import PULS_20180308
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / net / tcp.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the TCP module.
7 *
8 * Version: @(#)tcp.h 1.0.5 05/23/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 *
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License
15 * as published by the Free Software Foundation; either version
16 * 2 of the License, or (at your option) any later version.
17 */
18 #ifndef _TCP_H
19 #define _TCP_H
20
21 #define FASTRETRANS_DEBUG 1
22
23 #include <linux/list.h>
24 #include <linux/tcp.h>
25 #include <linux/bug.h>
26 #include <linux/slab.h>
27 #include <linux/cache.h>
28 #include <linux/percpu.h>
29 #include <linux/skbuff.h>
30 #include <linux/dmaengine.h>
31 #include <linux/crypto.h>
32 #include <linux/cryptohash.h>
33 #include <linux/kref.h>
34
35 #include <net/inet_connection_sock.h>
36 #include <net/inet_timewait_sock.h>
37 #include <net/inet_hashtables.h>
38 #include <net/checksum.h>
39 #include <net/request_sock.h>
40 #include <net/sock.h>
41 #include <net/snmp.h>
42 #include <net/ip.h>
43 #include <net/tcp_states.h>
44 #include <net/inet_ecn.h>
45 #include <net/dst.h>
46
47 #include <linux/seq_file.h>
48 #include <linux/memcontrol.h>
49
50 extern struct inet_hashinfo tcp_hashinfo;
51
52 extern struct percpu_counter tcp_orphan_count;
53 extern void tcp_time_wait(struct sock *sk, int state, int timeo);
54
55 #define MAX_TCP_HEADER (128 + MAX_HEADER)
56 #define MAX_TCP_OPTION_SPACE 40
57
58 /*
59 * Never offer a window over 32767 without using window scaling. Some
60 * poor stacks do signed 16bit maths!
61 */
62 #define MAX_TCP_WINDOW 32767U
63
64 /* Offer an initial receive window of 20 mss. */
65 #define TCP_DEFAULT_INIT_RCVWND 20
66
67 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
68 #define TCP_MIN_MSS 88U
69
70 /* The least MTU to use for probing */
71 #define TCP_BASE_MSS 512
72
73 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
74 #define TCP_FASTRETRANS_THRESH 3
75
76 /* Maximal reordering. */
77 #define TCP_MAX_REORDERING 127
78
79 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
80 #define TCP_MAX_QUICKACKS 16U
81
82 /* urg_data states */
83 #define TCP_URG_VALID 0x0100
84 #define TCP_URG_NOTYET 0x0200
85 #define TCP_URG_READ 0x0400
86
87 #define TCP_RETR1 3 /*
88 * This is how many retries it does before it
89 * tries to figure out if the gateway is
90 * down. Minimal RFC value is 3; it corresponds
91 * to ~3sec-8min depending on RTO.
92 */
93
94 #define TCP_RETR2 10 /*
95 * This should take at least
96 * 90 minutes to time out.
97 * RFC1122 says that the limit is 100 sec.
98 * 15 is ~13-30min depending on RTO.
99 */
100
101 #define TCP_SYN_RETRIES 9 /* This is how many retries are done
102 * when active opening a connection.
103 * RFC1122 says the minimum retry MUST
104 * be at least 180secs. Nevertheless
105 * this value is corresponding to
106 * 63secs of retransmission with the
107 * current initial RTO.
108 */
109
110 #define TCP_SYNACK_RETRIES 5 /* This is how may retries are done
111 * when passive opening a connection.
112 * This is corresponding to 31secs of
113 * retransmission with the current
114 * initial RTO.
115 */
116
117 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
118 * state, about 60 seconds */
119 #define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN
120 /* BSD style FIN_WAIT2 deadlock breaker.
121 * It used to be 3min, new value is 60sec,
122 * to combine FIN-WAIT-2 timeout with
123 * TIME-WAIT timer.
124 */
125
126 #define TCP_DELACK_MAX ((unsigned)(HZ/5)) /* maximal time to delay before sending an ACK */
127 #if HZ >= 100
128 #define TCP_DELACK_MIN ((unsigned)(HZ/25)) /* minimal time to delay before sending an ACK */
129 #define TCP_ATO_MIN ((unsigned)(HZ/25))
130 #else
131 #define TCP_DELACK_MIN 4U
132 #define TCP_ATO_MIN 4U
133 #endif
134 #define TCP_RTO_MAX ((unsigned)(60*HZ))
135 #define TCP_RTO_MIN ((unsigned)(HZ/5))
136 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ)) /* RFC6298 2.1 initial RTO value */
137 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now
138 * used as a fallback RTO for the
139 * initial data transmission if no
140 * valid RTT sample has been acquired,
141 * most likely due to retrans in 3WHS.
142 */
143
144 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
145 * for local resources.
146 */
147
148 #define TCP_KEEPALIVE_TIME (120*60*HZ) /* two hours */
149 #define TCP_KEEPALIVE_PROBES 9 /* Max of 9 keepalive probes */
150 #define TCP_KEEPALIVE_INTVL (75*HZ)
151
152 #define MAX_TCP_KEEPIDLE 32767
153 #define MAX_TCP_KEEPINTVL 32767
154 #define MAX_TCP_KEEPCNT 127
155 #define MAX_TCP_SYNCNT 127
156
157 #define TCP_SYNQ_INTERVAL (HZ/5) /* Period of SYNACK timer */
158
159 #define TCP_PAWS_24DAYS (60 * 60 * 24 * 24)
160 #define TCP_PAWS_MSL 60 /* Per-host timestamps are invalidated
161 * after this time. It should be equal
162 * (or greater than) TCP_TIMEWAIT_LEN
163 * to provide reliability equal to one
164 * provided by timewait state.
165 */
166 #define TCP_PAWS_WINDOW 1 /* Replay window for per-host
167 * timestamps. It must be less than
168 * minimal timewait lifetime.
