css_set to its
394 * task until after the first call to cgroup_iter_start(). This
395 * reduces the fork()/exit() overhead for people who have cgroups
396 * compiled into their kernel but not actually in use */
397 static int use_task_css_set_links __read_mostly;
398
399 static void __put_css_set(struct css_set *cg, int taskexit)
400 {
401 struct cg_cgroup_link *link;
402 struct cg_cgroup_link *saved_link;
403 /*
404 * Ensure that the refcount doesn't hit zero while any readers
405 * can see it. Similar to atomic_dec_and_lock(), but for an
406 * rwlock
407 */
408 if (atomic_add_unless(&cg->refcount, -1, 1))
409 return;
410 write_lock(&css_set_lock);
411 if (!atomic_dec_and_test(&cg->refcount)) {
412 write_unlock(&css_set_lock);
413 return;
414 }
415
416 /* This css_set is dead. unlink it and release cgroup refcounts */
417 hash_del(&cg->hlist);
418 css_set_count--;
419
420 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
421 cg_link_list) {
422 struct cgroup *cgrp = link->cgrp;
423 list_del(&link->cg_link_list);
424 list_del(&link->cgrp_link_list);
425
426 /*
427 * We may not be holding cgroup_mutex, and if cgrp->count is
428 * dropped to 0 the cgroup can be destroyed at any time, hence
429 * rcu_read_lock is used to keep it alive.
430 */
431 rcu_read_lock();
432 if (atomic_dec_and_test(&cgrp->count) &&
433 notify_on_release(cgrp)) {
434 if (taskexit)
435 set_bit(CGRP_RELEASABLE, &cgrp->flags);
436 check_for_release(cgrp);
437 }
438 rcu_read_unlock();
439
440 kfree(link);
441 }
442
443 write_unlock(&css_set_lock);
444 kfree_rcu(cg, rcu_head);
445 }
446
447 /*
448 * refcounted get/put for css_set objects
449 */
450 static inline void get_css_set(struct css_set *cg)
451 {
452 atomic_inc(&cg->refcount);
453 }
454
455 static inline void put_css_set(struct css_set *cg)
456 {
457 __put_css_set(cg, 0);
458 }
459
460 static inline void put_css_set_taskexit(struct css_set *cg)
461 {
462 __put_css_set(cg, 1);
463 }
464
465 /*
466 * compare_css_sets - helper function for find_existing_css_set().
467 * @cg: candidate css_set being tested
468 * @old_cg: existing css_set for a task
469 * @new_cgrp: cgroup that's being entered by the task
470 * @template: desired set of css pointers in css_set (pre-calculated)
471 *
472 * Returns true if "cg" matches "old_cg" except for the hierarchy
473 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
474 */
475 static bool compare_css_sets(struct css_set *cg,
476 struct css_set *old_cg,
477 struct cgroup *new_cgrp,
478 struct cgroup_subsys_state *template[])
479 {
480 struct list_head *l1, *l2;
481
482 if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
483 /* Not all subsystems matched */
484 return false;
485 }
486
487 /*
488 * Compare cgroup pointers in order to distinguish between
489 * different cgroups in heirarchies with no subsystems. We
490 * could get by with just this check alone (and skip the
491 * memcmp above) but on most setups the memcmp check will
492 * avoid the need for this more expensive check on almost all
493 * candidates.
494 */
495
496 l1 = &cg->cg_links;
497 l2 = &old_cg->cg_links;
498 while (1) {
499 struct cg_cgroup_link *cgl1, *cgl2;
500 struct cgroup *cg1, *cg2;
501
502 l1 = l1->next;
503 l2 = l2->next;
504 /* See if we reached the end - both lists are equal length. */
505 if (l1 == &cg->cg_links) {
506 BUG_ON(l2 != &old_cg->cg_links);
507 break;
508 } else {
509 BUG_ON(l2 == &old_cg->cg_links);
510 }
511 /* Locate the cgroups associated with these links. */
512 cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
513 cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
514 cg1 = cgl1->cgrp;
515 cg2 = cgl2->cgrp;
516 /* Hierarchies should be linked in the same order. */
517 BUG_ON(cg1->root != cg2->root);
518
519 /*
520 * If this hierarchy is the hierarchy of the cgroup
521 * that's changing, then we need to check that this
522 * css_set points to the new cgroup; if it's any other
523 * hierarchy, then this css_set should point to the
524 * same cgroup as the old css_set.
525 */
526 if (cg1->root == new_cgrp->root) {
527 if (cg1 != new_cgrp)
528 return false;
529 } else {
530 if (cg1 != cg2)
531 return false;
532 }
533 }
534 return true;
535 }
536
537 /*
538 * find_existing_css_set() is a helper for
539 * find_css_set(), and checks to see whether an existing
540 * css_set is suitable.
541 *
542 * oldcg: the cgroup group that we're using before the cgroup
543 * transition
544 *
545 * cgrp: the cgroup that we're moving into
546 *
547 * template: location in which to build the desired set of subsystem
548 * state objects for the new cgroup group
549 */
550 static struct css_set *find_existing_css_set(
551 struct css_set *oldcg,
552 struct cgroup *cgrp,
553 struct cgroup_subsys_state *template[])
554 {
555 int i;
556 struct cgroupfs_root *root = cgrp->root;
557 struct css_set *cg;
558 unsigned long key;
559
560 /*
561 * Build the set of subsystem state objects that we want to see in the
562 * new css_set. while subsystems can change globally, the entries here
563 * won't change, so no need for locking.
564 */
565 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
566 if (root->subsys_mask & (1UL << i)) {
567 /* Subsystem is in this hierarchy. So we want
568 * the subsystem state from the new
569 * cgroup */
570 template[i] = cgrp->subsys[i];
571 } else {
572 /* Subsystem is not in this hierarchy, so we
573 * don't want to change the subsystem state */
574 template[i] = oldcg->subsys[i];
575 }
576 }
577
578 key = css_set_hash(template);
579 hash_for_each_possible(css_set_table, cg, hlist, key) {
580 if (!compare_css_sets(cg, oldcg, cgrp, template))
581 continue;
582
583 /* This css_set matches what we need */
584 return cg;
585 }
586
587 /* No existing cgroup group matched */
588 return NULL;
589 }
590
591 static void free_cg_links(struct list_head *tmp)
592 {
593 struct cg_cgroup_link *link;
594 struct cg_cgroup_link *saved_link;
595
596 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
597 list_del(&link->cgrp_link_list);
598 kfree(link);
599 }
600 }
601
602 /*
603 * allocate_cg_links() allocates "count" cg_cgroup_link structures
604 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
605 * success or a negative error
606 */
607 static int allocate_cg_links(int count, struct list_head *tmp)
608 {
609 struct cg_cgroup_link *link;
610 int i;
611 INIT_LIST_HEAD(tmp);
612 for (i = 0; i < count; i++) {
613 link = kmalloc(sizeof(*link), GFP_KERNEL);
614 if (!link) {
615 free_cg_links(tmp);
616 return -ENOMEM;
617 }
618 list_add(&link->cgrp_link_list, tmp);
619 }
620 return 0;
621 }
622
623 /**
624 * link_css_set - a helper function to link a css_set to a cgroup
625 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
626 * @cg: the css_set to be linked
627 * @cgrp: the destination cgroup
628 */
629 static void link_css_set(struct list_head *tmp_cg_links,
630 struct css_set *cg, struct cgroup *cgrp)
631 {
632 struct cg_cgroup_link *link;
633
634 BUG_ON(list_empty(tmp_cg_links));
635 link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
636 cgrp_link_list);
637 link->cg = cg;
638 link->cgrp = cgrp;
639 atomic_inc(&cgrp->count);
640 list_move(&link->cgrp_link_list, &cgrp->css_sets);
641 /*
642 * Always add links to the tail of the list so that the list
643 * is sorted by order of hierarchy creation
644 */
645 list_add_tail(&link->cg_link_list, &cg->cg_links);
646 }
647
648 /*
649 * find_css_set() takes an existing cgroup group and a
650 * cgroup object, and returns a css_set object that's
651 * equivalent to the old group, but with the given cgroup
652 * substituted into the appropriate hierarchy. Must be called with
653 * cgroup_mutex held
654 */
655 static struct css_set *find_css_set(
656 struct css_set *oldcg, struct cgroup *cgrp)
657 {
658 struct css_set *res;
659 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
660
661 struct list_head tmp_cg_links;
662
663 struct cg_cgroup_link *link;
664 unsigned long key;
665
666 /* First see if we already have a cgroup group that matches
667 * the desired set */
668 read_lock(&css_set_lock);
669 res = find_existing_css_set(oldcg, cgrp, template);
670 if (res)
671 get_css_set(res);
672 read_unlock(&css_set_lock);
673
674 if (res)
675 return res;
676
677 res = kmalloc(sizeof(*res), GFP_KERNEL);
678 if (!res)
679 return NULL;
680
681 /* Allocate all the cg_cgroup_link objects that we'll need */
682 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
683 kfree(res);
684 return NULL;
685 }
686
687 atomic_set(&res->refcount, 1);
688 INIT_LIST_HEAD(&res->cg_links);
689 INIT_LIST_HEAD(&res->tasks);
690 INIT_HLIST_NODE(&res->hlist);
691
692 /* Copy the set of subsystem state objects generated in
693 * find_existing_css_set() */
694 memcpy(res->subsys, template, sizeof(res->subsys));
695
696 write_lock(&css_set_lock);
697 /* Add reference counts and links from the new css_set. */
698 list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
699 struct cgroup *c = link->cgrp;
700 if (c->root == cgrp->root)
701 c = cgrp;
702 link_css_set(&tmp_cg_links, res, c);
703 }
704
705 BUG_ON(!list_empty(&tmp_cg_links));
706
707 css_set_count++;
708
709 /* Add this cgroup group to the hash table */
710 key = css_set_hash(res->subsys);
711 hash_add(css_set_table, &res->hlist, key);
712
713 write_unlock(&css_set_lock);
714
715 return res;
716 }
717
718 /*
719 * Return the cgroup for "task" from the given hierarchy. Must be
720 * called with cgroup_mutex held.
721 */
722 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
723 struct cgroupfs_root *root)
724 {
725 struct css_set *css;
726 struct cgroup *res = NULL;
727
728 BUG_ON(!mutex_is_locked(&cgroup_mutex));
729 read_lock(&css_set_lock);
730 /*
731 * No need to lock the task - since we hold cgroup_mutex the
732 * task can't change groups, so the only thing that can happen
733 * is that it exits and its css is set back to init_css_set.
734 */
735 css = task->cgroups;
736 if (css == &init_css_set) {
737 res = &root->top_cgroup;
738 } else {
739 struct cg_cgroup_link *link;
740 list_for_each_entry(link, &css->cg_links, cg_link_list) {
741 struct cgroup *c = link->cgrp;
742 if (c->root == root) {
743 res = c;
744 break;
745 }
746 }
747 }
748 read_unlock(&css_set_lock);
749 BUG_ON(!res);
750 return res;
751 }
752
753 /*
754 * There is one global cgroup mutex. We also require taking
755 * task_lock() when dereferencing a task's cgroup subsys pointers.
756 * See "The task_lock() exception", at the end of this comment.
757 *
758 * A task must hold cgroup_mutex to modify cgroups.
759 *
760 * Any task can increment and decrement the count field without lock.
761 * So in general, code holding cgroup_mutex can't rely on the count
762 * field not changing. However, if the count goes to zero, then only
763 * cgroup_attach_task() can increment it again. Because a count of zero
764 * means that no tasks are currently attached, therefore there is no
765 * way a task attached to that cgroup can fork (the other way to
766 * increment the count). So code holding cgroup_mutex can safely
767 * assume that if the count is zero, it will stay zero. Similarly, if
768 * a task holds cgroup_mutex on a cgroup with zero count, it
769 * knows that the cgroup won't be removed, as cgroup_rmdir()
770 * needs that mutex.
771 *
772 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
773 * (usually) take cgroup_mutex. These are the two most performance
774 * critical pieces of code here. The exception occurs on cgroup_exit(),
775 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
776 * is taken, and if the cgroup count is zero, a usermode call made
777 * to the release agent with the name of the cgroup (path relative to
778 * the root of cgroup file system) as the argument.
779 *
780 * A cgroup can only be deleted if both its 'count' of using tasks
781 * is zero, and its list of 'children' cgroups is empty. Since all
782 * tasks in the system use _some_ cgroup, and since there is always at
783 * least one task in the system (init, pid == 1), therefore, top_cgroup
784 * always has either children cgroups and/or using tasks. So we don't
785 * need a special hack to ensure that top_cgroup cannot be deleted.
786 *
787 * The task_lock() exception
788 *
789 * The need for this exception arises from the action of
790 * cgroup_attach_task(), which overwrites one task's cgroup pointer with
791 * another. It does so using cgroup_mutex, however there are
792 * several performance critical places that need to reference
793 * task->cgroup without the expense of grabbing a system global
794 * mutex. Therefore except as noted below, when dereferencing or, as
795 * in cgroup_attach_task(), modifying a task's cgroup pointer we use
796 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
797 * the task_struct routinely used for such matters.
798 *
799 * P.S. One more locking exception. RCU is used to guard the
800 * update of a tasks cgroup pointer by cgroup_attach_task()
801 */
802
803 /**
804 * cgroup_lock - lock out any changes to cgroup structures
805 *
806 */
807 void cgroup_lock(void)
808 {
809 mutex_lock(&cgroup_mutex);
810 }
811 EXPORT_SYMBOL_GPL(cgroup_lock);
812
813 /**
814 * cgroup_unlock - release lock on cgroup changes
815 *
816 * Undo the lock taken in a previous cgroup_lock() call.
817 */
818 void cgroup_unlock(void)
819 {
820 mutex_unlock(&cgroup_mutex);
821 }
822 EXPORT_SYMBOL_GPL(cgroup_unlock);
823
824 /*
825 * A couple of forward declarations required, due to cyclic reference loop:
826 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
827 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
828 * -> cgroup_mkdir.
829 */
830
831 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
832 static struct dentry *cgroup_lookup(struct inode *, struct dentry *, unsigned int);
833 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
834 static int cgroup_populate_dir(struct cgroup *cgrp, bool base_files,
835 unsigned long subsys_mask);
836 static const struct inode_operations cgroup_dir_inode_operations;
837 static const struct file_operations proc_cgroupstats_operations;
838
839 static struct backing_dev_info cgroup_backing_dev_info = {
840 .name = "cgroup",
841 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
842 };
843
844 static int alloc_css_id(struct cgroup_subsys *ss,
845 struct cgroup *parent, struct cgroup *child);
846
847 static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
848 {
849 struct inode *inode = new_inode(sb);
850
851 if (inode) {
852 inode->i_ino = get_next_ino();
853 inode->i_mode = mode;
854 inode->i_uid = current_fsuid();
855 inode->i_gid = current_fsgid();
856 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
857 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
858 }
859 return inode;
860 }
861
862 static void cgroup_free_fn(struct work_struct *work)
863 {
864 struct cgroup *cgrp = container_of(work, struct cgroup, free_work);
865 struct cgroup_subsys *ss;
866
867 mutex_lock(&cgroup_mutex);
868 /*
869 * Release the subsystem state objects.
870 */
871 for_each_subsys(cgrp->root, ss)
872 ss->css_free(cgrp);
873
874 cgrp->root->number_of_cgroups--;
875 mutex_unlock(&cgroup_mutex);
876
877 /*
878 * Drop the active superblock reference that we took when we
879 * created the cgroup
880 */
881 deactivate_super(cgrp->root->sb);
882
883 /*
884 * if we're getting rid of the cgroup, refcount should ensure
885 * that there are no pidlists left.
886 */
887 BUG_ON(!list_empty(&cgrp->pidlists));
888
889 simple_xattrs_free(&cgrp->xattrs);
890
891 ida_simple_remove(&cgrp->root->cgroup_ida, cgrp->id);
892 kfree(cgrp);
893 }
894
895 static void cgroup_free_rcu(struct rcu_head *head)
896 {
897 struct cgroup *cgrp = container_of(head, struct cgroup, rcu_head);
898
899 schedule_work(&cgrp->free_work);
900 }
901
902 static void cgroup_diput(struct dentry *dentry, struct inode *inode)
903 {
904 /* is dentry a directory ? if so, kfree() associated cgroup */
905 if (S_ISDIR(inode->i_mode)) {
906 struct cgroup *cgrp = dentry->d_fsdata;
907
908 BUG_ON(!(cgroup_is_removed(cgrp)));
909 call_rcu(&cgrp->rcu_head, cgroup_free_rcu);
910 } else {
911 struct cfent *cfe = __d_cfe(dentry);
912 struct cgroup *cgrp = dentry->d_parent->d_fsdata;
913 struct cftype *cft = cfe->type;
914
915 WARN_ONCE(!list_empty(&cfe->node) &&
916 cgrp != &cgrp->root->top_cgroup,
917 "cfe still linked for %s\n", cfe->type->name);
918 kfree(cfe);
919 simple_xattrs_free(&cft->xattrs);
920 }
921 iput(inode);
922 }
923
924 static int cgroup_delete(const struct dentry *d)
925 {
926 return 1;
927 }
928
929 static void remove_dir(struct dentry *d)
930 {
931 struct dentry *parent = dget(d->d_parent);
932
933 d_delete(d);
934 simple_rmdir(parent->d_inode, d);
935 dput(parent);
936 }
937
938 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
939 {
940 struct cfent *cfe;
941
942 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
943 lockdep_assert_held(&cgroup_mutex);
944
945 /*
946 * If we're doing cleanup due to failure of cgroup_create(),
947 * the corresponding @cfe may not exist.
948 */
949 list_for_each_entry(cfe, &cgrp->files, node) {
950 struct dentry *d = cfe->dentry;
951
952 if (cft && cfe->type != cft)
953 continue;
954
955 dget(d);
956 d_delete(d);
957 simple_unlink(cgrp->dentry->d_inode, d);
958 list_del_init(&cfe->node);
959 dput(d);
960
961 break;
962 }
963 }
964
965 /**
966 * cgroup_clear_directory - selective removal of base and subsystem files
967 * @dir: directory containing the files
968 * @base_files: true if the base files should be removed
969 * @subsys_mask: mask of the subsystem ids whose files should be removed
970 */
971 static void cgroup_clear_directory(struct dentry *dir, bool base_files,
972 unsigned long subsys_mask)
973 {
974 struct cgroup *cgrp = __d_cgrp(dir);
975 struct cgroup_subsys *ss;
976
977 for_each_subsys(cgrp->root, ss) {
978 struct cftype_set *set;
979 if (!test_bit(ss->subsys_id, &subsys_mask))
980 continue;
981 list_for_each_entry(set, &ss->cftsets, node)
982 cgroup_addrm_files(cgrp, NULL, set->cfts, false);
983 }
984 if (base_files) {
985 while (!list_empty(&cgrp->files))
986 cgroup_rm_file(cgrp, NULL);
987 }
988 }
989
990 /*
991 * NOTE : the dentry must have been dget()'ed
992 */
993 static void cgroup_d_remove_dir(struct dentry *dentry)
994 {
995 struct dentry *parent;
996 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
997
998 cgroup_clear_directory(dentry, true, root->subsys_mask);
999
1000 parent = dentry->d_parent;
1001 spin_lock(&parent->d_lock);
1002 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1003 list_del_init(&dentry->d_u.d_child);
1004 spin_unlock(&dentry->d_lock);
1005 spin_unlock(&parent->d_lock);
1006 remove_dir(dentry);
1007 }
1008
1009 /*
1010 * Call with cgroup_mutex held. Drops reference counts on modules, including
1011 * any duplicate ones that parse_cgroupfs_options took. If this function
1012 * returns an error, no reference counts are touched.
1013 */
1014 static int rebind_subsystems(struct cgroupfs_root *root,
1015 unsigned long final_subsys_mask)
1016 {
1017 unsigned long added_mask, removed_mask;
1018 struct cgroup *cgrp = &root->top_cgroup;
1019 int i;
1020
1021 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1022 BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
1023
1024 removed_mask = root->actual_subsys_mask & ~final_subsys_mask;
1025 added_mask = final_subsys_mask & ~root->actual_subsys_mask;
1026 /* Check that any added subsystems are currently free */
1027 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1028 unsigned long bit = 1UL << i;
1029 struct cgroup_subsys *ss = subsys[i];
1030 if (!(bit & added_mask))
1031 continue;
1032 /*
1033 * Nobody should tell us to do a subsys that doesn't exist:
1034 * parse_cgroupfs_options should catch that case and refcounts
1035 * ensure that subsystems won't disappear once selected.
