ipc/sem.c: cacheline align the semaphore structures
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / ipc / sem.c
1 /*
2 * linux/ipc/sem.c
3 * Copyright (C) 1992 Krishna Balasubramanian
4 * Copyright (C) 1995 Eric Schenk, Bruno Haible
5 *
6 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
7 *
8 * SMP-threaded, sysctl's added
9 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
10 * Enforced range limit on SEM_UNDO
11 * (c) 2001 Red Hat Inc
12 * Lockless wakeup
13 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
14 * Further wakeup optimizations, documentation
15 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
16 *
17 * support for audit of ipc object properties and permission changes
18 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
19 *
20 * namespaces support
21 * OpenVZ, SWsoft Inc.
22 * Pavel Emelianov <xemul@openvz.org>
23 *
24 * Implementation notes: (May 2010)
25 * This file implements System V semaphores.
26 *
27 * User space visible behavior:
28 * - FIFO ordering for semop() operations (just FIFO, not starvation
29 * protection)
30 * - multiple semaphore operations that alter the same semaphore in
31 * one semop() are handled.
32 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
33 * SETALL calls.
34 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
35 * - undo adjustments at process exit are limited to 0..SEMVMX.
36 * - namespace are supported.
37 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
38 * to /proc/sys/kernel/sem.
39 * - statistics about the usage are reported in /proc/sysvipc/sem.
40 *
41 * Internals:
42 * - scalability:
43 * - all global variables are read-mostly.
44 * - semop() calls and semctl(RMID) are synchronized by RCU.
45 * - most operations do write operations (actually: spin_lock calls) to
46 * the per-semaphore array structure.
47 * Thus: Perfect SMP scaling between independent semaphore arrays.
48 * If multiple semaphores in one array are used, then cache line
49 * trashing on the semaphore array spinlock will limit the scaling.
50 * - semncnt and semzcnt are calculated on demand in count_semncnt() and
51 * count_semzcnt()
52 * - the task that performs a successful semop() scans the list of all
53 * sleeping tasks and completes any pending operations that can be fulfilled.
54 * Semaphores are actively given to waiting tasks (necessary for FIFO).
55 * (see update_queue())
56 * - To improve the scalability, the actual wake-up calls are performed after
57 * dropping all locks. (see wake_up_sem_queue_prepare(),
58 * wake_up_sem_queue_do())
59 * - All work is done by the waker, the woken up task does not have to do
60 * anything - not even acquiring a lock or dropping a refcount.
61 * - A woken up task may not even touch the semaphore array anymore, it may
62 * have been destroyed already by a semctl(RMID).
63 * - The synchronizations between wake-ups due to a timeout/signal and a
64 * wake-up due to a completed semaphore operation is achieved by using an
65 * intermediate state (IN_WAKEUP).
66 * - UNDO values are stored in an array (one per process and per
67 * semaphore array, lazily allocated). For backwards compatibility, multiple
68 * modes for the UNDO variables are supported (per process, per thread)
69 * (see copy_semundo, CLONE_SYSVSEM)
70 * - There are two lists of the pending operations: a per-array list
71 * and per-semaphore list (stored in the array). This allows to achieve FIFO
72 * ordering without always scanning all pending operations.
73 * The worst-case behavior is nevertheless O(N^2) for N wakeups.
74 */
75
76 #include <linux/slab.h>
77 #include <linux/spinlock.h>
78 #include <linux/init.h>
79 #include <linux/proc_fs.h>
80 #include <linux/time.h>
81 #include <linux/security.h>
82 #include <linux/syscalls.h>
83 #include <linux/audit.h>
84 #include <linux/capability.h>
85 #include <linux/seq_file.h>
86 #include <linux/rwsem.h>
87 #include <linux/nsproxy.h>
88 #include <linux/ipc_namespace.h>
89
90 #include <asm/uaccess.h>
91 #include "util.h"
92
93 /* One semaphore structure for each semaphore in the system. */
94 struct sem {
95 int semval; /* current value */
96 int sempid; /* pid of last operation */
97 spinlock_t lock; /* spinlock for fine-grained semtimedop */
98 struct list_head sem_pending; /* pending single-sop operations */
99 } ____cacheline_aligned_in_smp;
100
101 /* One queue for each sleeping process in the system. */
102 struct sem_queue {
103 struct list_head list; /* queue of pending operations */
104 struct task_struct *sleeper; /* this process */
105 struct sem_undo *undo; /* undo structure */
106 int pid; /* process id of requesting process */
107 int status; /* completion status of operation */
108 struct sembuf *sops; /* array of pending operations */
109 int nsops; /* number of operations */
110 int alter; /* does *sops alter the array? */
111 };
112
113 /* Each task has a list of undo requests. They are executed automatically
114 * when the process exits.
115 */
116 struct sem_undo {
117 struct list_head list_proc; /* per-process list: *
118 * all undos from one process
119 * rcu protected */
120 struct rcu_head rcu; /* rcu struct for sem_undo */
121 struct sem_undo_list *ulp; /* back ptr to sem_undo_list */
122 struct list_head list_id; /* per semaphore array list:
123 * all undos for one array */
124 int semid; /* semaphore set identifier */
125 short *semadj; /* array of adjustments */
126 /* one per semaphore */
127 };
128
129 /* sem_undo_list controls shared access to the list of sem_undo structures
130 * that may be shared among all a CLONE_SYSVSEM task group.
131 */
132 struct sem_undo_list {
133 atomic_t refcnt;
134 spinlock_t lock;
135 struct list_head list_proc;
136 };
137
138
139 #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
140
141 #define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid)
142
143 static int newary(struct ipc_namespace *, struct ipc_params *);
144 static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
145 #ifdef CONFIG_PROC_FS
146 static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
147 #endif
148
149 #define SEMMSL_FAST 256 /* 512 bytes on stack */
150 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
151
152 /*
153 * linked list protection:
154 * sem_undo.id_next,
155 * sem_array.sem_pending{,last},
156 * sem_array.sem_undo: sem_lock() for read/write
157 * sem_undo.proc_next: only "current" is allowed to read/write that field.
158 *
159 */
160
161 #define sc_semmsl sem_ctls[0]
162 #define sc_semmns sem_ctls[1]
163 #define sc_semopm sem_ctls[2]
164 #define sc_semmni sem_ctls[3]
165
166 void sem_init_ns(struct ipc_namespace *ns)
167 {
168 ns->sc_semmsl = SEMMSL;
169 ns->sc_semmns = SEMMNS;
170 ns->sc_semopm = SEMOPM;
171 ns->sc_semmni = SEMMNI;
172 ns->used_sems = 0;
173 ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
174 }
175
176 #ifdef CONFIG_IPC_NS
177 void sem_exit_ns(struct ipc_namespace *ns)
178 {
179 free_ipcs(ns, &sem_ids(ns), freeary);
180 idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
181 }
182 #endif
183
184 void __init sem_init (void)
185 {
186 sem_init_ns(&init_ipc_ns);
187 ipc_init_proc_interface("sysvipc/sem",
188 " key semid perms nsems uid gid cuid cgid otime ctime\n",
189 IPC_SEM_IDS, sysvipc_sem_proc_show);
190 }
191
192 /*
193 * If the request contains only one semaphore operation, and there are
194 * no complex transactions pending, lock only the semaphore involved.
195 * Otherwise, lock the entire semaphore array, since we either have
196 * multiple semaphores in our own semops, or we need to look at
197 * semaphores from other pending complex operations.
198 *
199 * Carefully guard against sma->complex_count changing between zero
200 * and non-zero while we are spinning for the lock. The value of
201 * sma->complex_count cannot change while we are holding the lock,
202 * so sem_unlock should be fine.