169 */
170 /*
171 * TCP option
172 */
173
174 #define TCPOPT_NOP 1 /* Padding */
175 #define TCPOPT_EOL 0 /* End of options */
176 #define TCPOPT_MSS 2 /* Segment size negotiating */
177 #define TCPOPT_WINDOW 3 /* Window scaling */
178 #define TCPOPT_SACK_PERM 4 /* SACK Permitted */
179 #define TCPOPT_SACK 5 /* SACK Block */
180 #define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */
181 #define TCPOPT_MD5SIG 19 /* MD5 Signature (RFC2385) */
182 #define TCPOPT_EXP 254 /* Experimental */
183 /* Magic number to be after the option value for sharing TCP
184 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
185 */
186 #define TCPOPT_FASTOPEN_MAGIC 0xF989
187
188 /*
189 * TCP option lengths
190 */
191
192 #define TCPOLEN_MSS 4
193 #define TCPOLEN_WINDOW 3
194 #define TCPOLEN_SACK_PERM 2
195 #define TCPOLEN_TIMESTAMP 10
196 #define TCPOLEN_MD5SIG 18
197 #define TCPOLEN_EXP_FASTOPEN_BASE 4
198 #define TCPOLEN_COOKIE_BASE 2 /* Cookie-less header extension */
199 #define TCPOLEN_COOKIE_PAIR 3 /* Cookie pair header extension */
200 #define TCPOLEN_COOKIE_MIN (TCPOLEN_COOKIE_BASE+TCP_COOKIE_MIN)
201 #define TCPOLEN_COOKIE_MAX (TCPOLEN_COOKIE_BASE+TCP_COOKIE_MAX)
202
203 /* But this is what stacks really send out. */
204 #define TCPOLEN_TSTAMP_ALIGNED 12
205 #define TCPOLEN_WSCALE_ALIGNED 4
206 #define TCPOLEN_SACKPERM_ALIGNED 4
207 #define TCPOLEN_SACK_BASE 2
208 #define TCPOLEN_SACK_BASE_ALIGNED 4
209 #define TCPOLEN_SACK_PERBLOCK 8
210 #define TCPOLEN_MD5SIG_ALIGNED 20
211 #define TCPOLEN_MSS_ALIGNED 4
212
213 /* Flags in tp->nonagle */
214 #define TCP_NAGLE_OFF 1 /* Nagle's algo is disabled */
215 #define TCP_NAGLE_CORK 2 /* Socket is corked */
216 #define TCP_NAGLE_PUSH 4 /* Cork is overridden for already queued data */
217
218 /* TCP thin-stream limits */
219 #define TCP_THIN_LINEAR_RETRIES 6 /* After 6 linear retries, do exp. backoff */
220
221 /* TCP initial congestion window as per draft-hkchu-tcpm-initcwnd-01 */
222 #define TCP_INIT_CWND 10
223
224 /* Bit Flags for sysctl_tcp_fastopen */
225 #define TFO_CLIENT_ENABLE 1
226 #define TFO_SERVER_ENABLE 2
227 #define TFO_CLIENT_NO_COOKIE 4 /* Data in SYN w/o cookie option */
228
229 /* Process SYN data but skip cookie validation */
230 #define TFO_SERVER_COOKIE_NOT_CHKED 0x100
231 /* Accept SYN data w/o any cookie option */
232 #define TFO_SERVER_COOKIE_NOT_REQD 0x200
233
234 /* Force enable TFO on all listeners, i.e., not requiring the
235 * TCP_FASTOPEN socket option. SOCKOPT1/2 determine how to set max_qlen.
236 */
237 #define TFO_SERVER_WO_SOCKOPT1 0x400
238 #define TFO_SERVER_WO_SOCKOPT2 0x800
239 /* Always create TFO child sockets on a TFO listener even when
240 * cookie/data not present. (For testing purpose!)
241 */
242 #define TFO_SERVER_ALWAYS 0x1000
243
244 extern struct inet_timewait_death_row tcp_death_row;
245
246 /* sysctl variables for tcp */
247 extern int sysctl_tcp_timestamps;
248 extern int sysctl_tcp_window_scaling;
249 extern int sysctl_tcp_sack;
250 extern int sysctl_tcp_fin_timeout;
251 extern int sysctl_tcp_keepalive_time;
252 extern int sysctl_tcp_keepalive_probes;
253 extern int sysctl_tcp_keepalive_intvl;
254 extern int sysctl_tcp_syn_retries;
255 extern int sysctl_tcp_synack_retries;
256 extern int sysctl_tcp_retries1;
257 extern int sysctl_tcp_retries2;
258 extern int sysctl_tcp_orphan_retries;
259 extern int sysctl_tcp_syncookies;
260 extern int sysctl_tcp_fastopen;
261 extern int sysctl_tcp_retrans_collapse;
262 extern int sysctl_tcp_stdurg;
263 extern int sysctl_tcp_rfc1337;
264 extern int sysctl_tcp_abort_on_overflow;
265 extern int sysctl_tcp_max_orphans;
266 extern int sysctl_tcp_fack;
267 extern int sysctl_tcp_reordering;
268 extern int sysctl_tcp_dsack;
269 extern int sysctl_tcp_wmem[3];
270 extern int sysctl_tcp_rmem[3];
271 extern int sysctl_tcp_app_win;
272 extern int sysctl_tcp_adv_win_scale;
273 extern int sysctl_tcp_tw_reuse;
274 extern int sysctl_tcp_frto;
275 extern int sysctl_tcp_low_latency;
276 extern int sysctl_tcp_dma_copybreak;
277 extern int sysctl_tcp_nometrics_save;
278 extern int sysctl_tcp_moderate_rcvbuf;
279 extern int sysctl_tcp_tso_win_divisor;
280 extern int sysctl_tcp_mtu_probing;
281 extern int sysctl_tcp_base_mss;
282 extern int sysctl_tcp_workaround_signed_windows;
283 extern int sysctl_tcp_slow_start_after_idle;
284 extern int sysctl_tcp_max_ssthresh;
285 extern int sysctl_tcp_thin_linear_timeouts;
286 extern int sysctl_tcp_thin_dupack;
287 extern int sysctl_tcp_early_retrans;
288 extern int sysctl_tcp_limit_output_bytes;
289 extern int sysctl_tcp_challenge_ack_limit;
290 extern int sysctl_tcp_default_init_rwnd;
291 extern int sysctl_tcp_min_tso_segs;
292 extern int sysctl_tcp_default_init_rwnd;
293 extern int sysctl_tcp_rto_min;
294 extern int sysctl_tcp_rto_max;
295 extern atomic_long_t tcp_memory_allocated;
296 extern struct percpu_counter tcp_sockets_allocated;
297 extern int tcp_memory_pressure;
298
299 /*
300 * The next routines deal with comparing 32 bit unsigned ints
301 * and worry about wraparound (automatic with unsigned arithmetic).
302 */
303
304 static inline bool before(__u32 seq1, __u32 seq2)
305 {
306 return (__s32)(seq1-seq2) < 0;
307 }
308 #define after(seq2, seq1) before(seq1, seq2)
309
310 /* is s2<=s1<=s3 ? */
311 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
312 {
313 return seq3 - seq2 >= seq1 - seq2;
314 }
315
316 static inline bool tcp_out_of_memory(struct sock *sk)
317 {
318 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
319 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
320 return true;
321 return false;
322 }
323
324 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
325 {
326 struct percpu_counter *ocp = sk->sk_prot->orphan_count;
327 int orphans = percpu_counter_read_positive(ocp);
328
329 if (orphans << shift > sysctl_tcp_max_orphans) {
330 orphans = percpu_counter_sum_positive(ocp);
331 if (orphans << shift > sysctl_tcp_max_orphans)
332 return true;
333 }
334 return false;
335 }
336
337 extern bool tcp_check_oom(struct sock *sk, int shift);
338
339 /* syncookies: remember time of last synqueue overflow */
340 static inline void tcp_synq_overflow(struct sock *sk)
341 {
342 tcp_sk(sk)->rx_opt.ts_recent_stamp = jiffies;
343 }
344
345 /* syncookies: no recent synqueue overflow on this listening socket? */
346 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
347 {
348 unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
349 return time_after(jiffies, last_overflow + TCP_TIMEOUT_FALLBACK);
350 }
351
352 extern struct proto tcp_prot;
353
354 #define TCP_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.tcp_statistics, field)
355 #define TCP_INC_STATS_BH(net, field) SNMP_INC_STATS_BH((net)->mib.tcp_statistics, field)
356 #define TCP_DEC_STATS(net, field) SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
357 #define TCP_ADD_STATS_USER(net, field, val) SNMP_ADD_STATS_USER((net)->mib.tcp_statistics, field, val)
358 #define TCP_ADD_STATS(net, field, val) SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
359
360 extern void tcp_init_mem(struct net *net);
361
362 extern void tcp_tasklet_init(void);
363
364 extern void tcp_v4_err(struct sk_buff *skb, u32);
365
366 extern void tcp_shutdown (struct sock *sk, int how);
367
368 extern void tcp_v4_early_demux(struct sk_buff *skb);
369 extern int tcp_v4_rcv(struct sk_buff *skb);
370
371 extern int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
372 extern int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
373 size_t size);
374 extern int tcp_sendpage(struct sock *sk, struct page *page, int offset,
375 size_t size, int flags);
376 extern void tcp_release_cb(struct sock *sk);
377 extern void tcp_wfree(struct sk_buff *skb);
378 extern void tcp_write_timer_handler(struct sock *sk);
379 extern void tcp_delack_timer_handler(struct sock *sk);