1036 */
1037 BUG_ON(ss == NULL);
1038 if (ss->root != &rootnode) {
1039 /* Subsystem isn't free */
1040 return -EBUSY;
1041 }
1042 }
1043
1044 /* Currently we don't handle adding/removing subsystems when
1045 * any child cgroups exist. This is theoretically supportable
1046 * but involves complex error handling, so it's being left until
1047 * later */
1048 if (root->number_of_cgroups > 1)
1049 return -EBUSY;
1050
1051 /* Process each subsystem */
1052 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1053 struct cgroup_subsys *ss = subsys[i];
1054 unsigned long bit = 1UL << i;
1055 if (bit & added_mask) {
1056 /* We're binding this subsystem to this hierarchy */
1057 BUG_ON(ss == NULL);
1058 BUG_ON(cgrp->subsys[i]);
1059 BUG_ON(!dummytop->subsys[i]);
1060 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
1061 cgrp->subsys[i] = dummytop->subsys[i];
1062 cgrp->subsys[i]->cgroup = cgrp;
1063 list_move(&ss->sibling, &root->subsys_list);
1064 ss->root = root;
1065 if (ss->bind)
1066 ss->bind(cgrp);
1067 /* refcount was already taken, and we're keeping it */
1068 } else if (bit & removed_mask) {
1069 /* We're removing this subsystem */
1070 BUG_ON(ss == NULL);
1071 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
1072 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
1073 if (ss->bind)
1074 ss->bind(dummytop);
1075 dummytop->subsys[i]->cgroup = dummytop;
1076 cgrp->subsys[i] = NULL;
1077 subsys[i]->root = &rootnode;
1078 list_move(&ss->sibling, &rootnode.subsys_list);
1079 /* subsystem is now free - drop reference on module */
1080 module_put(ss->module);
1081 } else if (bit & final_subsys_mask) {
1082 /* Subsystem state should already exist */
1083 BUG_ON(ss == NULL);
1084 BUG_ON(!cgrp->subsys[i]);
1085 /*
1086 * a refcount was taken, but we already had one, so
1087 * drop the extra reference.
1088 */
1089 module_put(ss->module);
1090 #ifdef CONFIG_MODULE_UNLOAD
1091 BUG_ON(ss->module && !module_refcount(ss->module));
1092 #endif
1093 } else {
1094 /* Subsystem state shouldn't exist */
1095 BUG_ON(cgrp->subsys[i]);
1096 }
1097 }
1098 root->subsys_mask = root->actual_subsys_mask = final_subsys_mask;
1099
1100 return 0;
1101 }
1102
1103 static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
1104 {
1105 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
1106 struct cgroup_subsys *ss;
1107
1108 mutex_lock(&cgroup_root_mutex);
1109 for_each_subsys(root, ss)
1110 seq_printf(seq, ",%s", ss->name);
1111 if (test_bit(ROOT_NOPREFIX, &root->flags))
1112 seq_puts(seq, ",noprefix");
1113 if (test_bit(ROOT_XATTR, &root->flags))
1114 seq_puts(seq, ",xattr");
1115 if (strlen(root->release_agent_path))
1116 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1117 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags))
1118 seq_puts(seq, ",clone_children");
1119 if (strlen(root->name))
1120 seq_printf(seq, ",name=%s", root->name);
1121 mutex_unlock(&cgroup_root_mutex);
1122 return 0;
1123 }
1124
1125 struct cgroup_sb_opts {
1126 unsigned long subsys_mask;
1127 unsigned long flags;
1128 char *release_agent;
1129 bool cpuset_clone_children;
1130 char *name;
1131 /* User explicitly requested empty subsystem */
1132 bool none;
1133
1134 struct cgroupfs_root *new_root;
1135
1136 };
1137
1138 /*
1139 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
1140 * with cgroup_mutex held to protect the subsys[] array. This function takes
1141 * refcounts on subsystems to be used, unless it returns error, in which case
1142 * no refcounts are taken.
1143 */
1144 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1145 {
1146 char *token, *o = data;
1147 bool all_ss = false, one_ss = false;
1148 unsigned long mask = (unsigned long)-1;
1149 int i;
1150 bool module_pin_failed = false;
1151
1152 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1153
1154 #ifdef CONFIG_CPUSETS
1155 mask = ~(1UL << cpuset_subsys_id);
1156 #endif
1157
1158 memset(opts, 0, sizeof(*opts));
1159
1160 while ((token = strsep(&o, ",")) != NULL) {
1161 if (!*token)
1162 return -EINVAL;
1163 if (!strcmp(token, "none")) {
1164 /* Explicitly have no subsystems */
1165 opts->none = true;
1166 continue;
1167 }
1168 if (!strcmp(token, "all")) {
1169 /* Mutually exclusive option 'all' + subsystem name */
1170 if (one_ss)
1171 return -EINVAL;
1172 all_ss = true;
1173 continue;
1174 }
1175 if (!strcmp(token, "noprefix")) {
1176 set_bit(ROOT_NOPREFIX, &opts->flags);
1177 continue;
1178 }
1179 if (!strcmp(token, "clone_children")) {
1180 opts->cpuset_clone_children = true;
1181 continue;
1182 }
1183 if (!strcmp(token, "xattr")) {
1184 set_bit(ROOT_XATTR, &opts->flags);
1185 continue;
1186 }
1187 if (!strncmp(token, "release_agent=", 14)) {
1188 /* Specifying two release agents is forbidden */
1189 if (opts->release_agent)
1190 return -EINVAL;
1191 opts->release_agent =
1192 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1193 if (!opts->release_agent)
1194 return -ENOMEM;
1195 continue;
1196 }
1197 if (!strncmp(token, "name=", 5)) {
1198 const char *name = token + 5;
1199 /* Can't specify an empty name */
1200 if (!strlen(name))
1201 return -EINVAL;
1202 /* Must match [\w.-]+ */
1203 for (i = 0; i < strlen(name); i++) {
1204 char c = name[i];
1205 if (isalnum(c))
1206 continue;
1207 if ((c == '.') || (c == '-') || (c == '_'))
1208 continue;
1209 return -EINVAL;
1210 }
1211 /* Specifying two names is forbidden */
1212 if (opts->name)
1213 return -EINVAL;
1214 opts->name = kstrndup(name,
1215 MAX_CGROUP_ROOT_NAMELEN - 1,
1216 GFP_KERNEL);
1217 if (!opts->name)
1218 return -ENOMEM;
1219
1220 continue;
1221 }
1222
1223 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1224 struct cgroup_subsys *ss = subsys[i];
1225 if (ss == NULL)
1226 continue;
1227 if (strcmp(token, ss->name))
1228 continue;
1229 if (ss->disabled)
1230 continue;
1231
1232 /* Mutually exclusive option 'all' + subsystem name */
1233 if (all_ss)
1234 return -EINVAL;
1235 set_bit(i, &opts->subsys_mask);
1236 one_ss = true;
1237
1238 break;
1239 }
1240 if (i == CGROUP_SUBSYS_COUNT)
1241 return -ENOENT;
1242 }
1243
1244 /*
1245 * If the 'all' option was specified select all the subsystems,
1246 * otherwise if 'none', 'name=' and a subsystem name options
1247 * were not specified, let's default to 'all'
1248 */
1249 if (all_ss || (!one_ss && !opts->none && !opts->name)) {
1250 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1251 struct cgroup_subsys *ss = subsys[i];
1252 if (ss == NULL)
1253 continue;
1254 if (ss->disabled)
1255 continue;
1256 set_bit(i, &opts->subsys_mask);
1257 }
1258 }
1259
1260 /* Consistency checks */
1261
1262 /*
1263 * Option noprefix was introduced just for backward compatibility
1264 * with the old cpuset, so we allow noprefix only if mounting just
1265 * the cpuset subsystem.
1266 */
1267 if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
1268 (opts->subsys_mask & mask))
1269 return -EINVAL;
1270
1271
1272 /* Can't specify "none" and some subsystems */
1273 if (opts->subsys_mask && opts->none)
1274 return -EINVAL;
1275
1276 /*
1277 * We either have to specify by name or by subsystems. (So all
1278 * empty hierarchies must have a name).
1279 */
1280 if (!opts->subsys_mask && !opts->name)
1281 return -EINVAL;
1282
1283 /*
1284 * Grab references on all the modules we'll need, so the subsystems
1285 * don't dance around before rebind_subsystems attaches them. This may
1286 * take duplicate reference counts on a subsystem that's already used,
1287 * but rebind_subsystems handles this case.
1288 */
1289 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1290 unsigned long bit = 1UL << i;
1291
1292 if (!(bit & opts->subsys_mask))
1293 continue;
1294 if (!try_module_get(subsys[i]->module)) {
1295 module_pin_failed = true;
1296 break;
1297 }
1298 }
1299 if (module_pin_failed) {
1300 /*
1301 * oops, one of the modules was going away. this means that we
1302 * raced with a module_delete call, and to the user this is
1303 * essentially a "subsystem doesn't exist" case.
1304 */
1305 for (i--; i >= 0; i--) {
1306 /* drop refcounts only on the ones we took */
1307 unsigned long bit = 1UL << i;
1308
1309 if (!(bit & opts->subsys_mask))
1310 continue;
1311 module_put(subsys[i]->module);
1312 }
1313 return -ENOENT;
1314 }
1315
1316 return 0;
1317 }
1318
1319 static void drop_parsed_module_refcounts(unsigned long subsys_mask)
1320 {
1321 int i;
1322 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1323 unsigned long bit = 1UL << i;
1324
1325 if (!(bit & subsys_mask))
1326 continue;
1327 module_put(subsys[i]->module);
1328 }
1329 }
1330
1331 static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1332 {
1333 int ret = 0;
1334 struct cgroupfs_root *root = sb->s_fs_info;
1335 struct cgroup *cgrp = &root->top_cgroup;
1336 struct cgroup_sb_opts opts;
1337 unsigned long added_mask, removed_mask;
1338
1339 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1340 mutex_lock(&cgroup_mutex);
1341 mutex_lock(&cgroup_root_mutex);
1342
1343 /* See what subsystems are wanted */
1344 ret = parse_cgroupfs_options(data, &opts);
1345 if (ret)
1346 goto out_unlock;
1347
1348 if (opts.subsys_mask != root->actual_subsys_mask || opts.release_agent)
1349 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1350 task_tgid_nr(current), current->comm);
1351
1352 added_mask = opts.subsys_mask & ~root->subsys_mask;
1353 removed_mask = root->subsys_mask & ~opts.subsys_mask;
1354
1355 /* Don't allow flags or name to change at remount */
1356 if (opts.flags != root->flags ||
1357 (opts.name && strcmp(opts.name, root->name))) {
1358 ret = -EINVAL;
1359 drop_parsed_module_refcounts(opts.subsys_mask);
1360 goto out_unlock;
1361 }
1362
1363 /*
1364 * Clear out the files of subsystems that should be removed, do
1365 * this before rebind_subsystems, since rebind_subsystems may
1366 * change this hierarchy's subsys_list.
1367 */
1368 cgroup_clear_directory(cgrp->dentry, false, removed_mask);
1369
1370 ret = rebind_subsystems(root, opts.subsys_mask);
1371 if (ret) {
1372 /* rebind_subsystems failed, re-populate the removed files */
1373 cgroup_populate_dir(cgrp, false, removed_mask);
1374 drop_parsed_module_refcounts(opts.subsys_mask);
1375 goto out_unlock;
1376 }
1377
1378 /* re-populate subsystem files */
1379 cgroup_populate_dir(cgrp, false, added_mask);
1380
1381 if (opts.release_agent)
1382 strcpy(root->release_agent_path, opts.release_agent);
1383 out_unlock:
1384 kfree(opts.release_agent);
1385 kfree(opts.name);
1386 mutex_unlock(&cgroup_root_mutex);
1387 mutex_unlock(&cgroup_mutex);
1388 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1389 return ret;
1390 }
1391
1392 static const struct super_operations cgroup_ops = {
1393 .statfs = simple_statfs,
1394 .drop_inode = generic_delete_inode,
1395 .show_options = cgroup_show_options,
1396 .remount_fs = cgroup_remount,
1397 };
1398
1399 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1400 {
1401 INIT_LIST_HEAD(&cgrp->sibling);
1402 INIT_LIST_HEAD(&cgrp->children);
1403 INIT_LIST_HEAD(&cgrp->files);
1404 INIT_LIST_HEAD(&cgrp->css_sets);
1405 INIT_LIST_HEAD(&cgrp->allcg_node);
1406 INIT_LIST_HEAD(&cgrp->release_list);
1407 INIT_LIST_HEAD(&cgrp->pidlists);
1408 INIT_WORK(&cgrp->free_work, cgroup_free_fn);
1409 mutex_init(&cgrp->pidlist_mutex);
1410 INIT_LIST_HEAD(&cgrp->event_list);
1411 spin_lock_init(&cgrp->event_list_lock);
1412 simple_xattrs_init(&cgrp->xattrs);
1413 }
1414
1415 static void init_cgroup_root(struct cgroupfs_root *root)
1416 {
1417 struct cgroup *cgrp = &root->top_cgroup;
1418
1419 INIT_LIST_HEAD(&root->subsys_list);
1420 INIT_LIST_HEAD(&root->root_list);
1421 INIT_LIST_HEAD(&root->allcg_list);
1422 root->number_of_cgroups = 1;
1423 cgrp->root = root;
1424 cgrp->top_cgroup = cgrp;
1425 init_cgroup_housekeeping(cgrp);
1426 list_add_tail(&cgrp->allcg_node, &root->allcg_list);
1427 }
1428
1429 static bool init_root_id(struct cgroupfs_root *root)
1430 {
1431 int ret = 0;
1432
1433 do {
1434 if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
1435 return false;
1436 spin_lock(&hierarchy_id_lock);
1437 /* Try to allocate the next unused ID */
1438 ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
1439 &root->hierarchy_id);
1440 if (ret == -ENOSPC)
1441 /* Try again starting from 0 */
1442 ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
1443 if (!ret) {
1444 next_hierarchy_id = root->hierarchy_id + 1;
1445 } else if (ret != -EAGAIN) {
1446 /* Can only get here if the 31-bit IDR is full ... */
1447 BUG_ON(ret);
1448 }
1449 spin_unlock(&hierarchy_id_lock);
1450 } while (ret);
1451 return true;
1452 }
1453
1454 static int cgroup_test_super(struct super_block *sb, void *data)
1455 {
1456 struct cgroup_sb_opts *opts = data;
1457 struct cgroupfs_root *root = sb->s_fs_info;
1458
1459 /* If we asked for a name then it must match */
1460 if (opts->name && strcmp(opts->name, root->name))
1461 return 0;
1462
1463 /*
1464 * If we asked for subsystems (or explicitly for no
1465 * subsystems) then they must match
1466 */
1467 if ((opts->subsys_mask || opts->none)
1468 && (opts->subsys_mask != root->subsys_mask))
1469 return 0;
1470
1471 return 1;
1472 }
1473
1474 static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1475 {
1476 struct cgroupfs_root *root;
1477
1478 if (!opts->subsys_mask && !opts->none)
1479 return NULL;
1480
1481 root = kzalloc(sizeof(*root), GFP_KERNEL);
1482 if (!root)
1483 return ERR_PTR(-ENOMEM);
1484
1485 if (!init_root_id(root)) {
1486 kfree(root);
1487 return ERR_PTR(-ENOMEM);
1488 }
1489 init_cgroup_root(root);
1490
1491 root->subsys_mask = opts->subsys_mask;
1492 root->flags = opts->flags;
1493 ida_init(&root->cgroup_ida);
1494 if (opts->release_agent)
1495 strcpy(root->release_agent_path, opts->release_agent);
1496 if (opts->name)
1497 strcpy(root->name, opts->name);
1498 if (opts->cpuset_clone_children)
1499 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags);
1500 return root;
1501 }
1502
1503 static void cgroup_drop_root(struct cgroupfs_root *root)
1504 {
1505 if (!root)
1506 return;
1507
1508 BUG_ON(!root->hierarchy_id);
1509 spin_lock(&hierarchy_id_lock);
1510 ida_remove(&hierarchy_ida, root->hierarchy_id);
1511 spin_unlock(&hierarchy_id_lock);
1512 ida_destroy(&root->cgroup_ida);
1513 kfree(root);
1514 }
1515
1516 static int cgroup_set_super(struct super_block *sb, void *data)
1517 {
1518 int ret;
1519 struct cgroup_sb_opts *opts = data;
1520
1521 /* If we don't have a new root, we can't set up a new sb */
1522 if (!opts->new_root)
1523 return -EINVAL;
1524
1525 BUG_ON(!opts->subsys_mask && !opts->none);
1526
1527 ret = set_anon_super(sb, NULL);
1528 if (ret)
1529 return ret;
1530
1531 sb->s_fs_info = opts->new_root;
1532 opts->new_root->sb = sb;
1533
1534 sb->s_blocksize = PAGE_CACHE_SIZE;
1535 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1536 sb->s_magic = CGROUP_SUPER_MAGIC;
1537 sb->s_op = &cgroup_ops;
1538
1539 return 0;
1540 }
1541
1542 static int cgroup_get_rootdir(struct super_block *sb)
1543 {
1544 static const struct dentry_operations cgroup_dops = {
1545 .d_iput = cgroup_diput,
1546 .d_delete = cgroup_delete,
1547 };
1548
1549 struct inode *inode =
1550 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
1551
1552 if (!inode)
1553 return -ENOMEM;
1554
1555 inode->i_fop = &simple_dir_operations;
1556 inode->i_op = &cgroup_dir_inode_operations;
1557 /* directories start off with i_nlink == 2 (for "." entry) */
1558 inc_nlink(inode);
1559 sb->s_root = d_make_root(inode);
1560 if (!sb->s_root)
1561 return -ENOMEM;
1562 /* for everything else we want ->d_op set */
1563 sb->s_d_op = &cgroup_dops;
1564 return 0;
1565 }
1566
1567 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1568 int flags, const char *unused_dev_name,
1569 void *data)
1570 {
1571 struct cgroup_sb_opts opts;
1572 struct cgroupfs_root *root;
1573 int ret = 0;
1574 struct super_block *sb;
1575 struct cgroupfs_root *new_root;
1576 struct inode *inode;
1577
1578 /* First find the desired set of subsystems */
1579 mutex_lock(&cgroup_mutex);
1580 ret = parse_cgroupfs_options(data, &opts);
1581 mutex_unlock(&cgroup_mutex);
1582 if (ret)
1583 goto out_err;
1584
1585 /*
1586 * Allocate a new cgroup root. We may not need it if we're
1587 * reusing an existing hierarchy.
1588 */
1589 new_root = cgroup_root_from_opts(&opts);
1590 if (IS_ERR(new_root)) {
1591 ret = PTR_ERR(new_root);
1592 goto drop_modules;
1593 }
1594 opts.new_root = new_root;
1595
1596 /* Locate an existing or new sb for this hierarchy */
1597 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, 0, &opts);
1598 if (IS_ERR(sb)) {
1599 ret = PTR_ERR(sb);
1600 cgroup_drop_root(opts.new_root);
1601 goto drop_modules;
1602 }
1603
1604 root = sb->s_fs_info;
1605 BUG_ON(!root);
1606 if (root == opts.new_root) {
1607 /* We used the new root structure, so this is a new hierarchy */
1608 struct list_head tmp_cg_links;
1609 struct cgroup *root_cgrp = &root->top_cgroup;
1610 struct cgroupfs_root *existing_root;
1611 const struct cred *cred;
1612 int i;
1613 struct css_set *cg;
1614
1615 BUG_ON(sb->s_root != NULL);
1616
1617 ret = cgroup_get_rootdir(sb);
1618 if (ret)
1619 goto drop_new_super;
1620 inode = sb->s_root->d_inode;
1621
1622 mutex_lock(&inode->i_mutex);
1623 mutex_lock(&cgroup_mutex);
1624 mutex_lock(&cgroup_root_mutex);
1625
1626 /* Check for name clashes with existing mounts */
1627 ret = -EBUSY;
1628 if (strlen(root->name))
1629 for_each_active_root(existing_root)
1630 if (!strcmp(existing_root->name, root->name))
1631 goto unlock_drop;
1632
1633 /*
1634 * We're accessing css_set_count without locking
1635 * css_set_lock here, but that's OK - it can only be
1636 * increased by someone holding cgroup_lock, and
1637 * that's us. The worst that can happen is that we
1638 * have some link structures left over
1639 */
1640 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1641 if (ret)
1642 goto unlock_drop;
1643
1644 ret = rebind_subsystems(root, root->subsys_mask);
1645 if (ret == -EBUSY) {
1646 free_cg_links(&tmp_cg_links);
1647 goto unlock_drop;
1648 }
1649 /*
1650 * There must be no failure case after here, since rebinding
1651 * takes care of subsystems' refcounts, which are explicitly
1652 * dropped in the failure exit path.