203 *
204 * The global lock path checks that all the local locks have been released,
205 * checking each local lock once. This means that the local lock paths
206 * cannot start their critical sections while the global lock is held.
207 */
208 static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
209 int nsops)
210 {
211 int locknum;
212 again:
213 if (nsops == 1 && !sma->complex_count) {
214 struct sem *sem = sma->sem_base + sops->sem_num;
215
216 /* Lock just the semaphore we are interested in. */
217 spin_lock(&sem->lock);
218
219 /*
220 * If sma->complex_count was set while we were spinning,
221 * we may need to look at things we did not lock here.
222 */
223 if (unlikely(sma->complex_count)) {
224 spin_unlock(&sem->lock);
225 goto lock_array;
226 }
227
228 /*
229 * Another process is holding the global lock on the
230 * sem_array; we cannot enter our critical section,
231 * but have to wait for the global lock to be released.
232 */
233 if (unlikely(spin_is_locked(&sma->sem_perm.lock))) {
234 spin_unlock(&sem->lock);
235 spin_unlock_wait(&sma->sem_perm.lock);
236 goto again;
237 }
238
239 locknum = sops->sem_num;
240 } else {
241 int i;
242 /*
243 * Lock the semaphore array, and wait for all of the
244 * individual semaphore locks to go away. The code
245 * above ensures no new single-lock holders will enter
246 * their critical section while the array lock is held.
247 */
248 lock_array:
249 ipc_lock_object(&sma->sem_perm);
250 for (i = 0; i < sma->sem_nsems; i++) {
251 struct sem *sem = sma->sem_base + i;
252 spin_unlock_wait(&sem->lock);
253 }
254 locknum = -1;
255 }
256 return locknum;
257 }
258
259 static inline void sem_unlock(struct sem_array *sma, int locknum)
260 {
261 if (locknum == -1) {
262 ipc_unlock_object(&sma->sem_perm);
263 } else {
264 struct sem *sem = sma->sem_base + locknum;
265 spin_unlock(&sem->lock);
266 }
267 }
268
269 /*
270 * sem_lock_(check_) routines are called in the paths where the rw_mutex
271 * is not held.
272 *
273 * The caller holds the RCU read lock.
274 */
275 static inline struct sem_array *sem_obtain_lock(struct ipc_namespace *ns,
276 int id, struct sembuf *sops, int nsops, int *locknum)
277 {
278 struct kern_ipc_perm *ipcp;
279 struct sem_array *sma;
280
281 ipcp = ipc_obtain_object(&sem_ids(ns), id);
282 if (IS_ERR(ipcp))
283 return ERR_CAST(ipcp);
284
285 sma = container_of(ipcp, struct sem_array, sem_perm);
286 *locknum = sem_lock(sma, sops, nsops);
287
288 /* ipc_rmid() may have already freed the ID while sem_lock
289 * was spinning: verify that the structure is still valid
290 */
291 if (!ipcp->deleted)
292 return container_of(ipcp, struct sem_array, sem_perm);
293
294 sem_unlock(sma, *locknum);
295 return ERR_PTR(-EINVAL);
296 }
297
298 static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
299 {
300 struct kern_ipc_perm *ipcp = ipc_obtain_object(&sem_ids(ns), id);
301
302 if (IS_ERR(ipcp))
303 return ERR_CAST(ipcp);
304
305 return container_of(ipcp, struct sem_array, sem_perm);
306 }
307
308 static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
309 int id)
310 {
311 struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
312
313 if (IS_ERR(ipcp))
314 return ERR_CAST(ipcp);
315
316 return container_of(ipcp, struct sem_array, sem_perm);
317 }
318
319 static inline void sem_lock_and_putref(struct sem_array *sma)
320 {
321 sem_lock(sma, NULL, -1);
322 ipc_rcu_putref(sma);
323 }
324
325 static inline void sem_putref(struct sem_array *sma)
326 {
327 ipc_rcu_putref(sma);
328 }
329
330 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
331 {
332 ipc_rmid(&sem_ids(ns), &s->sem_perm);
333 }
334
335 /*
336 * Lockless wakeup algorithm:
337 * Without the check/retry algorithm a lockless wakeup is possible:
338 * - queue.status is initialized to -EINTR before blocking.
339 * - wakeup is performed by
340 * * unlinking the queue entry from sma->sem_pending
341 * * setting queue.status to IN_WAKEUP
342 * This is the notification for the blocked thread that a
343 * result value is imminent.
344 * * call wake_up_process
345 * * set queue.status to the final value.
346 * - the previously blocked thread checks queue.status:
347 * * if it's IN_WAKEUP, then it must wait until the value changes
348 * * if it's not -EINTR, then the operation was completed by
349 * update_queue. semtimedop can return queue.status without
350 * performing any operation on the sem array.
351 * * otherwise it must acquire the spinlock and check what's up.
352 *
353 * The two-stage algorithm is necessary to protect against the following
354 * races:
355 * - if queue.status is set after wake_up_process, then the woken up idle
356 * thread could race forward and try (and fail) to acquire sma->lock
357 * before update_queue had a chance to set queue.status
358 * - if queue.status is written before wake_up_process and if the
359 * blocked process is woken up by a signal between writing
360 * queue.status and the wake_up_process, then the woken up
361 * process could return from semtimedop and die by calling
362 * sys_exit before wake_up_process is called. Then wake_up_process
363 * will oops, because the task structure is already invalid.
364 * (yes, this happened on s390 with sysv msg).
365 *
366 */
367 #define IN_WAKEUP 1
368
369 /**
370 * newary - Create a new semaphore set
371 * @ns: namespace
372 * @params: ptr to the structure that contains key, semflg and nsems
373 *
374 * Called with sem_ids.rw_mutex held (as a writer)
375 */
376
377 static int newary(struct ipc_namespace *ns, struct ipc_params *params)
378 {
379 int id;
380 int retval;
381 struct sem_array *sma;
382 int size;
383 key_t key = params->key;
384 int nsems = params->u.nsems;
385 int semflg = params->flg;
386 int i;
387
388 if (!nsems)
389 return -EINVAL;
390 if (ns->used_sems + nsems > ns->sc_semmns)
391 return -ENOSPC;
392
393 size = sizeof (*sma) + nsems * sizeof (struct sem);
394 sma = ipc_rcu_alloc(size);
395 if (!sma) {
396 return -ENOMEM;
397 }
398 memset (sma, 0, size);
399
400 sma->sem_perm.mode = (semflg & S_IRWXUGO);
401 sma->sem_perm.key = key;
402
403 sma->sem_perm.security = NULL;
404 retval = security_sem_alloc(sma);
405 if (retval) {
406 ipc_rcu_putref(sma);
407 return retval;
408 }
409
410 id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
411 if (id < 0) {
412 security_sem_free(sma);
413 ipc_rcu_putref(sma);
414 return id;
415 }
416 ns->used_sems += nsems;
417
418 sma->sem_base = (struct sem *) &sma[1];
419
420 for (i = 0; i < nsems; i++) {
421 INIT_LIST_HEAD(&sma->sem_base[i].sem_pending);
422 spin_lock_init(&sma->sem_base[i].lock);
423 }
424
425 sma->complex_count = 0;
426 INIT_LIST_HEAD(&sma->sem_pending);
427 INIT_LIST_HEAD(&sma->list_id);
428 sma->sem_nsems = nsems;
429 sma->sem_ctime = get_seconds();
430 sem_unlock(sma, -1);
431 rcu_read_unlock();
432
433 return sma->sem_perm.id;
434 }
435
436
437 /*
438 * Called with sem_ids.rw_mutex and ipcp locked.
439 */
440 static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
441 {
442 struct sem_array *sma;
443
444 sma = container_of(ipcp, struct sem_array, sem_perm);
445 return security_sem_associate(sma, semflg);
446 }
447
448 /*
449 * Called with sem_ids.rw_mutex and ipcp locked.
