ipc,shm: make shmctl_nolock lockless
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / ipc / sem.c
1 /*
2 * linux/ipc/sem.c
3 * Copyright (C) 1992 Krishna Balasubramanian
4 * Copyright (C) 1995 Eric Schenk, Bruno Haible
5 *
6 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
7 *
8 * SMP-threaded, sysctl's added
9 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
10 * Enforced range limit on SEM_UNDO
11 * (c) 2001 Red Hat Inc
12 * Lockless wakeup
13 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
14 * Further wakeup optimizations, documentation
15 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
16 *
17 * support for audit of ipc object properties and permission changes
18 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
19 *
20 * namespaces support
21 * OpenVZ, SWsoft Inc.
22 * Pavel Emelianov <xemul@openvz.org>
23 *
24 * Implementation notes: (May 2010)
25 * This file implements System V semaphores.
26 *
27 * User space visible behavior:
28 * - FIFO ordering for semop() operations (just FIFO, not starvation
29 * protection)
30 * - multiple semaphore operations that alter the same semaphore in
31 * one semop() are handled.
32 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
33 * SETALL calls.
34 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
35 * - undo adjustments at process exit are limited to 0..SEMVMX.
36 * - namespace are supported.
37 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
38 * to /proc/sys/kernel/sem.
39 * - statistics about the usage are reported in /proc/sysvipc/sem.
40 *
41 * Internals:
42 * - scalability:
43 * - all global variables are read-mostly.
44 * - semop() calls and semctl(RMID) are synchronized by RCU.
45 * - most operations do write operations (actually: spin_lock calls) to
46 * the per-semaphore array structure.
47 * Thus: Perfect SMP scaling between independent semaphore arrays.
48 * If multiple semaphores in one array are used, then cache line
49 * trashing on the semaphore array spinlock will limit the scaling.
50 * - semncnt and semzcnt are calculated on demand in count_semncnt() and
51 * count_semzcnt()
52 * - the task that performs a successful semop() scans the list of all
53 * sleeping tasks and completes any pending operations that can be fulfilled.
54 * Semaphores are actively given to waiting tasks (necessary for FIFO).
55 * (see update_queue())
56 * - To improve the scalability, the actual wake-up calls are performed after
57 * dropping all locks. (see wake_up_sem_queue_prepare(),
58 * wake_up_sem_queue_do())
59 * - All work is done by the waker, the woken up task does not have to do
60 * anything - not even acquiring a lock or dropping a refcount.
61 * - A woken up task may not even touch the semaphore array anymore, it may
62 * have been destroyed already by a semctl(RMID).
63 * - The synchronizations between wake-ups due to a timeout/signal and a
64 * wake-up due to a completed semaphore operation is achieved by using an
65 * intermediate state (IN_WAKEUP).
66 * - UNDO values are stored in an array (one per process and per
67 * semaphore array, lazily allocated). For backwards compatibility, multiple
68 * modes for the UNDO variables are supported (per process, per thread)
69 * (see copy_semundo, CLONE_SYSVSEM)
70 * - There are two lists of the pending operations: a per-array list
71 * and per-semaphore list (stored in the array). This allows to achieve FIFO
72 * ordering without always scanning all pending operations.
73 * The worst-case behavior is nevertheless O(N^2) for N wakeups.
74 */
75
76 #include <linux/slab.h>
77 #include <linux/spinlock.h>
78 #include <linux/init.h>
79 #include <linux/proc_fs.h>
80 #include <linux/time.h>
81 #include <linux/security.h>
82 #include <linux/syscalls.h>
83 #include <linux/audit.h>
84 #include <linux/capability.h>
85 #include <linux/seq_file.h>
86 #include <linux/rwsem.h>
87 #include <linux/nsproxy.h>
88 #include <linux/ipc_namespace.h>
89
90 #include <asm/uaccess.h>
91 #include "util.h"
92
93 /* One semaphore structure for each semaphore in the system. */
94 struct sem {
95 int semval; /* current value */
96 int sempid; /* pid of last operation */
97 spinlock_t lock; /* spinlock for fine-grained semtimedop */
98 struct list_head pending_alter; /* pending single-sop operations */
99 /* that alter the semaphore */
100 struct list_head pending_const; /* pending single-sop operations */
101 /* that do not alter the semaphore*/
102 time_t sem_otime; /* candidate for sem_otime */
103 } ____cacheline_aligned_in_smp;
104
105 /* One queue for each sleeping process in the system. */
106 struct sem_queue {
107 struct list_head list; /* queue of pending operations */
108 struct task_struct *sleeper; /* this process */
109 struct sem_undo *undo; /* undo structure */
110 int pid; /* process id of requesting process */
111 int status; /* completion status of operation */
112 struct sembuf *sops; /* array of pending operations */
113 int nsops; /* number of operations */
114 int alter; /* does *sops alter the array? */
115 };
116
117 /* Each task has a list of undo requests. They are executed automatically
118 * when the process exits.
119 */
120 struct sem_undo {
121 struct list_head list_proc; /* per-process list: *
122 * all undos from one process
123 * rcu protected */
124 struct rcu_head rcu; /* rcu struct for sem_undo */
125 struct sem_undo_list *ulp; /* back ptr to sem_undo_list */
126 struct list_head list_id; /* per semaphore array list:
127 * all undos for one array */
128 int semid; /* semaphore set identifier */
129 short *semadj; /* array of adjustments */
130 /* one per semaphore */
131 };
132
133 /* sem_undo_list controls shared access to the list of sem_undo structures
134 * that may be shared among all a CLONE_SYSVSEM task group.
135 */
136 struct sem_undo_list {
137 atomic_t refcnt;
138 spinlock_t lock;
139 struct list_head list_proc;
140 };
141
142
143 #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
144
145 #define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid)
146
147 static int newary(struct ipc_namespace *, struct ipc_params *);
148 static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
149 #ifdef CONFIG_PROC_FS
150 static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
151 #endif
152
153 #define SEMMSL_FAST 256 /* 512 bytes on stack */
154 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
155
156 /*
157 * Locking:
158 * sem_undo.id_next,
159 * sem_array.complex_count,
160 * sem_array.pending{_alter,_cont},
161 * sem_array.sem_undo: global sem_lock() for read/write
162 * sem_undo.proc_next: only "current" is allowed to read/write that field.
163 *
164 * sem_array.sem_base[i].pending_{const,alter}:
165 * global or semaphore sem_lock() for read/write
166 */
167
168 #define sc_semmsl sem_ctls[0]
169 #define sc_semmns sem_ctls[1]
170 #define sc_semopm sem_ctls[2]
171 #define sc_semmni sem_ctls[3]
172
173 void sem_init_ns(struct ipc_namespace *ns)
174 {
175 ns->sc_semmsl = SEMMSL;
176 ns->sc_semmns = SEMMNS;
177 ns->sc_semopm = SEMOPM;
178 ns->sc_semmni = SEMMNI;
179 ns->used_sems = 0;
180 ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
181 }
182
183 #ifdef CONFIG_IPC_NS
184 void sem_exit_ns(struct ipc_namespace *ns)
185 {
186 free_ipcs(ns, &sem_ids(ns), freeary);
187 idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
188 }
189 #endif
190
191 void __init sem_init (void)
192 {
193 sem_init_ns(&init_ipc_ns);
194 ipc_init_proc_interface("sysvipc/sem",
195 " key semid perms nsems uid gid cuid cgid otime ctime\n",
196 IPC_SEM_IDS, sysvipc_sem_proc_show);
197 }
198
199 /**
200 * unmerge_queues - unmerge queues, if possible.
201 * @sma: semaphore array
202 *
203 * The function unmerges the wait queues if complex_count is 0.
204 * It must be called prior to dropping the global semaphore array lock.
205 */
206 static void unmerge_queues(struct sem_array *sma)
207 {
208 struct sem_queue *q, *tq;
209
210 /* complex operations still around? */
211 if (sma->complex_count)
212 return;
213 /*
214 * We will switch back to simple mode.
215 * Move all pending operation back into the per-semaphore
216 * queues.
217 */
218 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
219 struct sem *curr;
220 curr = &sma->sem_base[q->sops[0].sem_num];
221
222 list_add_tail(&q->list, &curr->pending_alter);
223 }
224 INIT_LIST_HEAD(&sma->pending_alter);
225 }
226
227 /**
228 * merge_queues - Merge single semop queues into global queue
229 * @sma: semaphore array
230 *
231 * This function merges all per-semaphore queues into the global queue.