1653 */
1654
1655 /* EBUSY should be the only error here */
1656 BUG_ON(ret);
1657
1658 list_add(&root->root_list, &roots);
1659 root_count++;
1660
1661 sb->s_root->d_fsdata = root_cgrp;
1662 root->top_cgroup.dentry = sb->s_root;
1663
1664 /* Link the top cgroup in this hierarchy into all
1665 * the css_set objects */
1666 write_lock(&css_set_lock);
1667 hash_for_each(css_set_table, i, cg, hlist)
1668 link_css_set(&tmp_cg_links, cg, root_cgrp);
1669 write_unlock(&css_set_lock);
1670
1671 free_cg_links(&tmp_cg_links);
1672
1673 BUG_ON(!list_empty(&root_cgrp->children));
1674 BUG_ON(root->number_of_cgroups != 1);
1675
1676 cred = override_creds(&init_cred);
1677 cgroup_populate_dir(root_cgrp, true, root->subsys_mask);
1678 revert_creds(cred);
1679 mutex_unlock(&cgroup_root_mutex);
1680 mutex_unlock(&cgroup_mutex);
1681 mutex_unlock(&inode->i_mutex);
1682 } else {
1683 /*
1684 * We re-used an existing hierarchy - the new root (if
1685 * any) is not needed
1686 */
1687 cgroup_drop_root(opts.new_root);
1688 /* no subsys rebinding, so refcounts don't change */
1689 drop_parsed_module_refcounts(opts.subsys_mask);
1690 }
1691
1692 kfree(opts.release_agent);
1693 kfree(opts.name);
1694 return dget(sb->s_root);
1695
1696 unlock_drop:
1697 mutex_unlock(&cgroup_root_mutex);
1698 mutex_unlock(&cgroup_mutex);
1699 mutex_unlock(&inode->i_mutex);
1700 drop_new_super:
1701 deactivate_locked_super(sb);
1702 drop_modules:
1703 drop_parsed_module_refcounts(opts.subsys_mask);
1704 out_err:
1705 kfree(opts.release_agent);
1706 kfree(opts.name);
1707 return ERR_PTR(ret);
1708 }
1709
1710 static void cgroup_kill_sb(struct super_block *sb) {
1711 struct cgroupfs_root *root = sb->s_fs_info;
1712 struct cgroup *cgrp = &root->top_cgroup;
1713 int ret;
1714 struct cg_cgroup_link *link;
1715 struct cg_cgroup_link *saved_link;
1716
1717 BUG_ON(!root);
1718
1719 BUG_ON(root->number_of_cgroups != 1);
1720 BUG_ON(!list_empty(&cgrp->children));
1721
1722 mutex_lock(&cgroup_mutex);
1723 mutex_lock(&cgroup_root_mutex);
1724
1725 /* Rebind all subsystems back to the default hierarchy */
1726 ret = rebind_subsystems(root, 0);
1727 /* Shouldn't be able to fail ... */
1728 BUG_ON(ret);
1729
1730 /*
1731 * Release all the links from css_sets to this hierarchy's
1732 * root cgroup
1733 */
1734 write_lock(&css_set_lock);
1735
1736 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1737 cgrp_link_list) {
1738 list_del(&link->cg_link_list);
1739 list_del(&link->cgrp_link_list);
1740 kfree(link);
1741 }
1742 write_unlock(&css_set_lock);
1743
1744 if (!list_empty(&root->root_list)) {
1745 list_del(&root->root_list);
1746 root_count--;
1747 }
1748
1749 mutex_unlock(&cgroup_root_mutex);
1750 mutex_unlock(&cgroup_mutex);
1751
1752 simple_xattrs_free(&cgrp->xattrs);
1753
1754 kill_litter_super(sb);
1755 cgroup_drop_root(root);
1756 }
1757
1758 static struct file_system_type cgroup_fs_type = {
1759 .name = "cgroup",
1760 .mount = cgroup_mount,
1761 .kill_sb = cgroup_kill_sb,
1762 };
1763
1764 static struct kobject *cgroup_kobj;
1765
1766 /**
1767 * cgroup_path - generate the path of a cgroup
1768 * @cgrp: the cgroup in question
1769 * @buf: the buffer to write the path into
1770 * @buflen: the length of the buffer
1771 *
1772 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1773 * reference. Writes path of cgroup into buf. Returns 0 on success,
1774 * -errno on error.
1775 */
1776 int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1777 {
1778 struct dentry *dentry = cgrp->dentry;
1779 char *start;
1780
1781 rcu_lockdep_assert(rcu_read_lock_held() || cgroup_lock_is_held(),
1782 "cgroup_path() called without proper locking");
1783
1784 if (cgrp == dummytop) {
1785 /*
1786 * Inactive subsystems have no dentry for their root
1787 * cgroup
1788 */
1789 strcpy(buf, "/");
1790 return 0;
1791 }
1792
1793 start = buf + buflen - 1;
1794
1795 *start = '\0';
1796 for (;;) {
1797 int len = dentry->d_name.len;
1798
1799 if ((start -= len) < buf)
1800 return -ENAMETOOLONG;
1801 memcpy(start, dentry->d_name.name, len);
1802 cgrp = cgrp->parent;
1803 if (!cgrp)
1804 break;
1805
1806 dentry = cgrp->dentry;
1807 if (!cgrp->parent)
1808 continue;
1809 if (--start < buf)
1810 return -ENAMETOOLONG;
1811 *start = '/';
1812 }
1813 memmove(buf, start, buf + buflen - start);
1814 return 0;
1815 }
1816 EXPORT_SYMBOL_GPL(cgroup_path);
1817
1818 /*
1819 * Control Group taskset
1820 */
1821 struct task_and_cgroup {
1822 struct task_struct *task;
1823 struct cgroup *cgrp;
1824 struct css_set *cg;
1825 };
1826
1827 struct cgroup_taskset {
1828 struct task_and_cgroup single;
1829 struct flex_array *tc_array;
1830 int tc_array_len;
1831 int idx;
1832 struct cgroup *cur_cgrp;
1833 };
1834
1835 /**
1836 * cgroup_taskset_first - reset taskset and return the first task
1837 * @tset: taskset of interest
1838 *
1839 * @tset iteration is initialized and the first task is returned.
1840 */
1841 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1842 {
1843 if (tset->tc_array) {
1844 tset->idx = 0;
1845 return cgroup_taskset_next(tset);
1846 } else {
1847 tset->cur_cgrp = tset->single.cgrp;
1848 return tset->single.task;
1849 }
1850 }
1851 EXPORT_SYMBOL_GPL(cgroup_taskset_first);
1852
1853 /**
1854 * cgroup_taskset_next - iterate to the next task in taskset
1855 * @tset: taskset of interest
1856 *
1857 * Return the next task in @tset. Iteration must have been initialized
1858 * with cgroup_taskset_first().
1859 */
1860 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1861 {
1862 struct task_and_cgroup *tc;
1863
1864 if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1865 return NULL;
1866
1867 tc = flex_array_get(tset->tc_array, tset->idx++);
1868 tset->cur_cgrp = tc->cgrp;
1869 return tc->task;
1870 }
1871 EXPORT_SYMBOL_GPL(cgroup_taskset_next);
1872
1873 /**
1874 * cgroup_taskset_cur_cgroup - return the matching cgroup for the current task
1875 * @tset: taskset of interest
1876 *
1877 * Return the cgroup for the current (last returned) task of @tset. This
1878 * function must be preceded by either cgroup_taskset_first() or
1879 * cgroup_taskset_next().
1880 */
1881 struct cgroup *cgroup_taskset_cur_cgroup(struct cgroup_taskset *tset)
1882 {
1883 return tset->cur_cgrp;
1884 }
1885 EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup);
1886
1887 /**
1888 * cgroup_taskset_size - return the number of tasks in taskset
1889 * @tset: taskset of interest
1890 */
1891 int cgroup_taskset_size(struct cgroup_taskset *tset)
1892 {
1893 return tset->tc_array ? tset->tc_array_len : 1;
1894 }
1895 EXPORT_SYMBOL_GPL(cgroup_taskset_size);
1896
1897
1898 /*
1899 * cgroup_task_migrate - move a task from one cgroup to another.
1900 *
1901 * Must be called with cgroup_mutex and threadgroup locked.
1902 */
1903 static void cgroup_task_migrate(struct cgroup *cgrp, struct cgroup *oldcgrp,
1904 struct task_struct *tsk, struct css_set *newcg)
1905 {
1906 struct css_set *oldcg;
1907
1908 /*
1909 * We are synchronized through threadgroup_lock() against PF_EXITING
1910 * setting such that we can't race against cgroup_exit() changing the
1911 * css_set to init_css_set and dropping the old one.
1912 */
1913 WARN_ON_ONCE(tsk->flags & PF_EXITING);
1914 oldcg = tsk->cgroups;
1915
1916 task_lock(tsk);
1917 rcu_assign_pointer(tsk->cgroups, newcg);
1918 task_unlock(tsk);
1919
1920 /* Update the css_set linked lists if we're using them */
1921 write_lock(&css_set_lock);
1922 if (!list_empty(&tsk->cg_list))
1923 list_move(&tsk->cg_list, &newcg->tasks);
1924 write_unlock(&css_set_lock);
1925
1926 /*
1927 * We just gained a reference on oldcg by taking it from the task. As
1928 * trading it for newcg is protected by cgroup_mutex, we're safe to drop
1929 * it here; it will be freed under RCU.
1930 */
1931 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1932 put_css_set(oldcg);
1933 }
1934
1935 /**
1936 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1937 * @cgrp: the cgroup the task is attaching to
1938 * @tsk: the task to be attached
1939 *
1940 * Call with cgroup_mutex and threadgroup locked. May take task_lock of
1941 * @tsk during call.
1942 */
1943 int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1944 {
1945 int retval = 0;
1946 struct cgroup_subsys *ss, *failed_ss = NULL;
1947 struct cgroup *oldcgrp;
1948 struct cgroupfs_root *root = cgrp->root;
1949 struct cgroup_taskset tset = { };
1950 struct css_set *newcg;
1951
1952 /* @tsk either already exited or can't exit until the end */
1953 if (tsk->flags & PF_EXITING)
1954 return -ESRCH;
1955
1956 /* Nothing to do if the task is already in that cgroup */
1957 oldcgrp = task_cgroup_from_root(tsk, root);
1958 if (cgrp == oldcgrp)
1959 return 0;
1960
1961 tset.single.task = tsk;
1962 tset.single.cgrp = oldcgrp;
1963
1964 for_each_subsys(root, ss) {
1965 if (ss->can_attach) {
1966 retval = ss->can_attach(cgrp, &tset);
1967 if (retval) {
1968 /*
1969 * Remember on which subsystem the can_attach()
1970 * failed, so that we only call cancel_attach()
1971 * against the subsystems whose can_attach()
1972 * succeeded. (See below)
1973 */
1974 failed_ss = ss;
1975 goto out;
1976 }
1977 }
1978 }
1979
1980 newcg = find_css_set(tsk->cgroups, cgrp);
1981 if (!newcg) {
1982 retval = -ENOMEM;
1983 goto out;
1984 }
1985
1986 cgroup_task_migrate(cgrp, oldcgrp, tsk, newcg);
1987
1988 for_each_subsys(root, ss) {
1989 if (ss->attach)
1990 ss->attach(cgrp, &tset);
1991 }
1992
1993 out:
1994 if (retval) {
1995 for_each_subsys(root, ss) {
1996 if (ss == failed_ss)
1997 /*
1998 * This subsystem was the one that failed the
1999 * can_attach() check earlier, so we don't need
2000 * to call cancel_attach() against it or any
2001 * remaining subsystems.
2002 */
2003 break;
2004 if (ss->cancel_attach)
2005 ss->cancel_attach(cgrp, &tset);
2006 }
2007 }
2008 return retval;
2009 }
2010
2011 /**
2012 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2013 * @from: attach to all cgroups of a given task
2014 * @tsk: the task to be attached
2015 */
2016 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2017 {
2018 struct cgroupfs_root *root;
2019 int retval = 0;
2020
2021 cgroup_lock();
2022 for_each_active_root(root) {
2023 struct cgroup *from_cg = task_cgroup_from_root(from, root);
2024
2025 retval = cgroup_attach_task(from_cg, tsk);
2026 if (retval)
2027 break;
2028 }
2029 cgroup_unlock();
2030
2031 return retval;
2032 }
2033 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2034
2035 /**
2036 * cgroup_attach_proc - attach all threads in a threadgroup to a cgroup
2037 * @cgrp: the cgroup to attach to
2038 * @leader: the threadgroup leader task_struct of the group to be attached
2039 *
2040 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
2041 * task_lock of each thread in leader's threadgroup individually in turn.
2042 */
2043 static int cgroup_attach_proc(struct cgroup *cgrp, struct task_struct *leader)
2044 {
2045 int retval, i, group_size;
2046 struct cgroup_subsys *ss, *failed_ss = NULL;
2047 /* guaranteed to be initialized later, but the compiler needs this */
2048 struct cgroupfs_root *root = cgrp->root;
2049 /* threadgroup list cursor and array */
2050 struct task_struct *tsk;
2051 struct task_and_cgroup *tc;
2052 struct flex_array *group;
2053 struct cgroup_taskset tset = { };
2054
2055 /*
2056 * step 0: in order to do expensive, possibly blocking operations for
2057 * every thread, we cannot iterate the thread group list, since it needs
2058 * rcu or tasklist locked. instead, build an array of all threads in the
2059 * group - group_rwsem prevents new threads from appearing, and if
2060 * threads exit, this will just be an over-estimate.
2061 */
2062 group_size = get_nr_threads(leader);
2063 /* flex_array supports very large thread-groups better than kmalloc. */
2064 group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
2065 if (!group)
2066 return -ENOMEM;
2067 /* pre-allocate to guarantee space while iterating in rcu read-side. */
2068 retval = flex_array_prealloc(group, 0, group_size - 1, GFP_KERNEL);
2069 if (retval)
2070 goto out_free_group_list;
2071
2072 tsk = leader;
2073 i = 0;
2074 /*
2075 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2076 * already PF_EXITING could be freed from underneath us unless we
2077 * take an rcu_read_lock.
2078 */
2079 rcu_read_lock();
2080 do {
2081 struct task_and_cgroup ent;
2082
2083 /* @tsk either already exited or can't exit until the end */
2084 if (tsk->flags & PF_EXITING)
2085 continue;
2086
2087 /* as per above, nr_threads may decrease, but not increase. */
2088 BUG_ON(i >= group_size);
2089 ent.task = tsk;
2090 ent.cgrp = task_cgroup_from_root(tsk, root);
2091 /* nothing to do if this task is already in the cgroup */
2092 if (ent.cgrp == cgrp)
2093 continue;
2094 /*
2095 * saying GFP_ATOMIC has no effect here because we did prealloc
2096 * earlier, but it's good form to communicate our expectations.
2097 */
2098 retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
2099 BUG_ON(retval != 0);
2100 i++;
2101 } while_each_thread(leader, tsk);
2102 rcu_read_unlock();
2103 /* remember the number of threads in the array for later. */
2104 group_size = i;
2105 tset.tc_array = group;
2106 tset.tc_array_len = group_size;
2107
2108 /* methods shouldn't be called if no task is actually migrating */
2109 retval = 0;
2110 if (!group_size)
2111 goto out_free_group_list;
2112
2113 /*
2114 * step 1: check that we can legitimately attach to the cgroup.
2115 */
2116 for_each_subsys(root, ss) {
2117 if (ss->can_attach) {
2118 retval = ss->can_attach(cgrp, &tset);
2119 if (retval) {
2120 failed_ss = ss;
2121 goto out_cancel_attach;
2122 }
2123 }
2124 }
2125
2126 /*
2127 * step 2: make sure css_sets exist for all threads to be migrated.
2128 * we use find_css_set, which allocates a new one if necessary.
2129 */
2130 for (i = 0; i < group_size; i++) {
2131 tc = flex_array_get(group, i);
2132 tc->cg = find_css_set(tc->task->cgroups, cgrp);
2133 if (!tc->cg) {
2134 retval = -ENOMEM;
2135 goto out_put_css_set_refs;
2136 }
2137 }
2138
2139 /*
2140 * step 3: now that we're guaranteed success wrt the css_sets,
2141 * proceed to move all tasks to the new cgroup. There are no
2142 * failure cases after here, so this is the commit point.
2143 */
2144 for (i = 0; i < group_size; i++) {
2145 tc = flex_array_get(group, i);
2146 cgroup_task_migrate(cgrp, tc->cgrp, tc->task, tc->cg);
2147 }
2148 /* nothing is sensitive to fork() after this point. */
2149
2150 /*
2151 * step 4: do subsystem attach callbacks.
2152 */
2153 for_each_subsys(root, ss) {
2154 if (ss->attach)
2155 ss->attach(cgrp, &tset);
2156 }
2157
2158 /*
2159 * step 5: success! and cleanup
2160 */
2161 retval = 0;
2162 out_put_css_set_refs:
2163 if (retval) {
2164 for (i = 0; i < group_size; i++) {
2165 tc = flex_array_get(group, i);
2166 if (!tc->cg)
2167 break;
2168 put_css_set(tc->cg);
2169 }
2170 }
2171 out_cancel_attach:
2172 if (retval) {
2173 for_each_subsys(root, ss) {
2174 if (ss == failed_ss)
2175 break;
2176 if (ss->cancel_attach)
2177 ss->cancel_attach(cgrp, &tset);
2178 }
2179 }
2180 out_free_group_list:
2181 flex_array_free(group);
2182 return retval;
2183 }
2184
2185 /*
2186 * Find the task_struct of the task to attach by vpid and pass it along to the
2187 * function to attach either it or all tasks in its threadgroup. Will lock
2188 * cgroup_mutex and threadgroup; may take task_lock of task.
2189 */
2190 static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
2191 {
2192 struct task_struct *tsk;
2193 const struct cred *cred = current_cred(), *tcred;
2194 int ret;
2195
2196 if (!cgroup_lock_live_group(cgrp))
2197 return -ENODEV;
2198
2199 retry_find_task:
2200 rcu_read_lock();
2201 if (pid) {
2202 tsk = find_task_by_vpid(pid);
2203 if (!tsk) {
2204 rcu_read_unlock();
2205 ret= -ESRCH;
2206 goto out_unlock_cgroup;
2207 }
2208 /*
2209 * even if we're attaching all tasks in the thread group, we
2210 * only need to check permissions on one of them.
2211 */
2212 tcred = __task_cred(tsk);
2213 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2214 !uid_eq(cred->euid, tcred->uid) &&
2215 !uid_eq(cred->euid, tcred->suid)) {
2216 rcu_read_unlock();
2217 ret = -EACCES;
2218 goto out_unlock_cgroup;
2219 }
2220 } else
2221 tsk = current;
2222
2223 if (threadgroup)
2224 tsk = tsk->group_leader;
2225
2226 /*
2227 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
2228 * trapped in a cpuset, or RT worker may be born in a cgroup
2229 * with no rt_runtime allocated. Just say no.
2230 */
2231 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
2232 ret = -EINVAL;
2233 rcu_read_unlock();
2234 goto out_unlock_cgroup;
2235 }
2236
2237 get_task_struct(tsk);
2238 rcu_read_unlock();
2239
2240 threadgroup_lock(tsk);
2241 if (threadgroup) {
2242 if (!thread_group_leader(tsk)) {
2243 /*
2244 * a race with de_thread from another thread's exec()
2245 * may strip us of our leadership, if this happens,
2246 * there is no choice but to throw this task away and
2247 * try again; this is
2248 * "double-double-toil-and-trouble-check locking".
2249 */
2250 threadgroup_unlock(tsk);
2251 put_task_struct(tsk);
2252 goto retry_find_task;
2253 }
2254 ret = cgroup_attach_proc(cgrp, tsk);
2255 } else
2256 ret = cgroup_attach_task(cgrp, tsk);
2257 threadgroup_unlock(tsk);
2258
2259 put_task_struct(tsk);
2260 out_unlock_cgroup:
2261 cgroup_unlock();
2262 return ret;
2263 }
2264
2265 static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
2266 {
2267 return attach_task_by_pid(cgrp, pid, false);
2268 }
2269
2270 static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
2271 {
2272 return attach_task_by_pid(cgrp, tgid, true);
2273 }
2274
2275 /**
2276 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
2277 * @cgrp: the cgroup to be checked for liveness
2278 *
2279 * On success, returns true; the lock should be later released with
2280 * cgroup_unlock(). On failure returns false with no lock held.
