Merge tag 'v3.10.98' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / ipc / sem.c
1 /*
2 * linux/ipc/sem.c
3 * Copyright (C) 1992 Krishna Balasubramanian
4 * Copyright (C) 1995 Eric Schenk, Bruno Haible
5 *
6 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
7 *
8 * SMP-threaded, sysctl's added
9 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
10 * Enforced range limit on SEM_UNDO
11 * (c) 2001 Red Hat Inc
12 * Lockless wakeup
13 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
14 * Further wakeup optimizations, documentation
15 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
16 *
17 * support for audit of ipc object properties and permission changes
18 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
19 *
20 * namespaces support
21 * OpenVZ, SWsoft Inc.
22 * Pavel Emelianov <xemul@openvz.org>
23 *
24 * Implementation notes: (May 2010)
25 * This file implements System V semaphores.
26 *
27 * User space visible behavior:
28 * - FIFO ordering for semop() operations (just FIFO, not starvation
29 * protection)
30 * - multiple semaphore operations that alter the same semaphore in
31 * one semop() are handled.
32 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
33 * SETALL calls.
34 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
35 * - undo adjustments at process exit are limited to 0..SEMVMX.
36 * - namespace are supported.
37 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
38 * to /proc/sys/kernel/sem.
39 * - statistics about the usage are reported in /proc/sysvipc/sem.
40 *
41 * Internals:
42 * - scalability:
43 * - all global variables are read-mostly.
44 * - semop() calls and semctl(RMID) are synchronized by RCU.
45 * - most operations do write operations (actually: spin_lock calls) to
46 * the per-semaphore array structure.
47 * Thus: Perfect SMP scaling between independent semaphore arrays.
48 * If multiple semaphores in one array are used, then cache line
49 * trashing on the semaphore array spinlock will limit the scaling.
50 * - semncnt and semzcnt are calculated on demand in count_semncnt() and
51 * count_semzcnt()
52 * - the task that performs a successful semop() scans the list of all
53 * sleeping tasks and completes any pending operations that can be fulfilled.
54 * Semaphores are actively given to waiting tasks (necessary for FIFO).
55 * (see update_queue())
56 * - To improve the scalability, the actual wake-up calls are performed after
57 * dropping all locks. (see wake_up_sem_queue_prepare(),
58 * wake_up_sem_queue_do())
59 * - All work is done by the waker, the woken up task does not have to do
60 * anything - not even acquiring a lock or dropping a refcount.
61 * - A woken up task may not even touch the semaphore array anymore, it may
62 * have been destroyed already by a semctl(RMID).
63 * - The synchronizations between wake-ups due to a timeout/signal and a
64 * wake-up due to a completed semaphore operation is achieved by using an
65 * intermediate state (IN_WAKEUP).
66 * - UNDO values are stored in an array (one per process and per
67 * semaphore array, lazily allocated). For backwards compatibility, multiple
68 * modes for the UNDO variables are supported (per process, per thread)
69 * (see copy_semundo, CLONE_SYSVSEM)
70 * - There are two lists of the pending operations: a per-array list
71 * and per-semaphore list (stored in the array). This allows to achieve FIFO
72 * ordering without always scanning all pending operations.
73 * The worst-case behavior is nevertheless O(N^2) for N wakeups.
74 */
75
76 #include <linux/slab.h>
77 #include <linux/spinlock.h>
78 #include <linux/init.h>
79 #include <linux/proc_fs.h>
80 #include <linux/time.h>
81 #include <linux/security.h>
82 #include <linux/syscalls.h>
83 #include <linux/audit.h>
84 #include <linux/capability.h>
85 #include <linux/seq_file.h>
86 #include <linux/rwsem.h>
87 #include <linux/nsproxy.h>
88 #include <linux/ipc_namespace.h>
89
90 #include <asm/uaccess.h>
91 #include "util.h"
92
93 /* One semaphore structure for each semaphore in the system. */
94 struct sem {
95 int semval; /* current value */
96 int sempid; /* pid of last operation */
97 spinlock_t lock; /* spinlock for fine-grained semtimedop */
98 struct list_head pending_alter; /* pending single-sop operations */
99 /* that alter the semaphore */
100 struct list_head pending_const; /* pending single-sop operations */
101 /* that do not alter the semaphore*/
102 time_t sem_otime; /* candidate for sem_otime */
103 } ____cacheline_aligned_in_smp;
104
105 /* One queue for each sleeping process in the system. */
106 struct sem_queue {
107 struct list_head list; /* queue of pending operations */
108 struct task_struct *sleeper; /* this process */
109 struct sem_undo *undo; /* undo structure */
110 int pid; /* process id of requesting process */
111 int status; /* completion status of operation */
112 struct sembuf *sops; /* array of pending operations */
113 int nsops; /* number of operations */
114 int alter; /* does *sops alter the array? */
115 };
116
117 /* Each task has a list of undo requests. They are executed automatically
118 * when the process exits.
119 */
120 struct sem_undo {
121 struct list_head list_proc; /* per-process list: *
122 * all undos from one process
123 * rcu protected */
124 struct rcu_head rcu; /* rcu struct for sem_undo */
125 struct sem_undo_list *ulp; /* back ptr to sem_undo_list */
126 struct list_head list_id; /* per semaphore array list:
127 * all undos for one array */
128 int semid; /* semaphore set identifier */
129 short *semadj; /* array of adjustments */
130 /* one per semaphore */
131 };
132
133 /* sem_undo_list controls shared access to the list of sem_undo structures
134 * that may be shared among all a CLONE_SYSVSEM task group.
135 */
136 struct sem_undo_list {
137 atomic_t refcnt;
138 spinlock_t lock;
139 struct list_head list_proc;
140 };
141
142
143 #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
144
145 #define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid)
146
147 static int newary(struct ipc_namespace *, struct ipc_params *);
148 static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
149 #ifdef CONFIG_PROC_FS
150 static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
151 #endif
152
153 #define SEMMSL_FAST 256 /* 512 bytes on stack */
154 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
155
156 /*
157 * Locking:
158 * sem_undo.id_next,
159 * sem_array.complex_count,
160 * sem_array.pending{_alter,_cont},
161 * sem_array.sem_undo: global sem_lock() for read/write
162 * sem_undo.proc_next: only "current" is allowed to read/write that field.
163 *
164 * sem_array.sem_base[i].pending_{const,alter}:
165 * global or semaphore sem_lock() for read/write
166 */
167
168 #define sc_semmsl sem_ctls[0]
169 #define sc_semmns sem_ctls[1]
170 #define sc_semopm sem_ctls[2]
171 #define sc_semmni sem_ctls[3]
172
173 void sem_init_ns(struct ipc_namespace *ns)
174 {
175 ns->sc_semmsl = SEMMSL;
176 ns->sc_semmns = SEMMNS;
177 ns->sc_semopm = SEMOPM;
178 ns->sc_semmni = SEMMNI;
179 ns->used_sems = 0;
180 ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
181 }
182
183 #ifdef CONFIG_IPC_NS
184 void sem_exit_ns(struct ipc_namespace *ns)
185 {
186 free_ipcs(ns, &sem_ids(ns), freeary);
187 idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
188 }
189 #endif
190
191 void __init sem_init (void)
192 {
193 sem_init_ns(&init_ipc_ns);
194 ipc_init_proc_interface("sysvipc/sem",
195 " key semid perms nsems uid gid cuid cgid otime ctime\n",
196 IPC_SEM_IDS, sysvipc_sem_proc_show);
197 }
198
199 /**
200 * unmerge_queues - unmerge queues, if possible.
201 * @sma: semaphore array
202 *
203 * The function unmerges the wait queues if complex_count is 0.
204 * It must be called prior to dropping the global semaphore array lock.
205 */
206 static void unmerge_queues(struct sem_array *sma)
207 {
208 struct sem_queue *q, *tq;
209
210 /* complex operations still around? */
211 if (sma->complex_count)
212 return;
213 /*
214 * We will switch back to simple mode.
215 * Move all pending operation back into the per-semaphore
216 * queues.
217 */
218 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
219 struct sem *curr;
220 curr = &sma->sem_base[q->sops[0].sem_num];
221
222 list_add_tail(&q->list, &curr->pending_alter);
223 }
224 INIT_LIST_HEAD(&sma->pending_alter);
225 }
226
227 /**
228 * merge_queues - Merge single semop queues into global queue
229 * @sma: semaphore array
230 *
231 * This function merges all per-semaphore queues into the global queue.
232 * It is necessary to achieve FIFO ordering for the pending single-sop
233 * operations when a multi-semop operation must sleep.
234 * Only the alter operations must be moved, the const operations can stay.
