signal: remove warning about using SI_TKILL in rt_[tg]sigqueueinfo
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / auditsc.c
1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43 */
44
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <linux/atomic.h>
48 #include <linux/fs.h>
49 #include <linux/namei.h>
50 #include <linux/mm.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/mount.h>
54 #include <linux/socket.h>
55 #include <linux/mqueue.h>
56 #include <linux/audit.h>
57 #include <linux/personality.h>
58 #include <linux/time.h>
59 #include <linux/netlink.h>
60 #include <linux/compiler.h>
61 #include <asm/unistd.h>
62 #include <linux/security.h>
63 #include <linux/list.h>
64 #include <linux/tty.h>
65 #include <linux/binfmts.h>
66 #include <linux/highmem.h>
67 #include <linux/syscalls.h>
68 #include <linux/capability.h>
69 #include <linux/fs_struct.h>
70 #include <linux/compat.h>
71
72 #include "audit.h"
73
74 /* flags stating the success for a syscall */
75 #define AUDITSC_INVALID 0
76 #define AUDITSC_SUCCESS 1
77 #define AUDITSC_FAILURE 2
78
79 /* no execve audit message should be longer than this (userspace limits) */
80 #define MAX_EXECVE_AUDIT_LEN 7500
81
82 /* number of audit rules */
83 int audit_n_rules;
84
85 /* determines whether we collect data for signals sent */
86 int audit_signals;
87
88 struct audit_aux_data {
89 struct audit_aux_data *next;
90 int type;
91 };
92
93 #define AUDIT_AUX_IPCPERM 0
94
95 /* Number of target pids per aux struct. */
96 #define AUDIT_AUX_PIDS 16
97
98 struct audit_aux_data_execve {
99 struct audit_aux_data d;
100 int argc;
101 int envc;
102 struct mm_struct *mm;
103 };
104
105 struct audit_aux_data_pids {
106 struct audit_aux_data d;
107 pid_t target_pid[AUDIT_AUX_PIDS];
108 kuid_t target_auid[AUDIT_AUX_PIDS];
109 kuid_t target_uid[AUDIT_AUX_PIDS];
110 unsigned int target_sessionid[AUDIT_AUX_PIDS];
111 u32 target_sid[AUDIT_AUX_PIDS];
112 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
113 int pid_count;
114 };
115
116 struct audit_aux_data_bprm_fcaps {
117 struct audit_aux_data d;
118 struct audit_cap_data fcap;
119 unsigned int fcap_ver;
120 struct audit_cap_data old_pcap;
121 struct audit_cap_data new_pcap;
122 };
123
124 struct audit_aux_data_capset {
125 struct audit_aux_data d;
126 pid_t pid;
127 struct audit_cap_data cap;
128 };
129
130 struct audit_tree_refs {
131 struct audit_tree_refs *next;
132 struct audit_chunk *c[31];
133 };
134
135 static inline int open_arg(int flags, int mask)
136 {
137 int n = ACC_MODE(flags);
138 if (flags & (O_TRUNC | O_CREAT))
139 n |= AUDIT_PERM_WRITE;
140 return n & mask;
141 }
142
143 static int audit_match_perm(struct audit_context *ctx, int mask)
144 {
145 unsigned n;
146 if (unlikely(!ctx))
147 return 0;
148 n = ctx->major;
149
150 switch (audit_classify_syscall(ctx->arch, n)) {
151 case 0: /* native */
152 if ((mask & AUDIT_PERM_WRITE) &&
153 audit_match_class(AUDIT_CLASS_WRITE, n))
154 return 1;
155 if ((mask & AUDIT_PERM_READ) &&
156 audit_match_class(AUDIT_CLASS_READ, n))
157 return 1;
158 if ((mask & AUDIT_PERM_ATTR) &&
159 audit_match_class(AUDIT_CLASS_CHATTR, n))
160 return 1;
161 return 0;
162 case 1: /* 32bit on biarch */
163 if ((mask & AUDIT_PERM_WRITE) &&
164 audit_match_class(AUDIT_CLASS_WRITE_32, n))
165 return 1;
166 if ((mask & AUDIT_PERM_READ) &&
167 audit_match_class(AUDIT_CLASS_READ_32, n))
168 return 1;
169 if ((mask & AUDIT_PERM_ATTR) &&
170 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
171 return 1;
172 return 0;
173 case 2: /* open */
174 return mask & ACC_MODE(ctx->argv[1]);
175 case 3: /* openat */
176 return mask & ACC_MODE(ctx->argv[2]);
177 case 4: /* socketcall */
178 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
179 case 5: /* execve */
180 return mask & AUDIT_PERM_EXEC;
181 default:
182 return 0;
183 }
184 }
185
186 static int audit_match_filetype(struct audit_context *ctx, int val)
187 {
188 struct audit_names *n;
189 umode_t mode = (umode_t)val;
190
191 if (unlikely(!ctx))
192 return 0;
193
194 list_for_each_entry(n, &ctx->names_list, list) {
195 if ((n->ino != -1) &&
196 ((n->mode & S_IFMT) == mode))
197 return 1;
198 }
199
200 return 0;
201 }
202
203 /*
204 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
205 * ->first_trees points to its beginning, ->trees - to the current end of data.
206 * ->tree_count is the number of free entries in array pointed to by ->trees.
207 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
208 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
209 * it's going to remain 1-element for almost any setup) until we free context itself.
210 * References in it _are_ dropped - at the same time we free/drop aux stuff.
211 */
212
213 #ifdef CONFIG_AUDIT_TREE
214 static void audit_set_auditable(struct audit_context *ctx)
215 {
216 if (!ctx->prio) {
217 ctx->prio = 1;
218 ctx->current_state = AUDIT_RECORD_CONTEXT;
219 }
220 }
221
222 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
223 {
224 struct audit_tree_refs *p = ctx->trees;
225 int left = ctx->tree_count;
226 if (likely(left)) {
227 p->c[--left] = chunk;
228 ctx->tree_count = left;
229 return 1;
230 }
231 if (!p)
232 return 0;
233 p = p->next;
234 if (p) {
235 p->c[30] = chunk;
236 ctx->trees = p;
237 ctx->tree_count = 30;
238 return 1;
239 }
240 return 0;
241 }
242
243 static int grow_tree_refs(struct audit_context *ctx)
244 {
245 struct audit_tree_refs *p = ctx->trees;
246 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
247 if (!ctx->trees) {
248 ctx->trees = p;
249 return 0;
250 }
251 if (p)
252 p->next = ctx->trees;
253 else
254 ctx->first_trees = ctx->trees;
255 ctx->tree_count = 31;
256 return 1;
257 }
258 #endif
259
260 static void unroll_tree_refs(struct audit_context *ctx,
261 struct audit_tree_refs *p, int count)
262 {
263 #ifdef CONFIG_AUDIT_TREE
264 struct audit_tree_refs *q;
265 int n;
266 if (!p) {
267 /* we started with empty chain */
268 p = ctx->first_trees;
269 count = 31;
270 /* if the very first allocation has failed, nothing to do */
271 if (!p)
272 return;
273 }
274 n = count;
275 for (q = p; q != ctx->trees; q = q->next, n = 31) {
276 while (n--) {
277 audit_put_chunk(q->c[n]);
278 q->c[n] = NULL;
279 }
280 }
281 while (n-- > ctx->tree_count) {
282 audit_put_chunk(q->c[n]);
283 q->c[n] = NULL;
284 }
285 ctx->trees = p;
286 ctx->tree_count = count;
287 #endif
288 }
289
290 static void free_tree_refs(struct audit_context *ctx)
291 {
292 struct audit_tree_refs *p, *q;
293 for (p = ctx->first_trees; p; p = q) {
294 q = p->next;
295 kfree(p);
296 }
297 }
298
299 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
300 {
301 #ifdef CONFIG_AUDIT_TREE
302 struct audit_tree_refs *p;
303 int n;
304 if (!tree)
305 return 0;
306 /* full ones */
307 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
308 for (n = 0; n < 31; n++)
309 if (audit_tree_match(p->c[n], tree))
310 return 1;
311 }
312 /* partial */
313 if (p) {
314 for (n = ctx->tree_count; n < 31; n++)
315 if (audit_tree_match(p->c[n], tree))
316 return 1;
317 }
318 #endif
319 return 0;
320 }
321
322 static int audit_compare_uid(kuid_t uid,
323 struct audit_names *name,
324 struct audit_field *f,
325 struct audit_context *ctx)
326 {
327 struct audit_names *n;
328 int rc;
329
330 if (name) {
331 rc = audit_uid_comparator(uid, f->op, name->uid);
332 if (rc)
333 return rc;
334 }
335
336 if (ctx) {
337 list_for_each_entry(n, &ctx->names_list, list) {
338 rc = audit_uid_comparator(uid, f->op, n->uid);
339 if (rc)
340 return rc;
341 }
342 }
343 return 0;
344 }
345
346 static int audit_compare_gid(kgid_t gid,
347 struct audit_names *name,
348 struct audit_field *f,
349 struct audit_context *ctx)
350 {
351 struct audit_names *n;
352 int rc;
353
354 if (name) {
355 rc = audit_gid_comparator(gid, f->op, name->gid);
356 if (rc)
357 return rc;
358 }
359
360 if (ctx) {
361 list_for_each_entry(n, &ctx->names_list, list) {
362 rc = audit_gid_comparator(gid, f->op, n->gid);
363 if (rc)
364 return rc;
365 }
366 }
367 return 0;
368 }
369
370 static int audit_field_compare(struct task_struct *tsk,
371 const struct cred *cred,
372 struct audit_field *f,
373 struct audit_context *ctx,
374 struct audit_names *name)
375 {
376 switch (f->val) {
377 /* process to file object comparisons */
378 case AUDIT_COMPARE_UID_TO_OBJ_UID:
379 return audit_compare_uid(cred->uid, name, f, ctx);
380 case AUDIT_COMPARE_GID_TO_OBJ_GID:
381 return audit_compare_gid(cred->gid, name, f, ctx);
382 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
383 return audit_compare_uid(cred->euid, name, f, ctx);
384 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
385 return audit_compare_gid(cred->egid, name, f, ctx);
386 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
387 return audit_compare_uid(tsk->loginuid, name, f, ctx);
388 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
389 return audit_compare_uid(cred->suid, name, f, ctx);
390 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
391 return audit_compare_gid(cred->sgid, name, f, ctx);
392 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
393 return audit_compare_uid(cred->fsuid, name, f, ctx);
394 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
395 return audit_compare_gid(cred->fsgid, name, f, ctx);
396 /* uid comparisons */
