ipv4: fix dst race in sk_dst_get()
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / net / sock.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the AF_INET socket handler.
7 *
8 * Version: @(#)sock.h 1.0.4 05/13/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
14 *
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
33 *
34 *
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
39 */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h> /* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/memcontrol.h>
58 #include <linux/res_counter.h>
59 #include <linux/static_key.h>
60 #include <linux/aio.h>
61 #include <linux/sched.h>
62
63 #include <linux/filter.h>
64 #include <linux/rculist_nulls.h>
65 #include <linux/poll.h>
66
67 #include <linux/atomic.h>
68 #include <net/dst.h>
69 #include <net/checksum.h>
70
71 struct cgroup;
72 struct cgroup_subsys;
73 #ifdef CONFIG_NET
74 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss);
75 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg);
76 #else
77 static inline
78 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
79 {
80 return 0;
81 }
82 static inline
83 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
84 {
85 }
86 #endif
87 /*
88 * This structure really needs to be cleaned up.
89 * Most of it is for TCP, and not used by any of
90 * the other protocols.
91 */
92
93 /* Define this to get the SOCK_DBG debugging facility. */
94 #define SOCK_DEBUGGING
95 #ifdef SOCK_DEBUGGING
96 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
97 printk(KERN_DEBUG msg); } while (0)
98 #else
99 /* Validate arguments and do nothing */
100 static inline __printf(2, 3)
101 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
102 {
103 }
104 #endif
105
106 /* This is the per-socket lock. The spinlock provides a synchronization
107 * between user contexts and software interrupt processing, whereas the
108 * mini-semaphore synchronizes multiple users amongst themselves.
109 */
110 typedef struct {
111 spinlock_t slock;
112 int owned;
113 wait_queue_head_t wq;
114 /*
115 * We express the mutex-alike socket_lock semantics
116 * to the lock validator by explicitly managing
117 * the slock as a lock variant (in addition to
118 * the slock itself):
119 */
120 #ifdef CONFIG_DEBUG_LOCK_ALLOC
121 struct lockdep_map dep_map;
122 #endif
123 } socket_lock_t;
124
125 struct sock;
126 struct proto;
127 struct net;
128
129 typedef __u32 __bitwise __portpair;
130 typedef __u64 __bitwise __addrpair;
131
132 /**
133 * struct sock_common - minimal network layer representation of sockets
134 * @skc_daddr: Foreign IPv4 addr
135 * @skc_rcv_saddr: Bound local IPv4 addr
136 * @skc_hash: hash value used with various protocol lookup tables
137 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
138 * @skc_dport: placeholder for inet_dport/tw_dport
139 * @skc_num: placeholder for inet_num/tw_num
140 * @skc_family: network address family
141 * @skc_state: Connection state
142 * @skc_reuse: %SO_REUSEADDR setting
143 * @skc_reuseport: %SO_REUSEPORT setting
144 * @skc_bound_dev_if: bound device index if != 0
145 * @skc_bind_node: bind hash linkage for various protocol lookup tables
146 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
147 * @skc_prot: protocol handlers inside a network family
148 * @skc_net: reference to the network namespace of this socket
149 * @skc_node: main hash linkage for various protocol lookup tables
150 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
151 * @skc_tx_queue_mapping: tx queue number for this connection
152 * @skc_refcnt: reference count
153 *
154 * This is the minimal network layer representation of sockets, the header
155 * for struct sock and struct inet_timewait_sock.
156 */
157 struct sock_common {
158 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
159 * address on 64bit arches : cf INET_MATCH() and INET_TW_MATCH()
160 */
161 union {
162 __addrpair skc_addrpair;
163 struct {
164 __be32 skc_daddr;
165 __be32 skc_rcv_saddr;
166 };
167 };
168 union {
169 unsigned int skc_hash;
170 __u16 skc_u16hashes[2];
171 };
172 /* skc_dport && skc_num must be grouped as well */
173 union {
174 __portpair skc_portpair;
175 struct {
176 __be16 skc_dport;
177 __u16 skc_num;
178 };
179 };
180
181 unsigned short skc_family;
182 volatile unsigned char skc_state;
183 unsigned char skc_reuse:4;
184 unsigned char skc_reuseport:4;
185 int skc_bound_dev_if;
186 union {
187 struct hlist_node skc_bind_node;
188 struct hlist_nulls_node skc_portaddr_node;
189 };
190 struct proto *skc_prot;
191 #ifdef CONFIG_NET_NS
192 struct net *skc_net;
193 #endif
194 /*
195 * fields between dontcopy_begin/dontcopy_end
196 * are not copied in sock_copy()
197 */
198 /* private: */
199 int skc_dontcopy_begin[0];
200 /* public: */
201 union {
202 struct hlist_node skc_node;
203 struct hlist_nulls_node skc_nulls_node;
204 };
205 int skc_tx_queue_mapping;
206 atomic_t skc_refcnt;
207 /* private: */
208 int skc_dontcopy_end[0];
209 /* public: */
210 };
211
212 struct cg_proto;
213 /**
214 * struct sock - network layer representation of sockets
215 * @__sk_common: shared layout with inet_timewait_sock
216 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
217 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
218 * @sk_lock: synchronizer
219 * @sk_rcvbuf: size of receive buffer in bytes
220 * @sk_wq: sock wait queue and async head
221 * @sk_rx_dst: receive input route used by early tcp demux
222 * @sk_dst_cache: destination cache
223 * @sk_dst_lock: destination cache lock
224 * @sk_policy: flow policy
225 * @sk_receive_queue: incoming packets
226 * @sk_wmem_alloc: transmit queue bytes committed
227 * @sk_write_queue: Packet sending queue
228 * @sk_async_wait_queue: DMA copied packets
229 * @sk_omem_alloc: "o" is "option" or "other"
230 * @sk_wmem_queued: persistent queue size
231 * @sk_forward_alloc: space allocated forward
232 * @sk_allocation: allocation mode
233 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
234 * @sk_sndbuf: size of send buffer in bytes
235 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
236 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
237 * @sk_no_check: %SO_NO_CHECK setting, whether or not checkup packets
238 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
239 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
240 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
241 * @sk_gso_max_size: Maximum GSO segment size to build
242 * @sk_gso_max_segs: Maximum number of GSO segments
243 * @sk_lingertime: %SO_LINGER l_linger setting
244 * @sk_backlog: always used with the per-socket spinlock held
245 * @sk_callback_lock: used with the callbacks in the end of this struct
246 * @sk_error_queue: rarely used
247 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
248 * IPV6_ADDRFORM for instance)
249 * @sk_err: last error
250 * @sk_err_soft: errors that don't cause failure but are the cause of a
251 * persistent failure not just 'timed out'
252 * @sk_drops: raw/udp drops counter
253 * @sk_ack_backlog: current listen backlog
254 * @sk_max_ack_backlog: listen backlog set in listen()
255 * @sk_priority: %SO_PRIORITY setting
256 * @sk_cgrp_prioidx: socket group's priority map index
257 * @sk_type: socket type (%SOCK_STREAM, etc)
258 * @sk_protocol: which protocol this socket belongs in this network family
259 * @sk_peer_pid: &struct pid for this socket's peer
260 * @sk_peer_cred: %SO_PEERCRED setting
261 * @sk_rcvlowat: %SO_RCVLOWAT setting
262 * @sk_rcvtimeo: %SO_RCVTIMEO setting
263 * @sk_sndtimeo: %SO_SNDTIMEO setting
264 * @sk_rxhash: flow hash received from netif layer
265 * @sk_filter: socket filtering instructions
266 * @sk_protinfo: private area, net family specific, when not using slab
267 * @sk_timer: sock cleanup timer
268 * @sk_stamp: time stamp of last packet received
269 * @sk_socket: Identd and reporting IO signals
270 * @sk_user_data: RPC layer private data
271 * @sk_frag: cached page frag
272 * @sk_peek_off: current peek_offset value
273 * @sk_send_head: front of stuff to transmit
274 * @sk_security: used by security modules
275 * @sk_mark: generic packet mark
276 * @sk_classid: this socket's cgroup classid
277 * @sk_cgrp: this socket's cgroup-specific proto data
278 * @sk_write_pending: a write to stream socket waits to start
279 * @sk_state_change: callback to indicate change in the state of the sock
280 * @sk_data_ready: callback to indicate there is data to be processed
281 * @sk_write_space: callback to indicate there is bf sending space available
282 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
283 * @sk_backlog_rcv: callback to process the backlog
284 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
285 */
286 struct sock {
287 /*
288 * Now struct inet_timewait_sock also uses sock_common, so please just
289 * don't add nothing before this first member (__sk_common) --acme
290 */
291 struct sock_common __sk_common;
292 #define sk_node __sk_common.skc_node
293 #define sk_nulls_node __sk_common.skc_nulls_node
294 #define sk_refcnt __sk_common.skc_refcnt
295 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
296
297 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
298 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
299 #define sk_hash __sk_common.skc_hash
300 #define sk_family __sk_common.skc_family
301 #define sk_state __sk_common.skc_state
302 #define sk_reuse __sk_common.skc_reuse
303 #define sk_reuseport __sk_common.skc_reuseport
304 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
305 #define sk_bind_node __sk_common.skc_bind_node
306 #define sk_prot __sk_common.skc_prot
307 #define sk_net __sk_common.skc_net
308 socket_lock_t sk_lock;
309 struct sk_buff_head sk_receive_queue;
310 /*
311 * The backlog queue is special, it is always used with
312 * the per-socket spinlock held and requires low latency
313 * access. Therefore we special case it's implementation.
