Merge branch 'v4l_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / net / sock.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the AF_INET socket handler.
7 *
8 * Version: @(#)sock.h 1.0.4 05/13/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
14 *
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
33 *
34 *
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
39 */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h> /* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/memcontrol.h>
58 #include <linux/res_counter.h>
59 #include <linux/static_key.h>
60 #include <linux/aio.h>
61 #include <linux/sched.h>
62
63 #include <linux/filter.h>
64 #include <linux/rculist_nulls.h>
65 #include <linux/poll.h>
66
67 #include <linux/atomic.h>
68 #include <net/dst.h>
69 #include <net/checksum.h>
70
71 struct cgroup;
72 struct cgroup_subsys;
73 #ifdef CONFIG_NET
74 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss);
75 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg);
76 #else
77 static inline
78 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
79 {
80 return 0;
81 }
82 static inline
83 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
84 {
85 }
86 #endif
87 /*
88 * This structure really needs to be cleaned up.
89 * Most of it is for TCP, and not used by any of
90 * the other protocols.
91 */
92
93 /* Define this to get the SOCK_DBG debugging facility. */
94 #define SOCK_DEBUGGING
95 #ifdef SOCK_DEBUGGING
96 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
97 printk(KERN_DEBUG msg); } while (0)
98 #else
99 /* Validate arguments and do nothing */
100 static inline __printf(2, 3)
101 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
102 {
103 }
104 #endif
105
106 /* This is the per-socket lock. The spinlock provides a synchronization
107 * between user contexts and software interrupt processing, whereas the
108 * mini-semaphore synchronizes multiple users amongst themselves.
109 */
110 typedef struct {
111 spinlock_t slock;
112 int owned;
113 wait_queue_head_t wq;
114 /*
115 * We express the mutex-alike socket_lock semantics
116 * to the lock validator by explicitly managing
117 * the slock as a lock variant (in addition to
118 * the slock itself):
119 */
120 #ifdef CONFIG_DEBUG_LOCK_ALLOC
121 struct lockdep_map dep_map;
122 #endif
123 } socket_lock_t;
124
125 struct sock;
126 struct proto;
127 struct net;
128
129 typedef __u32 __bitwise __portpair;
130 typedef __u64 __bitwise __addrpair;
131
132 /**
133 * struct sock_common - minimal network layer representation of sockets
134 * @skc_daddr: Foreign IPv4 addr
135 * @skc_rcv_saddr: Bound local IPv4 addr
136 * @skc_hash: hash value used with various protocol lookup tables
137 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
138 * @skc_dport: placeholder for inet_dport/tw_dport
139 * @skc_num: placeholder for inet_num/tw_num
140 * @skc_family: network address family
141 * @skc_state: Connection state
142 * @skc_reuse: %SO_REUSEADDR setting
143 * @skc_reuseport: %SO_REUSEPORT setting
144 * @skc_bound_dev_if: bound device index if != 0
145 * @skc_bind_node: bind hash linkage for various protocol lookup tables
146 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
147 * @skc_prot: protocol handlers inside a network family
148 * @skc_net: reference to the network namespace of this socket
149 * @skc_node: main hash linkage for various protocol lookup tables
150 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
151 * @skc_tx_queue_mapping: tx queue number for this connection
152 * @skc_refcnt: reference count
153 *
154 * This is the minimal network layer representation of sockets, the header
155 * for struct sock and struct inet_timewait_sock.
156 */
157 struct sock_common {
158 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
159 * address on 64bit arches : cf INET_MATCH() and INET_TW_MATCH()
160 */
161 union {
162 __addrpair skc_addrpair;
163 struct {
164 __be32 skc_daddr;
165 __be32 skc_rcv_saddr;
166 };
167 };
168 union {
169 unsigned int skc_hash;
170 __u16 skc_u16hashes[2];
171 };
172 /* skc_dport && skc_num must be grouped as well */
173 union {
174 __portpair skc_portpair;
175 struct {
176 __be16 skc_dport;
177 __u16 skc_num;
178 };
179 };
180
181 unsigned short skc_family;
182 volatile unsigned char skc_state;
183 unsigned char skc_reuse:4;
184 unsigned char skc_reuseport:4;
185 int skc_bound_dev_if;
186 union {
187 struct hlist_node skc_bind_node;
188 struct hlist_nulls_node skc_portaddr_node;
189 };
190 struct proto *skc_prot;
191 #ifdef CONFIG_NET_NS
192 struct net *skc_net;
193 #endif
194 /*
195 * fields between dontcopy_begin/dontcopy_end
196 * are not copied in sock_copy()
197 */
198 /* private: */
199 int skc_dontcopy_begin[0];
200 /* public: */
201 union {
202 struct hlist_node skc_node;
203 struct hlist_nulls_node skc_nulls_node;
204 };
205 int skc_tx_queue_mapping;
206 atomic_t skc_refcnt;
207 /* private: */
208 int skc_dontcopy_end[0];
209 /* public: */
210 };
211
212 struct cg_proto;
213 /**
214 * struct sock - network layer representation of sockets
215 * @__sk_common: shared layout with inet_timewait_sock
216 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
217 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
218 * @sk_lock: synchronizer
219 * @sk_rcvbuf: size of receive buffer in bytes
220 * @sk_wq: sock wait queue and async head
221 * @sk_rx_dst: receive input route used by early tcp demux
222 * @sk_dst_cache: destination cache
223 * @sk_dst_lock: destination cache lock
224 * @sk_policy: flow policy
225 * @sk_receive_queue: incoming packets
226 * @sk_wmem_alloc: transmit queue bytes committed
227 * @sk_write_queue: Packet sending queue
228 * @sk_async_wait_queue: DMA copied packets
229 * @sk_omem_alloc: "o" is "option" or "other"
230 * @sk_wmem_queued: persistent queue size
231 * @sk_forward_alloc: space allocated forward
232 * @sk_allocation: allocation mode
233 * @sk_sndbuf: size of send buffer in bytes
234 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
235 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
236 * @sk_no_check: %SO_NO_CHECK setting, whether or not checkup packets
237 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
238 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
239 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
240 * @sk_gso_max_size: Maximum GSO segment size to build
241 * @sk_gso_max_segs: Maximum number of GSO segments
242 * @sk_lingertime: %SO_LINGER l_linger setting
243 * @sk_backlog: always used with the per-socket spinlock held
244 * @sk_callback_lock: used with the callbacks in the end of this struct
245 * @sk_error_queue: rarely used
246 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
247 * IPV6_ADDRFORM for instance)
248 * @sk_err: last error
249 * @sk_err_soft: errors that don't cause failure but are the cause of a
250 * persistent failure not just 'timed out'
251 * @sk_drops: raw/udp drops counter
252 * @sk_ack_backlog: current listen backlog
253 * @sk_max_ack_backlog: listen backlog set in listen()
254 * @sk_priority: %SO_PRIORITY setting
255 * @sk_cgrp_prioidx: socket group's priority map index
256 * @sk_type: socket type (%SOCK_STREAM, etc)
257 * @sk_protocol: which protocol this socket belongs in this network family
258 * @sk_peer_pid: &struct pid for this socket's peer
259 * @sk_peer_cred: %SO_PEERCRED setting
260 * @sk_rcvlowat: %SO_RCVLOWAT setting
261 * @sk_rcvtimeo: %SO_RCVTIMEO setting
262 * @sk_sndtimeo: %SO_SNDTIMEO setting
263 * @sk_rxhash: flow hash received from netif layer
264 * @sk_filter: socket filtering instructions
265 * @sk_protinfo: private area, net family specific, when not using slab
266 * @sk_timer: sock cleanup timer
267 * @sk_stamp: time stamp of last packet received
268 * @sk_socket: Identd and reporting IO signals
269 * @sk_user_data: RPC layer private data
270 * @sk_frag: cached page frag
271 * @sk_peek_off: current peek_offset value
272 * @sk_send_head: front of stuff to transmit
273 * @sk_security: used by security modules
274 * @sk_mark: generic packet mark
275 * @sk_classid: this socket's cgroup classid
276 * @sk_cgrp: this socket's cgroup-specific proto data
277 * @sk_write_pending: a write to stream socket waits to start
278 * @sk_state_change: callback to indicate change in the state of the sock
279 * @sk_data_ready: callback to indicate there is data to be processed
280 * @sk_write_space: callback to indicate there is bf sending space available
281 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
282 * @sk_backlog_rcv: callback to process the backlog
283 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
284 */
285 struct sock {
286 /*
287 * Now struct inet_timewait_sock also uses sock_common, so please just
288 * don't add nothing before this first member (__sk_common) --acme
289 */
290 struct sock_common __sk_common;
291 #define sk_node __sk_common.skc_node
292 #define sk_nulls_node __sk_common.skc_nulls_node
293 #define sk_refcnt __sk_common.skc_refcnt
294 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
295
296 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
297 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
298 #define sk_hash __sk_common.skc_hash
299 #define sk_family __sk_common.skc_family
300 #define sk_state __sk_common.skc_state
301 #define sk_reuse __sk_common.skc_reuse
302 #define sk_reuseport __sk_common.skc_reuseport
303 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
304 #define sk_bind_node __sk_common.skc_bind_node
305 #define sk_prot __sk_common.skc_prot
306 #define sk_net __sk_common.skc_net
307 socket_lock_t sk_lock;
308 struct sk_buff_head sk_receive_queue;
309 /*
310 * The backlog queue is special, it is always used with
311 * the per-socket spinlock held and requires low latency
312 * access. Therefore we special case it's implementation.