2281 */
2282 bool cgroup_lock_live_group(struct cgroup *cgrp)
2283 {
2284 mutex_lock(&cgroup_mutex);
2285 if (cgroup_is_removed(cgrp)) {
2286 mutex_unlock(&cgroup_mutex);
2287 return false;
2288 }
2289 return true;
2290 }
2291 EXPORT_SYMBOL_GPL(cgroup_lock_live_group);
2292
2293 static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
2294 const char *buffer)
2295 {
2296 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2297 if (strlen(buffer) >= PATH_MAX)
2298 return -EINVAL;
2299 if (!cgroup_lock_live_group(cgrp))
2300 return -ENODEV;
2301 mutex_lock(&cgroup_root_mutex);
2302 strcpy(cgrp->root->release_agent_path, buffer);
2303 mutex_unlock(&cgroup_root_mutex);
2304 cgroup_unlock();
2305 return 0;
2306 }
2307
2308 static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
2309 struct seq_file *seq)
2310 {
2311 if (!cgroup_lock_live_group(cgrp))
2312 return -ENODEV;
2313 seq_puts(seq, cgrp->root->release_agent_path);
2314 seq_putc(seq, '\n');
2315 cgroup_unlock();
2316 return 0;
2317 }
2318
2319 /* A buffer size big enough for numbers or short strings */
2320 #define CGROUP_LOCAL_BUFFER_SIZE 64
2321
2322 static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
2323 struct file *file,
2324 const char __user *userbuf,
2325 size_t nbytes, loff_t *unused_ppos)
2326 {
2327 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
2328 int retval = 0;
2329 char *end;
2330
2331 if (!nbytes)
2332 return -EINVAL;
2333 if (nbytes >= sizeof(buffer))
2334 return -E2BIG;
2335 if (copy_from_user(buffer, userbuf, nbytes))
2336 return -EFAULT;
2337
2338 buffer[nbytes] = 0; /* nul-terminate */
2339 if (cft->write_u64) {
2340 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
2341 if (*end)
2342 return -EINVAL;
2343 retval = cft->write_u64(cgrp, cft, val);
2344 } else {
2345 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
2346 if (*end)
2347 return -EINVAL;
2348 retval = cft->write_s64(cgrp, cft, val);
2349 }
2350 if (!retval)
2351 retval = nbytes;
2352 return retval;
2353 }
2354
2355 static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
2356 struct file *file,
2357 const char __user *userbuf,
2358 size_t nbytes, loff_t *unused_ppos)
2359 {
2360 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
2361 int retval = 0;
2362 size_t max_bytes = cft->max_write_len;
2363 char *buffer = local_buffer;
2364
2365 if (!max_bytes)
2366 max_bytes = sizeof(local_buffer) - 1;
2367 if (nbytes >= max_bytes)
2368 return -E2BIG;
2369 /* Allocate a dynamic buffer if we need one */
2370 if (nbytes >= sizeof(local_buffer)) {
2371 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2372 if (buffer == NULL)
2373 return -ENOMEM;
2374 }
2375 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2376 retval = -EFAULT;
2377 goto out;
2378 }
2379
2380 buffer[nbytes] = 0; /* nul-terminate */
2381 retval = cft->write_string(cgrp, cft, strstrip(buffer));
2382 if (!retval)
2383 retval = nbytes;
2384 out:
2385 if (buffer != local_buffer)
2386 kfree(buffer);
2387 return retval;
2388 }
2389
2390 static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2391 size_t nbytes, loff_t *ppos)
2392 {
2393 struct cftype *cft = __d_cft(file->f_dentry);
2394 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2395
2396 if (cgroup_is_removed(cgrp))
2397 return -ENODEV;
2398 if (cft->write)
2399 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
2400 if (cft->write_u64 || cft->write_s64)
2401 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
2402 if (cft->write_string)
2403 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
2404 if (cft->trigger) {
2405 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
2406 return ret ? ret : nbytes;
2407 }
2408 return -EINVAL;
2409 }
2410
2411 static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
2412 struct file *file,
2413 char __user *buf, size_t nbytes,
2414 loff_t *ppos)
2415 {
2416 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2417 u64 val = cft->read_u64(cgrp, cft);
2418 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2419
2420 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2421 }
2422
2423 static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2424 struct file *file,
2425 char __user *buf, size_t nbytes,
2426 loff_t *ppos)
2427 {
2428 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2429 s64 val = cft->read_s64(cgrp, cft);
2430 int len = sprintf(tmp, "%lld\n", (long long) val);
2431
2432 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2433 }
2434
2435 static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2436 size_t nbytes, loff_t *ppos)
2437 {
2438 struct cftype *cft = __d_cft(file->f_dentry);
2439 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2440
2441 if (cgroup_is_removed(cgrp))
2442 return -ENODEV;
2443
2444 if (cft->read)
2445 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
2446 if (cft->read_u64)
2447 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
2448 if (cft->read_s64)
2449 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
2450 return -EINVAL;
2451 }
2452
2453 /*
2454 * seqfile ops/methods for returning structured data. Currently just
2455 * supports string->u64 maps, but can be extended in future.
2456 */
2457
2458 struct cgroup_seqfile_state {
2459 struct cftype *cft;
2460 struct cgroup *cgroup;
2461 };
2462
2463 static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2464 {
2465 struct seq_file *sf = cb->state;
2466 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2467 }
2468
2469 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2470 {
2471 struct cgroup_seqfile_state *state = m->private;
2472 struct cftype *cft = state->cft;
2473 if (cft->read_map) {
2474 struct cgroup_map_cb cb = {
2475 .fill = cgroup_map_add,
2476 .state = m,
2477 };
2478 return cft->read_map(state->cgroup, cft, &cb);
2479 }
2480 return cft->read_seq_string(state->cgroup, cft, m);
2481 }
2482
2483 static int cgroup_seqfile_release(struct inode *inode, struct file *file)
2484 {
2485 struct seq_file *seq = file->private_data;
2486 kfree(seq->private);
2487 return single_release(inode, file);
2488 }
2489
2490 static const struct file_operations cgroup_seqfile_operations = {
2491 .read = seq_read,
2492 .write = cgroup_file_write,
2493 .llseek = seq_lseek,
2494 .release = cgroup_seqfile_release,
2495 };
2496
2497 static int cgroup_file_open(struct inode *inode, struct file *file)
2498 {
2499 int err;
2500 struct cftype *cft;
2501
2502 err = generic_file_open(inode, file);
2503 if (err)
2504 return err;
2505 cft = __d_cft(file->f_dentry);
2506
2507 if (cft->read_map || cft->read_seq_string) {
2508 struct cgroup_seqfile_state *state =
2509 kzalloc(sizeof(*state), GFP_USER);
2510 if (!state)
2511 return -ENOMEM;
2512 state->cft = cft;
2513 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2514 file->f_op = &cgroup_seqfile_operations;
2515 err = single_open(file, cgroup_seqfile_show, state);
2516 if (err < 0)
2517 kfree(state);
2518 } else if (cft->open)
2519 err = cft->open(inode, file);
2520 else
2521 err = 0;
2522
2523 return err;
2524 }
2525
2526 static int cgroup_file_release(struct inode *inode, struct file *file)
2527 {
2528 struct cftype *cft = __d_cft(file->f_dentry);
2529 if (cft->release)
2530 return cft->release(inode, file);
2531 return 0;
2532 }
2533
2534 /*
2535 * cgroup_rename - Only allow simple rename of directories in place.
2536 */
2537 static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2538 struct inode *new_dir, struct dentry *new_dentry)
2539 {
2540 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2541 return -ENOTDIR;
2542 if (new_dentry->d_inode)
2543 return -EEXIST;
2544 if (old_dir != new_dir)
2545 return -EIO;
2546 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2547 }
2548
2549 static struct simple_xattrs *__d_xattrs(struct dentry *dentry)
2550 {
2551 if (S_ISDIR(dentry->d_inode->i_mode))
2552 return &__d_cgrp(dentry)->xattrs;
2553 else
2554 return &__d_cft(dentry)->xattrs;
2555 }
2556
2557 static inline int xattr_enabled(struct dentry *dentry)
2558 {
2559 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
2560 return test_bit(ROOT_XATTR, &root->flags);
2561 }
2562
2563 static bool is_valid_xattr(const char *name)
2564 {
2565 if (!strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN) ||
2566 !strncmp(name, XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN))
2567 return true;
2568 return false;
2569 }
2570
2571 static int cgroup_setxattr(struct dentry *dentry, const char *name,
2572 const void *val, size_t size, int flags)
2573 {
2574 if (!xattr_enabled(dentry))
2575 return -EOPNOTSUPP;
2576 if (!is_valid_xattr(name))
2577 return -EINVAL;
2578 return simple_xattr_set(__d_xattrs(dentry), name, val, size, flags);
2579 }
2580
2581 static int cgroup_removexattr(struct dentry *dentry, const char *name)
2582 {
2583 if (!xattr_enabled(dentry))
2584 return -EOPNOTSUPP;
2585 if (!is_valid_xattr(name))
2586 return -EINVAL;
2587 return simple_xattr_remove(__d_xattrs(dentry), name);
2588 }
2589
2590 static ssize_t cgroup_getxattr(struct dentry *dentry, const char *name,
2591 void *buf, size_t size)
2592 {
2593 if (!xattr_enabled(dentry))
2594 return -EOPNOTSUPP;
2595 if (!is_valid_xattr(name))
2596 return -EINVAL;
2597 return simple_xattr_get(__d_xattrs(dentry), name, buf, size);
2598 }
2599
2600 static ssize_t cgroup_listxattr(struct dentry *dentry, char *buf, size_t size)
2601 {
2602 if (!xattr_enabled(dentry))
2603 return -EOPNOTSUPP;
2604 return simple_xattr_list(__d_xattrs(dentry), buf, size);
2605 }
2606
2607 static const struct file_operations cgroup_file_operations = {
2608 .read = cgroup_file_read,
2609 .write = cgroup_file_write,
2610 .llseek = generic_file_llseek,
2611 .open = cgroup_file_open,
2612 .release = cgroup_file_release,
2613 };
2614
2615 static const struct inode_operations cgroup_file_inode_operations = {
2616 .setxattr = cgroup_setxattr,
2617 .getxattr = cgroup_getxattr,
2618 .listxattr = cgroup_listxattr,
2619 .removexattr = cgroup_removexattr,
2620 };
2621
2622 static const struct inode_operations cgroup_dir_inode_operations = {
2623 .lookup = cgroup_lookup,
2624 .mkdir = cgroup_mkdir,
2625 .rmdir = cgroup_rmdir,
2626 .rename = cgroup_rename,
2627 .setxattr = cgroup_setxattr,
2628 .getxattr = cgroup_getxattr,
2629 .listxattr = cgroup_listxattr,
2630 .removexattr = cgroup_removexattr,
2631 };
2632
2633 static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2634 {
2635 if (dentry->d_name.len > NAME_MAX)
2636 return ERR_PTR(-ENAMETOOLONG);
2637 d_add(dentry, NULL);
2638 return NULL;
2639 }
2640
2641 /*
2642 * Check if a file is a control file
2643 */
2644 static inline struct cftype *__file_cft(struct file *file)
2645 {
2646 if (file_inode(file)->i_fop != &cgroup_file_operations)
2647 return ERR_PTR(-EINVAL);
2648 return __d_cft(file->f_dentry);
2649 }
2650
2651 static int cgroup_create_file(struct dentry *dentry, umode_t mode,
2652 struct super_block *sb)
2653 {
2654 struct inode *inode;
2655
2656 if (!dentry)
2657 return -ENOENT;
2658 if (dentry->d_inode)
2659 return -EEXIST;
2660
2661 inode = cgroup_new_inode(mode, sb);
2662 if (!inode)
2663 return -ENOMEM;
2664
2665 if (S_ISDIR(mode)) {
2666 inode->i_op = &cgroup_dir_inode_operations;
2667 inode->i_fop = &simple_dir_operations;
2668
2669 /* start off with i_nlink == 2 (for "." entry) */
2670 inc_nlink(inode);
2671 inc_nlink(dentry->d_parent->d_inode);
2672
2673 /*
2674 * Control reaches here with cgroup_mutex held.
2675 * @inode->i_mutex should nest outside cgroup_mutex but we
2676 * want to populate it immediately without releasing
2677 * cgroup_mutex. As @inode isn't visible to anyone else
2678 * yet, trylock will always succeed without affecting
2679 * lockdep checks.
2680 */
2681 WARN_ON_ONCE(!mutex_trylock(&inode->i_mutex));
2682 } else if (S_ISREG(mode)) {
2683 inode->i_size = 0;
2684 inode->i_fop = &cgroup_file_operations;
2685 inode->i_op = &cgroup_file_inode_operations;
2686 }
2687 d_instantiate(dentry, inode);
2688 dget(dentry); /* Extra count - pin the dentry in core */
2689 return 0;
2690 }
2691
2692 /**
2693 * cgroup_file_mode - deduce file mode of a control file
2694 * @cft: the control file in question
2695 *
2696 * returns cft->mode if ->mode is not 0
2697 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2698 * returns S_IRUGO if it has only a read handler
2699 * returns S_IWUSR if it has only a write hander
2700 */
2701 static umode_t cgroup_file_mode(const struct cftype *cft)
2702 {
2703 umode_t mode = 0;
2704
2705 if (cft->mode)
2706 return cft->mode;
2707
2708 if (cft->read || cft->read_u64 || cft->read_s64 ||
2709 cft->read_map || cft->read_seq_string)
2710 mode |= S_IRUGO;
2711
2712 if (cft->write || cft->write_u64 || cft->write_s64 ||
2713 cft->write_string || cft->trigger)
2714 mode |= S_IWUSR;
2715
2716 return mode;
2717 }
2718
2719 static int cgroup_add_file(struct cgroup *cgrp, struct cgroup_subsys *subsys,
2720 struct cftype *cft)
2721 {
2722 struct dentry *dir = cgrp->dentry;
2723 struct cgroup *parent = __d_cgrp(dir);
2724 struct dentry *dentry;
2725 struct cfent *cfe;
2726 int error;
2727 umode_t mode;
2728 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2729
2730 simple_xattrs_init(&cft->xattrs);
2731
2732 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
2733 strcpy(name, subsys->name);
2734 strcat(name, ".");
2735 }
2736 strcat(name, cft->name);
2737
2738 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
2739
2740 cfe = kzalloc(sizeof(*cfe), GFP_KERNEL);
2741 if (!cfe)
2742 return -ENOMEM;
2743
2744 dentry = lookup_one_len(name, dir, strlen(name));
2745 if (IS_ERR(dentry)) {
2746 error = PTR_ERR(dentry);
2747 goto out;
2748 }
2749
2750 mode = cgroup_file_mode(cft);
2751 error = cgroup_create_file(dentry, mode | S_IFREG, cgrp->root->sb);
2752 if (!error) {
2753 cfe->type = (void *)cft;
2754 cfe->dentry = dentry;
2755 dentry->d_fsdata = cfe;
2756 list_add_tail(&cfe->node, &parent->files);
2757 cfe = NULL;
2758 }
2759 dput(dentry);
2760 out:
2761 kfree(cfe);
2762 return error;
2763 }
2764
2765 static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
2766 struct cftype cfts[], bool is_add)
2767 {
2768 struct cftype *cft;
2769 int err, ret = 0;
2770
2771 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2772 /* does cft->flags tell us to skip this file on @cgrp? */
2773 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2774 continue;
2775 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2776 continue;
2777
2778 if (is_add) {
2779 err = cgroup_add_file(cgrp, subsys, cft);
2780 if (err)
2781 pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n",
2782 cft->name, err);
2783 ret = err;
2784 } else {
2785 cgroup_rm_file(cgrp, cft);
2786 }
2787 }
2788 return ret;
2789 }
2790
2791 static DEFINE_MUTEX(cgroup_cft_mutex);
2792
2793 static void cgroup_cfts_prepare(void)
2794 __acquires(&cgroup_cft_mutex) __acquires(&cgroup_mutex)
2795 {
2796 /*
2797 * Thanks to the entanglement with vfs inode locking, we can't walk
2798 * the existing cgroups under cgroup_mutex and create files.
2799 * Instead, we increment reference on all cgroups and build list of
2800 * them using @cgrp->cft_q_node. Grab cgroup_cft_mutex to ensure
2801 * exclusive access to the field.
2802 */
2803 mutex_lock(&cgroup_cft_mutex);
2804 mutex_lock(&cgroup_mutex);
2805 }
2806
2807 static void cgroup_cfts_commit(struct cgroup_subsys *ss,
2808 struct cftype *cfts, bool is_add)
2809 __releases(&cgroup_mutex) __releases(&cgroup_cft_mutex)
2810 {
2811 LIST_HEAD(pending);
2812 struct cgroup *cgrp, *n;
2813
2814 /* %NULL @cfts indicates abort and don't bother if @ss isn't attached */
2815 if (cfts && ss->root != &rootnode) {
2816 list_for_each_entry(cgrp, &ss->root->allcg_list, allcg_node) {
2817 dget(cgrp->dentry);
2818 list_add_tail(&cgrp->cft_q_node, &pending);
2819 }
2820 }
2821
2822 mutex_unlock(&cgroup_mutex);
2823
2824 /*
2825 * All new cgroups will see @cfts update on @ss->cftsets. Add/rm
2826 * files for all cgroups which were created before.
2827 */
2828 list_for_each_entry_safe(cgrp, n, &pending, cft_q_node) {
2829 struct inode *inode = cgrp->dentry->d_inode;
2830
2831 mutex_lock(&inode->i_mutex);
2832 mutex_lock(&cgroup_mutex);
2833 if (!cgroup_is_removed(cgrp))
2834 cgroup_addrm_files(cgrp, ss, cfts, is_add);
2835 mutex_unlock(&cgroup_mutex);
2836 mutex_unlock(&inode->i_mutex);
2837
2838 list_del_init(&cgrp->cft_q_node);
2839 dput(cgrp->dentry);
2840 }
2841
2842 mutex_unlock(&cgroup_cft_mutex);
2843 }
2844
2845 /**
2846 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2847 * @ss: target cgroup subsystem
2848 * @cfts: zero-length name terminated array of cftypes
2849 *
2850 * Register @cfts to @ss. Files described by @cfts are created for all
2851 * existing cgroups to which @ss is attached and all future cgroups will
2852 * have them too. This function can be called anytime whether @ss is
2853 * attached or not.
2854 *
2855 * Returns 0 on successful registration, -errno on failure. Note that this
2856 * function currently returns 0 as long as @cfts registration is successful
2857 * even if some file creation attempts on existing cgroups fail.
2858 */
2859 int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2860 {
2861 struct cftype_set *set;
2862
2863 set = kzalloc(sizeof(*set), GFP_KERNEL);
2864 if (!set)
2865 return -ENOMEM;
2866
2867 cgroup_cfts_prepare();
2868 set->cfts = cfts;
2869 list_add_tail(&set->node, &ss->cftsets);
2870 cgroup_cfts_commit(ss, cfts, true);
2871
2872 return 0;
2873 }
2874 EXPORT_SYMBOL_GPL(cgroup_add_cftypes);
2875
2876 /**
2877 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
2878 * @ss: target cgroup subsystem
2879 * @cfts: zero-length name terminated array of cftypes
2880 *
2881 * Unregister @cfts from @ss. Files described by @cfts are removed from
2882 * all existing cgroups to which @ss is attached and all future cgroups
2883 * won't have them either. This function can be called anytime whether @ss
2884 * is attached or not.
2885 *
2886 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2887 * registered with @ss.
2888 */
2889 int cgroup_rm_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2890 {
2891 struct cftype_set *set;
2892
2893 cgroup_cfts_prepare();
2894
2895 list_for_each_entry(set, &ss->cftsets, node) {
2896 if (set->cfts == cfts) {
2897 list_del_init(&set->node);
2898 cgroup_cfts_commit(ss, cfts, false);
2899 return 0;
2900 }
2901 }
2902
2903 cgroup_cfts_commit(ss, NULL, false);
2904 return -ENOENT;
2905 }
2906
2907 /**
2908 * cgroup_task_count - count the number of tasks in a cgroup.
2909 * @cgrp: the cgroup in question
2910 *
2911 * Return the number of tasks in the cgroup.
2912 */
2913 int cgroup_task_count(const struct cgroup *cgrp)
2914 {
2915 int count = 0;
2916 struct cg_cgroup_link *link;
2917
2918 read_lock(&css_set_lock);
2919 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
2920 count += atomic_read(&link->cg->refcount);
2921 }
2922 read_unlock(&css_set_lock);
2923 return count;
2924 }
2925
2926 /*
2927 * Advance a list_head iterator. The iterator should be positioned at
2928 * the start of a css_set
2929 */
2930 static void cgroup_advance_iter(struct cgroup *cgrp,
2931 struct cgroup_iter *it)
2932 {
2933 struct list_head *l = it->cg_link;
2934 struct cg_cgroup_link *link;
2935 struct css_set *cg;
2936
2937 /* Advance to the next non-empty css_set */
2938 do {
2939 l = l->next;
2940 if (l == &cgrp->css_sets) {
2941 it->cg_link = NULL;
2942 return;
2943 }
2944 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
2945 cg = link->cg;
2946 } while (list_empty(&cg->tasks));
2947 it->cg_link = l;
2948 it->task = cg->tasks.next;
2949 }
2950
2951 /*
2952 * To reduce the fork() overhead for systems that are not actually
2953 * using their cgroups capability, we don't maintain the lists running
2954 * through each css_set to its tasks until we see the list actually
2955 * used - in other words after the first call to cgroup_iter_start().
2956 */
2957 static void cgroup_enable_task_cg_lists(void)
2958 {
2959 struct task_struct *p, *g;
2960 write_lock(&css_set_lock);
2961 use_task_css_set_links = 1;
2962 /*
2963 * We need tasklist_lock because RCU is not safe against
2964 * while_each_thread(). Besides, a forking task that has passed
2965 * cgroup_post_fork() without seeing use_task_css_set_links = 1
2966 * is not guaranteed to have its child immediately visible in the
2967 * tasklist if we walk through it with RCU.
2968 */
2969 read_lock(&tasklist_lock);
2970 do_each_thread(g, p) {
2971 task_lock(p);
2972 /*
2973 * We should check if the process is exiting, otherwise
2974 * it will race with cgroup_exit() in that the list
2975 * entry won't be deleted though the process has exited.
2976 */
2977 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
2978 list_add(&p->cg_list, &p->cgroups->tasks);
2979 task_unlock(p);
2980 } while_each_thread(g, p);
2981 read_unlock(&tasklist_lock);
2982 write_unlock(&css_set_lock);
2983 }
2984
2985 /**
2986 * cgroup_next_descendant_pre - find the next descendant for pre-order walk
2987 * @pos: the current position (%NULL to initiate traversal)
2988 * @cgroup: cgroup whose descendants to walk
2989 *
2990 * To be used by cgroup_for_each_descendant_pre(). Find the next
2991 * descendant to visit for pre-order traversal of @cgroup's descendants.