314 * Note : rmem_alloc is in this structure to fill a hole
315 * on 64bit arches, not because its logically part of
316 * backlog.
317 */
318 struct {
319 atomic_t rmem_alloc;
320 int len;
321 struct sk_buff *head;
322 struct sk_buff *tail;
323 } sk_backlog;
324 #define sk_rmem_alloc sk_backlog.rmem_alloc
325 int sk_forward_alloc;
326 #ifdef CONFIG_RPS
327 __u32 sk_rxhash;
328 #endif
329 atomic_t sk_drops;
330 int sk_rcvbuf;
331
332 struct sk_filter __rcu *sk_filter;
333 struct socket_wq __rcu *sk_wq;
334
335 #ifdef CONFIG_NET_DMA
336 struct sk_buff_head sk_async_wait_queue;
337 #endif
338
339 #ifdef CONFIG_XFRM
340 struct xfrm_policy *sk_policy[2];
341 #endif
342 unsigned long sk_flags;
343 struct dst_entry *sk_rx_dst;
344 struct dst_entry __rcu *sk_dst_cache;
345 spinlock_t sk_dst_lock;
346 atomic_t sk_wmem_alloc;
347 atomic_t sk_omem_alloc;
348 int sk_sndbuf;
349 struct sk_buff_head sk_write_queue;
350 kmemcheck_bitfield_begin(flags);
351 unsigned int sk_shutdown : 2,
352 sk_no_check : 2,
353 sk_userlocks : 4,
354 sk_protocol : 8,
355 sk_type : 16;
356 kmemcheck_bitfield_end(flags);
357 int sk_wmem_queued;
358 gfp_t sk_allocation;
359 u32 sk_pacing_rate; /* bytes per second */
360 netdev_features_t sk_route_caps;
361 netdev_features_t sk_route_nocaps;
362 int sk_gso_type;
363 unsigned int sk_gso_max_size;
364 u16 sk_gso_max_segs;
365 int sk_rcvlowat;
366 unsigned long sk_lingertime;
367 struct sk_buff_head sk_error_queue;
368 struct proto *sk_prot_creator;
369 rwlock_t sk_callback_lock;
370 int sk_err,
371 sk_err_soft;
372 unsigned short sk_ack_backlog;
373 unsigned short sk_max_ack_backlog;
374 __u32 sk_priority;
375 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
376 __u32 sk_cgrp_prioidx;
377 #endif
378 struct pid *sk_peer_pid;
379 const struct cred *sk_peer_cred;
380 long sk_rcvtimeo;
381 long sk_sndtimeo;
382 void *sk_protinfo;
383 struct timer_list sk_timer;
384 ktime_t sk_stamp;
385 struct socket *sk_socket;
386 void *sk_user_data;
387 struct page_frag sk_frag;
388 struct sk_buff *sk_send_head;
389 __s32 sk_peek_off;
390 int sk_write_pending;
391 #ifdef CONFIG_SECURITY
392 void *sk_security;
393 #endif
394 __u32 sk_mark;
395 u32 sk_classid;
396 struct cg_proto *sk_cgrp;
397 void (*sk_state_change)(struct sock *sk);
398 void (*sk_data_ready)(struct sock *sk, int bytes);
399 void (*sk_write_space)(struct sock *sk);
400 void (*sk_error_report)(struct sock *sk);
401 int (*sk_backlog_rcv)(struct sock *sk,
402 struct sk_buff *skb);
403 void (*sk_destruct)(struct sock *sk);
404 };
405
406 /*
407 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
408 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
409 * on a socket means that the socket will reuse everybody else's port
410 * without looking at the other's sk_reuse value.
411 */
412
413 #define SK_NO_REUSE 0
414 #define SK_CAN_REUSE 1
415 #define SK_FORCE_REUSE 2
416
417 static inline int sk_peek_offset(struct sock *sk, int flags)
418 {
419 if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0))
420 return sk->sk_peek_off;
421 else
422 return 0;
423 }
424
425 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
426 {
427 if (sk->sk_peek_off >= 0) {
428 if (sk->sk_peek_off >= val)
429 sk->sk_peek_off -= val;
430 else
431 sk->sk_peek_off = 0;
432 }
433 }
434
435 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
436 {
437 if (sk->sk_peek_off >= 0)
438 sk->sk_peek_off += val;
439 }
440
441 /*
442 * Hashed lists helper routines
443 */
444 static inline struct sock *sk_entry(const struct hlist_node *node)
445 {
446 return hlist_entry(node, struct sock, sk_node);
447 }
448
449 static inline struct sock *__sk_head(const struct hlist_head *head)
450 {
451 return hlist_entry(head->first, struct sock, sk_node);
452 }
453
454 static inline struct sock *sk_head(const struct hlist_head *head)
455 {
456 return hlist_empty(head) ? NULL : __sk_head(head);
457 }
458
459 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
460 {
461 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
462 }
463
464 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
465 {
466 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
467 }
468
469 static inline struct sock *sk_next(const struct sock *sk)
470 {
471 return sk->sk_node.next ?
472 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
473 }
474
475 static inline struct sock *sk_nulls_next(const struct sock *sk)
476 {
477 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
478 hlist_nulls_entry(sk->sk_nulls_node.next,
479 struct sock, sk_nulls_node) :
480 NULL;
481 }
482
483 static inline bool sk_unhashed(const struct sock *sk)
484 {
485 return hlist_unhashed(&sk->sk_node);
486 }
487
488 static inline bool sk_hashed(const struct sock *sk)
489 {
490 return !sk_unhashed(sk);
491 }
492
493 static inline void sk_node_init(struct hlist_node *node)
494 {
495 node->pprev = NULL;
496 }
497
498 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
499 {
500 node->pprev = NULL;
501 }
502
503 static inline void __sk_del_node(struct sock *sk)
504 {
505 __hlist_del(&sk->sk_node);
506 }
507
508 /* NB: equivalent to hlist_del_init_rcu */
509 static inline bool __sk_del_node_init(struct sock *sk)
510 {
511 if (sk_hashed(sk)) {
512 __sk_del_node(sk);
513 sk_node_init(&sk->sk_node);
514 return true;
515 }
516 return false;
517 }
518
519 /* Grab socket reference count. This operation is valid only
520 when sk is ALREADY grabbed f.e. it is found in hash table
521 or a list and the lookup is made under lock preventing hash table
522 modifications.
523 */
524
525 static inline void sock_hold(struct sock *sk)
526 {
527 atomic_inc(&sk->sk_refcnt);
528 }
529
530 /* Ungrab socket in the context, which assumes that socket refcnt
531 cannot hit zero, f.e. it is true in context of any socketcall.
532 */
533 static inline void __sock_put(struct sock *sk)
534 {
535 atomic_dec(&sk->sk_refcnt);
536 }
537
538 static inline bool sk_del_node_init(struct sock *sk)
539 {
540 bool rc = __sk_del_node_init(sk);
541
542 if (rc) {
543 /* paranoid for a while -acme */
544 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
545 __sock_put(sk);
546 }
547 return rc;
548 }
549 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
550
551 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
552 {
553 if (sk_hashed(sk)) {
554 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
555 return true;
556 }
557 return false;
558 }
559
560 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
561 {
562 bool rc = __sk_nulls_del_node_init_rcu(sk);
563
564 if (rc) {
565 /* paranoid for a while -acme */
566 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
567 __sock_put(sk);
568 }
569 return rc;
570 }
571
572 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
573 {
574 hlist_add_head(&sk->sk_node, list);
575 }
576
577 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
578 {
579 sock_hold(sk);
580 __sk_add_node(sk, list);
581 }
582
583 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
584 {
585 sock_hold(sk);
586 hlist_add_head_rcu(&sk->sk_node, list);
587 }
588
589 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
590 {
591 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
592 }
593
594 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
595 {
596 sock_hold(sk);
597 __sk_nulls_add_node_rcu(sk, list);
598 }
599
600 static inline void __sk_del_bind_node(struct sock *sk)
601 {
602 __hlist_del(&sk->sk_bind_node);
603 }
604
605 static inline void sk_add_bind_node(struct sock *sk,
606 struct hlist_head *list)
607 {
608 hlist_add_head(&sk->sk_bind_node, list);
609 }
610
611 #define sk_for_each(__sk, list) \
612 hlist_for_each_entry(__sk, list, sk_node)
613 #define sk_for_each_rcu(__sk, list) \
614 hlist_for_each_entry_rcu(__sk, list, sk_node)
615 #define sk_nulls_for_each(__sk, node, list) \
616 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
617 #define sk_nulls_for_each_rcu(__sk, node, list) \
618 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
619 #define sk_for_each_from(__sk) \
620 hlist_for_each_entry_from(__sk, sk_node)
621 #define sk_nulls_for_each_from(__sk, node) \
622 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
623 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
624 #define sk_for_each_safe(__sk, tmp, list) \
625 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
626 #define sk_for_each_bound(__sk, list) \
627 hlist_for_each_entry(__sk, list, sk_bind_node)
628
629 static inline struct user_namespace *sk_user_ns(struct sock *sk)
630 {
631 /* Careful only use this in a context where these parameters
632 * can not change and must all be valid, such as recvmsg from
633 * userspace.