313 * Note : rmem_alloc is in this structure to fill a hole
314 * on 64bit arches, not because its logically part of
315 * backlog.
316 */
317 struct {
318 atomic_t rmem_alloc;
319 int len;
320 struct sk_buff *head;
321 struct sk_buff *tail;
322 } sk_backlog;
323 #define sk_rmem_alloc sk_backlog.rmem_alloc
324 int sk_forward_alloc;
325 #ifdef CONFIG_RPS
326 __u32 sk_rxhash;
327 #endif
328 atomic_t sk_drops;
329 int sk_rcvbuf;
330
331 struct sk_filter __rcu *sk_filter;
332 struct socket_wq __rcu *sk_wq;
333
334 #ifdef CONFIG_NET_DMA
335 struct sk_buff_head sk_async_wait_queue;
336 #endif
337
338 #ifdef CONFIG_XFRM
339 struct xfrm_policy *sk_policy[2];
340 #endif
341 unsigned long sk_flags;
342 struct dst_entry *sk_rx_dst;
343 struct dst_entry __rcu *sk_dst_cache;
344 spinlock_t sk_dst_lock;
345 atomic_t sk_wmem_alloc;
346 atomic_t sk_omem_alloc;
347 int sk_sndbuf;
348 struct sk_buff_head sk_write_queue;
349 kmemcheck_bitfield_begin(flags);
350 unsigned int sk_shutdown : 2,
351 sk_no_check : 2,
352 sk_userlocks : 4,
353 sk_protocol : 8,
354 sk_type : 16;
355 kmemcheck_bitfield_end(flags);
356 int sk_wmem_queued;
357 gfp_t sk_allocation;
358 netdev_features_t sk_route_caps;
359 netdev_features_t sk_route_nocaps;
360 int sk_gso_type;
361 unsigned int sk_gso_max_size;
362 u16 sk_gso_max_segs;
363 int sk_rcvlowat;
364 unsigned long sk_lingertime;
365 struct sk_buff_head sk_error_queue;
366 struct proto *sk_prot_creator;
367 rwlock_t sk_callback_lock;
368 int sk_err,
369 sk_err_soft;
370 unsigned short sk_ack_backlog;
371 unsigned short sk_max_ack_backlog;
372 __u32 sk_priority;
373 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
374 __u32 sk_cgrp_prioidx;
375 #endif
376 struct pid *sk_peer_pid;
377 const struct cred *sk_peer_cred;
378 long sk_rcvtimeo;
379 long sk_sndtimeo;
380 void *sk_protinfo;
381 struct timer_list sk_timer;
382 ktime_t sk_stamp;
383 struct socket *sk_socket;
384 void *sk_user_data;
385 struct page_frag sk_frag;
386 struct sk_buff *sk_send_head;
387 __s32 sk_peek_off;
388 int sk_write_pending;
389 #ifdef CONFIG_SECURITY
390 void *sk_security;
391 #endif
392 __u32 sk_mark;
393 u32 sk_classid;
394 struct cg_proto *sk_cgrp;
395 void (*sk_state_change)(struct sock *sk);
396 void (*sk_data_ready)(struct sock *sk, int bytes);
397 void (*sk_write_space)(struct sock *sk);
398 void (*sk_error_report)(struct sock *sk);
399 int (*sk_backlog_rcv)(struct sock *sk,
400 struct sk_buff *skb);
401 void (*sk_destruct)(struct sock *sk);
402 };
403
404 /*
405 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
406 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
407 * on a socket means that the socket will reuse everybody else's port
408 * without looking at the other's sk_reuse value.
409 */
410
411 #define SK_NO_REUSE 0
412 #define SK_CAN_REUSE 1
413 #define SK_FORCE_REUSE 2
414
415 static inline int sk_peek_offset(struct sock *sk, int flags)
416 {
417 if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0))
418 return sk->sk_peek_off;
419 else
420 return 0;
421 }
422
423 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
424 {
425 if (sk->sk_peek_off >= 0) {
426 if (sk->sk_peek_off >= val)
427 sk->sk_peek_off -= val;
428 else
429 sk->sk_peek_off = 0;
430 }
431 }
432
433 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
434 {
435 if (sk->sk_peek_off >= 0)
436 sk->sk_peek_off += val;
437 }
438
439 /*
440 * Hashed lists helper routines
441 */
442 static inline struct sock *sk_entry(const struct hlist_node *node)
443 {
444 return hlist_entry(node, struct sock, sk_node);
445 }
446
447 static inline struct sock *__sk_head(const struct hlist_head *head)
448 {
449 return hlist_entry(head->first, struct sock, sk_node);
450 }
451
452 static inline struct sock *sk_head(const struct hlist_head *head)
453 {
454 return hlist_empty(head) ? NULL : __sk_head(head);
455 }
456
457 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
458 {
459 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
460 }
461
462 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
463 {
464 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
465 }
466
467 static inline struct sock *sk_next(const struct sock *sk)
468 {
469 return sk->sk_node.next ?
470 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
471 }
472
473 static inline struct sock *sk_nulls_next(const struct sock *sk)
474 {
475 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
476 hlist_nulls_entry(sk->sk_nulls_node.next,
477 struct sock, sk_nulls_node) :
478 NULL;
479 }
480
481 static inline bool sk_unhashed(const struct sock *sk)
482 {
483 return hlist_unhashed(&sk->sk_node);
484 }
485
486 static inline bool sk_hashed(const struct sock *sk)
487 {
488 return !sk_unhashed(sk);
489 }
490
491 static inline void sk_node_init(struct hlist_node *node)
492 {
493 node->pprev = NULL;
494 }
495
496 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
497 {
498 node->pprev = NULL;
499 }
500
501 static inline void __sk_del_node(struct sock *sk)
502 {
503 __hlist_del(&sk->sk_node);
504 }
505
506 /* NB: equivalent to hlist_del_init_rcu */
507 static inline bool __sk_del_node_init(struct sock *sk)
508 {
509 if (sk_hashed(sk)) {
510 __sk_del_node(sk);
511 sk_node_init(&sk->sk_node);
512 return true;
513 }
514 return false;
515 }
516
517 /* Grab socket reference count. This operation is valid only
518 when sk is ALREADY grabbed f.e. it is found in hash table
519 or a list and the lookup is made under lock preventing hash table
520 modifications.