380 extern int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
381 extern int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
382 const struct tcphdr *th, unsigned int len);
383 extern int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
384 const struct tcphdr *th, unsigned int len);
385 extern void tcp_rcv_space_adjust(struct sock *sk);
386 extern void tcp_cleanup_rbuf(struct sock *sk, int copied);
387 extern int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
388 extern void tcp_twsk_destructor(struct sock *sk);
389 extern ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
390 struct pipe_inode_info *pipe, size_t len,
391 unsigned int flags);
392
393 static inline void tcp_dec_quickack_mode(struct sock *sk,
394 const unsigned int pkts)
395 {
396 struct inet_connection_sock *icsk = inet_csk(sk);
397
398 if (icsk->icsk_ack.quick) {
399 if (pkts >= icsk->icsk_ack.quick) {
400 icsk->icsk_ack.quick = 0;
401 /* Leaving quickack mode we deflate ATO. */
402 icsk->icsk_ack.ato = TCP_ATO_MIN;
403 } else
404 icsk->icsk_ack.quick -= pkts;
405 }
406 }
407
408 #define TCP_ECN_OK 1
409 #define TCP_ECN_QUEUE_CWR 2
410 #define TCP_ECN_DEMAND_CWR 4
411 #define TCP_ECN_SEEN 8
412
413 enum tcp_tw_status {
414 TCP_TW_SUCCESS = 0,
415 TCP_TW_RST = 1,
416 TCP_TW_ACK = 2,
417 TCP_TW_SYN = 3
418 };
419
420
421 extern enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
422 struct sk_buff *skb,
423 const struct tcphdr *th);
424 extern struct sock * tcp_check_req(struct sock *sk,struct sk_buff *skb,
425 struct request_sock *req,
426 struct request_sock **prev,
427 bool fastopen);
428 extern int tcp_child_process(struct sock *parent, struct sock *child,
429 struct sk_buff *skb);
430 extern void tcp_enter_loss(struct sock *sk, int how);
431 extern void tcp_clear_retrans(struct tcp_sock *tp);
432 extern void tcp_update_metrics(struct sock *sk);
433 extern void tcp_init_metrics(struct sock *sk);
434 extern void tcp_metrics_init(void);
435 extern bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst, bool paws_check);
436 extern bool tcp_remember_stamp(struct sock *sk);
437 extern bool tcp_tw_remember_stamp(struct inet_timewait_sock *tw);
438 extern void tcp_fetch_timewait_stamp(struct sock *sk, struct dst_entry *dst);
439 extern void tcp_disable_fack(struct tcp_sock *tp);
440 extern void tcp_close(struct sock *sk, long timeout);
441 extern void tcp_init_sock(struct sock *sk);
442 extern unsigned int tcp_poll(struct file * file, struct socket *sock,
443 struct poll_table_struct *wait);
444 extern int tcp_getsockopt(struct sock *sk, int level, int optname,
445 char __user *optval, int __user *optlen);
446 extern int tcp_setsockopt(struct sock *sk, int level, int optname,
447 char __user *optval, unsigned int optlen);
448 extern int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
449 char __user *optval, int __user *optlen);
450 extern int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
451 char __user *optval, unsigned int optlen);
452 extern void tcp_set_keepalive(struct sock *sk, int val);
453 extern void tcp_syn_ack_timeout(struct sock *sk, struct request_sock *req);
454 extern int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
455 size_t len, int nonblock, int flags, int *addr_len);
456 extern void tcp_parse_options(const struct sk_buff *skb,
457 struct tcp_options_received *opt_rx,
458 int estab, struct tcp_fastopen_cookie *foc);
459 extern const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
460
461 /*
462 * TCP v4 functions exported for the inet6 API
463 */
464
465 extern void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
466 extern int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
467 extern struct sock * tcp_create_openreq_child(struct sock *sk,
468 struct request_sock *req,
469 struct sk_buff *skb);
470 extern struct sock * tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
471 struct request_sock *req,
472 struct dst_entry *dst);
473 extern int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
474 extern int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr,
475 int addr_len);
476 extern int tcp_connect(struct sock *sk);
477 extern struct sk_buff * tcp_make_synack(struct sock *sk, struct dst_entry *dst,
478 struct request_sock *req,
479 struct tcp_fastopen_cookie *foc);
480 extern int tcp_disconnect(struct sock *sk, int flags);
481
482 void tcp_connect_init(struct sock *sk);
483 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
484 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
485 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
486
487 /* From syncookies.c */
488 extern __u32 syncookie_secret[2][16-4+SHA_DIGEST_WORDS];
489 extern struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb,
490 struct ip_options *opt);
491 #ifdef CONFIG_SYN_COOKIES
492 extern __u32 cookie_v4_init_sequence(struct sock *sk, struct sk_buff *skb,
493 __u16 *mss);
494 #else
495 static inline __u32 cookie_v4_init_sequence(struct sock *sk,
496 struct sk_buff *skb,
497 __u16 *mss)
498 {
499 return 0;
500 }
501 #endif
502
503 extern __u32 cookie_init_timestamp(struct request_sock *req);
504 extern bool cookie_check_timestamp(struct tcp_options_received *opt,
505 struct net *net, bool *ecn_ok);
506
507 /* From net/ipv6/syncookies.c */
508 extern struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
509 #ifdef CONFIG_SYN_COOKIES
510 extern __u32 cookie_v6_init_sequence(struct sock *sk, const struct sk_buff *skb,
511 __u16 *mss);
512 #else
513 static inline __u32 cookie_v6_init_sequence(struct sock *sk,
514 struct sk_buff *skb,
515 __u16 *mss)
516 {
517 return 0;
518 }
519 #endif
520 /* tcp_output.c */
521
522 extern void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
523 int nonagle);
524 extern bool tcp_may_send_now(struct sock *sk);
525 extern int __tcp_retransmit_skb(struct sock *, struct sk_buff *);
526 extern int tcp_retransmit_skb(struct sock *, struct sk_buff *);
527 extern void tcp_retransmit_timer(struct sock *sk);
528 extern void tcp_xmit_retransmit_queue(struct sock *);
529 extern void tcp_simple_retransmit(struct sock *);
530 extern int tcp_trim_head(struct sock *, struct sk_buff *, u32);
531 extern int tcp_fragment(struct sock *, struct sk_buff *, u32, unsigned int);
532
533 extern void tcp_send_probe0(struct sock *);
534 extern void tcp_send_partial(struct sock *);
535 extern int tcp_write_wakeup(struct sock *);
536 extern void tcp_send_fin(struct sock *sk);
537 extern void tcp_send_active_reset(struct sock *sk, gfp_t priority);
538 extern int tcp_send_synack(struct sock *);
539 extern bool tcp_syn_flood_action(struct sock *sk,
540 const struct sk_buff *skb,
541 const char *proto);
542 extern void tcp_push_one(struct sock *, unsigned int mss_now);
543 extern void tcp_send_ack(struct sock *sk);
544 extern void tcp_send_delayed_ack(struct sock *sk);
545 extern void tcp_send_loss_probe(struct sock *sk);
546 extern bool tcp_schedule_loss_probe(struct sock *sk);
547
548 /* tcp_input.c */
549 extern void tcp_cwnd_application_limited(struct sock *sk);
550 extern void tcp_resume_early_retransmit(struct sock *sk);
551 extern void tcp_rearm_rto(struct sock *sk);
552 extern void tcp_reset(struct sock *sk);
553
554 /* tcp_timer.c */
555 extern void tcp_init_xmit_timers(struct sock *);
556 static inline void tcp_clear_xmit_timers(struct sock *sk)
557 {
558 inet_csk_clear_xmit_timers(sk);
559 }
560
561 extern unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
562 extern unsigned int tcp_current_mss(struct sock *sk);
563
564 /* Bound MSS / TSO packet size with the half of the window */
565 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
566 {
567 int cutoff;
568
569 /* When peer uses tiny windows, there is no use in packetizing
570 * to sub-MSS pieces for the sake of SWS or making sure there
571 * are enough packets in the pipe for fast recovery.