634 */
635 return sk->sk_socket->file->f_cred->user_ns;
636 }
637
638 /* Sock flags */
639 enum sock_flags {
640 SOCK_DEAD,
641 SOCK_DONE,
642 SOCK_URGINLINE,
643 SOCK_KEEPOPEN,
644 SOCK_LINGER,
645 SOCK_DESTROY,
646 SOCK_BROADCAST,
647 SOCK_TIMESTAMP,
648 SOCK_ZAPPED,
649 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
650 SOCK_DBG, /* %SO_DEBUG setting */
651 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
652 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
653 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
654 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
655 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
656 SOCK_TIMESTAMPING_TX_HARDWARE, /* %SOF_TIMESTAMPING_TX_HARDWARE */
657 SOCK_TIMESTAMPING_TX_SOFTWARE, /* %SOF_TIMESTAMPING_TX_SOFTWARE */
658 SOCK_TIMESTAMPING_RX_HARDWARE, /* %SOF_TIMESTAMPING_RX_HARDWARE */
659 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
660 SOCK_TIMESTAMPING_SOFTWARE, /* %SOF_TIMESTAMPING_SOFTWARE */
661 SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */
662 SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */
663 SOCK_FASYNC, /* fasync() active */
664 SOCK_RXQ_OVFL,
665 SOCK_ZEROCOPY, /* buffers from userspace */
666 SOCK_WIFI_STATUS, /* push wifi status to userspace */
667 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
668 * Will use last 4 bytes of packet sent from
669 * user-space instead.
670 */
671 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
672 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
673 };
674
675 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
676 {
677 nsk->sk_flags = osk->sk_flags;
678 }
679
680 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
681 {
682 __set_bit(flag, &sk->sk_flags);
683 }
684
685 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
686 {
687 __clear_bit(flag, &sk->sk_flags);
688 }
689
690 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
691 {
692 return test_bit(flag, &sk->sk_flags);
693 }
694
695 #ifdef CONFIG_NET
696 extern struct static_key memalloc_socks;
697 static inline int sk_memalloc_socks(void)
698 {
699 return static_key_false(&memalloc_socks);
700 }
701 #else
702
703 static inline int sk_memalloc_socks(void)
704 {
705 return 0;
706 }
707
708 #endif
709
710 static inline gfp_t sk_gfp_atomic(struct sock *sk, gfp_t gfp_mask)
711 {
712 return GFP_ATOMIC | (sk->sk_allocation & __GFP_MEMALLOC);
713 }
714
715 static inline void sk_acceptq_removed(struct sock *sk)
716 {
717 sk->sk_ack_backlog--;
718 }
719
720 static inline void sk_acceptq_added(struct sock *sk)
721 {
722 sk->sk_ack_backlog++;
723 }
724
725 static inline bool sk_acceptq_is_full(const struct sock *sk)
726 {
727 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
728 }
729
730 /*
731 * Compute minimal free write space needed to queue new packets.
732 */
733 static inline int sk_stream_min_wspace(const struct sock *sk)
734 {
735 return sk->sk_wmem_queued >> 1;
736 }
737
738 static inline int sk_stream_wspace(const struct sock *sk)
739 {
740 return sk->sk_sndbuf - sk->sk_wmem_queued;
741 }
742
743 extern void sk_stream_write_space(struct sock *sk);
744
745 static inline bool sk_stream_memory_free(const struct sock *sk)
746 {
747 return sk->sk_wmem_queued < sk->sk_sndbuf;
748 }
749
750 /* OOB backlog add */
751 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
752 {
753 /* dont let skb dst not refcounted, we are going to leave rcu lock */
754 skb_dst_force(skb);
755
756 if (!sk->sk_backlog.tail)
757 sk->sk_backlog.head = skb;
758 else
759 sk->sk_backlog.tail->next = skb;
760
761 sk->sk_backlog.tail = skb;
762 skb->next = NULL;
763 }
764
765 /*
766 * Take into account size of receive queue and backlog queue
767 * Do not take into account this skb truesize,
768 * to allow even a single big packet to come.
769 */
770 static inline bool sk_rcvqueues_full(const struct sock *sk, const struct sk_buff *skb,
771 unsigned int limit)
772 {
773 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
774
775 return qsize > limit;
776 }
777
778 /* The per-socket spinlock must be held here. */
779 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
780 unsigned int limit)
781 {
782 if (sk_rcvqueues_full(sk, skb, limit))
783 return -ENOBUFS;
784
785 __sk_add_backlog(sk, skb);
786 sk->sk_backlog.len += skb->truesize;
787 return 0;
788 }
789
790 extern int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
791
792 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
793 {
794 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
795 return __sk_backlog_rcv(sk, skb);
796
797 return sk->sk_backlog_rcv(sk, skb);
798 }
799
800 static inline void sock_rps_record_flow(const struct sock *sk)
801 {
802 #ifdef CONFIG_RPS
803 struct rps_sock_flow_table *sock_flow_table;
804
805 rcu_read_lock();
806 sock_flow_table = rcu_dereference(rps_sock_flow_table);
807 rps_record_sock_flow(sock_flow_table, sk->sk_rxhash);
808 rcu_read_unlock();
809 #endif
810 }
811
812 static inline void sock_rps_reset_flow(const struct sock *sk)
813 {
814 #ifdef CONFIG_RPS
815 struct rps_sock_flow_table *sock_flow_table;
816
817 rcu_read_lock();
818 sock_flow_table = rcu_dereference(rps_sock_flow_table);
819 rps_reset_sock_flow(sock_flow_table, sk->sk_rxhash);
820 rcu_read_unlock();
821 #endif
822 }
823
824 static inline void sock_rps_save_rxhash(struct sock *sk,
825 const struct sk_buff *skb)
826 {
827 #ifdef CONFIG_RPS
828 if (unlikely(sk->sk_rxhash != skb->rxhash)) {
829 sock_rps_reset_flow(sk);
830 sk->sk_rxhash = skb->rxhash;
831 }
832 #endif
833 }
834
835 static inline void sock_rps_reset_rxhash(struct sock *sk)
836 {
837 #ifdef CONFIG_RPS
838 sock_rps_reset_flow(sk);
839 sk->sk_rxhash = 0;
840 #endif
841 }
842
843 #define sk_wait_event(__sk, __timeo, __condition) \
844 ({ int __rc; \
845 release_sock(__sk); \
846 __rc = __condition; \
847 if (!__rc) { \
848 *(__timeo) = schedule_timeout(*(__timeo)); \
849 } \
850 lock_sock(__sk); \
851 __rc = __condition; \
852 __rc; \
853 })
854
855 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
856 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
857 extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
858 extern int sk_stream_error(struct sock *sk, int flags, int err);
859 extern void sk_stream_kill_queues(struct sock *sk);
860 extern void sk_set_memalloc(struct sock *sk);
861 extern void sk_clear_memalloc(struct sock *sk);
862
863 extern int sk_wait_data(struct sock *sk, long *timeo);
864
865 struct request_sock_ops;
866 struct timewait_sock_ops;
867 struct inet_hashinfo;
868 struct raw_hashinfo;
869 struct module;
870
871 /*
872 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
873 * un-modified. Special care is taken when initializing object to zero.
874 */
875 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
876 {
877 if (offsetof(struct sock, sk_node.next) != 0)
878 memset(sk, 0, offsetof(struct sock, sk_node.next));
879 memset(&sk->sk_node.pprev, 0,
880 size - offsetof(struct sock, sk_node.pprev));
881 }
882
883 /* Networking protocol blocks we attach to sockets.