521 */
522
523 static inline void sock_hold(struct sock *sk)
524 {
525 atomic_inc(&sk->sk_refcnt);
526 }
527
528 /* Ungrab socket in the context, which assumes that socket refcnt
529 cannot hit zero, f.e. it is true in context of any socketcall.
530 */
531 static inline void __sock_put(struct sock *sk)
532 {
533 atomic_dec(&sk->sk_refcnt);
534 }
535
536 static inline bool sk_del_node_init(struct sock *sk)
537 {
538 bool rc = __sk_del_node_init(sk);
539
540 if (rc) {
541 /* paranoid for a while -acme */
542 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
543 __sock_put(sk);
544 }
545 return rc;
546 }
547 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
548
549 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
550 {
551 if (sk_hashed(sk)) {
552 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
553 return true;
554 }
555 return false;
556 }
557
558 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
559 {
560 bool rc = __sk_nulls_del_node_init_rcu(sk);
561
562 if (rc) {
563 /* paranoid for a while -acme */
564 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
565 __sock_put(sk);
566 }
567 return rc;
568 }
569
570 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
571 {
572 hlist_add_head(&sk->sk_node, list);
573 }
574
575 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
576 {
577 sock_hold(sk);
578 __sk_add_node(sk, list);
579 }
580
581 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
582 {
583 sock_hold(sk);
584 hlist_add_head_rcu(&sk->sk_node, list);
585 }
586
587 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
588 {
589 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
590 }
591
592 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
593 {
594 sock_hold(sk);
595 __sk_nulls_add_node_rcu(sk, list);
596 }
597
598 static inline void __sk_del_bind_node(struct sock *sk)
599 {
600 __hlist_del(&sk->sk_bind_node);
601 }
602
603 static inline void sk_add_bind_node(struct sock *sk,
604 struct hlist_head *list)
605 {
606 hlist_add_head(&sk->sk_bind_node, list);
607 }
608
609 #define sk_for_each(__sk, list) \
610 hlist_for_each_entry(__sk, list, sk_node)
611 #define sk_for_each_rcu(__sk, list) \
612 hlist_for_each_entry_rcu(__sk, list, sk_node)
613 #define sk_nulls_for_each(__sk, node, list) \
614 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
615 #define sk_nulls_for_each_rcu(__sk, node, list) \
616 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
617 #define sk_for_each_from(__sk) \
618 hlist_for_each_entry_from(__sk, sk_node)
619 #define sk_nulls_for_each_from(__sk, node) \
620 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
621 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
622 #define sk_for_each_safe(__sk, tmp, list) \
623 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
624 #define sk_for_each_bound(__sk, list) \
625 hlist_for_each_entry(__sk, list, sk_bind_node)
626
627 static inline struct user_namespace *sk_user_ns(struct sock *sk)
628 {
629 /* Careful only use this in a context where these parameters
630 * can not change and must all be valid, such as recvmsg from
631 * userspace.
632 */
633 return sk->sk_socket->file->f_cred->user_ns;
634 }
635
636 /* Sock flags */
637 enum sock_flags {
638 SOCK_DEAD,
639 SOCK_DONE,
640 SOCK_URGINLINE,
641 SOCK_KEEPOPEN,
642 SOCK_LINGER,
643 SOCK_DESTROY,
644 SOCK_BROADCAST,
645 SOCK_TIMESTAMP,
646 SOCK_ZAPPED,
647 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
648 SOCK_DBG, /* %SO_DEBUG setting */
649 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
650 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
651 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
652 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
653 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
654 SOCK_TIMESTAMPING_TX_HARDWARE, /* %SOF_TIMESTAMPING_TX_HARDWARE */
655 SOCK_TIMESTAMPING_TX_SOFTWARE, /* %SOF_TIMESTAMPING_TX_SOFTWARE */
656 SOCK_TIMESTAMPING_RX_HARDWARE, /* %SOF_TIMESTAMPING_RX_HARDWARE */
657 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
658 SOCK_TIMESTAMPING_SOFTWARE, /* %SOF_TIMESTAMPING_SOFTWARE */
659 SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */
660 SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */
661 SOCK_FASYNC, /* fasync() active */
662 SOCK_RXQ_OVFL,
663 SOCK_ZEROCOPY, /* buffers from userspace */
664 SOCK_WIFI_STATUS, /* push wifi status to userspace */
665 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
666 * Will use last 4 bytes of packet sent from
667 * user-space instead.
668 */
669 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
670 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
671 };
672
673 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
674 {
675 nsk->sk_flags = osk->sk_flags;
676 }
677
678 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
679 {
680 __set_bit(flag, &sk->sk_flags);
681 }
682
683 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
684 {
685 __clear_bit(flag, &sk->sk_flags);
686 }
687
688 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
689 {
690 return test_bit(flag, &sk->sk_flags);
691 }
692
693 #ifdef CONFIG_NET
694 extern struct static_key memalloc_socks;
695 static inline int sk_memalloc_socks(void)
696 {
697 return static_key_false(&memalloc_socks);
698 }
699 #else
700
701 static inline int sk_memalloc_socks(void)
702 {
703 return 0;
704 }
705
706 #endif
707
708 static inline gfp_t sk_gfp_atomic(struct sock *sk, gfp_t gfp_mask)
709 {
710 return GFP_ATOMIC | (sk->sk_allocation & __GFP_MEMALLOC);
711 }
712
713 static inline void sk_acceptq_removed(struct sock *sk)
714 {
715 sk->sk_ack_backlog--;
716 }
717
718 static inline void sk_acceptq_added(struct sock *sk)
719 {
720 sk->sk_ack_backlog++;
721 }
722
723 static inline bool sk_acceptq_is_full(const struct sock *sk)
724 {
725 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
726 }
727
728 /*
729 * Compute minimal free write space needed to queue new packets.
730 */
731 static inline int sk_stream_min_wspace(const struct sock *sk)
732 {
733 return sk->sk_wmem_queued >> 1;
734 }
735
736 static inline int sk_stream_wspace(const struct sock *sk)
737 {
738 return sk->sk_sndbuf - sk->sk_wmem_queued;
739 }
740
741 extern void sk_stream_write_space(struct sock *sk);
742
743 static inline bool sk_stream_memory_free(const struct sock *sk)
744 {
745 return sk->sk_wmem_queued < sk->sk_sndbuf;
746 }
747
748 /* OOB backlog add */
749 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
750 {
751 /* dont let skb dst not refcounted, we are going to leave rcu lock */
752 skb_dst_force(skb);
753
754 if (!sk->sk_backlog.tail)
755 sk->sk_backlog.head = skb;
756 else
757 sk->sk_backlog.tail->next = skb;
758
759 sk->sk_backlog.tail = skb;
760 skb->next = NULL;
761 }
762
763 /*
764 * Take into account size of receive queue and backlog queue
765 * Do not take into account this skb truesize,
766 * to allow even a single big packet to come.