572 *
573 * On the other hand, for extremely large MSS devices, handling
574 * smaller than MSS windows in this way does make sense.
575 */
576 if (tp->max_window >= 512)
577 cutoff = (tp->max_window >> 1);
578 else
579 cutoff = tp->max_window;
580
581 if (cutoff && pktsize > cutoff)
582 return max_t(int, cutoff, 68U - tp->tcp_header_len);
583 else
584 return pktsize;
585 }
586
587 /* tcp.c */
588 extern void tcp_get_info(const struct sock *, struct tcp_info *);
589
590 /* Read 'sendfile()'-style from a TCP socket */
591 typedef int (*sk_read_actor_t)(read_descriptor_t *, struct sk_buff *,
592 unsigned int, size_t);
593 extern int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
594 sk_read_actor_t recv_actor);
595
596 extern void tcp_initialize_rcv_mss(struct sock *sk);
597
598 extern int tcp_mtu_to_mss(struct sock *sk, int pmtu);
599 extern int tcp_mss_to_mtu(struct sock *sk, int mss);
600 extern void tcp_mtup_init(struct sock *sk);
601 extern void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt);
602 extern void tcp_init_buffer_space(struct sock *sk);
603
604 static inline void tcp_bound_rto(const struct sock *sk)
605 {
606 if (inet_csk(sk)->icsk_rto > sysctl_tcp_rto_max)
607 inet_csk(sk)->icsk_rto = sysctl_tcp_rto_max;
608 }
609
610 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
611 {
612 return (tp->srtt >> 3) + tp->rttvar;
613 }
614
615 extern void tcp_set_rto(struct sock *sk);
616
617 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
618 {
619 tp->pred_flags = htonl((tp->tcp_header_len << 26) |
620 ntohl(TCP_FLAG_ACK) |
621 snd_wnd);
622 }
623
624 static inline void tcp_fast_path_on(struct tcp_sock *tp)
625 {
626 __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
627 }
628
629 static inline void tcp_fast_path_check(struct sock *sk)
630 {
631 struct tcp_sock *tp = tcp_sk(sk);
632
633 if (skb_queue_empty(&tp->out_of_order_queue) &&
634 tp->rcv_wnd &&
635 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
636 !tp->urg_data)
637 tcp_fast_path_on(tp);
638 }
639
640 /* Compute the actual rto_min value */
641 static inline u32 tcp_rto_min(struct sock *sk)
642 {
643 const struct dst_entry *dst = __sk_dst_get(sk);
644 u32 rto_min = sysctl_tcp_rto_min;
645
646 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
647 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
648 return rto_min;
649 }
650
651 /* Compute the actual receive window we are currently advertising.
652 * Rcv_nxt can be after the window if our peer push more data
653 * than the offered window.
654 */
655 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
656 {
657 s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
658
659 if (win < 0)
660 win = 0;
661 return (u32) win;
662 }
663
664 /* Choose a new window, without checks for shrinking, and without
665 * scaling applied to the result. The caller does these things
666 * if necessary. This is a "raw" window selection.
667 */
668 extern u32 __tcp_select_window(struct sock *sk);
669
670 void tcp_send_window_probe(struct sock *sk);
671
672 /* TCP timestamps are only 32-bits, this causes a slight
673 * complication on 64-bit systems since we store a snapshot
674 * of jiffies in the buffer control blocks below. We decided
675 * to use only the low 32-bits of jiffies and hide the ugly
676 * casts with the following macro.
677 */
678 #define tcp_time_stamp ((__u32)(jiffies))
679
680 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
681
682 #define TCPHDR_FIN 0x01
683 #define TCPHDR_SYN 0x02
684 #define TCPHDR_RST 0x04
685 #define TCPHDR_PSH 0x08
686 #define TCPHDR_ACK 0x10
687 #define TCPHDR_URG 0x20
688 #define TCPHDR_ECE 0x40
689 #define TCPHDR_CWR 0x80
690
691 /* This is what the send packet queuing engine uses to pass
692 * TCP per-packet control information to the transmission code.
693 * We also store the host-order sequence numbers in here too.
694 * This is 44 bytes if IPV6 is enabled.
695 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
696 */
697 struct tcp_skb_cb {
698 union {
699 struct inet_skb_parm h4;
700 #if IS_ENABLED(CONFIG_IPV6)
701 struct inet6_skb_parm h6;
702 #endif
703 } header; /* For incoming frames */
704 __u32 seq; /* Starting sequence number */
705 __u32 end_seq; /* SEQ + FIN + SYN + datalen */
706 __u32 when; /* used to compute rtt's */
707 __u8 tcp_flags; /* TCP header flags. (tcp[13]) */
708
709 __u8 sacked; /* State flags for SACK/FACK. */
710 #define TCPCB_SACKED_ACKED 0x01 /* SKB ACK'd by a SACK block */
711 #define TCPCB_SACKED_RETRANS 0x02 /* SKB retransmitted */
712 #define TCPCB_LOST 0x04 /* SKB is lost */
713 #define TCPCB_TAGBITS 0x07 /* All tag bits */
714 #define TCPCB_EVER_RETRANS 0x80 /* Ever retransmitted frame */
715 #define TCPCB_RETRANS (TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS)
716
717 __u8 ip_dsfield; /* IPv4 tos or IPv6 dsfield */
718 /* 1 byte hole */
719 __u32 ack_seq; /* Sequence number ACK'd */
720 };
721
722 #define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0]))
723
724 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
725 *
726 * If we receive a SYN packet with these bits set, it means a network is
727 * playing bad games with TOS bits. In order to avoid possible false congestion
728 * notifications, we disable TCP ECN negociation.
729 */
730 static inline void
731 TCP_ECN_create_request(struct request_sock *req, const struct sk_buff *skb,
732 struct net *net)
733 {
734 const struct tcphdr *th = tcp_hdr(skb);
735
736 if (net->ipv4.sysctl_tcp_ecn && th->ece && th->cwr &&
737 INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield))
738 inet_rsk(req)->ecn_ok = 1;
739 }
740
741 /* Due to TSO, an SKB can be composed of multiple actual
742 * packets. To keep these tracked properly, we use this.
