Merge tag 'v3.10.108' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / net / tcp.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the TCP module.
7 *
8 * Version: @(#)tcp.h 1.0.5 05/23/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 *
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License
15 * as published by the Free Software Foundation; either version
16 * 2 of the License, or (at your option) any later version.
17 */
18 #ifndef _TCP_H
19 #define _TCP_H
20
21 #define FASTRETRANS_DEBUG 1
22
23 #include <linux/list.h>
24 #include <linux/tcp.h>
25 #include <linux/bug.h>
26 #include <linux/slab.h>
27 #include <linux/cache.h>
28 #include <linux/percpu.h>
29 #include <linux/skbuff.h>
30 #include <linux/dmaengine.h>
31 #include <linux/crypto.h>
32 #include <linux/cryptohash.h>
33 #include <linux/kref.h>
34
35 #include <net/inet_connection_sock.h>
36 #include <net/inet_timewait_sock.h>
37 #include <net/inet_hashtables.h>
38 #include <net/checksum.h>
39 #include <net/request_sock.h>
40 #include <net/sock.h>
41 #include <net/snmp.h>
42 #include <net/ip.h>
43 #include <net/tcp_states.h>
44 #include <net/inet_ecn.h>
45 #include <net/dst.h>
46
47 #include <linux/seq_file.h>
48 #include <linux/memcontrol.h>
49
50 extern struct inet_hashinfo tcp_hashinfo;
51
52 extern struct percpu_counter tcp_orphan_count;
53 extern void tcp_time_wait(struct sock *sk, int state, int timeo);
54
55 #define MAX_TCP_HEADER (128 + MAX_HEADER)
56 #define MAX_TCP_OPTION_SPACE 40
57
58 /*
59 * Never offer a window over 32767 without using window scaling. Some
60 * poor stacks do signed 16bit maths!
61 */
62 #define MAX_TCP_WINDOW 32767U
63
64 /* Offer an initial receive window of 20 mss. */
65 #define TCP_DEFAULT_INIT_RCVWND 20
66
67 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
68 #define TCP_MIN_MSS 88U
69
70 /* The least MTU to use for probing */
71 #define TCP_BASE_MSS 512
72
73 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
74 #define TCP_FASTRETRANS_THRESH 3
75
76 /* Maximal reordering. */
77 #define TCP_MAX_REORDERING 127
78
79 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
80 #define TCP_MAX_QUICKACKS 16U
81
82 /* urg_data states */
83 #define TCP_URG_VALID 0x0100
84 #define TCP_URG_NOTYET 0x0200
85 #define TCP_URG_READ 0x0400
86
87 #define TCP_RETR1 3 /*
88 * This is how many retries it does before it
89 * tries to figure out if the gateway is
90 * down. Minimal RFC value is 3; it corresponds
91 * to ~3sec-8min depending on RTO.
92 */
93
94 #define TCP_RETR2 10 /*
95 * This should take at least
96 * 90 minutes to time out.
97 * RFC1122 says that the limit is 100 sec.
98 * 15 is ~13-30min depending on RTO.
99 */
100
101 #define TCP_SYN_RETRIES 9 /* This is how many retries are done
102 * when active opening a connection.
103 * RFC1122 says the minimum retry MUST
104 * be at least 180secs. Nevertheless
105 * this value is corresponding to
106 * 63secs of retransmission with the
107 * current initial RTO.
108 */
109
110 #define TCP_SYNACK_RETRIES 5 /* This is how may retries are done
111 * when passive opening a connection.
112 * This is corresponding to 31secs of
113 * retransmission with the current
114 * initial RTO.
115 */
116
117 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
118 * state, about 60 seconds */
119 #define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN
120 /* BSD style FIN_WAIT2 deadlock breaker.
121 * It used to be 3min, new value is 60sec,
122 * to combine FIN-WAIT-2 timeout with
123 * TIME-WAIT timer.
124 */
125
126 #define TCP_DELACK_MAX ((unsigned)(HZ/5)) /* maximal time to delay before sending an ACK */
127 #if HZ >= 100
128 #define TCP_DELACK_MIN ((unsigned)(HZ/25)) /* minimal time to delay before sending an ACK */
129 #define TCP_ATO_MIN ((unsigned)(HZ/25))
130 #else
131 #define TCP_DELACK_MIN 4U
132 #define TCP_ATO_MIN 4U
133 #endif
134 #define TCP_RTO_MAX ((unsigned)(60*HZ))
135 #define TCP_RTO_MIN ((unsigned)(HZ/5))
136 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ)) /* RFC6298 2.1 initial RTO value */
137 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now
138 * used as a fallback RTO for the
139 * initial data transmission if no
140 * valid RTT sample has been acquired,
141 * most likely due to retrans in 3WHS.
142 */
143
144 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
145 * for local resources.
146 */
147
148 #define TCP_KEEPALIVE_TIME (120*60*HZ) /* two hours */
149 #define TCP_KEEPALIVE_PROBES 9 /* Max of 9 keepalive probes */
150 #define TCP_KEEPALIVE_INTVL (75*HZ)
151
152 #define MAX_TCP_KEEPIDLE 32767
153 #define MAX_TCP_KEEPINTVL 32767
154 #define MAX_TCP_KEEPCNT 127
155 #define MAX_TCP_SYNCNT 127
156
157 #define TCP_SYNQ_INTERVAL (HZ/5) /* Period of SYNACK timer */
158
159 #define TCP_PAWS_24DAYS (60 * 60 * 24 * 24)
160 #define TCP_PAWS_MSL 60 /* Per-host timestamps are invalidated
161 * after this time. It should be equal
162 * (or greater than) TCP_TIMEWAIT_LEN
163 * to provide reliability equal to one
164 * provided by timewait state.
165 */
166 #define TCP_PAWS_WINDOW 1 /* Replay window for per-host
167 * timestamps. It must be less than
168 * minimal timewait lifetime.
169 */
170 /*
171 * TCP option
172 */
173
174 #define TCPOPT_NOP 1 /* Padding */
175 #define TCPOPT_EOL 0 /* End of options */
176 #define TCPOPT_MSS 2 /* Segment size negotiating */
177 #define TCPOPT_WINDOW 3 /* Window scaling */
178 #define TCPOPT_SACK_PERM 4 /* SACK Permitted */
179 #define TCPOPT_SACK 5 /* SACK Block */
180 #define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */
181 #define TCPOPT_MD5SIG 19 /* MD5 Signature (RFC2385) */
182 #define TCPOPT_EXP 254 /* Experimental */
183 /* Magic number to be after the option value for sharing TCP
184 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
185 */
186 #define TCPOPT_FASTOPEN_MAGIC 0xF989
187
188 /*
189 * TCP option lengths
190 */
191
192 #define TCPOLEN_MSS 4
193 #define TCPOLEN_WINDOW 3
194 #define TCPOLEN_SACK_PERM 2
195 #define TCPOLEN_TIMESTAMP 10
196 #define TCPOLEN_MD5SIG 18
197 #define TCPOLEN_EXP_FASTOPEN_BASE 4
198 #define TCPOLEN_COOKIE_BASE 2 /* Cookie-less header extension */
199 #define TCPOLEN_COOKIE_PAIR 3 /* Cookie pair header extension */
200 #define TCPOLEN_COOKIE_MIN (TCPOLEN_COOKIE_BASE+TCP_COOKIE_MIN)
201 #define TCPOLEN_COOKIE_MAX (TCPOLEN_COOKIE_BASE+TCP_COOKIE_MAX)
202
203 /* But this is what stacks really send out. */
204 #define TCPOLEN_TSTAMP_ALIGNED 12
205 #define TCPOLEN_WSCALE_ALIGNED 4
206 #define TCPOLEN_SACKPERM_ALIGNED 4
207 #define TCPOLEN_SACK_BASE 2
208 #define TCPOLEN_SACK_BASE_ALIGNED 4
209 #define TCPOLEN_SACK_PERBLOCK 8
210 #define TCPOLEN_MD5SIG_ALIGNED 20
211 #define TCPOLEN_MSS_ALIGNED 4
212
213 /* Flags in tp->nonagle */
214 #define TCP_NAGLE_OFF 1 /* Nagle's algo is disabled */
215 #define TCP_NAGLE_CORK 2 /* Socket is corked */
216 #define TCP_NAGLE_PUSH 4 /* Cork is overridden for already queued data */
217
218 /* TCP thin-stream limits */
219 #define TCP_THIN_LINEAR_RETRIES 6 /* After 6 linear retries, do exp. backoff */
220
221 /* TCP initial congestion window as per draft-hkchu-tcpm-initcwnd-01 */
222 #define TCP_INIT_CWND 10
223
224 /* Bit Flags for sysctl_tcp_fastopen */
225 #define TFO_CLIENT_ENABLE 1
226 #define TFO_SERVER_ENABLE 2
227 #define TFO_CLIENT_NO_COOKIE 4 /* Data in SYN w/o cookie option */
228
229 /* Process SYN data but skip cookie validation */
230 #define TFO_SERVER_COOKIE_NOT_CHKED 0x100
231 /* Accept SYN data w/o any cookie option */
232 #define TFO_SERVER_COOKIE_NOT_REQD 0x200
233
234 /* Force enable TFO on all listeners, i.e., not requiring the
235 * TCP_FASTOPEN socket option. SOCKOPT1/2 determine how to set max_qlen.