767 */
768 static inline bool sk_rcvqueues_full(const struct sock *sk, const struct sk_buff *skb,
769 unsigned int limit)
770 {
771 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
772
773 return qsize > limit;
774 }
775
776 /* The per-socket spinlock must be held here. */
777 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
778 unsigned int limit)
779 {
780 if (sk_rcvqueues_full(sk, skb, limit))
781 return -ENOBUFS;
782
783 __sk_add_backlog(sk, skb);
784 sk->sk_backlog.len += skb->truesize;
785 return 0;
786 }
787
788 extern int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
789
790 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
791 {
792 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
793 return __sk_backlog_rcv(sk, skb);
794
795 return sk->sk_backlog_rcv(sk, skb);
796 }
797
798 static inline void sock_rps_record_flow(const struct sock *sk)
799 {
800 #ifdef CONFIG_RPS
801 struct rps_sock_flow_table *sock_flow_table;
802
803 rcu_read_lock();
804 sock_flow_table = rcu_dereference(rps_sock_flow_table);
805 rps_record_sock_flow(sock_flow_table, sk->sk_rxhash);
806 rcu_read_unlock();
807 #endif
808 }
809
810 static inline void sock_rps_reset_flow(const struct sock *sk)
811 {
812 #ifdef CONFIG_RPS
813 struct rps_sock_flow_table *sock_flow_table;
814
815 rcu_read_lock();
816 sock_flow_table = rcu_dereference(rps_sock_flow_table);
817 rps_reset_sock_flow(sock_flow_table, sk->sk_rxhash);
818 rcu_read_unlock();
819 #endif
820 }
821
822 static inline void sock_rps_save_rxhash(struct sock *sk,
823 const struct sk_buff *skb)
824 {
825 #ifdef CONFIG_RPS
826 if (unlikely(sk->sk_rxhash != skb->rxhash)) {
827 sock_rps_reset_flow(sk);
828 sk->sk_rxhash = skb->rxhash;
829 }
830 #endif
831 }
832
833 static inline void sock_rps_reset_rxhash(struct sock *sk)
834 {
835 #ifdef CONFIG_RPS
836 sock_rps_reset_flow(sk);
837 sk->sk_rxhash = 0;
838 #endif
839 }
840
841 #define sk_wait_event(__sk, __timeo, __condition) \
842 ({ int __rc; \
843 release_sock(__sk); \
844 __rc = __condition; \
845 if (!__rc) { \
846 *(__timeo) = schedule_timeout(*(__timeo)); \
847 } \
848 lock_sock(__sk); \
849 __rc = __condition; \
850 __rc; \
851 })
852
853 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
854 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
855 extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
856 extern int sk_stream_error(struct sock *sk, int flags, int err);
857 extern void sk_stream_kill_queues(struct sock *sk);
858 extern void sk_set_memalloc(struct sock *sk);
859 extern void sk_clear_memalloc(struct sock *sk);
860
861 extern int sk_wait_data(struct sock *sk, long *timeo);
862
863 struct request_sock_ops;
864 struct timewait_sock_ops;
865 struct inet_hashinfo;
866 struct raw_hashinfo;
867 struct module;
868
869 /*
870 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
871 * un-modified. Special care is taken when initializing object to zero.
872 */
873 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
874 {
875 if (offsetof(struct sock, sk_node.next) != 0)
876 memset(sk, 0, offsetof(struct sock, sk_node.next));
877 memset(&sk->sk_node.pprev, 0,
878 size - offsetof(struct sock, sk_node.pprev));
879 }
880
881 /* Networking protocol blocks we attach to sockets.
882 * socket layer -> transport layer interface
883 * transport -> network interface is defined by struct inet_proto
884 */
885 struct proto {
886 void (*close)(struct sock *sk,
887 long timeout);
888 int (*connect)(struct sock *sk,
889 struct sockaddr *uaddr,
890 int addr_len);
891 int (*disconnect)(struct sock *sk, int flags);
892
893 struct sock * (*accept)(struct sock *sk, int flags, int *err);
894
895 int (*ioctl)(struct sock *sk, int cmd,
896 unsigned long arg);
897 int (*init)(struct sock *sk);
898 void (*destroy)(struct sock *sk);
899 void (*shutdown)(struct sock *sk, int how);
900 int (*setsockopt)(struct sock *sk, int level,
901 int optname, char __user *optval,
902 unsigned int optlen);
903 int (*getsockopt)(struct sock *sk, int level,
904 int optname, char __user *optval,
905 int __user *option);
906 #ifdef CONFIG_COMPAT
907 int (*compat_setsockopt)(struct sock *sk,
908 int level,
909 int optname, char __user *optval,
910 unsigned int optlen);
911 int (*compat_getsockopt)(struct sock *sk,
912 int level,
913 int optname, char __user *optval,
914 int __user *option);
915 int (*compat_ioctl)(struct sock *sk,
916 unsigned int cmd, unsigned long arg);
917 #endif
918 int (*sendmsg)(struct kiocb *iocb, struct sock *sk,
919 struct msghdr *msg, size_t len);
920 int (*recvmsg)(struct kiocb *iocb, struct sock *sk,
921 struct msghdr *msg,
922 size_t len, int noblock, int flags,
923 int *addr_len);
924 int (*sendpage)(struct sock *sk, struct page *page,
925 int offset, size_t size, int flags);
926 int (*bind)(struct sock *sk,
927 struct sockaddr *uaddr, int addr_len);
928
929 int (*backlog_rcv) (struct sock *sk,
930 struct sk_buff *skb);
931
932 void (*release_cb)(struct sock *sk);
933 void (*mtu_reduced)(struct sock *sk);
934
935 /* Keeping track of sk's, looking them up, and port selection methods. */
936 void (*hash)(struct sock *sk);
937 void (*unhash)(struct sock *sk);
938 void (*rehash)(struct sock *sk);
939 int (*get_port)(struct sock *sk, unsigned short snum);
940 void (*clear_sk)(struct sock *sk, int size);
941
942 /* Keeping track of sockets in use */
943 #ifdef CONFIG_PROC_FS
944 unsigned int inuse_idx;
945 #endif
946
947 /* Memory pressure */
948 void (*enter_memory_pressure)(struct sock *sk);
949 atomic_long_t *memory_allocated; /* Current allocated memory. */
950 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
951 /*
952 * Pressure flag: try to collapse.
953 * Technical note: it is used by multiple contexts non atomically.
954 * All the __sk_mem_schedule() is of this nature: accounting
955 * is strict, actions are advisory and have some latency.
956 */
957 int *memory_pressure;
958 long *sysctl_mem;
959 int *sysctl_wmem;
960 int *sysctl_rmem;
961 int max_header;
962 bool no_autobind;
963
964 struct kmem_cache *slab;
965 unsigned int obj_size;
966 int slab_flags;
967
968 struct percpu_counter *orphan_count;
969
970 struct request_sock_ops *rsk_prot;
971 struct timewait_sock_ops *twsk_prot;
972
973 union {
974 struct inet_hashinfo *hashinfo;
975 struct udp_table *udp_table;
976 struct raw_hashinfo *raw_hash;
977 } h;
978
979 struct module *owner;
980
981 char name[32];
982
983 struct list_head node;
984 #ifdef SOCK_REFCNT_DEBUG
985 atomic_t socks;
986 #endif
987 #ifdef CONFIG_MEMCG_KMEM
988 /*
989 * cgroup specific init/deinit functions. Called once for all
990 * protocols that implement it, from cgroups populate function.
991 * This function has to setup any files the protocol want to
992 * appear in the kmem cgroup filesystem.
993 */
994 int (*init_cgroup)(struct mem_cgroup *memcg,
995 struct cgroup_subsys *ss);
996 void (*destroy_cgroup)(struct mem_cgroup *memcg);
997 struct cg_proto *(*proto_cgroup)(struct mem_cgroup *memcg);
998 #endif
999 };
1000
1001 /*
1002 * Bits in struct cg_proto.flags
1003 */
1004 enum cg_proto_flags {
1005 /* Currently active and new sockets should be assigned to cgroups */
1006 MEMCG_SOCK_ACTIVE,
1007 /* It was ever activated; we must disarm static keys on destruction */
1008 MEMCG_SOCK_ACTIVATED,
1009 };
1010
1011 struct cg_proto {
1012 void (*enter_memory_pressure)(struct sock *sk);
1013 struct res_counter *memory_allocated; /* Current allocated memory. */
1014 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
1015 int *memory_pressure;
1016 long *sysctl_mem;
1017 unsigned long flags;
1018 /*
1019 * memcg field is used to find which memcg we belong directly
1020 * Each memcg struct can hold more than one cg_proto, so container_of
1021 * won't really cut.
