Merge branch 'for-3.10' of git://linux-nfs.org/~bfields/linux
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / audit.c
1 /* audit.c -- Auditing support
2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3 * System-call specific features have moved to auditsc.c
4 *
5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
6 * All Rights Reserved.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 *
22 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
23 *
24 * Goals: 1) Integrate fully with Security Modules.
25 * 2) Minimal run-time overhead:
26 * a) Minimal when syscall auditing is disabled (audit_enable=0).
27 * b) Small when syscall auditing is enabled and no audit record
28 * is generated (defer as much work as possible to record
29 * generation time):
30 * i) context is allocated,
31 * ii) names from getname are stored without a copy, and
32 * iii) inode information stored from path_lookup.
33 * 3) Ability to disable syscall auditing at boot time (audit=0).
34 * 4) Usable by other parts of the kernel (if audit_log* is called,
35 * then a syscall record will be generated automatically for the
36 * current syscall).
37 * 5) Netlink interface to user-space.
38 * 6) Support low-overhead kernel-based filtering to minimize the
39 * information that must be passed to user-space.
40 *
41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
42 */
43
44 #include <linux/init.h>
45 #include <asm/types.h>
46 #include <linux/atomic.h>
47 #include <linux/mm.h>
48 #include <linux/export.h>
49 #include <linux/slab.h>
50 #include <linux/err.h>
51 #include <linux/kthread.h>
52
53 #include <linux/audit.h>
54
55 #include <net/sock.h>
56 #include <net/netlink.h>
57 #include <linux/skbuff.h>
58 #ifdef CONFIG_SECURITY
59 #include <linux/security.h>
60 #endif
61 #include <net/netlink.h>
62 #include <linux/freezer.h>
63 #include <linux/tty.h>
64 #include <linux/pid_namespace.h>
65
66 #include "audit.h"
67
68 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
69 * (Initialization happens after skb_init is called.) */
70 #define AUDIT_DISABLED -1
71 #define AUDIT_UNINITIALIZED 0
72 #define AUDIT_INITIALIZED 1
73 static int audit_initialized;
74
75 #define AUDIT_OFF 0
76 #define AUDIT_ON 1
77 #define AUDIT_LOCKED 2
78 int audit_enabled;
79 int audit_ever_enabled;
80
81 EXPORT_SYMBOL_GPL(audit_enabled);
82
83 /* Default state when kernel boots without any parameters. */
84 static int audit_default;
85
86 /* If auditing cannot proceed, audit_failure selects what happens. */
87 static int audit_failure = AUDIT_FAIL_PRINTK;
88
89 /*
90 * If audit records are to be written to the netlink socket, audit_pid
91 * contains the pid of the auditd process and audit_nlk_portid contains
92 * the portid to use to send netlink messages to that process.
93 */
94 int audit_pid;
95 static int audit_nlk_portid;
96
97 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
98 * to that number per second. This prevents DoS attacks, but results in
99 * audit records being dropped. */
100 static int audit_rate_limit;
101
102 /* Number of outstanding audit_buffers allowed. */
103 static int audit_backlog_limit = 64;
104 static int audit_backlog_wait_time = 60 * HZ;
105 static int audit_backlog_wait_overflow = 0;
106
107 /* The identity of the user shutting down the audit system. */
108 kuid_t audit_sig_uid = INVALID_UID;
109 pid_t audit_sig_pid = -1;
110 u32 audit_sig_sid = 0;
111
112 /* Records can be lost in several ways:
113 0) [suppressed in audit_alloc]
114 1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
115 2) out of memory in audit_log_move [alloc_skb]
116 3) suppressed due to audit_rate_limit
117 4) suppressed due to audit_backlog_limit
118 */
119 static atomic_t audit_lost = ATOMIC_INIT(0);
120
121 /* The netlink socket. */
122 static struct sock *audit_sock;
123
124 /* Hash for inode-based rules */
125 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
126
127 /* The audit_freelist is a list of pre-allocated audit buffers (if more
128 * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
129 * being placed on the freelist). */
130 static DEFINE_SPINLOCK(audit_freelist_lock);
131 static int audit_freelist_count;
132 static LIST_HEAD(audit_freelist);
133
134 static struct sk_buff_head audit_skb_queue;
135 /* queue of skbs to send to auditd when/if it comes back */
136 static struct sk_buff_head audit_skb_hold_queue;
137 static struct task_struct *kauditd_task;
138 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
139 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
140
141 /* Serialize requests from userspace. */
142 DEFINE_MUTEX(audit_cmd_mutex);
143
144 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
145 * audit records. Since printk uses a 1024 byte buffer, this buffer
146 * should be at least that large. */
147 #define AUDIT_BUFSIZ 1024
148
149 /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
150 * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */
151 #define AUDIT_MAXFREE (2*NR_CPUS)
152
153 /* The audit_buffer is used when formatting an audit record. The caller
154 * locks briefly to get the record off the freelist or to allocate the
155 * buffer, and locks briefly to send the buffer to the netlink layer or
156 * to place it on a transmit queue. Multiple audit_buffers can be in
157 * use simultaneously. */
158 struct audit_buffer {
159 struct list_head list;
160 struct sk_buff *skb; /* formatted skb ready to send */
161 struct audit_context *ctx; /* NULL or associated context */
162 gfp_t gfp_mask;
163 };
164
165 struct audit_reply {
166 int pid;
167 struct sk_buff *skb;
168 };
169
170 static void audit_set_pid(struct audit_buffer *ab, pid_t pid)
171 {
172 if (ab) {
173 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
174 nlh->nlmsg_pid = pid;
175 }
176 }
177
178 void audit_panic(const char *message)
179 {
180 switch (audit_failure)
181 {
182 case AUDIT_FAIL_SILENT:
183 break;
184 case AUDIT_FAIL_PRINTK:
185 if (printk_ratelimit())
186 printk(KERN_ERR "audit: %s\n", message);
187 break;
188 case AUDIT_FAIL_PANIC:
189 /* test audit_pid since printk is always losey, why bother? */
190 if (audit_pid)
191 panic("audit: %s\n", message);
192 break;
193 }
194 }
195
196 static inline int audit_rate_check(void)
197 {
198 static unsigned long last_check = 0;
199 static int messages = 0;
200 static DEFINE_SPINLOCK(lock);
201 unsigned long flags;
202 unsigned long now;
203 unsigned long elapsed;
204 int retval = 0;
205
206 if (!audit_rate_limit) return 1;
207
208 spin_lock_irqsave(&lock, flags);
209 if (++messages < audit_rate_limit) {
210 retval = 1;
211 } else {
212 now = jiffies;
213 elapsed = now - last_check;
214 if (elapsed > HZ) {
215 last_check = now;
216 messages = 0;
217 retval = 1;
218 }
219 }
220 spin_unlock_irqrestore(&lock, flags);
221
222 return retval;
223 }
224
225 /**
226 * audit_log_lost - conditionally log lost audit message event
227 * @message: the message stating reason for lost audit message
228 *
229 * Emit at least 1 message per second, even if audit_rate_check is
230 * throttling.