397 case AUDIT_COMPARE_UID_TO_AUID:
398 return audit_uid_comparator(cred->uid, f->op, tsk->loginuid);
399 case AUDIT_COMPARE_UID_TO_EUID:
400 return audit_uid_comparator(cred->uid, f->op, cred->euid);
401 case AUDIT_COMPARE_UID_TO_SUID:
402 return audit_uid_comparator(cred->uid, f->op, cred->suid);
403 case AUDIT_COMPARE_UID_TO_FSUID:
404 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
405 /* auid comparisons */
406 case AUDIT_COMPARE_AUID_TO_EUID:
407 return audit_uid_comparator(tsk->loginuid, f->op, cred->euid);
408 case AUDIT_COMPARE_AUID_TO_SUID:
409 return audit_uid_comparator(tsk->loginuid, f->op, cred->suid);
410 case AUDIT_COMPARE_AUID_TO_FSUID:
411 return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid);
412 /* euid comparisons */
413 case AUDIT_COMPARE_EUID_TO_SUID:
414 return audit_uid_comparator(cred->euid, f->op, cred->suid);
415 case AUDIT_COMPARE_EUID_TO_FSUID:
416 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
417 /* suid comparisons */
418 case AUDIT_COMPARE_SUID_TO_FSUID:
419 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
420 /* gid comparisons */
421 case AUDIT_COMPARE_GID_TO_EGID:
422 return audit_gid_comparator(cred->gid, f->op, cred->egid);
423 case AUDIT_COMPARE_GID_TO_SGID:
424 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
425 case AUDIT_COMPARE_GID_TO_FSGID:
426 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
427 /* egid comparisons */
428 case AUDIT_COMPARE_EGID_TO_SGID:
429 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
430 case AUDIT_COMPARE_EGID_TO_FSGID:
431 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
432 /* sgid comparison */
433 case AUDIT_COMPARE_SGID_TO_FSGID:
434 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
435 default:
436 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
437 return 0;
438 }
439 return 0;
440 }
441
442 /* Determine if any context name data matches a rule's watch data */
443 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
444 * otherwise.
445 *
446 * If task_creation is true, this is an explicit indication that we are
447 * filtering a task rule at task creation time. This and tsk == current are
448 * the only situations where tsk->cred may be accessed without an rcu read lock.
449 */
450 static int audit_filter_rules(struct task_struct *tsk,
451 struct audit_krule *rule,
452 struct audit_context *ctx,
453 struct audit_names *name,
454 enum audit_state *state,
455 bool task_creation)
456 {
457 const struct cred *cred;
458 int i, need_sid = 1;
459 u32 sid;
460
461 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
462
463 for (i = 0; i < rule->field_count; i++) {
464 struct audit_field *f = &rule->fields[i];
465 struct audit_names *n;
466 int result = 0;
467
468 switch (f->type) {
469 case AUDIT_PID:
470 result = audit_comparator(tsk->pid, f->op, f->val);
471 break;
472 case AUDIT_PPID:
473 if (ctx) {
474 if (!ctx->ppid)
475 ctx->ppid = sys_getppid();
476 result = audit_comparator(ctx->ppid, f->op, f->val);
477 }
478 break;
479 case AUDIT_UID:
480 result = audit_uid_comparator(cred->uid, f->op, f->uid);
481 break;
482 case AUDIT_EUID:
483 result = audit_uid_comparator(cred->euid, f->op, f->uid);
484 break;
485 case AUDIT_SUID:
486 result = audit_uid_comparator(cred->suid, f->op, f->uid);
487 break;
488 case AUDIT_FSUID:
489 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
490 break;
491 case AUDIT_GID:
492 result = audit_gid_comparator(cred->gid, f->op, f->gid);
493 if (f->op == Audit_equal) {
494 if (!result)
495 result = in_group_p(f->gid);
496 } else if (f->op == Audit_not_equal) {
497 if (result)
498 result = !in_group_p(f->gid);
499 }
500 break;
501 case AUDIT_EGID:
502 result = audit_gid_comparator(cred->egid, f->op, f->gid);
503 if (f->op == Audit_equal) {
504 if (!result)
505 result = in_egroup_p(f->gid);
506 } else if (f->op == Audit_not_equal) {
507 if (result)
508 result = !in_egroup_p(f->gid);
509 }
510 break;
511 case AUDIT_SGID:
512 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
513 break;
514 case AUDIT_FSGID:
515 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
516 break;
517 case AUDIT_PERS:
518 result = audit_comparator(tsk->personality, f->op, f->val);
519 break;
520 case AUDIT_ARCH:
521 if (ctx)
522 result = audit_comparator(ctx->arch, f->op, f->val);
523 break;
524
525 case AUDIT_EXIT:
526 if (ctx && ctx->return_valid)
527 result = audit_comparator(ctx->return_code, f->op, f->val);
528 break;
529 case AUDIT_SUCCESS:
530 if (ctx && ctx->return_valid) {
531 if (f->val)
532 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
533 else
534 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
535 }
536 break;
537 case AUDIT_DEVMAJOR:
538 if (name) {
539 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
540 audit_comparator(MAJOR(name->rdev), f->op, f->val))
541 ++result;
542 } else if (ctx) {
543 list_for_each_entry(n, &ctx->names_list, list) {
544 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
545 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
546 ++result;
547 break;
548 }
549 }
550 }
551 break;
552 case AUDIT_DEVMINOR:
553 if (name) {
554 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
555 audit_comparator(MINOR(name->rdev), f->op, f->val))
556 ++result;
557 } else if (ctx) {
558 list_for_each_entry(n, &ctx->names_list, list) {
559 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
560 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
561 ++result;
562 break;
563 }
564 }
565 }
566 break;
567 case AUDIT_INODE:
568 if (name)
569 result = (name->ino == f->val);
570 else if (ctx) {
571 list_for_each_entry(n, &ctx->names_list, list) {
572 if (audit_comparator(n->ino, f->op, f->val)) {
573 ++result;
574 break;
575 }
576 }
577 }
578 break;
579 case AUDIT_OBJ_UID:
580 if (name) {
581 result = audit_uid_comparator(name->uid, f->op, f->uid);
582 } else if (ctx) {
583 list_for_each_entry(n, &ctx->names_list, list) {
584 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
585 ++result;
586 break;
587 }
588 }
589 }
590 break;
591 case AUDIT_OBJ_GID:
592 if (name) {
593 result = audit_gid_comparator(name->gid, f->op, f->gid);
594 } else if (ctx) {
595 list_for_each_entry(n, &ctx->names_list, list) {
596 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
597 ++result;
598 break;
599 }
600 }
601 }
602 break;
603 case AUDIT_WATCH:
604 if (name)
605 result = audit_watch_compare(rule->watch, name->ino, name->dev);
606 break;
607 case AUDIT_DIR:
608 if (ctx)
609 result = match_tree_refs(ctx, rule->tree);
610 break;
611 case AUDIT_LOGINUID:
612 result = 0;
613 if (ctx)
614 result = audit_uid_comparator(tsk->loginuid, f->op, f->uid);
615 break;
616 case AUDIT_LOGINUID_SET:
617 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
618 break;
619 case AUDIT_SUBJ_USER:
620 case AUDIT_SUBJ_ROLE:
621 case AUDIT_SUBJ_TYPE:
622 case AUDIT_SUBJ_SEN:
623 case AUDIT_SUBJ_CLR:
624 /* NOTE: this may return negative values indicating
625 a temporary error. We simply treat this as a
626 match for now to avoid losing information that
627 may be wanted. An error message will also be
628 logged upon error */
629 if (f->lsm_rule) {
630 if (need_sid) {
631 security_task_getsecid(tsk, &sid);
632 need_sid = 0;
633 }
634 result = security_audit_rule_match(sid, f->type,
635 f->op,
636 f->lsm_rule,
637 ctx);
638 }
639 break;
640 case AUDIT_OBJ_USER:
641 case AUDIT_OBJ_ROLE:
642 case AUDIT_OBJ_TYPE:
643 case AUDIT_OBJ_LEV_LOW:
644 case AUDIT_OBJ_LEV_HIGH:
645 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
646 also applies here */
647 if (f->lsm_rule) {
648 /* Find files that match */
649 if (name) {
650 result = security_audit_rule_match(
651 name->osid, f->type, f->op,
652 f->lsm_rule, ctx);
653 } else if (ctx) {
654 list_for_each_entry(n, &ctx->names_list, list) {
655 if (security_audit_rule_match(n->osid, f->type,
656 f->op, f->lsm_rule,
657 ctx)) {
658 ++result;
659 break;
660 }
661 }
662 }
663 /* Find ipc objects that match */
664 if (!ctx || ctx->type != AUDIT_IPC)
665 break;
666 if (security_audit_rule_match(ctx->ipc.osid,
667 f->type, f->op,
668 f->lsm_rule, ctx))
669 ++result;
670 }
671 break;
672 case AUDIT_ARG0:
673 case AUDIT_ARG1:
674 case AUDIT_ARG2:
675 case AUDIT_ARG3:
676 if (ctx)
677 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
678 break;
679 case AUDIT_FILTERKEY:
680 /* ignore this field for filtering */
681 result = 1;
682 break;
683 case AUDIT_PERM:
684 result = audit_match_perm(ctx, f->val);
685 break;
686 case AUDIT_FILETYPE:
687 result = audit_match_filetype(ctx, f->val);
688 break;
689 case AUDIT_FIELD_COMPARE:
690 result = audit_field_compare(tsk, cred, f, ctx, name);
691 break;
692 }
693 if (!result)
694 return 0;
695 }
696
697 if (ctx) {
698 if (rule->prio <= ctx->prio)
699 return 0;
700 if (rule->filterkey) {
701 kfree(ctx->filterkey);
702 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
703 }
704 ctx->prio = rule->prio;
705 }
706 switch (rule->action) {
707 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
708 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
709 }
710 return 1;
711 }
712
713 /* At process creation time, we can determine if system-call auditing is
714 * completely disabled for this task. Since we only have the task
715 * structure at this point, we can only check uid and gid.