743 */
744 static inline int tcp_skb_pcount(const struct sk_buff *skb)
745 {
746 return skb_shinfo(skb)->gso_segs;
747 }
748
749 /* This is valid iff tcp_skb_pcount() > 1. */
750 static inline int tcp_skb_mss(const struct sk_buff *skb)
751 {
752 return skb_shinfo(skb)->gso_size;
753 }
754
755 /* Events passed to congestion control interface */
756 enum tcp_ca_event {
757 CA_EVENT_TX_START, /* first transmit when no packets in flight */
758 CA_EVENT_CWND_RESTART, /* congestion window restart */
759 CA_EVENT_COMPLETE_CWR, /* end of congestion recovery */
760 CA_EVENT_LOSS, /* loss timeout */
761 CA_EVENT_FAST_ACK, /* in sequence ack */
762 CA_EVENT_SLOW_ACK, /* other ack */
763 };
764
765 /*
766 * Interface for adding new TCP congestion control handlers
767 */
768 #define TCP_CA_NAME_MAX 16
769 #define TCP_CA_MAX 128
770 #define TCP_CA_BUF_MAX (TCP_CA_NAME_MAX*TCP_CA_MAX)
771
772 #define TCP_CONG_NON_RESTRICTED 0x1
773 #define TCP_CONG_RTT_STAMP 0x2
774
775 struct tcp_congestion_ops {
776 struct list_head list;
777 unsigned long flags;
778
779 /* initialize private data (optional) */
780 void (*init)(struct sock *sk);
781 /* cleanup private data (optional) */
782 void (*release)(struct sock *sk);
783
784 /* return slow start threshold (required) */
785 u32 (*ssthresh)(struct sock *sk);
786 /* lower bound for congestion window (optional) */
787 u32 (*min_cwnd)(const struct sock *sk);
788 /* do new cwnd calculation (required) */
789 void (*cong_avoid)(struct sock *sk, u32 ack, u32 in_flight);
790 /* call before changing ca_state (optional) */
791 void (*set_state)(struct sock *sk, u8 new_state);
792 /* call when cwnd event occurs (optional) */
793 void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
794 /* new value of cwnd after loss (optional) */
795 u32 (*undo_cwnd)(struct sock *sk);
796 /* hook for packet ack accounting (optional) */
797 void (*pkts_acked)(struct sock *sk, u32 num_acked, s32 rtt_us);
798 /* get info for inet_diag (optional) */
799 void (*get_info)(struct sock *sk, u32 ext, struct sk_buff *skb);
800
801 char name[TCP_CA_NAME_MAX];
802 struct module *owner;
803 };
804
805 extern int tcp_register_congestion_control(struct tcp_congestion_ops *type);
806 extern void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
807
808 extern void tcp_init_congestion_control(struct sock *sk);
809 extern void tcp_cleanup_congestion_control(struct sock *sk);
810 extern int tcp_set_default_congestion_control(const char *name);
811 extern void tcp_get_default_congestion_control(char *name);
812 extern void tcp_get_available_congestion_control(char *buf, size_t len);
813 extern void tcp_get_allowed_congestion_control(char *buf, size_t len);
814 extern int tcp_set_allowed_congestion_control(char *allowed);
815 extern int tcp_set_congestion_control(struct sock *sk, const char *name);
816 extern void tcp_slow_start(struct tcp_sock *tp);
817 extern void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w);
818
819 extern struct tcp_congestion_ops tcp_init_congestion_ops;
820 extern u32 tcp_reno_ssthresh(struct sock *sk);
821 extern void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 in_flight);
822 extern u32 tcp_reno_min_cwnd(const struct sock *sk);
823 extern struct tcp_congestion_ops tcp_reno;
824
825 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
826 {
827 struct inet_connection_sock *icsk = inet_csk(sk);
828
829 if (icsk->icsk_ca_ops->set_state)
830 icsk->icsk_ca_ops->set_state(sk, ca_state);
831 icsk->icsk_ca_state = ca_state;
832 }
833
834 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
835 {
836 const struct inet_connection_sock *icsk = inet_csk(sk);
837
838 if (icsk->icsk_ca_ops->cwnd_event)
839 icsk->icsk_ca_ops->cwnd_event(sk, event);
840 }
841
842 /* These functions determine how the current flow behaves in respect of SACK
843 * handling. SACK is negotiated with the peer, and therefore it can vary
844 * between different flows.
845 *
846 * tcp_is_sack - SACK enabled
847 * tcp_is_reno - No SACK
848 * tcp_is_fack - FACK enabled, implies SACK enabled
849 */
850 static inline int tcp_is_sack(const struct tcp_sock *tp)
851 {
852 return tp->rx_opt.sack_ok;
853 }
854
855 static inline bool tcp_is_reno(const struct tcp_sock *tp)
856 {
857 return !tcp_is_sack(tp);
858 }
859
860 static inline bool tcp_is_fack(const struct tcp_sock *tp)
861 {
862 return tp->rx_opt.sack_ok & TCP_FACK_ENABLED;
863 }
864
865 static inline void tcp_enable_fack(struct tcp_sock *tp)
866 {
867 tp->rx_opt.sack_ok |= TCP_FACK_ENABLED;
868 }
869
870 /* TCP early-retransmit (ER) is similar to but more conservative than
871 * the thin-dupack feature. Enable ER only if thin-dupack is disabled.
872 */
873 static inline void tcp_enable_early_retrans(struct tcp_sock *tp)
874 {
875 tp->do_early_retrans = sysctl_tcp_early_retrans &&
876 sysctl_tcp_early_retrans < 4 && !sysctl_tcp_thin_dupack &&
877 sysctl_tcp_reordering == 3;
878 }
879
880 static inline void tcp_disable_early_retrans(struct tcp_sock *tp)
881 {
882 tp->do_early_retrans = 0;
883 }
884
885 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
886 {
887 return tp->sacked_out + tp->lost_out;
888 }
889
890 /* This determines how many packets are "in the network" to the best
891 * of our knowledge. In many cases it is conservative, but where
892 * detailed information is available from the receiver (via SACK
893 * blocks etc.) we can make more aggressive calculations.
894 *
895 * Use this for decisions involving congestion control, use just
896 * tp->packets_out to determine if the send queue is empty or not.
897 *
898 * Read this equation as:
899 *
900 * "Packets sent once on transmission queue" MINUS
901 * "Packets left network, but not honestly ACKed yet" PLUS
902 * "Packets fast retransmitted"
903 */
904 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
905 {
906 return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
907 }
908
909 #define TCP_INFINITE_SSTHRESH 0x7fffffff
910
911 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
912 {
913 return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
914 }
915
916 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
917 {
918 return (TCPF_CA_CWR | TCPF_CA_Recovery) &
919 (1 << inet_csk(sk)->icsk_ca_state);
920 }
921
922 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
923 * The exception is cwnd reduction phase, when cwnd is decreasing towards
924 * ssthresh.
925 */
926 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
927 {
928 const struct tcp_sock *tp = tcp_sk(sk);
929
930 if (tcp_in_cwnd_reduction(sk))
931 return tp->snd_ssthresh;
932 else
933 return max(tp->snd_ssthresh,
934 ((tp->snd_cwnd >> 1) +
935 (tp->snd_cwnd >> 2)));
936 }
937
938 /* Use define here intentionally to get WARN_ON location shown at the caller */
939 #define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out)
940
941 extern void tcp_enter_cwr(struct sock *sk, const int set_ssthresh);
942 extern __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
943
944 /* The maximum number of MSS of available cwnd for which TSO defers
945 * sending if not using sysctl_tcp_tso_win_divisor.
946 */
947 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
948 {
949 return 3;
950 }
951
952 /* Slow start with delack produces 3 packets of burst, so that
953 * it is safe "de facto". This will be the default - same as
954 * the default reordering threshold - but if reordering increases,
955 * we must be able to allow cwnd to burst at least this much in order
956 * to not pull it back when holes are filled.