1022 *
1023 * The elegant solution would be having an inverse function to
1024 * proto_cgroup in struct proto, but that means polluting the structure
1025 * for everybody, instead of just for memcg users.
1026 */
1027 struct mem_cgroup *memcg;
1028 };
1029
1030 extern int proto_register(struct proto *prot, int alloc_slab);
1031 extern void proto_unregister(struct proto *prot);
1032
1033 static inline bool memcg_proto_active(struct cg_proto *cg_proto)
1034 {
1035 return test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags);
1036 }
1037
1038 static inline bool memcg_proto_activated(struct cg_proto *cg_proto)
1039 {
1040 return test_bit(MEMCG_SOCK_ACTIVATED, &cg_proto->flags);
1041 }
1042
1043 #ifdef SOCK_REFCNT_DEBUG
1044 static inline void sk_refcnt_debug_inc(struct sock *sk)
1045 {
1046 atomic_inc(&sk->sk_prot->socks);
1047 }
1048
1049 static inline void sk_refcnt_debug_dec(struct sock *sk)
1050 {
1051 atomic_dec(&sk->sk_prot->socks);
1052 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1053 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1054 }
1055
1056 static inline void sk_refcnt_debug_release(const struct sock *sk)
1057 {
1058 if (atomic_read(&sk->sk_refcnt) != 1)
1059 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1060 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
1061 }
1062 #else /* SOCK_REFCNT_DEBUG */
1063 #define sk_refcnt_debug_inc(sk) do { } while (0)
1064 #define sk_refcnt_debug_dec(sk) do { } while (0)
1065 #define sk_refcnt_debug_release(sk) do { } while (0)
1066 #endif /* SOCK_REFCNT_DEBUG */
1067
1068 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_NET)
1069 extern struct static_key memcg_socket_limit_enabled;
1070 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1071 struct cg_proto *cg_proto)
1072 {
1073 return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg));
1074 }
1075 #define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled)
1076 #else
1077 #define mem_cgroup_sockets_enabled 0
1078 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1079 struct cg_proto *cg_proto)
1080 {
1081 return NULL;
1082 }
1083 #endif
1084
1085
1086 static inline bool sk_has_memory_pressure(const struct sock *sk)
1087 {
1088 return sk->sk_prot->memory_pressure != NULL;
1089 }
1090
1091 static inline bool sk_under_memory_pressure(const struct sock *sk)
1092 {
1093 if (!sk->sk_prot->memory_pressure)
1094 return false;
1095
1096 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1097 return !!*sk->sk_cgrp->memory_pressure;
1098
1099 return !!*sk->sk_prot->memory_pressure;
1100 }
1101
1102 static inline void sk_leave_memory_pressure(struct sock *sk)
1103 {
1104 int *memory_pressure = sk->sk_prot->memory_pressure;
1105
1106 if (!memory_pressure)
1107 return;
1108
1109 if (*memory_pressure)
1110 *memory_pressure = 0;
1111
1112 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1113 struct cg_proto *cg_proto = sk->sk_cgrp;
1114 struct proto *prot = sk->sk_prot;
1115
1116 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1117 if (*cg_proto->memory_pressure)
1118 *cg_proto->memory_pressure = 0;
1119 }
1120
1121 }
1122
1123 static inline void sk_enter_memory_pressure(struct sock *sk)
1124 {
1125 if (!sk->sk_prot->enter_memory_pressure)
1126 return;
1127
1128 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1129 struct cg_proto *cg_proto = sk->sk_cgrp;
1130 struct proto *prot = sk->sk_prot;
1131
1132 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1133 cg_proto->enter_memory_pressure(sk);
1134 }
1135
1136 sk->sk_prot->enter_memory_pressure(sk);
1137 }
1138
1139 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1140 {
1141 long *prot = sk->sk_prot->sysctl_mem;
1142 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1143 prot = sk->sk_cgrp->sysctl_mem;
1144 return prot[index];
1145 }
1146
1147 static inline void memcg_memory_allocated_add(struct cg_proto *prot,
1148 unsigned long amt,
1149 int *parent_status)
1150 {
1151 struct res_counter *fail;
1152 int ret;
1153
1154 ret = res_counter_charge_nofail(prot->memory_allocated,
1155 amt << PAGE_SHIFT, &fail);
1156 if (ret < 0)
1157 *parent_status = OVER_LIMIT;
1158 }
1159
1160 static inline void memcg_memory_allocated_sub(struct cg_proto *prot,
1161 unsigned long amt)
1162 {
1163 res_counter_uncharge(prot->memory_allocated, amt << PAGE_SHIFT);
1164 }
1165
1166 static inline u64 memcg_memory_allocated_read(struct cg_proto *prot)
1167 {
1168 u64 ret;
1169 ret = res_counter_read_u64(prot->memory_allocated, RES_USAGE);
1170 return ret >> PAGE_SHIFT;
1171 }
1172
1173 static inline long
1174 sk_memory_allocated(const struct sock *sk)
1175 {
1176 struct proto *prot = sk->sk_prot;
1177 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1178 return memcg_memory_allocated_read(sk->sk_cgrp);
1179
1180 return atomic_long_read(prot->memory_allocated);
1181 }
1182
1183 static inline long
1184 sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status)
1185 {
1186 struct proto *prot = sk->sk_prot;
1187
1188 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1189 memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status);
1190 /* update the root cgroup regardless */
1191 atomic_long_add_return(amt, prot->memory_allocated);
1192 return memcg_memory_allocated_read(sk->sk_cgrp);
1193 }
1194
1195 return atomic_long_add_return(amt, prot->memory_allocated);
1196 }
1197
1198 static inline void
1199 sk_memory_allocated_sub(struct sock *sk, int amt)
1200 {
1201 struct proto *prot = sk->sk_prot;
1202
1203 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1204 memcg_memory_allocated_sub(sk->sk_cgrp, amt);
1205
1206 atomic_long_sub(amt, prot->memory_allocated);
1207 }
1208
1209 static inline void sk_sockets_allocated_dec(struct sock *sk)
1210 {
1211 struct proto *prot = sk->sk_prot;
1212
1213 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1214 struct cg_proto *cg_proto = sk->sk_cgrp;
1215
1216 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1217 percpu_counter_dec(cg_proto->sockets_allocated);
1218 }
1219
1220 percpu_counter_dec(prot->sockets_allocated);
1221 }
1222
1223 static inline void sk_sockets_allocated_inc(struct sock *sk)
1224 {
1225 struct proto *prot = sk->sk_prot;
1226
1227 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1228 struct cg_proto *cg_proto = sk->sk_cgrp;
1229
1230 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1231 percpu_counter_inc(cg_proto->sockets_allocated);
1232 }
1233
1234 percpu_counter_inc(prot->sockets_allocated);
1235 }
1236
1237 static inline int
1238 sk_sockets_allocated_read_positive(struct sock *sk)
1239 {
1240 struct proto *prot = sk->sk_prot;
1241
1242 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1243 return percpu_counter_read_positive(sk->sk_cgrp->sockets_allocated);
1244
1245 return percpu_counter_read_positive(prot->sockets_allocated);
1246 }
1247
1248 static inline int
1249 proto_sockets_allocated_sum_positive(struct proto *prot)
1250 {
1251 return percpu_counter_sum_positive(prot->sockets_allocated);
1252 }
1253
1254 static inline long
1255 proto_memory_allocated(struct proto *prot)
1256 {
1257 return atomic_long_read(prot->memory_allocated);
1258 }
1259
1260 static inline bool
1261 proto_memory_pressure(struct proto *prot)
1262 {
1263 if (!prot->memory_pressure)
1264 return false;
1265 return !!*prot->memory_pressure;
1266 }
1267
1268
1269 #ifdef CONFIG_PROC_FS
1270 /* Called with local bh disabled */
1271 extern void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1272 extern int sock_prot_inuse_get(struct net *net, struct proto *proto);
1273 #else
1274 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1275 int inc)
1276 {
1277 }
1278 #endif
1279
1280
1281 /* With per-bucket locks this operation is not-atomic, so that
1282 * this version is not worse.