716 */
717 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
718 {
719 struct audit_entry *e;
720 enum audit_state state;
721
722 rcu_read_lock();
723 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
724 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
725 &state, true)) {
726 if (state == AUDIT_RECORD_CONTEXT)
727 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
728 rcu_read_unlock();
729 return state;
730 }
731 }
732 rcu_read_unlock();
733 return AUDIT_BUILD_CONTEXT;
734 }
735
736 static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
737 {
738 int word, bit;
739
740 if (val > 0xffffffff)
741 return false;
742
743 word = AUDIT_WORD(val);
744 if (word >= AUDIT_BITMASK_SIZE)
745 return false;
746
747 bit = AUDIT_BIT(val);
748
749 return rule->mask[word] & bit;
750 }
751
752 /* At syscall entry and exit time, this filter is called if the
753 * audit_state is not low enough that auditing cannot take place, but is
754 * also not high enough that we already know we have to write an audit
755 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
756 */
757 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
758 struct audit_context *ctx,
759 struct list_head *list)
760 {
761 struct audit_entry *e;
762 enum audit_state state;
763
764 if (audit_pid && tsk->tgid == audit_pid)
765 return AUDIT_DISABLED;
766
767 rcu_read_lock();
768 if (!list_empty(list)) {
769 list_for_each_entry_rcu(e, list, list) {
770 if (audit_in_mask(&e->rule, ctx->major) &&
771 audit_filter_rules(tsk, &e->rule, ctx, NULL,
772 &state, false)) {
773 rcu_read_unlock();
774 ctx->current_state = state;
775 return state;
776 }
777 }
778 }
779 rcu_read_unlock();
780 return AUDIT_BUILD_CONTEXT;
781 }
782
783 /*
784 * Given an audit_name check the inode hash table to see if they match.
785 * Called holding the rcu read lock to protect the use of audit_inode_hash
786 */
787 static int audit_filter_inode_name(struct task_struct *tsk,
788 struct audit_names *n,
789 struct audit_context *ctx) {
790 int h = audit_hash_ino((u32)n->ino);
791 struct list_head *list = &audit_inode_hash[h];
792 struct audit_entry *e;
793 enum audit_state state;
794
795 if (list_empty(list))
796 return 0;
797
798 list_for_each_entry_rcu(e, list, list) {
799 if (audit_in_mask(&e->rule, ctx->major) &&
800 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
801 ctx->current_state = state;
802 return 1;
803 }
804 }
805
806 return 0;
807 }
808
809 /* At syscall exit time, this filter is called if any audit_names have been
810 * collected during syscall processing. We only check rules in sublists at hash
811 * buckets applicable to the inode numbers in audit_names.
812 * Regarding audit_state, same rules apply as for audit_filter_syscall().
813 */
814 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
815 {
816 struct audit_names *n;
817
818 if (audit_pid && tsk->tgid == audit_pid)
819 return;
820
821 rcu_read_lock();
822
823 list_for_each_entry(n, &ctx->names_list, list) {
824 if (audit_filter_inode_name(tsk, n, ctx))
825 break;
826 }
827 rcu_read_unlock();
828 }
829
830 static inline struct audit_context *audit_get_context(struct task_struct *tsk,
831 int return_valid,
832 long return_code)
833 {
834 struct audit_context *context = tsk->audit_context;
835
836 if (!context)
837 return NULL;
838 context->return_valid = return_valid;
839
840 /*
841 * we need to fix up the return code in the audit logs if the actual
842 * return codes are later going to be fixed up by the arch specific
843 * signal handlers
844 *
845 * This is actually a test for:
846 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
847 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
848 *
849 * but is faster than a bunch of ||
850 */
851 if (unlikely(return_code <= -ERESTARTSYS) &&
852 (return_code >= -ERESTART_RESTARTBLOCK) &&
853 (return_code != -ENOIOCTLCMD))
854 context->return_code = -EINTR;
855 else
856 context->return_code = return_code;
857
858 if (context->in_syscall && !context->dummy) {
859 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
860 audit_filter_inodes(tsk, context);
861 }
862
863 tsk->audit_context = NULL;
864 return context;
865 }
866
867 static inline void audit_free_names(struct audit_context *context)
868 {
869 struct audit_names *n, *next;
870
871 #if AUDIT_DEBUG == 2
872 if (context->put_count + context->ino_count != context->name_count) {
873 int i = 0;
874
875 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
876 " name_count=%d put_count=%d"
877 " ino_count=%d [NOT freeing]\n",
878 __FILE__, __LINE__,
879 context->serial, context->major, context->in_syscall,
880 context->name_count, context->put_count,
881 context->ino_count);
882 list_for_each_entry(n, &context->names_list, list) {
883 printk(KERN_ERR "names[%d] = %p = %s\n", i++,
884 n->name, n->name->name ?: "(null)");
885 }
886 dump_stack();
887 return;
888 }
889 #endif
890 #if AUDIT_DEBUG
891 context->put_count = 0;
892 context->ino_count = 0;
893 #endif
894
895 list_for_each_entry_safe(n, next, &context->names_list, list) {
896 list_del(&n->list);
897 if (n->name && n->name_put)
898 final_putname(n->name);
899 if (n->should_free)
900 kfree(n);
901 }
902 context->name_count = 0;
903 path_put(&context->pwd);
904 context->pwd.dentry = NULL;
905 context->pwd.mnt = NULL;
906 }
907
908 static inline void audit_free_aux(struct audit_context *context)
909 {
910 struct audit_aux_data *aux;
911
912 while ((aux = context->aux)) {
913 context->aux = aux->next;
914 kfree(aux);
915 }
916 while ((aux = context->aux_pids)) {
917 context->aux_pids = aux->next;
918 kfree(aux);
919 }
920 }
921
922 static inline struct audit_context *audit_alloc_context(enum audit_state state)
923 {
924 struct audit_context *context;
925
926 context = kzalloc(sizeof(*context), GFP_KERNEL);
927 if (!context)
928 return NULL;
929 context->state = state;
930 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
931 INIT_LIST_HEAD(&context->killed_trees);
932 INIT_LIST_HEAD(&context->names_list);
933 return context;
934 }
935
936 /**
937 * audit_alloc - allocate an audit context block for a task
938 * @tsk: task
939 *
940 * Filter on the task information and allocate a per-task audit context
941 * if necessary. Doing so turns on system call auditing for the
942 * specified task. This is called from copy_process, so no lock is
943 * needed.