231 * Always increment the lost messages counter.
232 */
233 void audit_log_lost(const char *message)
234 {
235 static unsigned long last_msg = 0;
236 static DEFINE_SPINLOCK(lock);
237 unsigned long flags;
238 unsigned long now;
239 int print;
240
241 atomic_inc(&audit_lost);
242
243 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
244
245 if (!print) {
246 spin_lock_irqsave(&lock, flags);
247 now = jiffies;
248 if (now - last_msg > HZ) {
249 print = 1;
250 last_msg = now;
251 }
252 spin_unlock_irqrestore(&lock, flags);
253 }
254
255 if (print) {
256 if (printk_ratelimit())
257 printk(KERN_WARNING
258 "audit: audit_lost=%d audit_rate_limit=%d "
259 "audit_backlog_limit=%d\n",
260 atomic_read(&audit_lost),
261 audit_rate_limit,
262 audit_backlog_limit);
263 audit_panic(message);
264 }
265 }
266
267 static int audit_log_config_change(char *function_name, int new, int old,
268 kuid_t loginuid, u32 sessionid, u32 sid,
269 int allow_changes)
270 {
271 struct audit_buffer *ab;
272 int rc = 0;
273
274 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
275 if (unlikely(!ab))
276 return rc;
277 audit_log_format(ab, "%s=%d old=%d auid=%u ses=%u", function_name, new,
278 old, from_kuid(&init_user_ns, loginuid), sessionid);
279 if (sid) {
280 char *ctx = NULL;
281 u32 len;
282
283 rc = security_secid_to_secctx(sid, &ctx, &len);
284 if (rc) {
285 audit_log_format(ab, " sid=%u", sid);
286 allow_changes = 0; /* Something weird, deny request */
287 } else {
288 audit_log_format(ab, " subj=%s", ctx);
289 security_release_secctx(ctx, len);
290 }
291 }
292 audit_log_format(ab, " res=%d", allow_changes);
293 audit_log_end(ab);
294 return rc;
295 }
296
297 static int audit_do_config_change(char *function_name, int *to_change,
298 int new, kuid_t loginuid, u32 sessionid,
299 u32 sid)
300 {
301 int allow_changes, rc = 0, old = *to_change;
302
303 /* check if we are locked */
304 if (audit_enabled == AUDIT_LOCKED)
305 allow_changes = 0;
306 else
307 allow_changes = 1;
308
309 if (audit_enabled != AUDIT_OFF) {
310 rc = audit_log_config_change(function_name, new, old, loginuid,
311 sessionid, sid, allow_changes);
312 if (rc)
313 allow_changes = 0;
314 }
315
316 /* If we are allowed, make the change */
317 if (allow_changes == 1)
318 *to_change = new;
319 /* Not allowed, update reason */
320 else if (rc == 0)
321 rc = -EPERM;
322 return rc;
323 }
324
325 static int audit_set_rate_limit(int limit, kuid_t loginuid, u32 sessionid,
326 u32 sid)
327 {
328 return audit_do_config_change("audit_rate_limit", &audit_rate_limit,
329 limit, loginuid, sessionid, sid);
330 }
331
332 static int audit_set_backlog_limit(int limit, kuid_t loginuid, u32 sessionid,
333 u32 sid)
334 {
335 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit,
336 limit, loginuid, sessionid, sid);
337 }
338
339 static int audit_set_enabled(int state, kuid_t loginuid, u32 sessionid, u32 sid)
340 {
341 int rc;
342 if (state < AUDIT_OFF || state > AUDIT_LOCKED)
343 return -EINVAL;
344
345 rc = audit_do_config_change("audit_enabled", &audit_enabled, state,
346 loginuid, sessionid, sid);
347
348 if (!rc)
349 audit_ever_enabled |= !!state;
350
351 return rc;
352 }
353
354 static int audit_set_failure(int state, kuid_t loginuid, u32 sessionid, u32 sid)
355 {
356 if (state != AUDIT_FAIL_SILENT
357 && state != AUDIT_FAIL_PRINTK
358 && state != AUDIT_FAIL_PANIC)
359 return -EINVAL;
360
361 return audit_do_config_change("audit_failure", &audit_failure, state,
362 loginuid, sessionid, sid);
363 }
364
365 /*
366 * Queue skbs to be sent to auditd when/if it comes back. These skbs should
367 * already have been sent via prink/syslog and so if these messages are dropped
368 * it is not a huge concern since we already passed the audit_log_lost()
369 * notification and stuff. This is just nice to get audit messages during
370 * boot before auditd is running or messages generated while auditd is stopped.
371 * This only holds messages is audit_default is set, aka booting with audit=1
372 * or building your kernel that way.
373 */
374 static void audit_hold_skb(struct sk_buff *skb)
375 {
376 if (audit_default &&
377 skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit)
378 skb_queue_tail(&audit_skb_hold_queue, skb);
379 else
380 kfree_skb(skb);
381 }
382
383 /*
384 * For one reason or another this nlh isn't getting delivered to the userspace
385 * audit daemon, just send it to printk.