232 * It is necessary to achieve FIFO ordering for the pending single-sop
233 * operations when a multi-semop operation must sleep.
234 * Only the alter operations must be moved, the const operations can stay.
235 */
236 static void merge_queues(struct sem_array *sma)
237 {
238 int i;
239 for (i = 0; i < sma->sem_nsems; i++) {
240 struct sem *sem = sma->sem_base + i;
241
242 list_splice_init(&sem->pending_alter, &sma->pending_alter);
243 }
244 }
245
246 /*
247 * If the request contains only one semaphore operation, and there are
248 * no complex transactions pending, lock only the semaphore involved.
249 * Otherwise, lock the entire semaphore array, since we either have
250 * multiple semaphores in our own semops, or we need to look at
251 * semaphores from other pending complex operations.
252 *
253 * Carefully guard against sma->complex_count changing between zero
254 * and non-zero while we are spinning for the lock. The value of
255 * sma->complex_count cannot change while we are holding the lock,
256 * so sem_unlock should be fine.
257 *
258 * The global lock path checks that all the local locks have been released,
259 * checking each local lock once. This means that the local lock paths
260 * cannot start their critical sections while the global lock is held.
261 */
262 static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
263 int nsops)
264 {
265 int locknum;
266 again:
267 if (nsops == 1 && !sma->complex_count) {
268 struct sem *sem = sma->sem_base + sops->sem_num;
269
270 /* Lock just the semaphore we are interested in. */
271 spin_lock(&sem->lock);
272
273 /*
274 * If sma->complex_count was set while we were spinning,
275 * we may need to look at things we did not lock here.
276 */
277 if (unlikely(sma->complex_count)) {
278 spin_unlock(&sem->lock);
279 goto lock_array;
280 }
281
282 /*
283 * Another process is holding the global lock on the
284 * sem_array; we cannot enter our critical section,
285 * but have to wait for the global lock to be released.
286 */
287 if (unlikely(spin_is_locked(&sma->sem_perm.lock))) {
288 spin_unlock(&sem->lock);
289 spin_unlock_wait(&sma->sem_perm.lock);
290 goto again;
291 }
292
293 locknum = sops->sem_num;
294 } else {
295 int i;
296 /*
297 * Lock the semaphore array, and wait for all of the
298 * individual semaphore locks to go away. The code
299 * above ensures no new single-lock holders will enter
300 * their critical section while the array lock is held.
301 */
302 lock_array:
303 ipc_lock_object(&sma->sem_perm);
304 for (i = 0; i < sma->sem_nsems; i++) {
305 struct sem *sem = sma->sem_base + i;
306 spin_unlock_wait(&sem->lock);
307 }
308 locknum = -1;
309 }
310 return locknum;
311 }
312
313 static inline void sem_unlock(struct sem_array *sma, int locknum)
314 {
315 if (locknum == -1) {
316 unmerge_queues(sma);
317 ipc_unlock_object(&sma->sem_perm);
318 } else {
319 struct sem *sem = sma->sem_base + locknum;
320 spin_unlock(&sem->lock);
321 }
322 }
323
324 /*
325 * sem_lock_(check_) routines are called in the paths where the rw_mutex
326 * is not held.
327 *
328 * The caller holds the RCU read lock.
329 */
330 static inline struct sem_array *sem_obtain_lock(struct ipc_namespace *ns,
331 int id, struct sembuf *sops, int nsops, int *locknum)
332 {
333 struct kern_ipc_perm *ipcp;
334 struct sem_array *sma;
335
336 ipcp = ipc_obtain_object(&sem_ids(ns), id);
337 if (IS_ERR(ipcp))
338 return ERR_CAST(ipcp);
339
340 sma = container_of(ipcp, struct sem_array, sem_perm);
341 *locknum = sem_lock(sma, sops, nsops);
342
343 /* ipc_rmid() may have already freed the ID while sem_lock
344 * was spinning: verify that the structure is still valid
345 */
346 if (!ipcp->deleted)
347 return container_of(ipcp, struct sem_array, sem_perm);
348
349 sem_unlock(sma, *locknum);
350 return ERR_PTR(-EINVAL);
351 }
352
353 static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
354 {
355 struct kern_ipc_perm *ipcp = ipc_obtain_object(&sem_ids(ns), id);
356
357 if (IS_ERR(ipcp))
358 return ERR_CAST(ipcp);
359
360 return container_of(ipcp, struct sem_array, sem_perm);
361 }
362
363 static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
364 int id)
365 {
366 struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
367
368 if (IS_ERR(ipcp))
369 return ERR_CAST(ipcp);
370
371 return container_of(ipcp, struct sem_array, sem_perm);
372 }
373
374 static inline void sem_lock_and_putref(struct sem_array *sma)
375 {
376 sem_lock(sma, NULL, -1);
377 ipc_rcu_putref(sma);
378 }
379
380 static inline void sem_putref(struct sem_array *sma)
381 {
382 ipc_rcu_putref(sma);
383 }
384
385 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
386 {
387 ipc_rmid(&sem_ids(ns), &s->sem_perm);
388 }
389
390 /*
391 * Lockless wakeup algorithm:
392 * Without the check/retry algorithm a lockless wakeup is possible:
393 * - queue.status is initialized to -EINTR before blocking.
394 * - wakeup is performed by
395 * * unlinking the queue entry from the pending list
396 * * setting queue.status to IN_WAKEUP
397 * This is the notification for the blocked thread that a
398 * result value is imminent.
399 * * call wake_up_process
400 * * set queue.status to the final value.
401 * - the previously blocked thread checks queue.status:
402 * * if it's IN_WAKEUP, then it must wait until the value changes
403 * * if it's not -EINTR, then the operation was completed by
404 * update_queue. semtimedop can return queue.status without
405 * performing any operation on the sem array.
406 * * otherwise it must acquire the spinlock and check what's up.
407 *
408 * The two-stage algorithm is necessary to protect against the following
409 * races:
410 * - if queue.status is set after wake_up_process, then the woken up idle
411 * thread could race forward and try (and fail) to acquire sma->lock
412 * before update_queue had a chance to set queue.status
413 * - if queue.status is written before wake_up_process and if the
414 * blocked process is woken up by a signal between writing
415 * queue.status and the wake_up_process, then the woken up
416 * process could return from semtimedop and die by calling
417 * sys_exit before wake_up_process is called. Then wake_up_process
418 * will oops, because the task structure is already invalid.
419 * (yes, this happened on s390 with sysv msg).
420 *
421 */
422 #define IN_WAKEUP 1
423
424 /**
425 * newary - Create a new semaphore set
426 * @ns: namespace
427 * @params: ptr to the structure that contains key, semflg and nsems
428 *
429 * Called with sem_ids.rw_mutex held (as a writer)
430 */
431
432 static int newary(struct ipc_namespace *ns, struct ipc_params *params)
433 {
434 int id;
435 int retval;
436 struct sem_array *sma;
437 int size;
438 key_t key = params->key;
439 int nsems = params->u.nsems;
440 int semflg = params->flg;
441 int i;
442
443 if (!nsems)
444 return -EINVAL;
445 if (ns->used_sems + nsems > ns->sc_semmns)
446 return -ENOSPC;
447
448 size = sizeof (*sma) + nsems * sizeof (struct sem);
449 sma = ipc_rcu_alloc(size);
450 if (!sma) {
451 return -ENOMEM;
452 }
453 memset (sma, 0, size);
454
455 sma->sem_perm.mode = (semflg & S_IRWXUGO);
456 sma->sem_perm.key = key;
457
458 sma->sem_perm.security = NULL;
459 retval = security_sem_alloc(sma);
460 if (retval) {
461 ipc_rcu_putref(sma);
462 return retval;
463 }
464
465 id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
466 if (id < 0) {
467 security_sem_free(sma);
468 ipc_rcu_putref(sma);
469 return id;
470 }
471 ns->used_sems += nsems;
472
473 sma->sem_base = (struct sem *) &sma[1];
474
475 for (i = 0; i < nsems; i++) {
476 INIT_LIST_HEAD(&sma->sem_base[i].pending_alter);
477 INIT_LIST_HEAD(&sma->sem_base[i].pending_const);
478 spin_lock_init(&sma->sem_base[i].lock);
479 }
480
481 sma->complex_count = 0;
482 INIT_LIST_HEAD(&sma->pending_alter);
483 INIT_LIST_HEAD(&sma->pending_const);
484 INIT_LIST_HEAD(&sma->list_id);
485 sma->sem_nsems = nsems;
486 sma->sem_ctime = get_seconds();
487 sem_unlock(sma, -1);
488 rcu_read_unlock();
489
490 return sma->sem_perm.id;
491 }
492
493
494 /*
495 * Called with sem_ids.rw_mutex and ipcp locked.