235 */
236 static void merge_queues(struct sem_array *sma)
237 {
238 int i;
239 for (i = 0; i < sma->sem_nsems; i++) {
240 struct sem *sem = sma->sem_base + i;
241
242 list_splice_init(&sem->pending_alter, &sma->pending_alter);
243 }
244 }
245
246 static void sem_rcu_free(struct rcu_head *head)
247 {
248 struct ipc_rcu *p = container_of(head, struct ipc_rcu, rcu);
249 struct sem_array *sma = ipc_rcu_to_struct(p);
250
251 security_sem_free(sma);
252 ipc_rcu_free(head);
253 }
254
255 /*
256 * spin_unlock_wait() and !spin_is_locked() are not memory barriers, they
257 * are only control barriers.
258 * The code must pair with spin_unlock(&sem->lock) or
259 * spin_unlock(&sem_perm.lock), thus just the control barrier is insufficient.
260 *
261 * smp_rmb() is sufficient, as writes cannot pass the control barrier.
262 */
263 #define ipc_smp_acquire__after_spin_is_unlocked() smp_rmb()
264
265 /*
266 * Wait until all currently ongoing simple ops have completed.
267 * Caller must own sem_perm.lock.
268 * New simple ops cannot start, because simple ops first check
269 * that sem_perm.lock is free.
270 * that a) sem_perm.lock is free and b) complex_count is 0.
271 */
272 static void sem_wait_array(struct sem_array *sma)
273 {
274 int i;
275 struct sem *sem;
276
277 if (sma->complex_count) {
278 /* The thread that increased sma->complex_count waited on
279 * all sem->lock locks. Thus we don't need to wait again.
280 */
281 return;
282 }
283
284 for (i = 0; i < sma->sem_nsems; i++) {
285 sem = sma->sem_base + i;
286 spin_unlock_wait(&sem->lock);
287 }
288 ipc_smp_acquire__after_spin_is_unlocked();
289 }
290
291 /*
292 * If the request contains only one semaphore operation, and there are
293 * no complex transactions pending, lock only the semaphore involved.
294 * Otherwise, lock the entire semaphore array, since we either have
295 * multiple semaphores in our own semops, or we need to look at
296 * semaphores from other pending complex operations.
297 */
298 static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
299 int nsops)
300 {
301 struct sem *sem;
302
303 if (nsops != 1) {
304 /* Complex operation - acquire a full lock */
305 ipc_lock_object(&sma->sem_perm);
306
307 /* And wait until all simple ops that are processed
308 * right now have dropped their locks.
309 */
310 sem_wait_array(sma);
311 return -1;
312 }
313
314 /*
315 * Only one semaphore affected - try to optimize locking.
316 * The rules are:
317 * - optimized locking is possible if no complex operation
318 * is either enqueued or processed right now.
319 * - The test for enqueued complex ops is simple:
320 * sma->complex_count != 0
321 * - Testing for complex ops that are processed right now is
322 * a bit more difficult. Complex ops acquire the full lock
323 * and first wait that the running simple ops have completed.
324 * (see above)
325 * Thus: If we own a simple lock and the global lock is free
326 * and complex_count is now 0, then it will stay 0 and
327 * thus just locking sem->lock is sufficient.
328 */
329 sem = sma->sem_base + sops->sem_num;
330
331 if (sma->complex_count == 0) {
332 /*
333 * It appears that no complex operation is around.
334 * Acquire the per-semaphore lock.
335 */
336 spin_lock(&sem->lock);
337
338 /* Then check that the global lock is free */
339 if (!spin_is_locked(&sma->sem_perm.lock)) {
340 /*
341 * We need a memory barrier with acquire semantics,
342 * otherwise we can race with another thread that does:
343 * complex_count++;
344 * spin_unlock(sem_perm.lock);
345 */
346 ipc_smp_acquire__after_spin_is_unlocked();
347
348 /* Now repeat the test of complex_count:
349 * It can't change anymore until we drop sem->lock.
350 * Thus: if is now 0, then it will stay 0.
351 */
352 if (sma->complex_count == 0) {
353 /* fast path successful! */
354 return sops->sem_num;
355 }
356 }
357 spin_unlock(&sem->lock);
358 }
359
360 /* slow path: acquire the full lock */
361 ipc_lock_object(&sma->sem_perm);
362
363 if (sma->complex_count == 0) {
364 /* False alarm:
365 * There is no complex operation, thus we can switch
366 * back to the fast path.
367 */
368 spin_lock(&sem->lock);
369 ipc_unlock_object(&sma->sem_perm);
370 return sops->sem_num;
371 } else {
372 /* Not a false alarm, thus complete the sequence for a
373 * full lock.
374 */
375 sem_wait_array(sma);
376 return -1;
377 }
378 }
379
380 static inline void sem_unlock(struct sem_array *sma, int locknum)
381 {
382 if (locknum == -1) {
383 unmerge_queues(sma);
384 ipc_unlock_object(&sma->sem_perm);
385 } else {
386 struct sem *sem = sma->sem_base + locknum;
387 spin_unlock(&sem->lock);
388 }
389 }
390
391 /*
392 * sem_lock_(check_) routines are called in the paths where the rwsem
393 * is not held.
394 *
395 * The caller holds the RCU read lock.
396 */
397 static inline struct sem_array *sem_obtain_lock(struct ipc_namespace *ns,
398 int id, struct sembuf *sops, int nsops, int *locknum)
399 {
400 struct kern_ipc_perm *ipcp;
401 struct sem_array *sma;
402
403 ipcp = ipc_obtain_object(&sem_ids(ns), id);
404 if (IS_ERR(ipcp))
405 return ERR_CAST(ipcp);
406
407 sma = container_of(ipcp, struct sem_array, sem_perm);
408 *locknum = sem_lock(sma, sops, nsops);
409
410 /* ipc_rmid() may have already freed the ID while sem_lock
411 * was spinning: verify that the structure is still valid
412 */
413 if (!ipcp->deleted)
414 return container_of(ipcp, struct sem_array, sem_perm);
415
416 sem_unlock(sma, *locknum);
417 return ERR_PTR(-EINVAL);
418 }
419
420 static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
421 {
422 struct kern_ipc_perm *ipcp = ipc_obtain_object(&sem_ids(ns), id);
423
424 if (IS_ERR(ipcp))
425 return ERR_CAST(ipcp);
426
427 return container_of(ipcp, struct sem_array, sem_perm);
428 }
429
430 static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
431 int id)
432 {
433 struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
434
435 if (IS_ERR(ipcp))
436 return ERR_CAST(ipcp);
437
438 return container_of(ipcp, struct sem_array, sem_perm);
439 }
440
441 static inline void sem_lock_and_putref(struct sem_array *sma)
442 {
443 sem_lock(sma, NULL, -1);
444 ipc_rcu_putref(sma, ipc_rcu_free);
445 }
446
447 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
448 {
449 ipc_rmid(&sem_ids(ns), &s->sem_perm);
450 }
451
452 /*
453 * Lockless wakeup algorithm:
454 * Without the check/retry algorithm a lockless wakeup is possible:
455 * - queue.status is initialized to -EINTR before blocking.
456 * - wakeup is performed by
457 * * unlinking the queue entry from the pending list
458 * * setting queue.status to IN_WAKEUP
459 * This is the notification for the blocked thread that a
460 * result value is imminent.
461 * * call wake_up_process
462 * * set queue.status to the final value.
463 * - the previously blocked thread checks queue.status:
464 * * if it's IN_WAKEUP, then it must wait until the value changes
465 * * if it's not -EINTR, then the operation was completed by
466 * update_queue. semtimedop can return queue.status without
467 * performing any operation on the sem array.
468 * * otherwise it must acquire the spinlock and check what's up.
469 *
470 * The two-stage algorithm is necessary to protect against the following
471 * races:
472 * - if queue.status is set after wake_up_process, then the woken up idle
473 * thread could race forward and try (and fail) to acquire sma->lock
474 * before update_queue had a chance to set queue.status
475 * - if queue.status is written before wake_up_process and if the
476 * blocked process is woken up by a signal between writing
477 * queue.status and the wake_up_process, then the woken up
478 * process could return from semtimedop and die by calling
479 * sys_exit before wake_up_process is called. Then wake_up_process
480 * will oops, because the task structure is already invalid.
481 * (yes, this happened on s390 with sysv msg).