236 */
237 #define TFO_SERVER_WO_SOCKOPT1 0x400
238 #define TFO_SERVER_WO_SOCKOPT2 0x800
239 /* Always create TFO child sockets on a TFO listener even when
240 * cookie/data not present. (For testing purpose!)
241 */
242 #define TFO_SERVER_ALWAYS 0x1000
243
244 extern struct inet_timewait_death_row tcp_death_row;
245
246 /* sysctl variables for tcp */
247 extern int sysctl_tcp_timestamps;
248 extern int sysctl_tcp_window_scaling;
249 extern int sysctl_tcp_sack;
250 extern int sysctl_tcp_fin_timeout;
251 extern int sysctl_tcp_keepalive_time;
252 extern int sysctl_tcp_keepalive_probes;
253 extern int sysctl_tcp_keepalive_intvl;
254 extern int sysctl_tcp_syn_retries;
255 extern int sysctl_tcp_synack_retries;
256 extern int sysctl_tcp_retries1;
257 extern int sysctl_tcp_retries2;
258 extern int sysctl_tcp_orphan_retries;
259 extern int sysctl_tcp_syncookies;
260 extern int sysctl_tcp_fastopen;
261 extern int sysctl_tcp_retrans_collapse;
262 extern int sysctl_tcp_stdurg;
263 extern int sysctl_tcp_rfc1337;
264 extern int sysctl_tcp_abort_on_overflow;
265 extern int sysctl_tcp_max_orphans;
266 extern int sysctl_tcp_fack;
267 extern int sysctl_tcp_reordering;
268 extern int sysctl_tcp_dsack;
269 extern int sysctl_tcp_wmem[3];
270 extern int sysctl_tcp_rmem[3];
271 extern int sysctl_tcp_app_win;
272 extern int sysctl_tcp_adv_win_scale;
273 extern int sysctl_tcp_tw_reuse;
274 extern int sysctl_tcp_frto;
275 extern int sysctl_tcp_low_latency;
276 extern int sysctl_tcp_dma_copybreak;
277 extern int sysctl_tcp_nometrics_save;
278 extern int sysctl_tcp_moderate_rcvbuf;
279 extern int sysctl_tcp_tso_win_divisor;
280 extern int sysctl_tcp_mtu_probing;
281 extern int sysctl_tcp_base_mss;
282 extern int sysctl_tcp_workaround_signed_windows;
283 extern int sysctl_tcp_slow_start_after_idle;
284 extern int sysctl_tcp_max_ssthresh;
285 extern int sysctl_tcp_thin_linear_timeouts;
286 extern int sysctl_tcp_thin_dupack;
287 extern int sysctl_tcp_early_retrans;
288 extern int sysctl_tcp_limit_output_bytes;
289 extern int sysctl_tcp_challenge_ack_limit;
290 extern int sysctl_tcp_default_init_rwnd;
291 extern int sysctl_tcp_min_tso_segs;
292 extern int sysctl_tcp_default_init_rwnd;
293 extern int sysctl_tcp_rto_min;
294 extern int sysctl_tcp_rto_max;
295 extern atomic_long_t tcp_memory_allocated;
296 extern struct percpu_counter tcp_sockets_allocated;
297 extern int tcp_memory_pressure;
298
299 /*
300 * The next routines deal with comparing 32 bit unsigned ints
301 * and worry about wraparound (automatic with unsigned arithmetic).
302 */
303
304 static inline bool before(__u32 seq1, __u32 seq2)
305 {
306 return (__s32)(seq1-seq2) < 0;
307 }
308 #define after(seq2, seq1) before(seq1, seq2)
309
310 /* is s2<=s1<=s3 ? */
311 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
312 {
313 return seq3 - seq2 >= seq1 - seq2;
314 }
315
316 static inline bool tcp_out_of_memory(struct sock *sk)
317 {
318 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
319 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
320 return true;
321 return false;
322 }
323
324 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
325 {
326 struct percpu_counter *ocp = sk->sk_prot->orphan_count;
327 int orphans = percpu_counter_read_positive(ocp);
328
329 if (orphans << shift > sysctl_tcp_max_orphans) {
330 orphans = percpu_counter_sum_positive(ocp);
331 if (orphans << shift > sysctl_tcp_max_orphans)
332 return true;
333 }
334 return false;
335 }
336
337 extern bool tcp_check_oom(struct sock *sk, int shift);
338
339 /* syncookies: remember time of last synqueue overflow */
340 static inline void tcp_synq_overflow(struct sock *sk)
341 {
342 tcp_sk(sk)->rx_opt.ts_recent_stamp = jiffies;
343 }
344
345 /* syncookies: no recent synqueue overflow on this listening socket? */
346 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
347 {
348 unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
349 return time_after(jiffies, last_overflow + TCP_TIMEOUT_FALLBACK);
350 }
351
352 extern struct proto tcp_prot;
353
354 #define TCP_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.tcp_statistics, field)
355 #define TCP_INC_STATS_BH(net, field) SNMP_INC_STATS_BH((net)->mib.tcp_statistics, field)
356 #define TCP_DEC_STATS(net, field) SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
357 #define TCP_ADD_STATS_USER(net, field, val) SNMP_ADD_STATS_USER((net)->mib.tcp_statistics, field, val)
358 #define TCP_ADD_STATS(net, field, val) SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
359
360 extern void tcp_init_mem(struct net *net);
361
362 extern void tcp_tasklet_init(void);
363
364 extern void tcp_v4_err(struct sk_buff *skb, u32);
365
366 extern void tcp_shutdown (struct sock *sk, int how);
367
368 extern void tcp_v4_early_demux(struct sk_buff *skb);
369 extern int tcp_v4_rcv(struct sk_buff *skb);
370
371 extern int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
372 extern int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
373 size_t size);
374 extern int tcp_sendpage(struct sock *sk, struct page *page, int offset,
375 size_t size, int flags);
376 extern void tcp_release_cb(struct sock *sk);
377 extern void tcp_wfree(struct sk_buff *skb);
378 extern void tcp_write_timer_handler(struct sock *sk);
379 extern void tcp_delack_timer_handler(struct sock *sk);
380 extern int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
381 extern int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
382 const struct tcphdr *th, unsigned int len);
383 extern int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
384 const struct tcphdr *th, unsigned int len);
385 extern void tcp_rcv_space_adjust(struct sock *sk);
386 extern void tcp_cleanup_rbuf(struct sock *sk, int copied);
387 extern int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
388 extern void tcp_twsk_destructor(struct sock *sk);
389 extern ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
390 struct pipe_inode_info *pipe, size_t len,
391 unsigned int flags);
392
393 static inline void tcp_dec_quickack_mode(struct sock *sk,
394 const unsigned int pkts)
395 {
396 struct inet_connection_sock *icsk = inet_csk(sk);
397
398 if (icsk->icsk_ack.quick) {
399 if (pkts >= icsk->icsk_ack.quick) {
400 icsk->icsk_ack.quick = 0;
401 /* Leaving quickack mode we deflate ATO. */
402 icsk->icsk_ack.ato = TCP_ATO_MIN;
403 } else
404 icsk->icsk_ack.quick -= pkts;
405 }
406 }
407
408 #define TCP_ECN_OK 1
409 #define TCP_ECN_QUEUE_CWR 2
410 #define TCP_ECN_DEMAND_CWR 4
411 #define TCP_ECN_SEEN 8
412
413 enum tcp_tw_status {
414 TCP_TW_SUCCESS = 0,
415 TCP_TW_RST = 1,
416 TCP_TW_ACK = 2,