450 */
451 static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
452 struct ipc_params *params)
453 {
454 struct sem_array *sma;
455
456 sma = container_of(ipcp, struct sem_array, sem_perm);
457 if (params->u.nsems > sma->sem_nsems)
458 return -EINVAL;
459
460 return 0;
461 }
462
463 SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
464 {
465 struct ipc_namespace *ns;
466 struct ipc_ops sem_ops;
467 struct ipc_params sem_params;
468
469 ns = current->nsproxy->ipc_ns;
470
471 if (nsems < 0 || nsems > ns->sc_semmsl)
472 return -EINVAL;
473
474 sem_ops.getnew = newary;
475 sem_ops.associate = sem_security;
476 sem_ops.more_checks = sem_more_checks;
477
478 sem_params.key = key;
479 sem_params.flg = semflg;
480 sem_params.u.nsems = nsems;
481
482 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
483 }
484
485 /*
486 * Determine whether a sequence of semaphore operations would succeed
487 * all at once. Return 0 if yes, 1 if need to sleep, else return error code.
488 */
489
490 static int try_atomic_semop (struct sem_array * sma, struct sembuf * sops,
491 int nsops, struct sem_undo *un, int pid)
492 {
493 int result, sem_op;
494 struct sembuf *sop;
495 struct sem * curr;
496
497 for (sop = sops; sop < sops + nsops; sop++) {
498 curr = sma->sem_base + sop->sem_num;
499 sem_op = sop->sem_op;
500 result = curr->semval;
501
502 if (!sem_op && result)
503 goto would_block;
504
505 result += sem_op;
506 if (result < 0)
507 goto would_block;
508 if (result > SEMVMX)
509 goto out_of_range;
510 if (sop->sem_flg & SEM_UNDO) {
511 int undo = un->semadj[sop->sem_num] - sem_op;
512 /*
513 * Exceeding the undo range is an error.
514 */
515 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
516 goto out_of_range;
517 }
518 curr->semval = result;
519 }
520
521 sop--;
522 while (sop >= sops) {
523 sma->sem_base[sop->sem_num].sempid = pid;
524 if (sop->sem_flg & SEM_UNDO)
525 un->semadj[sop->sem_num] -= sop->sem_op;
526 sop--;
527 }
528
529 return 0;
530
531 out_of_range:
532 result = -ERANGE;
533 goto undo;
534
535 would_block:
536 if (sop->sem_flg & IPC_NOWAIT)
537 result = -EAGAIN;
538 else
539 result = 1;
540
541 undo:
542 sop--;
543 while (sop >= sops) {
544 sma->sem_base[sop->sem_num].semval -= sop->sem_op;
545 sop--;
546 }
547
548 return result;
549 }
550
551 /** wake_up_sem_queue_prepare(q, error): Prepare wake-up
552 * @q: queue entry that must be signaled
553 * @error: Error value for the signal
554 *
555 * Prepare the wake-up of the queue entry q.
556 */
557 static void wake_up_sem_queue_prepare(struct list_head *pt,
558 struct sem_queue *q, int error)
559 {
560 if (list_empty(pt)) {
561 /*
562 * Hold preempt off so that we don't get preempted and have the
563 * wakee busy-wait until we're scheduled back on.
564 */
565 preempt_disable();
566 }
567 q->status = IN_WAKEUP;
568 q->pid = error;
569
570 list_add_tail(&q->list, pt);
571 }
572
573 /**
574 * wake_up_sem_queue_do(pt) - do the actual wake-up
575 * @pt: list of tasks to be woken up
576 *
577 * Do the actual wake-up.
578 * The function is called without any locks held, thus the semaphore array
579 * could be destroyed already and the tasks can disappear as soon as the
580 * status is set to the actual return code.
581 */
582 static void wake_up_sem_queue_do(struct list_head *pt)
583 {
584 struct sem_queue *q, *t;
585 int did_something;
586
587 did_something = !list_empty(pt);
588 list_for_each_entry_safe(q, t, pt, list) {
589 wake_up_process(q->sleeper);
590 /* q can disappear immediately after writing q->status. */
591 smp_wmb();
592 q->status = q->pid;
593 }
594 if (did_something)
595 preempt_enable();
596 }
597
598 static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
599 {
600 list_del(&q->list);
601 if (q->nsops > 1)
602 sma->complex_count--;
603 }
604
605 /** check_restart(sma, q)
606 * @sma: semaphore array
607 * @q: the operation that just completed
608 *
609 * update_queue is O(N^2) when it restarts scanning the whole queue of
610 * waiting operations. Therefore this function checks if the restart is
611 * really necessary. It is called after a previously waiting operation
612 * was completed.
613 */
614 static int check_restart(struct sem_array *sma, struct sem_queue *q)
615 {
616 struct sem *curr;
617 struct sem_queue *h;
618
619 /* if the operation didn't modify the array, then no restart */
620 if (q->alter == 0)
621 return 0;
622
623 /* pending complex operations are too difficult to analyse */
624 if (sma->complex_count)
625 return 1;
626
627 /* we were a sleeping complex operation. Too difficult */
628 if (q->nsops > 1)
629 return 1;
630
631 curr = sma->sem_base + q->sops[0].sem_num;
632
633 /* No-one waits on this queue */
634 if (list_empty(&curr->sem_pending))
635 return 0;
636
637 /* the new semaphore value */
638 if (curr->semval) {
639 /* It is impossible that someone waits for the new value:
640 * - q is a previously sleeping simple operation that
641 * altered the array. It must be a decrement, because
642 * simple increments never sleep.
643 * - The value is not 0, thus wait-for-zero won't proceed.
644 * - If there are older (higher priority) decrements
645 * in the queue, then they have observed the original
646 * semval value and couldn't proceed. The operation
647 * decremented to value - thus they won't proceed either.
648 */
649 BUG_ON(q->sops[0].sem_op >= 0);
650 return 0;
651 }
652 /*
653 * semval is 0. Check if there are wait-for-zero semops.
654 * They must be the first entries in the per-semaphore queue
655 */
656 h = list_first_entry(&curr->sem_pending, struct sem_queue, list);
657 BUG_ON(h->nsops != 1);
658 BUG_ON(h->sops[0].sem_num != q->sops[0].sem_num);
659
660 /* Yes, there is a wait-for-zero semop. Restart */
661 if (h->sops[0].sem_op == 0)
662 return 1;
663
664 /* Again - no-one is waiting for the new value. */
665 return 0;
666 }
667
668
669 /**
670 * update_queue(sma, semnum): Look for tasks that can be completed.
671 * @sma: semaphore array.
672 * @semnum: semaphore that was modified.
673 * @pt: list head for the tasks that must be woken up.
674 *
675 * update_queue must be called after a semaphore in a semaphore array
676 * was modified. If multiple semaphores were modified, update_queue must
677 * be called with semnum = -1, as well as with the number of each modified
678 * semaphore.
679 * The tasks that must be woken up are added to @pt. The return code
680 * is stored in q->pid.
681 * The function return 1 if at least one semop was completed successfully.
682 */
683 static int update_queue(struct sem_array *sma, int semnum, struct list_head *pt)
684 {
685 struct sem_queue *q;
686 struct list_head *walk;
687 struct list_head *pending_list;
688 int semop_completed = 0;
689
690 if (semnum == -1)
691 pending_list = &sma->sem_pending;
692 else
693 pending_list = &sma->sem_base[semnum].sem_pending;
694
695 again:
696 walk = pending_list->next;
697 while (walk != pending_list) {
698 int error, restart;
699
700 q = container_of(walk, struct sem_queue, list);
701 walk = walk->next;
702
703 /* If we are scanning the single sop, per-semaphore list of
704 * one semaphore and that semaphore is 0, then it is not
705 * necessary to scan the "alter" entries: simple increments
706 * that affect only one entry succeed immediately and cannot
707 * be in the per semaphore pending queue, and decrements
708 * cannot be successful if the value is already 0.