386 */
387 static void audit_printk_skb(struct sk_buff *skb)
388 {
389 struct nlmsghdr *nlh = nlmsg_hdr(skb);
390 char *data = nlmsg_data(nlh);
391
392 if (nlh->nlmsg_type != AUDIT_EOE) {
393 if (printk_ratelimit())
394 printk(KERN_NOTICE "type=%d %s\n", nlh->nlmsg_type, data);
395 else
396 audit_log_lost("printk limit exceeded\n");
397 }
398
399 audit_hold_skb(skb);
400 }
401
402 static void kauditd_send_skb(struct sk_buff *skb)
403 {
404 int err;
405 /* take a reference in case we can't send it and we want to hold it */
406 skb_get(skb);
407 err = netlink_unicast(audit_sock, skb, audit_nlk_portid, 0);
408 if (err < 0) {
409 BUG_ON(err != -ECONNREFUSED); /* Shouldn't happen */
410 printk(KERN_ERR "audit: *NO* daemon at audit_pid=%d\n", audit_pid);
411 audit_log_lost("auditd disappeared\n");
412 audit_pid = 0;
413 /* we might get lucky and get this in the next auditd */
414 audit_hold_skb(skb);
415 } else
416 /* drop the extra reference if sent ok */
417 consume_skb(skb);
418 }
419
420 static int kauditd_thread(void *dummy)
421 {
422 struct sk_buff *skb;
423
424 set_freezable();
425 while (!kthread_should_stop()) {
426 /*
427 * if auditd just started drain the queue of messages already
428 * sent to syslog/printk. remember loss here is ok. we already
429 * called audit_log_lost() if it didn't go out normally. so the
430 * race between the skb_dequeue and the next check for audit_pid
431 * doesn't matter.
432 *
433 * if you ever find kauditd to be too slow we can get a perf win
434 * by doing our own locking and keeping better track if there
435 * are messages in this queue. I don't see the need now, but
436 * in 5 years when I want to play with this again I'll see this
437 * note and still have no friggin idea what i'm thinking today.
438 */
439 if (audit_default && audit_pid) {
440 skb = skb_dequeue(&audit_skb_hold_queue);
441 if (unlikely(skb)) {
442 while (skb && audit_pid) {
443 kauditd_send_skb(skb);
444 skb = skb_dequeue(&audit_skb_hold_queue);
445 }
446 }
447 }
448
449 skb = skb_dequeue(&audit_skb_queue);
450 wake_up(&audit_backlog_wait);
451 if (skb) {
452 if (audit_pid)
453 kauditd_send_skb(skb);
454 else
455 audit_printk_skb(skb);
456 } else {
457 DECLARE_WAITQUEUE(wait, current);
458 set_current_state(TASK_INTERRUPTIBLE);
459 add_wait_queue(&kauditd_wait, &wait);
460
461 if (!skb_queue_len(&audit_skb_queue)) {
462 try_to_freeze();
463 schedule();
464 }
465
466 __set_current_state(TASK_RUNNING);
467 remove_wait_queue(&kauditd_wait, &wait);
468 }
469 }
470 return 0;
471 }
472
473 int audit_send_list(void *_dest)
474 {
475 struct audit_netlink_list *dest = _dest;
476 int pid = dest->pid;
477 struct sk_buff *skb;
478
479 /* wait for parent to finish and send an ACK */
480 mutex_lock(&audit_cmd_mutex);
481 mutex_unlock(&audit_cmd_mutex);
482
483 while ((skb = __skb_dequeue(&dest->q)) != NULL)
484 netlink_unicast(audit_sock, skb, pid, 0);
485
486 kfree(dest);
487
488 return 0;
489 }
490
491 struct sk_buff *audit_make_reply(int pid, int seq, int type, int done,
492 int multi, const void *payload, int size)
493 {
494 struct sk_buff *skb;
495 struct nlmsghdr *nlh;
496 void *data;
497 int flags = multi ? NLM_F_MULTI : 0;
498 int t = done ? NLMSG_DONE : type;
499
500 skb = nlmsg_new(size, GFP_KERNEL);
501 if (!skb)
502 return NULL;
503
504 nlh = nlmsg_put(skb, pid, seq, t, size, flags);
505 if (!nlh)
506 goto out_kfree_skb;
507 data = nlmsg_data(nlh);
508 memcpy(data, payload, size);
509 return skb;
510
511 out_kfree_skb:
512 kfree_skb(skb);
513 return NULL;
514 }
515
516 static int audit_send_reply_thread(void *arg)
517 {
518 struct audit_reply *reply = (struct audit_reply *)arg;
519
520 mutex_lock(&audit_cmd_mutex);
521 mutex_unlock(&audit_cmd_mutex);
522
523 /* Ignore failure. It'll only happen if the sender goes away,
524 because our timeout is set to infinite. */
525 netlink_unicast(audit_sock, reply->skb, reply->pid, 0);
526 kfree(reply);
527 return 0;
528 }
529 /**
530 * audit_send_reply - send an audit reply message via netlink
531 * @pid: process id to send reply to
532 * @seq: sequence number
533 * @type: audit message type
534 * @done: done (last) flag
535 * @multi: multi-part message flag
536 * @payload: payload data
537 * @size: payload size
538 *
539 * Allocates an skb, builds the netlink message, and sends it to the pid.
540 * No failure notifications.
541 */
542 static void audit_send_reply(int pid, int seq, int type, int done, int multi,
543 const void *payload, int size)
544 {
545 struct sk_buff *skb;
546 struct task_struct *tsk;
547 struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
548 GFP_KERNEL);
549
550 if (!reply)
551 return;
552
553 skb = audit_make_reply(pid, seq, type, done, multi, payload, size);
554 if (!skb)
555 goto out;
556
557 reply->pid = pid;
558 reply->skb = skb;
559
560 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
561 if (!IS_ERR(tsk))
562 return;
563 kfree_skb(skb);
564 out:
565 kfree(reply);
566 }
567
568 /*
569 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
570 * control messages.