2992 */
2993 struct cgroup *cgroup_next_descendant_pre(struct cgroup *pos,
2994 struct cgroup *cgroup)
2995 {
2996 struct cgroup *next;
2997
2998 WARN_ON_ONCE(!rcu_read_lock_held());
2999
3000 /* if first iteration, pretend we just visited @cgroup */
3001 if (!pos) {
3002 if (list_empty(&cgroup->children))
3003 return NULL;
3004 pos = cgroup;
3005 }
3006
3007 /* visit the first child if exists */
3008 next = list_first_or_null_rcu(&pos->children, struct cgroup, sibling);
3009 if (next)
3010 return next;
3011
3012 /* no child, visit my or the closest ancestor's next sibling */
3013 do {
3014 next = list_entry_rcu(pos->sibling.next, struct cgroup,
3015 sibling);
3016 if (&next->sibling != &pos->parent->children)
3017 return next;
3018
3019 pos = pos->parent;
3020 } while (pos != cgroup);
3021
3022 return NULL;
3023 }
3024 EXPORT_SYMBOL_GPL(cgroup_next_descendant_pre);
3025
3026 /**
3027 * cgroup_rightmost_descendant - return the rightmost descendant of a cgroup
3028 * @pos: cgroup of interest
3029 *
3030 * Return the rightmost descendant of @pos. If there's no descendant,
3031 * @pos is returned. This can be used during pre-order traversal to skip
3032 * subtree of @pos.
3033 */
3034 struct cgroup *cgroup_rightmost_descendant(struct cgroup *pos)
3035 {
3036 struct cgroup *last, *tmp;
3037
3038 WARN_ON_ONCE(!rcu_read_lock_held());
3039
3040 do {
3041 last = pos;
3042 /* ->prev isn't RCU safe, walk ->next till the end */
3043 pos = NULL;
3044 list_for_each_entry_rcu(tmp, &last->children, sibling)
3045 pos = tmp;
3046 } while (pos);
3047
3048 return last;
3049 }
3050 EXPORT_SYMBOL_GPL(cgroup_rightmost_descendant);
3051
3052 static struct cgroup *cgroup_leftmost_descendant(struct cgroup *pos)
3053 {
3054 struct cgroup *last;
3055
3056 do {
3057 last = pos;
3058 pos = list_first_or_null_rcu(&pos->children, struct cgroup,
3059 sibling);
3060 } while (pos);
3061
3062 return last;
3063 }
3064
3065 /**
3066 * cgroup_next_descendant_post - find the next descendant for post-order walk
3067 * @pos: the current position (%NULL to initiate traversal)
3068 * @cgroup: cgroup whose descendants to walk
3069 *
3070 * To be used by cgroup_for_each_descendant_post(). Find the next
3071 * descendant to visit for post-order traversal of @cgroup's descendants.
3072 */
3073 struct cgroup *cgroup_next_descendant_post(struct cgroup *pos,
3074 struct cgroup *cgroup)
3075 {
3076 struct cgroup *next;
3077
3078 WARN_ON_ONCE(!rcu_read_lock_held());
3079
3080 /* if first iteration, visit the leftmost descendant */
3081 if (!pos) {
3082 next = cgroup_leftmost_descendant(cgroup);
3083 return next != cgroup ? next : NULL;
3084 }
3085
3086 /* if there's an unvisited sibling, visit its leftmost descendant */
3087 next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
3088 if (&next->sibling != &pos->parent->children)
3089 return cgroup_leftmost_descendant(next);
3090
3091 /* no sibling left, visit parent */
3092 next = pos->parent;
3093 return next != cgroup ? next : NULL;
3094 }
3095 EXPORT_SYMBOL_GPL(cgroup_next_descendant_post);
3096
3097 void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
3098 __acquires(css_set_lock)
3099 {
3100 /*
3101 * The first time anyone tries to iterate across a cgroup,
3102 * we need to enable the list linking each css_set to its
3103 * tasks, and fix up all existing tasks.
3104 */
3105 if (!use_task_css_set_links)
3106 cgroup_enable_task_cg_lists();
3107
3108 read_lock(&css_set_lock);
3109 it->cg_link = &cgrp->css_sets;
3110 cgroup_advance_iter(cgrp, it);
3111 }
3112
3113 struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
3114 struct cgroup_iter *it)
3115 {
3116 struct task_struct *res;
3117 struct list_head *l = it->task;
3118 struct cg_cgroup_link *link;
3119
3120 /* If the iterator cg is NULL, we have no tasks */
3121 if (!it->cg_link)
3122 return NULL;
3123 res = list_entry(l, struct task_struct, cg_list);
3124 /* Advance iterator to find next entry */
3125 l = l->next;
3126 link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
3127 if (l == &link->cg->tasks) {
3128 /* We reached the end of this task list - move on to
3129 * the next cg_cgroup_link */
3130 cgroup_advance_iter(cgrp, it);
3131 } else {
3132 it->task = l;
3133 }
3134 return res;
3135 }
3136
3137 void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
3138 __releases(css_set_lock)
3139 {
3140 read_unlock(&css_set_lock);
3141 }
3142
3143 static inline int started_after_time(struct task_struct *t1,
3144 struct timespec *time,
3145 struct task_struct *t2)
3146 {
3147 int start_diff = timespec_compare(&t1->start_time, time);
3148 if (start_diff > 0) {
3149 return 1;
3150 } else if (start_diff < 0) {
3151 return 0;
3152 } else {
3153 /*
3154 * Arbitrarily, if two processes started at the same
3155 * time, we'll say that the lower pointer value
3156 * started first. Note that t2 may have exited by now
3157 * so this may not be a valid pointer any longer, but
3158 * that's fine - it still serves to distinguish
3159 * between two tasks started (effectively) simultaneously.
3160 */
3161 return t1 > t2;
3162 }
3163 }
3164
3165 /*
3166 * This function is a callback from heap_insert() and is used to order
3167 * the heap.
3168 * In this case we order the heap in descending task start time.
3169 */
3170 static inline int started_after(void *p1, void *p2)
3171 {
3172 struct task_struct *t1 = p1;
3173 struct task_struct *t2 = p2;
3174 return started_after_time(t1, &t2->start_time, t2);
3175 }
3176
3177 /**
3178 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
3179 * @scan: struct cgroup_scanner containing arguments for the scan
3180 *
3181 * Arguments include pointers to callback functions test_task() and
3182 * process_task().
3183 * Iterate through all the tasks in a cgroup, calling test_task() for each,
3184 * and if it returns true, call process_task() for it also.
3185 * The test_task pointer may be NULL, meaning always true (select all tasks).
3186 * Effectively duplicates cgroup_iter_{start,next,end}()
3187 * but does not lock css_set_lock for the call to process_task().
3188 * The struct cgroup_scanner may be embedded in any structure of the caller's
3189 * creation.
3190 * It is guaranteed that process_task() will act on every task that
3191 * is a member of the cgroup for the duration of this call. This
3192 * function may or may not call process_task() for tasks that exit
3193 * or move to a different cgroup during the call, or are forked or
3194 * move into the cgroup during the call.
3195 *
3196 * Note that test_task() may be called with locks held, and may in some
3197 * situations be called multiple times for the same task, so it should
3198 * be cheap.
3199 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
3200 * pre-allocated and will be used for heap operations (and its "gt" member will
3201 * be overwritten), else a temporary heap will be used (allocation of which
3202 * may cause this function to fail).
3203 */
3204 int cgroup_scan_tasks(struct cgroup_scanner *scan)
3205 {
3206 int retval, i;
3207 struct cgroup_iter it;
3208 struct task_struct *p, *dropped;
3209 /* Never dereference latest_task, since it's not refcounted */
3210 struct task_struct *latest_task = NULL;
3211 struct ptr_heap tmp_heap;
3212 struct ptr_heap *heap;
3213 struct timespec latest_time = { 0, 0 };
3214
3215 if (scan->heap) {
3216 /* The caller supplied our heap and pre-allocated its memory */
3217 heap = scan->heap;
3218 heap->gt = &started_after;
3219 } else {
3220 /* We need to allocate our own heap memory */
3221 heap = &tmp_heap;
3222 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
3223 if (retval)
3224 /* cannot allocate the heap */
3225 return retval;
3226 }
3227
3228 again:
3229 /*
3230 * Scan tasks in the cgroup, using the scanner's "test_task" callback
3231 * to determine which are of interest, and using the scanner's
3232 * "process_task" callback to process any of them that need an update.
3233 * Since we don't want to hold any locks during the task updates,
3234 * gather tasks to be processed in a heap structure.
3235 * The heap is sorted by descending task start time.
3236 * If the statically-sized heap fills up, we overflow tasks that
3237 * started later, and in future iterations only consider tasks that
3238 * started after the latest task in the previous pass. This
3239 * guarantees forward progress and that we don't miss any tasks.
3240 */
3241 heap->size = 0;
3242 cgroup_iter_start(scan->cg, &it);
3243 while ((p = cgroup_iter_next(scan->cg, &it))) {
3244 /*
3245 * Only affect tasks that qualify per the caller's callback,
3246 * if he provided one
3247 */
3248 if (scan->test_task && !scan->test_task(p, scan))
3249 continue;
3250 /*
3251 * Only process tasks that started after the last task
3252 * we processed
3253 */
3254 if (!started_after_time(p, &latest_time, latest_task))
3255 continue;
3256 dropped = heap_insert(heap, p);
3257 if (dropped == NULL) {
3258 /*
3259 * The new task was inserted; the heap wasn't
3260 * previously full
3261 */
3262 get_task_struct(p);
3263 } else if (dropped != p) {
3264 /*
3265 * The new task was inserted, and pushed out a
3266 * different task
3267 */
3268 get_task_struct(p);
3269 put_task_struct(dropped);
3270 }
3271 /*
3272 * Else the new task was newer than anything already in
3273 * the heap and wasn't inserted
3274 */
3275 }
3276 cgroup_iter_end(scan->cg, &it);
3277
3278 if (heap->size) {
3279 for (i = 0; i < heap->size; i++) {
3280 struct task_struct *q = heap->ptrs[i];
3281 if (i == 0) {
3282 latest_time = q->start_time;
3283 latest_task = q;
3284 }
3285 /* Process the task per the caller's callback */
3286 scan->process_task(q, scan);
3287 put_task_struct(q);
3288 }
3289 /*
3290 * If we had to process any tasks at all, scan again
3291 * in case some of them were in the middle of forking
3292 * children that didn't get processed.
3293 * Not the most efficient way to do it, but it avoids
3294 * having to take callback_mutex in the fork path
3295 */
3296 goto again;
3297 }
3298 if (heap == &tmp_heap)
3299 heap_free(&tmp_heap);
3300 return 0;
3301 }
3302
3303 /*
3304 * Stuff for reading the 'tasks'/'procs' files.
3305 *
3306 * Reading this file can return large amounts of data if a cgroup has
3307 * *lots* of attached tasks. So it may need several calls to read(),
3308 * but we cannot guarantee that the information we produce is correct
3309 * unless we produce it entirely atomically.
3310 *
3311 */
3312
3313 /* which pidlist file are we talking about? */
3314 enum cgroup_filetype {
3315 CGROUP_FILE_PROCS,
3316 CGROUP_FILE_TASKS,
3317 };
3318
3319 /*
3320 * A pidlist is a list of pids that virtually represents the contents of one
3321 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3322 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3323 * to the cgroup.
3324 */
3325 struct cgroup_pidlist {
3326 /*
3327 * used to find which pidlist is wanted. doesn't change as long as
3328 * this particular list stays in the list.
3329 */
3330 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3331 /* array of xids */
3332 pid_t *list;
3333 /* how many elements the above list has */
3334 int length;
3335 /* how many files are using the current array */
3336 int use_count;
3337 /* each of these stored in a list by its cgroup */
3338 struct list_head links;
3339 /* pointer to the cgroup we belong to, for list removal purposes */
3340 struct cgroup *owner;
3341 /* protects the other fields */
3342 struct rw_semaphore mutex;
3343 };
3344
3345 /*
3346 * The following two functions "fix" the issue where there are more pids
3347 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3348 * TODO: replace with a kernel-wide solution to this problem
3349 */
3350 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3351 static void *pidlist_allocate(int count)
3352 {
3353 if (PIDLIST_TOO_LARGE(count))
3354 return vmalloc(count * sizeof(pid_t));
3355 else
3356 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3357 }
3358 static void pidlist_free(void *p)
3359 {
3360 if (is_vmalloc_addr(p))
3361 vfree(p);
3362 else
3363 kfree(p);
3364 }
3365 static void *pidlist_resize(void *p, int newcount)
3366 {
3367 void *newlist;
3368 /* note: if new alloc fails, old p will still be valid either way */
3369 if (is_vmalloc_addr(p)) {
3370 newlist = vmalloc(newcount * sizeof(pid_t));
3371 if (!newlist)
3372 return NULL;
3373 memcpy(newlist, p, newcount * sizeof(pid_t));
3374 vfree(p);
3375 } else {
3376 newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
3377 }
3378 return newlist;
3379 }
3380
3381 /*
3382 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3383 * If the new stripped list is sufficiently smaller and there's enough memory
3384 * to allocate a new buffer, will let go of the unneeded memory. Returns the
3385 * number of unique elements.
3386 */
3387 /* is the size difference enough that we should re-allocate the array? */
3388 #define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
3389 static int pidlist_uniq(pid_t **p, int length)
3390 {
3391 int src, dest = 1;
3392 pid_t *list = *p;
3393 pid_t *newlist;
3394
3395 /*
3396 * we presume the 0th element is unique, so i starts at 1. trivial
3397 * edge cases first; no work needs to be done for either
3398 */
3399 if (length == 0 || length == 1)
3400 return length;
3401 /* src and dest walk down the list; dest counts unique elements */
3402 for (src = 1; src < length; src++) {
3403 /* find next unique element */
3404 while (list[src] == list[src-1]) {
3405 src++;
3406 if (src == length)
3407 goto after;
3408 }
3409 /* dest always points to where the next unique element goes */
3410 list[dest] = list[src];
3411 dest++;
3412 }
3413 after:
3414 /*
3415 * if the length difference is large enough, we want to allocate a
3416 * smaller buffer to save memory. if this fails due to out of memory,
3417 * we'll just stay with what we've got.
3418 */
3419 if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
3420 newlist = pidlist_resize(list, dest);
3421 if (newlist)
3422 *p = newlist;
3423 }
3424 return dest;
3425 }
3426
3427 static int cmppid(const void *a, const void *b)
3428 {
3429 return *(pid_t *)a - *(pid_t *)b;
3430 }
3431
3432 /*
3433 * find the appropriate pidlist for our purpose (given procs vs tasks)
3434 * returns with the lock on that pidlist already held, and takes care
3435 * of the use count, or returns NULL with no locks held if we're out of
3436 * memory.
3437 */
3438 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3439 enum cgroup_filetype type)
3440 {
3441 struct cgroup_pidlist *l;
3442 /* don't need task_nsproxy() if we're looking at ourself */
3443 struct pid_namespace *ns = task_active_pid_ns(current);
3444
3445 /*
3446 * We can't drop the pidlist_mutex before taking the l->mutex in case
3447 * the last ref-holder is trying to remove l from the list at the same
3448 * time. Holding the pidlist_mutex precludes somebody taking whichever
3449 * list we find out from under us - compare release_pid_array().
3450 */
3451 mutex_lock(&cgrp->pidlist_mutex);
3452 list_for_each_entry(l, &cgrp->pidlists, links) {
3453 if (l->key.type == type && l->key.ns == ns) {
3454 /* make sure l doesn't vanish out from under us */
3455 down_write(&l->mutex);
3456 mutex_unlock(&cgrp->pidlist_mutex);
3457 return l;
3458 }
3459 }
3460 /* entry not found; create a new one */
3461 l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3462 if (!l) {
3463 mutex_unlock(&cgrp->pidlist_mutex);
3464 return l;
3465 }
3466 init_rwsem(&l->mutex);
3467 down_write(&l->mutex);
3468 l->key.type = type;
3469 l->key.ns = get_pid_ns(ns);
3470 l->use_count = 0; /* don't increment here */
3471 l->list = NULL;
3472 l->owner = cgrp;
3473 list_add(&l->links, &cgrp->pidlists);
3474 mutex_unlock(&cgrp->pidlist_mutex);
3475 return l;
3476 }
3477
3478 /*
3479 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3480 */
3481 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3482 struct cgroup_pidlist **lp)
3483 {
3484 pid_t *array;
3485 int length;
3486 int pid, n = 0; /* used for populating the array */
3487 struct cgroup_iter it;
3488 struct task_struct *tsk;
3489 struct cgroup_pidlist *l;
3490
3491 /*
3492 * If cgroup gets more users after we read count, we won't have
3493 * enough space - tough. This race is indistinguishable to the
3494 * caller from the case that the additional cgroup users didn't
3495 * show up until sometime later on.
3496 */
3497 length = cgroup_task_count(cgrp);
3498 array = pidlist_allocate(length);
3499 if (!array)
3500 return -ENOMEM;
3501 /* now, populate the array */
3502 cgroup_iter_start(cgrp, &it);
3503 while ((tsk = cgroup_iter_next(cgrp, &it))) {
3504 if (unlikely(n == length))
3505 break;
3506 /* get tgid or pid for procs or tasks file respectively */
3507 if (type == CGROUP_FILE_PROCS)
3508 pid = task_tgid_vnr(tsk);
3509 else
3510 pid = task_pid_vnr(tsk);
3511 if (pid > 0) /* make sure to only use valid results */
3512 array[n++] = pid;
3513 }
3514 cgroup_iter_end(cgrp, &it);
3515 length = n;
3516 /* now sort & (if procs) strip out duplicates */
3517 sort(array, length, sizeof(pid_t), cmppid, NULL);
3518 if (type == CGROUP_FILE_PROCS)
3519 length = pidlist_uniq(&array, length);
3520 l = cgroup_pidlist_find(cgrp, type);
3521 if (!l) {
3522 pidlist_free(array);
3523 return -ENOMEM;
3524 }
3525 /* store array, freeing old if necessary - lock already held */
3526 pidlist_free(l->list);
3527 l->list = array;
3528 l->length = length;
3529 l->use_count++;
3530 up_write(&l->mutex);
3531 *lp = l;
3532 return 0;
3533 }
3534
3535 /**
3536 * cgroupstats_build - build and fill cgroupstats
3537 * @stats: cgroupstats to fill information into
3538 * @dentry: A dentry entry belonging to the cgroup for which stats have
3539 * been requested.
3540 *
3541 * Build and fill cgroupstats so that taskstats can export it to user
3542 * space.
3543 */
3544 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3545 {
3546 int ret = -EINVAL;
3547 struct cgroup *cgrp;
3548 struct cgroup_iter it;
3549 struct task_struct *tsk;
3550
3551 /*
3552 * Validate dentry by checking the superblock operations,
3553 * and make sure it's a directory.
3554 */
3555 if (dentry->d_sb->s_op != &cgroup_ops ||
3556 !S_ISDIR(dentry->d_inode->i_mode))
3557 goto err;
3558
3559 ret = 0;
3560 cgrp = dentry->d_fsdata;
3561
3562 cgroup_iter_start(cgrp, &it);
3563 while ((tsk = cgroup_iter_next(cgrp, &it))) {
3564 switch (tsk->state) {
3565 case TASK_RUNNING:
3566 stats->nr_running++;
3567 break;
3568 case TASK_INTERRUPTIBLE:
3569 stats->nr_sleeping++;
3570 break;
3571 case TASK_UNINTERRUPTIBLE:
3572 stats->nr_uninterruptible++;
3573 break;
3574 case TASK_STOPPED:
3575 stats->nr_stopped++;
3576 break;
3577 default:
3578 if (delayacct_is_task_waiting_on_io(tsk))
3579 stats->nr_io_wait++;
3580 break;
3581 }
3582 }
3583 cgroup_iter_end(cgrp, &it);
3584
3585 err:
3586 return ret;
3587 }
3588
3589
3590 /*
3591 * seq_file methods for the tasks/procs files. The seq_file position is the
3592 * next pid to display; the seq_file iterator is a pointer to the pid
3593 * in the cgroup->l->list array.