482 *
483 */
484 #define IN_WAKEUP 1
485
486 /**
487 * newary - Create a new semaphore set
488 * @ns: namespace
489 * @params: ptr to the structure that contains key, semflg and nsems
490 *
491 * Called with sem_ids.rwsem held (as a writer)
492 */
493
494 static int newary(struct ipc_namespace *ns, struct ipc_params *params)
495 {
496 int id;
497 int retval;
498 struct sem_array *sma;
499 int size;
500 key_t key = params->key;
501 int nsems = params->u.nsems;
502 int semflg = params->flg;
503 int i;
504
505 if (!nsems)
506 return -EINVAL;
507 if (ns->used_sems + nsems > ns->sc_semmns)
508 return -ENOSPC;
509
510 size = sizeof (*sma) + nsems * sizeof (struct sem);
511 sma = ipc_rcu_alloc(size);
512 if (!sma) {
513 return -ENOMEM;
514 }
515 memset (sma, 0, size);
516
517 sma->sem_perm.mode = (semflg & S_IRWXUGO);
518 sma->sem_perm.key = key;
519
520 sma->sem_perm.security = NULL;
521 retval = security_sem_alloc(sma);
522 if (retval) {
523 ipc_rcu_putref(sma, ipc_rcu_free);
524 return retval;
525 }
526
527 id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
528 if (id < 0) {
529 ipc_rcu_putref(sma, sem_rcu_free);
530 return id;
531 }
532 ns->used_sems += nsems;
533
534 sma->sem_base = (struct sem *) &sma[1];
535
536 for (i = 0; i < nsems; i++) {
537 INIT_LIST_HEAD(&sma->sem_base[i].pending_alter);
538 INIT_LIST_HEAD(&sma->sem_base[i].pending_const);
539 spin_lock_init(&sma->sem_base[i].lock);
540 }
541
542 sma->complex_count = 0;
543 INIT_LIST_HEAD(&sma->pending_alter);
544 INIT_LIST_HEAD(&sma->pending_const);
545 INIT_LIST_HEAD(&sma->list_id);
546 sma->sem_nsems = nsems;
547 sma->sem_ctime = get_seconds();
548 sem_unlock(sma, -1);
549 rcu_read_unlock();
550
551 return sma->sem_perm.id;
552 }
553
554
555 /*
556 * Called with sem_ids.rwsem and ipcp locked.
557 */
558 static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
559 {
560 struct sem_array *sma;
561
562 sma = container_of(ipcp, struct sem_array, sem_perm);
563 return security_sem_associate(sma, semflg);
564 }
565
566 /*
567 * Called with sem_ids.rwsem and ipcp locked.
568 */
569 static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
570 struct ipc_params *params)
571 {
572 struct sem_array *sma;
573
574 sma = container_of(ipcp, struct sem_array, sem_perm);
575 if (params->u.nsems > sma->sem_nsems)
576 return -EINVAL;
577
578 return 0;
579 }
580
581 SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
582 {
583 struct ipc_namespace *ns;
584 struct ipc_ops sem_ops;
585 struct ipc_params sem_params;
586
587 ns = current->nsproxy->ipc_ns;
588
589 if (nsems < 0 || nsems > ns->sc_semmsl)
590 return -EINVAL;
591
592 sem_ops.getnew = newary;
593 sem_ops.associate = sem_security;
594 sem_ops.more_checks = sem_more_checks;
595
596 sem_params.key = key;
597 sem_params.flg = semflg;
598 sem_params.u.nsems = nsems;
599
600 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
601 }
602
603 /** perform_atomic_semop - Perform (if possible) a semaphore operation
604 * @sma: semaphore array
605 * @sops: array with operations that should be checked
606 * @nsems: number of sops
607 * @un: undo array
608 * @pid: pid that did the change
609 *
610 * Returns 0 if the operation was possible.
611 * Returns 1 if the operation is impossible, the caller must sleep.
612 * Negative values are error codes.
613 */
614
615 static int perform_atomic_semop(struct sem_array *sma, struct sembuf *sops,
616 int nsops, struct sem_undo *un, int pid)
617 {
618 int result, sem_op;
619 struct sembuf *sop;
620 struct sem * curr;
621
622 for (sop = sops; sop < sops + nsops; sop++) {
623 curr = sma->sem_base + sop->sem_num;
624 sem_op = sop->sem_op;
625 result = curr->semval;
626
627 if (!sem_op && result)
628 goto would_block;
629
630 result += sem_op;
631 if (result < 0)
632 goto would_block;
633 if (result > SEMVMX)
634 goto out_of_range;
635 if (sop->sem_flg & SEM_UNDO) {
636 int undo = un->semadj[sop->sem_num] - sem_op;
637 /*
638 * Exceeding the undo range is an error.
639 */
640 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
641 goto out_of_range;
642 }
643 curr->semval = result;
644 }
645
646 sop--;
647 while (sop >= sops) {
648 sma->sem_base[sop->sem_num].sempid = pid;
649 if (sop->sem_flg & SEM_UNDO)
650 un->semadj[sop->sem_num] -= sop->sem_op;
651 sop--;
652 }
653
654 return 0;
655
656 out_of_range:
657 result = -ERANGE;
658 goto undo;
659
660 would_block:
661 if (sop->sem_flg & IPC_NOWAIT)
662 result = -EAGAIN;
663 else
664 result = 1;
665
666 undo:
667 sop--;
668 while (sop >= sops) {
669 sma->sem_base[sop->sem_num].semval -= sop->sem_op;
670 sop--;
671 }
672
673 return result;
674 }
675
676 /** wake_up_sem_queue_prepare(q, error): Prepare wake-up
677 * @q: queue entry that must be signaled
678 * @error: Error value for the signal
679 *
680 * Prepare the wake-up of the queue entry q.
681 */
682 static void wake_up_sem_queue_prepare(struct list_head *pt,
683 struct sem_queue *q, int error)
684 {
685 if (list_empty(pt)) {
686 /*
687 * Hold preempt off so that we don't get preempted and have the
688 * wakee busy-wait until we're scheduled back on.
689 */
690 preempt_disable();
691 }
692 q->status = IN_WAKEUP;
693 q->pid = error;
694
695 list_add_tail(&q->list, pt);
696 }
697
698 /**
699 * wake_up_sem_queue_do(pt) - do the actual wake-up
700 * @pt: list of tasks to be woken up
701 *
702 * Do the actual wake-up.
703 * The function is called without any locks held, thus the semaphore array
704 * could be destroyed already and the tasks can disappear as soon as the
705 * status is set to the actual return code.
706 */
707 static void wake_up_sem_queue_do(struct list_head *pt)
708 {
709 struct sem_queue *q, *t;
710 int did_something;
711
712 did_something = !list_empty(pt);
713 list_for_each_entry_safe(q, t, pt, list) {
714 wake_up_process(q->sleeper);
715 /* q can disappear immediately after writing q->status. */
716 smp_wmb();
717 q->status = q->pid;
718 }
719 if (did_something)
720 preempt_enable();
721 }
722
723 static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
724 {
725 list_del(&q->list);
726 if (q->nsops > 1)
727 sma->complex_count--;
728 }
729
730 /** check_restart(sma, q)
731 * @sma: semaphore array
732 * @q: the operation that just completed
733 *
734 * update_queue is O(N^2) when it restarts scanning the whole queue of
735 * waiting operations. Therefore this function checks if the restart is
736 * really necessary. It is called after a previously waiting operation
737 * modified the array.
738 * Note that wait-for-zero operations are handled without restart.
739 */
740 static int check_restart(struct sem_array *sma, struct sem_queue *q)
741 {
742 /* pending complex alter operations are too difficult to analyse */
743 if (!list_empty(&sma->pending_alter))
744 return 1;
745
746 /* we were a sleeping complex operation. Too difficult */
747 if (q->nsops > 1)
748 return 1;
749
750 /* It is impossible that someone waits for the new value:
751 * - complex operations always restart.
752 * - wait-for-zero are handled seperately.
753 * - q is a previously sleeping simple operation that
754 * altered the array. It must be a decrement, because
755 * simple increments never sleep.
756 * - If there are older (higher priority) decrements
757 * in the queue, then they have observed the original
758 * semval value and couldn't proceed. The operation
759 * decremented to value - thus they won't proceed either.
760 */
761 return 0;
762 }
763
764 /**
765 * wake_const_ops(sma, semnum, pt) - Wake up non-alter tasks
766 * @sma: semaphore array.
767 * @semnum: semaphore that was modified.
768 * @pt: list head for the tasks that must be woken up.
769 *
770 * wake_const_ops must be called after a semaphore in a semaphore array
771 * was set to 0. If complex const operations are pending, wake_const_ops must
772 * be called with semnum = -1, as well as with the number of each modified
773 * semaphore.
774 * The tasks that must be woken up are added to @pt. The return code
775 * is stored in q->pid.
776 * The function returns 1 if at least one operation was completed successfully.
777 */
778 static int wake_const_ops(struct sem_array *sma, int semnum,
779 struct list_head *pt)
780 {
781 struct sem_queue *q;
782 struct list_head *walk;
783 struct list_head *pending_list;
784 int semop_completed = 0;
785
786 if (semnum == -1)
787 pending_list = &sma->pending_const;
788 else
789 pending_list = &sma->sem_base[semnum].pending_const;
790
791 walk = pending_list->next;
792 while (walk != pending_list) {
793 int error;
794
795 q = container_of(walk, struct sem_queue, list);
796 walk = walk->next;
797
798 error = perform_atomic_semop(sma, q->sops, q->nsops,
799 q->undo, q->pid);
800
801 if (error <= 0) {
802 /* operation completed, remove from queue & wakeup */
803
804 unlink_queue(sma, q);
805
806 wake_up_sem_queue_prepare(pt, q, error);
807 if (error == 0)
808 semop_completed = 1;
809 }
810 }
811 return semop_completed;
812 }
813
814 /**
815 * do_smart_wakeup_zero(sma, sops, nsops, pt) - wakeup all wait for zero tasks
816 * @sma: semaphore array
817 * @sops: operations that were performed
818 * @nsops: number of operations
819 * @pt: list head of the tasks that must be woken up.