417 TCP_TW_SYN = 3
418 };
419
420
421 extern enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
422 struct sk_buff *skb,
423 const struct tcphdr *th);
424 extern struct sock * tcp_check_req(struct sock *sk,struct sk_buff *skb,
425 struct request_sock *req,
426 struct request_sock **prev,
427 bool fastopen);
428 extern int tcp_child_process(struct sock *parent, struct sock *child,
429 struct sk_buff *skb);
430 extern void tcp_enter_loss(struct sock *sk, int how);
431 extern void tcp_clear_retrans(struct tcp_sock *tp);
432 extern void tcp_update_metrics(struct sock *sk);
433 extern void tcp_init_metrics(struct sock *sk);
434 extern void tcp_metrics_init(void);
435 extern bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst, bool paws_check);
436 extern bool tcp_remember_stamp(struct sock *sk);
437 extern bool tcp_tw_remember_stamp(struct inet_timewait_sock *tw);
438 extern void tcp_fetch_timewait_stamp(struct sock *sk, struct dst_entry *dst);
439 extern void tcp_disable_fack(struct tcp_sock *tp);
440 extern void tcp_close(struct sock *sk, long timeout);
441 extern void tcp_init_sock(struct sock *sk);
442 extern unsigned int tcp_poll(struct file * file, struct socket *sock,
443 struct poll_table_struct *wait);
444 extern int tcp_getsockopt(struct sock *sk, int level, int optname,
445 char __user *optval, int __user *optlen);
446 extern int tcp_setsockopt(struct sock *sk, int level, int optname,
447 char __user *optval, unsigned int optlen);
448 extern int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
449 char __user *optval, int __user *optlen);
450 extern int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
451 char __user *optval, unsigned int optlen);
452 extern void tcp_set_keepalive(struct sock *sk, int val);
453 extern void tcp_syn_ack_timeout(struct sock *sk, struct request_sock *req);
454 extern int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
455 size_t len, int nonblock, int flags, int *addr_len);
456 extern void tcp_parse_options(const struct sk_buff *skb,
457 struct tcp_options_received *opt_rx,
458 int estab, struct tcp_fastopen_cookie *foc);
459 extern const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
460
461 /*
462 * TCP v4 functions exported for the inet6 API
463 */
464
465 extern void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
466 void tcp_v4_mtu_reduced(struct sock *sk);
467 extern int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
468 extern struct sock * tcp_create_openreq_child(struct sock *sk,
469 struct request_sock *req,
470 struct sk_buff *skb);
471 extern struct sock * tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
472 struct request_sock *req,
473 struct dst_entry *dst);
474 extern int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
475 extern int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr,
476 int addr_len);
477 extern int tcp_connect(struct sock *sk);
478 extern struct sk_buff * tcp_make_synack(struct sock *sk, struct dst_entry *dst,
479 struct request_sock *req,
480 struct tcp_fastopen_cookie *foc);
481 extern int tcp_disconnect(struct sock *sk, int flags);
482
483 void tcp_connect_init(struct sock *sk);
484 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
485 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
486 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
487
488 /* From syncookies.c */
489 extern __u32 syncookie_secret[2][16-4+SHA_DIGEST_WORDS];
490 extern struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb,
491 struct ip_options *opt);
492 #ifdef CONFIG_SYN_COOKIES
493 extern __u32 cookie_v4_init_sequence(struct sock *sk, struct sk_buff *skb,
494 __u16 *mss);
495 #else
496 static inline __u32 cookie_v4_init_sequence(struct sock *sk,
497 struct sk_buff *skb,
498 __u16 *mss)
499 {
500 return 0;
501 }
502 #endif
503
504 extern __u32 cookie_init_timestamp(struct request_sock *req);
505 extern bool cookie_check_timestamp(struct tcp_options_received *opt,
506 struct net *net, bool *ecn_ok);
507
508 /* From net/ipv6/syncookies.c */
509 extern struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
510 #ifdef CONFIG_SYN_COOKIES
511 extern __u32 cookie_v6_init_sequence(struct sock *sk, const struct sk_buff *skb,
512 __u16 *mss);
513 #else
514 static inline __u32 cookie_v6_init_sequence(struct sock *sk,
515 struct sk_buff *skb,
516 __u16 *mss)
517 {
518 return 0;
519 }
520 #endif
521 /* tcp_output.c */
522
523 extern void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
524 int nonagle);
525 extern bool tcp_may_send_now(struct sock *sk);
526 extern int __tcp_retransmit_skb(struct sock *, struct sk_buff *);
527 extern int tcp_retransmit_skb(struct sock *, struct sk_buff *);
528 extern void tcp_retransmit_timer(struct sock *sk);
529 extern void tcp_xmit_retransmit_queue(struct sock *);
530 extern void tcp_simple_retransmit(struct sock *);
531 extern int tcp_trim_head(struct sock *, struct sk_buff *, u32);
532 extern int tcp_fragment(struct sock *, struct sk_buff *, u32, unsigned int);
533
534 extern void tcp_send_probe0(struct sock *);
535 extern void tcp_send_partial(struct sock *);
536 extern int tcp_write_wakeup(struct sock *);
537 extern void tcp_send_fin(struct sock *sk);
538 extern void tcp_send_active_reset(struct sock *sk, gfp_t priority);
539 extern int tcp_send_synack(struct sock *);
540 extern bool tcp_syn_flood_action(struct sock *sk,
541 const struct sk_buff *skb,
542 const char *proto);
543 extern void tcp_push_one(struct sock *, unsigned int mss_now);
544 extern void tcp_send_ack(struct sock *sk);
545 extern void tcp_send_delayed_ack(struct sock *sk);
546 extern void tcp_send_loss_probe(struct sock *sk);
547 extern bool tcp_schedule_loss_probe(struct sock *sk);
548
549 /* tcp_input.c */
550 extern void tcp_cwnd_application_limited(struct sock *sk);
551 extern void tcp_resume_early_retransmit(struct sock *sk);
552 extern void tcp_rearm_rto(struct sock *sk);
553 extern void tcp_reset(struct sock *sk);
554
555 /* tcp_timer.c */
556 extern void tcp_init_xmit_timers(struct sock *);
557 static inline void tcp_clear_xmit_timers(struct sock *sk)
558 {
559 inet_csk_clear_xmit_timers(sk);
560 }
561
562 extern unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
563 extern unsigned int tcp_current_mss(struct sock *sk);
564
565 /* Bound MSS / TSO packet size with the half of the window */
566 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
567 {
568 int cutoff;
569
570 /* When peer uses tiny windows, there is no use in packetizing
571 * to sub-MSS pieces for the sake of SWS or making sure there
572 * are enough packets in the pipe for fast recovery.