1283 */
1284 static inline void __sk_prot_rehash(struct sock *sk)
1285 {
1286 sk->sk_prot->unhash(sk);
1287 sk->sk_prot->hash(sk);
1288 }
1289
1290 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
1291
1292 /* About 10 seconds */
1293 #define SOCK_DESTROY_TIME (10*HZ)
1294
1295 /* Sockets 0-1023 can't be bound to unless you are superuser */
1296 #define PROT_SOCK 1024
1297
1298 #define SHUTDOWN_MASK 3
1299 #define RCV_SHUTDOWN 1
1300 #define SEND_SHUTDOWN 2
1301
1302 #define SOCK_SNDBUF_LOCK 1
1303 #define SOCK_RCVBUF_LOCK 2
1304 #define SOCK_BINDADDR_LOCK 4
1305 #define SOCK_BINDPORT_LOCK 8
1306
1307 /* sock_iocb: used to kick off async processing of socket ios */
1308 struct sock_iocb {
1309 struct list_head list;
1310
1311 int flags;
1312 int size;
1313 struct socket *sock;
1314 struct sock *sk;
1315 struct scm_cookie *scm;
1316 struct msghdr *msg, async_msg;
1317 struct kiocb *kiocb;
1318 };
1319
1320 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
1321 {
1322 return (struct sock_iocb *)iocb->private;
1323 }
1324
1325 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
1326 {
1327 return si->kiocb;
1328 }
1329
1330 struct socket_alloc {
1331 struct socket socket;
1332 struct inode vfs_inode;
1333 };
1334
1335 static inline struct socket *SOCKET_I(struct inode *inode)
1336 {
1337 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1338 }
1339
1340 static inline struct inode *SOCK_INODE(struct socket *socket)
1341 {
1342 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1343 }
1344
1345 /*
1346 * Functions for memory accounting
1347 */
1348 extern int __sk_mem_schedule(struct sock *sk, int size, int kind);
1349 extern void __sk_mem_reclaim(struct sock *sk);
1350
1351 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
1352 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1353 #define SK_MEM_SEND 0
1354 #define SK_MEM_RECV 1
1355
1356 static inline int sk_mem_pages(int amt)
1357 {
1358 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1359 }
1360
1361 static inline bool sk_has_account(struct sock *sk)
1362 {
1363 /* return true if protocol supports memory accounting */
1364 return !!sk->sk_prot->memory_allocated;
1365 }
1366
1367 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1368 {
1369 if (!sk_has_account(sk))
1370 return true;
1371 return size <= sk->sk_forward_alloc ||
1372 __sk_mem_schedule(sk, size, SK_MEM_SEND);
1373 }
1374
1375 static inline bool
1376 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1377 {
1378 if (!sk_has_account(sk))
1379 return true;
1380 return size<= sk->sk_forward_alloc ||
1381 __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1382 skb_pfmemalloc(skb);
1383 }
1384
1385 static inline void sk_mem_reclaim(struct sock *sk)
1386 {
1387 if (!sk_has_account(sk))
1388 return;
1389 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1390 __sk_mem_reclaim(sk);
1391 }
1392
1393 static inline void sk_mem_reclaim_partial(struct sock *sk)
1394 {
1395 if (!sk_has_account(sk))
1396 return;
1397 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1398 __sk_mem_reclaim(sk);
1399 }
1400
1401 static inline void sk_mem_charge(struct sock *sk, int size)
1402 {
1403 if (!sk_has_account(sk))
1404 return;
1405 sk->sk_forward_alloc -= size;
1406 }
1407
1408 static inline void sk_mem_uncharge(struct sock *sk, int size)
1409 {
1410 if (!sk_has_account(sk))
1411 return;
1412 sk->sk_forward_alloc += size;
1413 }
1414
1415 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1416 {
1417 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1418 sk->sk_wmem_queued -= skb->truesize;
1419 sk_mem_uncharge(sk, skb->truesize);
1420 __kfree_skb(skb);
1421 }
1422
1423 /* Used by processes to "lock" a socket state, so that
1424 * interrupts and bottom half handlers won't change it
1425 * from under us. It essentially blocks any incoming
1426 * packets, so that we won't get any new data or any
1427 * packets that change the state of the socket.
1428 *
1429 * While locked, BH processing will add new packets to
1430 * the backlog queue. This queue is processed by the
1431 * owner of the socket lock right before it is released.
1432 *
1433 * Since ~2.3.5 it is also exclusive sleep lock serializing
1434 * accesses from user process context.
1435 */
1436 #define sock_owned_by_user(sk) ((sk)->sk_lock.owned)
1437
1438 /*
1439 * Macro so as to not evaluate some arguments when
1440 * lockdep is not enabled.
1441 *
1442 * Mark both the sk_lock and the sk_lock.slock as a
1443 * per-address-family lock class.
1444 */
1445 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1446 do { \
1447 sk->sk_lock.owned = 0; \
1448 init_waitqueue_head(&sk->sk_lock.wq); \
1449 spin_lock_init(&(sk)->sk_lock.slock); \
1450 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1451 sizeof((sk)->sk_lock)); \
1452 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1453 (skey), (sname)); \
1454 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1455 } while (0)
1456
1457 extern void lock_sock_nested(struct sock *sk, int subclass);
1458
1459 static inline void lock_sock(struct sock *sk)
1460 {
1461 lock_sock_nested(sk, 0);
1462 }
1463
1464 extern void release_sock(struct sock *sk);
1465
1466 /* BH context may only use the following locking interface. */
1467 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1468 #define bh_lock_sock_nested(__sk) \
1469 spin_lock_nested(&((__sk)->sk_lock.slock), \
1470 SINGLE_DEPTH_NESTING)
1471 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1472
1473 extern bool lock_sock_fast(struct sock *sk);
1474 /**
1475 * unlock_sock_fast - complement of lock_sock_fast
1476 * @sk: socket
1477 * @slow: slow mode
1478 *
1479 * fast unlock socket for user context.
1480 * If slow mode is on, we call regular release_sock()
1481 */
1482 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1483 {
1484 if (slow)
1485 release_sock(sk);
1486 else
1487 spin_unlock_bh(&sk->sk_lock.slock);
1488 }
1489
1490
1491 extern struct sock *sk_alloc(struct net *net, int family,
1492 gfp_t priority,
1493 struct proto *prot);
1494 extern void sk_free(struct sock *sk);
1495 extern void sk_release_kernel(struct sock *sk);
1496 extern struct sock *sk_clone_lock(const struct sock *sk,
1497 const gfp_t priority);
1498
1499 extern struct sk_buff *sock_wmalloc(struct sock *sk,
1500 unsigned long size, int force,
1501 gfp_t priority);
1502 extern struct sk_buff *sock_rmalloc(struct sock *sk,
1503 unsigned long size, int force,
1504 gfp_t priority);
1505 extern void sock_wfree(struct sk_buff *skb);
1506 extern void sock_rfree(struct sk_buff *skb);
1507 extern void sock_edemux(struct sk_buff *skb);
1508
1509 extern int sock_setsockopt(struct socket *sock, int level,
1510 int op, char __user *optval,
1511 unsigned int optlen);
1512
1513 extern int sock_getsockopt(struct socket *sock, int level,
1514 int op, char __user *optval,
1515 int __user *optlen);
1516 extern struct sk_buff *sock_alloc_send_skb(struct sock *sk,
1517 unsigned long size,
1518 int noblock,
1519 int *errcode);
1520 extern struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
1521 unsigned long header_len,
1522 unsigned long data_len,
1523 int noblock,
1524 int *errcode);
1525 extern void *sock_kmalloc(struct sock *sk, int size,
1526 gfp_t priority);
1527 extern void sock_kfree_s(struct sock *sk, void *mem, int size);
1528 extern void sk_send_sigurg(struct sock *sk);
1529
1530 /*
1531 * Functions to fill in entries in struct proto_ops when a protocol
1532 * does not implement a particular function.