571 */
572 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
573 {
574 int err = 0;
575
576 /* Only support the initial namespaces for now. */
577 if ((current_user_ns() != &init_user_ns) ||
578 (task_active_pid_ns(current) != &init_pid_ns))
579 return -EPERM;
580
581 switch (msg_type) {
582 case AUDIT_GET:
583 case AUDIT_LIST:
584 case AUDIT_LIST_RULES:
585 case AUDIT_SET:
586 case AUDIT_ADD:
587 case AUDIT_ADD_RULE:
588 case AUDIT_DEL:
589 case AUDIT_DEL_RULE:
590 case AUDIT_SIGNAL_INFO:
591 case AUDIT_TTY_GET:
592 case AUDIT_TTY_SET:
593 case AUDIT_TRIM:
594 case AUDIT_MAKE_EQUIV:
595 if (!capable(CAP_AUDIT_CONTROL))
596 err = -EPERM;
597 break;
598 case AUDIT_USER:
599 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
600 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
601 if (!capable(CAP_AUDIT_WRITE))
602 err = -EPERM;
603 break;
604 default: /* bad msg */
605 err = -EINVAL;
606 }
607
608 return err;
609 }
610
611 static int audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type,
612 kuid_t auid, u32 ses, u32 sid)
613 {
614 int rc = 0;
615 char *ctx = NULL;
616 u32 len;
617
618 if (!audit_enabled) {
619 *ab = NULL;
620 return rc;
621 }
622
623 *ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
624 if (unlikely(!*ab))
625 return rc;
626 audit_log_format(*ab, "pid=%d uid=%u auid=%u ses=%u",
627 task_tgid_vnr(current),
628 from_kuid(&init_user_ns, current_uid()),
629 from_kuid(&init_user_ns, auid), ses);
630 if (sid) {
631 rc = security_secid_to_secctx(sid, &ctx, &len);
632 if (rc)
633 audit_log_format(*ab, " ssid=%u", sid);
634 else {
635 audit_log_format(*ab, " subj=%s", ctx);
636 security_release_secctx(ctx, len);
637 }
638 }
639
640 return rc;
641 }
642
643 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
644 {
645 u32 seq, sid;
646 void *data;
647 struct audit_status *status_get, status_set;
648 int err;
649 struct audit_buffer *ab;
650 u16 msg_type = nlh->nlmsg_type;
651 kuid_t loginuid; /* loginuid of sender */
652 u32 sessionid;
653 struct audit_sig_info *sig_data;
654 char *ctx = NULL;
655 u32 len;
656
657 err = audit_netlink_ok(skb, msg_type);
658 if (err)
659 return err;
660
661 /* As soon as there's any sign of userspace auditd,
662 * start kauditd to talk to it */
663 if (!kauditd_task) {
664 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
665 if (IS_ERR(kauditd_task)) {
666 err = PTR_ERR(kauditd_task);
667 kauditd_task = NULL;
668 return err;
669 }
670 }
671 loginuid = audit_get_loginuid(current);
672 sessionid = audit_get_sessionid(current);
673 security_task_getsecid(current, &sid);
674 seq = nlh->nlmsg_seq;
675 data = nlmsg_data(nlh);
676
677 switch (msg_type) {
678 case AUDIT_GET:
679 status_set.enabled = audit_enabled;
680 status_set.failure = audit_failure;
681 status_set.pid = audit_pid;
682 status_set.rate_limit = audit_rate_limit;
683 status_set.backlog_limit = audit_backlog_limit;
684 status_set.lost = atomic_read(&audit_lost);
685 status_set.backlog = skb_queue_len(&audit_skb_queue);
686 audit_send_reply(NETLINK_CB(skb).portid, seq, AUDIT_GET, 0, 0,
687 &status_set, sizeof(status_set));
688 break;
689 case AUDIT_SET:
690 if (nlh->nlmsg_len < sizeof(struct audit_status))
691 return -EINVAL;
692 status_get = (struct audit_status *)data;
693 if (status_get->mask & AUDIT_STATUS_ENABLED) {
694 err = audit_set_enabled(status_get->enabled,
695 loginuid, sessionid, sid);
696 if (err < 0)
697 return err;
698 }
699 if (status_get->mask & AUDIT_STATUS_FAILURE) {
700 err = audit_set_failure(status_get->failure,
701 loginuid, sessionid, sid);
702 if (err < 0)
703 return err;
704 }
705 if (status_get->mask & AUDIT_STATUS_PID) {
706 int new_pid = status_get->pid;
707
708 if (audit_enabled != AUDIT_OFF)
709 audit_log_config_change("audit_pid", new_pid,
710 audit_pid, loginuid,
711 sessionid, sid, 1);
712
713 audit_pid = new_pid;
714 audit_nlk_portid = NETLINK_CB(skb).portid;
715 }
716 if (status_get->mask & AUDIT_STATUS_RATE_LIMIT) {
717 err = audit_set_rate_limit(status_get->rate_limit,
718 loginuid, sessionid, sid);
719 if (err < 0)
720 return err;
721 }
722 if (status_get->mask & AUDIT_STATUS_BACKLOG_LIMIT)
723 err = audit_set_backlog_limit(status_get->backlog_limit,
724 loginuid, sessionid, sid);
725 break;
726 case AUDIT_USER:
727 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
728 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
729 if (!audit_enabled && msg_type != AUDIT_USER_AVC)
730 return 0;
731
732 err = audit_filter_user();
733 if (err == 1) {
734 err = 0;
735 if (msg_type == AUDIT_USER_TTY) {
736 err = tty_audit_push_task(current, loginuid,
737 sessionid);
738 if (err)
739 break;
740 }
741 audit_log_common_recv_msg(&ab, msg_type,
742 loginuid, sessionid, sid);
743
744 if (msg_type != AUDIT_USER_TTY)
745 audit_log_format(ab, " msg='%.1024s'",
746 (char *)data);
747 else {
748 int size;
749
750 audit_log_format(ab, " msg=");
751 size = nlmsg_len(nlh);
752 if (size > 0 &&
753 ((unsigned char *)data)[size - 1] == '\0')
754 size--;
755 audit_log_n_untrustedstring(ab, data, size);
756 }
757 audit_set_pid(ab, NETLINK_CB(skb).portid);
758 audit_log_end(ab);
759 }
760 break;
761 case AUDIT_ADD:
762 case AUDIT_DEL:
763 if (nlmsg_len(nlh) < sizeof(struct audit_rule))
764 return -EINVAL;
765 if (audit_enabled == AUDIT_LOCKED) {
766 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE,
767 loginuid, sessionid, sid);
768