944 */
945 int audit_alloc(struct task_struct *tsk)
946 {
947 struct audit_context *context;
948 enum audit_state state;
949 char *key = NULL;
950
951 if (likely(!audit_ever_enabled))
952 return 0; /* Return if not auditing. */
953
954 state = audit_filter_task(tsk, &key);
955 if (state == AUDIT_DISABLED)
956 return 0;
957
958 if (!(context = audit_alloc_context(state))) {
959 kfree(key);
960 audit_log_lost("out of memory in audit_alloc");
961 return -ENOMEM;
962 }
963 context->filterkey = key;
964
965 tsk->audit_context = context;
966 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
967 return 0;
968 }
969
970 static inline void audit_free_context(struct audit_context *context)
971 {
972 audit_free_names(context);
973 unroll_tree_refs(context, NULL, 0);
974 free_tree_refs(context);
975 audit_free_aux(context);
976 kfree(context->filterkey);
977 kfree(context->sockaddr);
978 kfree(context);
979 }
980
981 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
982 kuid_t auid, kuid_t uid, unsigned int sessionid,
983 u32 sid, char *comm)
984 {
985 struct audit_buffer *ab;
986 char *ctx = NULL;
987 u32 len;
988 int rc = 0;
989
990 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
991 if (!ab)
992 return rc;
993
994 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
995 from_kuid(&init_user_ns, auid),
996 from_kuid(&init_user_ns, uid), sessionid);
997 if (sid) {
998 if (security_secid_to_secctx(sid, &ctx, &len)) {
999 audit_log_format(ab, " obj=(none)");
1000 rc = 1;
1001 } else {
1002 audit_log_format(ab, " obj=%s", ctx);
1003 security_release_secctx(ctx, len);
1004 }
1005 }
1006 audit_log_format(ab, " ocomm=");
1007 audit_log_untrustedstring(ab, comm);
1008 audit_log_end(ab);
1009
1010 return rc;
1011 }
1012
1013 /*
1014 * to_send and len_sent accounting are very loose estimates. We aren't
1015 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1016 * within about 500 bytes (next page boundary)
1017 *
1018 * why snprintf? an int is up to 12 digits long. if we just assumed when
1019 * logging that a[%d]= was going to be 16 characters long we would be wasting
1020 * space in every audit message. In one 7500 byte message we can log up to
1021 * about 1000 min size arguments. That comes down to about 50% waste of space
1022 * if we didn't do the snprintf to find out how long arg_num_len was.
1023 */
1024 static int audit_log_single_execve_arg(struct audit_context *context,
1025 struct audit_buffer **ab,
1026 int arg_num,
1027 size_t *len_sent,
1028 const char __user *p,
1029 char *buf)
1030 {
1031 char arg_num_len_buf[12];
1032 const char __user *tmp_p = p;
1033 /* how many digits are in arg_num? 5 is the length of ' a=""' */
1034 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
1035 size_t len, len_left, to_send;
1036 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1037 unsigned int i, has_cntl = 0, too_long = 0;
1038 int ret;
1039
1040 /* strnlen_user includes the null we don't want to send */
1041 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1042
1043 /*
1044 * We just created this mm, if we can't find the strings
1045 * we just copied into it something is _very_ wrong. Similar
1046 * for strings that are too long, we should not have created
1047 * any.
1048 */
1049 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1050 WARN_ON(1);
1051 send_sig(SIGKILL, current, 0);
1052 return -1;
1053 }
1054
1055 /* walk the whole argument looking for non-ascii chars */
1056 do {
1057 if (len_left > MAX_EXECVE_AUDIT_LEN)
1058 to_send = MAX_EXECVE_AUDIT_LEN;
1059 else
1060 to_send = len_left;
1061 ret = copy_from_user(buf, tmp_p, to_send);
1062 /*
1063 * There is no reason for this copy to be short. We just
1064 * copied them here, and the mm hasn't been exposed to user-
1065 * space yet.
1066 */
1067 if (ret) {
1068 WARN_ON(1);
1069 send_sig(SIGKILL, current, 0);
1070 return -1;
1071 }
1072 buf[to_send] = '\0';
1073 has_cntl = audit_string_contains_control(buf, to_send);
1074 if (has_cntl) {
1075 /*
1076 * hex messages get logged as 2 bytes, so we can only
1077 * send half as much in each message
1078 */
1079 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1080 break;
1081 }
1082 len_left -= to_send;
1083 tmp_p += to_send;
1084 } while (len_left > 0);
1085
1086 len_left = len;
1087
1088 if (len > max_execve_audit_len)
1089 too_long = 1;
1090
1091 /* rewalk the argument actually logging the message */
1092 for (i = 0; len_left > 0; i++) {
1093 int room_left;
1094
1095 if (len_left > max_execve_audit_len)
1096 to_send = max_execve_audit_len;
1097 else
1098 to_send = len_left;
1099
1100 /* do we have space left to send this argument in this ab? */
1101 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1102 if (has_cntl)
1103 room_left -= (to_send * 2);
1104 else
1105 room_left -= to_send;
1106 if (room_left < 0) {
1107 *len_sent = 0;
1108 audit_log_end(*ab);
1109 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1110 if (!*ab)
1111 return 0;
1112 }
1113
1114 /*
1115 * first record needs to say how long the original string was
1116 * so we can be sure nothing was lost.
1117 */
1118 if ((i == 0) && (too_long))
1119 audit_log_format(*ab, " a%d_len=%zu", arg_num,
1120 has_cntl ? 2*len : len);
1121
1122 /*
1123 * normally arguments are small enough to fit and we already
1124 * filled buf above when we checked for control characters
1125 * so don't bother with another copy_from_user
1126 */
1127 if (len >= max_execve_audit_len)
1128 ret = copy_from_user(buf, p, to_send);
1129 else
1130 ret = 0;
1131 if (ret) {
1132 WARN_ON(1);
1133 send_sig(SIGKILL, current, 0);
1134 return -1;
1135 }
1136 buf[to_send] = '\0';
1137
1138 /* actually log it */
1139 audit_log_format(*ab, " a%d", arg_num);
1140 if (too_long)
1141 audit_log_format(*ab, "[%d]", i);
1142 audit_log_format(*ab, "=");
1143 if (has_cntl)
1144 audit_log_n_hex(*ab, buf, to_send);
1145 else
1146 audit_log_string(*ab, buf);
1147
1148 p += to_send;
1149 len_left -= to_send;
1150 *len_sent += arg_num_len;
1151 if (has_cntl)
1152 *len_sent += to_send * 2;
1153 else
1154 *len_sent += to_send;
1155 }
1156 /* include the null we didn't log */
1157 return len + 1;
1158 }
1159
1160 static void audit_log_execve_info(struct audit_context *context,
1161 struct audit_buffer **ab,
1162 struct audit_aux_data_execve *axi)
1163 {
1164 int i, len;
1165 size_t len_sent = 0;
1166 const char __user *p;
1167 char *buf;
1168
1169 if (axi->mm != current->mm)
1170 return; /* execve failed, no additional info */
1171
1172 p = (const char __user *)axi->mm->arg_start;
1173
1174 audit_log_format(*ab, "argc=%d", axi->argc);
1175
1176 /*
1177 * we need some kernel buffer to hold the userspace args. Just
1178 * allocate one big one rather than allocating one of the right size
1179 * for every single argument inside audit_log_single_execve_arg()
1180 * should be <8k allocation so should be pretty safe.
1181 */
1182 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1183 if (!buf) {
1184 audit_panic("out of memory for argv string\n");
1185 return;
1186 }
1187
1188 for (i = 0; i < axi->argc; i++) {
1189 len = audit_log_single_execve_arg(context, ab, i,
1190 &len_sent, p, buf);
1191 if (len <= 0)
1192 break;
1193 p += len;
1194 }
1195 kfree(buf);
1196 }
1197
1198 static void show_special(struct audit_context *context, int *call_panic)
1199 {
1200 struct audit_buffer *ab;
1201 int i;
1202
1203 ab = audit_log_start(context, GFP_KERNEL, context->type);
1204 if (!ab)
1205 return;
1206
1207 switch (context->type) {
1208 case AUDIT_SOCKETCALL: {
1209 int nargs = context->socketcall.nargs;
1210 audit_log_format(ab, "nargs=%d", nargs);
1211 for (i = 0; i < nargs; i++)
1212 audit_log_format(ab, " a%d=%lx", i,
1213 context->socketcall.args[i]);
1214 break; }
1215 case AUDIT_IPC: {
1216 u32 osid = context->ipc.osid;
1217
1218 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1219 from_kuid(&init_user_ns, context->ipc.uid),
1220 from_kgid(&init_user_ns, context->ipc.gid),
1221 context->ipc.mode);
1222 if (osid) {
1223 char *ctx = NULL;
1224 u32 len;
1225 if (security_secid_to_secctx(osid, &ctx, &len)) {
1226 audit_log_format(ab, " osid=%u", osid);
1227 *call_panic = 1;
1228 } else {
1229 audit_log_format(ab, " obj=%s", ctx);
1230 security_release_secctx(ctx, len);
1231 }
1232 }
1233 if (context->ipc.has_perm) {
1234 audit_log_end(ab);
1235 ab = audit_log_start(context, GFP_KERNEL,
1236 AUDIT_IPC_SET_PERM);
1237 if (unlikely(!ab))
1238 return;
1239 audit_log_format(ab,
1240 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1241 context->ipc.qbytes,
1242 context->ipc.perm_uid,
1243 context->ipc.perm_gid,
1244 context->ipc.perm_mode);
1245 }
1246 break; }
1247 case AUDIT_MQ_OPEN: {
1248 audit_log_format(ab,
1249 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1250 "mq_msgsize=%ld mq_curmsgs=%ld",