820 *
821 * do_smart_wakeup_zero() checks all required queue for wait-for-zero
822 * operations, based on the actual changes that were performed on the
823 * semaphore array.
824 * The function returns 1 if at least one operation was completed successfully.
825 */
826 static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
827 int nsops, struct list_head *pt)
828 {
829 int i;
830 int semop_completed = 0;
831 int got_zero = 0;
832
833 /* first: the per-semaphore queues, if known */
834 if (sops) {
835 for (i = 0; i < nsops; i++) {
836 int num = sops[i].sem_num;
837
838 if (sma->sem_base[num].semval == 0) {
839 got_zero = 1;
840 semop_completed |= wake_const_ops(sma, num, pt);
841 }
842 }
843 } else {
844 /*
845 * No sops means modified semaphores not known.
846 * Assume all were changed.
847 */
848 for (i = 0; i < sma->sem_nsems; i++) {
849 if (sma->sem_base[i].semval == 0) {
850 got_zero = 1;
851 semop_completed |= wake_const_ops(sma, i, pt);
852 }
853 }
854 }
855 /*
856 * If one of the modified semaphores got 0,
857 * then check the global queue, too.
858 */
859 if (got_zero)
860 semop_completed |= wake_const_ops(sma, -1, pt);
861
862 return semop_completed;
863 }
864
865
866 /**
867 * update_queue(sma, semnum): Look for tasks that can be completed.
868 * @sma: semaphore array.
869 * @semnum: semaphore that was modified.
870 * @pt: list head for the tasks that must be woken up.
871 *
872 * update_queue must be called after a semaphore in a semaphore array
873 * was modified. If multiple semaphores were modified, update_queue must
874 * be called with semnum = -1, as well as with the number of each modified
875 * semaphore.
876 * The tasks that must be woken up are added to @pt. The return code
877 * is stored in q->pid.
878 * The function internally checks if const operations can now succeed.
879 *
880 * The function return 1 if at least one semop was completed successfully.
881 */
882 static int update_queue(struct sem_array *sma, int semnum, struct list_head *pt)
883 {
884 struct sem_queue *q;
885 struct list_head *walk;
886 struct list_head *pending_list;
887 int semop_completed = 0;
888
889 if (semnum == -1)
890 pending_list = &sma->pending_alter;
891 else
892 pending_list = &sma->sem_base[semnum].pending_alter;
893
894 again:
895 walk = pending_list->next;
896 while (walk != pending_list) {
897 int error, restart;
898
899 q = container_of(walk, struct sem_queue, list);
900 walk = walk->next;
901
902 /* If we are scanning the single sop, per-semaphore list of
903 * one semaphore and that semaphore is 0, then it is not
904 * necessary to scan further: simple increments
905 * that affect only one entry succeed immediately and cannot
906 * be in the per semaphore pending queue, and decrements
907 * cannot be successful if the value is already 0.
908 */
909 if (semnum != -1 && sma->sem_base[semnum].semval == 0)
910 break;
911
912 error = perform_atomic_semop(sma, q->sops, q->nsops,
913 q->undo, q->pid);
914
915 /* Does q->sleeper still need to sleep? */
916 if (error > 0)
917 continue;
918
919 unlink_queue(sma, q);
920
921 if (error) {
922 restart = 0;
923 } else {
924 semop_completed = 1;
925 do_smart_wakeup_zero(sma, q->sops, q->nsops, pt);
926 restart = check_restart(sma, q);
927 }
928
929 wake_up_sem_queue_prepare(pt, q, error);
930 if (restart)
931 goto again;
932 }
933 return semop_completed;
934 }
935
936 /**
937 * set_semotime(sma, sops) - set sem_otime
938 * @sma: semaphore array
939 * @sops: operations that modified the array, may be NULL
940 *
941 * sem_otime is replicated to avoid cache line trashing.
942 * This function sets one instance to the current time.
943 */
944 static void set_semotime(struct sem_array *sma, struct sembuf *sops)
945 {
946 if (sops == NULL) {
947 sma->sem_base[0].sem_otime = get_seconds();
948 } else {
949 sma->sem_base[sops[0].sem_num].sem_otime =
950 get_seconds();
951 }
952 }
953
954 /**
955 * do_smart_update(sma, sops, nsops, otime, pt) - optimized update_queue
956 * @sma: semaphore array
957 * @sops: operations that were performed
958 * @nsops: number of operations
959 * @otime: force setting otime
960 * @pt: list head of the tasks that must be woken up.
961 *
962 * do_smart_update() does the required calls to update_queue and wakeup_zero,
963 * based on the actual changes that were performed on the semaphore array.
964 * Note that the function does not do the actual wake-up: the caller is
965 * responsible for calling wake_up_sem_queue_do(@pt).
966 * It is safe to perform this call after dropping all locks.
967 */
968 static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
969 int otime, struct list_head *pt)
970 {
971 int i;
972
973 otime |= do_smart_wakeup_zero(sma, sops, nsops, pt);
974
975 if (!list_empty(&sma->pending_alter)) {
976 /* semaphore array uses the global queue - just process it. */
977 otime |= update_queue(sma, -1, pt);
978 } else {
979 if (!sops) {
980 /*
981 * No sops, thus the modified semaphores are not
982 * known. Check all.
983 */
984 for (i = 0; i < sma->sem_nsems; i++)
985 otime |= update_queue(sma, i, pt);
986 } else {
987 /*
988 * Check the semaphores that were increased:
989 * - No complex ops, thus all sleeping ops are
990 * decrease.
991 * - if we decreased the value, then any sleeping
992 * semaphore ops wont be able to run: If the
993 * previous value was too small, then the new
994 * value will be too small, too.
995 */
996 for (i = 0; i < nsops; i++) {
997 if (sops[i].sem_op > 0) {
998 otime |= update_queue(sma,
999 sops[i].sem_num, pt);
1000 }
1001 }
1002 }
1003 }
1004 if (otime)
1005 set_semotime(sma, sops);
1006 }
1007
1008 /* The following counts are associated to each semaphore:
1009 * semncnt number of tasks waiting on semval being nonzero
1010 * semzcnt number of tasks waiting on semval being zero
1011 * This model assumes that a task waits on exactly one semaphore.
1012 * Since semaphore operations are to be performed atomically, tasks actually
1013 * wait on a whole sequence of semaphores simultaneously.
1014 * The counts we return here are a rough approximation, but still
1015 * warrant that semncnt+semzcnt>0 if the task is on the pending queue.
1016 */
1017 static int count_semncnt (struct sem_array * sma, ushort semnum)
1018 {
1019 int semncnt;
1020 struct sem_queue * q;
1021
1022 semncnt = 0;
1023 list_for_each_entry(q, &sma->sem_base[semnum].pending_alter, list) {
1024 struct sembuf * sops = q->sops;
1025 BUG_ON(sops->sem_num != semnum);
1026 if ((sops->sem_op < 0) && !(sops->sem_flg & IPC_NOWAIT))
1027 semncnt++;
1028 }
1029
1030 list_for_each_entry(q, &sma->pending_alter, list) {
1031 struct sembuf * sops = q->sops;
1032 int nsops = q->nsops;
1033 int i;
1034 for (i = 0; i < nsops; i++)
1035 if (sops[i].sem_num == semnum
1036 && (sops[i].sem_op < 0)
1037 && !(sops[i].sem_flg & IPC_NOWAIT))
1038 semncnt++;
1039 }
1040 return semncnt;
1041 }
1042
1043 static int count_semzcnt (struct sem_array * sma, ushort semnum)
1044 {
1045 int semzcnt;
1046 struct sem_queue * q;
1047
1048 semzcnt = 0;
1049 list_for_each_entry(q, &sma->sem_base[semnum].pending_const, list) {
1050 struct sembuf * sops = q->sops;
1051 BUG_ON(sops->sem_num != semnum);
1052 if ((sops->sem_op == 0) && !(sops->sem_flg & IPC_NOWAIT))
1053 semzcnt++;
1054 }
1055
1056 list_for_each_entry(q, &sma->pending_const, list) {
1057 struct sembuf * sops = q->sops;
1058 int nsops = q->nsops;
1059 int i;
1060 for (i = 0; i < nsops; i++)
1061 if (sops[i].sem_num == semnum
1062 && (sops[i].sem_op == 0)
1063 && !(sops[i].sem_flg & IPC_NOWAIT))
1064 semzcnt++;
1065 }
1066 return semzcnt;
1067 }
1068
1069 /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1070 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
1071 * remains locked on exit.