496 */
497 static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
498 {
499 struct sem_array *sma;
500
501 sma = container_of(ipcp, struct sem_array, sem_perm);
502 return security_sem_associate(sma, semflg);
503 }
504
505 /*
506 * Called with sem_ids.rw_mutex and ipcp locked.
507 */
508 static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
509 struct ipc_params *params)
510 {
511 struct sem_array *sma;
512
513 sma = container_of(ipcp, struct sem_array, sem_perm);
514 if (params->u.nsems > sma->sem_nsems)
515 return -EINVAL;
516
517 return 0;
518 }
519
520 SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
521 {
522 struct ipc_namespace *ns;
523 struct ipc_ops sem_ops;
524 struct ipc_params sem_params;
525
526 ns = current->nsproxy->ipc_ns;
527
528 if (nsems < 0 || nsems > ns->sc_semmsl)
529 return -EINVAL;
530
531 sem_ops.getnew = newary;
532 sem_ops.associate = sem_security;
533 sem_ops.more_checks = sem_more_checks;
534
535 sem_params.key = key;
536 sem_params.flg = semflg;
537 sem_params.u.nsems = nsems;
538
539 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
540 }
541
542 /** perform_atomic_semop - Perform (if possible) a semaphore operation
543 * @sma: semaphore array
544 * @sops: array with operations that should be checked
545 * @nsems: number of sops
546 * @un: undo array
547 * @pid: pid that did the change
548 *
549 * Returns 0 if the operation was possible.
550 * Returns 1 if the operation is impossible, the caller must sleep.
551 * Negative values are error codes.
552 */
553
554 static int perform_atomic_semop(struct sem_array *sma, struct sembuf *sops,
555 int nsops, struct sem_undo *un, int pid)
556 {
557 int result, sem_op;
558 struct sembuf *sop;
559 struct sem * curr;
560
561 for (sop = sops; sop < sops + nsops; sop++) {
562 curr = sma->sem_base + sop->sem_num;
563 sem_op = sop->sem_op;
564 result = curr->semval;
565
566 if (!sem_op && result)
567 goto would_block;
568
569 result += sem_op;
570 if (result < 0)
571 goto would_block;
572 if (result > SEMVMX)
573 goto out_of_range;
574 if (sop->sem_flg & SEM_UNDO) {
575 int undo = un->semadj[sop->sem_num] - sem_op;
576 /*
577 * Exceeding the undo range is an error.
578 */
579 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
580 goto out_of_range;
581 }
582 curr->semval = result;
583 }
584
585 sop--;
586 while (sop >= sops) {
587 sma->sem_base[sop->sem_num].sempid = pid;
588 if (sop->sem_flg & SEM_UNDO)
589 un->semadj[sop->sem_num] -= sop->sem_op;
590 sop--;
591 }
592
593 return 0;
594
595 out_of_range:
596 result = -ERANGE;
597 goto undo;
598
599 would_block:
600 if (sop->sem_flg & IPC_NOWAIT)
601 result = -EAGAIN;
602 else
603 result = 1;
604
605 undo:
606 sop--;
607 while (sop >= sops) {
608 sma->sem_base[sop->sem_num].semval -= sop->sem_op;
609 sop--;
610 }
611
612 return result;
613 }
614
615 /** wake_up_sem_queue_prepare(q, error): Prepare wake-up
616 * @q: queue entry that must be signaled
617 * @error: Error value for the signal
618 *
619 * Prepare the wake-up of the queue entry q.
620 */
621 static void wake_up_sem_queue_prepare(struct list_head *pt,
622 struct sem_queue *q, int error)
623 {
624 if (list_empty(pt)) {
625 /*
626 * Hold preempt off so that we don't get preempted and have the
627 * wakee busy-wait until we're scheduled back on.
628 */
629 preempt_disable();
630 }
631 q->status = IN_WAKEUP;
632 q->pid = error;
633
634 list_add_tail(&q->list, pt);
635 }
636
637 /**
638 * wake_up_sem_queue_do(pt) - do the actual wake-up
639 * @pt: list of tasks to be woken up
640 *
641 * Do the actual wake-up.
642 * The function is called without any locks held, thus the semaphore array
643 * could be destroyed already and the tasks can disappear as soon as the
644 * status is set to the actual return code.
645 */
646 static void wake_up_sem_queue_do(struct list_head *pt)
647 {
648 struct sem_queue *q, *t;
649 int did_something;
650
651 did_something = !list_empty(pt);
652 list_for_each_entry_safe(q, t, pt, list) {
653 wake_up_process(q->sleeper);
654 /* q can disappear immediately after writing q->status. */
655 smp_wmb();
656 q->status = q->pid;
657 }
658 if (did_something)
659 preempt_enable();
660 }
661
662 static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
663 {
664 list_del(&q->list);
665 if (q->nsops > 1)
666 sma->complex_count--;
667 }
668
669 /** check_restart(sma, q)
670 * @sma: semaphore array
671 * @q: the operation that just completed
672 *
673 * update_queue is O(N^2) when it restarts scanning the whole queue of
674 * waiting operations. Therefore this function checks if the restart is
675 * really necessary. It is called after a previously waiting operation
676 * modified the array.
677 * Note that wait-for-zero operations are handled without restart.
678 */
679 static int check_restart(struct sem_array *sma, struct sem_queue *q)
680 {
681 /* pending complex alter operations are too difficult to analyse */
682 if (!list_empty(&sma->pending_alter))
683 return 1;
684
685 /* we were a sleeping complex operation. Too difficult */
686 if (q->nsops > 1)
687 return 1;
688
689 /* It is impossible that someone waits for the new value:
690 * - complex operations always restart.
691 * - wait-for-zero are handled seperately.
692 * - q is a previously sleeping simple operation that
693 * altered the array. It must be a decrement, because
694 * simple increments never sleep.
695 * - If there are older (higher priority) decrements
696 * in the queue, then they have observed the original
697 * semval value and couldn't proceed. The operation
698 * decremented to value - thus they won't proceed either.
699 */
700 return 0;
701 }
702
703 /**
704 * wake_const_ops(sma, semnum, pt) - Wake up non-alter tasks
705 * @sma: semaphore array.
706 * @semnum: semaphore that was modified.
707 * @pt: list head for the tasks that must be woken up.
708 *
709 * wake_const_ops must be called after a semaphore in a semaphore array
710 * was set to 0. If complex const operations are pending, wake_const_ops must
711 * be called with semnum = -1, as well as with the number of each modified
712 * semaphore.
713 * The tasks that must be woken up are added to @pt. The return code
714 * is stored in q->pid.
715 * The function returns 1 if at least one operation was completed successfully.
716 */
717 static int wake_const_ops(struct sem_array *sma, int semnum,
718 struct list_head *pt)
719 {
720 struct sem_queue *q;
721 struct list_head *walk;
722 struct list_head *pending_list;
723 int semop_completed = 0;
724
725 if (semnum == -1)
726 pending_list = &sma->pending_const;
727 else
728 pending_list = &sma->sem_base[semnum].pending_const;
729
730 walk = pending_list->next;
731 while (walk != pending_list) {
732 int error;
733
734 q = container_of(walk, struct sem_queue, list);
735 walk = walk->next;
736
737 error = perform_atomic_semop(sma, q->sops, q->nsops,
738 q->undo, q->pid);
739
740 if (error <= 0) {
741 /* operation completed, remove from queue & wakeup */
742
743 unlink_queue(sma, q);
744
745 wake_up_sem_queue_prepare(pt, q, error);
746 if (error == 0)
747 semop_completed = 1;
748 }
749 }
750 return semop_completed;
751 }
752
753 /**
754 * do_smart_wakeup_zero(sma, sops, nsops, pt) - wakeup all wait for zero tasks
755 * @sma: semaphore array
756 * @sops: operations that were performed
757 * @nsops: number of operations
758 * @pt: list head of the tasks that must be woken up.
759 *
760 * do_smart_wakeup_zero() checks all required queue for wait-for-zero
761 * operations, based on the actual changes that were performed on the
762 * semaphore array.
763 * The function returns 1 if at least one operation was completed successfully.