957 */
958 static __inline__ __u32 tcp_max_burst(const struct tcp_sock *tp)
959 {
960 return tp->reordering;
961 }
962
963 /* Returns end sequence number of the receiver's advertised window */
964 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
965 {
966 return tp->snd_una + tp->snd_wnd;
967 }
968 extern bool tcp_is_cwnd_limited(const struct sock *sk, u32 in_flight);
969
970 static inline void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss,
971 const struct sk_buff *skb)
972 {
973 if (skb->len < mss)
974 tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
975 }
976
977 static inline void tcp_check_probe_timer(struct sock *sk)
978 {
979 const struct tcp_sock *tp = tcp_sk(sk);
980 const struct inet_connection_sock *icsk = inet_csk(sk);
981
982 if (!tp->packets_out && !icsk->icsk_pending)
983 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
984 icsk->icsk_rto, sysctl_tcp_rto_max);
985 }
986
987 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
988 {
989 tp->snd_wl1 = seq;
990 }
991
992 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
993 {
994 tp->snd_wl1 = seq;
995 }
996
997 /*
998 * Calculate(/check) TCP checksum
999 */
1000 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1001 __be32 daddr, __wsum base)
1002 {
1003 return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
1004 }
1005
1006 static inline __sum16 __tcp_checksum_complete(struct sk_buff *skb)
1007 {
1008 return __skb_checksum_complete(skb);
1009 }
1010
1011 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1012 {
1013 return !skb_csum_unnecessary(skb) &&
1014 __tcp_checksum_complete(skb);
1015 }
1016
1017 /* Prequeue for VJ style copy to user, combined with checksumming. */
1018
1019 static inline void tcp_prequeue_init(struct tcp_sock *tp)
1020 {
1021 tp->ucopy.task = NULL;
1022 tp->ucopy.len = 0;
1023 tp->ucopy.memory = 0;
1024 skb_queue_head_init(&tp->ucopy.prequeue);
1025 #ifdef CONFIG_NET_DMA
1026 tp->ucopy.dma_chan = NULL;
1027 tp->ucopy.wakeup = 0;
1028 tp->ucopy.pinned_list = NULL;
1029 tp->ucopy.dma_cookie = 0;
1030 #endif
1031 }
1032
1033 extern bool tcp_prequeue(struct sock *sk, struct sk_buff *skb);
1034
1035 #undef STATE_TRACE
1036
1037 #ifdef STATE_TRACE
1038 static const char *statename[]={
1039 "Unused","Established","Syn Sent","Syn Recv",
1040 "Fin Wait 1","Fin Wait 2","Time Wait", "Close",
1041 "Close Wait","Last ACK","Listen","Closing"
1042 };
1043 #endif
1044 extern void tcp_set_state(struct sock *sk, int state);
1045
1046 extern void tcp_done(struct sock *sk);
1047
1048 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1049 {
1050 rx_opt->dsack = 0;
1051 rx_opt->num_sacks = 0;
1052 }
1053
1054 /* Determine a window scaling and initial window to offer. */
1055 extern void tcp_select_initial_window(int __space, __u32 mss,
1056 __u32 *rcv_wnd, __u32 *window_clamp,
1057 int wscale_ok, __u8 *rcv_wscale,
1058 __u32 init_rcv_wnd);
1059
1060 static inline int tcp_win_from_space(int space)
1061 {
1062 return sysctl_tcp_adv_win_scale<=0 ?
1063 (space>>(-sysctl_tcp_adv_win_scale)) :
1064 space - (space>>sysctl_tcp_adv_win_scale);
1065 }
1066
1067 /* Note: caller must be prepared to deal with negative returns */
1068 static inline int tcp_space(const struct sock *sk)
1069 {
1070 return tcp_win_from_space(sk->sk_rcvbuf -
1071 atomic_read(&sk->sk_rmem_alloc));
1072 }
1073
1074 static inline int tcp_full_space(const struct sock *sk)
1075 {
1076 return tcp_win_from_space(sk->sk_rcvbuf);
1077 }
1078
1079 static inline void tcp_openreq_init(struct request_sock *req,
1080 struct tcp_options_received *rx_opt,
1081 struct sk_buff *skb)
1082 {
1083 struct inet_request_sock *ireq = inet_rsk(req);
1084
1085 req->rcv_wnd = 0; /* So that tcp_send_synack() knows! */
1086 req->cookie_ts = 0;
1087 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
1088 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
1089 tcp_rsk(req)->snt_synack = 0;
1090 req->mss = rx_opt->mss_clamp;
1091 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
1092 ireq->tstamp_ok = rx_opt->tstamp_ok;
1093 ireq->sack_ok = rx_opt->sack_ok;
1094 ireq->snd_wscale = rx_opt->snd_wscale;
1095 ireq->wscale_ok = rx_opt->wscale_ok;
1096 ireq->acked = 0;
1097 ireq->ecn_ok = 0;
1098 ireq->rmt_port = tcp_hdr(skb)->source;
1099 ireq->loc_port = tcp_hdr(skb)->dest;
1100 }
1101
1102 /* Compute time elapsed between SYNACK and the ACK completing 3WHS */
1103 static inline void tcp_synack_rtt_meas(struct sock *sk,
1104 struct request_sock *req)
1105 {
1106 if (tcp_rsk(req)->snt_synack)
1107 tcp_valid_rtt_meas(sk,
1108 tcp_time_stamp - tcp_rsk(req)->snt_synack);
1109 }
1110
1111 extern void tcp_enter_memory_pressure(struct sock *sk);
1112
1113 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1114 {
1115 return tp->keepalive_intvl ? : sysctl_tcp_keepalive_intvl;
1116 }
1117
1118 static inline int keepalive_time_when(const struct tcp_sock *tp)
1119 {
1120 return tp->keepalive_time ? : sysctl_tcp_keepalive_time;
1121 }
1122
1123 static inline int keepalive_probes(const struct tcp_sock *tp)
1124 {
1125 return tp->keepalive_probes ? : sysctl_tcp_keepalive_probes;
1126 }
1127
1128 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1129 {
1130 const struct inet_connection_sock *icsk = &tp->inet_conn;
1131
1132 return min_t(u32, tcp_time_stamp - icsk->icsk_ack.lrcvtime,
1133 tcp_time_stamp - tp->rcv_tstamp);
1134 }
1135
1136 static inline int tcp_fin_time(const struct sock *sk)
1137 {
1138 int fin_timeout = tcp_sk(sk)->linger2 ? : sysctl_tcp_fin_timeout;
1139 const int rto = inet_csk(sk)->icsk_rto;
1140
1141 if (fin_timeout < (rto << 2) - (rto >> 1))
1142 fin_timeout = (rto << 2) - (rto >> 1);
1143
1144 return fin_timeout;
1145 }
1146
1147 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1148 int paws_win)
1149 {
1150 if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1151 return true;
1152 if (unlikely(get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))
1153 return true;
1154 /*
1155 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1156 * then following tcp messages have valid values. Ignore 0 value,
1157 * or else 'negative' tsval might forbid us to accept their packets.
1158 */
1159 if (!rx_opt->ts_recent)
1160 return true;
1161 return false;
1162 }
1163
1164 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1165 int rst)
1166 {
1167 if (tcp_paws_check(rx_opt, 0))
1168 return false;
1169
1170 /* RST segments are not recommended to carry timestamp,
1171 and, if they do, it is recommended to ignore PAWS because
1172 "their cleanup function should take precedence over timestamps."
1173 Certainly, it is mistake. It is necessary to understand the reasons
1174 of this constraint to relax it: if peer reboots, clock may go
1175 out-of-sync and half-open connections will not be reset.
1176 Actually, the problem would be not existing if all
1177 the implementations followed draft about maintaining clock
1178 via reboots. Linux-2.2 DOES NOT!