769 audit_log_format(ab, " audit_enabled=%d res=0",
770 audit_enabled);
771 audit_log_end(ab);
772 return -EPERM;
773 }
774 /* fallthrough */
775 case AUDIT_LIST:
776 err = audit_receive_filter(msg_type, NETLINK_CB(skb).portid,
777 seq, data, nlmsg_len(nlh),
778 loginuid, sessionid, sid);
779 break;
780 case AUDIT_ADD_RULE:
781 case AUDIT_DEL_RULE:
782 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
783 return -EINVAL;
784 if (audit_enabled == AUDIT_LOCKED) {
785 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE,
786 loginuid, sessionid, sid);
787
788 audit_log_format(ab, " audit_enabled=%d res=0",
789 audit_enabled);
790 audit_log_end(ab);
791 return -EPERM;
792 }
793 /* fallthrough */
794 case AUDIT_LIST_RULES:
795 err = audit_receive_filter(msg_type, NETLINK_CB(skb).portid,
796 seq, data, nlmsg_len(nlh),
797 loginuid, sessionid, sid);
798 break;
799 case AUDIT_TRIM:
800 audit_trim_trees();
801
802 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE,
803 loginuid, sessionid, sid);
804
805 audit_log_format(ab, " op=trim res=1");
806 audit_log_end(ab);
807 break;
808 case AUDIT_MAKE_EQUIV: {
809 void *bufp = data;
810 u32 sizes[2];
811 size_t msglen = nlmsg_len(nlh);
812 char *old, *new;
813
814 err = -EINVAL;
815 if (msglen < 2 * sizeof(u32))
816 break;
817 memcpy(sizes, bufp, 2 * sizeof(u32));
818 bufp += 2 * sizeof(u32);
819 msglen -= 2 * sizeof(u32);
820 old = audit_unpack_string(&bufp, &msglen, sizes[0]);
821 if (IS_ERR(old)) {
822 err = PTR_ERR(old);
823 break;
824 }
825 new = audit_unpack_string(&bufp, &msglen, sizes[1]);
826 if (IS_ERR(new)) {
827 err = PTR_ERR(new);
828 kfree(old);
829 break;
830 }
831 /* OK, here comes... */
832 err = audit_tag_tree(old, new);
833
834 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE,
835 loginuid, sessionid, sid);
836
837 audit_log_format(ab, " op=make_equiv old=");
838 audit_log_untrustedstring(ab, old);
839 audit_log_format(ab, " new=");
840 audit_log_untrustedstring(ab, new);
841 audit_log_format(ab, " res=%d", !err);
842 audit_log_end(ab);
843 kfree(old);
844 kfree(new);
845 break;
846 }
847 case AUDIT_SIGNAL_INFO:
848 len = 0;
849 if (audit_sig_sid) {
850 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
851 if (err)
852 return err;
853 }
854 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
855 if (!sig_data) {
856 if (audit_sig_sid)
857 security_release_secctx(ctx, len);
858 return -ENOMEM;
859 }
860 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
861 sig_data->pid = audit_sig_pid;
862 if (audit_sig_sid) {
863 memcpy(sig_data->ctx, ctx, len);
864 security_release_secctx(ctx, len);
865 }
866 audit_send_reply(NETLINK_CB(skb).portid, seq, AUDIT_SIGNAL_INFO,
867 0, 0, sig_data, sizeof(*sig_data) + len);
868 kfree(sig_data);
869 break;
870 case AUDIT_TTY_GET: {
871 struct audit_tty_status s;
872 struct task_struct *tsk = current;
873
874 spin_lock_irq(&tsk->sighand->siglock);
875 s.enabled = tsk->signal->audit_tty != 0;
876 spin_unlock_irq(&tsk->sighand->siglock);
877
878 audit_send_reply(NETLINK_CB(skb).portid, seq,
879 AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
880 break;
881 }
882 case AUDIT_TTY_SET: {
883 struct audit_tty_status *s;
884 struct task_struct *tsk = current;
885
886 if (nlh->nlmsg_len < sizeof(struct audit_tty_status))
887 return -EINVAL;
888 s = data;
889 if (s->enabled != 0 && s->enabled != 1)
890 return -EINVAL;
891
892 spin_lock_irq(&tsk->sighand->siglock);
893 tsk->signal->audit_tty = s->enabled != 0;
894 spin_unlock_irq(&tsk->sighand->siglock);
895 break;
896 }
897 default:
898 err = -EINVAL;
899 break;
900 }
901
902 return err < 0 ? err : 0;
903 }
904
905 /*
906 * Get message from skb. Each message is processed by audit_receive_msg.
907 * Malformed skbs with wrong length are discarded silently.
908 */
909 static void audit_receive_skb(struct sk_buff *skb)
910 {
911 struct nlmsghdr *nlh;
912 /*
913 * len MUST be signed for nlmsg_next to be able to dec it below 0
914 * if the nlmsg_len was not aligned
915 */
916 int len;
917 int err;
918
919 nlh = nlmsg_hdr(skb);
920 len = skb->len;
921
922 while (nlmsg_ok(nlh, len)) {
923 err = audit_receive_msg(skb, nlh);
924 /* if err or if this message says it wants a response */
925 if (err || (nlh->nlmsg_flags & NLM_F_ACK))
926 netlink_ack(skb, nlh, err);
927
928 nlh = nlmsg_next(nlh, &len);
929 }
930 }
931
932 /* Receive messages from netlink socket. */
933 static void audit_receive(struct sk_buff *skb)
934 {
935 mutex_lock(&audit_cmd_mutex);
936 audit_receive_skb(skb);
937 mutex_unlock(&audit_cmd_mutex);
938 }
939
940 /* Initialize audit support at boot time. */
941 static int __init audit_init(void)
942 {
943 int i;
944 struct netlink_kernel_cfg cfg = {
945 .input = audit_receive,
946 };
947
948 if (audit_initialized == AUDIT_DISABLED)
949 return 0;
950
951 printk(KERN_INFO "audit: initializing netlink socket (%s)\n",
952 audit_default ? "enabled" : "disabled");
953 audit_sock = netlink_kernel_create(&init_net, NETLINK_AUDIT, &cfg);
954 if (!audit_sock)
955 audit_panic("cannot initialize netlink socket");
956 else
957 audit_sock->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
958
959 skb_queue_head_init(&audit_skb_queue);
960 skb_queue_head_init(&audit_skb_hold_queue);
961 audit_initialized = AUDIT_INITIALIZED;
962 audit_enabled = audit_default;
963 audit_ever_enabled |= !!audit_default;
964
965 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