1251 context->mq_open.oflag, context->mq_open.mode,
1252 context->mq_open.attr.mq_flags,
1253 context->mq_open.attr.mq_maxmsg,
1254 context->mq_open.attr.mq_msgsize,
1255 context->mq_open.attr.mq_curmsgs);
1256 break; }
1257 case AUDIT_MQ_SENDRECV: {
1258 audit_log_format(ab,
1259 "mqdes=%d msg_len=%zd msg_prio=%u "
1260 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1261 context->mq_sendrecv.mqdes,
1262 context->mq_sendrecv.msg_len,
1263 context->mq_sendrecv.msg_prio,
1264 context->mq_sendrecv.abs_timeout.tv_sec,
1265 context->mq_sendrecv.abs_timeout.tv_nsec);
1266 break; }
1267 case AUDIT_MQ_NOTIFY: {
1268 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1269 context->mq_notify.mqdes,
1270 context->mq_notify.sigev_signo);
1271 break; }
1272 case AUDIT_MQ_GETSETATTR: {
1273 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1274 audit_log_format(ab,
1275 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1276 "mq_curmsgs=%ld ",
1277 context->mq_getsetattr.mqdes,
1278 attr->mq_flags, attr->mq_maxmsg,
1279 attr->mq_msgsize, attr->mq_curmsgs);
1280 break; }
1281 case AUDIT_CAPSET: {
1282 audit_log_format(ab, "pid=%d", context->capset.pid);
1283 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1284 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1285 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1286 break; }
1287 case AUDIT_MMAP: {
1288 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1289 context->mmap.flags);
1290 break; }
1291 }
1292 audit_log_end(ab);
1293 }
1294
1295 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1296 {
1297 int i, call_panic = 0;
1298 struct audit_buffer *ab;
1299 struct audit_aux_data *aux;
1300 struct audit_names *n;
1301
1302 /* tsk == current */
1303 context->personality = tsk->personality;
1304
1305 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1306 if (!ab)
1307 return; /* audit_panic has been called */
1308 audit_log_format(ab, "arch=%x syscall=%d",
1309 context->arch, context->major);
1310 if (context->personality != PER_LINUX)
1311 audit_log_format(ab, " per=%lx", context->personality);
1312 if (context->return_valid)
1313 audit_log_format(ab, " success=%s exit=%ld",
1314 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1315 context->return_code);
1316
1317 audit_log_format(ab,
1318 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1319 context->argv[0],
1320 context->argv[1],
1321 context->argv[2],
1322 context->argv[3],
1323 context->name_count);
1324
1325 audit_log_task_info(ab, tsk);
1326 audit_log_key(ab, context->filterkey);
1327 audit_log_end(ab);
1328
1329 for (aux = context->aux; aux; aux = aux->next) {
1330
1331 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1332 if (!ab)
1333 continue; /* audit_panic has been called */
1334
1335 switch (aux->type) {
1336
1337 case AUDIT_EXECVE: {
1338 struct audit_aux_data_execve *axi = (void *)aux;
1339 audit_log_execve_info(context, &ab, axi);
1340 break; }
1341
1342 case AUDIT_BPRM_FCAPS: {
1343 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1344 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1345 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1346 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1347 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1348 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1349 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1350 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1351 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1352 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1353 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1354 break; }
1355
1356 }
1357 audit_log_end(ab);
1358 }
1359
1360 if (context->type)
1361 show_special(context, &call_panic);
1362
1363 if (context->fds[0] >= 0) {
1364 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1365 if (ab) {
1366 audit_log_format(ab, "fd0=%d fd1=%d",
1367 context->fds[0], context->fds[1]);
1368 audit_log_end(ab);
1369 }
1370 }
1371
1372 if (context->sockaddr_len) {
1373 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1374 if (ab) {
1375 audit_log_format(ab, "saddr=");
1376 audit_log_n_hex(ab, (void *)context->sockaddr,
1377 context->sockaddr_len);
1378 audit_log_end(ab);
1379 }
1380 }
1381
1382 for (aux = context->aux_pids; aux; aux = aux->next) {
1383 struct audit_aux_data_pids *axs = (void *)aux;
1384
1385 for (i = 0; i < axs->pid_count; i++)
1386 if (audit_log_pid_context(context, axs->target_pid[i],
1387 axs->target_auid[i],
1388 axs->target_uid[i],
1389 axs->target_sessionid[i],
1390 axs->target_sid[i],
1391 axs->target_comm[i]))
1392 call_panic = 1;
1393 }
1394
1395 if (context->target_pid &&
1396 audit_log_pid_context(context, context->target_pid,
1397 context->target_auid, context->target_uid,
1398 context->target_sessionid,
1399 context->target_sid, context->target_comm))
1400 call_panic = 1;
1401
1402 if (context->pwd.dentry && context->pwd.mnt) {
1403 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1404 if (ab) {
1405 audit_log_d_path(ab, " cwd=", &context->pwd);
1406 audit_log_end(ab);
1407 }
1408 }
1409
1410 i = 0;
1411 list_for_each_entry(n, &context->names_list, list) {
1412 if (n->hidden)
1413 continue;
1414 audit_log_name(context, n, NULL, i++, &call_panic);
1415 }
1416
1417 /* Send end of event record to help user space know we are finished */
1418 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1419 if (ab)
1420 audit_log_end(ab);
1421 if (call_panic)
1422 audit_panic("error converting sid to string");
1423 }
1424
1425 /**
1426 * audit_free - free a per-task audit context
1427 * @tsk: task whose audit context block to free
1428 *
1429 * Called from copy_process and do_exit
1430 */
1431 void __audit_free(struct task_struct *tsk)
1432 {
1433 struct audit_context *context;
1434
1435 context = audit_get_context(tsk, 0, 0);
1436 if (!context)
1437 return;
1438
1439 /* Check for system calls that do not go through the exit
1440 * function (e.g., exit_group), then free context block.
1441 * We use GFP_ATOMIC here because we might be doing this
1442 * in the context of the idle thread */
1443 /* that can happen only if we are called from do_exit() */
1444 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1445 audit_log_exit(context, tsk);
1446 if (!list_empty(&context->killed_trees))
1447 audit_kill_trees(&context->killed_trees);
1448
1449 audit_free_context(context);
1450 }
1451
1452 /**
1453 * audit_syscall_entry - fill in an audit record at syscall entry
1454 * @arch: architecture type
1455 * @major: major syscall type (function)
1456 * @a1: additional syscall register 1
1457 * @a2: additional syscall register 2
1458 * @a3: additional syscall register 3
1459 * @a4: additional syscall register 4
1460 *
1461 * Fill in audit context at syscall entry. This only happens if the
1462 * audit context was created when the task was created and the state or
1463 * filters demand the audit context be built. If the state from the
1464 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1465 * then the record will be written at syscall exit time (otherwise, it
1466 * will only be written if another part of the kernel requests that it
1467 * be written).
1468 */
1469 void __audit_syscall_entry(int arch, int major,
1470 unsigned long a1, unsigned long a2,
1471 unsigned long a3, unsigned long a4)
1472 {
1473 struct task_struct *tsk = current;
1474 struct audit_context *context = tsk->audit_context;
1475 enum audit_state state;
1476
1477 if (!context)
1478 return;
1479
1480 BUG_ON(context->in_syscall || context->name_count);
1481
1482 if (!audit_enabled)
1483 return;
1484
1485 context->arch = arch;
1486 context->major = major;
1487 context->argv[0] = a1;
1488 context->argv[1] = a2;
1489 context->argv[2] = a3;
1490 context->argv[3] = a4;
1491
1492 state = context->state;
1493 context->dummy = !audit_n_rules;
1494 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1495 context->prio = 0;
1496 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1497 }
1498 if (state == AUDIT_DISABLED)
1499 return;
1500
1501 context->serial = 0;
1502 context->ctime = CURRENT_TIME;
1503 context->in_syscall = 1;
1504 context->current_state = state;
1505 context->ppid = 0;
1506 }
1507
1508 /**
1509 * audit_syscall_exit - deallocate audit context after a system call
1510 * @success: success value of the syscall
1511 * @return_code: return value of the syscall
1512 *
1513 * Tear down after system call. If the audit context has been marked as
1514 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1515 * filtering, or because some other part of the kernel wrote an audit
1516 * message), then write out the syscall information. In call cases,
1517 * free the names stored from getname().