709 */
710 if (semnum != -1 && sma->sem_base[semnum].semval == 0 &&
711 q->alter)
712 break;
713
714 error = try_atomic_semop(sma, q->sops, q->nsops,
715 q->undo, q->pid);
716
717 /* Does q->sleeper still need to sleep? */
718 if (error > 0)
719 continue;
720
721 unlink_queue(sma, q);
722
723 if (error) {
724 restart = 0;
725 } else {
726 semop_completed = 1;
727 restart = check_restart(sma, q);
728 }
729
730 wake_up_sem_queue_prepare(pt, q, error);
731 if (restart)
732 goto again;
733 }
734 return semop_completed;
735 }
736
737 /**
738 * do_smart_update(sma, sops, nsops, otime, pt) - optimized update_queue
739 * @sma: semaphore array
740 * @sops: operations that were performed
741 * @nsops: number of operations
742 * @otime: force setting otime
743 * @pt: list head of the tasks that must be woken up.
744 *
745 * do_smart_update() does the required called to update_queue, based on the
746 * actual changes that were performed on the semaphore array.
747 * Note that the function does not do the actual wake-up: the caller is
748 * responsible for calling wake_up_sem_queue_do(@pt).
749 * It is safe to perform this call after dropping all locks.
750 */
751 static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
752 int otime, struct list_head *pt)
753 {
754 int i;
755 int progress;
756
757 progress = 1;
758 retry_global:
759 if (sma->complex_count) {
760 if (update_queue(sma, -1, pt)) {
761 progress = 1;
762 otime = 1;
763 sops = NULL;
764 }
765 }
766 if (!progress)
767 goto done;
768
769 if (!sops) {
770 /* No semops; something special is going on. */
771 for (i = 0; i < sma->sem_nsems; i++) {
772 if (update_queue(sma, i, pt)) {
773 otime = 1;
774 progress = 1;
775 }
776 }
777 goto done_checkretry;
778 }
779
780 /* Check the semaphores that were modified. */
781 for (i = 0; i < nsops; i++) {
782 if (sops[i].sem_op > 0 ||
783 (sops[i].sem_op < 0 &&
784 sma->sem_base[sops[i].sem_num].semval == 0))
785 if (update_queue(sma, sops[i].sem_num, pt)) {
786 otime = 1;
787 progress = 1;
788 }
789 }
790 done_checkretry:
791 if (progress) {
792 progress = 0;
793 goto retry_global;
794 }
795 done:
796 if (otime)
797 sma->sem_otime = get_seconds();
798 }
799
800
801 /* The following counts are associated to each semaphore:
802 * semncnt number of tasks waiting on semval being nonzero
803 * semzcnt number of tasks waiting on semval being zero
804 * This model assumes that a task waits on exactly one semaphore.
805 * Since semaphore operations are to be performed atomically, tasks actually
806 * wait on a whole sequence of semaphores simultaneously.
807 * The counts we return here are a rough approximation, but still
808 * warrant that semncnt+semzcnt>0 if the task is on the pending queue.
809 */
810 static int count_semncnt (struct sem_array * sma, ushort semnum)
811 {
812 int semncnt;
813 struct sem_queue * q;
814
815 semncnt = 0;
816 list_for_each_entry(q, &sma->sem_base[semnum].sem_pending, list) {
817 struct sembuf * sops = q->sops;
818 BUG_ON(sops->sem_num != semnum);
819 if ((sops->sem_op < 0) && !(sops->sem_flg & IPC_NOWAIT))
820 semncnt++;
821 }
822
823 list_for_each_entry(q, &sma->sem_pending, list) {
824 struct sembuf * sops = q->sops;
825 int nsops = q->nsops;
826 int i;
827 for (i = 0; i < nsops; i++)
828 if (sops[i].sem_num == semnum
829 && (sops[i].sem_op < 0)
830 && !(sops[i].sem_flg & IPC_NOWAIT))
831 semncnt++;
832 }
833 return semncnt;
834 }
835
836 static int count_semzcnt (struct sem_array * sma, ushort semnum)
837 {
838 int semzcnt;
839 struct sem_queue * q;
840
841 semzcnt = 0;
842 list_for_each_entry(q, &sma->sem_base[semnum].sem_pending, list) {
843 struct sembuf * sops = q->sops;
844 BUG_ON(sops->sem_num != semnum);
845 if ((sops->sem_op == 0) && !(sops->sem_flg & IPC_NOWAIT))
846 semzcnt++;
847 }
848
849 list_for_each_entry(q, &sma->sem_pending, list) {
850 struct sembuf * sops = q->sops;
851 int nsops = q->nsops;
852 int i;
853 for (i = 0; i < nsops; i++)
854 if (sops[i].sem_num == semnum
855 && (sops[i].sem_op == 0)
856 && !(sops[i].sem_flg & IPC_NOWAIT))
857 semzcnt++;
858 }
859 return semzcnt;
860 }
861
862 /* Free a semaphore set. freeary() is called with sem_ids.rw_mutex locked
863 * as a writer and the spinlock for this semaphore set hold. sem_ids.rw_mutex
864 * remains locked on exit.
865 */
866 static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
867 {
868 struct sem_undo *un, *tu;
869 struct sem_queue *q, *tq;
870 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
871 struct list_head tasks;
872 int i;
873
874 /* Free the existing undo structures for this semaphore set. */
875 ipc_assert_locked_object(&sma->sem_perm);
876 list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
877 list_del(&un->list_id);
878 spin_lock(&un->ulp->lock);
879 un->semid = -1;
880 list_del_rcu(&un->list_proc);
881 spin_unlock(&un->ulp->lock);
882 kfree_rcu(un, rcu);
883 }
884
885 /* Wake up all pending processes and let them fail with EIDRM. */
886 INIT_LIST_HEAD(&tasks);
887 list_for_each_entry_safe(q, tq, &sma->sem_pending, list) {
888 unlink_queue(sma, q);
889 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
890 }
891 for (i = 0; i < sma->sem_nsems; i++) {
892 struct sem *sem = sma->sem_base + i;
893 list_for_each_entry_safe(q, tq, &sem->sem_pending, list) {
894 unlink_queue(sma, q);
895 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
896 }
897 }
898
899 /* Remove the semaphore set from the IDR */
900 sem_rmid(ns, sma);
901 sem_unlock(sma, -1);
902 rcu_read_unlock();
903
904 wake_up_sem_queue_do(&tasks);
905 ns->used_sems -= sma->sem_nsems;
906 security_sem_free(sma);
907 ipc_rcu_putref(sma);
908 }
909
910 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
911 {
912 switch(version) {
913 case IPC_64:
914 return copy_to_user(buf, in, sizeof(*in));
915 case IPC_OLD:
916 {
917 struct semid_ds out;
918
919 memset(&out, 0, sizeof(out));
920
921 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
922
923 out.sem_otime = in->sem_otime;
924 out.sem_ctime = in->sem_ctime;
925 out.sem_nsems = in->sem_nsems;
926
927 return copy_to_user(buf, &out, sizeof(out));
928 }
929 default:
930 return -EINVAL;
931 }
932 }
933