1179
1180 However, we can relax time bounds for RST segments to MSL.
1181 */
1182 if (rst && get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_MSL)
1183 return false;
1184 return true;
1185 }
1186
1187 static inline void tcp_mib_init(struct net *net)
1188 {
1189 /* See RFC 2012 */
1190 TCP_ADD_STATS_USER(net, TCP_MIB_RTOALGORITHM, 1);
1191 TCP_ADD_STATS_USER(net, TCP_MIB_RTOMIN, sysctl_tcp_rto_min*1000/HZ);
1192 TCP_ADD_STATS_USER(net, TCP_MIB_RTOMAX, sysctl_tcp_rto_max*1000/HZ);
1193 TCP_ADD_STATS_USER(net, TCP_MIB_MAXCONN, -1);
1194 }
1195
1196 /* from STCP */
1197 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1198 {
1199 tp->lost_skb_hint = NULL;
1200 tp->scoreboard_skb_hint = NULL;
1201 }
1202
1203 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1204 {
1205 tcp_clear_retrans_hints_partial(tp);
1206 tp->retransmit_skb_hint = NULL;
1207 }
1208
1209 /* MD5 Signature */
1210 struct crypto_hash;
1211
1212 union tcp_md5_addr {
1213 struct in_addr a4;
1214 #if IS_ENABLED(CONFIG_IPV6)
1215 struct in6_addr a6;
1216 #endif
1217 };
1218
1219 /* - key database */
1220 struct tcp_md5sig_key {
1221 struct hlist_node node;
1222 u8 keylen;
1223 u8 family; /* AF_INET or AF_INET6 */
1224 union tcp_md5_addr addr;
1225 u8 key[TCP_MD5SIG_MAXKEYLEN];
1226 struct rcu_head rcu;
1227 };
1228
1229 /* - sock block */
1230 struct tcp_md5sig_info {
1231 struct hlist_head head;
1232 struct rcu_head rcu;
1233 };
1234
1235 /* - pseudo header */
1236 struct tcp4_pseudohdr {
1237 __be32 saddr;
1238 __be32 daddr;
1239 __u8 pad;
1240 __u8 protocol;
1241 __be16 len;
1242 };
1243
1244 struct tcp6_pseudohdr {
1245 struct in6_addr saddr;
1246 struct in6_addr daddr;
1247 __be32 len;
1248 __be32 protocol; /* including padding */
1249 };
1250
1251 union tcp_md5sum_block {
1252 struct tcp4_pseudohdr ip4;
1253 #if IS_ENABLED(CONFIG_IPV6)
1254 struct tcp6_pseudohdr ip6;
1255 #endif
1256 };
1257
1258 /* - pool: digest algorithm, hash description and scratch buffer */
1259 struct tcp_md5sig_pool {
1260 struct hash_desc md5_desc;
1261 union tcp_md5sum_block md5_blk;
1262 };
1263
1264 /* - functions */
1265 extern int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1266 const struct sock *sk,
1267 const struct request_sock *req,
1268 const struct sk_buff *skb);
1269 extern int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1270 int family, const u8 *newkey,
1271 u8 newkeylen, gfp_t gfp);
1272 extern int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1273 int family);
1274 extern struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
1275 struct sock *addr_sk);
1276
1277 #ifdef CONFIG_TCP_MD5SIG
1278 extern struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
1279 const union tcp_md5_addr *addr, int family);
1280 #define tcp_twsk_md5_key(twsk) ((twsk)->tw_md5_key)
1281 #else
1282 static inline struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
1283 const union tcp_md5_addr *addr,
1284 int family)
1285 {
1286 return NULL;
1287 }
1288 #define tcp_twsk_md5_key(twsk) NULL
1289 #endif
1290
1291 extern struct tcp_md5sig_pool __percpu *tcp_alloc_md5sig_pool(struct sock *);
1292 extern void tcp_free_md5sig_pool(void);
1293
1294 extern struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1295 extern void tcp_put_md5sig_pool(void);
1296
1297 extern int tcp_md5_hash_header(struct tcp_md5sig_pool *, const struct tcphdr *);
1298 extern int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1299 unsigned int header_len);
1300 extern int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1301 const struct tcp_md5sig_key *key);
1302
1303 /* From tcp_fastopen.c */
1304 extern void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1305 struct tcp_fastopen_cookie *cookie,
1306 int *syn_loss, unsigned long *last_syn_loss);
1307 extern void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1308 struct tcp_fastopen_cookie *cookie,
1309 bool syn_lost);
1310 struct tcp_fastopen_request {
1311 /* Fast Open cookie. Size 0 means a cookie request */
1312 struct tcp_fastopen_cookie cookie;
1313 struct msghdr *data; /* data in MSG_FASTOPEN */
1314 size_t size;
1315 int copied; /* queued in tcp_connect() */
1316 };
1317 void tcp_free_fastopen_req(struct tcp_sock *tp);
1318
1319 extern struct tcp_fastopen_context __rcu *tcp_fastopen_ctx;
1320 int tcp_fastopen_reset_cipher(void *key, unsigned int len);
1321 void tcp_fastopen_cookie_gen(__be32 addr, struct tcp_fastopen_cookie *foc);
1322
1323 #define TCP_FASTOPEN_KEY_LENGTH 16
1324
1325 /* Fastopen key context */
1326 struct tcp_fastopen_context {
1327 struct crypto_cipher __rcu *tfm;
1328 __u8 key[TCP_FASTOPEN_KEY_LENGTH];
1329 struct rcu_head rcu;
1330 };
1331
1332 /* write queue abstraction */
1333 static inline void tcp_write_queue_purge(struct sock *sk)
1334 {
1335 struct sk_buff *skb;
1336
1337 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL)
1338 sk_wmem_free_skb(sk, skb);
1339 sk_mem_reclaim(sk);
1340 tcp_clear_all_retrans_hints(tcp_sk(sk));
1341 }
1342
1343 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1344 {
1345 return skb_peek(&sk->sk_write_queue);
1346 }
1347
1348 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1349 {
1350 return skb_peek_tail(&sk->sk_write_queue);
1351 }
1352
1353 static inline struct sk_buff *tcp_write_queue_next(const struct sock *sk,
1354 const struct sk_buff *skb)
1355 {
1356 return skb_queue_next(&sk->sk_write_queue, skb);
1357 }
1358
1359 static inline struct sk_buff *tcp_write_queue_prev(const struct sock *sk,
1360 const struct sk_buff *skb)
1361 {
1362 return skb_queue_prev(&sk->sk_write_queue, skb);
1363 }
1364
1365 #define tcp_for_write_queue(skb, sk) \
1366 skb_queue_walk(&(sk)->sk_write_queue, skb)
1367
1368 #define tcp_for_write_queue_from(skb, sk) \
1369 skb_queue_walk_from(&(sk)->sk_write_queue, skb)
1370
1371 #define tcp_for_write_queue_from_safe(skb, tmp, sk) \
1372 skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1373
1374 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1375 {
1376 return sk->sk_send_head;
1377 }
1378
1379 static inline bool tcp_skb_is_last(const struct sock *sk,
1380 const struct sk_buff *skb)
1381 {
1382 return skb_queue_is_last(&sk->sk_write_queue, skb);
1383 }
1384
1385 static inline void tcp_advance_send_head(struct sock *sk, const struct sk_buff *skb)
1386 {
1387 if (tcp_skb_is_last(sk, skb))
1388 sk->sk_send_head = NULL;
1389 else
1390 sk->sk_send_head = tcp_write_queue_next(sk, skb);