884 * socket layer -> transport layer interface
885 * transport -> network interface is defined by struct inet_proto
886 */
887 struct proto {
888 void (*close)(struct sock *sk,
889 long timeout);
890 int (*connect)(struct sock *sk,
891 struct sockaddr *uaddr,
892 int addr_len);
893 int (*disconnect)(struct sock *sk, int flags);
894
895 struct sock * (*accept)(struct sock *sk, int flags, int *err);
896
897 int (*ioctl)(struct sock *sk, int cmd,
898 unsigned long arg);
899 int (*init)(struct sock *sk);
900 void (*destroy)(struct sock *sk);
901 void (*shutdown)(struct sock *sk, int how);
902 int (*setsockopt)(struct sock *sk, int level,
903 int optname, char __user *optval,
904 unsigned int optlen);
905 int (*getsockopt)(struct sock *sk, int level,
906 int optname, char __user *optval,
907 int __user *option);
908 #ifdef CONFIG_COMPAT
909 int (*compat_setsockopt)(struct sock *sk,
910 int level,
911 int optname, char __user *optval,
912 unsigned int optlen);
913 int (*compat_getsockopt)(struct sock *sk,
914 int level,
915 int optname, char __user *optval,
916 int __user *option);
917 int (*compat_ioctl)(struct sock *sk,
918 unsigned int cmd, unsigned long arg);
919 #endif
920 int (*sendmsg)(struct kiocb *iocb, struct sock *sk,
921 struct msghdr *msg, size_t len);
922 int (*recvmsg)(struct kiocb *iocb, struct sock *sk,
923 struct msghdr *msg,
924 size_t len, int noblock, int flags,
925 int *addr_len);
926 int (*sendpage)(struct sock *sk, struct page *page,
927 int offset, size_t size, int flags);
928 int (*bind)(struct sock *sk,
929 struct sockaddr *uaddr, int addr_len);
930
931 int (*backlog_rcv) (struct sock *sk,
932 struct sk_buff *skb);
933
934 void (*release_cb)(struct sock *sk);
935 void (*mtu_reduced)(struct sock *sk);
936
937 /* Keeping track of sk's, looking them up, and port selection methods. */
938 void (*hash)(struct sock *sk);
939 void (*unhash)(struct sock *sk);
940 void (*rehash)(struct sock *sk);
941 int (*get_port)(struct sock *sk, unsigned short snum);
942 void (*clear_sk)(struct sock *sk, int size);
943
944 /* Keeping track of sockets in use */
945 #ifdef CONFIG_PROC_FS
946 unsigned int inuse_idx;
947 #endif
948
949 /* Memory pressure */
950 void (*enter_memory_pressure)(struct sock *sk);
951 atomic_long_t *memory_allocated; /* Current allocated memory. */
952 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
953 /*
954 * Pressure flag: try to collapse.
955 * Technical note: it is used by multiple contexts non atomically.
956 * All the __sk_mem_schedule() is of this nature: accounting
957 * is strict, actions are advisory and have some latency.
958 */
959 int *memory_pressure;
960 long *sysctl_mem;
961 int *sysctl_wmem;
962 int *sysctl_rmem;
963 int max_header;
964 bool no_autobind;
965
966 struct kmem_cache *slab;
967 unsigned int obj_size;
968 int slab_flags;
969
970 struct percpu_counter *orphan_count;
971
972 struct request_sock_ops *rsk_prot;
973 struct timewait_sock_ops *twsk_prot;
974
975 union {
976 struct inet_hashinfo *hashinfo;
977 struct udp_table *udp_table;
978 struct raw_hashinfo *raw_hash;
979 } h;
980
981 struct module *owner;
982
983 char name[32];
984
985 struct list_head node;
986 #ifdef SOCK_REFCNT_DEBUG
987 atomic_t socks;
988 #endif
989 #ifdef CONFIG_MEMCG_KMEM
990 /*
991 * cgroup specific init/deinit functions. Called once for all
992 * protocols that implement it, from cgroups populate function.
993 * This function has to setup any files the protocol want to
994 * appear in the kmem cgroup filesystem.
995 */
996 int (*init_cgroup)(struct mem_cgroup *memcg,
997 struct cgroup_subsys *ss);
998 void (*destroy_cgroup)(struct mem_cgroup *memcg);
999 struct cg_proto *(*proto_cgroup)(struct mem_cgroup *memcg);
1000 #endif
1001 };
1002
1003 /*
1004 * Bits in struct cg_proto.flags
1005 */
1006 enum cg_proto_flags {
1007 /* Currently active and new sockets should be assigned to cgroups */
1008 MEMCG_SOCK_ACTIVE,
1009 /* It was ever activated; we must disarm static keys on destruction */
1010 MEMCG_SOCK_ACTIVATED,
1011 };
1012
1013 struct cg_proto {
1014 void (*enter_memory_pressure)(struct sock *sk);
1015 struct res_counter *memory_allocated; /* Current allocated memory. */
1016 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
1017 int *memory_pressure;
1018 long *sysctl_mem;
1019 unsigned long flags;
1020 /*
1021 * memcg field is used to find which memcg we belong directly
1022 * Each memcg struct can hold more than one cg_proto, so container_of
1023 * won't really cut.
1024 *
1025 * The elegant solution would be having an inverse function to
1026 * proto_cgroup in struct proto, but that means polluting the structure
1027 * for everybody, instead of just for memcg users.
1028 */
1029 struct mem_cgroup *memcg;
1030 };
1031
1032 extern int proto_register(struct proto *prot, int alloc_slab);
1033 extern void proto_unregister(struct proto *prot);
1034
1035 static inline bool memcg_proto_active(struct cg_proto *cg_proto)
1036 {
1037 return test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags);
1038 }
1039
1040 static inline bool memcg_proto_activated(struct cg_proto *cg_proto)
1041 {
1042 return test_bit(MEMCG_SOCK_ACTIVATED, &cg_proto->flags);
1043 }
1044
1045 #ifdef SOCK_REFCNT_DEBUG
1046 static inline void sk_refcnt_debug_inc(struct sock *sk)
1047 {
1048 atomic_inc(&sk->sk_prot->socks);
1049 }
1050
1051 static inline void sk_refcnt_debug_dec(struct sock *sk)
1052 {
1053 atomic_dec(&sk->sk_prot->socks);
1054 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1055 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1056 }
1057
1058 static inline void sk_refcnt_debug_release(const struct sock *sk)
1059 {
1060 if (atomic_read(&sk->sk_refcnt) != 1)
1061 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1062 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
1063 }
1064 #else /* SOCK_REFCNT_DEBUG */
1065 #define sk_refcnt_debug_inc(sk) do { } while (0)
1066 #define sk_refcnt_debug_dec(sk) do { } while (0)
1067 #define sk_refcnt_debug_release(sk) do { } while (0)
1068 #endif /* SOCK_REFCNT_DEBUG */
1069
1070 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_NET)
1071 extern struct static_key memcg_socket_limit_enabled;
1072 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1073 struct cg_proto *cg_proto)
1074 {
1075 return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg));
1076 }
1077 #define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled)
1078 #else
1079 #define mem_cgroup_sockets_enabled 0
1080 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1081 struct cg_proto *cg_proto)
1082 {
1083 return NULL;
1084 }
1085 #endif
1086
1087
1088 static inline bool sk_has_memory_pressure(const struct sock *sk)
1089 {
1090 return sk->sk_prot->memory_pressure != NULL;
1091 }
1092
1093 static inline bool sk_under_memory_pressure(const struct sock *sk)
1094 {
1095 if (!sk->sk_prot->memory_pressure)
1096 return false;
1097
1098 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1099 return !!*sk->sk_cgrp->memory_pressure;
1100
1101 return !!*sk->sk_prot->memory_pressure;
1102 }
1103
1104 static inline void sk_leave_memory_pressure(struct sock *sk)
1105 {
1106 int *memory_pressure = sk->sk_prot->memory_pressure;
1107
1108 if (!memory_pressure)
1109 return;
1110
1111 if (*memory_pressure)
1112 *memory_pressure = 0;
1113
1114 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1115 struct cg_proto *cg_proto = sk->sk_cgrp;
1116 struct proto *prot = sk->sk_prot;
1117
1118 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1119 if (*cg_proto->memory_pressure)
1120 *cg_proto->memory_pressure = 0;
1121 }
1122
1123 }
1124
1125 static inline void sk_enter_memory_pressure(struct sock *sk)
1126 {
1127 if (!sk->sk_prot->enter_memory_pressure)
1128 return;
1129
1130 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1131 struct cg_proto *cg_proto = sk->sk_cgrp;
1132 struct proto *prot = sk->sk_prot;
1133
1134 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1135 cg_proto->enter_memory_pressure(sk);
1136 }
1137
1138 sk->sk_prot->enter_memory_pressure(sk);
1139 }
1140
1141 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1142 {
1143 long *prot = sk->sk_prot->sysctl_mem;
1144 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1145 prot = sk->sk_cgrp->sysctl_mem;