934 static int semctl_nolock(struct ipc_namespace *ns, int semid,
935 int cmd, int version, void __user *p)
936 {
937 int err;
938 struct sem_array *sma;
939
940 switch(cmd) {
941 case IPC_INFO:
942 case SEM_INFO:
943 {
944 struct seminfo seminfo;
945 int max_id;
946
947 err = security_sem_semctl(NULL, cmd);
948 if (err)
949 return err;
950
951 memset(&seminfo,0,sizeof(seminfo));
952 seminfo.semmni = ns->sc_semmni;
953 seminfo.semmns = ns->sc_semmns;
954 seminfo.semmsl = ns->sc_semmsl;
955 seminfo.semopm = ns->sc_semopm;
956 seminfo.semvmx = SEMVMX;
957 seminfo.semmnu = SEMMNU;
958 seminfo.semmap = SEMMAP;
959 seminfo.semume = SEMUME;
960 down_read(&sem_ids(ns).rw_mutex);
961 if (cmd == SEM_INFO) {
962 seminfo.semusz = sem_ids(ns).in_use;
963 seminfo.semaem = ns->used_sems;
964 } else {
965 seminfo.semusz = SEMUSZ;
966 seminfo.semaem = SEMAEM;
967 }
968 max_id = ipc_get_maxid(&sem_ids(ns));
969 up_read(&sem_ids(ns).rw_mutex);
970 if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
971 return -EFAULT;
972 return (max_id < 0) ? 0: max_id;
973 }
974 case IPC_STAT:
975 case SEM_STAT:
976 {
977 struct semid64_ds tbuf;
978 int id = 0;
979
980 memset(&tbuf, 0, sizeof(tbuf));
981
982 rcu_read_lock();
983 if (cmd == SEM_STAT) {
984 sma = sem_obtain_object(ns, semid);
985 if (IS_ERR(sma)) {
986 err = PTR_ERR(sma);
987 goto out_unlock;
988 }
989 id = sma->sem_perm.id;
990 } else {
991 sma = sem_obtain_object_check(ns, semid);
992 if (IS_ERR(sma)) {
993 err = PTR_ERR(sma);
994 goto out_unlock;
995 }
996 }
997
998 err = -EACCES;
999 if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1000 goto out_unlock;
1001
1002 err = security_sem_semctl(sma, cmd);
1003 if (err)
1004 goto out_unlock;
1005
1006 kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
1007 tbuf.sem_otime = sma->sem_otime;
1008 tbuf.sem_ctime = sma->sem_ctime;
1009 tbuf.sem_nsems = sma->sem_nsems;
1010 rcu_read_unlock();
1011 if (copy_semid_to_user(p, &tbuf, version))
1012 return -EFAULT;
1013 return id;
1014 }
1015 default:
1016 return -EINVAL;
1017 }
1018 out_unlock:
1019 rcu_read_unlock();
1020 return err;
1021 }
1022
1023 static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
1024 unsigned long arg)
1025 {
1026 struct sem_undo *un;
1027 struct sem_array *sma;
1028 struct sem* curr;
1029 int err;
1030 struct list_head tasks;
1031 int val;
1032 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1033 /* big-endian 64bit */
1034 val = arg >> 32;
1035 #else
1036 /* 32bit or little-endian 64bit */
1037 val = arg;
1038 #endif
1039
1040 if (val > SEMVMX || val < 0)
1041 return -ERANGE;
1042
1043 INIT_LIST_HEAD(&tasks);
1044
1045 rcu_read_lock();
1046 sma = sem_obtain_object_check(ns, semid);
1047 if (IS_ERR(sma)) {
1048 rcu_read_unlock();
1049 return PTR_ERR(sma);
1050 }
1051
1052 if (semnum < 0 || semnum >= sma->sem_nsems) {
1053 rcu_read_unlock();
1054 return -EINVAL;
1055 }
1056
1057
1058 if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1059 rcu_read_unlock();
1060 return -EACCES;
1061 }
1062
1063 err = security_sem_semctl(sma, SETVAL);
1064 if (err) {
1065 rcu_read_unlock();
1066 return -EACCES;
1067 }
1068
1069 sem_lock(sma, NULL, -1);
1070
1071 curr = &sma->sem_base[semnum];
1072
1073 ipc_assert_locked_object(&sma->sem_perm);
1074 list_for_each_entry(un, &sma->list_id, list_id)
1075 un->semadj[semnum] = 0;
1076
1077 curr->semval = val;
1078 curr->sempid = task_tgid_vnr(current);
1079 sma->sem_ctime = get_seconds();
1080 /* maybe some queued-up processes were waiting for this */
1081 do_smart_update(sma, NULL, 0, 0, &tasks);
1082 sem_unlock(sma, -1);
1083 rcu_read_unlock();
1084 wake_up_sem_queue_do(&tasks);
1085 return 0;
1086 }
1087
1088 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
1089 int cmd, void __user *p)
1090 {
1091 struct sem_array *sma;
1092 struct sem* curr;
1093 int err, nsems;
1094 ushort fast_sem_io[SEMMSL_FAST];
1095 ushort* sem_io = fast_sem_io;
1096 struct list_head tasks;
1097
1098 INIT_LIST_HEAD(&tasks);
1099
1100 rcu_read_lock();
1101 sma = sem_obtain_object_check(ns, semid);
1102 if (IS_ERR(sma)) {
1103 rcu_read_unlock();
1104 return PTR_ERR(sma);
1105 }
1106
1107 nsems = sma->sem_nsems;
1108
1109 err = -EACCES;
1110 if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1111 goto out_rcu_wakeup;
1112
1113 err = security_sem_semctl(sma, cmd);
1114 if (err)
1115 goto out_rcu_wakeup;
1116
1117 err = -EACCES;
1118 switch (cmd) {
1119 case GETALL:
1120 {
1121 ushort __user *array = p;
1122 int i;
1123
1124 sem_lock(sma, NULL, -1);
1125 if(nsems > SEMMSL_FAST) {
1126 if (!ipc_rcu_getref(sma)) {
1127 sem_unlock(sma, -1);
1128 rcu_read_unlock();
1129 err = -EIDRM;
1130 goto out_free;
1131 }
1132 sem_unlock(sma, -1);
1133 rcu_read_unlock();
1134 sem_io = ipc_alloc(sizeof(ushort)*nsems);
1135 if(sem_io == NULL) {
1136 sem_putref(sma);
1137 return -ENOMEM;
1138 }
1139
1140 rcu_read_lock();
1141 sem_lock_and_putref(sma);
1142 if (sma->sem_perm.deleted) {
1143 sem_unlock(sma, -1);
1144 rcu_read_unlock();
1145 err = -EIDRM;
1146 goto out_free;
1147 }
1148 }
1149 for (i = 0; i < sma->sem_nsems; i++)
1150 sem_io[i] = sma->sem_base[i].semval;
1151 sem_unlock(sma, -1);
1152 rcu_read_unlock();
1153 err = 0;
1154 if(copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1155 err = -EFAULT;
1156 goto out_free;
1157 }
1158 case SETALL:
1159 {
1160 int i;
1161 struct sem_undo *un;
1162
1163 if (!ipc_rcu_getref(sma)) {
1164 rcu_read_unlock();
1165 return -EIDRM;
1166 }
1167 rcu_read_unlock();
1168
1169 if(nsems > SEMMSL_FAST) {
1170 sem_io = ipc_alloc(sizeof(ushort)*nsems);
1171 if(sem_io == NULL) {
1172 sem_putref(sma);
1173 return -ENOMEM;
1174 }
1175 }
1176
1177 if (copy_from_user (sem_io, p, nsems*sizeof(ushort))) {
1178 sem_putref(sma);
1179 err = -EFAULT;
1180 goto out_free;
1181 }
1182
1183 for (i = 0; i < nsems; i++) {
1184 if (sem_io[i] > SEMVMX) {
1185 sem_putref(sma);
1186 err = -ERANGE;
1187 goto out_free;
1188 }
1189 }
1190 rcu_read_lock();
1191 sem_lock_and_putref(sma);
1192 if (sma->sem_perm.deleted) {
1193 sem_unlock(sma, -1);
1194 rcu_read_unlock();
1195 err = -EIDRM;
1196 goto out_free;
1197 }
1198
1199 for (i = 0; i < nsems; i++)