1072 */
1073 static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1074 {
1075 struct sem_undo *un, *tu;
1076 struct sem_queue *q, *tq;
1077 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
1078 struct list_head tasks;
1079 int i;
1080
1081 /* Free the existing undo structures for this semaphore set. */
1082 ipc_assert_locked_object(&sma->sem_perm);
1083 list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
1084 list_del(&un->list_id);
1085 spin_lock(&un->ulp->lock);
1086 un->semid = -1;
1087 list_del_rcu(&un->list_proc);
1088 spin_unlock(&un->ulp->lock);
1089 kfree_rcu(un, rcu);
1090 }
1091
1092 /* Wake up all pending processes and let them fail with EIDRM. */
1093 INIT_LIST_HEAD(&tasks);
1094 list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
1095 unlink_queue(sma, q);
1096 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1097 }
1098
1099 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
1100 unlink_queue(sma, q);
1101 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1102 }
1103 for (i = 0; i < sma->sem_nsems; i++) {
1104 struct sem *sem = sma->sem_base + i;
1105 list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
1106 unlink_queue(sma, q);
1107 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1108 }
1109 list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
1110 unlink_queue(sma, q);
1111 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1112 }
1113 }
1114
1115 /* Remove the semaphore set from the IDR */
1116 sem_rmid(ns, sma);
1117 sem_unlock(sma, -1);
1118 rcu_read_unlock();
1119
1120 wake_up_sem_queue_do(&tasks);
1121 ns->used_sems -= sma->sem_nsems;
1122 ipc_rcu_putref(sma, sem_rcu_free);
1123 }
1124
1125 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1126 {
1127 switch(version) {
1128 case IPC_64:
1129 return copy_to_user(buf, in, sizeof(*in));
1130 case IPC_OLD:
1131 {
1132 struct semid_ds out;
1133
1134 memset(&out, 0, sizeof(out));
1135
1136 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1137
1138 out.sem_otime = in->sem_otime;
1139 out.sem_ctime = in->sem_ctime;
1140 out.sem_nsems = in->sem_nsems;
1141
1142 return copy_to_user(buf, &out, sizeof(out));
1143 }
1144 default:
1145 return -EINVAL;
1146 }
1147 }
1148
1149 static time_t get_semotime(struct sem_array *sma)
1150 {
1151 int i;
1152 time_t res;
1153
1154 res = sma->sem_base[0].sem_otime;
1155 for (i = 1; i < sma->sem_nsems; i++) {
1156 time_t to = sma->sem_base[i].sem_otime;
1157
1158 if (to > res)
1159 res = to;
1160 }
1161 return res;
1162 }
1163
1164 static int semctl_nolock(struct ipc_namespace *ns, int semid,
1165 int cmd, int version, void __user *p)
1166 {
1167 int err;
1168 struct sem_array *sma;
1169
1170 switch(cmd) {
1171 case IPC_INFO:
1172 case SEM_INFO:
1173 {
1174 struct seminfo seminfo;
1175 int max_id;
1176
1177 err = security_sem_semctl(NULL, cmd);
1178 if (err)
1179 return err;
1180
1181 memset(&seminfo,0,sizeof(seminfo));
1182 seminfo.semmni = ns->sc_semmni;
1183 seminfo.semmns = ns->sc_semmns;
1184 seminfo.semmsl = ns->sc_semmsl;
1185 seminfo.semopm = ns->sc_semopm;
1186 seminfo.semvmx = SEMVMX;
1187 seminfo.semmnu = SEMMNU;
1188 seminfo.semmap = SEMMAP;
1189 seminfo.semume = SEMUME;
1190 down_read(&sem_ids(ns).rwsem);
1191 if (cmd == SEM_INFO) {
1192 seminfo.semusz = sem_ids(ns).in_use;
1193 seminfo.semaem = ns->used_sems;
1194 } else {
1195 seminfo.semusz = SEMUSZ;
1196 seminfo.semaem = SEMAEM;
1197 }
1198 max_id = ipc_get_maxid(&sem_ids(ns));
1199 up_read(&sem_ids(ns).rwsem);
1200 if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1201 return -EFAULT;
1202 return (max_id < 0) ? 0: max_id;
1203 }
1204 case IPC_STAT:
1205 case SEM_STAT:
1206 {
1207 struct semid64_ds tbuf;
1208 int id = 0;
1209
1210 memset(&tbuf, 0, sizeof(tbuf));
1211
1212 rcu_read_lock();
1213 if (cmd == SEM_STAT) {
1214 sma = sem_obtain_object(ns, semid);
1215 if (IS_ERR(sma)) {
1216 err = PTR_ERR(sma);
1217 goto out_unlock;
1218 }
1219 id = sma->sem_perm.id;
1220 } else {
1221 sma = sem_obtain_object_check(ns, semid);
1222 if (IS_ERR(sma)) {
1223 err = PTR_ERR(sma);
1224 goto out_unlock;
1225 }
1226 }
1227
1228 err = -EACCES;
1229 if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1230 goto out_unlock;
1231
1232 err = security_sem_semctl(sma, cmd);
1233 if (err)
1234 goto out_unlock;
1235
1236 kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
1237 tbuf.sem_otime = get_semotime(sma);
1238 tbuf.sem_ctime = sma->sem_ctime;
1239 tbuf.sem_nsems = sma->sem_nsems;
1240 rcu_read_unlock();
1241 if (copy_semid_to_user(p, &tbuf, version))
1242 return -EFAULT;
1243 return id;
1244 }
1245 default:
1246 return -EINVAL;
1247 }
1248 out_unlock:
1249 rcu_read_unlock();
1250 return err;
1251 }
1252
1253 static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
1254 unsigned long arg)
1255 {
1256 struct sem_undo *un;
1257 struct sem_array *sma;
1258 struct sem* curr;
1259 int err;
1260 struct list_head tasks;
1261 int val;
1262 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1263 /* big-endian 64bit */
1264 val = arg >> 32;
1265 #else
1266 /* 32bit or little-endian 64bit */
1267 val = arg;
1268 #endif
1269
1270 if (val > SEMVMX || val < 0)
1271 return -ERANGE;
1272
1273 INIT_LIST_HEAD(&tasks);
1274
1275 rcu_read_lock();
1276 sma = sem_obtain_object_check(ns, semid);
1277 if (IS_ERR(sma)) {
1278 rcu_read_unlock();
1279 return PTR_ERR(sma);
1280 }
1281
1282 if (semnum < 0 || semnum >= sma->sem_nsems) {
1283 rcu_read_unlock();
1284 return -EINVAL;
1285 }
1286
1287
1288 if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1289 rcu_read_unlock();
1290 return -EACCES;
1291 }
1292
1293 err = security_sem_semctl(sma, SETVAL);
1294 if (err) {
1295 rcu_read_unlock();
1296 return -EACCES;
1297 }
1298
1299 sem_lock(sma, NULL, -1);
1300
1301 if (sma->sem_perm.deleted) {
1302 sem_unlock(sma, -1);
1303 rcu_read_unlock();
1304 return -EIDRM;
1305 }
1306
1307 curr = &sma->sem_base[semnum];
1308
1309 ipc_assert_locked_object(&sma->sem_perm);
1310 list_for_each_entry(un, &sma->list_id, list_id)
1311 un->semadj[semnum] = 0;
1312
1313 curr->semval = val;
1314 curr->sempid = task_tgid_vnr(current);
1315 sma->sem_ctime = get_seconds();
1316 /* maybe some queued-up processes were waiting for this */
1317 do_smart_update(sma, NULL, 0, 0, &tasks);
1318 sem_unlock(sma, -1);
1319 rcu_read_unlock();
1320 wake_up_sem_queue_do(&tasks);
1321 return 0;
1322 }
1323
1324 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
1325 int cmd, void __user *p)
1326 {
1327 struct sem_array *sma;
1328 struct sem* curr;
1329 int err, nsems;
1330 ushort fast_sem_io[SEMMSL_FAST];
1331 ushort* sem_io = fast_sem_io;
1332 struct list_head tasks;
1333
1334 INIT_LIST_HEAD(&tasks);
1335
1336 rcu_read_lock();
1337 sma = sem_obtain_object_check(ns, semid);
1338 if (IS_ERR(sma)) {
1339 rcu_read_unlock();
1340 return PTR_ERR(sma);
1341 }
1342
1343 nsems = sma->sem_nsems;
1344
1345 err = -EACCES;
1346 if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1347 goto out_rcu_wakeup;
1348
1349 err = security_sem_semctl(sma, cmd);
1350 if (err)
1351 goto out_rcu_wakeup;
1352
1353 err = -EACCES;
1354 switch (cmd) {
1355 case GETALL:
1356 {
1357 ushort __user *array = p;
1358 int i;
1359
1360 sem_lock(sma, NULL, -1);
1361 if (sma->sem_perm.deleted) {
1362 err = -EIDRM;
1363 goto out_unlock;
1364 }
1365 if(nsems > SEMMSL_FAST) {
1366 if (!ipc_rcu_getref(sma)) {
1367 err = -EIDRM;
1368 goto out_unlock;
1369 }
1370 sem_unlock(sma, -1);