1146 return prot[index];
1147 }
1148
1149 static inline void memcg_memory_allocated_add(struct cg_proto *prot,
1150 unsigned long amt,
1151 int *parent_status)
1152 {
1153 struct res_counter *fail;
1154 int ret;
1155
1156 ret = res_counter_charge_nofail(prot->memory_allocated,
1157 amt << PAGE_SHIFT, &fail);
1158 if (ret < 0)
1159 *parent_status = OVER_LIMIT;
1160 }
1161
1162 static inline void memcg_memory_allocated_sub(struct cg_proto *prot,
1163 unsigned long amt)
1164 {
1165 res_counter_uncharge(prot->memory_allocated, amt << PAGE_SHIFT);
1166 }
1167
1168 static inline u64 memcg_memory_allocated_read(struct cg_proto *prot)
1169 {
1170 u64 ret;
1171 ret = res_counter_read_u64(prot->memory_allocated, RES_USAGE);
1172 return ret >> PAGE_SHIFT;
1173 }
1174
1175 static inline long
1176 sk_memory_allocated(const struct sock *sk)
1177 {
1178 struct proto *prot = sk->sk_prot;
1179 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1180 return memcg_memory_allocated_read(sk->sk_cgrp);
1181
1182 return atomic_long_read(prot->memory_allocated);
1183 }
1184
1185 static inline long
1186 sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status)
1187 {
1188 struct proto *prot = sk->sk_prot;
1189
1190 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1191 memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status);
1192 /* update the root cgroup regardless */
1193 atomic_long_add_return(amt, prot->memory_allocated);
1194 return memcg_memory_allocated_read(sk->sk_cgrp);
1195 }
1196
1197 return atomic_long_add_return(amt, prot->memory_allocated);
1198 }
1199
1200 static inline void
1201 sk_memory_allocated_sub(struct sock *sk, int amt)
1202 {
1203 struct proto *prot = sk->sk_prot;
1204
1205 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1206 memcg_memory_allocated_sub(sk->sk_cgrp, amt);
1207
1208 atomic_long_sub(amt, prot->memory_allocated);
1209 }
1210
1211 static inline void sk_sockets_allocated_dec(struct sock *sk)
1212 {
1213 struct proto *prot = sk->sk_prot;
1214
1215 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1216 struct cg_proto *cg_proto = sk->sk_cgrp;
1217
1218 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1219 percpu_counter_dec(cg_proto->sockets_allocated);
1220 }
1221
1222 percpu_counter_dec(prot->sockets_allocated);
1223 }
1224
1225 static inline void sk_sockets_allocated_inc(struct sock *sk)
1226 {
1227 struct proto *prot = sk->sk_prot;
1228
1229 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1230 struct cg_proto *cg_proto = sk->sk_cgrp;
1231
1232 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1233 percpu_counter_inc(cg_proto->sockets_allocated);
1234 }
1235
1236 percpu_counter_inc(prot->sockets_allocated);
1237 }
1238
1239 static inline int
1240 sk_sockets_allocated_read_positive(struct sock *sk)
1241 {
1242 struct proto *prot = sk->sk_prot;
1243
1244 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1245 return percpu_counter_read_positive(sk->sk_cgrp->sockets_allocated);
1246
1247 return percpu_counter_read_positive(prot->sockets_allocated);
1248 }
1249
1250 static inline int
1251 proto_sockets_allocated_sum_positive(struct proto *prot)
1252 {
1253 return percpu_counter_sum_positive(prot->sockets_allocated);
1254 }
1255
1256 static inline long
1257 proto_memory_allocated(struct proto *prot)
1258 {
1259 return atomic_long_read(prot->memory_allocated);
1260 }
1261
1262 static inline bool
1263 proto_memory_pressure(struct proto *prot)
1264 {
1265 if (!prot->memory_pressure)
1266 return false;
1267 return !!*prot->memory_pressure;
1268 }
1269
1270
1271 #ifdef CONFIG_PROC_FS
1272 /* Called with local bh disabled */
1273 extern void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1274 extern int sock_prot_inuse_get(struct net *net, struct proto *proto);
1275 #else
1276 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1277 int inc)
1278 {
1279 }
1280 #endif
1281
1282
1283 /* With per-bucket locks this operation is not-atomic, so that
1284 * this version is not worse.
1285 */
1286 static inline void __sk_prot_rehash(struct sock *sk)
1287 {
1288 sk->sk_prot->unhash(sk);
1289 sk->sk_prot->hash(sk);
1290 }
1291
1292 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
1293
1294 /* About 10 seconds */
1295 #define SOCK_DESTROY_TIME (10*HZ)
1296
1297 /* Sockets 0-1023 can't be bound to unless you are superuser */
1298 #define PROT_SOCK 1024
1299
1300 #define SHUTDOWN_MASK 3
1301 #define RCV_SHUTDOWN 1
1302 #define SEND_SHUTDOWN 2
1303
1304 #define SOCK_SNDBUF_LOCK 1
1305 #define SOCK_RCVBUF_LOCK 2
1306 #define SOCK_BINDADDR_LOCK 4
1307 #define SOCK_BINDPORT_LOCK 8
1308
1309 /* sock_iocb: used to kick off async processing of socket ios */
1310 struct sock_iocb {
1311 struct list_head list;
1312
1313 int flags;
1314 int size;
1315 struct socket *sock;
1316 struct sock *sk;
1317 struct scm_cookie *scm;
1318 struct msghdr *msg, async_msg;
1319 struct kiocb *kiocb;
1320 };
1321
1322 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
1323 {
1324 return (struct sock_iocb *)iocb->private;
1325 }
1326
1327 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
1328 {
1329 return si->kiocb;
1330 }
1331
1332 struct socket_alloc {
1333 struct socket socket;
1334 struct inode vfs_inode;
1335 };
1336
1337 static inline struct socket *SOCKET_I(struct inode *inode)
1338 {
1339 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1340 }
1341
1342 static inline struct inode *SOCK_INODE(struct socket *socket)
1343 {
1344 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1345 }
1346
1347 /*
1348 * Functions for memory accounting
1349 */
1350 extern int __sk_mem_schedule(struct sock *sk, int size, int kind);
1351 extern void __sk_mem_reclaim(struct sock *sk);
1352
1353 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
1354 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1355 #define SK_MEM_SEND 0
1356 #define SK_MEM_RECV 1
1357
1358 static inline int sk_mem_pages(int amt)
1359 {
1360 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1361 }
1362
1363 static inline bool sk_has_account(struct sock *sk)
1364 {
1365 /* return true if protocol supports memory accounting */
1366 return !!sk->sk_prot->memory_allocated;
1367 }
1368
1369 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1370 {
1371 if (!sk_has_account(sk))
1372 return true;
1373 return size <= sk->sk_forward_alloc ||
1374 __sk_mem_schedule(sk, size, SK_MEM_SEND);
1375 }
1376
1377 static inline bool
1378 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1379 {
1380 if (!sk_has_account(sk))
1381 return true;
1382 return size<= sk->sk_forward_alloc ||
1383 __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1384 skb_pfmemalloc(skb);
1385 }
1386
1387 static inline void sk_mem_reclaim(struct sock *sk)
1388 {
1389 if (!sk_has_account(sk))
1390 return;
1391 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1392 __sk_mem_reclaim(sk);
1393 }
1394
1395 static inline void sk_mem_reclaim_partial(struct sock *sk)
1396 {
1397 if (!sk_has_account(sk))
1398 return;
1399 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1400 __sk_mem_reclaim(sk);
1401 }
1402
1403 static inline void sk_mem_charge(struct sock *sk, int size)
1404 {
1405 if (!sk_has_account(sk))
1406 return;
1407 sk->sk_forward_alloc -= size;
1408 }
1409
1410 static inline void sk_mem_uncharge(struct sock *sk, int size)
1411 {
1412 if (!sk_has_account(sk))
1413 return;
1414 sk->sk_forward_alloc += size;
1415 }
1416
1417 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1418 {
1419 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1420 sk->sk_wmem_queued -= skb->truesize;
1421 sk_mem_uncharge(sk, skb->truesize);
1422 __kfree_skb(skb);
1423 }
1424
1425 /* Used by processes to "lock" a socket state, so that
1426 * interrupts and bottom half handlers won't change it
1427 * from under us. It essentially blocks any incoming
1428 * packets, so that we won't get any new data or any
1429 * packets that change the state of the socket.
1430 *
1431 * While locked, BH processing will add new packets to
1432 * the backlog queue. This queue is processed by the
1433 * owner of the socket lock right before it is released.
1434 *
1435 * Since ~2.3.5 it is also exclusive sleep lock serializing
1436 * accesses from user process context.