764 */
765 static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
766 int nsops, struct list_head *pt)
767 {
768 int i;
769 int semop_completed = 0;
770 int got_zero = 0;
771
772 /* first: the per-semaphore queues, if known */
773 if (sops) {
774 for (i = 0; i < nsops; i++) {
775 int num = sops[i].sem_num;
776
777 if (sma->sem_base[num].semval == 0) {
778 got_zero = 1;
779 semop_completed |= wake_const_ops(sma, num, pt);
780 }
781 }
782 } else {
783 /*
784 * No sops means modified semaphores not known.
785 * Assume all were changed.
786 */
787 for (i = 0; i < sma->sem_nsems; i++) {
788 if (sma->sem_base[i].semval == 0) {
789 got_zero = 1;
790 semop_completed |= wake_const_ops(sma, i, pt);
791 }
792 }
793 }
794 /*
795 * If one of the modified semaphores got 0,
796 * then check the global queue, too.
797 */
798 if (got_zero)
799 semop_completed |= wake_const_ops(sma, -1, pt);
800
801 return semop_completed;
802 }
803
804
805 /**
806 * update_queue(sma, semnum): Look for tasks that can be completed.
807 * @sma: semaphore array.
808 * @semnum: semaphore that was modified.
809 * @pt: list head for the tasks that must be woken up.
810 *
811 * update_queue must be called after a semaphore in a semaphore array
812 * was modified. If multiple semaphores were modified, update_queue must
813 * be called with semnum = -1, as well as with the number of each modified
814 * semaphore.
815 * The tasks that must be woken up are added to @pt. The return code
816 * is stored in q->pid.
817 * The function internally checks if const operations can now succeed.
818 *
819 * The function return 1 if at least one semop was completed successfully.
820 */
821 static int update_queue(struct sem_array *sma, int semnum, struct list_head *pt)
822 {
823 struct sem_queue *q;
824 struct list_head *walk;
825 struct list_head *pending_list;
826 int semop_completed = 0;
827
828 if (semnum == -1)
829 pending_list = &sma->pending_alter;
830 else
831 pending_list = &sma->sem_base[semnum].pending_alter;
832
833 again:
834 walk = pending_list->next;
835 while (walk != pending_list) {
836 int error, restart;
837
838 q = container_of(walk, struct sem_queue, list);
839 walk = walk->next;
840
841 /* If we are scanning the single sop, per-semaphore list of
842 * one semaphore and that semaphore is 0, then it is not
843 * necessary to scan further: simple increments
844 * that affect only one entry succeed immediately and cannot
845 * be in the per semaphore pending queue, and decrements
846 * cannot be successful if the value is already 0.
847 */
848 if (semnum != -1 && sma->sem_base[semnum].semval == 0)
849 break;
850
851 error = perform_atomic_semop(sma, q->sops, q->nsops,
852 q->undo, q->pid);
853
854 /* Does q->sleeper still need to sleep? */
855 if (error > 0)
856 continue;
857
858 unlink_queue(sma, q);
859
860 if (error) {
861 restart = 0;
862 } else {
863 semop_completed = 1;
864 do_smart_wakeup_zero(sma, q->sops, q->nsops, pt);
865 restart = check_restart(sma, q);
866 }
867
868 wake_up_sem_queue_prepare(pt, q, error);
869 if (restart)
870 goto again;
871 }
872 return semop_completed;
873 }
874
875 /**
876 * do_smart_update(sma, sops, nsops, otime, pt) - optimized update_queue
877 * @sma: semaphore array
878 * @sops: operations that were performed
879 * @nsops: number of operations
880 * @otime: force setting otime
881 * @pt: list head of the tasks that must be woken up.
882 *
883 * do_smart_update() does the required calls to update_queue and wakeup_zero,
884 * based on the actual changes that were performed on the semaphore array.
885 * Note that the function does not do the actual wake-up: the caller is
886 * responsible for calling wake_up_sem_queue_do(@pt).
887 * It is safe to perform this call after dropping all locks.
888 */
889 static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
890 int otime, struct list_head *pt)
891 {
892 int i;
893
894 otime |= do_smart_wakeup_zero(sma, sops, nsops, pt);
895
896 if (!list_empty(&sma->pending_alter)) {
897 /* semaphore array uses the global queue - just process it. */
898 otime |= update_queue(sma, -1, pt);
899 } else {
900 if (!sops) {
901 /*
902 * No sops, thus the modified semaphores are not
903 * known. Check all.
904 */
905 for (i = 0; i < sma->sem_nsems; i++)
906 otime |= update_queue(sma, i, pt);
907 } else {
908 /*
909 * Check the semaphores that were increased:
910 * - No complex ops, thus all sleeping ops are
911 * decrease.
912 * - if we decreased the value, then any sleeping
913 * semaphore ops wont be able to run: If the
914 * previous value was too small, then the new
915 * value will be too small, too.
916 */
917 for (i = 0; i < nsops; i++) {
918 if (sops[i].sem_op > 0) {
919 otime |= update_queue(sma,
920 sops[i].sem_num, pt);
921 }
922 }
923 }
924 }
925 if (otime) {
926 if (sops == NULL) {
927 sma->sem_base[0].sem_otime = get_seconds();
928 } else {
929 sma->sem_base[sops[0].sem_num].sem_otime =
930 get_seconds();
931 }
932 }
933 }
934
935
936 /* The following counts are associated to each semaphore:
937 * semncnt number of tasks waiting on semval being nonzero
938 * semzcnt number of tasks waiting on semval being zero
939 * This model assumes that a task waits on exactly one semaphore.
940 * Since semaphore operations are to be performed atomically, tasks actually
941 * wait on a whole sequence of semaphores simultaneously.
942 * The counts we return here are a rough approximation, but still
943 * warrant that semncnt+semzcnt>0 if the task is on the pending queue.
944 */
945 static int count_semncnt (struct sem_array * sma, ushort semnum)
946 {
947 int semncnt;
948 struct sem_queue * q;
949
950 semncnt = 0;
951 list_for_each_entry(q, &sma->sem_base[semnum].pending_alter, list) {
952 struct sembuf * sops = q->sops;
953 BUG_ON(sops->sem_num != semnum);
954 if ((sops->sem_op < 0) && !(sops->sem_flg & IPC_NOWAIT))
955 semncnt++;
956 }
957
958 list_for_each_entry(q, &sma->pending_alter, list) {
959 struct sembuf * sops = q->sops;
960 int nsops = q->nsops;
961 int i;
962 for (i = 0; i < nsops; i++)
963 if (sops[i].sem_num == semnum
964 && (sops[i].sem_op < 0)
965 && !(sops[i].sem_flg & IPC_NOWAIT))
966 semncnt++;
967 }
968 return semncnt;
969 }
970
971 static int count_semzcnt (struct sem_array * sma, ushort semnum)
972 {
973 int semzcnt;
974 struct sem_queue * q;
975
976 semzcnt = 0;
977 list_for_each_entry(q, &sma->sem_base[semnum].pending_const, list) {
978 struct sembuf * sops = q->sops;
979 BUG_ON(sops->sem_num != semnum);
980 if ((sops->sem_op == 0) && !(sops->sem_flg & IPC_NOWAIT))
981 semzcnt++;
982 }
983
984 list_for_each_entry(q, &sma->pending_const, list) {
985 struct sembuf * sops = q->sops;
986 int nsops = q->nsops;
987 int i;
988 for (i = 0; i < nsops; i++)
989 if (sops[i].sem_num == semnum
990 && (sops[i].sem_op == 0)
991 && !(sops[i].sem_flg & IPC_NOWAIT))
992 semzcnt++;
993 }
994 return semzcnt;
995 }
996
997 /* Free a semaphore set. freeary() is called with sem_ids.rw_mutex locked
998 * as a writer and the spinlock for this semaphore set hold. sem_ids.rw_mutex
999 * remains locked on exit.