573 *
574 * On the other hand, for extremely large MSS devices, handling
575 * smaller than MSS windows in this way does make sense.
576 */
577 if (tp->max_window >= 512)
578 cutoff = (tp->max_window >> 1);
579 else
580 cutoff = tp->max_window;
581
582 if (cutoff && pktsize > cutoff)
583 return max_t(int, cutoff, 68U - tp->tcp_header_len);
584 else
585 return pktsize;
586 }
587
588 /* tcp.c */
589 extern void tcp_get_info(const struct sock *, struct tcp_info *);
590
591 /* Read 'sendfile()'-style from a TCP socket */
592 typedef int (*sk_read_actor_t)(read_descriptor_t *, struct sk_buff *,
593 unsigned int, size_t);
594 extern int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
595 sk_read_actor_t recv_actor);
596
597 extern void tcp_initialize_rcv_mss(struct sock *sk);
598
599 extern int tcp_mtu_to_mss(struct sock *sk, int pmtu);
600 extern int tcp_mss_to_mtu(struct sock *sk, int mss);
601 extern void tcp_mtup_init(struct sock *sk);
602 extern void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt);
603 extern void tcp_init_buffer_space(struct sock *sk);
604
605 static inline void tcp_bound_rto(const struct sock *sk)
606 {
607 if (inet_csk(sk)->icsk_rto > sysctl_tcp_rto_max)
608 inet_csk(sk)->icsk_rto = sysctl_tcp_rto_max;
609 }
610
611 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
612 {
613 return (tp->srtt >> 3) + tp->rttvar;
614 }
615
616 extern void tcp_set_rto(struct sock *sk);
617
618 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
619 {
620 tp->pred_flags = htonl((tp->tcp_header_len << 26) |
621 ntohl(TCP_FLAG_ACK) |
622 snd_wnd);
623 }
624
625 static inline void tcp_fast_path_on(struct tcp_sock *tp)
626 {
627 __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
628 }
629
630 static inline void tcp_fast_path_check(struct sock *sk)
631 {
632 struct tcp_sock *tp = tcp_sk(sk);
633
634 if (skb_queue_empty(&tp->out_of_order_queue) &&
635 tp->rcv_wnd &&
636 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
637 !tp->urg_data)
638 tcp_fast_path_on(tp);
639 }
640
641 /* Compute the actual rto_min value */
642 static inline u32 tcp_rto_min(struct sock *sk)
643 {
644 const struct dst_entry *dst = __sk_dst_get(sk);
645 u32 rto_min = sysctl_tcp_rto_min;
646
647 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
648 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
649 return rto_min;
650 }
651
652 /* Compute the actual receive window we are currently advertising.
653 * Rcv_nxt can be after the window if our peer push more data
654 * than the offered window.
655 */
656 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
657 {
658 s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
659
660 if (win < 0)
661 win = 0;
662 return (u32) win;
663 }
664
665 /* Choose a new window, without checks for shrinking, and without
666 * scaling applied to the result. The caller does these things
667 * if necessary. This is a "raw" window selection.
668 */
669 extern u32 __tcp_select_window(struct sock *sk);
670
671 void tcp_send_window_probe(struct sock *sk);
672
673 /* TCP timestamps are only 32-bits, this causes a slight
674 * complication on 64-bit systems since we store a snapshot
675 * of jiffies in the buffer control blocks below. We decided
676 * to use only the low 32-bits of jiffies and hide the ugly
677 * casts with the following macro.
678 */
679 #define tcp_time_stamp ((__u32)(jiffies))
680
681 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
682
683 #define TCPHDR_FIN 0x01
684 #define TCPHDR_SYN 0x02
685 #define TCPHDR_RST 0x04
686 #define TCPHDR_PSH 0x08
687 #define TCPHDR_ACK 0x10
688 #define TCPHDR_URG 0x20
689 #define TCPHDR_ECE 0x40
690 #define TCPHDR_CWR 0x80
691
692 /* This is what the send packet queuing engine uses to pass
693 * TCP per-packet control information to the transmission code.
694 * We also store the host-order sequence numbers in here too.
695 * This is 44 bytes if IPV6 is enabled.
696 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
697 */
698 struct tcp_skb_cb {
699 union {
700 struct inet_skb_parm h4;
701 #if IS_ENABLED(CONFIG_IPV6)
702 struct inet6_skb_parm h6;
703 #endif
704 } header; /* For incoming frames */
705 __u32 seq; /* Starting sequence number */
706 __u32 end_seq; /* SEQ + FIN + SYN + datalen */
707 __u32 when; /* used to compute rtt's */
708 __u8 tcp_flags; /* TCP header flags. (tcp[13]) */
709
710 __u8 sacked; /* State flags for SACK/FACK. */
711 #define TCPCB_SACKED_ACKED 0x01 /* SKB ACK'd by a SACK block */
712 #define TCPCB_SACKED_RETRANS 0x02 /* SKB retransmitted */
713 #define TCPCB_LOST 0x04 /* SKB is lost */
714 #define TCPCB_TAGBITS 0x07 /* All tag bits */
715 #define TCPCB_EVER_RETRANS 0x80 /* Ever retransmitted frame */
716 #define TCPCB_RETRANS (TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS)
717
718 __u8 ip_dsfield; /* IPv4 tos or IPv6 dsfield */
719 /* 1 byte hole */
720 __u32 ack_seq; /* Sequence number ACK'd */
721 };
722
723 #define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0]))
724
725 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
726 *
727 * If we receive a SYN packet with these bits set, it means a network is
728 * playing bad games with TOS bits. In order to avoid possible false congestion
729 * notifications, we disable TCP ECN negociation.
730 */
731 static inline void
732 TCP_ECN_create_request(struct request_sock *req, const struct sk_buff *skb,
733 struct net *net)
734 {
735 const struct tcphdr *th = tcp_hdr(skb);
736
737 if (net->ipv4.sysctl_tcp_ecn && th->ece && th->cwr &&
738 INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield))
739 inet_rsk(req)->ecn_ok = 1;
740 }
741
742 /* Due to TSO, an SKB can be composed of multiple actual
743 * packets. To keep these tracked properly, we use this.