966
967 for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
968 INIT_LIST_HEAD(&audit_inode_hash[i]);
969
970 return 0;
971 }
972 __initcall(audit_init);
973
974 /* Process kernel command-line parameter at boot time. audit=0 or audit=1. */
975 static int __init audit_enable(char *str)
976 {
977 audit_default = !!simple_strtol(str, NULL, 0);
978 if (!audit_default)
979 audit_initialized = AUDIT_DISABLED;
980
981 printk(KERN_INFO "audit: %s", audit_default ? "enabled" : "disabled");
982
983 if (audit_initialized == AUDIT_INITIALIZED) {
984 audit_enabled = audit_default;
985 audit_ever_enabled |= !!audit_default;
986 } else if (audit_initialized == AUDIT_UNINITIALIZED) {
987 printk(" (after initialization)");
988 } else {
989 printk(" (until reboot)");
990 }
991 printk("\n");
992
993 return 1;
994 }
995
996 __setup("audit=", audit_enable);
997
998 static void audit_buffer_free(struct audit_buffer *ab)
999 {
1000 unsigned long flags;
1001
1002 if (!ab)
1003 return;
1004
1005 if (ab->skb)
1006 kfree_skb(ab->skb);
1007
1008 spin_lock_irqsave(&audit_freelist_lock, flags);
1009 if (audit_freelist_count > AUDIT_MAXFREE)
1010 kfree(ab);
1011 else {
1012 audit_freelist_count++;
1013 list_add(&ab->list, &audit_freelist);
1014 }
1015 spin_unlock_irqrestore(&audit_freelist_lock, flags);
1016 }
1017
1018 static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
1019 gfp_t gfp_mask, int type)
1020 {
1021 unsigned long flags;
1022 struct audit_buffer *ab = NULL;
1023 struct nlmsghdr *nlh;
1024
1025 spin_lock_irqsave(&audit_freelist_lock, flags);
1026 if (!list_empty(&audit_freelist)) {
1027 ab = list_entry(audit_freelist.next,
1028 struct audit_buffer, list);
1029 list_del(&ab->list);
1030 --audit_freelist_count;
1031 }
1032 spin_unlock_irqrestore(&audit_freelist_lock, flags);
1033
1034 if (!ab) {
1035 ab = kmalloc(sizeof(*ab), gfp_mask);
1036 if (!ab)
1037 goto err;
1038 }
1039
1040 ab->ctx = ctx;
1041 ab->gfp_mask = gfp_mask;
1042
1043 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1044 if (!ab->skb)
1045 goto err;
1046
1047 nlh = nlmsg_put(ab->skb, 0, 0, type, 0, 0);
1048 if (!nlh)
1049 goto out_kfree_skb;
1050
1051 return ab;
1052
1053 out_kfree_skb:
1054 kfree_skb(ab->skb);
1055 ab->skb = NULL;
1056 err:
1057 audit_buffer_free(ab);
1058 return NULL;
1059 }
1060
1061 /**
1062 * audit_serial - compute a serial number for the audit record
1063 *
1064 * Compute a serial number for the audit record. Audit records are
1065 * written to user-space as soon as they are generated, so a complete
1066 * audit record may be written in several pieces. The timestamp of the
1067 * record and this serial number are used by the user-space tools to
1068 * determine which pieces belong to the same audit record. The
1069 * (timestamp,serial) tuple is unique for each syscall and is live from
1070 * syscall entry to syscall exit.
1071 *
1072 * NOTE: Another possibility is to store the formatted records off the
1073 * audit context (for those records that have a context), and emit them
1074 * all at syscall exit. However, this could delay the reporting of
1075 * significant errors until syscall exit (or never, if the system
1076 * halts).
1077 */
1078 unsigned int audit_serial(void)
1079 {
1080 static DEFINE_SPINLOCK(serial_lock);
1081 static unsigned int serial = 0;
1082
1083 unsigned long flags;
1084 unsigned int ret;
1085
1086 spin_lock_irqsave(&serial_lock, flags);
1087 do {
1088 ret = ++serial;
1089 } while (unlikely(!ret));
1090 spin_unlock_irqrestore(&serial_lock, flags);
1091
1092 return ret;
1093 }
1094
1095 static inline void audit_get_stamp(struct audit_context *ctx,
1096 struct timespec *t, unsigned int *serial)
1097 {
1098 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1099 *t = CURRENT_TIME;
1100 *serial = audit_serial();
1101 }
1102 }
1103
1104 /*
1105 * Wait for auditd to drain the queue a little
1106 */
1107 static void wait_for_auditd(unsigned long sleep_time)
1108 {
1109 DECLARE_WAITQUEUE(wait, current);
1110 set_current_state(TASK_INTERRUPTIBLE);
1111 add_wait_queue(&audit_backlog_wait, &wait);
1112
1113 if (audit_backlog_limit &&
1114 skb_queue_len(&audit_skb_queue) > audit_backlog_limit)
1115 schedule_timeout(sleep_time);
1116
1117 __set_current_state(TASK_RUNNING);
1118 remove_wait_queue(&audit_backlog_wait, &wait);
1119 }
1120
1121 /* Obtain an audit buffer. This routine does locking to obtain the
1122 * audit buffer, but then no locking is required for calls to
1123 * audit_log_*format. If the tsk is a task that is currently in a
1124 * syscall, then the syscall is marked as auditable and an audit record
1125 * will be written at syscall exit. If there is no associated task, tsk
1126 * should be NULL. */
1127
1128 /**
1129 * audit_log_start - obtain an audit buffer
1130 * @ctx: audit_context (may be NULL)
1131 * @gfp_mask: type of allocation
1132 * @type: audit message type
1133 *
1134 * Returns audit_buffer pointer on success or NULL on error.
1135 *
1136 * Obtain an audit buffer. This routine does locking to obtain the
1137 * audit buffer, but then no locking is required for calls to
1138 * audit_log_*format. If the task (ctx) is a task that is currently in a
1139 * syscall, then the syscall is marked as auditable and an audit record
1140 * will be written at syscall exit. If there is no associated task, then
1141 * task context (ctx) should be NULL.