1000 */
1001 static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1002 {
1003 struct sem_undo *un, *tu;
1004 struct sem_queue *q, *tq;
1005 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
1006 struct list_head tasks;
1007 int i;
1008
1009 /* Free the existing undo structures for this semaphore set. */
1010 ipc_assert_locked_object(&sma->sem_perm);
1011 list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
1012 list_del(&un->list_id);
1013 spin_lock(&un->ulp->lock);
1014 un->semid = -1;
1015 list_del_rcu(&un->list_proc);
1016 spin_unlock(&un->ulp->lock);
1017 kfree_rcu(un, rcu);
1018 }
1019
1020 /* Wake up all pending processes and let them fail with EIDRM. */
1021 INIT_LIST_HEAD(&tasks);
1022 list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
1023 unlink_queue(sma, q);
1024 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1025 }
1026
1027 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
1028 unlink_queue(sma, q);
1029 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1030 }
1031 for (i = 0; i < sma->sem_nsems; i++) {
1032 struct sem *sem = sma->sem_base + i;
1033 list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
1034 unlink_queue(sma, q);
1035 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1036 }
1037 list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
1038 unlink_queue(sma, q);
1039 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1040 }
1041 }
1042
1043 /* Remove the semaphore set from the IDR */
1044 sem_rmid(ns, sma);
1045 sem_unlock(sma, -1);
1046 rcu_read_unlock();
1047
1048 wake_up_sem_queue_do(&tasks);
1049 ns->used_sems -= sma->sem_nsems;
1050 security_sem_free(sma);
1051 ipc_rcu_putref(sma);
1052 }
1053
1054 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1055 {
1056 switch(version) {
1057 case IPC_64:
1058 return copy_to_user(buf, in, sizeof(*in));
1059 case IPC_OLD:
1060 {
1061 struct semid_ds out;
1062
1063 memset(&out, 0, sizeof(out));
1064
1065 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1066
1067 out.sem_otime = in->sem_otime;
1068 out.sem_ctime = in->sem_ctime;
1069 out.sem_nsems = in->sem_nsems;
1070
1071 return copy_to_user(buf, &out, sizeof(out));
1072 }
1073 default:
1074 return -EINVAL;
1075 }
1076 }
1077
1078 static time_t get_semotime(struct sem_array *sma)
1079 {
1080 int i;
1081 time_t res;
1082
1083 res = sma->sem_base[0].sem_otime;
1084 for (i = 1; i < sma->sem_nsems; i++) {
1085 time_t to = sma->sem_base[i].sem_otime;
1086
1087 if (to > res)
1088 res = to;
1089 }
1090 return res;
1091 }
1092
1093 static int semctl_nolock(struct ipc_namespace *ns, int semid,
1094 int cmd, int version, void __user *p)
1095 {
1096 int err;
1097 struct sem_array *sma;
1098
1099 switch(cmd) {
1100 case IPC_INFO:
1101 case SEM_INFO:
1102 {
1103 struct seminfo seminfo;
1104 int max_id;
1105
1106 err = security_sem_semctl(NULL, cmd);
1107 if (err)
1108 return err;
1109
1110 memset(&seminfo,0,sizeof(seminfo));
1111 seminfo.semmni = ns->sc_semmni;
1112 seminfo.semmns = ns->sc_semmns;
1113 seminfo.semmsl = ns->sc_semmsl;
1114 seminfo.semopm = ns->sc_semopm;
1115 seminfo.semvmx = SEMVMX;
1116 seminfo.semmnu = SEMMNU;
1117 seminfo.semmap = SEMMAP;
1118 seminfo.semume = SEMUME;
1119 down_read(&sem_ids(ns).rw_mutex);
1120 if (cmd == SEM_INFO) {
1121 seminfo.semusz = sem_ids(ns).in_use;
1122 seminfo.semaem = ns->used_sems;
1123 } else {
1124 seminfo.semusz = SEMUSZ;
1125 seminfo.semaem = SEMAEM;
1126 }
1127 max_id = ipc_get_maxid(&sem_ids(ns));
1128 up_read(&sem_ids(ns).rw_mutex);
1129 if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1130 return -EFAULT;
1131 return (max_id < 0) ? 0: max_id;
1132 }
1133 case IPC_STAT:
1134 case SEM_STAT:
1135 {
1136 struct semid64_ds tbuf;
1137 int id = 0;
1138
1139 memset(&tbuf, 0, sizeof(tbuf));
1140
1141 rcu_read_lock();
1142 if (cmd == SEM_STAT) {
1143 sma = sem_obtain_object(ns, semid);
1144 if (IS_ERR(sma)) {
1145 err = PTR_ERR(sma);
1146 goto out_unlock;
1147 }
1148 id = sma->sem_perm.id;
1149 } else {
1150 sma = sem_obtain_object_check(ns, semid);
1151 if (IS_ERR(sma)) {
1152 err = PTR_ERR(sma);
1153 goto out_unlock;
1154 }
1155 }
1156
1157 err = -EACCES;
1158 if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1159 goto out_unlock;
1160
1161 err = security_sem_semctl(sma, cmd);
1162 if (err)
1163 goto out_unlock;
1164
1165 kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
1166 tbuf.sem_otime = get_semotime(sma);
1167 tbuf.sem_ctime = sma->sem_ctime;
1168 tbuf.sem_nsems = sma->sem_nsems;
1169 rcu_read_unlock();
1170 if (copy_semid_to_user(p, &tbuf, version))
1171 return -EFAULT;
1172 return id;
1173 }
1174 default:
1175 return -EINVAL;
1176 }
1177 out_unlock:
1178 rcu_read_unlock();
1179 return err;
1180 }
1181
1182 static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
1183 unsigned long arg)
1184 {
1185 struct sem_undo *un;
1186 struct sem_array *sma;
1187 struct sem* curr;
1188 int err;
1189 struct list_head tasks;
1190 int val;
1191 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1192 /* big-endian 64bit */
1193 val = arg >> 32;
1194 #else
1195 /* 32bit or little-endian 64bit */
1196 val = arg;
1197 #endif
1198
1199 if (val > SEMVMX || val < 0)
1200 return -ERANGE;
1201
1202 INIT_LIST_HEAD(&tasks);
1203
1204 rcu_read_lock();
1205 sma = sem_obtain_object_check(ns, semid);
1206 if (IS_ERR(sma)) {
1207 rcu_read_unlock();
1208 return PTR_ERR(sma);
1209 }
1210
1211 if (semnum < 0 || semnum >= sma->sem_nsems) {
1212 rcu_read_unlock();
1213 return -EINVAL;
1214 }
1215
1216
1217 if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1218 rcu_read_unlock();
1219 return -EACCES;
1220 }
1221
1222 err = security_sem_semctl(sma, SETVAL);
1223 if (err) {
1224 rcu_read_unlock();
1225 return -EACCES;
1226 }
1227
1228 sem_lock(sma, NULL, -1);
1229
1230 curr = &sma->sem_base[semnum];
1231
1232 ipc_assert_locked_object(&sma->sem_perm);
1233 list_for_each_entry(un, &sma->list_id, list_id)
1234 un->semadj[semnum] = 0;
1235
1236 curr->semval = val;
1237 curr->sempid = task_tgid_vnr(current);
1238 sma->sem_ctime = get_seconds();
1239 /* maybe some queued-up processes were waiting for this */
1240 do_smart_update(sma, NULL, 0, 0, &tasks);
1241 sem_unlock(sma, -1);
1242 rcu_read_unlock();
1243 wake_up_sem_queue_do(&tasks);
1244 return 0;
1245 }
1246
1247 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
1248 int cmd, void __user *p)
1249 {
1250 struct sem_array *sma;
1251 struct sem* curr;
1252 int err, nsems;
1253 ushort fast_sem_io[SEMMSL_FAST];
1254 ushort* sem_io = fast_sem_io;
1255 struct list_head tasks;
1256
1257 INIT_LIST_HEAD(&tasks);
1258
1259 rcu_read_lock();
1260 sma = sem_obtain_object_check(ns, semid);
1261 if (IS_ERR(sma)) {