3594 */
3595
3596 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
3597 {
3598 /*
3599 * Initially we receive a position value that corresponds to
3600 * one more than the last pid shown (or 0 on the first call or
3601 * after a seek to the start). Use a binary-search to find the
3602 * next pid to display, if any
3603 */
3604 struct cgroup_pidlist *l = s->private;
3605 int index = 0, pid = *pos;
3606 int *iter;
3607
3608 down_read(&l->mutex);
3609 if (pid) {
3610 int end = l->length;
3611
3612 while (index < end) {
3613 int mid = (index + end) / 2;
3614 if (l->list[mid] == pid) {
3615 index = mid;
3616 break;
3617 } else if (l->list[mid] <= pid)
3618 index = mid + 1;
3619 else
3620 end = mid;
3621 }
3622 }
3623 /* If we're off the end of the array, we're done */
3624 if (index >= l->length)
3625 return NULL;
3626 /* Update the abstract position to be the actual pid that we found */
3627 iter = l->list + index;
3628 *pos = *iter;
3629 return iter;
3630 }
3631
3632 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
3633 {
3634 struct cgroup_pidlist *l = s->private;
3635 up_read(&l->mutex);
3636 }
3637
3638 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
3639 {
3640 struct cgroup_pidlist *l = s->private;
3641 pid_t *p = v;
3642 pid_t *end = l->list + l->length;
3643 /*
3644 * Advance to the next pid in the array. If this goes off the
3645 * end, we're done
3646 */
3647 p++;
3648 if (p >= end) {
3649 return NULL;
3650 } else {
3651 *pos = *p;
3652 return p;
3653 }
3654 }
3655
3656 static int cgroup_pidlist_show(struct seq_file *s, void *v)
3657 {
3658 return seq_printf(s, "%d\n", *(int *)v);
3659 }
3660
3661 /*
3662 * seq_operations functions for iterating on pidlists through seq_file -
3663 * independent of whether it's tasks or procs
3664 */
3665 static const struct seq_operations cgroup_pidlist_seq_operations = {
3666 .start = cgroup_pidlist_start,
3667 .stop = cgroup_pidlist_stop,
3668 .next = cgroup_pidlist_next,
3669 .show = cgroup_pidlist_show,
3670 };
3671
3672 static void cgroup_release_pid_array(struct cgroup_pidlist *l)
3673 {
3674 /*
3675 * the case where we're the last user of this particular pidlist will
3676 * have us remove it from the cgroup's list, which entails taking the
3677 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3678 * pidlist_mutex, we have to take pidlist_mutex first.
3679 */
3680 mutex_lock(&l->owner->pidlist_mutex);
3681 down_write(&l->mutex);
3682 BUG_ON(!l->use_count);
3683 if (!--l->use_count) {
3684 /* we're the last user if refcount is 0; remove and free */
3685 list_del(&l->links);
3686 mutex_unlock(&l->owner->pidlist_mutex);
3687 pidlist_free(l->list);
3688 put_pid_ns(l->key.ns);
3689 up_write(&l->mutex);
3690 kfree(l);
3691 return;
3692 }
3693 mutex_unlock(&l->owner->pidlist_mutex);
3694 up_write(&l->mutex);
3695 }
3696
3697 static int cgroup_pidlist_release(struct inode *inode, struct file *file)
3698 {
3699 struct cgroup_pidlist *l;
3700 if (!(file->f_mode & FMODE_READ))
3701 return 0;
3702 /*
3703 * the seq_file will only be initialized if the file was opened for
3704 * reading; hence we check if it's not null only in that case.
3705 */
3706 l = ((struct seq_file *)file->private_data)->private;
3707 cgroup_release_pid_array(l);
3708 return seq_release(inode, file);
3709 }
3710
3711 static const struct file_operations cgroup_pidlist_operations = {
3712 .read = seq_read,
3713 .llseek = seq_lseek,
3714 .write = cgroup_file_write,
3715 .release = cgroup_pidlist_release,
3716 };
3717
3718 /*
3719 * The following functions handle opens on a file that displays a pidlist
3720 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3721 * in the cgroup.
3722 */
3723 /* helper function for the two below it */
3724 static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
3725 {
3726 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
3727 struct cgroup_pidlist *l;
3728 int retval;
3729
3730 /* Nothing to do for write-only files */
3731 if (!(file->f_mode & FMODE_READ))
3732 return 0;
3733
3734 /* have the array populated */
3735 retval = pidlist_array_load(cgrp, type, &l);
3736 if (retval)
3737 return retval;
3738 /* configure file information */
3739 file->f_op = &cgroup_pidlist_operations;
3740
3741 retval = seq_open(file, &cgroup_pidlist_seq_operations);
3742 if (retval) {
3743 cgroup_release_pid_array(l);
3744 return retval;
3745 }
3746 ((struct seq_file *)file->private_data)->private = l;
3747 return 0;
3748 }
3749 static int cgroup_tasks_open(struct inode *unused, struct file *file)
3750 {
3751 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
3752 }
3753 static int cgroup_procs_open(struct inode *unused, struct file *file)
3754 {
3755 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
3756 }
3757
3758 static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
3759 struct cftype *cft)
3760 {
3761 return notify_on_release(cgrp);
3762 }
3763
3764 static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3765 struct cftype *cft,
3766 u64 val)
3767 {
3768 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3769 if (val)
3770 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3771 else
3772 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3773 return 0;
3774 }
3775
3776 /*
3777 * Unregister event and free resources.
3778 *
3779 * Gets called from workqueue.
3780 */
3781 static void cgroup_event_remove(struct work_struct *work)
3782 {
3783 struct cgroup_event *event = container_of(work, struct cgroup_event,
3784 remove);
3785 struct cgroup *cgrp = event->cgrp;
3786
3787 remove_wait_queue(event->wqh, &event->wait);
3788
3789 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3790
3791 /* Notify userspace the event is going away. */
3792 eventfd_signal(event->eventfd, 1);
3793
3794 eventfd_ctx_put(event->eventfd);
3795 kfree(event);
3796 dput(cgrp->dentry);
3797 }
3798
3799 /*
3800 * Gets called on POLLHUP on eventfd when user closes it.
3801 *
3802 * Called with wqh->lock held and interrupts disabled.
3803 */
3804 static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3805 int sync, void *key)
3806 {
3807 struct cgroup_event *event = container_of(wait,
3808 struct cgroup_event, wait);
3809 struct cgroup *cgrp = event->cgrp;
3810 unsigned long flags = (unsigned long)key;
3811
3812 if (flags & POLLHUP) {
3813 /*
3814 * If the event has been detached at cgroup removal, we
3815 * can simply return knowing the other side will cleanup
3816 * for us.
3817 *
3818 * We can't race against event freeing since the other
3819 * side will require wqh->lock via remove_wait_queue(),
3820 * which we hold.
3821 */
3822 spin_lock(&cgrp->event_list_lock);
3823 if (!list_empty(&event->list)) {
3824 list_del_init(&event->list);
3825 /*
3826 * We are in atomic context, but cgroup_event_remove()
3827 * may sleep, so we have to call it in workqueue.
3828 */
3829 schedule_work(&event->remove);
3830 }
3831 spin_unlock(&cgrp->event_list_lock);
3832 }
3833
3834 return 0;
3835 }
3836
3837 static void cgroup_event_ptable_queue_proc(struct file *file,
3838 wait_queue_head_t *wqh, poll_table *pt)
3839 {
3840 struct cgroup_event *event = container_of(pt,
3841 struct cgroup_event, pt);
3842
3843 event->wqh = wqh;
3844 add_wait_queue(wqh, &event->wait);
3845 }
3846
3847 /*
3848 * Parse input and register new cgroup event handler.
3849 *
3850 * Input must be in format '<event_fd> <control_fd> <args>'.
3851 * Interpretation of args is defined by control file implementation.
3852 */
3853 static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3854 const char *buffer)
3855 {
3856 struct cgroup_event *event = NULL;
3857 struct cgroup *cgrp_cfile;
3858 unsigned int efd, cfd;
3859 struct file *efile = NULL;
3860 struct file *cfile = NULL;
3861 char *endp;
3862 int ret;
3863
3864 efd = simple_strtoul(buffer, &endp, 10);
3865 if (*endp != ' ')
3866 return -EINVAL;
3867 buffer = endp + 1;
3868
3869 cfd = simple_strtoul(buffer, &endp, 10);
3870 if ((*endp != ' ') && (*endp != '\0'))
3871 return -EINVAL;
3872 buffer = endp + 1;
3873
3874 event = kzalloc(sizeof(*event), GFP_KERNEL);
3875 if (!event)
3876 return -ENOMEM;
3877 event->cgrp = cgrp;
3878 INIT_LIST_HEAD(&event->list);
3879 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3880 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3881 INIT_WORK(&event->remove, cgroup_event_remove);
3882
3883 efile = eventfd_fget(efd);
3884 if (IS_ERR(efile)) {
3885 ret = PTR_ERR(efile);
3886 goto fail;
3887 }
3888
3889 event->eventfd = eventfd_ctx_fileget(efile);
3890 if (IS_ERR(event->eventfd)) {
3891 ret = PTR_ERR(event->eventfd);
3892 goto fail;
3893 }
3894
3895 cfile = fget(cfd);
3896 if (!cfile) {
3897 ret = -EBADF;
3898 goto fail;
3899 }
3900
3901 /* the process need read permission on control file */
3902 /* AV: shouldn't we check that it's been opened for read instead? */
3903 ret = inode_permission(file_inode(cfile), MAY_READ);
3904 if (ret < 0)
3905 goto fail;
3906
3907 event->cft = __file_cft(cfile);
3908 if (IS_ERR(event->cft)) {
3909 ret = PTR_ERR(event->cft);
3910 goto fail;
3911 }
3912
3913 /*
3914 * The file to be monitored must be in the same cgroup as
3915 * cgroup.event_control is.
3916 */
3917 cgrp_cfile = __d_cgrp(cfile->f_dentry->d_parent);
3918 if (cgrp_cfile != cgrp) {
3919 ret = -EINVAL;
3920 goto fail;
3921 }
3922
3923 if (!event->cft->register_event || !event->cft->unregister_event) {
3924 ret = -EINVAL;
3925 goto fail;
3926 }
3927
3928 ret = event->cft->register_event(cgrp, event->cft,
3929 event->eventfd, buffer);
3930 if (ret)
3931 goto fail;
3932
3933 if (efile->f_op->poll(efile, &event->pt) & POLLHUP) {
3934 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3935 ret = 0;
3936 goto fail;
3937 }
3938
3939 /*
3940 * Events should be removed after rmdir of cgroup directory, but before
3941 * destroying subsystem state objects. Let's take reference to cgroup
3942 * directory dentry to do that.
3943 */
3944 dget(cgrp->dentry);
3945
3946 spin_lock(&cgrp->event_list_lock);
3947 list_add(&event->list, &cgrp->event_list);
3948 spin_unlock(&cgrp->event_list_lock);
3949
3950 fput(cfile);
3951 fput(efile);
3952
3953 return 0;
3954
3955 fail:
3956 if (cfile)
3957 fput(cfile);
3958
3959 if (event && event->eventfd && !IS_ERR(event->eventfd))
3960 eventfd_ctx_put(event->eventfd);
3961
3962 if (!IS_ERR_OR_NULL(efile))
3963 fput(efile);
3964
3965 kfree(event);
3966
3967 return ret;
3968 }
3969
3970 static u64 cgroup_clone_children_read(struct cgroup *cgrp,
3971 struct cftype *cft)
3972 {
3973 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
3974 }
3975
3976 static int cgroup_clone_children_write(struct cgroup *cgrp,
3977 struct cftype *cft,
3978 u64 val)
3979 {
3980 if (val)
3981 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
3982 else
3983 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
3984 return 0;
3985 }
3986
3987 /*
3988 * for the common functions, 'private' gives the type of file
3989 */
3990 /* for hysterical raisins, we can't put this on the older files */
3991 #define CGROUP_FILE_GENERIC_PREFIX "cgroup."
3992 static struct cftype files[] = {
3993 {
3994 .name = "tasks",
3995 .open = cgroup_tasks_open,
3996 .write_u64 = cgroup_tasks_write,
3997 .release = cgroup_pidlist_release,
3998 .mode = S_IRUGO | S_IWUSR,
3999 },
4000 {
4001 .name = CGROUP_FILE_GENERIC_PREFIX "procs",
4002 .open = cgroup_procs_open,
4003 .write_u64 = cgroup_procs_write,
4004 .release = cgroup_pidlist_release,
4005 .mode = S_IRUGO | S_IWUSR,
4006 },
4007 {
4008 .name = "notify_on_release",
4009 .read_u64 = cgroup_read_notify_on_release,
4010 .write_u64 = cgroup_write_notify_on_release,
4011 },
4012 {
4013 .name = CGROUP_FILE_GENERIC_PREFIX "event_control",
4014 .write_string = cgroup_write_event_control,
4015 .mode = S_IWUGO,
4016 },
4017 {
4018 .name = "cgroup.clone_children",
4019 .read_u64 = cgroup_clone_children_read,
4020 .write_u64 = cgroup_clone_children_write,
4021 },
4022 {
4023 .name = "release_agent",
4024 .flags = CFTYPE_ONLY_ON_ROOT,
4025 .read_seq_string = cgroup_release_agent_show,
4026 .write_string = cgroup_release_agent_write,
4027 .max_write_len = PATH_MAX,
4028 },
4029 { } /* terminate */
4030 };
4031
4032 /**
4033 * cgroup_populate_dir - selectively creation of files in a directory
4034 * @cgrp: target cgroup
4035 * @base_files: true if the base files should be added
4036 * @subsys_mask: mask of the subsystem ids whose files should be added
4037 */
4038 static int cgroup_populate_dir(struct cgroup *cgrp, bool base_files,
4039 unsigned long subsys_mask)
4040 {
4041 int err;
4042 struct cgroup_subsys *ss;
4043
4044 if (base_files) {
4045 err = cgroup_addrm_files(cgrp, NULL, files, true);
4046 if (err < 0)
4047 return err;
4048 }
4049
4050 /* process cftsets of each subsystem */
4051 for_each_subsys(cgrp->root, ss) {
4052 struct cftype_set *set;
4053 if (!test_bit(ss->subsys_id, &subsys_mask))
4054 continue;
4055
4056 list_for_each_entry(set, &ss->cftsets, node)
4057 cgroup_addrm_files(cgrp, ss, set->cfts, true);
4058 }
4059
4060 /* This cgroup is ready now */
4061 for_each_subsys(cgrp->root, ss) {
4062 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4063 /*
4064 * Update id->css pointer and make this css visible from
4065 * CSS ID functions. This pointer will be dereferened
4066 * from RCU-read-side without locks.
4067 */
4068 if (css->id)
4069 rcu_assign_pointer(css->id->css, css);
4070 }
4071
4072 return 0;
4073 }
4074
4075 static void css_dput_fn(struct work_struct *work)
4076 {
4077 struct cgroup_subsys_state *css =
4078 container_of(work, struct cgroup_subsys_state, dput_work);
4079 struct dentry *dentry = css->cgroup->dentry;
4080 struct super_block *sb = dentry->d_sb;
4081
4082 atomic_inc(&sb->s_active);
4083 dput(dentry);
4084 deactivate_super(sb);
4085 }
4086
4087 static void init_cgroup_css(struct cgroup_subsys_state *css,
4088 struct cgroup_subsys *ss,
4089 struct cgroup *cgrp)
4090 {
4091 css->cgroup = cgrp;
4092 atomic_set(&css->refcnt, 1);
4093 css->flags = 0;
4094 css->id = NULL;
4095 if (cgrp == dummytop)
4096 css->flags |= CSS_ROOT;
4097 BUG_ON(cgrp->subsys[ss->subsys_id]);
4098 cgrp->subsys[ss->subsys_id] = css;
4099
4100 /*
4101 * css holds an extra ref to @cgrp->dentry which is put on the last
4102 * css_put(). dput() requires process context, which css_put() may
4103 * be called without. @css->dput_work will be used to invoke
4104 * dput() asynchronously from css_put().
4105 */
4106 INIT_WORK(&css->dput_work, css_dput_fn);
4107 }
4108
4109 /* invoke ->post_create() on a new CSS and mark it online if successful */
4110 static int online_css(struct cgroup_subsys *ss, struct cgroup *cgrp)
4111 {
4112 int ret = 0;
4113
4114 lockdep_assert_held(&cgroup_mutex);
4115
4116 if (ss->css_online)
4117 ret = ss->css_online(cgrp);
4118 if (!ret)
4119 cgrp->subsys[ss->subsys_id]->flags |= CSS_ONLINE;
4120 return ret;
4121 }
4122
4123 /* if the CSS is online, invoke ->pre_destory() on it and mark it offline */
4124 static void offline_css(struct cgroup_subsys *ss, struct cgroup *cgrp)
4125 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
4126 {
4127 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4128
4129 lockdep_assert_held(&cgroup_mutex);
4130
4131 if (!(css->flags & CSS_ONLINE))
4132 return;
4133
4134 /*
4135 * css_offline() should be called with cgroup_mutex unlocked. See
4136 * 3fa59dfbc3 ("cgroup: fix potential deadlock in pre_destroy") for
4137 * details. This temporary unlocking should go away once
4138 * cgroup_mutex is unexported from controllers.
4139 */
4140 if (ss->css_offline) {
4141 mutex_unlock(&cgroup_mutex);
4142 ss->css_offline(cgrp);
4143 mutex_lock(&cgroup_mutex);
4144 }
4145
4146 cgrp->subsys[ss->subsys_id]->flags &= ~CSS_ONLINE;
4147 }
4148
4149 /*
4150 * cgroup_create - create a cgroup
4151 * @parent: cgroup that will be parent of the new cgroup
4152 * @dentry: dentry of the new cgroup
4153 * @mode: mode to set on new inode
4154 *
4155 * Must be called with the mutex on the parent inode held
4156 */
4157 static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
4158 umode_t mode)
4159 {
4160 struct cgroup *cgrp;
4161 struct cgroupfs_root *root = parent->root;
4162 int err = 0;
4163 struct cgroup_subsys *ss;
4164 struct super_block *sb = root->sb;
4165
4166 /* allocate the cgroup and its ID, 0 is reserved for the root */
4167 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
4168 if (!cgrp)
4169 return -ENOMEM;
4170
4171 cgrp->id = ida_simple_get(&root->cgroup_ida, 1, 0, GFP_KERNEL);
4172 if (cgrp->id < 0)
4173 goto err_free_cgrp;
4174
4175 /*
4176 * Only live parents can have children. Note that the liveliness
4177 * check isn't strictly necessary because cgroup_mkdir() and
4178 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
4179 * anyway so that locking is contained inside cgroup proper and we
4180 * don't get nasty surprises if we ever grow another caller.
4181 */
4182 if (!cgroup_lock_live_group(parent)) {
4183 err = -ENODEV;
4184 goto err_free_id;
4185 }
4186
4187 /* Grab a reference on the superblock so the hierarchy doesn't
4188 * get deleted on unmount if there are child cgroups. This
4189 * can be done outside cgroup_mutex, since the sb can't
4190 * disappear while someone has an open control file on the
4191 * fs */
4192 atomic_inc(&sb->s_active);
4193
4194 init_cgroup_housekeeping(cgrp);
4195
4196 dentry->d_fsdata = cgrp;
4197 cgrp->dentry = dentry;
4198
4199 cgrp->parent = parent;
4200 cgrp->root = parent->root;
4201 cgrp->top_cgroup = parent->top_cgroup;
4202
4203 if (notify_on_release(parent))
4204 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4205
4206 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4207 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4208
4209 for_each_subsys(root, ss) {
4210 struct cgroup_subsys_state *css;
4211
4212 css = ss->css_alloc(cgrp);
4213 if (IS_ERR(css)) {
4214 err = PTR_ERR(css);
4215 goto err_free_all;
4216 }
4217 init_cgroup_css(css, ss, cgrp);
4218 if (ss->use_id) {
4219 err = alloc_css_id(ss, parent, cgrp);
4220 if (err)
4221 goto err_free_all;
4222 }
4223 }
4224
4225 /*
4226 * Create directory. cgroup_create_file() returns with the new
4227 * directory locked on success so that it can be populated without
4228 * dropping cgroup_mutex.
4229 */
4230 err = cgroup_create_file(dentry, S_IFDIR | mode, sb);
4231 if (err < 0)
4232 goto err_free_all;
4233 lockdep_assert_held(&dentry->d_inode->i_mutex);
4234
4235 /* allocation complete, commit to creation */
4236 list_add_tail(&cgrp->allcg_node, &root->allcg_list);
4237 list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
4238 root->number_of_cgroups++;
4239
4240 /* each css holds a ref to the cgroup's dentry */
4241 for_each_subsys(root, ss)
4242 dget(dentry);
4243
4244 /* creation succeeded, notify subsystems */
4245 for_each_subsys(root, ss) {
4246 err = online_css(ss, cgrp);
4247 if (err)
4248 goto err_destroy;
4249
4250 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4251 parent->parent) {
4252 pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4253 current->comm, current->pid, ss->name);
4254 if (!strcmp(ss->name, "memory"))
4255 pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
4256 ss->warned_broken_hierarchy = true;
4257 }
4258 }
4259
4260 err = cgroup_populate_dir(cgrp, true, root->subsys_mask);
4261 if (err)
4262 goto err_destroy;
4263
4264 mutex_unlock(&cgroup_mutex);
4265 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
4266
4267 return 0;
4268
4269 err_free_all:
4270 for_each_subsys(root, ss) {
4271 if (cgrp->subsys[ss->subsys_id])
4272 ss->css_free(cgrp);
4273 }
4274 mutex_unlock(&cgroup_mutex);
4275 /* Release the reference count that we took on the superblock */
4276 deactivate_super(sb);
4277 err_free_id:
4278 ida_simple_remove(&root->cgroup_ida, cgrp->id);
4279 err_free_cgrp:
4280 kfree(cgrp);
4281 return err;
4282
4283 err_destroy:
4284 cgroup_destroy_locked(cgrp);
4285 mutex_unlock(&cgroup_mutex);
4286 mutex_unlock(&dentry->d_inode->i_mutex);
4287 return err;
4288 }
4289
4290 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
4291 {
4292 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
4293
4294 /* the vfs holds inode->i_mutex already */
4295 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
4296 }
4297
4298 /*
4299 * Check the reference count on each subsystem. Since we already
4300 * established that there are no tasks in the cgroup, if the css refcount
4301 * is also 1, then there should be no outstanding references, so the
4302 * subsystem is safe to destroy. We scan across all subsystems rather than
4303 * using the per-hierarchy linked list of mounted subsystems since we can
4304 * be called via check_for_release() with no synchronization other than
4305 * RCU, and the subsystem linked list isn't RCU-safe.