1371 rcu_read_unlock();
1372 sem_io = ipc_alloc(sizeof(ushort)*nsems);
1373 if(sem_io == NULL) {
1374 ipc_rcu_putref(sma, ipc_rcu_free);
1375 return -ENOMEM;
1376 }
1377
1378 rcu_read_lock();
1379 sem_lock_and_putref(sma);
1380 if (sma->sem_perm.deleted) {
1381 err = -EIDRM;
1382 goto out_unlock;
1383 }
1384 }
1385 for (i = 0; i < sma->sem_nsems; i++)
1386 sem_io[i] = sma->sem_base[i].semval;
1387 sem_unlock(sma, -1);
1388 rcu_read_unlock();
1389 err = 0;
1390 if(copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1391 err = -EFAULT;
1392 goto out_free;
1393 }
1394 case SETALL:
1395 {
1396 int i;
1397 struct sem_undo *un;
1398
1399 if (!ipc_rcu_getref(sma)) {
1400 err = -EIDRM;
1401 goto out_rcu_wakeup;
1402 }
1403 rcu_read_unlock();
1404
1405 if(nsems > SEMMSL_FAST) {
1406 sem_io = ipc_alloc(sizeof(ushort)*nsems);
1407 if(sem_io == NULL) {
1408 ipc_rcu_putref(sma, ipc_rcu_free);
1409 return -ENOMEM;
1410 }
1411 }
1412
1413 if (copy_from_user (sem_io, p, nsems*sizeof(ushort))) {
1414 ipc_rcu_putref(sma, ipc_rcu_free);
1415 err = -EFAULT;
1416 goto out_free;
1417 }
1418
1419 for (i = 0; i < nsems; i++) {
1420 if (sem_io[i] > SEMVMX) {
1421 ipc_rcu_putref(sma, ipc_rcu_free);
1422 err = -ERANGE;
1423 goto out_free;
1424 }
1425 }
1426 rcu_read_lock();
1427 sem_lock_and_putref(sma);
1428 if (sma->sem_perm.deleted) {
1429 err = -EIDRM;
1430 goto out_unlock;
1431 }
1432
1433 for (i = 0; i < nsems; i++)
1434 sma->sem_base[i].semval = sem_io[i];
1435
1436 ipc_assert_locked_object(&sma->sem_perm);
1437 list_for_each_entry(un, &sma->list_id, list_id) {
1438 for (i = 0; i < nsems; i++)
1439 un->semadj[i] = 0;
1440 }
1441 sma->sem_ctime = get_seconds();
1442 /* maybe some queued-up processes were waiting for this */
1443 do_smart_update(sma, NULL, 0, 0, &tasks);
1444 err = 0;
1445 goto out_unlock;
1446 }
1447 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1448 }
1449 err = -EINVAL;
1450 if (semnum < 0 || semnum >= nsems)
1451 goto out_rcu_wakeup;
1452
1453 sem_lock(sma, NULL, -1);
1454 if (sma->sem_perm.deleted) {
1455 err = -EIDRM;
1456 goto out_unlock;
1457 }
1458 curr = &sma->sem_base[semnum];
1459
1460 switch (cmd) {
1461 case GETVAL:
1462 err = curr->semval;
1463 goto out_unlock;
1464 case GETPID:
1465 err = curr->sempid;
1466 goto out_unlock;
1467 case GETNCNT:
1468 err = count_semncnt(sma,semnum);
1469 goto out_unlock;
1470 case GETZCNT:
1471 err = count_semzcnt(sma,semnum);
1472 goto out_unlock;
1473 }
1474
1475 out_unlock:
1476 sem_unlock(sma, -1);
1477 out_rcu_wakeup:
1478 rcu_read_unlock();
1479 wake_up_sem_queue_do(&tasks);
1480 out_free:
1481 if(sem_io != fast_sem_io)
1482 ipc_free(sem_io, sizeof(ushort)*nsems);
1483 return err;
1484 }
1485
1486 static inline unsigned long
1487 copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1488 {
1489 switch(version) {
1490 case IPC_64:
1491 if (copy_from_user(out, buf, sizeof(*out)))
1492 return -EFAULT;
1493 return 0;
1494 case IPC_OLD:
1495 {
1496 struct semid_ds tbuf_old;
1497
1498 if(copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1499 return -EFAULT;
1500
1501 out->sem_perm.uid = tbuf_old.sem_perm.uid;
1502 out->sem_perm.gid = tbuf_old.sem_perm.gid;
1503 out->sem_perm.mode = tbuf_old.sem_perm.mode;
1504
1505 return 0;
1506 }
1507 default:
1508 return -EINVAL;
1509 }
1510 }
1511
1512 /*
1513 * This function handles some semctl commands which require the rwsem
1514 * to be held in write mode.
1515 * NOTE: no locks must be held, the rwsem is taken inside this function.
1516 */
1517 static int semctl_down(struct ipc_namespace *ns, int semid,
1518 int cmd, int version, void __user *p)
1519 {
1520 struct sem_array *sma;
1521 int err;
1522 struct semid64_ds semid64;
1523 struct kern_ipc_perm *ipcp;
1524
1525 if(cmd == IPC_SET) {
1526 if (copy_semid_from_user(&semid64, p, version))
1527 return -EFAULT;
1528 }
1529
1530 down_write(&sem_ids(ns).rwsem);
1531 rcu_read_lock();
1532
1533 ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd,
1534 &semid64.sem_perm, 0);
1535 if (IS_ERR(ipcp)) {
1536 err = PTR_ERR(ipcp);
1537 goto out_unlock1;
1538 }
1539
1540 sma = container_of(ipcp, struct sem_array, sem_perm);
1541
1542 err = security_sem_semctl(sma, cmd);
1543 if (err)
1544 goto out_unlock1;
1545
1546 switch (cmd) {
1547 case IPC_RMID:
1548 sem_lock(sma, NULL, -1);
1549 /* freeary unlocks the ipc object and rcu */
1550 freeary(ns, ipcp);
1551 goto out_up;
1552 case IPC_SET:
1553 sem_lock(sma, NULL, -1);
1554 err = ipc_update_perm(&semid64.sem_perm, ipcp);
1555 if (err)
1556 goto out_unlock0;
1557 sma->sem_ctime = get_seconds();
1558 break;
1559 default:
1560 err = -EINVAL;
1561 goto out_unlock1;
1562 }
1563
1564 out_unlock0:
1565 sem_unlock(sma, -1);
1566 out_unlock1:
1567 rcu_read_unlock();
1568 out_up:
1569 up_write(&sem_ids(ns).rwsem);
1570 return err;
1571 }
1572
1573 SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1574 {
1575 int version;
1576 struct ipc_namespace *ns;
1577 void __user *p = (void __user *)arg;
1578
1579 if (semid < 0)
1580 return -EINVAL;
1581
1582 version = ipc_parse_version(&cmd);
1583 ns = current->nsproxy->ipc_ns;
1584
1585 switch(cmd) {
1586 case IPC_INFO:
1587 case SEM_INFO:
1588 case IPC_STAT:
1589 case SEM_STAT:
1590 return semctl_nolock(ns, semid, cmd, version, p);
1591 case GETALL:
1592 case GETVAL:
1593 case GETPID:
1594 case GETNCNT:
1595 case GETZCNT:
1596 case SETALL:
1597 return semctl_main(ns, semid, semnum, cmd, p);
1598 case SETVAL:
1599 return semctl_setval(ns, semid, semnum, arg);
1600 case IPC_RMID:
1601 case IPC_SET:
1602 return semctl_down(ns, semid, cmd, version, p);
1603 default:
1604 return -EINVAL;
1605 }
1606 }
1607
1608 /* If the task doesn't already have a undo_list, then allocate one
1609 * here. We guarantee there is only one thread using this undo list,
1610 * and current is THE ONE
1611 *
1612 * If this allocation and assignment succeeds, but later
1613 * portions of this code fail, there is no need to free the sem_undo_list.
1614 * Just let it stay associated with the task, and it'll be freed later
1615 * at exit time.
1616 *
1617 * This can block, so callers must hold no locks.
1618 */
1619 static inline int get_undo_list(struct sem_undo_list **undo_listp)
1620 {
1621 struct sem_undo_list *undo_list;
1622
1623 undo_list = current->sysvsem.undo_list;
1624 if (!undo_list) {
1625 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1626 if (undo_list == NULL)
1627 return -ENOMEM;
1628 spin_lock_init(&undo_list->lock);
1629 atomic_set(&undo_list->refcnt, 1);
1630 INIT_LIST_HEAD(&undo_list->list_proc);
1631
1632 current->sysvsem.undo_list = undo_list;
1633 }
1634 *undo_listp = undo_list;
1635 return 0;
1636 }
1637
1638 static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1639 {
1640 struct sem_undo *un;
1641
1642 list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
1643 if (un->semid == semid)
1644 return un;
1645 }
1646 return NULL;
1647 }
1648
1649 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1650 {
1651 struct sem_undo *un;
1652
1653 assert_spin_locked(&ulp->lock);
1654
1655 un = __lookup_undo(ulp, semid);
1656 if (un) {
1657 list_del_rcu(&un->list_proc);
1658 list_add_rcu(&un->list_proc, &ulp->list_proc);
1659 }
1660 return un;
1661 }
1662
1663 /**
1664 * find_alloc_undo - Lookup (and if not present create) undo array
1665 * @ns: namespace
1666 * @semid: semaphore array id
1667 *
1668 * The function looks up (and if not present creates) the undo structure.