1262 rcu_read_unlock();
1263 return PTR_ERR(sma);
1264 }
1265
1266 nsems = sma->sem_nsems;
1267
1268 err = -EACCES;
1269 if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1270 goto out_rcu_wakeup;
1271
1272 err = security_sem_semctl(sma, cmd);
1273 if (err)
1274 goto out_rcu_wakeup;
1275
1276 err = -EACCES;
1277 switch (cmd) {
1278 case GETALL:
1279 {
1280 ushort __user *array = p;
1281 int i;
1282
1283 sem_lock(sma, NULL, -1);
1284 if(nsems > SEMMSL_FAST) {
1285 if (!ipc_rcu_getref(sma)) {
1286 sem_unlock(sma, -1);
1287 rcu_read_unlock();
1288 err = -EIDRM;
1289 goto out_free;
1290 }
1291 sem_unlock(sma, -1);
1292 rcu_read_unlock();
1293 sem_io = ipc_alloc(sizeof(ushort)*nsems);
1294 if(sem_io == NULL) {
1295 sem_putref(sma);
1296 return -ENOMEM;
1297 }
1298
1299 rcu_read_lock();
1300 sem_lock_and_putref(sma);
1301 if (sma->sem_perm.deleted) {
1302 sem_unlock(sma, -1);
1303 rcu_read_unlock();
1304 err = -EIDRM;
1305 goto out_free;
1306 }
1307 }
1308 for (i = 0; i < sma->sem_nsems; i++)
1309 sem_io[i] = sma->sem_base[i].semval;
1310 sem_unlock(sma, -1);
1311 rcu_read_unlock();
1312 err = 0;
1313 if(copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1314 err = -EFAULT;
1315 goto out_free;
1316 }
1317 case SETALL:
1318 {
1319 int i;
1320 struct sem_undo *un;
1321
1322 if (!ipc_rcu_getref(sma)) {
1323 rcu_read_unlock();
1324 return -EIDRM;
1325 }
1326 rcu_read_unlock();
1327
1328 if(nsems > SEMMSL_FAST) {
1329 sem_io = ipc_alloc(sizeof(ushort)*nsems);
1330 if(sem_io == NULL) {
1331 sem_putref(sma);
1332 return -ENOMEM;
1333 }
1334 }
1335
1336 if (copy_from_user (sem_io, p, nsems*sizeof(ushort))) {
1337 sem_putref(sma);
1338 err = -EFAULT;
1339 goto out_free;
1340 }
1341
1342 for (i = 0; i < nsems; i++) {
1343 if (sem_io[i] > SEMVMX) {
1344 sem_putref(sma);
1345 err = -ERANGE;
1346 goto out_free;
1347 }
1348 }
1349 rcu_read_lock();
1350 sem_lock_and_putref(sma);
1351 if (sma->sem_perm.deleted) {
1352 sem_unlock(sma, -1);
1353 rcu_read_unlock();
1354 err = -EIDRM;
1355 goto out_free;
1356 }
1357
1358 for (i = 0; i < nsems; i++)
1359 sma->sem_base[i].semval = sem_io[i];
1360
1361 ipc_assert_locked_object(&sma->sem_perm);
1362 list_for_each_entry(un, &sma->list_id, list_id) {
1363 for (i = 0; i < nsems; i++)
1364 un->semadj[i] = 0;
1365 }
1366 sma->sem_ctime = get_seconds();
1367 /* maybe some queued-up processes were waiting for this */
1368 do_smart_update(sma, NULL, 0, 0, &tasks);
1369 err = 0;
1370 goto out_unlock;
1371 }
1372 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1373 }
1374 err = -EINVAL;
1375 if (semnum < 0 || semnum >= nsems)
1376 goto out_rcu_wakeup;
1377
1378 sem_lock(sma, NULL, -1);
1379 curr = &sma->sem_base[semnum];
1380
1381 switch (cmd) {
1382 case GETVAL:
1383 err = curr->semval;
1384 goto out_unlock;
1385 case GETPID:
1386 err = curr->sempid;
1387 goto out_unlock;
1388 case GETNCNT:
1389 err = count_semncnt(sma,semnum);
1390 goto out_unlock;
1391 case GETZCNT:
1392 err = count_semzcnt(sma,semnum);
1393 goto out_unlock;
1394 }
1395
1396 out_unlock:
1397 sem_unlock(sma, -1);
1398 out_rcu_wakeup:
1399 rcu_read_unlock();
1400 wake_up_sem_queue_do(&tasks);
1401 out_free:
1402 if(sem_io != fast_sem_io)
1403 ipc_free(sem_io, sizeof(ushort)*nsems);
1404 return err;
1405 }
1406
1407 static inline unsigned long
1408 copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1409 {
1410 switch(version) {
1411 case IPC_64:
1412 if (copy_from_user(out, buf, sizeof(*out)))
1413 return -EFAULT;
1414 return 0;
1415 case IPC_OLD:
1416 {
1417 struct semid_ds tbuf_old;
1418
1419 if(copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1420 return -EFAULT;
1421
1422 out->sem_perm.uid = tbuf_old.sem_perm.uid;
1423 out->sem_perm.gid = tbuf_old.sem_perm.gid;
1424 out->sem_perm.mode = tbuf_old.sem_perm.mode;
1425
1426 return 0;
1427 }
1428 default:
1429 return -EINVAL;
1430 }
1431 }
1432
1433 /*
1434 * This function handles some semctl commands which require the rw_mutex
1435 * to be held in write mode.
1436 * NOTE: no locks must be held, the rw_mutex is taken inside this function.
1437 */
1438 static int semctl_down(struct ipc_namespace *ns, int semid,
1439 int cmd, int version, void __user *p)
1440 {
1441 struct sem_array *sma;
1442 int err;
1443 struct semid64_ds semid64;
1444 struct kern_ipc_perm *ipcp;
1445
1446 if(cmd == IPC_SET) {
1447 if (copy_semid_from_user(&semid64, p, version))
1448 return -EFAULT;
1449 }
1450
1451 down_write(&sem_ids(ns).rw_mutex);
1452 rcu_read_lock();
1453
1454 ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd,
1455 &semid64.sem_perm, 0);
1456 if (IS_ERR(ipcp)) {
1457 err = PTR_ERR(ipcp);
1458 goto out_unlock1;
1459 }
1460
1461 sma = container_of(ipcp, struct sem_array, sem_perm);
1462
1463 err = security_sem_semctl(sma, cmd);
1464 if (err)
1465 goto out_unlock1;
1466
1467 switch (cmd) {
1468 case IPC_RMID:
1469 sem_lock(sma, NULL, -1);
1470 /* freeary unlocks the ipc object and rcu */
1471 freeary(ns, ipcp);
1472 goto out_up;
1473 case IPC_SET:
1474 sem_lock(sma, NULL, -1);
1475 err = ipc_update_perm(&semid64.sem_perm, ipcp);
1476 if (err)
1477 goto out_unlock0;
1478 sma->sem_ctime = get_seconds();
1479 break;
1480 default:
1481 err = -EINVAL;
1482 goto out_unlock1;
1483 }
1484
1485 out_unlock0:
1486 sem_unlock(sma, -1);
1487 out_unlock1:
1488 rcu_read_unlock();
1489 out_up:
1490 up_write(&sem_ids(ns).rw_mutex);
1491 return err;
1492 }
1493
1494 SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1495 {
1496 int version;
1497 struct ipc_namespace *ns;
1498 void __user *p = (void __user *)arg;
1499
1500 if (semid < 0)
1501 return -EINVAL;
1502
1503 version = ipc_parse_version(&cmd);
1504 ns = current->nsproxy->ipc_ns;
1505
1506 switch(cmd) {
1507 case IPC_INFO:
1508 case SEM_INFO:
1509 case IPC_STAT:
1510 case SEM_STAT:
1511 return semctl_nolock(ns, semid, cmd, version, p);
1512 case GETALL:
1513 case GETVAL:
1514 case GETPID:
1515 case GETNCNT:
1516 case GETZCNT:
1517 case SETALL:
1518 return semctl_main(ns, semid, semnum, cmd, p);
1519 case SETVAL:
1520 return semctl_setval(ns, semid, semnum, arg);
1521 case IPC_RMID:
1522 case IPC_SET:
1523 return semctl_down(ns, semid, cmd, version, p);
1524 default:
1525 return -EINVAL;
1526 }
1527 }
1528
1529 /* If the task doesn't already have a undo_list, then allocate one
1530 * here. We guarantee there is only one thread using this undo list,
1531 * and current is THE ONE
1532 *
1533 * If this allocation and assignment succeeds, but later
1534 * portions of this code fail, there is no need to free the sem_undo_list.
1535 * Just let it stay associated with the task, and it'll be freed later
1536 * at exit time.
1537 *
1538 * This can block, so callers must hold no locks.