1200 sma->sem_base[i].semval = sem_io[i];
1201
1202 ipc_assert_locked_object(&sma->sem_perm);
1203 list_for_each_entry(un, &sma->list_id, list_id) {
1204 for (i = 0; i < nsems; i++)
1205 un->semadj[i] = 0;
1206 }
1207 sma->sem_ctime = get_seconds();
1208 /* maybe some queued-up processes were waiting for this */
1209 do_smart_update(sma, NULL, 0, 0, &tasks);
1210 err = 0;
1211 goto out_unlock;
1212 }
1213 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1214 }
1215 err = -EINVAL;
1216 if (semnum < 0 || semnum >= nsems)
1217 goto out_rcu_wakeup;
1218
1219 sem_lock(sma, NULL, -1);
1220 curr = &sma->sem_base[semnum];
1221
1222 switch (cmd) {
1223 case GETVAL:
1224 err = curr->semval;
1225 goto out_unlock;
1226 case GETPID:
1227 err = curr->sempid;
1228 goto out_unlock;
1229 case GETNCNT:
1230 err = count_semncnt(sma,semnum);
1231 goto out_unlock;
1232 case GETZCNT:
1233 err = count_semzcnt(sma,semnum);
1234 goto out_unlock;
1235 }
1236
1237 out_unlock:
1238 sem_unlock(sma, -1);
1239 out_rcu_wakeup:
1240 rcu_read_unlock();
1241 wake_up_sem_queue_do(&tasks);
1242 out_free:
1243 if(sem_io != fast_sem_io)
1244 ipc_free(sem_io, sizeof(ushort)*nsems);
1245 return err;
1246 }
1247
1248 static inline unsigned long
1249 copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1250 {
1251 switch(version) {
1252 case IPC_64:
1253 if (copy_from_user(out, buf, sizeof(*out)))
1254 return -EFAULT;
1255 return 0;
1256 case IPC_OLD:
1257 {
1258 struct semid_ds tbuf_old;
1259
1260 if(copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1261 return -EFAULT;
1262
1263 out->sem_perm.uid = tbuf_old.sem_perm.uid;
1264 out->sem_perm.gid = tbuf_old.sem_perm.gid;
1265 out->sem_perm.mode = tbuf_old.sem_perm.mode;
1266
1267 return 0;
1268 }
1269 default:
1270 return -EINVAL;
1271 }
1272 }
1273
1274 /*
1275 * This function handles some semctl commands which require the rw_mutex
1276 * to be held in write mode.
1277 * NOTE: no locks must be held, the rw_mutex is taken inside this function.
1278 */
1279 static int semctl_down(struct ipc_namespace *ns, int semid,
1280 int cmd, int version, void __user *p)
1281 {
1282 struct sem_array *sma;
1283 int err;
1284 struct semid64_ds semid64;
1285 struct kern_ipc_perm *ipcp;
1286
1287 if(cmd == IPC_SET) {
1288 if (copy_semid_from_user(&semid64, p, version))
1289 return -EFAULT;
1290 }
1291
1292 down_write(&sem_ids(ns).rw_mutex);
1293 rcu_read_lock();
1294
1295 ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd,
1296 &semid64.sem_perm, 0);
1297 if (IS_ERR(ipcp)) {
1298 err = PTR_ERR(ipcp);
1299 goto out_unlock1;
1300 }
1301
1302 sma = container_of(ipcp, struct sem_array, sem_perm);
1303
1304 err = security_sem_semctl(sma, cmd);
1305 if (err)
1306 goto out_unlock1;
1307
1308 switch (cmd) {
1309 case IPC_RMID:
1310 sem_lock(sma, NULL, -1);
1311 /* freeary unlocks the ipc object and rcu */
1312 freeary(ns, ipcp);
1313 goto out_up;
1314 case IPC_SET:
1315 sem_lock(sma, NULL, -1);
1316 err = ipc_update_perm(&semid64.sem_perm, ipcp);
1317 if (err)
1318 goto out_unlock0;
1319 sma->sem_ctime = get_seconds();
1320 break;
1321 default:
1322 err = -EINVAL;
1323 goto out_unlock1;
1324 }
1325
1326 out_unlock0:
1327 sem_unlock(sma, -1);
1328 out_unlock1:
1329 rcu_read_unlock();
1330 out_up:
1331 up_write(&sem_ids(ns).rw_mutex);
1332 return err;
1333 }
1334
1335 SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1336 {
1337 int version;
1338 struct ipc_namespace *ns;
1339 void __user *p = (void __user *)arg;
1340
1341 if (semid < 0)
1342 return -EINVAL;
1343
1344 version = ipc_parse_version(&cmd);
1345 ns = current->nsproxy->ipc_ns;
1346
1347 switch(cmd) {
1348 case IPC_INFO:
1349 case SEM_INFO:
1350 case IPC_STAT:
1351 case SEM_STAT:
1352 return semctl_nolock(ns, semid, cmd, version, p);
1353 case GETALL:
1354 case GETVAL:
1355 case GETPID:
1356 case GETNCNT:
1357 case GETZCNT:
1358 case SETALL:
1359 return semctl_main(ns, semid, semnum, cmd, p);
1360 case SETVAL:
1361 return semctl_setval(ns, semid, semnum, arg);
1362 case IPC_RMID:
1363 case IPC_SET:
1364 return semctl_down(ns, semid, cmd, version, p);
1365 default:
1366 return -EINVAL;
1367 }
1368 }
1369
1370 /* If the task doesn't already have a undo_list, then allocate one
1371 * here. We guarantee there is only one thread using this undo list,
1372 * and current is THE ONE
1373 *
1374 * If this allocation and assignment succeeds, but later
1375 * portions of this code fail, there is no need to free the sem_undo_list.
1376 * Just let it stay associated with the task, and it'll be freed later
1377 * at exit time.
1378 *
1379 * This can block, so callers must hold no locks.
1380 */
1381 static inline int get_undo_list(struct sem_undo_list **undo_listp)
1382 {
1383 struct sem_undo_list *undo_list;
1384
1385 undo_list = current->sysvsem.undo_list;
1386 if (!undo_list) {
1387 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1388 if (undo_list == NULL)
1389 return -ENOMEM;
1390 spin_lock_init(&undo_list->lock);
1391 atomic_set(&undo_list->refcnt, 1);
1392 INIT_LIST_HEAD(&undo_list->list_proc);
1393
1394 current->sysvsem.undo_list = undo_list;
1395 }
1396 *undo_listp = undo_list;
1397 return 0;
1398 }
1399
1400 static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1401 {
1402 struct sem_undo *un;
1403
1404 list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
1405 if (un->semid == semid)
1406 return un;
1407 }
1408 return NULL;
1409 }
1410
1411 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1412 {
1413 struct sem_undo *un;
1414
1415 assert_spin_locked(&ulp->lock);
1416
1417 un = __lookup_undo(ulp, semid);
1418 if (un) {
1419 list_del_rcu(&un->list_proc);
1420 list_add_rcu(&un->list_proc, &ulp->list_proc);
1421 }
1422 return un;
1423 }
1424
1425 /**
1426 * find_alloc_undo - Lookup (and if not present create) undo array
1427 * @ns: namespace
1428 * @semid: semaphore array id
1429 *
1430 * The function looks up (and if not present creates) the undo structure.
1431 * The size of the undo structure depends on the size of the semaphore
1432 * array, thus the alloc path is not that straightforward.
1433 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1434 * performs a rcu_read_lock().