1533 */
1534 extern int sock_no_bind(struct socket *,
1535 struct sockaddr *, int);
1536 extern int sock_no_connect(struct socket *,
1537 struct sockaddr *, int, int);
1538 extern int sock_no_socketpair(struct socket *,
1539 struct socket *);
1540 extern int sock_no_accept(struct socket *,
1541 struct socket *, int);
1542 extern int sock_no_getname(struct socket *,
1543 struct sockaddr *, int *, int);
1544 extern unsigned int sock_no_poll(struct file *, struct socket *,
1545 struct poll_table_struct *);
1546 extern int sock_no_ioctl(struct socket *, unsigned int,
1547 unsigned long);
1548 extern int sock_no_listen(struct socket *, int);
1549 extern int sock_no_shutdown(struct socket *, int);
1550 extern int sock_no_getsockopt(struct socket *, int , int,
1551 char __user *, int __user *);
1552 extern int sock_no_setsockopt(struct socket *, int, int,
1553 char __user *, unsigned int);
1554 extern int sock_no_sendmsg(struct kiocb *, struct socket *,
1555 struct msghdr *, size_t);
1556 extern int sock_no_recvmsg(struct kiocb *, struct socket *,
1557 struct msghdr *, size_t, int);
1558 extern int sock_no_mmap(struct file *file,
1559 struct socket *sock,
1560 struct vm_area_struct *vma);
1561 extern ssize_t sock_no_sendpage(struct socket *sock,
1562 struct page *page,
1563 int offset, size_t size,
1564 int flags);
1565
1566 /*
1567 * Functions to fill in entries in struct proto_ops when a protocol
1568 * uses the inet style.
1569 */
1570 extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
1571 char __user *optval, int __user *optlen);
1572 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1573 struct msghdr *msg, size_t size, int flags);
1574 extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
1575 char __user *optval, unsigned int optlen);
1576 extern int compat_sock_common_getsockopt(struct socket *sock, int level,
1577 int optname, char __user *optval, int __user *optlen);
1578 extern int compat_sock_common_setsockopt(struct socket *sock, int level,
1579 int optname, char __user *optval, unsigned int optlen);
1580
1581 extern void sk_common_release(struct sock *sk);
1582
1583 /*
1584 * Default socket callbacks and setup code
1585 */
1586
1587 /* Initialise core socket variables */
1588 extern void sock_init_data(struct socket *sock, struct sock *sk);
1589
1590 extern void sk_filter_release_rcu(struct rcu_head *rcu);
1591
1592 /**
1593 * sk_filter_release - release a socket filter
1594 * @fp: filter to remove
1595 *
1596 * Remove a filter from a socket and release its resources.
1597 */
1598
1599 static inline void sk_filter_release(struct sk_filter *fp)
1600 {
1601 if (atomic_dec_and_test(&fp->refcnt))
1602 call_rcu(&fp->rcu, sk_filter_release_rcu);
1603 }
1604
1605 static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1606 {
1607 unsigned int size = sk_filter_len(fp);
1608
1609 atomic_sub(size, &sk->sk_omem_alloc);
1610 sk_filter_release(fp);
1611 }
1612
1613 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1614 {
1615 atomic_inc(&fp->refcnt);
1616 atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
1617 }
1618
1619 /*
1620 * Socket reference counting postulates.
1621 *
1622 * * Each user of socket SHOULD hold a reference count.
1623 * * Each access point to socket (an hash table bucket, reference from a list,
1624 * running timer, skb in flight MUST hold a reference count.
1625 * * When reference count hits 0, it means it will never increase back.
1626 * * When reference count hits 0, it means that no references from
1627 * outside exist to this socket and current process on current CPU
1628 * is last user and may/should destroy this socket.
1629 * * sk_free is called from any context: process, BH, IRQ. When
1630 * it is called, socket has no references from outside -> sk_free
1631 * may release descendant resources allocated by the socket, but
1632 * to the time when it is called, socket is NOT referenced by any
1633 * hash tables, lists etc.
1634 * * Packets, delivered from outside (from network or from another process)
1635 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1636 * when they sit in queue. Otherwise, packets will leak to hole, when
1637 * socket is looked up by one cpu and unhasing is made by another CPU.
1638 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1639 * (leak to backlog). Packet socket does all the processing inside
1640 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1641 * use separate SMP lock, so that they are prone too.
1642 */
1643
1644 /* Ungrab socket and destroy it, if it was the last reference. */
1645 static inline void sock_put(struct sock *sk)
1646 {
1647 if (atomic_dec_and_test(&sk->sk_refcnt))
1648 sk_free(sk);
1649 }
1650
1651 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1652 const int nested);
1653
1654 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1655 {
1656 sk->sk_tx_queue_mapping = tx_queue;
1657 }
1658
1659 static inline void sk_tx_queue_clear(struct sock *sk)
1660 {
1661 sk->sk_tx_queue_mapping = -1;
1662 }
1663
1664 static inline int sk_tx_queue_get(const struct sock *sk)
1665 {
1666 return sk ? sk->sk_tx_queue_mapping : -1;
1667 }
1668
1669 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1670 {
1671 sk_tx_queue_clear(sk);
1672 sk->sk_socket = sock;
1673 }
1674
1675 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1676 {
1677 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1678 return &rcu_dereference_raw(sk->sk_wq)->wait;
1679 }
1680 /* Detach socket from process context.
1681 * Announce socket dead, detach it from wait queue and inode.
1682 * Note that parent inode held reference count on this struct sock,
1683 * we do not release it in this function, because protocol
1684 * probably wants some additional cleanups or even continuing
1685 * to work with this socket (TCP).