1539 */
1540 static inline int get_undo_list(struct sem_undo_list **undo_listp)
1541 {
1542 struct sem_undo_list *undo_list;
1543
1544 undo_list = current->sysvsem.undo_list;
1545 if (!undo_list) {
1546 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1547 if (undo_list == NULL)
1548 return -ENOMEM;
1549 spin_lock_init(&undo_list->lock);
1550 atomic_set(&undo_list->refcnt, 1);
1551 INIT_LIST_HEAD(&undo_list->list_proc);
1552
1553 current->sysvsem.undo_list = undo_list;
1554 }
1555 *undo_listp = undo_list;
1556 return 0;
1557 }
1558
1559 static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1560 {
1561 struct sem_undo *un;
1562
1563 list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
1564 if (un->semid == semid)
1565 return un;
1566 }
1567 return NULL;
1568 }
1569
1570 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1571 {
1572 struct sem_undo *un;
1573
1574 assert_spin_locked(&ulp->lock);
1575
1576 un = __lookup_undo(ulp, semid);
1577 if (un) {
1578 list_del_rcu(&un->list_proc);
1579 list_add_rcu(&un->list_proc, &ulp->list_proc);
1580 }
1581 return un;
1582 }
1583
1584 /**
1585 * find_alloc_undo - Lookup (and if not present create) undo array
1586 * @ns: namespace
1587 * @semid: semaphore array id
1588 *
1589 * The function looks up (and if not present creates) the undo structure.
1590 * The size of the undo structure depends on the size of the semaphore
1591 * array, thus the alloc path is not that straightforward.
1592 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1593 * performs a rcu_read_lock().
1594 */
1595 static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1596 {
1597 struct sem_array *sma;
1598 struct sem_undo_list *ulp;
1599 struct sem_undo *un, *new;
1600 int nsems, error;
1601
1602 error = get_undo_list(&ulp);
1603 if (error)
1604 return ERR_PTR(error);
1605
1606 rcu_read_lock();
1607 spin_lock(&ulp->lock);
1608 un = lookup_undo(ulp, semid);
1609 spin_unlock(&ulp->lock);
1610 if (likely(un!=NULL))
1611 goto out;
1612
1613 /* no undo structure around - allocate one. */
1614 /* step 1: figure out the size of the semaphore array */
1615 sma = sem_obtain_object_check(ns, semid);
1616 if (IS_ERR(sma)) {
1617 rcu_read_unlock();
1618 return ERR_CAST(sma);
1619 }
1620
1621 nsems = sma->sem_nsems;
1622 if (!ipc_rcu_getref(sma)) {
1623 rcu_read_unlock();
1624 un = ERR_PTR(-EIDRM);
1625 goto out;
1626 }
1627 rcu_read_unlock();
1628
1629 /* step 2: allocate new undo structure */
1630 new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1631 if (!new) {
1632 sem_putref(sma);
1633 return ERR_PTR(-ENOMEM);
1634 }
1635
1636 /* step 3: Acquire the lock on semaphore array */
1637 rcu_read_lock();
1638 sem_lock_and_putref(sma);
1639 if (sma->sem_perm.deleted) {
1640 sem_unlock(sma, -1);
1641 rcu_read_unlock();
1642 kfree(new);
1643 un = ERR_PTR(-EIDRM);
1644 goto out;
1645 }
1646 spin_lock(&ulp->lock);
1647
1648 /*
1649 * step 4: check for races: did someone else allocate the undo struct?
1650 */
1651 un = lookup_undo(ulp, semid);
1652 if (un) {
1653 kfree(new);
1654 goto success;
1655 }
1656 /* step 5: initialize & link new undo structure */
1657 new->semadj = (short *) &new[1];
1658 new->ulp = ulp;
1659 new->semid = semid;
1660 assert_spin_locked(&ulp->lock);
1661 list_add_rcu(&new->list_proc, &ulp->list_proc);
1662 ipc_assert_locked_object(&sma->sem_perm);
1663 list_add(&new->list_id, &sma->list_id);
1664 un = new;
1665
1666 success:
1667 spin_unlock(&ulp->lock);
1668 sem_unlock(sma, -1);
1669 out:
1670 return un;
1671 }
1672
1673
1674 /**
1675 * get_queue_result - Retrieve the result code from sem_queue
1676 * @q: Pointer to queue structure
1677 *
1678 * Retrieve the return code from the pending queue. If IN_WAKEUP is found in
1679 * q->status, then we must loop until the value is replaced with the final
1680 * value: This may happen if a task is woken up by an unrelated event (e.g.
1681 * signal) and in parallel the task is woken up by another task because it got
1682 * the requested semaphores.
1683 *
1684 * The function can be called with or without holding the semaphore spinlock.
1685 */
1686 static int get_queue_result(struct sem_queue *q)
1687 {
1688 int error;
1689
1690 error = q->status;
1691 while (unlikely(error == IN_WAKEUP)) {
1692 cpu_relax();
1693 error = q->status;
1694 }
1695
1696 return error;
1697 }
1698
1699 SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
1700 unsigned, nsops, const struct timespec __user *, timeout)
1701 {
1702 int error = -EINVAL;
1703 struct sem_array *sma;
1704 struct sembuf fast_sops[SEMOPM_FAST];
1705 struct sembuf* sops = fast_sops, *sop;
1706 struct sem_undo *un;
1707 int undos = 0, alter = 0, max, locknum;
1708 struct sem_queue queue;
1709 unsigned long jiffies_left = 0;
1710 struct ipc_namespace *ns;
1711 struct list_head tasks;
1712
1713 ns = current->nsproxy->ipc_ns;
1714
1715 if (nsops < 1 || semid < 0)
1716 return -EINVAL;
1717 if (nsops > ns->sc_semopm)
1718 return -E2BIG;
1719 if(nsops > SEMOPM_FAST) {
1720 sops = kmalloc(sizeof(*sops)*nsops,GFP_KERNEL);
1721 if(sops==NULL)
1722 return -ENOMEM;
1723 }
1724 if (copy_from_user (sops, tsops, nsops * sizeof(*tsops))) {
1725 error=-EFAULT;
1726 goto out_free;
1727 }
1728 if (timeout) {
1729 struct timespec _timeout;
1730 if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
1731 error = -EFAULT;
1732 goto out_free;
1733 }
1734 if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
1735 _timeout.tv_nsec >= 1000000000L) {
1736 error = -EINVAL;
1737 goto out_free;
1738 }
1739 jiffies_left = timespec_to_jiffies(&_timeout);
1740 }
1741 max = 0;
1742 for (sop = sops; sop < sops + nsops; sop++) {
1743 if (sop->sem_num >= max)
1744 max = sop->sem_num;
1745 if (sop->sem_flg & SEM_UNDO)
1746 undos = 1;
1747 if (sop->sem_op != 0)
1748 alter = 1;
1749 }
1750
1751 INIT_LIST_HEAD(&tasks);
1752
1753 if (undos) {
1754 /* On success, find_alloc_undo takes the rcu_read_lock */
1755 un = find_alloc_undo(ns, semid);
1756 if (IS_ERR(un)) {
1757 error = PTR_ERR(un);
1758 goto out_free;
1759 }
1760 } else {
1761 un = NULL;
1762 rcu_read_lock();
1763 }
1764
1765 sma = sem_obtain_object_check(ns, semid);
1766 if (IS_ERR(sma)) {
1767 rcu_read_unlock();
1768 error = PTR_ERR(sma);
1769 goto out_free;
1770 }
1771
1772 error = -EFBIG;
1773 if (max >= sma->sem_nsems)
1774 goto out_rcu_wakeup;
1775
1776 error = -EACCES;
1777 if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO))
1778 goto out_rcu_wakeup;
1779
1780 error = security_sem_semop(sma, sops, nsops, alter);
1781 if (error)
1782 goto out_rcu_wakeup;
1783
1784 /*
1785 * semid identifiers are not unique - find_alloc_undo may have
1786 * allocated an undo structure, it was invalidated by an RMID
1787 * and now a new array with received the same id. Check and fail.
1788 * This case can be detected checking un->semid. The existence of
1789 * "un" itself is guaranteed by rcu.
1790 */
1791 error = -EIDRM;
1792 locknum = sem_lock(sma, sops, nsops);
1793 if (un && un->semid == -1)
1794 goto out_unlock_free;
1795
1796 error = perform_atomic_semop(sma, sops, nsops, un,
1797 task_tgid_vnr(current));
1798 if (error <= 0) {
1799 if (alter && error == 0)
1800 do_smart_update(sma, sops, nsops, 1, &tasks);
1801
1802 goto out_unlock_free;
1803 }
1804
1805 /* We need to sleep on this operation, so we put the current
1806 * task into the pending queue and go to sleep.