1435 */
1436 static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1437 {
1438 struct sem_array *sma;
1439 struct sem_undo_list *ulp;
1440 struct sem_undo *un, *new;
1441 int nsems, error;
1442
1443 error = get_undo_list(&ulp);
1444 if (error)
1445 return ERR_PTR(error);
1446
1447 rcu_read_lock();
1448 spin_lock(&ulp->lock);
1449 un = lookup_undo(ulp, semid);
1450 spin_unlock(&ulp->lock);
1451 if (likely(un!=NULL))
1452 goto out;
1453
1454 /* no undo structure around - allocate one. */
1455 /* step 1: figure out the size of the semaphore array */
1456 sma = sem_obtain_object_check(ns, semid);
1457 if (IS_ERR(sma)) {
1458 rcu_read_unlock();
1459 return ERR_CAST(sma);
1460 }
1461
1462 nsems = sma->sem_nsems;
1463 if (!ipc_rcu_getref(sma)) {
1464 rcu_read_unlock();
1465 un = ERR_PTR(-EIDRM);
1466 goto out;
1467 }
1468 rcu_read_unlock();
1469
1470 /* step 2: allocate new undo structure */
1471 new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1472 if (!new) {
1473 sem_putref(sma);
1474 return ERR_PTR(-ENOMEM);
1475 }
1476
1477 /* step 3: Acquire the lock on semaphore array */
1478 rcu_read_lock();
1479 sem_lock_and_putref(sma);
1480 if (sma->sem_perm.deleted) {
1481 sem_unlock(sma, -1);
1482 rcu_read_unlock();
1483 kfree(new);
1484 un = ERR_PTR(-EIDRM);
1485 goto out;
1486 }
1487 spin_lock(&ulp->lock);
1488
1489 /*
1490 * step 4: check for races: did someone else allocate the undo struct?
1491 */
1492 un = lookup_undo(ulp, semid);
1493 if (un) {
1494 kfree(new);
1495 goto success;
1496 }
1497 /* step 5: initialize & link new undo structure */
1498 new->semadj = (short *) &new[1];
1499 new->ulp = ulp;
1500 new->semid = semid;
1501 assert_spin_locked(&ulp->lock);
1502 list_add_rcu(&new->list_proc, &ulp->list_proc);
1503 ipc_assert_locked_object(&sma->sem_perm);
1504 list_add(&new->list_id, &sma->list_id);
1505 un = new;
1506
1507 success:
1508 spin_unlock(&ulp->lock);
1509 sem_unlock(sma, -1);
1510 out:
1511 return un;
1512 }
1513
1514
1515 /**
1516 * get_queue_result - Retrieve the result code from sem_queue
1517 * @q: Pointer to queue structure
1518 *
1519 * Retrieve the return code from the pending queue. If IN_WAKEUP is found in
1520 * q->status, then we must loop until the value is replaced with the final
1521 * value: This may happen if a task is woken up by an unrelated event (e.g.
1522 * signal) and in parallel the task is woken up by another task because it got
1523 * the requested semaphores.
1524 *
1525 * The function can be called with or without holding the semaphore spinlock.
1526 */
1527 static int get_queue_result(struct sem_queue *q)
1528 {
1529 int error;
1530
1531 error = q->status;
1532 while (unlikely(error == IN_WAKEUP)) {
1533 cpu_relax();
1534 error = q->status;
1535 }
1536
1537 return error;
1538 }
1539
1540
1541 SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
1542 unsigned, nsops, const struct timespec __user *, timeout)
1543 {
1544 int error = -EINVAL;
1545 struct sem_array *sma;
1546 struct sembuf fast_sops[SEMOPM_FAST];
1547 struct sembuf* sops = fast_sops, *sop;
1548 struct sem_undo *un;
1549 int undos = 0, alter = 0, max, locknum;
1550 struct sem_queue queue;
1551 unsigned long jiffies_left = 0;
1552 struct ipc_namespace *ns;
1553 struct list_head tasks;
1554
1555 ns = current->nsproxy->ipc_ns;
1556
1557 if (nsops < 1 || semid < 0)
1558 return -EINVAL;
1559 if (nsops > ns->sc_semopm)
1560 return -E2BIG;
1561 if(nsops > SEMOPM_FAST) {
1562 sops = kmalloc(sizeof(*sops)*nsops,GFP_KERNEL);
1563 if(sops==NULL)
1564 return -ENOMEM;
1565 }
1566 if (copy_from_user (sops, tsops, nsops * sizeof(*tsops))) {
1567 error=-EFAULT;
1568 goto out_free;
1569 }
1570 if (timeout) {
1571 struct timespec _timeout;
1572 if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
1573 error = -EFAULT;
1574 goto out_free;
1575 }
1576 if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
1577 _timeout.tv_nsec >= 1000000000L) {
1578 error = -EINVAL;
1579 goto out_free;
1580 }
1581 jiffies_left = timespec_to_jiffies(&_timeout);
1582 }
1583 max = 0;
1584 for (sop = sops; sop < sops + nsops; sop++) {
1585 if (sop->sem_num >= max)
1586 max = sop->sem_num;
1587 if (sop->sem_flg & SEM_UNDO)
1588 undos = 1;
1589 if (sop->sem_op != 0)
1590 alter = 1;
1591 }
1592
1593 INIT_LIST_HEAD(&tasks);
1594
1595 if (undos) {
1596 /* On success, find_alloc_undo takes the rcu_read_lock */
1597 un = find_alloc_undo(ns, semid);
1598 if (IS_ERR(un)) {
1599 error = PTR_ERR(un);
1600 goto out_free;
1601 }
1602 } else {
1603 un = NULL;
1604 rcu_read_lock();
1605 }
1606
1607 sma = sem_obtain_object_check(ns, semid);
1608 if (IS_ERR(sma)) {
1609 rcu_read_unlock();
1610 error = PTR_ERR(sma);
1611 goto out_free;
1612 }
1613
1614 error = -EFBIG;
1615 if (max >= sma->sem_nsems)
1616 goto out_rcu_wakeup;
1617
1618 error = -EACCES;
1619 if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO))
1620 goto out_rcu_wakeup;
1621
1622 error = security_sem_semop(sma, sops, nsops, alter);
1623 if (error)
1624 goto out_rcu_wakeup;
1625
1626 /*
1627 * semid identifiers are not unique - find_alloc_undo may have
1628 * allocated an undo structure, it was invalidated by an RMID
1629 * and now a new array with received the same id. Check and fail.
1630 * This case can be detected checking un->semid. The existence of
1631 * "un" itself is guaranteed by rcu.
1632 */
1633 error = -EIDRM;
1634 locknum = sem_lock(sma, sops, nsops);
1635 if (un && un->semid == -1)
1636 goto out_unlock_free;
1637
1638 error = try_atomic_semop (sma, sops, nsops, un, task_tgid_vnr(current));
1639 if (error <= 0) {
1640 if (alter && error == 0)
1641 do_smart_update(sma, sops, nsops, 1, &tasks);
1642
1643 goto out_unlock_free;
1644 }
1645
1646 /* We need to sleep on this operation, so we put the current
1647 * task into the pending queue and go to sleep.
1648 */
1649
1650 queue.sops = sops;
1651 queue.nsops = nsops;
1652 queue.undo = un;
1653 queue.pid = task_tgid_vnr(current);
1654 queue.alter = alter;
1655
1656 if (nsops == 1) {
1657 struct sem *curr;
1658 curr = &sma->sem_base[sops->sem_num];
1659
1660 if (alter)
1661 list_add_tail(&queue.list, &curr->sem_pending);
1662 else
1663 list_add(&queue.list, &curr->sem_pending);
1664 } else {
1665 if (alter)
1666 list_add_tail(&queue.list, &sma->sem_pending);
1667 else
1668 list_add(&queue.list, &sma->sem_pending);
1669 sma->complex_count++;
1670 }
1671
1672 queue.status = -EINTR;
1673 queue.sleeper = current;
1674
1675 sleep_again:
1676 current->state = TASK_INTERRUPTIBLE;
1677 sem_unlock(sma, locknum);
1678 rcu_read_unlock();
1679
1680 if (timeout)
1681 jiffies_left = schedule_timeout(jiffies_left);
1682 else
1683 schedule();
1684
1685 error = get_queue_result(&queue);
1686
1687 if (error != -EINTR) {
1688 /* fast path: update_queue already obtained all requested
1689 * resources.