744 */
745 static inline int tcp_skb_pcount(const struct sk_buff *skb)
746 {
747 return skb_shinfo(skb)->gso_segs;
748 }
749
750 /* This is valid iff tcp_skb_pcount() > 1. */
751 static inline int tcp_skb_mss(const struct sk_buff *skb)
752 {
753 return skb_shinfo(skb)->gso_size;
754 }
755
756 /* Events passed to congestion control interface */
757 enum tcp_ca_event {
758 CA_EVENT_TX_START, /* first transmit when no packets in flight */
759 CA_EVENT_CWND_RESTART, /* congestion window restart */
760 CA_EVENT_COMPLETE_CWR, /* end of congestion recovery */
761 CA_EVENT_LOSS, /* loss timeout */
762 CA_EVENT_FAST_ACK, /* in sequence ack */
763 CA_EVENT_SLOW_ACK, /* other ack */
764 };
765
766 /*
767 * Interface for adding new TCP congestion control handlers
768 */
769 #define TCP_CA_NAME_MAX 16
770 #define TCP_CA_MAX 128
771 #define TCP_CA_BUF_MAX (TCP_CA_NAME_MAX*TCP_CA_MAX)
772
773 #define TCP_CONG_NON_RESTRICTED 0x1
774 #define TCP_CONG_RTT_STAMP 0x2
775
776 struct tcp_congestion_ops {
777 struct list_head list;
778 unsigned long flags;
779
780 /* initialize private data (optional) */
781 void (*init)(struct sock *sk);
782 /* cleanup private data (optional) */
783 void (*release)(struct sock *sk);
784
785 /* return slow start threshold (required) */
786 u32 (*ssthresh)(struct sock *sk);
787 /* lower bound for congestion window (optional) */
788 u32 (*min_cwnd)(const struct sock *sk);
789 /* do new cwnd calculation (required) */
790 void (*cong_avoid)(struct sock *sk, u32 ack, u32 in_flight);
791 /* call before changing ca_state (optional) */
792 void (*set_state)(struct sock *sk, u8 new_state);
793 /* call when cwnd event occurs (optional) */
794 void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
795 /* new value of cwnd after loss (optional) */
796 u32 (*undo_cwnd)(struct sock *sk);
797 /* hook for packet ack accounting (optional) */
798 void (*pkts_acked)(struct sock *sk, u32 num_acked, s32 rtt_us);
799 /* get info for inet_diag (optional) */
800 void (*get_info)(struct sock *sk, u32 ext, struct sk_buff *skb);
801
802 char name[TCP_CA_NAME_MAX];
803 struct module *owner;
804 };
805
806 extern int tcp_register_congestion_control(struct tcp_congestion_ops *type);
807 extern void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
808
809 extern void tcp_init_congestion_control(struct sock *sk);
810 extern void tcp_cleanup_congestion_control(struct sock *sk);
811 extern int tcp_set_default_congestion_control(const char *name);
812 extern void tcp_get_default_congestion_control(char *name);
813 extern void tcp_get_available_congestion_control(char *buf, size_t len);
814 extern void tcp_get_allowed_congestion_control(char *buf, size_t len);
815 extern int tcp_set_allowed_congestion_control(char *allowed);
816 extern int tcp_set_congestion_control(struct sock *sk, const char *name);
817 extern void tcp_slow_start(struct tcp_sock *tp);
818 extern void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w);
819
820 extern struct tcp_congestion_ops tcp_init_congestion_ops;
821 extern u32 tcp_reno_ssthresh(struct sock *sk);
822 extern void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 in_flight);
823 extern u32 tcp_reno_min_cwnd(const struct sock *sk);
824 extern struct tcp_congestion_ops tcp_reno;
825
826 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
827 {
828 struct inet_connection_sock *icsk = inet_csk(sk);
829
830 if (icsk->icsk_ca_ops->set_state)
831 icsk->icsk_ca_ops->set_state(sk, ca_state);
832 icsk->icsk_ca_state = ca_state;
833 }
834
835 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
836 {
837 const struct inet_connection_sock *icsk = inet_csk(sk);
838
839 if (icsk->icsk_ca_ops->cwnd_event)
840 icsk->icsk_ca_ops->cwnd_event(sk, event);
841 }
842
843 /* These functions determine how the current flow behaves in respect of SACK
844 * handling. SACK is negotiated with the peer, and therefore it can vary
845 * between different flows.
846 *
847 * tcp_is_sack - SACK enabled
848 * tcp_is_reno - No SACK
849 * tcp_is_fack - FACK enabled, implies SACK enabled
850 */
851 static inline int tcp_is_sack(const struct tcp_sock *tp)
852 {
853 return tp->rx_opt.sack_ok;
854 }
855
856 static inline bool tcp_is_reno(const struct tcp_sock *tp)
857 {
858 return !tcp_is_sack(tp);
859 }
860
861 static inline bool tcp_is_fack(const struct tcp_sock *tp)
862 {
863 return tp->rx_opt.sack_ok & TCP_FACK_ENABLED;
864 }
865
866 static inline void tcp_enable_fack(struct tcp_sock *tp)
867 {
868 tp->rx_opt.sack_ok |= TCP_FACK_ENABLED;
869 }
870
871 /* TCP early-retransmit (ER) is similar to but more conservative than
872 * the thin-dupack feature. Enable ER only if thin-dupack is disabled.
873 */
874 static inline void tcp_enable_early_retrans(struct tcp_sock *tp)
875 {
876 tp->do_early_retrans = sysctl_tcp_early_retrans &&
877 sysctl_tcp_early_retrans < 4 && !sysctl_tcp_thin_dupack &&
878 sysctl_tcp_reordering == 3;
879 }
880
881 static inline void tcp_disable_early_retrans(struct tcp_sock *tp)
882 {
883 tp->do_early_retrans = 0;
884 }
885
886 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
887 {
888 return tp->sacked_out + tp->lost_out;
889 }
890
891 /* This determines how many packets are "in the network" to the best
892 * of our knowledge. In many cases it is conservative, but where
893 * detailed information is available from the receiver (via SACK
894 * blocks etc.) we can make more aggressive calculations.
895 *
896 * Use this for decisions involving congestion control, use just
897 * tp->packets_out to determine if the send queue is empty or not.
898 *
899 * Read this equation as:
900 *
901 * "Packets sent once on transmission queue" MINUS
902 * "Packets left network, but not honestly ACKed yet" PLUS
903 * "Packets fast retransmitted"
904 */
905 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
906 {
907 return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
908 }
909
910 #define TCP_INFINITE_SSTHRESH 0x7fffffff
911
912 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
913 {
914 return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
915 }
916
917 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
918 {
919 return (TCPF_CA_CWR | TCPF_CA_Recovery) &
920 (1 << inet_csk(sk)->icsk_ca_state);
921 }
922
923 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
924 * The exception is cwnd reduction phase, when cwnd is decreasing towards
925 * ssthresh.
926 */
927 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
928 {
929 const struct tcp_sock *tp = tcp_sk(sk);
930
931 if (tcp_in_cwnd_reduction(sk))
932 return tp->snd_ssthresh;
933 else
934 return max(tp->snd_ssthresh,
935 ((tp->snd_cwnd >> 1) +
936 (tp->snd_cwnd >> 2)));
937 }
938
939 /* Use define here intentionally to get WARN_ON location shown at the caller */
940 #define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out)
941
942 extern void tcp_enter_cwr(struct sock *sk, const int set_ssthresh);
943 extern __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
944
945 /* The maximum number of MSS of available cwnd for which TSO defers
946 * sending if not using sysctl_tcp_tso_win_divisor.
947 */
948 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
949 {
950 return 3;
951 }
952
953 /* Slow start with delack produces 3 packets of burst, so that
954 * it is safe "de facto". This will be the default - same as
955 * the default reordering threshold - but if reordering increases,
956 * we must be able to allow cwnd to burst at least this much in order
957 * to not pull it back when holes are filled.