1807 */
1808
1809 queue.sops = sops;
1810 queue.nsops = nsops;
1811 queue.undo = un;
1812 queue.pid = task_tgid_vnr(current);
1813 queue.alter = alter;
1814
1815 if (nsops == 1) {
1816 struct sem *curr;
1817 curr = &sma->sem_base[sops->sem_num];
1818
1819 if (alter) {
1820 if (sma->complex_count) {
1821 list_add_tail(&queue.list,
1822 &sma->pending_alter);
1823 } else {
1824
1825 list_add_tail(&queue.list,
1826 &curr->pending_alter);
1827 }
1828 } else {
1829 list_add_tail(&queue.list, &curr->pending_const);
1830 }
1831 } else {
1832 if (!sma->complex_count)
1833 merge_queues(sma);
1834
1835 if (alter)
1836 list_add_tail(&queue.list, &sma->pending_alter);
1837 else
1838 list_add_tail(&queue.list, &sma->pending_const);
1839
1840 sma->complex_count++;
1841 }
1842
1843 queue.status = -EINTR;
1844 queue.sleeper = current;
1845
1846 sleep_again:
1847 current->state = TASK_INTERRUPTIBLE;
1848 sem_unlock(sma, locknum);
1849 rcu_read_unlock();
1850
1851 if (timeout)
1852 jiffies_left = schedule_timeout(jiffies_left);
1853 else
1854 schedule();
1855
1856 error = get_queue_result(&queue);
1857
1858 if (error != -EINTR) {
1859 /* fast path: update_queue already obtained all requested
1860 * resources.
1861 * Perform a smp_mb(): User space could assume that semop()
1862 * is a memory barrier: Without the mb(), the cpu could
1863 * speculatively read in user space stale data that was
1864 * overwritten by the previous owner of the semaphore.
1865 */
1866 smp_mb();
1867
1868 goto out_free;
1869 }
1870
1871 rcu_read_lock();
1872 sma = sem_obtain_lock(ns, semid, sops, nsops, &locknum);
1873
1874 /*
1875 * Wait until it's guaranteed that no wakeup_sem_queue_do() is ongoing.
1876 */
1877 error = get_queue_result(&queue);
1878
1879 /*
1880 * Array removed? If yes, leave without sem_unlock().
1881 */
1882 if (IS_ERR(sma)) {
1883 rcu_read_unlock();
1884 goto out_free;
1885 }
1886
1887
1888 /*
1889 * If queue.status != -EINTR we are woken up by another process.
1890 * Leave without unlink_queue(), but with sem_unlock().
1891 */
1892
1893 if (error != -EINTR) {
1894 goto out_unlock_free;
1895 }
1896
1897 /*
1898 * If an interrupt occurred we have to clean up the queue
1899 */
1900 if (timeout && jiffies_left == 0)
1901 error = -EAGAIN;
1902
1903 /*
1904 * If the wakeup was spurious, just retry
1905 */
1906 if (error == -EINTR && !signal_pending(current))
1907 goto sleep_again;
1908
1909 unlink_queue(sma, &queue);
1910
1911 out_unlock_free:
1912 sem_unlock(sma, locknum);
1913 out_rcu_wakeup:
1914 rcu_read_unlock();
1915 wake_up_sem_queue_do(&tasks);
1916 out_free:
1917 if(sops != fast_sops)
1918 kfree(sops);
1919 return error;
1920 }
1921
1922 SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
1923 unsigned, nsops)
1924 {
1925 return sys_semtimedop(semid, tsops, nsops, NULL);
1926 }
1927
1928 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
1929 * parent and child tasks.
1930 */
1931
1932 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
1933 {
1934 struct sem_undo_list *undo_list;
1935 int error;
1936
1937 if (clone_flags & CLONE_SYSVSEM) {
1938 error = get_undo_list(&undo_list);
1939 if (error)
1940 return error;
1941 atomic_inc(&undo_list->refcnt);
1942 tsk->sysvsem.undo_list = undo_list;
1943 } else
1944 tsk->sysvsem.undo_list = NULL;
1945
1946 return 0;
1947 }
1948
1949 /*
1950 * add semadj values to semaphores, free undo structures.
1951 * undo structures are not freed when semaphore arrays are destroyed
1952 * so some of them may be out of date.
1953 * IMPLEMENTATION NOTE: There is some confusion over whether the
1954 * set of adjustments that needs to be done should be done in an atomic
1955 * manner or not. That is, if we are attempting to decrement the semval
1956 * should we queue up and wait until we can do so legally?
1957 * The original implementation attempted to do this (queue and wait).
1958 * The current implementation does not do so. The POSIX standard
1959 * and SVID should be consulted to determine what behavior is mandated.
1960 */
1961 void exit_sem(struct task_struct *tsk)
1962 {
1963 struct sem_undo_list *ulp;
1964
1965 ulp = tsk->sysvsem.undo_list;
1966 if (!ulp)
1967 return;
1968 tsk->sysvsem.undo_list = NULL;
1969
1970 if (!atomic_dec_and_test(&ulp->refcnt))
1971 return;
1972
1973 for (;;) {
1974 struct sem_array *sma;
1975 struct sem_undo *un;
1976 struct list_head tasks;
1977 int semid, i;
1978
1979 rcu_read_lock();
1980 un = list_entry_rcu(ulp->list_proc.next,
1981 struct sem_undo, list_proc);
1982 if (&un->list_proc == &ulp->list_proc)
1983 semid = -1;
1984 else
1985 semid = un->semid;
1986
1987 if (semid == -1) {
1988 rcu_read_unlock();
1989 break;
1990 }
1991
1992 sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, un->semid);
1993 /* exit_sem raced with IPC_RMID, nothing to do */
1994 if (IS_ERR(sma)) {
1995 rcu_read_unlock();
1996 continue;
1997 }
1998
1999 sem_lock(sma, NULL, -1);
2000 un = __lookup_undo(ulp, semid);
2001 if (un == NULL) {
2002 /* exit_sem raced with IPC_RMID+semget() that created
2003 * exactly the same semid. Nothing to do.
2004 */
2005 sem_unlock(sma, -1);
2006 rcu_read_unlock();
2007 continue;
2008 }
2009
2010 /* remove un from the linked lists */
2011 ipc_assert_locked_object(&sma->sem_perm);
2012 list_del(&un->list_id);
2013
2014 spin_lock(&ulp->lock);
2015 list_del_rcu(&un->list_proc);
2016 spin_unlock(&ulp->lock);
2017
2018 /* perform adjustments registered in un */
2019 for (i = 0; i < sma->sem_nsems; i++) {
2020 struct sem * semaphore = &sma->sem_base[i];
2021 if (un->semadj[i]) {
2022 semaphore->semval += un->semadj[i];
2023 /*
2024 * Range checks of the new semaphore value,
2025 * not defined by sus:
2026 * - Some unices ignore the undo entirely
2027 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
2028 * - some cap the value (e.g. FreeBSD caps
2029 * at 0, but doesn't enforce SEMVMX)
2030 *
2031 * Linux caps the semaphore value, both at 0
2032 * and at SEMVMX.
2033 *
2034 * Manfred <manfred@colorfullife.com>
2035 */
2036 if (semaphore->semval < 0)
2037 semaphore->semval = 0;
2038 if (semaphore->semval > SEMVMX)
2039 semaphore->semval = SEMVMX;
2040 semaphore->sempid = task_tgid_vnr(current);
2041 }
2042 }
2043 /* maybe some queued-up processes were waiting for this */
2044 INIT_LIST_HEAD(&tasks);
2045 do_smart_update(sma, NULL, 0, 1, &tasks);
2046 sem_unlock(sma, -1);
2047 rcu_read_unlock();
2048 wake_up_sem_queue_do(&tasks);
2049
2050 kfree_rcu(un, rcu);
2051 }
2052 kfree(ulp);
2053 }
2054
2055 #ifdef CONFIG_PROC_FS
2056 static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
2057 {
2058 struct user_namespace *user_ns = seq_user_ns(s);
2059 struct sem_array *sma = it;
2060 time_t sem_otime;
2061
2062 sem_otime = get_semotime(sma);
2063
2064 return seq_printf(s,
2065 "%10d %10d %4o %10u %5u %5u %5u %5u %10lu %10lu\n",
2066 sma->sem_perm.key,
2067 sma->sem_perm.id,
2068 sma->sem_perm.mode,
2069 sma->sem_nsems,
2070 from_kuid_munged(user_ns, sma->sem_perm.uid),
2071 from_kgid_munged(user_ns, sma->sem_perm.gid),
2072 from_kuid_munged(user_ns, sma->sem_perm.cuid),
2073 from_kgid_munged(user_ns, sma->sem_perm.cgid),
2074 sem_otime,
2075 sma->sem_ctime);
2076 }
2077 #endif