1690 * Perform a smp_mb(): User space could assume that semop()
1691 * is a memory barrier: Without the mb(), the cpu could
1692 * speculatively read in user space stale data that was
1693 * overwritten by the previous owner of the semaphore.
1694 */
1695 smp_mb();
1696
1697 goto out_free;
1698 }
1699
1700 rcu_read_lock();
1701 sma = sem_obtain_lock(ns, semid, sops, nsops, &locknum);
1702
1703 /*
1704 * Wait until it's guaranteed that no wakeup_sem_queue_do() is ongoing.
1705 */
1706 error = get_queue_result(&queue);
1707
1708 /*
1709 * Array removed? If yes, leave without sem_unlock().
1710 */
1711 if (IS_ERR(sma)) {
1712 rcu_read_unlock();
1713 goto out_free;
1714 }
1715
1716
1717 /*
1718 * If queue.status != -EINTR we are woken up by another process.
1719 * Leave without unlink_queue(), but with sem_unlock().
1720 */
1721
1722 if (error != -EINTR) {
1723 goto out_unlock_free;
1724 }
1725
1726 /*
1727 * If an interrupt occurred we have to clean up the queue
1728 */
1729 if (timeout && jiffies_left == 0)
1730 error = -EAGAIN;
1731
1732 /*
1733 * If the wakeup was spurious, just retry
1734 */
1735 if (error == -EINTR && !signal_pending(current))
1736 goto sleep_again;
1737
1738 unlink_queue(sma, &queue);
1739
1740 out_unlock_free:
1741 sem_unlock(sma, locknum);
1742 out_rcu_wakeup:
1743 rcu_read_unlock();
1744 wake_up_sem_queue_do(&tasks);
1745 out_free:
1746 if(sops != fast_sops)
1747 kfree(sops);
1748 return error;
1749 }
1750
1751 SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
1752 unsigned, nsops)
1753 {
1754 return sys_semtimedop(semid, tsops, nsops, NULL);
1755 }
1756
1757 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
1758 * parent and child tasks.
1759 */
1760
1761 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
1762 {
1763 struct sem_undo_list *undo_list;
1764 int error;
1765
1766 if (clone_flags & CLONE_SYSVSEM) {
1767 error = get_undo_list(&undo_list);
1768 if (error)
1769 return error;
1770 atomic_inc(&undo_list->refcnt);
1771 tsk->sysvsem.undo_list = undo_list;
1772 } else
1773 tsk->sysvsem.undo_list = NULL;
1774
1775 return 0;
1776 }
1777
1778 /*
1779 * add semadj values to semaphores, free undo structures.
1780 * undo structures are not freed when semaphore arrays are destroyed
1781 * so some of them may be out of date.
1782 * IMPLEMENTATION NOTE: There is some confusion over whether the
1783 * set of adjustments that needs to be done should be done in an atomic
1784 * manner or not. That is, if we are attempting to decrement the semval
1785 * should we queue up and wait until we can do so legally?
1786 * The original implementation attempted to do this (queue and wait).
1787 * The current implementation does not do so. The POSIX standard
1788 * and SVID should be consulted to determine what behavior is mandated.
1789 */
1790 void exit_sem(struct task_struct *tsk)
1791 {
1792 struct sem_undo_list *ulp;
1793
1794 ulp = tsk->sysvsem.undo_list;
1795 if (!ulp)
1796 return;
1797 tsk->sysvsem.undo_list = NULL;
1798
1799 if (!atomic_dec_and_test(&ulp->refcnt))
1800 return;
1801
1802 for (;;) {
1803 struct sem_array *sma;
1804 struct sem_undo *un;
1805 struct list_head tasks;
1806 int semid, i;
1807
1808 rcu_read_lock();
1809 un = list_entry_rcu(ulp->list_proc.next,
1810 struct sem_undo, list_proc);
1811 if (&un->list_proc == &ulp->list_proc)
1812 semid = -1;
1813 else
1814 semid = un->semid;
1815
1816 if (semid == -1) {
1817 rcu_read_unlock();
1818 break;
1819 }
1820
1821 sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, un->semid);
1822 /* exit_sem raced with IPC_RMID, nothing to do */
1823 if (IS_ERR(sma)) {
1824 rcu_read_unlock();
1825 continue;
1826 }
1827
1828 sem_lock(sma, NULL, -1);
1829 un = __lookup_undo(ulp, semid);
1830 if (un == NULL) {
1831 /* exit_sem raced with IPC_RMID+semget() that created
1832 * exactly the same semid. Nothing to do.
1833 */
1834 sem_unlock(sma, -1);
1835 rcu_read_unlock();
1836 continue;
1837 }
1838
1839 /* remove un from the linked lists */
1840 ipc_assert_locked_object(&sma->sem_perm);
1841 list_del(&un->list_id);
1842
1843 spin_lock(&ulp->lock);
1844 list_del_rcu(&un->list_proc);
1845 spin_unlock(&ulp->lock);
1846
1847 /* perform adjustments registered in un */
1848 for (i = 0; i < sma->sem_nsems; i++) {
1849 struct sem * semaphore = &sma->sem_base[i];
1850 if (un->semadj[i]) {
1851 semaphore->semval += un->semadj[i];
1852 /*
1853 * Range checks of the new semaphore value,
1854 * not defined by sus:
1855 * - Some unices ignore the undo entirely
1856 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
1857 * - some cap the value (e.g. FreeBSD caps
1858 * at 0, but doesn't enforce SEMVMX)
1859 *
1860 * Linux caps the semaphore value, both at 0
1861 * and at SEMVMX.
1862 *
1863 * Manfred <manfred@colorfullife.com>
1864 */
1865 if (semaphore->semval < 0)
1866 semaphore->semval = 0;
1867 if (semaphore->semval > SEMVMX)
1868 semaphore->semval = SEMVMX;
1869 semaphore->sempid = task_tgid_vnr(current);
1870 }
1871 }
1872 /* maybe some queued-up processes were waiting for this */
1873 INIT_LIST_HEAD(&tasks);
1874 do_smart_update(sma, NULL, 0, 1, &tasks);
1875 sem_unlock(sma, -1);
1876 rcu_read_unlock();
1877 wake_up_sem_queue_do(&tasks);
1878
1879 kfree_rcu(un, rcu);
1880 }
1881 kfree(ulp);
1882 }
1883
1884 #ifdef CONFIG_PROC_FS
1885 static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
1886 {
1887 struct user_namespace *user_ns = seq_user_ns(s);
1888 struct sem_array *sma = it;
1889
1890 return seq_printf(s,
1891 "%10d %10d %4o %10u %5u %5u %5u %5u %10lu %10lu\n",
1892 sma->sem_perm.key,
1893 sma->sem_perm.id,
1894 sma->sem_perm.mode,
1895 sma->sem_nsems,
1896 from_kuid_munged(user_ns, sma->sem_perm.uid),
1897 from_kgid_munged(user_ns, sma->sem_perm.gid),
1898 from_kuid_munged(user_ns, sma->sem_perm.cuid),
1899 from_kgid_munged(user_ns, sma->sem_perm.cgid),
1900 sma->sem_otime,
1901 sma->sem_ctime);
1902 }
1903 #endif