1518 */
1519 void __audit_syscall_exit(int success, long return_code)
1520 {
1521 struct task_struct *tsk = current;
1522 struct audit_context *context;
1523
1524 if (success)
1525 success = AUDITSC_SUCCESS;
1526 else
1527 success = AUDITSC_FAILURE;
1528
1529 context = audit_get_context(tsk, success, return_code);
1530 if (!context)
1531 return;
1532
1533 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1534 audit_log_exit(context, tsk);
1535
1536 context->in_syscall = 0;
1537 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1538
1539 if (!list_empty(&context->killed_trees))
1540 audit_kill_trees(&context->killed_trees);
1541
1542 audit_free_names(context);
1543 unroll_tree_refs(context, NULL, 0);
1544 audit_free_aux(context);
1545 context->aux = NULL;
1546 context->aux_pids = NULL;
1547 context->target_pid = 0;
1548 context->target_sid = 0;
1549 context->sockaddr_len = 0;
1550 context->type = 0;
1551 context->fds[0] = -1;
1552 if (context->state != AUDIT_RECORD_CONTEXT) {
1553 kfree(context->filterkey);
1554 context->filterkey = NULL;
1555 }
1556 tsk->audit_context = context;
1557 }
1558
1559 static inline void handle_one(const struct inode *inode)
1560 {
1561 #ifdef CONFIG_AUDIT_TREE
1562 struct audit_context *context;
1563 struct audit_tree_refs *p;
1564 struct audit_chunk *chunk;
1565 int count;
1566 if (likely(hlist_empty(&inode->i_fsnotify_marks)))
1567 return;
1568 context = current->audit_context;
1569 p = context->trees;
1570 count = context->tree_count;
1571 rcu_read_lock();
1572 chunk = audit_tree_lookup(inode);
1573 rcu_read_unlock();
1574 if (!chunk)
1575 return;
1576 if (likely(put_tree_ref(context, chunk)))
1577 return;
1578 if (unlikely(!grow_tree_refs(context))) {
1579 printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
1580 audit_set_auditable(context);
1581 audit_put_chunk(chunk);
1582 unroll_tree_refs(context, p, count);
1583 return;
1584 }
1585 put_tree_ref(context, chunk);
1586 #endif
1587 }
1588
1589 static void handle_path(const struct dentry *dentry)
1590 {
1591 #ifdef CONFIG_AUDIT_TREE
1592 struct audit_context *context;
1593 struct audit_tree_refs *p;
1594 const struct dentry *d, *parent;
1595 struct audit_chunk *drop;
1596 unsigned long seq;
1597 int count;
1598
1599 context = current->audit_context;
1600 p = context->trees;
1601 count = context->tree_count;
1602 retry:
1603 drop = NULL;
1604 d = dentry;
1605 rcu_read_lock();
1606 seq = read_seqbegin(&rename_lock);
1607 for(;;) {
1608 struct inode *inode = d->d_inode;
1609 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
1610 struct audit_chunk *chunk;
1611 chunk = audit_tree_lookup(inode);
1612 if (chunk) {
1613 if (unlikely(!put_tree_ref(context, chunk))) {
1614 drop = chunk;
1615 break;
1616 }
1617 }
1618 }
1619 parent = d->d_parent;
1620 if (parent == d)
1621 break;
1622 d = parent;
1623 }
1624 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1625 rcu_read_unlock();
1626 if (!drop) {
1627 /* just a race with rename */
1628 unroll_tree_refs(context, p, count);
1629 goto retry;
1630 }
1631 audit_put_chunk(drop);
1632 if (grow_tree_refs(context)) {
1633 /* OK, got more space */
1634 unroll_tree_refs(context, p, count);
1635 goto retry;
1636 }
1637 /* too bad */
1638 printk(KERN_WARNING
1639 "out of memory, audit has lost a tree reference\n");
1640 unroll_tree_refs(context, p, count);
1641 audit_set_auditable(context);
1642 return;
1643 }
1644 rcu_read_unlock();
1645 #endif
1646 }
1647
1648 static struct audit_names *audit_alloc_name(struct audit_context *context,
1649 unsigned char type)
1650 {
1651 struct audit_names *aname;
1652
1653 if (context->name_count < AUDIT_NAMES) {
1654 aname = &context->preallocated_names[context->name_count];
1655 memset(aname, 0, sizeof(*aname));
1656 } else {
1657 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1658 if (!aname)
1659 return NULL;
1660 aname->should_free = true;
1661 }
1662
1663 aname->ino = (unsigned long)-1;
1664 aname->type = type;
1665 list_add_tail(&aname->list, &context->names_list);
1666
1667 context->name_count++;
1668 #if AUDIT_DEBUG
1669 context->ino_count++;
1670 #endif
1671 return aname;
1672 }
1673
1674 /**
1675 * audit_reusename - fill out filename with info from existing entry
1676 * @uptr: userland ptr to pathname
1677 *
1678 * Search the audit_names list for the current audit context. If there is an
1679 * existing entry with a matching "uptr" then return the filename
1680 * associated with that audit_name. If not, return NULL.
1681 */
1682 struct filename *
1683 __audit_reusename(const __user char *uptr)
1684 {
1685 struct audit_context *context = current->audit_context;
1686 struct audit_names *n;
1687
1688 list_for_each_entry(n, &context->names_list, list) {
1689 if (!n->name)
1690 continue;
1691 if (n->name->uptr == uptr)
1692 return n->name;
1693 }
1694 return NULL;
1695 }
1696
1697 /**
1698 * audit_getname - add a name to the list
1699 * @name: name to add
1700 *
1701 * Add a name to the list of audit names for this context.
1702 * Called from fs/namei.c:getname().
1703 */
1704 void __audit_getname(struct filename *name)
1705 {
1706 struct audit_context *context = current->audit_context;
1707 struct audit_names *n;
1708
1709 if (!context->in_syscall) {
1710 #if AUDIT_DEBUG == 2
1711 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1712 __FILE__, __LINE__, context->serial, name);
1713 dump_stack();
1714 #endif
1715 return;
1716 }
1717
1718 #if AUDIT_DEBUG
1719 /* The filename _must_ have a populated ->name */
1720 BUG_ON(!name->name);
1721 #endif
1722
1723 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1724 if (!n)
1725 return;
1726
1727 n->name = name;
1728 n->name_len = AUDIT_NAME_FULL;
1729 n->name_put = true;
1730 name->aname = n;
1731
1732 if (!context->pwd.dentry)
1733 get_fs_pwd(current->fs, &context->pwd);
1734 }
1735
1736 /* audit_putname - intercept a putname request
1737 * @name: name to intercept and delay for putname
1738 *
1739 * If we have stored the name from getname in the audit context,
1740 * then we delay the putname until syscall exit.
1741 * Called from include/linux/fs.h:putname().
1742 */
1743 void audit_putname(struct filename *name)
1744 {
1745 struct audit_context *context = current->audit_context;
1746
1747 BUG_ON(!context);
1748 if (!context->in_syscall) {
1749 #if AUDIT_DEBUG == 2
1750 printk(KERN_ERR "%s:%d(:%d): final_putname(%p)\n",
1751 __FILE__, __LINE__, context->serial, name);
1752 if (context->name_count) {
1753 struct audit_names *n;
1754 int i = 0;
1755
1756 list_for_each_entry(n, &context->names_list, list)
1757 printk(KERN_ERR "name[%d] = %p = %s\n", i++,
1758 n->name, n->name->name ?: "(null)");
1759 }
1760 #endif
1761 final_putname(name);
1762 }
1763 #if AUDIT_DEBUG
1764 else {
1765 ++context->put_count;
1766 if (context->put_count > context->name_count) {
1767 printk(KERN_ERR "%s:%d(:%d): major=%d"
1768 " in_syscall=%d putname(%p) name_count=%d"
1769 " put_count=%d\n",
1770 __FILE__, __LINE__,
1771 context->serial, context->major,
1772 context->in_syscall, name->name,
1773 context->name_count, context->put_count);
1774 dump_stack();
1775 }
1776 }
1777 #endif
1778 }
1779
1780 /**
1781 * __audit_inode - store the inode and device from a lookup
1782 * @name: name being audited
1783 * @dentry: dentry being audited
1784 * @flags: attributes for this particular entry
1785 */
1786 void __audit_inode(struct filename *name, const struct dentry *dentry,
1787 unsigned int flags)
1788 {
1789 struct audit_context *context = current->audit_context;
1790 const struct inode *inode = dentry->d_inode;
1791 struct audit_names *n;
1792 bool parent = flags & AUDIT_INODE_PARENT;
1793
1794 if (!context->in_syscall)
1795 return;
1796
1797 if (!name)
1798 goto out_alloc;
1799
1800 #if AUDIT_DEBUG
1801 /* The struct filename _must_ have a populated ->name */
1802 BUG_ON(!name->name);
1803 #endif
1804 /*
1805 * If we have a pointer to an audit_names entry already, then we can
1806 * just use it directly if the type is correct.
1807 */
1808 n = name->aname;
1809 if (n) {
1810 if (parent) {
1811 if (n->type == AUDIT_TYPE_PARENT ||
1812 n->type == AUDIT_TYPE_UNKNOWN)
1813 goto out;
1814 } else {
1815 if (n->type != AUDIT_TYPE_PARENT)
1816 goto out;
1817 }
1818 }
1819
1820 list_for_each_entry_reverse(n, &context->names_list, list) {
1821 /* does the name pointer match? */
1822 if (!n->name || n->name->name != name->name)
1823 continue;
1824
1825 /* match the correct record type */
1826 if (parent) {
1827 if (n->type == AUDIT_TYPE_PARENT ||
1828 n->type == AUDIT_TYPE_UNKNOWN)
1829 goto out;
1830 } else {
1831 if (n->type != AUDIT_TYPE_PARENT)
1832 goto out;
1833 }
1834 }
1835
1836 out_alloc:
1837 /* unable to find the name from a previous getname(). Allocate a new
1838 * anonymous entry.
1839 */
1840 n = audit_alloc_name(context, AUDIT_TYPE_NORMAL);
1841 if (!n)
1842 return;
1843 out:
1844 if (parent) {
1845 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
1846 n->type = AUDIT_TYPE_PARENT;
1847 if (flags & AUDIT_INODE_HIDDEN)
1848 n->hidden = true;
1849 } else {
1850 n->name_len = AUDIT_NAME_FULL;
1851 n->type = AUDIT_TYPE_NORMAL;
1852 }
1853 handle_path(dentry);
1854 audit_copy_inode(n, dentry, inode);
1855 }
1856
1857 /**
1858 * __audit_inode_child - collect inode info for created/removed objects
1859 * @parent: inode of dentry parent
1860 * @dentry: dentry being audited
1861 * @type: AUDIT_TYPE_* value that we're looking for
1862 *
1863 * For syscalls that create or remove filesystem objects, audit_inode
1864 * can only collect information for the filesystem object's parent.