1669 * The size of the undo structure depends on the size of the semaphore
1670 * array, thus the alloc path is not that straightforward.
1671 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1672 * performs a rcu_read_lock().
1673 */
1674 static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1675 {
1676 struct sem_array *sma;
1677 struct sem_undo_list *ulp;
1678 struct sem_undo *un, *new;
1679 int nsems, error;
1680
1681 error = get_undo_list(&ulp);
1682 if (error)
1683 return ERR_PTR(error);
1684
1685 rcu_read_lock();
1686 spin_lock(&ulp->lock);
1687 un = lookup_undo(ulp, semid);
1688 spin_unlock(&ulp->lock);
1689 if (likely(un!=NULL))
1690 goto out;
1691
1692 /* no undo structure around - allocate one. */
1693 /* step 1: figure out the size of the semaphore array */
1694 sma = sem_obtain_object_check(ns, semid);
1695 if (IS_ERR(sma)) {
1696 rcu_read_unlock();
1697 return ERR_CAST(sma);
1698 }
1699
1700 nsems = sma->sem_nsems;
1701 if (!ipc_rcu_getref(sma)) {
1702 rcu_read_unlock();
1703 un = ERR_PTR(-EIDRM);
1704 goto out;
1705 }
1706 rcu_read_unlock();
1707
1708 /* step 2: allocate new undo structure */
1709 new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1710 if (!new) {
1711 ipc_rcu_putref(sma, ipc_rcu_free);
1712 return ERR_PTR(-ENOMEM);
1713 }
1714
1715 /* step 3: Acquire the lock on semaphore array */
1716 rcu_read_lock();
1717 sem_lock_and_putref(sma);
1718 if (sma->sem_perm.deleted) {
1719 sem_unlock(sma, -1);
1720 rcu_read_unlock();
1721 kfree(new);
1722 un = ERR_PTR(-EIDRM);
1723 goto out;
1724 }
1725 spin_lock(&ulp->lock);
1726
1727 /*
1728 * step 4: check for races: did someone else allocate the undo struct?
1729 */
1730 un = lookup_undo(ulp, semid);
1731 if (un) {
1732 kfree(new);
1733 goto success;
1734 }
1735 /* step 5: initialize & link new undo structure */
1736 new->semadj = (short *) &new[1];
1737 new->ulp = ulp;
1738 new->semid = semid;
1739 assert_spin_locked(&ulp->lock);
1740 list_add_rcu(&new->list_proc, &ulp->list_proc);
1741 ipc_assert_locked_object(&sma->sem_perm);
1742 list_add(&new->list_id, &sma->list_id);
1743 un = new;
1744
1745 success:
1746 spin_unlock(&ulp->lock);
1747 sem_unlock(sma, -1);
1748 out:
1749 return un;
1750 }
1751
1752
1753 /**
1754 * get_queue_result - Retrieve the result code from sem_queue
1755 * @q: Pointer to queue structure
1756 *
1757 * Retrieve the return code from the pending queue. If IN_WAKEUP is found in
1758 * q->status, then we must loop until the value is replaced with the final
1759 * value: This may happen if a task is woken up by an unrelated event (e.g.
1760 * signal) and in parallel the task is woken up by another task because it got
1761 * the requested semaphores.
1762 *
1763 * The function can be called with or without holding the semaphore spinlock.
1764 */
1765 static int get_queue_result(struct sem_queue *q)
1766 {
1767 int error;
1768
1769 error = q->status;
1770 while (unlikely(error == IN_WAKEUP)) {
1771 cpu_relax();
1772 error = q->status;
1773 }
1774
1775 return error;
1776 }
1777
1778 SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
1779 unsigned, nsops, const struct timespec __user *, timeout)
1780 {
1781 int error = -EINVAL;
1782 struct sem_array *sma;
1783 struct sembuf fast_sops[SEMOPM_FAST];
1784 struct sembuf* sops = fast_sops, *sop;
1785 struct sem_undo *un;
1786 int undos = 0, alter = 0, max, locknum;
1787 struct sem_queue queue;
1788 unsigned long jiffies_left = 0;
1789 struct ipc_namespace *ns;
1790 struct list_head tasks;
1791
1792 ns = current->nsproxy->ipc_ns;
1793
1794 if (nsops < 1 || semid < 0)
1795 return -EINVAL;
1796 if (nsops > ns->sc_semopm)
1797 return -E2BIG;
1798 if(nsops > SEMOPM_FAST) {
1799 sops = kmalloc(sizeof(*sops)*nsops,GFP_KERNEL);
1800 if(sops==NULL)
1801 return -ENOMEM;
1802 }
1803 if (copy_from_user (sops, tsops, nsops * sizeof(*tsops))) {
1804 error=-EFAULT;
1805 goto out_free;
1806 }
1807 if (timeout) {
1808 struct timespec _timeout;
1809 if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
1810 error = -EFAULT;
1811 goto out_free;
1812 }
1813 if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
1814 _timeout.tv_nsec >= 1000000000L) {
1815 error = -EINVAL;
1816 goto out_free;
1817 }
1818 jiffies_left = timespec_to_jiffies(&_timeout);
1819 }
1820 max = 0;
1821 for (sop = sops; sop < sops + nsops; sop++) {
1822 if (sop->sem_num >= max)
1823 max = sop->sem_num;
1824 if (sop->sem_flg & SEM_UNDO)
1825 undos = 1;
1826 if (sop->sem_op != 0)
1827 alter = 1;
1828 }
1829
1830 INIT_LIST_HEAD(&tasks);
1831
1832 if (undos) {
1833 /* On success, find_alloc_undo takes the rcu_read_lock */
1834 un = find_alloc_undo(ns, semid);
1835 if (IS_ERR(un)) {
1836 error = PTR_ERR(un);
1837 goto out_free;
1838 }
1839 } else {
1840 un = NULL;
1841 rcu_read_lock();
1842 }
1843
1844 sma = sem_obtain_object_check(ns, semid);
1845 if (IS_ERR(sma)) {
1846 rcu_read_unlock();
1847 error = PTR_ERR(sma);
1848 goto out_free;
1849 }
1850
1851 error = -EFBIG;
1852 if (max >= sma->sem_nsems)
1853 goto out_rcu_wakeup;
1854
1855 error = -EACCES;
1856 if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO))
1857 goto out_rcu_wakeup;
1858
1859 error = security_sem_semop(sma, sops, nsops, alter);
1860 if (error)
1861 goto out_rcu_wakeup;
1862
1863 error = -EIDRM;
1864 locknum = sem_lock(sma, sops, nsops);
1865 if (sma->sem_perm.deleted)
1866 goto out_unlock_free;
1867 /*
1868 * semid identifiers are not unique - find_alloc_undo may have
1869 * allocated an undo structure, it was invalidated by an RMID
1870 * and now a new array with received the same id. Check and fail.
1871 * This case can be detected checking un->semid. The existence of
1872 * "un" itself is guaranteed by rcu.
1873 */
1874 if (un && un->semid == -1)
1875 goto out_unlock_free;
1876
1877 error = perform_atomic_semop(sma, sops, nsops, un,
1878 task_tgid_vnr(current));
1879 if (error == 0) {
1880 /* If the operation was successful, then do
1881 * the required updates.
1882 */
1883 if (alter)
1884 do_smart_update(sma, sops, nsops, 1, &tasks);
1885 else
1886 set_semotime(sma, sops);
1887 }
1888 if (error <= 0)
1889 goto out_unlock_free;
1890
1891 /* We need to sleep on this operation, so we put the current
1892 * task into the pending queue and go to sleep.
1893 */
1894
1895 queue.sops = sops;
1896 queue.nsops = nsops;
1897 queue.undo = un;
1898 queue.pid = task_tgid_vnr(current);
1899 queue.alter = alter;
1900
1901 if (nsops == 1) {
1902 struct sem *curr;
1903 curr = &sma->sem_base[sops->sem_num];
1904
1905 if (alter) {
1906 if (sma->complex_count) {
1907 list_add_tail(&queue.list,
1908 &sma->pending_alter);
1909 } else {
1910
1911 list_add_tail(&queue.list,
1912 &curr->pending_alter);
1913 }
1914 } else {
1915 list_add_tail(&queue.list, &curr->pending_const);
1916 }
1917 } else {
1918 if (!sma->complex_count)
1919 merge_queues(sma);
1920
1921 if (alter)
1922 list_add_tail(&queue.list, &sma->pending_alter);
1923 else
1924 list_add_tail(&queue.list, &sma->pending_const);
1925
1926 sma->complex_count++;
1927 }
1928
1929 queue.status = -EINTR;
1930 queue.sleeper = current;
1931
1932 sleep_again:
1933 current->state = TASK_INTERRUPTIBLE;
1934 sem_unlock(sma, locknum);
1935 rcu_read_unlock();
1936
1937 if (timeout)
1938 jiffies_left = schedule_timeout(jiffies_left);
1939 else
1940 schedule();
1941
1942 error = get_queue_result(&queue);
1943
1944 if (error != -EINTR) {
1945 /* fast path: update_queue already obtained all requested
1946 * resources.