1142 */
1143 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1144 int type)
1145 {
1146 struct audit_buffer *ab = NULL;
1147 struct timespec t;
1148 unsigned int uninitialized_var(serial);
1149 int reserve;
1150 unsigned long timeout_start = jiffies;
1151
1152 if (audit_initialized != AUDIT_INITIALIZED)
1153 return NULL;
1154
1155 if (unlikely(audit_filter_type(type)))
1156 return NULL;
1157
1158 if (gfp_mask & __GFP_WAIT)
1159 reserve = 0;
1160 else
1161 reserve = 5; /* Allow atomic callers to go up to five
1162 entries over the normal backlog limit */
1163
1164 while (audit_backlog_limit
1165 && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) {
1166 if (gfp_mask & __GFP_WAIT && audit_backlog_wait_time) {
1167 unsigned long sleep_time;
1168
1169 sleep_time = timeout_start + audit_backlog_wait_time -
1170 jiffies;
1171 if ((long)sleep_time > 0)
1172 wait_for_auditd(sleep_time);
1173 continue;
1174 }
1175 if (audit_rate_check() && printk_ratelimit())
1176 printk(KERN_WARNING
1177 "audit: audit_backlog=%d > "
1178 "audit_backlog_limit=%d\n",
1179 skb_queue_len(&audit_skb_queue),
1180 audit_backlog_limit);
1181 audit_log_lost("backlog limit exceeded");
1182 audit_backlog_wait_time = audit_backlog_wait_overflow;
1183 wake_up(&audit_backlog_wait);
1184 return NULL;
1185 }
1186
1187 ab = audit_buffer_alloc(ctx, gfp_mask, type);
1188 if (!ab) {
1189 audit_log_lost("out of memory in audit_log_start");
1190 return NULL;
1191 }
1192
1193 audit_get_stamp(ab->ctx, &t, &serial);
1194
1195 audit_log_format(ab, "audit(%lu.%03lu:%u): ",
1196 t.tv_sec, t.tv_nsec/1000000, serial);
1197 return ab;
1198 }
1199
1200 /**
1201 * audit_expand - expand skb in the audit buffer
1202 * @ab: audit_buffer
1203 * @extra: space to add at tail of the skb
1204 *
1205 * Returns 0 (no space) on failed expansion, or available space if
1206 * successful.
1207 */
1208 static inline int audit_expand(struct audit_buffer *ab, int extra)
1209 {
1210 struct sk_buff *skb = ab->skb;
1211 int oldtail = skb_tailroom(skb);
1212 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1213 int newtail = skb_tailroom(skb);
1214
1215 if (ret < 0) {
1216 audit_log_lost("out of memory in audit_expand");
1217 return 0;
1218 }
1219
1220 skb->truesize += newtail - oldtail;
1221 return newtail;
1222 }
1223
1224 /*
1225 * Format an audit message into the audit buffer. If there isn't enough
1226 * room in the audit buffer, more room will be allocated and vsnprint
1227 * will be called a second time. Currently, we assume that a printk
1228 * can't format message larger than 1024 bytes, so we don't either.
1229 */
1230 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1231 va_list args)
1232 {
1233 int len, avail;
1234 struct sk_buff *skb;
1235 va_list args2;
1236
1237 if (!ab)
1238 return;
1239
1240 BUG_ON(!ab->skb);
1241 skb = ab->skb;
1242 avail = skb_tailroom(skb);
1243 if (avail == 0) {
1244 avail = audit_expand(ab, AUDIT_BUFSIZ);
1245 if (!avail)
1246 goto out;
1247 }
1248 va_copy(args2, args);
1249 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1250 if (len >= avail) {
1251 /* The printk buffer is 1024 bytes long, so if we get
1252 * here and AUDIT_BUFSIZ is at least 1024, then we can
1253 * log everything that printk could have logged. */
1254 avail = audit_expand(ab,
1255 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1256 if (!avail)
1257 goto out_va_end;
1258 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1259 }
1260 if (len > 0)
1261 skb_put(skb, len);
1262 out_va_end:
1263 va_end(args2);
1264 out:
1265 return;
1266 }
1267
1268 /**
1269 * audit_log_format - format a message into the audit buffer.
1270 * @ab: audit_buffer
1271 * @fmt: format string
1272 * @...: optional parameters matching @fmt string
1273 *
1274 * All the work is done in audit_log_vformat.
1275 */
1276 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1277 {
1278 va_list args;
1279
1280 if (!ab)
1281 return;
1282 va_start(args, fmt);
1283 audit_log_vformat(ab, fmt, args);
1284 va_end(args);
1285 }
1286
1287 /**
1288 * audit_log_hex - convert a buffer to hex and append it to the audit skb
1289 * @ab: the audit_buffer
1290 * @buf: buffer to convert to hex
1291 * @len: length of @buf to be converted
1292 *
1293 * No return value; failure to expand is silently ignored.
1294 *
1295 * This function will take the passed buf and convert it into a string of
1296 * ascii hex digits. The new string is placed onto the skb.
1297 */
1298 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1299 size_t len)
1300 {
1301 int i, avail, new_len;
1302 unsigned char *ptr;
1303 struct sk_buff *skb;
1304 static const unsigned char *hex = "0123456789ABCDEF";
1305
1306 if (!ab)
1307 return;
1308
1309 BUG_ON(!ab->skb);
1310 skb = ab->skb;
1311 avail = skb_tailroom(skb);
1312 new_len = len<<1;
1313 if (new_len >= avail) {
1314 /* Round the buffer request up to the next multiple */
1315 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1316 avail = audit_expand(ab, new_len);
1317 if (!avail)
1318 return;
1319 }
1320
1321 ptr = skb_tail_pointer(skb);
1322 for (i=0; i<len; i++) {
1323 *ptr++ = hex[(buf[i] & 0xF0)>>4]; /* Upper nibble */
1324 *ptr++ = hex[buf[i] & 0x0F]; /* Lower nibble */
1325 }
1326 *ptr = 0;
1327 skb_put(skb, len << 1); /* new string is twice the old string */
1328 }
1329
1330 /*
1331 * Format a string of no more than slen characters into the audit buffer,
1332 * enclosed in quote marks.
1333 */
1334 void audit_log_n_string(struct audit_buffer *ab, const char *string,
1335 size_t slen)
1336 {
1337 int avail, new_len;
1338 unsigned char *ptr;
1339 struct sk_buff *skb;
1340
1341 if (!ab)
1342 return;
1343
1344 BUG_ON(!ab->skb);
1345 skb = ab->skb;
1346 avail = skb_tailroom(skb);
1347 new_len = slen + 3; /* enclosing quotes + null terminator */
1348 if (new_len > avail) {
1349 avail = audit_expand(ab, new_len);
1350 if (!avail)
1351 return;
1352 }
1353 ptr = skb_tail_pointer(skb);
1354 *ptr++ = '"';
1355 memcpy(ptr, string, slen);
1356 ptr += slen;
1357 *ptr++ = '"';
1358 *ptr = 0;
1359 skb_put(skb, slen + 2); /* don't include null terminator */
1360 }
1361
1362 /**
1363 * audit_string_contains_control - does a string need to be logged in hex
1364 * @string: string to be checked
1365 * @len: max length of the string to check
1366 */
1367 int audit_string_contains_control(const char *string, size_t len)
1368 {
1369 const unsigned char *p;
1370 for (p = string; p < (const unsigned char *)string + len; p++) {
1371 if (*p == '"' || *p < 0x21 || *p > 0x7e)
1372 return 1;
1373 }
1374 return 0;
1375 }
1376
1377 /**
1378 * audit_log_n_untrustedstring - log a string that may contain random characters
1379 * @ab: audit_buffer
1380 * @len: length of string (not including trailing null)
1381 * @string: string to be logged
1382 *
1383 * This code will escape a string that is passed to it if the string
1384 * contains a control character, unprintable character, double quote mark,
1385 * or a space. Unescaped strings will start and end with a double quote mark.