1391 }
1392
1393 static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1394 {
1395 if (sk->sk_send_head == skb_unlinked)
1396 sk->sk_send_head = NULL;
1397 if (tcp_sk(sk)->highest_sack == skb_unlinked)
1398 tcp_sk(sk)->highest_sack = NULL;
1399 }
1400
1401 static inline void tcp_init_send_head(struct sock *sk)
1402 {
1403 sk->sk_send_head = NULL;
1404 }
1405
1406 static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1407 {
1408 __skb_queue_tail(&sk->sk_write_queue, skb);
1409 }
1410
1411 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1412 {
1413 __tcp_add_write_queue_tail(sk, skb);
1414
1415 /* Queue it, remembering where we must start sending. */
1416 if (sk->sk_send_head == NULL) {
1417 sk->sk_send_head = skb;
1418
1419 if (tcp_sk(sk)->highest_sack == NULL)
1420 tcp_sk(sk)->highest_sack = skb;
1421 }
1422 }
1423
1424 static inline void __tcp_add_write_queue_head(struct sock *sk, struct sk_buff *skb)
1425 {
1426 __skb_queue_head(&sk->sk_write_queue, skb);
1427 }
1428
1429 /* Insert buff after skb on the write queue of sk. */
1430 static inline void tcp_insert_write_queue_after(struct sk_buff *skb,
1431 struct sk_buff *buff,
1432 struct sock *sk)
1433 {
1434 __skb_queue_after(&sk->sk_write_queue, skb, buff);
1435 }
1436
1437 /* Insert new before skb on the write queue of sk. */
1438 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1439 struct sk_buff *skb,
1440 struct sock *sk)
1441 {
1442 __skb_queue_before(&sk->sk_write_queue, skb, new);
1443
1444 if (sk->sk_send_head == skb)
1445 sk->sk_send_head = new;
1446 }
1447
1448 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1449 {
1450 __skb_unlink(skb, &sk->sk_write_queue);
1451 }
1452
1453 static inline bool tcp_write_queue_empty(struct sock *sk)
1454 {
1455 return skb_queue_empty(&sk->sk_write_queue);
1456 }
1457
1458 static inline void tcp_push_pending_frames(struct sock *sk)
1459 {
1460 if (tcp_send_head(sk)) {
1461 struct tcp_sock *tp = tcp_sk(sk);
1462
1463 __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1464 }
1465 }
1466
1467 /* Start sequence of the skb just after the highest skb with SACKed
1468 * bit, valid only if sacked_out > 0 or when the caller has ensured
1469 * validity by itself.
1470 */
1471 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1472 {
1473 if (!tp->sacked_out)
1474 return tp->snd_una;
1475
1476 if (tp->highest_sack == NULL)
1477 return tp->snd_nxt;
1478
1479 return TCP_SKB_CB(tp->highest_sack)->seq;
1480 }
1481
1482 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1483 {
1484 tcp_sk(sk)->highest_sack = tcp_skb_is_last(sk, skb) ? NULL :
1485 tcp_write_queue_next(sk, skb);
1486 }
1487
1488 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1489 {
1490 return tcp_sk(sk)->highest_sack;
1491 }
1492
1493 static inline void tcp_highest_sack_reset(struct sock *sk)
1494 {
1495 tcp_sk(sk)->highest_sack = tcp_write_queue_head(sk);
1496 }
1497
1498 /* Called when old skb is about to be deleted (to be combined with new skb) */
1499 static inline void tcp_highest_sack_combine(struct sock *sk,
1500 struct sk_buff *old,
1501 struct sk_buff *new)
1502 {
1503 if (tcp_sk(sk)->sacked_out && (old == tcp_sk(sk)->highest_sack))
1504 tcp_sk(sk)->highest_sack = new;
1505 }
1506
1507 /* Determines whether this is a thin stream (which may suffer from
1508 * increased latency). Used to trigger latency-reducing mechanisms.
1509 */
1510 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1511 {
1512 return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1513 }
1514
1515 /* /proc */
1516 enum tcp_seq_states {
1517 TCP_SEQ_STATE_LISTENING,
1518 TCP_SEQ_STATE_OPENREQ,
1519 TCP_SEQ_STATE_ESTABLISHED,
1520 TCP_SEQ_STATE_TIME_WAIT,
1521 };
1522
1523 int tcp_seq_open(struct inode *inode, struct file *file);
1524
1525 struct tcp_seq_afinfo {
1526 char *name;
1527 sa_family_t family;
1528 const struct file_operations *seq_fops;
1529 struct seq_operations seq_ops;
1530 };
1531
1532 struct tcp_iter_state {
1533 struct seq_net_private p;
1534 sa_family_t family;
1535 enum tcp_seq_states state;
1536 struct sock *syn_wait_sk;
1537 int bucket, offset, sbucket, num;
1538 kuid_t uid;
1539 loff_t last_pos;
1540 };
1541
1542 /* MTK_NET_CHANGES */
1543 /*
1544 * reset tcp connection by uid
1545 */
1546 struct uid_err {
1547 int appuid;
1548 int errNum;
1549 };
1550
1551 extern int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo);
1552 extern void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo);
1553
1554 extern struct request_sock_ops tcp_request_sock_ops;
1555 extern struct request_sock_ops tcp6_request_sock_ops;
1556
1557 extern void tcp_v4_destroy_sock(struct sock *sk);
1558
1559 extern int tcp_v4_gso_send_check(struct sk_buff *skb);
1560 extern struct sk_buff *tcp_tso_segment(struct sk_buff *skb,
1561 netdev_features_t features);
1562 extern struct sk_buff **tcp_gro_receive(struct sk_buff **head,
1563 struct sk_buff *skb);
1564 extern struct sk_buff **tcp4_gro_receive(struct sk_buff **head,
1565 struct sk_buff *skb);
1566 extern int tcp_gro_complete(struct sk_buff *skb);
1567 extern int tcp4_gro_complete(struct sk_buff *skb);
1568
1569 extern int tcp_nuke_addr(struct net *net, struct sockaddr *addr);
1570 /* MTK_NET_CHANGES */
1571 extern void tcp_v4_reset_connections_by_uid(struct uid_err uid_e);
1572 extern void tcp_v4_handle_retrans_time_by_uid(struct uid_err uid_e);
1573
1574 #ifdef CONFIG_PROC_FS
1575 extern int tcp4_proc_init(void);
1576 extern void tcp4_proc_exit(void);
1577 #endif
1578
1579 /* TCP af-specific functions */
1580 struct tcp_sock_af_ops {
1581 #ifdef CONFIG_TCP_MD5SIG
1582 struct tcp_md5sig_key *(*md5_lookup) (struct sock *sk,
1583 struct sock *addr_sk);
1584 int (*calc_md5_hash) (char *location,
1585 struct tcp_md5sig_key *md5,
1586 const struct sock *sk,
1587 const struct request_sock *req,
1588 const struct sk_buff *skb);
1589 int (*md5_parse) (struct sock *sk,
1590 char __user *optval,
1591 int optlen);
1592 #endif
1593 };
1594
1595 struct tcp_request_sock_ops {
1596 #ifdef CONFIG_TCP_MD5SIG
1597 struct tcp_md5sig_key *(*md5_lookup) (struct sock *sk,
1598 struct request_sock *req);
1599 int (*calc_md5_hash) (char *location,
1600 struct tcp_md5sig_key *md5,
1601 const struct sock *sk,
1602 const struct request_sock *req,
1603 const struct sk_buff *skb);
1604 #endif
1605 };
1606
1607 extern void tcp_v4_init(void);
1608 extern void tcp_init(void);
1609
1610 #endif /* _TCP_H */