4306 */
4307 static int cgroup_has_css_refs(struct cgroup *cgrp)
4308 {
4309 int i;
4310
4311 /*
4312 * We won't need to lock the subsys array, because the subsystems
4313 * we're concerned about aren't going anywhere since our cgroup root
4314 * has a reference on them.
4315 */
4316 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4317 struct cgroup_subsys *ss = subsys[i];
4318 struct cgroup_subsys_state *css;
4319
4320 /* Skip subsystems not present or not in this hierarchy */
4321 if (ss == NULL || ss->root != cgrp->root)
4322 continue;
4323
4324 css = cgrp->subsys[ss->subsys_id];
4325 /*
4326 * When called from check_for_release() it's possible
4327 * that by this point the cgroup has been removed
4328 * and the css deleted. But a false-positive doesn't
4329 * matter, since it can only happen if the cgroup
4330 * has been deleted and hence no longer needs the
4331 * release agent to be called anyway.
4332 */
4333 if (css && css_refcnt(css) > 1)
4334 return 1;
4335 }
4336 return 0;
4337 }
4338
4339 static int cgroup_destroy_locked(struct cgroup *cgrp)
4340 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
4341 {
4342 struct dentry *d = cgrp->dentry;
4343 struct cgroup *parent = cgrp->parent;
4344 DEFINE_WAIT(wait);
4345 struct cgroup_event *event, *tmp;
4346 struct cgroup_subsys *ss;
4347 LIST_HEAD(tmp_list);
4348
4349 lockdep_assert_held(&d->d_inode->i_mutex);
4350 lockdep_assert_held(&cgroup_mutex);
4351
4352 if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children))
4353 return -EBUSY;
4354
4355 /*
4356 * Block new css_tryget() by deactivating refcnt and mark @cgrp
4357 * removed. This makes future css_tryget() and child creation
4358 * attempts fail thus maintaining the removal conditions verified
4359 * above.
4360 */
4361 for_each_subsys(cgrp->root, ss) {
4362 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4363
4364 WARN_ON(atomic_read(&css->refcnt) < 0);
4365 atomic_add(CSS_DEACT_BIAS, &css->refcnt);
4366 }
4367 set_bit(CGRP_REMOVED, &cgrp->flags);
4368
4369 /* tell subsystems to initate destruction */
4370 for_each_subsys(cgrp->root, ss)
4371 offline_css(ss, cgrp);
4372
4373 /*
4374 * Put all the base refs. Each css holds an extra reference to the
4375 * cgroup's dentry and cgroup removal proceeds regardless of css
4376 * refs. On the last put of each css, whenever that may be, the
4377 * extra dentry ref is put so that dentry destruction happens only
4378 * after all css's are released.
4379 */
4380 for_each_subsys(cgrp->root, ss)
4381 css_put(cgrp->subsys[ss->subsys_id]);
4382
4383 raw_spin_lock(&release_list_lock);
4384 if (!list_empty(&cgrp->release_list))
4385 list_del_init(&cgrp->release_list);
4386 raw_spin_unlock(&release_list_lock);
4387
4388 /* delete this cgroup from parent->children */
4389 list_del_rcu(&cgrp->sibling);
4390 list_del_init(&cgrp->allcg_node);
4391
4392 dget(d);
4393 cgroup_d_remove_dir(d);
4394 dput(d);
4395
4396 set_bit(CGRP_RELEASABLE, &parent->flags);
4397 check_for_release(parent);
4398
4399 /*
4400 * Unregister events and notify userspace.
4401 * Notify userspace about cgroup removing only after rmdir of cgroup
4402 * directory to avoid race between userspace and kernelspace.
4403 */
4404 spin_lock(&cgrp->event_list_lock);
4405 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
4406 list_del_init(&event->list);
4407 schedule_work(&event->remove);
4408 }
4409 spin_unlock(&cgrp->event_list_lock);
4410
4411 return 0;
4412 }
4413
4414 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
4415 {
4416 int ret;
4417
4418 mutex_lock(&cgroup_mutex);
4419 ret = cgroup_destroy_locked(dentry->d_fsdata);
4420 mutex_unlock(&cgroup_mutex);
4421
4422 return ret;
4423 }
4424
4425 static void __init_or_module cgroup_init_cftsets(struct cgroup_subsys *ss)
4426 {
4427 INIT_LIST_HEAD(&ss->cftsets);
4428
4429 /*
4430 * base_cftset is embedded in subsys itself, no need to worry about
4431 * deregistration.
4432 */
4433 if (ss->base_cftypes) {
4434 ss->base_cftset.cfts = ss->base_cftypes;
4435 list_add_tail(&ss->base_cftset.node, &ss->cftsets);
4436 }
4437 }
4438
4439 static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
4440 {
4441 struct cgroup_subsys_state *css;
4442
4443 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
4444
4445 mutex_lock(&cgroup_mutex);
4446
4447 /* init base cftset */
4448 cgroup_init_cftsets(ss);
4449
4450 /* Create the top cgroup state for this subsystem */
4451 list_add(&ss->sibling, &rootnode.subsys_list);
4452 ss->root = &rootnode;
4453 css = ss->css_alloc(dummytop);
4454 /* We don't handle early failures gracefully */
4455 BUG_ON(IS_ERR(css));
4456 init_cgroup_css(css, ss, dummytop);
4457
4458 /* Update the init_css_set to contain a subsys
4459 * pointer to this state - since the subsystem is
4460 * newly registered, all tasks and hence the
4461 * init_css_set is in the subsystem's top cgroup. */
4462 init_css_set.subsys[ss->subsys_id] = css;
4463
4464 need_forkexit_callback |= ss->fork || ss->exit;
4465
4466 /* At system boot, before all subsystems have been
4467 * registered, no tasks have been forked, so we don't
4468 * need to invoke fork callbacks here. */
4469 BUG_ON(!list_empty(&init_task.tasks));
4470
4471 ss->active = 1;
4472 BUG_ON(online_css(ss, dummytop));
4473
4474 mutex_unlock(&cgroup_mutex);
4475
4476 /* this function shouldn't be used with modular subsystems, since they
4477 * need to register a subsys_id, among other things */
4478 BUG_ON(ss->module);
4479 }
4480
4481 /**
4482 * cgroup_load_subsys: load and register a modular subsystem at runtime
4483 * @ss: the subsystem to load
4484 *
4485 * This function should be called in a modular subsystem's initcall. If the
4486 * subsystem is built as a module, it will be assigned a new subsys_id and set
4487 * up for use. If the subsystem is built-in anyway, work is delegated to the
4488 * simpler cgroup_init_subsys.
4489 */
4490 int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
4491 {
4492 struct cgroup_subsys_state *css;
4493 int i, ret;
4494 struct hlist_node *tmp;
4495 struct css_set *cg;
4496 unsigned long key;
4497
4498 /* check name and function validity */
4499 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
4500 ss->css_alloc == NULL || ss->css_free == NULL)
4501 return -EINVAL;
4502
4503 /*
4504 * we don't support callbacks in modular subsystems. this check is
4505 * before the ss->module check for consistency; a subsystem that could
4506 * be a module should still have no callbacks even if the user isn't
4507 * compiling it as one.
4508 */
4509 if (ss->fork || ss->exit)
4510 return -EINVAL;
4511
4512 /*
4513 * an optionally modular subsystem is built-in: we want to do nothing,
4514 * since cgroup_init_subsys will have already taken care of it.
4515 */
4516 if (ss->module == NULL) {
4517 /* a sanity check */
4518 BUG_ON(subsys[ss->subsys_id] != ss);
4519 return 0;
4520 }
4521
4522 /* init base cftset */
4523 cgroup_init_cftsets(ss);
4524
4525 mutex_lock(&cgroup_mutex);
4526 subsys[ss->subsys_id] = ss;
4527
4528 /*
4529 * no ss->css_alloc seems to need anything important in the ss
4530 * struct, so this can happen first (i.e. before the rootnode
4531 * attachment).
4532 */
4533 css = ss->css_alloc(dummytop);
4534 if (IS_ERR(css)) {
4535 /* failure case - need to deassign the subsys[] slot. */
4536 subsys[ss->subsys_id] = NULL;
4537 mutex_unlock(&cgroup_mutex);
4538 return PTR_ERR(css);
4539 }
4540
4541 list_add(&ss->sibling, &rootnode.subsys_list);
4542 ss->root = &rootnode;
4543
4544 /* our new subsystem will be attached to the dummy hierarchy. */
4545 init_cgroup_css(css, ss, dummytop);
4546 /* init_idr must be after init_cgroup_css because it sets css->id. */
4547 if (ss->use_id) {
4548 ret = cgroup_init_idr(ss, css);
4549 if (ret)
4550 goto err_unload;
4551 }
4552
4553 /*
4554 * Now we need to entangle the css into the existing css_sets. unlike
4555 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4556 * will need a new pointer to it; done by iterating the css_set_table.
4557 * furthermore, modifying the existing css_sets will corrupt the hash
4558 * table state, so each changed css_set will need its hash recomputed.
4559 * this is all done under the css_set_lock.
4560 */
4561 write_lock(&css_set_lock);
4562 hash_for_each_safe(css_set_table, i, tmp, cg, hlist) {
4563 /* skip entries that we already rehashed */
4564 if (cg->subsys[ss->subsys_id])
4565 continue;
4566 /* remove existing entry */
4567 hash_del(&cg->hlist);
4568 /* set new value */
4569 cg->subsys[ss->subsys_id] = css;
4570 /* recompute hash and restore entry */
4571 key = css_set_hash(cg->subsys);
4572 hash_add(css_set_table, &cg->hlist, key);
4573 }
4574 write_unlock(&css_set_lock);
4575
4576 ss->active = 1;
4577 ret = online_css(ss, dummytop);
4578 if (ret)
4579 goto err_unload;
4580
4581 /* success! */
4582 mutex_unlock(&cgroup_mutex);
4583 return 0;
4584
4585 err_unload:
4586 mutex_unlock(&cgroup_mutex);
4587 /* @ss can't be mounted here as try_module_get() would fail */
4588 cgroup_unload_subsys(ss);
4589 return ret;
4590 }
4591 EXPORT_SYMBOL_GPL(cgroup_load_subsys);
4592
4593 /**
4594 * cgroup_unload_subsys: unload a modular subsystem
4595 * @ss: the subsystem to unload
4596 *
4597 * This function should be called in a modular subsystem's exitcall. When this
4598 * function is invoked, the refcount on the subsystem's module will be 0, so
4599 * the subsystem will not be attached to any hierarchy.
4600 */
4601 void cgroup_unload_subsys(struct cgroup_subsys *ss)
4602 {
4603 struct cg_cgroup_link *link;
4604
4605 BUG_ON(ss->module == NULL);
4606
4607 /*
4608 * we shouldn't be called if the subsystem is in use, and the use of
4609 * try_module_get in parse_cgroupfs_options should ensure that it
4610 * doesn't start being used while we're killing it off.
4611 */
4612 BUG_ON(ss->root != &rootnode);
4613
4614 mutex_lock(&cgroup_mutex);
4615
4616 offline_css(ss, dummytop);
4617 ss->active = 0;
4618
4619 if (ss->use_id)
4620 idr_destroy(&ss->idr);
4621
4622 /* deassign the subsys_id */
4623 subsys[ss->subsys_id] = NULL;
4624
4625 /* remove subsystem from rootnode's list of subsystems */
4626 list_del_init(&ss->sibling);
4627
4628 /*
4629 * disentangle the css from all css_sets attached to the dummytop. as
4630 * in loading, we need to pay our respects to the hashtable gods.
4631 */
4632 write_lock(&css_set_lock);
4633 list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
4634 struct css_set *cg = link->cg;
4635 unsigned long key;
4636
4637 hash_del(&cg->hlist);
4638 cg->subsys[ss->subsys_id] = NULL;
4639 key = css_set_hash(cg->subsys);
4640 hash_add(css_set_table, &cg->hlist, key);
4641 }
4642 write_unlock(&css_set_lock);
4643
4644 /*
4645 * remove subsystem's css from the dummytop and free it - need to
4646 * free before marking as null because ss->css_free needs the
4647 * cgrp->subsys pointer to find their state. note that this also
4648 * takes care of freeing the css_id.
4649 */
4650 ss->css_free(dummytop);
4651 dummytop->subsys[ss->subsys_id] = NULL;
4652
4653 mutex_unlock(&cgroup_mutex);
4654 }
4655 EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
4656
4657 /**
4658 * cgroup_init_early - cgroup initialization at system boot
4659 *
4660 * Initialize cgroups at system boot, and initialize any
4661 * subsystems that request early init.
4662 */
4663 int __init cgroup_init_early(void)
4664 {
4665 int i;
4666 atomic_set(&init_css_set.refcount, 1);
4667 INIT_LIST_HEAD(&init_css_set.cg_links);
4668 INIT_LIST_HEAD(&init_css_set.tasks);
4669 INIT_HLIST_NODE(&init_css_set.hlist);
4670 css_set_count = 1;
4671 init_cgroup_root(&rootnode);
4672 root_count = 1;
4673 init_task.cgroups = &init_css_set;
4674
4675 init_css_set_link.cg = &init_css_set;
4676 init_css_set_link.cgrp = dummytop;
4677 list_add(&init_css_set_link.cgrp_link_list,
4678 &rootnode.top_cgroup.css_sets);
4679 list_add(&init_css_set_link.cg_link_list,
4680 &init_css_set.cg_links);
4681
4682 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4683 struct cgroup_subsys *ss = subsys[i];
4684
4685 /* at bootup time, we don't worry about modular subsystems */
4686 if (!ss || ss->module)
4687 continue;
4688
4689 BUG_ON(!ss->name);
4690 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
4691 BUG_ON(!ss->css_alloc);
4692 BUG_ON(!ss->css_free);
4693 if (ss->subsys_id != i) {
4694 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
4695 ss->name, ss->subsys_id);
4696 BUG();
4697 }
4698
4699 if (ss->early_init)
4700 cgroup_init_subsys(ss);
4701 }
4702 return 0;
4703 }
4704
4705 /**
4706 * cgroup_init - cgroup initialization
4707 *
4708 * Register cgroup filesystem and /proc file, and initialize
4709 * any subsystems that didn't request early init.
4710 */
4711 int __init cgroup_init(void)
4712 {
4713 int err;
4714 int i;
4715 unsigned long key;
4716
4717 err = bdi_init(&cgroup_backing_dev_info);
4718 if (err)
4719 return err;
4720
4721 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4722 struct cgroup_subsys *ss = subsys[i];
4723
4724 /* at bootup time, we don't worry about modular subsystems */
4725 if (!ss || ss->module)
4726 continue;
4727 if (!ss->early_init)
4728 cgroup_init_subsys(ss);
4729 if (ss->use_id)
4730 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
4731 }
4732
4733 /* Add init_css_set to the hash table */
4734 key = css_set_hash(init_css_set.subsys);
4735 hash_add(css_set_table, &init_css_set.hlist, key);
4736 BUG_ON(!init_root_id(&rootnode));
4737
4738 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4739 if (!cgroup_kobj) {
4740 err = -ENOMEM;
4741 goto out;
4742 }
4743
4744 err = register_filesystem(&cgroup_fs_type);
4745 if (err < 0) {
4746 kobject_put(cgroup_kobj);
4747 goto out;
4748 }
4749
4750 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
4751
4752 out:
4753 if (err)
4754 bdi_destroy(&cgroup_backing_dev_info);
4755
4756 return err;
4757 }
4758
4759 /*
4760 * proc_cgroup_show()
4761 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4762 * - Used for /proc/<pid>/cgroup.
4763 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4764 * doesn't really matter if tsk->cgroup changes after we read it,
4765 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
4766 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4767 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4768 * cgroup to top_cgroup.
4769 */
4770
4771 /* TODO: Use a proper seq_file iterator */
4772 static int proc_cgroup_show(struct seq_file *m, void *v)
4773 {
4774 struct pid *pid;
4775 struct task_struct *tsk;
4776 char *buf;
4777 int retval;
4778 struct cgroupfs_root *root;
4779
4780 retval = -ENOMEM;
4781 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4782 if (!buf)
4783 goto out;
4784
4785 retval = -ESRCH;
4786 pid = m->private;
4787 tsk = get_pid_task(pid, PIDTYPE_PID);
4788 if (!tsk)
4789 goto out_free;
4790
4791 retval = 0;
4792
4793 mutex_lock(&cgroup_mutex);
4794
4795 for_each_active_root(root) {
4796 struct cgroup_subsys *ss;
4797 struct cgroup *cgrp;
4798 int count = 0;
4799
4800 seq_printf(m, "%d:", root->hierarchy_id);
4801 for_each_subsys(root, ss)
4802 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
4803 if (strlen(root->name))
4804 seq_printf(m, "%sname=%s", count ? "," : "",
4805 root->name);
4806 seq_putc(m, ':');
4807 cgrp = task_cgroup_from_root(tsk, root);
4808 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
4809 if (retval < 0)
4810 goto out_unlock;
4811 seq_puts(m, buf);
4812 seq_putc(m, '\n');
4813 }
4814
4815 out_unlock:
4816 mutex_unlock(&cgroup_mutex);
4817 put_task_struct(tsk);
4818 out_free:
4819 kfree(buf);
4820 out:
4821 return retval;
4822 }
4823
4824 static int cgroup_open(struct inode *inode, struct file *file)
4825 {
4826 struct pid *pid = PROC_I(inode)->pid;
4827 return single_open(file, proc_cgroup_show, pid);
4828 }
4829
4830 const struct file_operations proc_cgroup_operations = {
4831 .open = cgroup_open,
4832 .read = seq_read,
4833 .llseek = seq_lseek,
4834 .release = single_release,
4835 };
4836
4837 /* Display information about each subsystem and each hierarchy */
4838 static int proc_cgroupstats_show(struct seq_file *m, void *v)
4839 {
4840 int i;
4841
4842 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
4843 /*
4844 * ideally we don't want subsystems moving around while we do this.
4845 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4846 * subsys/hierarchy state.
4847 */
4848 mutex_lock(&cgroup_mutex);
4849 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4850 struct cgroup_subsys *ss = subsys[i];
4851 if (ss == NULL)
4852 continue;
4853 seq_printf(m, "%s\t%d\t%d\t%d\n",
4854 ss->name, ss->root->hierarchy_id,
4855 ss->root->number_of_cgroups, !ss->disabled);
4856 }
4857 mutex_unlock(&cgroup_mutex);
4858 return 0;
4859 }
4860
4861 static int cgroupstats_open(struct inode *inode, struct file *file)
4862 {
4863 return single_open(file, proc_cgroupstats_show, NULL);
4864 }
4865
4866 static const struct file_operations proc_cgroupstats_operations = {
4867 .open = cgroupstats_open,
4868 .read = seq_read,
4869 .llseek = seq_lseek,
4870 .release = single_release,
4871 };
4872
4873 /**
4874 * cgroup_fork - attach newly forked task to its parents cgroup.
4875 * @child: pointer to task_struct of forking parent process.
4876 *
4877 * Description: A task inherits its parent's cgroup at fork().
4878 *
4879 * A pointer to the shared css_set was automatically copied in
4880 * fork.c by dup_task_struct(). However, we ignore that copy, since
4881 * it was not made under the protection of RCU or cgroup_mutex, so
4882 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
4883 * have already changed current->cgroups, allowing the previously
4884 * referenced cgroup group to be removed and freed.
4885 *
4886 * At the point that cgroup_fork() is called, 'current' is the parent
4887 * task, and the passed argument 'child' points to the child task.
4888 */
4889 void cgroup_fork(struct task_struct *child)
4890 {
4891 task_lock(current);
4892 child->cgroups = current->cgroups;
4893 get_css_set(child->cgroups);
4894 task_unlock(current);
4895 INIT_LIST_HEAD(&child->cg_list);
4896 }
4897
4898 /**
4899 * cgroup_post_fork - called on a new task after adding it to the task list
4900 * @child: the task in question
4901 *
4902 * Adds the task to the list running through its css_set if necessary and
4903 * call the subsystem fork() callbacks. Has to be after the task is
4904 * visible on the task list in case we race with the first call to
4905 * cgroup_iter_start() - to guarantee that the new task ends up on its
4906 * list.
4907 */
4908 void cgroup_post_fork(struct task_struct *child)
4909 {
4910 int i;
4911
4912 /*
4913 * use_task_css_set_links is set to 1 before we walk the tasklist
4914 * under the tasklist_lock and we read it here after we added the child
4915 * to the tasklist under the tasklist_lock as well. If the child wasn't
4916 * yet in the tasklist when we walked through it from
4917 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
4918 * should be visible now due to the paired locking and barriers implied
4919 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
4920 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
4921 * lock on fork.