1386 * Strings that are escaped are printed in hex (2 digits per char).
1387 *
1388 * The caller specifies the number of characters in the string to log, which may
1389 * or may not be the entire string.
1390 */
1391 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1392 size_t len)
1393 {
1394 if (audit_string_contains_control(string, len))
1395 audit_log_n_hex(ab, string, len);
1396 else
1397 audit_log_n_string(ab, string, len);
1398 }
1399
1400 /**
1401 * audit_log_untrustedstring - log a string that may contain random characters
1402 * @ab: audit_buffer
1403 * @string: string to be logged
1404 *
1405 * Same as audit_log_n_untrustedstring(), except that strlen is used to
1406 * determine string length.
1407 */
1408 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
1409 {
1410 audit_log_n_untrustedstring(ab, string, strlen(string));
1411 }
1412
1413 /* This is a helper-function to print the escaped d_path */
1414 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
1415 const struct path *path)
1416 {
1417 char *p, *pathname;
1418
1419 if (prefix)
1420 audit_log_format(ab, "%s", prefix);
1421
1422 /* We will allow 11 spaces for ' (deleted)' to be appended */
1423 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
1424 if (!pathname) {
1425 audit_log_string(ab, "<no_memory>");
1426 return;
1427 }
1428 p = d_path(path, pathname, PATH_MAX+11);
1429 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1430 /* FIXME: can we save some information here? */
1431 audit_log_string(ab, "<too_long>");
1432 } else
1433 audit_log_untrustedstring(ab, p);
1434 kfree(pathname);
1435 }
1436
1437 void audit_log_key(struct audit_buffer *ab, char *key)
1438 {
1439 audit_log_format(ab, " key=");
1440 if (key)
1441 audit_log_untrustedstring(ab, key);
1442 else
1443 audit_log_format(ab, "(null)");
1444 }
1445
1446 /**
1447 * audit_log_link_denied - report a link restriction denial
1448 * @operation: specific link opreation
1449 * @link: the path that triggered the restriction
1450 */
1451 void audit_log_link_denied(const char *operation, struct path *link)
1452 {
1453 struct audit_buffer *ab;
1454
1455 ab = audit_log_start(current->audit_context, GFP_KERNEL,
1456 AUDIT_ANOM_LINK);
1457 if (!ab)
1458 return;
1459 audit_log_format(ab, "op=%s action=denied", operation);
1460 audit_log_format(ab, " pid=%d comm=", current->pid);
1461 audit_log_untrustedstring(ab, current->comm);
1462 audit_log_d_path(ab, " path=", link);
1463 audit_log_format(ab, " dev=");
1464 audit_log_untrustedstring(ab, link->dentry->d_inode->i_sb->s_id);
1465 audit_log_format(ab, " ino=%lu", link->dentry->d_inode->i_ino);
1466 audit_log_end(ab);
1467 }
1468
1469 /**
1470 * audit_log_end - end one audit record
1471 * @ab: the audit_buffer
1472 *
1473 * The netlink_* functions cannot be called inside an irq context, so
1474 * the audit buffer is placed on a queue and a tasklet is scheduled to
1475 * remove them from the queue outside the irq context. May be called in
1476 * any context.
1477 */
1478 void audit_log_end(struct audit_buffer *ab)
1479 {
1480 if (!ab)
1481 return;
1482 if (!audit_rate_check()) {
1483 audit_log_lost("rate limit exceeded");
1484 } else {
1485 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
1486 nlh->nlmsg_len = ab->skb->len - NLMSG_HDRLEN;
1487
1488 if (audit_pid) {
1489 skb_queue_tail(&audit_skb_queue, ab->skb);
1490 wake_up_interruptible(&kauditd_wait);
1491 } else {
1492 audit_printk_skb(ab->skb);
1493 }
1494 ab->skb = NULL;
1495 }
1496 audit_buffer_free(ab);
1497 }
1498
1499 /**
1500 * audit_log - Log an audit record
1501 * @ctx: audit context
1502 * @gfp_mask: type of allocation
1503 * @type: audit message type
1504 * @fmt: format string to use
1505 * @...: variable parameters matching the format string
1506 *
1507 * This is a convenience function that calls audit_log_start,
1508 * audit_log_vformat, and audit_log_end. It may be called
1509 * in any context.
1510 */
1511 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
1512 const char *fmt, ...)
1513 {
1514 struct audit_buffer *ab;
1515 va_list args;
1516
1517 ab = audit_log_start(ctx, gfp_mask, type);
1518 if (ab) {
1519 va_start(args, fmt);
1520 audit_log_vformat(ab, fmt, args);
1521 va_end(args);
1522 audit_log_end(ab);
1523 }
1524 }
1525
1526 #ifdef CONFIG_SECURITY
1527 /**
1528 * audit_log_secctx - Converts and logs SELinux context
1529 * @ab: audit_buffer
1530 * @secid: security number
1531 *
1532 * This is a helper function that calls security_secid_to_secctx to convert
1533 * secid to secctx and then adds the (converted) SELinux context to the audit
1534 * log by calling audit_log_format, thus also preventing leak of internal secid
1535 * to userspace. If secid cannot be converted audit_panic is called.
1536 */
1537 void audit_log_secctx(struct audit_buffer *ab, u32 secid)
1538 {
1539 u32 len;
1540 char *secctx;
1541
1542 if (security_secid_to_secctx(secid, &secctx, &len)) {
1543 audit_panic("Cannot convert secid to context");
1544 } else {
1545 audit_log_format(ab, " obj=%s", secctx);
1546 security_release_secctx(secctx, len);
1547 }
1548 }
1549 EXPORT_SYMBOL(audit_log_secctx);
1550 #endif
1551
1552 EXPORT_SYMBOL(audit_log_start);
1553 EXPORT_SYMBOL(audit_log_end);
1554 EXPORT_SYMBOL(audit_log_format);
1555 EXPORT_SYMBOL(audit_log);