1437 */
1438 #define sock_owned_by_user(sk) ((sk)->sk_lock.owned)
1439
1440 static inline void sock_release_ownership(struct sock *sk)
1441 {
1442 sk->sk_lock.owned = 0;
1443 }
1444
1445 /*
1446 * Macro so as to not evaluate some arguments when
1447 * lockdep is not enabled.
1448 *
1449 * Mark both the sk_lock and the sk_lock.slock as a
1450 * per-address-family lock class.
1451 */
1452 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1453 do { \
1454 sk->sk_lock.owned = 0; \
1455 init_waitqueue_head(&sk->sk_lock.wq); \
1456 spin_lock_init(&(sk)->sk_lock.slock); \
1457 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1458 sizeof((sk)->sk_lock)); \
1459 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1460 (skey), (sname)); \
1461 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1462 } while (0)
1463
1464 extern void lock_sock_nested(struct sock *sk, int subclass);
1465
1466 static inline void lock_sock(struct sock *sk)
1467 {
1468 lock_sock_nested(sk, 0);
1469 }
1470
1471 extern void release_sock(struct sock *sk);
1472
1473 /* BH context may only use the following locking interface. */
1474 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1475 #define bh_lock_sock_nested(__sk) \
1476 spin_lock_nested(&((__sk)->sk_lock.slock), \
1477 SINGLE_DEPTH_NESTING)
1478 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1479
1480 extern bool lock_sock_fast(struct sock *sk);
1481 /**
1482 * unlock_sock_fast - complement of lock_sock_fast
1483 * @sk: socket
1484 * @slow: slow mode
1485 *
1486 * fast unlock socket for user context.
1487 * If slow mode is on, we call regular release_sock()
1488 */
1489 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1490 {
1491 if (slow)
1492 release_sock(sk);
1493 else
1494 spin_unlock_bh(&sk->sk_lock.slock);
1495 }
1496
1497
1498 extern struct sock *sk_alloc(struct net *net, int family,
1499 gfp_t priority,
1500 struct proto *prot);
1501 extern void sk_free(struct sock *sk);
1502 extern void sk_release_kernel(struct sock *sk);
1503 extern struct sock *sk_clone_lock(const struct sock *sk,
1504 const gfp_t priority);
1505
1506 extern struct sk_buff *sock_wmalloc(struct sock *sk,
1507 unsigned long size, int force,
1508 gfp_t priority);
1509 extern struct sk_buff *sock_rmalloc(struct sock *sk,
1510 unsigned long size, int force,
1511 gfp_t priority);
1512 extern void sock_wfree(struct sk_buff *skb);
1513 extern void sock_rfree(struct sk_buff *skb);
1514 extern void sock_edemux(struct sk_buff *skb);
1515
1516 extern int sock_setsockopt(struct socket *sock, int level,
1517 int op, char __user *optval,
1518 unsigned int optlen);
1519
1520 extern int sock_getsockopt(struct socket *sock, int level,
1521 int op, char __user *optval,
1522 int __user *optlen);
1523 extern struct sk_buff *sock_alloc_send_skb(struct sock *sk,
1524 unsigned long size,
1525 int noblock,
1526 int *errcode);
1527 extern struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
1528 unsigned long header_len,
1529 unsigned long data_len,
1530 int noblock,
1531 int *errcode);
1532 extern void *sock_kmalloc(struct sock *sk, int size,
1533 gfp_t priority);
1534 extern void sock_kfree_s(struct sock *sk, void *mem, int size);
1535 extern void sk_send_sigurg(struct sock *sk);
1536
1537 /*
1538 * Functions to fill in entries in struct proto_ops when a protocol
1539 * does not implement a particular function.
1540 */
1541 extern int sock_no_bind(struct socket *,
1542 struct sockaddr *, int);
1543 extern int sock_no_connect(struct socket *,
1544 struct sockaddr *, int, int);
1545 extern int sock_no_socketpair(struct socket *,
1546 struct socket *);
1547 extern int sock_no_accept(struct socket *,
1548 struct socket *, int);
1549 extern int sock_no_getname(struct socket *,
1550 struct sockaddr *, int *, int);
1551 extern unsigned int sock_no_poll(struct file *, struct socket *,
1552 struct poll_table_struct *);
1553 extern int sock_no_ioctl(struct socket *, unsigned int,
1554 unsigned long);
1555 extern int sock_no_listen(struct socket *, int);
1556 extern int sock_no_shutdown(struct socket *, int);
1557 extern int sock_no_getsockopt(struct socket *, int , int,
1558 char __user *, int __user *);
1559 extern int sock_no_setsockopt(struct socket *, int, int,
1560 char __user *, unsigned int);
1561 extern int sock_no_sendmsg(struct kiocb *, struct socket *,
1562 struct msghdr *, size_t);
1563 extern int sock_no_recvmsg(struct kiocb *, struct socket *,
1564 struct msghdr *, size_t, int);
1565 extern int sock_no_mmap(struct file *file,
1566 struct socket *sock,
1567 struct vm_area_struct *vma);
1568 extern ssize_t sock_no_sendpage(struct socket *sock,
1569 struct page *page,
1570 int offset, size_t size,
1571 int flags);
1572
1573 /*
1574 * Functions to fill in entries in struct proto_ops when a protocol
1575 * uses the inet style.
1576 */
1577 extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
1578 char __user *optval, int __user *optlen);
1579 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1580 struct msghdr *msg, size_t size, int flags);
1581 extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
1582 char __user *optval, unsigned int optlen);
1583 extern int compat_sock_common_getsockopt(struct socket *sock, int level,
1584 int optname, char __user *optval, int __user *optlen);
1585 extern int compat_sock_common_setsockopt(struct socket *sock, int level,
1586 int optname, char __user *optval, unsigned int optlen);
1587
1588 extern void sk_common_release(struct sock *sk);
1589
1590 /*
1591 * Default socket callbacks and setup code
1592 */
1593
1594 /* Initialise core socket variables */
1595 extern void sock_init_data(struct socket *sock, struct sock *sk);
1596
1597 extern void sk_filter_release_rcu(struct rcu_head *rcu);
1598
1599 /**
1600 * sk_filter_release - release a socket filter
1601 * @fp: filter to remove
1602 *
1603 * Remove a filter from a socket and release its resources.
1604 */
1605
1606 static inline void sk_filter_release(struct sk_filter *fp)
1607 {
1608 if (atomic_dec_and_test(&fp->refcnt))
1609 call_rcu(&fp->rcu, sk_filter_release_rcu);
1610 }
1611
1612 static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1613 {
1614 unsigned int size = sk_filter_len(fp);
1615
1616 atomic_sub(size, &sk->sk_omem_alloc);
1617 sk_filter_release(fp);
1618 }
1619
1620 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1621 {
1622 atomic_inc(&fp->refcnt);
1623 atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
1624 }
1625
1626 /*
1627 * Socket reference counting postulates.
1628 *
1629 * * Each user of socket SHOULD hold a reference count.
1630 * * Each access point to socket (an hash table bucket, reference from a list,
1631 * running timer, skb in flight MUST hold a reference count.
1632 * * When reference count hits 0, it means it will never increase back.
1633 * * When reference count hits 0, it means that no references from
1634 * outside exist to this socket and current process on current CPU
1635 * is last user and may/should destroy this socket.
1636 * * sk_free is called from any context: process, BH, IRQ. When
1637 * it is called, socket has no references from outside -> sk_free
1638 * may release descendant resources allocated by the socket, but
1639 * to the time when it is called, socket is NOT referenced by any
1640 * hash tables, lists etc.
1641 * * Packets, delivered from outside (from network or from another process)
1642 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1643 * when they sit in queue. Otherwise, packets will leak to hole, when
1644 * socket is looked up by one cpu and unhasing is made by another CPU.
1645 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1646 * (leak to backlog). Packet socket does all the processing inside
1647 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1648 * use separate SMP lock, so that they are prone too.
1649 */
1650
1651 /* Ungrab socket and destroy it, if it was the last reference. */
1652 static inline void sock_put(struct sock *sk)
1653 {
1654 if (atomic_dec_and_test(&sk->sk_refcnt))
1655 sk_free(sk);
1656 }
1657
1658 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1659 const int nested);
1660
1661 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1662 {
1663 sk->sk_tx_queue_mapping = tx_queue;
1664 }
1665
1666 static inline void sk_tx_queue_clear(struct sock *sk)
1667 {
1668 sk->sk_tx_queue_mapping = -1;
1669 }
1670
1671 static inline int sk_tx_queue_get(const struct sock *sk)
1672 {
1673 return sk ? sk->sk_tx_queue_mapping : -1;
1674 }
1675
1676 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1677 {
1678 sk_tx_queue_clear(sk);
1679 sk->sk_socket = sock;
1680 }
1681
1682 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1683 {
1684 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1685 return &rcu_dereference_raw(sk->sk_wq)->wait;
1686 }
1687 /* Detach socket from process context.