1865 * This call updates the audit context with the child's information.
1866 * Syscalls that create a new filesystem object must be hooked after
1867 * the object is created. Syscalls that remove a filesystem object
1868 * must be hooked prior, in order to capture the target inode during
1869 * unsuccessful attempts.
1870 */
1871 void __audit_inode_child(const struct inode *parent,
1872 const struct dentry *dentry,
1873 const unsigned char type)
1874 {
1875 struct audit_context *context = current->audit_context;
1876 const struct inode *inode = dentry->d_inode;
1877 const char *dname = dentry->d_name.name;
1878 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
1879
1880 if (!context->in_syscall)
1881 return;
1882
1883 if (inode)
1884 handle_one(inode);
1885
1886 /* look for a parent entry first */
1887 list_for_each_entry(n, &context->names_list, list) {
1888 if (!n->name || n->type != AUDIT_TYPE_PARENT)
1889 continue;
1890
1891 if (n->ino == parent->i_ino &&
1892 !audit_compare_dname_path(dname, n->name->name, n->name_len)) {
1893 found_parent = n;
1894 break;
1895 }
1896 }
1897
1898 /* is there a matching child entry? */
1899 list_for_each_entry(n, &context->names_list, list) {
1900 /* can only match entries that have a name */
1901 if (!n->name || n->type != type)
1902 continue;
1903
1904 /* if we found a parent, make sure this one is a child of it */
1905 if (found_parent && (n->name != found_parent->name))
1906 continue;
1907
1908 if (!strcmp(dname, n->name->name) ||
1909 !audit_compare_dname_path(dname, n->name->name,
1910 found_parent ?
1911 found_parent->name_len :
1912 AUDIT_NAME_FULL)) {
1913 found_child = n;
1914 break;
1915 }
1916 }
1917
1918 if (!found_parent) {
1919 /* create a new, "anonymous" parent record */
1920 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
1921 if (!n)
1922 return;
1923 audit_copy_inode(n, NULL, parent);
1924 }
1925
1926 if (!found_child) {
1927 found_child = audit_alloc_name(context, type);
1928 if (!found_child)
1929 return;
1930
1931 /* Re-use the name belonging to the slot for a matching parent
1932 * directory. All names for this context are relinquished in
1933 * audit_free_names() */
1934 if (found_parent) {
1935 found_child->name = found_parent->name;
1936 found_child->name_len = AUDIT_NAME_FULL;
1937 /* don't call __putname() */
1938 found_child->name_put = false;
1939 }
1940 }
1941 if (inode)
1942 audit_copy_inode(found_child, dentry, inode);
1943 else
1944 found_child->ino = (unsigned long)-1;
1945 }
1946 EXPORT_SYMBOL_GPL(__audit_inode_child);
1947
1948 /**
1949 * auditsc_get_stamp - get local copies of audit_context values
1950 * @ctx: audit_context for the task
1951 * @t: timespec to store time recorded in the audit_context
1952 * @serial: serial value that is recorded in the audit_context
1953 *
1954 * Also sets the context as auditable.
1955 */
1956 int auditsc_get_stamp(struct audit_context *ctx,
1957 struct timespec *t, unsigned int *serial)
1958 {
1959 if (!ctx->in_syscall)
1960 return 0;
1961 if (!ctx->serial)
1962 ctx->serial = audit_serial();
1963 t->tv_sec = ctx->ctime.tv_sec;
1964 t->tv_nsec = ctx->ctime.tv_nsec;
1965 *serial = ctx->serial;
1966 if (!ctx->prio) {
1967 ctx->prio = 1;
1968 ctx->current_state = AUDIT_RECORD_CONTEXT;
1969 }
1970 return 1;
1971 }
1972
1973 /* global counter which is incremented every time something logs in */
1974 static atomic_t session_id = ATOMIC_INIT(0);
1975
1976 /**
1977 * audit_set_loginuid - set current task's audit_context loginuid
1978 * @loginuid: loginuid value
1979 *
1980 * Returns 0.
1981 *
1982 * Called (set) from fs/proc/base.c::proc_loginuid_write().
1983 */
1984 int audit_set_loginuid(kuid_t loginuid)
1985 {
1986 struct task_struct *task = current;
1987 struct audit_context *context = task->audit_context;
1988 unsigned int sessionid;
1989
1990 #ifdef CONFIG_AUDIT_LOGINUID_IMMUTABLE
1991 if (audit_loginuid_set(task))
1992 return -EPERM;
1993 #else /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
1994 if (!capable(CAP_AUDIT_CONTROL))
1995 return -EPERM;
1996 #endif /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
1997
1998 sessionid = atomic_inc_return(&session_id);
1999 if (context && context->in_syscall) {
2000 struct audit_buffer *ab;
2001
2002 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2003 if (ab) {
2004 audit_log_format(ab, "login pid=%d uid=%u "
2005 "old auid=%u new auid=%u"
2006 " old ses=%u new ses=%u",
2007 task->pid,
2008 from_kuid(&init_user_ns, task_uid(task)),
2009 from_kuid(&init_user_ns, task->loginuid),
2010 from_kuid(&init_user_ns, loginuid),
2011 task->sessionid, sessionid);
2012 audit_log_end(ab);
2013 }
2014 }
2015 task->sessionid = sessionid;
2016 task->loginuid = loginuid;
2017 return 0;
2018 }
2019
2020 /**
2021 * __audit_mq_open - record audit data for a POSIX MQ open
2022 * @oflag: open flag
2023 * @mode: mode bits
2024 * @attr: queue attributes
2025 *
2026 */
2027 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2028 {
2029 struct audit_context *context = current->audit_context;
2030
2031 if (attr)
2032 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2033 else
2034 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2035
2036 context->mq_open.oflag = oflag;
2037 context->mq_open.mode = mode;
2038
2039 context->type = AUDIT_MQ_OPEN;
2040 }
2041
2042 /**
2043 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2044 * @mqdes: MQ descriptor
2045 * @msg_len: Message length
2046 * @msg_prio: Message priority
2047 * @abs_timeout: Message timeout in absolute time
2048 *
2049 */
2050 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2051 const struct timespec *abs_timeout)
2052 {
2053 struct audit_context *context = current->audit_context;
2054 struct timespec *p = &context->mq_sendrecv.abs_timeout;
2055
2056 if (abs_timeout)
2057 memcpy(p, abs_timeout, sizeof(struct timespec));
2058 else
2059 memset(p, 0, sizeof(struct timespec));
2060
2061 context->mq_sendrecv.mqdes = mqdes;
2062 context->mq_sendrecv.msg_len = msg_len;
2063 context->mq_sendrecv.msg_prio = msg_prio;
2064
2065 context->type = AUDIT_MQ_SENDRECV;
2066 }
2067
2068 /**
2069 * __audit_mq_notify - record audit data for a POSIX MQ notify
2070 * @mqdes: MQ descriptor
2071 * @notification: Notification event
2072 *
2073 */
2074
2075 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2076 {
2077 struct audit_context *context = current->audit_context;
2078
2079 if (notification)
2080 context->mq_notify.sigev_signo = notification->sigev_signo;
2081 else
2082 context->mq_notify.sigev_signo = 0;
2083
2084 context->mq_notify.mqdes = mqdes;
2085 context->type = AUDIT_MQ_NOTIFY;
2086 }
2087
2088 /**
2089 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2090 * @mqdes: MQ descriptor
2091 * @mqstat: MQ flags
2092 *
2093 */
2094 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2095 {
2096 struct audit_context *context = current->audit_context;
2097 context->mq_getsetattr.mqdes = mqdes;
2098 context->mq_getsetattr.mqstat = *mqstat;
2099 context->type = AUDIT_MQ_GETSETATTR;
2100 }
2101
2102 /**
2103 * audit_ipc_obj - record audit data for ipc object
2104 * @ipcp: ipc permissions
2105 *
2106 */
2107 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2108 {
2109 struct audit_context *context = current->audit_context;
2110 context->ipc.uid = ipcp->uid;
2111 context->ipc.gid = ipcp->gid;
2112 context->ipc.mode = ipcp->mode;
2113 context->ipc.has_perm = 0;
2114 security_ipc_getsecid(ipcp, &context->ipc.osid);
2115 context->type = AUDIT_IPC;
2116 }
2117
2118 /**
2119 * audit_ipc_set_perm - record audit data for new ipc permissions
2120 * @qbytes: msgq bytes
2121 * @uid: msgq user id
2122 * @gid: msgq group id
2123 * @mode: msgq mode (permissions)
2124 *
2125 * Called only after audit_ipc_obj().