1947 * Perform a smp_mb(): User space could assume that semop()
1948 * is a memory barrier: Without the mb(), the cpu could
1949 * speculatively read in user space stale data that was
1950 * overwritten by the previous owner of the semaphore.
1951 */
1952 smp_mb();
1953
1954 goto out_free;
1955 }
1956
1957 rcu_read_lock();
1958 sma = sem_obtain_lock(ns, semid, sops, nsops, &locknum);
1959
1960 /*
1961 * Wait until it's guaranteed that no wakeup_sem_queue_do() is ongoing.
1962 */
1963 error = get_queue_result(&queue);
1964
1965 /*
1966 * Array removed? If yes, leave without sem_unlock().
1967 */
1968 if (IS_ERR(sma)) {
1969 rcu_read_unlock();
1970 goto out_free;
1971 }
1972
1973
1974 /*
1975 * If queue.status != -EINTR we are woken up by another process.
1976 * Leave without unlink_queue(), but with sem_unlock().
1977 */
1978
1979 if (error != -EINTR) {
1980 goto out_unlock_free;
1981 }
1982
1983 /*
1984 * If an interrupt occurred we have to clean up the queue
1985 */
1986 if (timeout && jiffies_left == 0)
1987 error = -EAGAIN;
1988
1989 /*
1990 * If the wakeup was spurious, just retry
1991 */
1992 if (error == -EINTR && !signal_pending(current))
1993 goto sleep_again;
1994
1995 unlink_queue(sma, &queue);
1996
1997 out_unlock_free:
1998 sem_unlock(sma, locknum);
1999 out_rcu_wakeup:
2000 rcu_read_unlock();
2001 wake_up_sem_queue_do(&tasks);
2002 out_free:
2003 if(sops != fast_sops)
2004 kfree(sops);
2005 return error;
2006 }
2007
2008 SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
2009 unsigned, nsops)
2010 {
2011 return sys_semtimedop(semid, tsops, nsops, NULL);
2012 }
2013
2014 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2015 * parent and child tasks.
2016 */
2017
2018 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
2019 {
2020 struct sem_undo_list *undo_list;
2021 int error;
2022
2023 if (clone_flags & CLONE_SYSVSEM) {
2024 error = get_undo_list(&undo_list);
2025 if (error)
2026 return error;
2027 atomic_inc(&undo_list->refcnt);
2028 tsk->sysvsem.undo_list = undo_list;
2029 } else
2030 tsk->sysvsem.undo_list = NULL;
2031
2032 return 0;
2033 }
2034
2035 /*
2036 * add semadj values to semaphores, free undo structures.
2037 * undo structures are not freed when semaphore arrays are destroyed
2038 * so some of them may be out of date.
2039 * IMPLEMENTATION NOTE: There is some confusion over whether the
2040 * set of adjustments that needs to be done should be done in an atomic
2041 * manner or not. That is, if we are attempting to decrement the semval
2042 * should we queue up and wait until we can do so legally?
2043 * The original implementation attempted to do this (queue and wait).
2044 * The current implementation does not do so. The POSIX standard
2045 * and SVID should be consulted to determine what behavior is mandated.
2046 */
2047 void exit_sem(struct task_struct *tsk)
2048 {
2049 struct sem_undo_list *ulp;
2050
2051 ulp = tsk->sysvsem.undo_list;
2052 if (!ulp)
2053 return;
2054 tsk->sysvsem.undo_list = NULL;
2055
2056 if (!atomic_dec_and_test(&ulp->refcnt))
2057 return;
2058
2059 for (;;) {
2060 struct sem_array *sma;
2061 struct sem_undo *un;
2062 struct list_head tasks;
2063 int semid, i;
2064
2065 rcu_read_lock();
2066 un = list_entry_rcu(ulp->list_proc.next,
2067 struct sem_undo, list_proc);
2068 if (&un->list_proc == &ulp->list_proc) {
2069 /*
2070 * We must wait for freeary() before freeing this ulp,
2071 * in case we raced with last sem_undo. There is a small
2072 * possibility where we exit while freeary() didn't
2073 * finish unlocking sem_undo_list.
2074 */
2075 spin_unlock_wait(&ulp->lock);
2076 rcu_read_unlock();
2077 break;
2078 }
2079 spin_lock(&ulp->lock);
2080 semid = un->semid;
2081 spin_unlock(&ulp->lock);
2082
2083 /* exit_sem raced with IPC_RMID, nothing to do */
2084 if (semid == -1) {
2085 rcu_read_unlock();
2086 continue;
2087 }
2088
2089 sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid);
2090 /* exit_sem raced with IPC_RMID, nothing to do */
2091 if (IS_ERR(sma)) {
2092 rcu_read_unlock();
2093 continue;
2094 }
2095
2096 sem_lock(sma, NULL, -1);
2097 /* exit_sem raced with IPC_RMID, nothing to do */
2098 if (sma->sem_perm.deleted) {
2099 sem_unlock(sma, -1);
2100 rcu_read_unlock();
2101 continue;
2102 }
2103 un = __lookup_undo(ulp, semid);
2104 if (un == NULL) {
2105 /* exit_sem raced with IPC_RMID+semget() that created
2106 * exactly the same semid. Nothing to do.
2107 */
2108 sem_unlock(sma, -1);
2109 rcu_read_unlock();
2110 continue;
2111 }
2112
2113 /* remove un from the linked lists */
2114 ipc_assert_locked_object(&sma->sem_perm);
2115 list_del(&un->list_id);
2116
2117 spin_lock(&ulp->lock);
2118 list_del_rcu(&un->list_proc);
2119 spin_unlock(&ulp->lock);
2120
2121 /* perform adjustments registered in un */
2122 for (i = 0; i < sma->sem_nsems; i++) {
2123 struct sem * semaphore = &sma->sem_base[i];
2124 if (un->semadj[i]) {
2125 semaphore->semval += un->semadj[i];
2126 /*
2127 * Range checks of the new semaphore value,
2128 * not defined by sus:
2129 * - Some unices ignore the undo entirely
2130 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
2131 * - some cap the value (e.g. FreeBSD caps
2132 * at 0, but doesn't enforce SEMVMX)
2133 *
2134 * Linux caps the semaphore value, both at 0
2135 * and at SEMVMX.
2136 *
2137 * Manfred <manfred@colorfullife.com>
2138 */
2139 if (semaphore->semval < 0)
2140 semaphore->semval = 0;
2141 if (semaphore->semval > SEMVMX)
2142 semaphore->semval = SEMVMX;
2143 semaphore->sempid = task_tgid_vnr(current);
2144 }
2145 }
2146 /* maybe some queued-up processes were waiting for this */
2147 INIT_LIST_HEAD(&tasks);
2148 do_smart_update(sma, NULL, 0, 1, &tasks);
2149 sem_unlock(sma, -1);
2150 rcu_read_unlock();
2151 wake_up_sem_queue_do(&tasks);
2152
2153 kfree_rcu(un, rcu);
2154 }
2155 kfree(ulp);
2156 }
2157
2158 #ifdef CONFIG_PROC_FS
2159 static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
2160 {
2161 struct user_namespace *user_ns = seq_user_ns(s);
2162 struct sem_array *sma = it;
2163 time_t sem_otime;
2164
2165 /*
2166 * The proc interface isn't aware of sem_lock(), it calls
2167 * ipc_lock_object() directly (in sysvipc_find_ipc).
2168 * In order to stay compatible with sem_lock(), we must wait until
2169 * all simple semop() calls have left their critical regions.
2170 */
2171 sem_wait_array(sma);
2172
2173 sem_otime = get_semotime(sma);
2174
2175 return seq_printf(s,
2176 "%10d %10d %4o %10u %5u %5u %5u %5u %10lu %10lu\n",
2177 sma->sem_perm.key,
2178 sma->sem_perm.id,
2179 sma->sem_perm.mode,
2180 sma->sem_nsems,
2181 from_kuid_munged(user_ns, sma->sem_perm.uid),
2182 from_kgid_munged(user_ns, sma->sem_perm.gid),
2183 from_kuid_munged(user_ns, sma->sem_perm.cuid),
2184 from_kgid_munged(user_ns, sma->sem_perm.cgid),
2185 sem_otime,
2186 sma->sem_ctime);
2187 }
2188 #endif