958 */
959 static __inline__ __u32 tcp_max_burst(const struct tcp_sock *tp)
960 {
961 return tp->reordering;
962 }
963
964 /* Returns end sequence number of the receiver's advertised window */
965 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
966 {
967 return tp->snd_una + tp->snd_wnd;
968 }
969 extern bool tcp_is_cwnd_limited(const struct sock *sk, u32 in_flight);
970
971 static inline void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss,
972 const struct sk_buff *skb)
973 {
974 if (skb->len < mss)
975 tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
976 }
977
978 static inline void tcp_check_probe_timer(struct sock *sk)
979 {
980 const struct tcp_sock *tp = tcp_sk(sk);
981 const struct inet_connection_sock *icsk = inet_csk(sk);
982
983 if (!tp->packets_out && !icsk->icsk_pending)
984 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
985 icsk->icsk_rto, sysctl_tcp_rto_max);
986 }
987
988 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
989 {
990 tp->snd_wl1 = seq;
991 }
992
993 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
994 {
995 tp->snd_wl1 = seq;
996 }
997
998 /*
999 * Calculate(/check) TCP checksum
1000 */
1001 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1002 __be32 daddr, __wsum base)
1003 {
1004 return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
1005 }
1006
1007 static inline __sum16 __tcp_checksum_complete(struct sk_buff *skb)
1008 {
1009 return __skb_checksum_complete(skb);
1010 }
1011
1012 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1013 {
1014 return !skb_csum_unnecessary(skb) &&
1015 __tcp_checksum_complete(skb);
1016 }
1017
1018 /* Prequeue for VJ style copy to user, combined with checksumming. */
1019
1020 static inline void tcp_prequeue_init(struct tcp_sock *tp)
1021 {
1022 tp->ucopy.task = NULL;
1023 tp->ucopy.len = 0;
1024 tp->ucopy.memory = 0;
1025 skb_queue_head_init(&tp->ucopy.prequeue);
1026 #ifdef CONFIG_NET_DMA
1027 tp->ucopy.dma_chan = NULL;
1028 tp->ucopy.wakeup = 0;
1029 tp->ucopy.pinned_list = NULL;
1030 tp->ucopy.dma_cookie = 0;
1031 #endif
1032 }
1033
1034 extern bool tcp_prequeue(struct sock *sk, struct sk_buff *skb);
1035 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1036
1037 #undef STATE_TRACE
1038
1039 #ifdef STATE_TRACE
1040 static const char *statename[]={
1041 "Unused","Established","Syn Sent","Syn Recv",
1042 "Fin Wait 1","Fin Wait 2","Time Wait", "Close",
1043 "Close Wait","Last ACK","Listen","Closing"
1044 };
1045 #endif
1046 extern void tcp_set_state(struct sock *sk, int state);
1047
1048 extern void tcp_done(struct sock *sk);
1049
1050 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1051 {
1052 rx_opt->dsack = 0;
1053 rx_opt->num_sacks = 0;
1054 }
1055
1056 /* Determine a window scaling and initial window to offer. */
1057 extern void tcp_select_initial_window(int __space, __u32 mss,
1058 __u32 *rcv_wnd, __u32 *window_clamp,
1059 int wscale_ok, __u8 *rcv_wscale,
1060 __u32 init_rcv_wnd);
1061
1062 static inline int tcp_win_from_space(int space)
1063 {
1064 return sysctl_tcp_adv_win_scale<=0 ?
1065 (space>>(-sysctl_tcp_adv_win_scale)) :
1066 space - (space>>sysctl_tcp_adv_win_scale);
1067 }
1068
1069 /* Note: caller must be prepared to deal with negative returns */
1070 static inline int tcp_space(const struct sock *sk)
1071 {
1072 return tcp_win_from_space(sk->sk_rcvbuf -
1073 atomic_read(&sk->sk_rmem_alloc));
1074 }
1075
1076 static inline int tcp_full_space(const struct sock *sk)
1077 {
1078 return tcp_win_from_space(sk->sk_rcvbuf);
1079 }
1080
1081 static inline void tcp_openreq_init(struct request_sock *req,
1082 struct tcp_options_received *rx_opt,
1083 struct sk_buff *skb)
1084 {
1085 struct inet_request_sock *ireq = inet_rsk(req);
1086
1087 req->rcv_wnd = 0; /* So that tcp_send_synack() knows! */
1088 req->cookie_ts = 0;
1089 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
1090 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
1091 tcp_rsk(req)->snt_synack = 0;
1092 req->mss = rx_opt->mss_clamp;
1093 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
1094 ireq->tstamp_ok = rx_opt->tstamp_ok;
1095 ireq->sack_ok = rx_opt->sack_ok;
1096 ireq->snd_wscale = rx_opt->snd_wscale;
1097 ireq->wscale_ok = rx_opt->wscale_ok;
1098 ireq->acked = 0;
1099 ireq->ecn_ok = 0;
1100 ireq->rmt_port = tcp_hdr(skb)->source;
1101 ireq->loc_port = tcp_hdr(skb)->dest;
1102 }
1103
1104 /* Compute time elapsed between SYNACK and the ACK completing 3WHS */
1105 static inline void tcp_synack_rtt_meas(struct sock *sk,
1106 struct request_sock *req)
1107 {
1108 if (tcp_rsk(req)->snt_synack)
1109 tcp_valid_rtt_meas(sk,
1110 tcp_time_stamp - tcp_rsk(req)->snt_synack);
1111 }
1112
1113 extern void tcp_enter_memory_pressure(struct sock *sk);
1114
1115 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1116 {
1117 return tp->keepalive_intvl ? : sysctl_tcp_keepalive_intvl;
1118 }
1119
1120 static inline int keepalive_time_when(const struct tcp_sock *tp)
1121 {
1122 return tp->keepalive_time ? : sysctl_tcp_keepalive_time;
1123 }
1124
1125 static inline int keepalive_probes(const struct tcp_sock *tp)
1126 {
1127 return tp->keepalive_probes ? : sysctl_tcp_keepalive_probes;
1128 }
1129
1130 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1131 {
1132 const struct inet_connection_sock *icsk = &tp->inet_conn;
1133
1134 return min_t(u32, tcp_time_stamp - icsk->icsk_ack.lrcvtime,
1135 tcp_time_stamp - tp->rcv_tstamp);
1136 }
1137
1138 static inline int tcp_fin_time(const struct sock *sk)
1139 {
1140 int fin_timeout = tcp_sk(sk)->linger2 ? : sysctl_tcp_fin_timeout;
1141 const int rto = inet_csk(sk)->icsk_rto;
1142
1143 if (fin_timeout < (rto << 2) - (rto >> 1))
1144 fin_timeout = (rto << 2) - (rto >> 1);
1145
1146 return fin_timeout;
1147 }
1148
1149 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1150 int paws_win)
1151 {
1152 if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1153 return true;
1154 if (unlikely(get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))
1155 return true;
1156 /*
1157 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1158 * then following tcp messages have valid values. Ignore 0 value,
1159 * or else 'negative' tsval might forbid us to accept their packets.
1160 */
1161 if (!rx_opt->ts_recent)
1162 return true;
1163 return false;
1164 }
1165
1166 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1167 int rst)
1168 {
1169 if (tcp_paws_check(rx_opt, 0))
1170 return false;
1171
1172 /* RST segments are not recommended to carry timestamp,
1173 and, if they do, it is recommended to ignore PAWS because
1174 "their cleanup function should take precedence over timestamps."
1175 Certainly, it is mistake. It is necessary to understand the reasons
1176 of this constraint to relax it: if peer reboots, clock may go
1177 out-of-sync and half-open connections will not be reset.
1178 Actually, the problem would be not existing if all
1179 the implementations followed draft about maintaining clock
1180 via reboots. Linux-2.2 DOES NOT!