2126 */
2127 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2128 {
2129 struct audit_context *context = current->audit_context;
2130
2131 context->ipc.qbytes = qbytes;
2132 context->ipc.perm_uid = uid;
2133 context->ipc.perm_gid = gid;
2134 context->ipc.perm_mode = mode;
2135 context->ipc.has_perm = 1;
2136 }
2137
2138 int __audit_bprm(struct linux_binprm *bprm)
2139 {
2140 struct audit_aux_data_execve *ax;
2141 struct audit_context *context = current->audit_context;
2142
2143 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2144 if (!ax)
2145 return -ENOMEM;
2146
2147 ax->argc = bprm->argc;
2148 ax->envc = bprm->envc;
2149 ax->mm = bprm->mm;
2150 ax->d.type = AUDIT_EXECVE;
2151 ax->d.next = context->aux;
2152 context->aux = (void *)ax;
2153 return 0;
2154 }
2155
2156
2157 /**
2158 * audit_socketcall - record audit data for sys_socketcall
2159 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2160 * @args: args array
2161 *
2162 */
2163 int __audit_socketcall(int nargs, unsigned long *args)
2164 {
2165 struct audit_context *context = current->audit_context;
2166
2167 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2168 return -EINVAL;
2169 context->type = AUDIT_SOCKETCALL;
2170 context->socketcall.nargs = nargs;
2171 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2172 return 0;
2173 }
2174
2175 /**
2176 * __audit_fd_pair - record audit data for pipe and socketpair
2177 * @fd1: the first file descriptor
2178 * @fd2: the second file descriptor
2179 *
2180 */
2181 void __audit_fd_pair(int fd1, int fd2)
2182 {
2183 struct audit_context *context = current->audit_context;
2184 context->fds[0] = fd1;
2185 context->fds[1] = fd2;
2186 }
2187
2188 /**
2189 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2190 * @len: data length in user space
2191 * @a: data address in kernel space
2192 *
2193 * Returns 0 for success or NULL context or < 0 on error.
2194 */
2195 int __audit_sockaddr(int len, void *a)
2196 {
2197 struct audit_context *context = current->audit_context;
2198
2199 if (!context->sockaddr) {
2200 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2201 if (!p)
2202 return -ENOMEM;
2203 context->sockaddr = p;
2204 }
2205
2206 context->sockaddr_len = len;
2207 memcpy(context->sockaddr, a, len);
2208 return 0;
2209 }
2210
2211 void __audit_ptrace(struct task_struct *t)
2212 {
2213 struct audit_context *context = current->audit_context;
2214
2215 context->target_pid = t->pid;
2216 context->target_auid = audit_get_loginuid(t);
2217 context->target_uid = task_uid(t);
2218 context->target_sessionid = audit_get_sessionid(t);
2219 security_task_getsecid(t, &context->target_sid);
2220 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2221 }
2222
2223 /**
2224 * audit_signal_info - record signal info for shutting down audit subsystem
2225 * @sig: signal value
2226 * @t: task being signaled
2227 *
2228 * If the audit subsystem is being terminated, record the task (pid)
2229 * and uid that is doing that.
2230 */
2231 int __audit_signal_info(int sig, struct task_struct *t)
2232 {
2233 struct audit_aux_data_pids *axp;
2234 struct task_struct *tsk = current;
2235 struct audit_context *ctx = tsk->audit_context;
2236 kuid_t uid = current_uid(), t_uid = task_uid(t);
2237
2238 if (audit_pid && t->tgid == audit_pid) {
2239 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2240 audit_sig_pid = tsk->pid;
2241 if (uid_valid(tsk->loginuid))
2242 audit_sig_uid = tsk->loginuid;
2243 else
2244 audit_sig_uid = uid;
2245 security_task_getsecid(tsk, &audit_sig_sid);
2246 }
2247 if (!audit_signals || audit_dummy_context())
2248 return 0;
2249 }
2250
2251 /* optimize the common case by putting first signal recipient directly
2252 * in audit_context */
2253 if (!ctx->target_pid) {
2254 ctx->target_pid = t->tgid;
2255 ctx->target_auid = audit_get_loginuid(t);
2256 ctx->target_uid = t_uid;
2257 ctx->target_sessionid = audit_get_sessionid(t);
2258 security_task_getsecid(t, &ctx->target_sid);
2259 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2260 return 0;
2261 }
2262
2263 axp = (void *)ctx->aux_pids;
2264 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2265 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2266 if (!axp)
2267 return -ENOMEM;
2268
2269 axp->d.type = AUDIT_OBJ_PID;
2270 axp->d.next = ctx->aux_pids;
2271 ctx->aux_pids = (void *)axp;
2272 }
2273 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2274
2275 axp->target_pid[axp->pid_count] = t->tgid;
2276 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2277 axp->target_uid[axp->pid_count] = t_uid;
2278 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2279 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2280 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2281 axp->pid_count++;
2282
2283 return 0;
2284 }
2285
2286 /**
2287 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2288 * @bprm: pointer to the bprm being processed
2289 * @new: the proposed new credentials
2290 * @old: the old credentials
2291 *
2292 * Simply check if the proc already has the caps given by the file and if not
2293 * store the priv escalation info for later auditing at the end of the syscall
2294 *
2295 * -Eric
2296 */
2297 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2298 const struct cred *new, const struct cred *old)
2299 {
2300 struct audit_aux_data_bprm_fcaps *ax;
2301 struct audit_context *context = current->audit_context;
2302 struct cpu_vfs_cap_data vcaps;
2303 struct dentry *dentry;
2304
2305 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2306 if (!ax)
2307 return -ENOMEM;
2308
2309 ax->d.type = AUDIT_BPRM_FCAPS;
2310 ax->d.next = context->aux;
2311 context->aux = (void *)ax;
2312
2313 dentry = dget(bprm->file->f_dentry);
2314 get_vfs_caps_from_disk(dentry, &vcaps);
2315 dput(dentry);
2316
2317 ax->fcap.permitted = vcaps.permitted;
2318 ax->fcap.inheritable = vcaps.inheritable;
2319 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2320 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2321
2322 ax->old_pcap.permitted = old->cap_permitted;
2323 ax->old_pcap.inheritable = old->cap_inheritable;
2324 ax->old_pcap.effective = old->cap_effective;
2325
2326 ax->new_pcap.permitted = new->cap_permitted;
2327 ax->new_pcap.inheritable = new->cap_inheritable;
2328 ax->new_pcap.effective = new->cap_effective;
2329 return 0;
2330 }
2331
2332 /**
2333 * __audit_log_capset - store information about the arguments to the capset syscall
2334 * @pid: target pid of the capset call
2335 * @new: the new credentials
2336 * @old: the old (current) credentials
2337 *
2338 * Record the aguments userspace sent to sys_capset for later printing by the
2339 * audit system if applicable
2340 */
2341 void __audit_log_capset(pid_t pid,
2342 const struct cred *new, const struct cred *old)
2343 {
2344 struct audit_context *context = current->audit_context;
2345 context->capset.pid = pid;
2346 context->capset.cap.effective = new->cap_effective;
2347 context->capset.cap.inheritable = new->cap_effective;
2348 context->capset.cap.permitted = new->cap_permitted;
2349 context->type = AUDIT_CAPSET;
2350 }
2351
2352 void __audit_mmap_fd(int fd, int flags)
2353 {
2354 struct audit_context *context = current->audit_context;
2355 context->mmap.fd = fd;
2356 context->mmap.flags = flags;
2357 context->type = AUDIT_MMAP;
2358 }
2359
2360 static void audit_log_task(struct audit_buffer *ab)
2361 {
2362 kuid_t auid, uid;
2363 kgid_t gid;
2364 unsigned int sessionid;
2365
2366 auid = audit_get_loginuid(current);
2367 sessionid = audit_get_sessionid(current);
2368 current_uid_gid(&uid, &gid);
2369
2370 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2371 from_kuid(&init_user_ns, auid),
2372 from_kuid(&init_user_ns, uid),
2373 from_kgid(&init_user_ns, gid),
2374 sessionid);
2375 audit_log_task_context(ab);
2376 audit_log_format(ab, " pid=%d comm=", current->pid);
2377 audit_log_untrustedstring(ab, current->comm);
2378 }
2379
2380 static void audit_log_abend(struct audit_buffer *ab, char *reason, long signr)
2381 {
2382 audit_log_task(ab);
2383 audit_log_format(ab, " reason=");
2384 audit_log_string(ab, reason);
2385 audit_log_format(ab, " sig=%ld", signr);
2386 }
2387 /**
2388 * audit_core_dumps - record information about processes that end abnormally
2389 * @signr: signal value
2390 *
2391 * If a process ends with a core dump, something fishy is going on and we
2392 * should record the event for investigation.
2393 */
2394 void audit_core_dumps(long signr)
2395 {
2396 struct audit_buffer *ab;
2397
2398 if (!audit_enabled)
2399 return;
2400
2401 if (signr == SIGQUIT) /* don't care for those */
2402 return;
2403
2404 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2405 if (unlikely(!ab))
2406 return;
2407 audit_log_abend(ab, "memory violation", signr);
2408 audit_log_end(ab);
2409 }
2410
2411 void __audit_seccomp(unsigned long syscall, long signr, int code)
2412 {
2413 struct audit_buffer *ab;
2414
2415 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_SECCOMP);
2416 if (unlikely(!ab))
2417 return;
2418 audit_log_task(ab);
2419 audit_log_format(ab, " sig=%ld", signr);
2420 audit_log_format(ab, " syscall=%ld", syscall);
2421 audit_log_format(ab, " compat=%d", is_compat_task());
2422 audit_log_format(ab, " ip=0x%lx", KSTK_EIP(current));
2423 audit_log_format(ab, " code=0x%x", code);
2424 audit_log_end(ab);
2425 }
2426
2427 struct list_head *audit_killed_trees(void)
2428 {
2429 struct audit_context *ctx = current->audit_context;
2430 if (likely(!ctx || !ctx->in_syscall))
2431 return NULL;
2432 return &ctx->killed_trees;
2433 }