1688 * Announce socket dead, detach it from wait queue and inode.
1689 * Note that parent inode held reference count on this struct sock,
1690 * we do not release it in this function, because protocol
1691 * probably wants some additional cleanups or even continuing
1692 * to work with this socket (TCP).
1693 */
1694 static inline void sock_orphan(struct sock *sk)
1695 {
1696 write_lock_bh(&sk->sk_callback_lock);
1697 sock_set_flag(sk, SOCK_DEAD);
1698 sk_set_socket(sk, NULL);
1699 sk->sk_wq = NULL;
1700 write_unlock_bh(&sk->sk_callback_lock);
1701 }
1702
1703 static inline void sock_graft(struct sock *sk, struct socket *parent)
1704 {
1705 write_lock_bh(&sk->sk_callback_lock);
1706 sk->sk_wq = parent->wq;
1707 parent->sk = sk;
1708 sk_set_socket(sk, parent);
1709 security_sock_graft(sk, parent);
1710 write_unlock_bh(&sk->sk_callback_lock);
1711 }
1712
1713 extern kuid_t sock_i_uid(struct sock *sk);
1714 extern unsigned long sock_i_ino(struct sock *sk);
1715
1716 static inline struct dst_entry *
1717 __sk_dst_get(struct sock *sk)
1718 {
1719 return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) ||
1720 lockdep_is_held(&sk->sk_lock.slock));
1721 }
1722
1723 static inline struct dst_entry *
1724 sk_dst_get(struct sock *sk)
1725 {
1726 struct dst_entry *dst;
1727
1728 rcu_read_lock();
1729 dst = rcu_dereference(sk->sk_dst_cache);
1730 if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1731 dst = NULL;
1732 rcu_read_unlock();
1733 return dst;
1734 }
1735
1736 extern void sk_reset_txq(struct sock *sk);
1737
1738 static inline void dst_negative_advice(struct sock *sk)
1739 {
1740 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1741
1742 if (dst && dst->ops->negative_advice) {
1743 ndst = dst->ops->negative_advice(dst);
1744
1745 if (ndst != dst) {
1746 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1747 sk_reset_txq(sk);
1748 }
1749 }
1750 }
1751
1752 static inline void
1753 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1754 {
1755 struct dst_entry *old_dst;
1756
1757 sk_tx_queue_clear(sk);
1758 /*
1759 * This can be called while sk is owned by the caller only,
1760 * with no state that can be checked in a rcu_dereference_check() cond
1761 */
1762 old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1763 rcu_assign_pointer(sk->sk_dst_cache, dst);
1764 dst_release(old_dst);
1765 }
1766
1767 static inline void
1768 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1769 {
1770 spin_lock(&sk->sk_dst_lock);
1771 __sk_dst_set(sk, dst);
1772 spin_unlock(&sk->sk_dst_lock);
1773 }
1774
1775 static inline void
1776 __sk_dst_reset(struct sock *sk)
1777 {
1778 __sk_dst_set(sk, NULL);
1779 }
1780
1781 static inline void
1782 sk_dst_reset(struct sock *sk)
1783 {
1784 spin_lock(&sk->sk_dst_lock);
1785 __sk_dst_reset(sk);
1786 spin_unlock(&sk->sk_dst_lock);
1787 }
1788
1789 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1790
1791 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1792
1793 static inline bool sk_can_gso(const struct sock *sk)
1794 {
1795 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1796 }
1797
1798 extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1799
1800 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1801 {
1802 sk->sk_route_nocaps |= flags;
1803 sk->sk_route_caps &= ~flags;
1804 }
1805
1806 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1807 char __user *from, char *to,
1808 int copy, int offset)
1809 {
1810 if (skb->ip_summed == CHECKSUM_NONE) {
1811 int err = 0;
1812 __wsum csum = csum_and_copy_from_user(from, to, copy, 0, &err);
1813 if (err)
1814 return err;
1815 skb->csum = csum_block_add(skb->csum, csum, offset);
1816 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1817 if (!access_ok(VERIFY_READ, from, copy) ||
1818 __copy_from_user_nocache(to, from, copy))
1819 return -EFAULT;
1820 } else if (copy_from_user(to, from, copy))
1821 return -EFAULT;
1822
1823 return 0;
1824 }
1825
1826 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1827 char __user *from, int copy)
1828 {
1829 int err, offset = skb->len;
1830
1831 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1832 copy, offset);
1833 if (err)
1834 __skb_trim(skb, offset);
1835
1836 return err;
1837 }
1838
1839 static inline int skb_copy_to_page_nocache(struct sock *sk, char __user *from,
1840 struct sk_buff *skb,
1841 struct page *page,
1842 int off, int copy)
1843 {
1844 int err;
1845
1846 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1847 copy, skb->len);
1848 if (err)
1849 return err;
1850
1851 skb->len += copy;
1852 skb->data_len += copy;
1853 skb->truesize += copy;
1854 sk->sk_wmem_queued += copy;
1855 sk_mem_charge(sk, copy);
1856 return 0;
1857 }
1858
1859 static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1860 struct sk_buff *skb, struct page *page,
1861 int off, int copy)
1862 {
1863 if (skb->ip_summed == CHECKSUM_NONE) {
1864 int err = 0;
1865 __wsum csum = csum_and_copy_from_user(from,
1866 page_address(page) + off,
1867 copy, 0, &err);
1868 if (err)
1869 return err;
1870 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1871 } else if (copy_from_user(page_address(page) + off, from, copy))
1872 return -EFAULT;
1873
1874 skb->len += copy;
1875 skb->data_len += copy;
1876 skb->truesize += copy;
1877 sk->sk_wmem_queued += copy;
1878 sk_mem_charge(sk, copy);
1879 return 0;
1880 }
1881
1882 /**
1883 * sk_wmem_alloc_get - returns write allocations
1884 * @sk: socket
1885 *
1886 * Returns sk_wmem_alloc minus initial offset of one
1887 */
1888 static inline int sk_wmem_alloc_get(const struct sock *sk)
1889 {
1890 return atomic_read(&sk->sk_wmem_alloc) - 1;
1891 }
1892
1893 /**
1894 * sk_rmem_alloc_get - returns read allocations
1895 * @sk: socket
1896 *
1897 * Returns sk_rmem_alloc
1898 */
1899 static inline int sk_rmem_alloc_get(const struct sock *sk)
1900 {
1901 return atomic_read(&sk->sk_rmem_alloc);
1902 }
1903
1904 /**
1905 * sk_has_allocations - check if allocations are outstanding
1906 * @sk: socket
1907 *
1908 * Returns true if socket has write or read allocations
1909 */
1910 static inline bool sk_has_allocations(const struct sock *sk)
1911 {
1912 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1913 }
1914
1915 /**
1916 * wq_has_sleeper - check if there are any waiting processes
1917 * @wq: struct socket_wq
1918 *
1919 * Returns true if socket_wq has waiting processes
1920 *
1921 * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1922 * barrier call. They were added due to the race found within the tcp code.
1923 *
1924 * Consider following tcp code paths:
1925 *
1926 * CPU1 CPU2
1927 *
1928 * sys_select receive packet
1929 * ... ...
1930 * __add_wait_queue update tp->rcv_nxt
1931 * ... ...
1932 * tp->rcv_nxt check sock_def_readable
1933 * ... {
1934 * schedule rcu_read_lock();
1935 * wq = rcu_dereference(sk->sk_wq);
1936 * if (wq && waitqueue_active(&wq->wait))
1937 * wake_up_interruptible(&wq->wait)
1938 * ...
1939 * }
1940 *
1941 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1942 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
1943 * could then endup calling schedule and sleep forever if there are no more
1944 * data on the socket.
1945 *
1946 */
1947 static inline bool wq_has_sleeper(struct socket_wq *wq)
1948 {
1949 /* We need to be sure we are in sync with the
1950 * add_wait_queue modifications to the wait queue.
1951 *
1952 * This memory barrier is paired in the sock_poll_wait.
1953 */
1954 smp_mb();
1955 return wq && waitqueue_active(&wq->wait);
1956 }
1957
1958 /**
1959 * sock_poll_wait - place memory barrier behind the poll_wait call.
1960 * @filp: file
1961 * @wait_address: socket wait queue
1962 * @p: poll_table
1963 *
1964 * See the comments in the wq_has_sleeper function.
1965 */
1966 static inline void sock_poll_wait(struct file *filp,
1967 wait_queue_head_t *wait_address, poll_table *p)
1968 {
1969 if (!poll_does_not_wait(p) && wait_address) {
1970 poll_wait(filp, wait_address, p);
1971 /* We need to be sure we are in sync with the
1972 * socket flags modification.