1181
1182 However, we can relax time bounds for RST segments to MSL.
1183 */
1184 if (rst && get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_MSL)
1185 return false;
1186 return true;
1187 }
1188
1189 static inline void tcp_mib_init(struct net *net)
1190 {
1191 /* See RFC 2012 */
1192 TCP_ADD_STATS_USER(net, TCP_MIB_RTOALGORITHM, 1);
1193 TCP_ADD_STATS_USER(net, TCP_MIB_RTOMIN, sysctl_tcp_rto_min*1000/HZ);
1194 TCP_ADD_STATS_USER(net, TCP_MIB_RTOMAX, sysctl_tcp_rto_max*1000/HZ);
1195 TCP_ADD_STATS_USER(net, TCP_MIB_MAXCONN, -1);
1196 }
1197
1198 /* from STCP */
1199 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1200 {
1201 tp->lost_skb_hint = NULL;
1202 tp->scoreboard_skb_hint = NULL;
1203 }
1204
1205 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1206 {
1207 tcp_clear_retrans_hints_partial(tp);
1208 tp->retransmit_skb_hint = NULL;
1209 }
1210
1211 /* MD5 Signature */
1212 struct crypto_hash;
1213
1214 union tcp_md5_addr {
1215 struct in_addr a4;
1216 #if IS_ENABLED(CONFIG_IPV6)
1217 struct in6_addr a6;
1218 #endif
1219 };
1220
1221 /* - key database */
1222 struct tcp_md5sig_key {
1223 struct hlist_node node;
1224 u8 keylen;
1225 u8 family; /* AF_INET or AF_INET6 */
1226 union tcp_md5_addr addr;
1227 u8 key[TCP_MD5SIG_MAXKEYLEN];
1228 struct rcu_head rcu;
1229 };
1230
1231 /* - sock block */
1232 struct tcp_md5sig_info {
1233 struct hlist_head head;
1234 struct rcu_head rcu;
1235 };
1236
1237 /* - pseudo header */
1238 struct tcp4_pseudohdr {
1239 __be32 saddr;
1240 __be32 daddr;
1241 __u8 pad;
1242 __u8 protocol;
1243 __be16 len;
1244 };
1245
1246 struct tcp6_pseudohdr {
1247 struct in6_addr saddr;
1248 struct in6_addr daddr;
1249 __be32 len;
1250 __be32 protocol; /* including padding */
1251 };
1252
1253 union tcp_md5sum_block {
1254 struct tcp4_pseudohdr ip4;
1255 #if IS_ENABLED(CONFIG_IPV6)
1256 struct tcp6_pseudohdr ip6;
1257 #endif
1258 };
1259
1260 /* - pool: digest algorithm, hash description and scratch buffer */
1261 struct tcp_md5sig_pool {
1262 struct hash_desc md5_desc;
1263 union tcp_md5sum_block md5_blk;
1264 };
1265
1266 /* - functions */
1267 extern int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1268 const struct sock *sk,
1269 const struct request_sock *req,
1270 const struct sk_buff *skb);
1271 extern int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1272 int family, const u8 *newkey,
1273 u8 newkeylen, gfp_t gfp);
1274 extern int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1275 int family);
1276 extern struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
1277 struct sock *addr_sk);
1278
1279 #ifdef CONFIG_TCP_MD5SIG
1280 extern struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
1281 const union tcp_md5_addr *addr, int family);
1282 #define tcp_twsk_md5_key(twsk) ((twsk)->tw_md5_key)
1283 #else
1284 static inline struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
1285 const union tcp_md5_addr *addr,
1286 int family)
1287 {
1288 return NULL;
1289 }
1290 #define tcp_twsk_md5_key(twsk) NULL
1291 #endif
1292
1293 extern struct tcp_md5sig_pool __percpu *tcp_alloc_md5sig_pool(struct sock *);
1294 extern void tcp_free_md5sig_pool(void);
1295
1296 extern struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1297 extern void tcp_put_md5sig_pool(void);
1298
1299 extern int tcp_md5_hash_header(struct tcp_md5sig_pool *, const struct tcphdr *);
1300 extern int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1301 unsigned int header_len);
1302 extern int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1303 const struct tcp_md5sig_key *key);
1304
1305 /* From tcp_fastopen.c */
1306 extern void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1307 struct tcp_fastopen_cookie *cookie,
1308 int *syn_loss, unsigned long *last_syn_loss);
1309 extern void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1310 struct tcp_fastopen_cookie *cookie,
1311 bool syn_lost);
1312 struct tcp_fastopen_request {
1313 /* Fast Open cookie. Size 0 means a cookie request */
1314 struct tcp_fastopen_cookie cookie;
1315 struct msghdr *data; /* data in MSG_FASTOPEN */
1316 size_t size;
1317 int copied; /* queued in tcp_connect() */
1318 };
1319 void tcp_free_fastopen_req(struct tcp_sock *tp);
1320
1321 extern struct tcp_fastopen_context __rcu *tcp_fastopen_ctx;
1322 int tcp_fastopen_reset_cipher(void *key, unsigned int len);
1323 void tcp_fastopen_cookie_gen(__be32 addr, struct tcp_fastopen_cookie *foc);
1324
1325 #define TCP_FASTOPEN_KEY_LENGTH 16
1326
1327 /* Fastopen key context */
1328 struct tcp_fastopen_context {
1329 struct crypto_cipher __rcu *tfm;
1330 __u8 key[TCP_FASTOPEN_KEY_LENGTH];
1331 struct rcu_head rcu;
1332 };
1333
1334 /* write queue abstraction */
1335 static inline void tcp_write_queue_purge(struct sock *sk)
1336 {
1337 struct sk_buff *skb;
1338
1339 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL)
1340 sk_wmem_free_skb(sk, skb);
1341 sk_mem_reclaim(sk);
1342 tcp_clear_all_retrans_hints(tcp_sk(sk));
1343 }
1344
1345 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1346 {
1347 return skb_peek(&sk->sk_write_queue);
1348 }
1349
1350 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1351 {
1352 return skb_peek_tail(&sk->sk_write_queue);
1353 }
1354
1355 static inline struct sk_buff *tcp_write_queue_next(const struct sock *sk,
1356 const struct sk_buff *skb)
1357 {
1358 return skb_queue_next(&sk->sk_write_queue, skb);
1359 }
1360
1361 static inline struct sk_buff *tcp_write_queue_prev(const struct sock *sk,
1362 const struct sk_buff *skb)
1363 {
1364 return skb_queue_prev(&sk->sk_write_queue, skb);
1365 }
1366
1367 #define tcp_for_write_queue(skb, sk) \
1368 skb_queue_walk(&(sk)->sk_write_queue, skb)
1369
1370 #define tcp_for_write_queue_from(skb, sk) \
1371 skb_queue_walk_from(&(sk)->sk_write_queue, skb)
1372
1373 #define tcp_for_write_queue_from_safe(skb, tmp, sk) \
1374 skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1375
1376 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1377 {
1378 return sk->sk_send_head;
1379 }
1380
1381 static inline bool tcp_skb_is_last(const struct sock *sk,
1382 const struct sk_buff *skb)
1383 {
1384 return skb_queue_is_last(&sk->sk_write_queue, skb);
1385 }
1386
1387 static inline void tcp_advance_send_head(struct sock *sk, const struct sk_buff *skb)
1388 {
1389 if (tcp_skb_is_last(sk, skb))
1390 sk->sk_send_head = NULL;
1391 else
1392 sk->sk_send_head = tcp_write_queue_next(sk, skb);
1393 }
1394
1395 static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1396 {
1397 if (sk->sk_send_head == skb_unlinked)
1398 sk->sk_send_head = NULL;
1399 if (tcp_sk(sk)->highest_sack == skb_unlinked)
1400 tcp_sk(sk)->highest_sack = NULL;
1401 }
1402
1403 static inline void tcp_init_send_head(struct sock *sk)
1404 {
1405 sk->sk_send_head = NULL;
1406 }
1407
1408 static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1409 {
1410 __skb_queue_tail(&sk->sk_write_queue, skb);
1411 }
1412
1413 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1414 {
1415 __tcp_add_write_queue_tail(sk, skb);
1416
1417 /* Queue it, remembering where we must start sending. */
1418 if (sk->sk_send_head == NULL) {
1419 sk->sk_send_head = skb;
1420
1421 if (tcp_sk(sk)->highest_sack == NULL)
1422 tcp_sk(sk)->highest_sack = skb;
1423 }
1424 }
1425
1426 static inline void __tcp_add_write_queue_head(struct sock *sk, struct sk_buff *skb)
1427 {
1428 __skb_queue_head(&sk->sk_write_queue, skb);
1429 }
1430
1431 /* Insert buff after skb on the write queue of sk. */
1432 static inline void tcp_insert_write_queue_after(struct sk_buff *skb,
1433 struct sk_buff *buff,
1434 struct sock *sk)
1435 {
1436 __skb_queue_after(&sk->sk_write_queue, skb, buff);
1437 }
1438
1439 /* Insert new before skb on the write queue of sk. */
1440 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1441 struct sk_buff *skb,
1442 struct sock *sk)
1443 {
1444 __skb_queue_before(&sk->sk_write_queue, skb, new);
1445
1446 if (sk->sk_send_head == skb)
1447 sk->sk_send_head = new;
1448 }
1449
1450 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1451 {
1452 __skb_unlink(skb, &sk->sk_write_queue);
1453 }
1454
1455 static inline bool tcp_write_queue_empty(struct sock *sk)
1456 {
1457 return skb_queue_empty(&sk->sk_write_queue);
1458 }
1459
1460 static inline void tcp_push_pending_frames(struct sock *sk)
1461 {
1462 if (tcp_send_head(sk)) {
1463 struct tcp_sock *tp = tcp_sk(sk);
1464
1465 __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1466 }
1467 }
1468
1469 /* Start sequence of the skb just after the highest skb with SACKed
1470 * bit, valid only if sacked_out > 0 or when the caller has ensured
1471 * validity by itself.