4922 */
4923 if (use_task_css_set_links) {
4924 write_lock(&css_set_lock);
4925 task_lock(child);
4926 if (list_empty(&child->cg_list))
4927 list_add(&child->cg_list, &child->cgroups->tasks);
4928 task_unlock(child);
4929 write_unlock(&css_set_lock);
4930 }
4931
4932 /*
4933 * Call ss->fork(). This must happen after @child is linked on
4934 * css_set; otherwise, @child might change state between ->fork()
4935 * and addition to css_set.
4936 */
4937 if (need_forkexit_callback) {
4938 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4939 struct cgroup_subsys *ss = subsys[i];
4940
4941 /*
4942 * fork/exit callbacks are supported only for
4943 * builtin subsystems and we don't need further
4944 * synchronization as they never go away.
4945 */
4946 if (!ss || ss->module)
4947 continue;
4948
4949 if (ss->fork)
4950 ss->fork(child);
4951 }
4952 }
4953 }
4954
4955 /**
4956 * cgroup_exit - detach cgroup from exiting task
4957 * @tsk: pointer to task_struct of exiting process
4958 * @run_callback: run exit callbacks?
4959 *
4960 * Description: Detach cgroup from @tsk and release it.
4961 *
4962 * Note that cgroups marked notify_on_release force every task in
4963 * them to take the global cgroup_mutex mutex when exiting.
4964 * This could impact scaling on very large systems. Be reluctant to
4965 * use notify_on_release cgroups where very high task exit scaling
4966 * is required on large systems.
4967 *
4968 * the_top_cgroup_hack:
4969 *
4970 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4971 *
4972 * We call cgroup_exit() while the task is still competent to
4973 * handle notify_on_release(), then leave the task attached to the
4974 * root cgroup in each hierarchy for the remainder of its exit.
4975 *
4976 * To do this properly, we would increment the reference count on
4977 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4978 * code we would add a second cgroup function call, to drop that
4979 * reference. This would just create an unnecessary hot spot on
4980 * the top_cgroup reference count, to no avail.
4981 *
4982 * Normally, holding a reference to a cgroup without bumping its
4983 * count is unsafe. The cgroup could go away, or someone could
4984 * attach us to a different cgroup, decrementing the count on
4985 * the first cgroup that we never incremented. But in this case,
4986 * top_cgroup isn't going away, and either task has PF_EXITING set,
4987 * which wards off any cgroup_attach_task() attempts, or task is a failed
4988 * fork, never visible to cgroup_attach_task.
4989 */
4990 void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4991 {
4992 struct css_set *cg;
4993 int i;
4994
4995 /*
4996 * Unlink from the css_set task list if necessary.
4997 * Optimistically check cg_list before taking
4998 * css_set_lock
4999 */
5000 if (!list_empty(&tsk->cg_list)) {
5001 write_lock(&css_set_lock);
5002 if (!list_empty(&tsk->cg_list))
5003 list_del_init(&tsk->cg_list);
5004 write_unlock(&css_set_lock);
5005 }
5006
5007 /* Reassign the task to the init_css_set. */
5008 task_lock(tsk);
5009 cg = tsk->cgroups;
5010 tsk->cgroups = &init_css_set;
5011
5012 if (run_callbacks && need_forkexit_callback) {
5013 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
5014 struct cgroup_subsys *ss = subsys[i];
5015
5016 /* modular subsystems can't use callbacks */
5017 if (!ss || ss->module)
5018 continue;
5019
5020 if (ss->exit) {
5021 struct cgroup *old_cgrp =
5022 rcu_dereference_raw(cg->subsys[i])->cgroup;
5023 struct cgroup *cgrp = task_cgroup(tsk, i);
5024 ss->exit(cgrp, old_cgrp, tsk);
5025 }
5026 }
5027 }
5028 task_unlock(tsk);
5029
5030 put_css_set_taskexit(cg);
5031 }
5032
5033 /**
5034 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
5035 * @cgrp: the cgroup in question
5036 * @task: the task in question
5037 *
5038 * See if @cgrp is a descendant of @task's cgroup in the appropriate
5039 * hierarchy.
5040 *
5041 * If we are sending in dummytop, then presumably we are creating
5042 * the top cgroup in the subsystem.
5043 *
5044 * Called only by the ns (nsproxy) cgroup.
5045 */
5046 int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
5047 {
5048 int ret;
5049 struct cgroup *target;
5050
5051 if (cgrp == dummytop)
5052 return 1;
5053
5054 target = task_cgroup_from_root(task, cgrp->root);
5055 while (cgrp != target && cgrp!= cgrp->top_cgroup)
5056 cgrp = cgrp->parent;
5057 ret = (cgrp == target);
5058 return ret;
5059 }
5060
5061 static void check_for_release(struct cgroup *cgrp)
5062 {
5063 /* All of these checks rely on RCU to keep the cgroup
5064 * structure alive */
5065 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
5066 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
5067 /* Control Group is currently removeable. If it's not
5068 * already queued for a userspace notification, queue
5069 * it now */
5070 int need_schedule_work = 0;
5071 raw_spin_lock(&release_list_lock);
5072 if (!cgroup_is_removed(cgrp) &&
5073 list_empty(&cgrp->release_list)) {
5074 list_add(&cgrp->release_list, &release_list);
5075 need_schedule_work = 1;
5076 }
5077 raw_spin_unlock(&release_list_lock);
5078 if (need_schedule_work)
5079 schedule_work(&release_agent_work);
5080 }
5081 }
5082
5083 /* Caller must verify that the css is not for root cgroup */
5084 bool __css_tryget(struct cgroup_subsys_state *css)
5085 {
5086 while (true) {
5087 int t, v;
5088
5089 v = css_refcnt(css);
5090 t = atomic_cmpxchg(&css->refcnt, v, v + 1);
5091 if (likely(t == v))
5092 return true;
5093 else if (t < 0)
5094 return false;
5095 cpu_relax();
5096 }
5097 }
5098 EXPORT_SYMBOL_GPL(__css_tryget);
5099
5100 /* Caller must verify that the css is not for root cgroup */
5101 void __css_put(struct cgroup_subsys_state *css)
5102 {
5103 struct cgroup *cgrp = css->cgroup;
5104 int v;
5105
5106 rcu_read_lock();
5107 v = css_unbias_refcnt(atomic_dec_return(&css->refcnt));
5108
5109 switch (v) {
5110 case 1:
5111 if (notify_on_release(cgrp)) {
5112 set_bit(CGRP_RELEASABLE, &cgrp->flags);
5113 check_for_release(cgrp);
5114 }
5115 break;
5116 case 0:
5117 schedule_work(&css->dput_work);
5118 break;
5119 }
5120 rcu_read_unlock();
5121 }
5122 EXPORT_SYMBOL_GPL(__css_put);
5123
5124 /*
5125 * Notify userspace when a cgroup is released, by running the
5126 * configured release agent with the name of the cgroup (path
5127 * relative to the root of cgroup file system) as the argument.
5128 *
5129 * Most likely, this user command will try to rmdir this cgroup.
5130 *
5131 * This races with the possibility that some other task will be
5132 * attached to this cgroup before it is removed, or that some other
5133 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5134 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5135 * unused, and this cgroup will be reprieved from its death sentence,
5136 * to continue to serve a useful existence. Next time it's released,
5137 * we will get notified again, if it still has 'notify_on_release' set.
5138 *
5139 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5140 * means only wait until the task is successfully execve()'d. The
5141 * separate release agent task is forked by call_usermodehelper(),
5142 * then control in this thread returns here, without waiting for the
5143 * release agent task. We don't bother to wait because the caller of
5144 * this routine has no use for the exit status of the release agent
5145 * task, so no sense holding our caller up for that.
5146 */
5147 static void cgroup_release_agent(struct work_struct *work)
5148 {
5149 BUG_ON(work != &release_agent_work);
5150 mutex_lock(&cgroup_mutex);
5151 raw_spin_lock(&release_list_lock);
5152 while (!list_empty(&release_list)) {
5153 char *argv[3], *envp[3];
5154 int i;
5155 char *pathbuf = NULL, *agentbuf = NULL;
5156 struct cgroup *cgrp = list_entry(release_list.next,
5157 struct cgroup,
5158 release_list);
5159 list_del_init(&cgrp->release_list);
5160 raw_spin_unlock(&release_list_lock);
5161 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
5162 if (!pathbuf)
5163 goto continue_free;
5164 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
5165 goto continue_free;
5166 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5167 if (!agentbuf)
5168 goto continue_free;
5169
5170 i = 0;
5171 argv[i++] = agentbuf;
5172 argv[i++] = pathbuf;
5173 argv[i] = NULL;
5174
5175 i = 0;
5176 /* minimal command environment */
5177 envp[i++] = "HOME=/";
5178 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5179 envp[i] = NULL;
5180
5181 /* Drop the lock while we invoke the usermode helper,
5182 * since the exec could involve hitting disk and hence
5183 * be a slow process */
5184 mutex_unlock(&cgroup_mutex);
5185 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
5186 mutex_lock(&cgroup_mutex);
5187 continue_free:
5188 kfree(pathbuf);
5189 kfree(agentbuf);
5190 raw_spin_lock(&release_list_lock);
5191 }
5192 raw_spin_unlock(&release_list_lock);
5193 mutex_unlock(&cgroup_mutex);
5194 }
5195
5196 static int __init cgroup_disable(char *str)
5197 {
5198 int i;
5199 char *token;
5200
5201 while ((token = strsep(&str, ",")) != NULL) {
5202 if (!*token)
5203 continue;
5204 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
5205 struct cgroup_subsys *ss = subsys[i];
5206
5207 /*
5208 * cgroup_disable, being at boot time, can't
5209 * know about module subsystems, so we don't
5210 * worry about them.
5211 */
5212 if (!ss || ss->module)
5213 continue;
5214
5215 if (!strcmp(token, ss->name)) {
5216 ss->disabled = 1;
5217 printk(KERN_INFO "Disabling %s control group"
5218 " subsystem\n", ss->name);
5219 break;
5220 }
5221 }
5222 }
5223 return 1;
5224 }
5225 __setup("cgroup_disable=", cgroup_disable);
5226
5227 /*
5228 * Functons for CSS ID.
5229 */
5230
5231 /*
5232 *To get ID other than 0, this should be called when !cgroup_is_removed().
5233 */
5234 unsigned short css_id(struct cgroup_subsys_state *css)
5235 {
5236 struct css_id *cssid;
5237
5238 /*
5239 * This css_id() can return correct value when somone has refcnt
5240 * on this or this is under rcu_read_lock(). Once css->id is allocated,
5241 * it's unchanged until freed.
5242 */
5243 cssid = rcu_dereference_check(css->id, css_refcnt(css));
5244
5245 if (cssid)
5246 return cssid->id;
5247 return 0;
5248 }
5249 EXPORT_SYMBOL_GPL(css_id);
5250
5251 unsigned short css_depth(struct cgroup_subsys_state *css)
5252 {
5253 struct css_id *cssid;
5254
5255 cssid = rcu_dereference_check(css->id, css_refcnt(css));
5256
5257 if (cssid)
5258 return cssid->depth;
5259 return 0;
5260 }
5261 EXPORT_SYMBOL_GPL(css_depth);
5262
5263 /**
5264 * css_is_ancestor - test "root" css is an ancestor of "child"
5265 * @child: the css to be tested.
5266 * @root: the css supporsed to be an ancestor of the child.
5267 *
5268 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
5269 * this function reads css->id, the caller must hold rcu_read_lock().
5270 * But, considering usual usage, the csses should be valid objects after test.
5271 * Assuming that the caller will do some action to the child if this returns
5272 * returns true, the caller must take "child";s reference count.
5273 * If "child" is valid object and this returns true, "root" is valid, too.
5274 */
5275
5276 bool css_is_ancestor(struct cgroup_subsys_state *child,
5277 const struct cgroup_subsys_state *root)
5278 {
5279 struct css_id *child_id;
5280 struct css_id *root_id;
5281
5282 child_id = rcu_dereference(child->id);
5283 if (!child_id)
5284 return false;
5285 root_id = rcu_dereference(root->id);
5286 if (!root_id)
5287 return false;
5288 if (child_id->depth < root_id->depth)
5289 return false;
5290 if (child_id->stack[root_id->depth] != root_id->id)
5291 return false;
5292 return true;
5293 }
5294
5295 void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
5296 {
5297 struct css_id *id = css->id;
5298 /* When this is called before css_id initialization, id can be NULL */
5299 if (!id)
5300 return;
5301
5302 BUG_ON(!ss->use_id);
5303
5304 rcu_assign_pointer(id->css, NULL);
5305 rcu_assign_pointer(css->id, NULL);
5306 spin_lock(&ss->id_lock);
5307 idr_remove(&ss->idr, id->id);
5308 spin_unlock(&ss->id_lock);
5309 kfree_rcu(id, rcu_head);
5310 }
5311 EXPORT_SYMBOL_GPL(free_css_id);
5312
5313 /*
5314 * This is called by init or create(). Then, calls to this function are
5315 * always serialized (By cgroup_mutex() at create()).
5316 */
5317
5318 static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
5319 {
5320 struct css_id *newid;
5321 int ret, size;
5322
5323 BUG_ON(!ss->use_id);
5324
5325 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
5326 newid = kzalloc(size, GFP_KERNEL);
5327 if (!newid)
5328 return ERR_PTR(-ENOMEM);
5329
5330 idr_preload(GFP_KERNEL);
5331 spin_lock(&ss->id_lock);
5332 /* Don't use 0. allocates an ID of 1-65535 */
5333 ret = idr_alloc(&ss->idr, newid, 1, CSS_ID_MAX + 1, GFP_NOWAIT);
5334 spin_unlock(&ss->id_lock);
5335 idr_preload_end();
5336
5337 /* Returns error when there are no free spaces for new ID.*/
5338 if (ret < 0)
5339 goto err_out;
5340
5341 newid->id = ret;
5342 newid->depth = depth;
5343 return newid;
5344 err_out:
5345 kfree(newid);
5346 return ERR_PTR(ret);
5347
5348 }
5349
5350 static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
5351 struct cgroup_subsys_state *rootcss)
5352 {
5353 struct css_id *newid;
5354
5355 spin_lock_init(&ss->id_lock);
5356 idr_init(&ss->idr);
5357
5358 newid = get_new_cssid(ss, 0);
5359 if (IS_ERR(newid))
5360 return PTR_ERR(newid);
5361
5362 newid->stack[0] = newid->id;
5363 newid->css = rootcss;
5364 rootcss->id = newid;
5365 return 0;
5366 }
5367
5368 static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
5369 struct cgroup *child)
5370 {
5371 int subsys_id, i, depth = 0;
5372 struct cgroup_subsys_state *parent_css, *child_css;
5373 struct css_id *child_id, *parent_id;
5374
5375 subsys_id = ss->subsys_id;
5376 parent_css = parent->subsys[subsys_id];
5377 child_css = child->subsys[subsys_id];
5378 parent_id = parent_css->id;
5379 depth = parent_id->depth + 1;
5380
5381 child_id = get_new_cssid(ss, depth);
5382 if (IS_ERR(child_id))
5383 return PTR_ERR(child_id);
5384
5385 for (i = 0; i < depth; i++)
5386 child_id->stack[i] = parent_id->stack[i];
5387 child_id->stack[depth] = child_id->id;
5388 /*
5389 * child_id->css pointer will be set after this cgroup is available
5390 * see cgroup_populate_dir()
5391 */
5392 rcu_assign_pointer(child_css->id, child_id);
5393
5394 return 0;
5395 }
5396
5397 /**
5398 * css_lookup - lookup css by id
5399 * @ss: cgroup subsys to be looked into.
5400 * @id: the id
5401 *
5402 * Returns pointer to cgroup_subsys_state if there is valid one with id.
5403 * NULL if not. Should be called under rcu_read_lock()
5404 */
5405 struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
5406 {
5407 struct css_id *cssid = NULL;
5408
5409 BUG_ON(!ss->use_id);
5410 cssid = idr_find(&ss->idr, id);
5411
5412 if (unlikely(!cssid))
5413 return NULL;
5414
5415 return rcu_dereference(cssid->css);
5416 }
5417 EXPORT_SYMBOL_GPL(css_lookup);
5418
5419 /*
5420 * get corresponding css from file open on cgroupfs directory
5421 */
5422 struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
5423 {
5424 struct cgroup *cgrp;
5425 struct inode *inode;
5426 struct cgroup_subsys_state *css;
5427
5428 inode = file_inode(f);
5429 /* check in cgroup filesystem dir */
5430 if (inode->i_op != &cgroup_dir_inode_operations)
5431 return ERR_PTR(-EBADF);
5432
5433 if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
5434 return ERR_PTR(-EINVAL);
5435
5436 /* get cgroup */
5437 cgrp = __d_cgrp(f->f_dentry);
5438 css = cgrp->subsys[id];
5439 return css ? css : ERR_PTR(-ENOENT);
5440 }
5441
5442 #ifdef CONFIG_CGROUP_DEBUG
5443 static struct cgroup_subsys_state *debug_css_alloc(struct cgroup *cont)
5444 {
5445 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5446
5447 if (!css)
5448 return ERR_PTR(-ENOMEM);
5449
5450 return css;
5451 }
5452
5453 static void debug_css_free(struct cgroup *cont)
5454 {
5455 kfree(cont->subsys[debug_subsys_id]);
5456 }
5457
5458 static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
5459 {
5460 return atomic_read(&cont->count);
5461 }
5462
5463 static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
5464 {
5465 return cgroup_task_count(cont);
5466 }
5467
5468 static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
5469 {
5470 return (u64)(unsigned long)current->cgroups;
5471 }
5472
5473 static u64 current_css_set_refcount_read(struct cgroup *cont,
5474 struct cftype *cft)
5475 {
5476 u64 count;
5477
5478 rcu_read_lock();
5479 count = atomic_read(&current->cgroups->refcount);
5480 rcu_read_unlock();
5481 return count;
5482 }
5483
5484 static int current_css_set_cg_links_read(struct cgroup *cont,
5485 struct cftype *cft,
5486 struct seq_file *seq)
5487 {
5488 struct cg_cgroup_link *link;
5489 struct css_set *cg;
5490
5491 read_lock(&css_set_lock);
5492 rcu_read_lock();
5493 cg = rcu_dereference(current->cgroups);
5494 list_for_each_entry(link, &cg->cg_links, cg_link_list) {
5495 struct cgroup *c = link->cgrp;
5496 const char *name;
5497
5498 if (c->dentry)
5499 name = c->dentry->d_name.name;
5500 else
5501 name = "?";
5502 seq_printf(seq, "Root %d group %s\n",
5503 c->root->hierarchy_id, name);
5504 }
5505 rcu_read_unlock();
5506 read_unlock(&css_set_lock);
5507 return 0;
5508 }
5509
5510 #define MAX_TASKS_SHOWN_PER_CSS 25
5511 static int cgroup_css_links_read(struct cgroup *cont,
5512 struct cftype *cft,
5513 struct seq_file *seq)
5514 {
5515 struct cg_cgroup_link *link;
5516
5517 read_lock(&css_set_lock);
5518 list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
5519 struct css_set *cg = link->cg;
5520 struct task_struct *task;
5521 int count = 0;
5522 seq_printf(seq, "css_set %p\n", cg);
5523 list_for_each_entry(task, &cg->tasks, cg_list) {
5524 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5525 seq_puts(seq, " ...\n");
5526 break;
5527 } else {
5528 seq_printf(seq, " task %d\n",
5529 task_pid_vnr(task));
5530 }
5531 }
5532 }
5533 read_unlock(&css_set_lock);
5534 return 0;
5535 }
5536
5537 static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
5538 {
5539 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
5540 }
5541
5542 static struct cftype debug_files[] = {
5543 {
5544 .name = "cgroup_refcount",
5545 .read_u64 = cgroup_refcount_read,
5546 },
5547 {
5548 .name = "taskcount",
5549 .read_u64 = debug_taskcount_read,
5550 },
5551
5552 {
5553 .name = "current_css_set",
5554 .read_u64 = current_css_set_read,
5555 },
5556
5557 {
5558 .name = "current_css_set_refcount",
5559 .read_u64 = current_css_set_refcount_read,
5560 },
5561
5562 {
5563 .name = "current_css_set_cg_links",
5564 .read_seq_string = current_css_set_cg_links_read,
5565 },
5566
5567 {
5568 .name = "cgroup_css_links",
5569 .read_seq_string = cgroup_css_links_read,
5570 },
5571
5572 {
5573 .name = "releasable",
5574 .read_u64 = releasable_read,
5575 },
5576
5577 { } /* terminate */
5578 };
5579
5580 struct cgroup_subsys debug_subsys = {
5581 .name = "debug",
5582 .css_alloc = debug_css_alloc,
5583 .css_free = debug_css_free,
5584 .subsys_id = debug_subsys_id,
5585 .base_cftypes = debug_files,
5586 };
5587 #endif /* CONFIG_CGROUP_DEBUG */