1973 *
1974 * This memory barrier is paired in the wq_has_sleeper.
1975 */
1976 smp_mb();
1977 }
1978 }
1979
1980 /*
1981 * Queue a received datagram if it will fit. Stream and sequenced
1982 * protocols can't normally use this as they need to fit buffers in
1983 * and play with them.
1984 *
1985 * Inlined as it's very short and called for pretty much every
1986 * packet ever received.
1987 */
1988
1989 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1990 {
1991 skb_orphan(skb);
1992 skb->sk = sk;
1993 skb->destructor = sock_wfree;
1994 /*
1995 * We used to take a refcount on sk, but following operation
1996 * is enough to guarantee sk_free() wont free this sock until
1997 * all in-flight packets are completed
1998 */
1999 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
2000 }
2001
2002 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2003 {
2004 skb_orphan(skb);
2005 skb->sk = sk;
2006 skb->destructor = sock_rfree;
2007 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2008 sk_mem_charge(sk, skb->truesize);
2009 }
2010
2011 extern void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2012 unsigned long expires);
2013
2014 extern void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2015
2016 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2017
2018 extern int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2019
2020 /*
2021 * Recover an error report and clear atomically
2022 */
2023
2024 static inline int sock_error(struct sock *sk)
2025 {
2026 int err;
2027 if (likely(!sk->sk_err))
2028 return 0;
2029 err = xchg(&sk->sk_err, 0);
2030 return -err;
2031 }
2032
2033 static inline unsigned long sock_wspace(struct sock *sk)
2034 {
2035 int amt = 0;
2036
2037 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2038 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
2039 if (amt < 0)
2040 amt = 0;
2041 }
2042 return amt;
2043 }
2044
2045 static inline void sk_wake_async(struct sock *sk, int how, int band)
2046 {
2047 if (sock_flag(sk, SOCK_FASYNC))
2048 sock_wake_async(sk->sk_socket, how, band);
2049 }
2050
2051 #define SOCK_MIN_SNDBUF 2048
2052 /*
2053 * Since sk_rmem_alloc sums skb->truesize, even a small frame might need
2054 * sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak
2055 */
2056 #define SOCK_MIN_RCVBUF (2048 + sizeof(struct sk_buff))
2057
2058 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2059 {
2060 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2061 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2062 sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2063 }
2064 }
2065
2066 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
2067
2068 /**
2069 * sk_page_frag - return an appropriate page_frag
2070 * @sk: socket
2071 *
2072 * If socket allocation mode allows current thread to sleep, it means its
2073 * safe to use the per task page_frag instead of the per socket one.
2074 */
2075 static inline struct page_frag *sk_page_frag(struct sock *sk)
2076 {
2077 if (sk->sk_allocation & __GFP_WAIT)
2078 return &current->task_frag;
2079
2080 return &sk->sk_frag;
2081 }
2082
2083 extern bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2084
2085 /*
2086 * Default write policy as shown to user space via poll/select/SIGIO
2087 */
2088 static inline bool sock_writeable(const struct sock *sk)
2089 {
2090 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2091 }
2092
2093 static inline gfp_t gfp_any(void)
2094 {
2095 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2096 }
2097
2098 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2099 {
2100 return noblock ? 0 : sk->sk_rcvtimeo;
2101 }
2102
2103 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2104 {
2105 return noblock ? 0 : sk->sk_sndtimeo;
2106 }
2107
2108 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2109 {
2110 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2111 }
2112
2113 /* Alas, with timeout socket operations are not restartable.
2114 * Compare this to poll().
2115 */
2116 static inline int sock_intr_errno(long timeo)
2117 {
2118 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2119 }
2120
2121 extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2122 struct sk_buff *skb);
2123 extern void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2124 struct sk_buff *skb);
2125
2126 static inline void
2127 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2128 {
2129 ktime_t kt = skb->tstamp;
2130 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2131
2132 /*
2133 * generate control messages if
2134 * - receive time stamping in software requested (SOCK_RCVTSTAMP
2135 * or SOCK_TIMESTAMPING_RX_SOFTWARE)
2136 * - software time stamp available and wanted
2137 * (SOCK_TIMESTAMPING_SOFTWARE)
2138 * - hardware time stamps available and wanted
2139 * (SOCK_TIMESTAMPING_SYS_HARDWARE or
2140 * SOCK_TIMESTAMPING_RAW_HARDWARE)
2141 */
2142 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2143 sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) ||
2144 (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) ||
2145 (hwtstamps->hwtstamp.tv64 &&
2146 sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) ||
2147 (hwtstamps->syststamp.tv64 &&
2148 sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE)))
2149 __sock_recv_timestamp(msg, sk, skb);
2150 else
2151 sk->sk_stamp = kt;
2152
2153 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2154 __sock_recv_wifi_status(msg, sk, skb);
2155 }
2156
2157 extern void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2158 struct sk_buff *skb);
2159
2160 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2161 struct sk_buff *skb)
2162 {
2163 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
2164 (1UL << SOCK_RCVTSTAMP) | \
2165 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE) | \
2166 (1UL << SOCK_TIMESTAMPING_SOFTWARE) | \
2167 (1UL << SOCK_TIMESTAMPING_RAW_HARDWARE) | \
2168 (1UL << SOCK_TIMESTAMPING_SYS_HARDWARE))
2169
2170 if (sk->sk_flags & FLAGS_TS_OR_DROPS)
2171 __sock_recv_ts_and_drops(msg, sk, skb);
2172 else
2173 sk->sk_stamp = skb->tstamp;
2174 }
2175
2176 /**
2177 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2178 * @sk: socket sending this packet
2179 * @tx_flags: filled with instructions for time stamping
2180 *
2181 * Currently only depends on SOCK_TIMESTAMPING* flags.
2182 */
2183 extern void sock_tx_timestamp(struct sock *sk, __u8 *tx_flags);
2184
2185 /**
2186 * sk_eat_skb - Release a skb if it is no longer needed
2187 * @sk: socket to eat this skb from
2188 * @skb: socket buffer to eat
2189 * @copied_early: flag indicating whether DMA operations copied this data early
2190 *
2191 * This routine must be called with interrupts disabled or with the socket
2192 * locked so that the sk_buff queue operation is ok.
2193 */
2194 #ifdef CONFIG_NET_DMA
2195 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early)
2196 {
2197 __skb_unlink(skb, &sk->sk_receive_queue);
2198 if (!copied_early)
2199 __kfree_skb(skb);
2200 else
2201 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
2202 }
2203 #else
2204 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early)
2205 {
2206 __skb_unlink(skb, &sk->sk_receive_queue);
2207 __kfree_skb(skb);
2208 }
2209 #endif
2210
2211 static inline
2212 struct net *sock_net(const struct sock *sk)
2213 {
2214 return read_pnet(&sk->sk_net);
2215 }
2216
2217 static inline
2218 void sock_net_set(struct sock *sk, struct net *net)
2219 {
2220 write_pnet(&sk->sk_net, net);
2221 }
2222
2223 /*
2224 * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
2225 * They should not hold a reference to a namespace in order to allow
2226 * to stop it.
2227 * Sockets after sk_change_net should be released using sk_release_kernel
2228 */
2229 static inline void sk_change_net(struct sock *sk, struct net *net)
2230 {
2231 put_net(sock_net(sk));
2232 sock_net_set(sk, hold_net(net));
2233 }
2234
2235 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2236 {
2237 if (skb->sk) {
2238 struct sock *sk = skb->sk;
2239
2240 skb->destructor = NULL;
2241 skb->sk = NULL;
2242 return sk;
2243 }
2244 return NULL;
2245 }
2246
2247 extern void sock_enable_timestamp(struct sock *sk, int flag);
2248 extern int sock_get_timestamp(struct sock *, struct timeval __user *);
2249 extern int sock_get_timestampns(struct sock *, struct timespec __user *);
2250
2251 bool sk_ns_capable(const struct sock *sk,
2252 struct user_namespace *user_ns, int cap);
2253 bool sk_capable(const struct sock *sk, int cap);
2254 bool sk_net_capable(const struct sock *sk, int cap);
2255
2256 /*
2257 * Enable debug/info messages
2258 */
2259 extern int net_msg_warn;
2260 #define NETDEBUG(fmt, args...) \
2261 do { if (net_msg_warn) printk(fmt,##args); } while (0)
2262
2263 #define LIMIT_NETDEBUG(fmt, args...) \
2264 do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
2265
2266 extern __u32 sysctl_wmem_max;
2267 extern __u32 sysctl_rmem_max;
2268
2269 extern int sysctl_optmem_max;
2270
2271 extern __u32 sysctl_wmem_default;
2272 extern __u32 sysctl_rmem_default;
2273
2274 #endif /* _SOCK_H */