1472 */
1473 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1474 {
1475 if (!tp->sacked_out)
1476 return tp->snd_una;
1477
1478 if (tp->highest_sack == NULL)
1479 return tp->snd_nxt;
1480
1481 return TCP_SKB_CB(tp->highest_sack)->seq;
1482 }
1483
1484 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1485 {
1486 tcp_sk(sk)->highest_sack = tcp_skb_is_last(sk, skb) ? NULL :
1487 tcp_write_queue_next(sk, skb);
1488 }
1489
1490 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1491 {
1492 return tcp_sk(sk)->highest_sack;
1493 }
1494
1495 static inline void tcp_highest_sack_reset(struct sock *sk)
1496 {
1497 tcp_sk(sk)->highest_sack = tcp_write_queue_head(sk);
1498 }
1499
1500 /* Called when old skb is about to be deleted (to be combined with new skb) */
1501 static inline void tcp_highest_sack_combine(struct sock *sk,
1502 struct sk_buff *old,
1503 struct sk_buff *new)
1504 {
1505 if (tcp_sk(sk)->sacked_out && (old == tcp_sk(sk)->highest_sack))
1506 tcp_sk(sk)->highest_sack = new;
1507 }
1508
1509 /* Determines whether this is a thin stream (which may suffer from
1510 * increased latency). Used to trigger latency-reducing mechanisms.
1511 */
1512 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1513 {
1514 return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1515 }
1516
1517 /* /proc */
1518 enum tcp_seq_states {
1519 TCP_SEQ_STATE_LISTENING,
1520 TCP_SEQ_STATE_OPENREQ,
1521 TCP_SEQ_STATE_ESTABLISHED,
1522 TCP_SEQ_STATE_TIME_WAIT,
1523 };
1524
1525 int tcp_seq_open(struct inode *inode, struct file *file);
1526
1527 struct tcp_seq_afinfo {
1528 char *name;
1529 sa_family_t family;
1530 const struct file_operations *seq_fops;
1531 struct seq_operations seq_ops;
1532 };
1533
1534 struct tcp_iter_state {
1535 struct seq_net_private p;
1536 sa_family_t family;
1537 enum tcp_seq_states state;
1538 struct sock *syn_wait_sk;
1539 int bucket, offset, sbucket, num;
1540 kuid_t uid;
1541 loff_t last_pos;
1542 };
1543
1544 /* MTK_NET_CHANGES */
1545 /*
1546 * reset tcp connection by uid
1547 */
1548 struct uid_err {
1549 int appuid;
1550 int errNum;
1551 };
1552
1553 extern int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo);
1554 extern void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo);
1555
1556 extern struct request_sock_ops tcp_request_sock_ops;
1557 extern struct request_sock_ops tcp6_request_sock_ops;
1558
1559 extern void tcp_v4_destroy_sock(struct sock *sk);
1560
1561 extern int tcp_v4_gso_send_check(struct sk_buff *skb);
1562 extern struct sk_buff *tcp_tso_segment(struct sk_buff *skb,
1563 netdev_features_t features);
1564 extern struct sk_buff **tcp_gro_receive(struct sk_buff **head,
1565 struct sk_buff *skb);
1566 extern struct sk_buff **tcp4_gro_receive(struct sk_buff **head,
1567 struct sk_buff *skb);
1568 extern int tcp_gro_complete(struct sk_buff *skb);
1569 extern int tcp4_gro_complete(struct sk_buff *skb);
1570
1571 extern int tcp_nuke_addr(struct net *net, struct sockaddr *addr);
1572 /* MTK_NET_CHANGES */
1573 extern void tcp_v4_reset_connections_by_uid(struct uid_err uid_e);
1574 extern void tcp_v4_handle_retrans_time_by_uid(struct uid_err uid_e);
1575
1576 #ifdef CONFIG_PROC_FS
1577 extern int tcp4_proc_init(void);
1578 extern void tcp4_proc_exit(void);
1579 #endif
1580
1581 /* TCP af-specific functions */
1582 struct tcp_sock_af_ops {
1583 #ifdef CONFIG_TCP_MD5SIG
1584 struct tcp_md5sig_key *(*md5_lookup) (struct sock *sk,
1585 struct sock *addr_sk);
1586 int (*calc_md5_hash) (char *location,
1587 struct tcp_md5sig_key *md5,
1588 const struct sock *sk,
1589 const struct request_sock *req,
1590 const struct sk_buff *skb);
1591 int (*md5_parse) (struct sock *sk,
1592 char __user *optval,
1593 int optlen);
1594 #endif
1595 };
1596
1597 struct tcp_request_sock_ops {
1598 #ifdef CONFIG_TCP_MD5SIG
1599 struct tcp_md5sig_key *(*md5_lookup) (struct sock *sk,
1600 struct request_sock *req);
1601 int (*calc_md5_hash) (char *location,
1602 struct tcp_md5sig_key *md5,
1603 const struct sock *sk,
1604 const struct request_sock *req,
1605 const struct sk_buff *skb);
1606 #endif
1607 };
1608
1609 extern void tcp_v4_init(void);
1610 extern void tcp_init(void);
1611
1612 /* At how many jiffies into the future should the RTO fire? */
1613 static inline s32 tcp_rto_delta(const struct sock *sk)
1614 {
1615 const struct sk_buff *skb = tcp_write_queue_head(sk);
1616 const u32 rto = inet_csk(sk)->icsk_rto;
1617 const u32 rto_time_stamp = TCP_SKB_CB(skb)->when + rto;
1618
1619 return (s32)(rto_time_stamp - tcp_time_stamp);
1620 }
1621
1622 #endif /* _TCP_H */