1686 */
1687 static inline void sock_orphan(struct sock *sk)
1688 {
1689 write_lock_bh(&sk->sk_callback_lock);
1690 sock_set_flag(sk, SOCK_DEAD);
1691 sk_set_socket(sk, NULL);
1692 sk->sk_wq = NULL;
1693 write_unlock_bh(&sk->sk_callback_lock);
1694 }
1695
1696 static inline void sock_graft(struct sock *sk, struct socket *parent)
1697 {
1698 write_lock_bh(&sk->sk_callback_lock);
1699 sk->sk_wq = parent->wq;
1700 parent->sk = sk;
1701 sk_set_socket(sk, parent);
1702 security_sock_graft(sk, parent);
1703 write_unlock_bh(&sk->sk_callback_lock);
1704 }
1705
1706 extern kuid_t sock_i_uid(struct sock *sk);
1707 extern unsigned long sock_i_ino(struct sock *sk);
1708
1709 static inline struct dst_entry *
1710 __sk_dst_get(struct sock *sk)
1711 {
1712 return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) ||
1713 lockdep_is_held(&sk->sk_lock.slock));
1714 }
1715
1716 static inline struct dst_entry *
1717 sk_dst_get(struct sock *sk)
1718 {
1719 struct dst_entry *dst;
1720
1721 rcu_read_lock();
1722 dst = rcu_dereference(sk->sk_dst_cache);
1723 if (dst)
1724 dst_hold(dst);
1725 rcu_read_unlock();
1726 return dst;
1727 }
1728
1729 extern void sk_reset_txq(struct sock *sk);
1730
1731 static inline void dst_negative_advice(struct sock *sk)
1732 {
1733 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1734
1735 if (dst && dst->ops->negative_advice) {
1736 ndst = dst->ops->negative_advice(dst);
1737
1738 if (ndst != dst) {
1739 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1740 sk_reset_txq(sk);
1741 }
1742 }
1743 }
1744
1745 static inline void
1746 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1747 {
1748 struct dst_entry *old_dst;
1749
1750 sk_tx_queue_clear(sk);
1751 /*
1752 * This can be called while sk is owned by the caller only,
1753 * with no state that can be checked in a rcu_dereference_check() cond
1754 */
1755 old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1756 rcu_assign_pointer(sk->sk_dst_cache, dst);
1757 dst_release(old_dst);
1758 }
1759
1760 static inline void
1761 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1762 {
1763 spin_lock(&sk->sk_dst_lock);
1764 __sk_dst_set(sk, dst);
1765 spin_unlock(&sk->sk_dst_lock);
1766 }
1767
1768 static inline void
1769 __sk_dst_reset(struct sock *sk)
1770 {
1771 __sk_dst_set(sk, NULL);
1772 }
1773
1774 static inline void
1775 sk_dst_reset(struct sock *sk)
1776 {
1777 spin_lock(&sk->sk_dst_lock);
1778 __sk_dst_reset(sk);
1779 spin_unlock(&sk->sk_dst_lock);
1780 }
1781
1782 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1783
1784 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1785
1786 static inline bool sk_can_gso(const struct sock *sk)
1787 {
1788 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1789 }
1790
1791 extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1792
1793 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1794 {
1795 sk->sk_route_nocaps |= flags;
1796 sk->sk_route_caps &= ~flags;
1797 }
1798
1799 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1800 char __user *from, char *to,
1801 int copy, int offset)
1802 {
1803 if (skb->ip_summed == CHECKSUM_NONE) {
1804 int err = 0;
1805 __wsum csum = csum_and_copy_from_user(from, to, copy, 0, &err);
1806 if (err)
1807 return err;
1808 skb->csum = csum_block_add(skb->csum, csum, offset);
1809 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1810 if (!access_ok(VERIFY_READ, from, copy) ||
1811 __copy_from_user_nocache(to, from, copy))
1812 return -EFAULT;
1813 } else if (copy_from_user(to, from, copy))
1814 return -EFAULT;
1815
1816 return 0;
1817 }
1818
1819 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1820 char __user *from, int copy)
1821 {
1822 int err, offset = skb->len;
1823
1824 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1825 copy, offset);
1826 if (err)
1827 __skb_trim(skb, offset);
1828
1829 return err;
1830 }
1831
1832 static inline int skb_copy_to_page_nocache(struct sock *sk, char __user *from,
1833 struct sk_buff *skb,
1834 struct page *page,
1835 int off, int copy)
1836 {
1837 int err;
1838
1839 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1840 copy, skb->len);
1841 if (err)
1842 return err;
1843
1844 skb->len += copy;
1845 skb->data_len += copy;
1846 skb->truesize += copy;
1847 sk->sk_wmem_queued += copy;
1848 sk_mem_charge(sk, copy);
1849 return 0;
1850 }
1851
1852 static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1853 struct sk_buff *skb, struct page *page,
1854 int off, int copy)
1855 {
1856 if (skb->ip_summed == CHECKSUM_NONE) {
1857 int err = 0;
1858 __wsum csum = csum_and_copy_from_user(from,
1859 page_address(page) + off,
1860 copy, 0, &err);
1861 if (err)
1862 return err;
1863 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1864 } else if (copy_from_user(page_address(page) + off, from, copy))
1865 return -EFAULT;
1866
1867 skb->len += copy;
1868 skb->data_len += copy;
1869 skb->truesize += copy;
1870 sk->sk_wmem_queued += copy;
1871 sk_mem_charge(sk, copy);
1872 return 0;
1873 }
1874
1875 /**
1876 * sk_wmem_alloc_get - returns write allocations
1877 * @sk: socket
1878 *
1879 * Returns sk_wmem_alloc minus initial offset of one
1880 */
1881 static inline int sk_wmem_alloc_get(const struct sock *sk)
1882 {
1883 return atomic_read(&sk->sk_wmem_alloc) - 1;
1884 }
1885
1886 /**
1887 * sk_rmem_alloc_get - returns read allocations
1888 * @sk: socket
1889 *
1890 * Returns sk_rmem_alloc
1891 */
1892 static inline int sk_rmem_alloc_get(const struct sock *sk)
1893 {
1894 return atomic_read(&sk->sk_rmem_alloc);
1895 }
1896
1897 /**
1898 * sk_has_allocations - check if allocations are outstanding
1899 * @sk: socket
1900 *
1901 * Returns true if socket has write or read allocations
1902 */
1903 static inline bool sk_has_allocations(const struct sock *sk)
1904 {
1905 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1906 }
1907
1908 /**
1909 * wq_has_sleeper - check if there are any waiting processes
1910 * @wq: struct socket_wq
1911 *
1912 * Returns true if socket_wq has waiting processes
1913 *
1914 * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1915 * barrier call. They were added due to the race found within the tcp code.
1916 *
1917 * Consider following tcp code paths:
1918 *
1919 * CPU1 CPU2
1920 *
1921 * sys_select receive packet
1922 * ... ...
1923 * __add_wait_queue update tp->rcv_nxt
1924 * ... ...
1925 * tp->rcv_nxt check sock_def_readable
1926 * ... {
1927 * schedule rcu_read_lock();
1928 * wq = rcu_dereference(sk->sk_wq);
1929 * if (wq && waitqueue_active(&wq->wait))
1930 * wake_up_interruptible(&wq->wait)
1931 * ...
1932 * }
1933 *
1934 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1935 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
1936 * could then endup calling schedule and sleep forever if there are no more
1937 * data on the socket.
1938 *
1939 */
1940 static inline bool wq_has_sleeper(struct socket_wq *wq)
1941 {
1942 /* We need to be sure we are in sync with the
1943 * add_wait_queue modifications to the wait queue.
1944 *
1945 * This memory barrier is paired in the sock_poll_wait.
1946 */
1947 smp_mb();
1948 return wq && waitqueue_active(&wq->wait);
1949 }
1950
1951 /**
1952 * sock_poll_wait - place memory barrier behind the poll_wait call.
1953 * @filp: file
1954 * @wait_address: socket wait queue
1955 * @p: poll_table
1956 *
1957 * See the comments in the wq_has_sleeper function.
1958 */
1959 static inline void sock_poll_wait(struct file *filp,
1960 wait_queue_head_t *wait_address, poll_table *p)
1961 {
1962 if (!poll_does_not_wait(p) && wait_address) {
1963 poll_wait(filp, wait_address, p);
1964 /* We need to be sure we are in sync with the
1965 * socket flags modification.
1966 *
1967 * This memory barrier is paired in the wq_has_sleeper.
1968 */
1969 smp_mb();
1970 }
1971 }
1972
1973 /*
1974 * Queue a received datagram if it will fit. Stream and sequenced
1975 * protocols can't normally use this as they need to fit buffers in
1976 * and play with them.
1977 *
1978 * Inlined as it's very short and called for pretty much every
1979 * packet ever received.
1980 */
1981
1982 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1983 {
1984 skb_orphan(skb);
1985 skb->sk = sk;
1986 skb->destructor = sock_wfree;
1987 /*
1988 * We used to take a refcount on sk, but following operation
1989 * is enough to guarantee sk_free() wont free this sock until
1990 * all in-flight packets are completed
1991 */
1992 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1993 }
1994
1995 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1996 {
1997 skb_orphan(skb);
1998 skb->sk = sk;
1999 skb->destructor = sock_rfree;
2000 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2001 sk_mem_charge(sk, skb->truesize);
2002 }
2003
2004 extern void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2005 unsigned long expires);
2006
2007 extern void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2008
2009 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2010
2011 extern int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2012
2013 /*
2014 * Recover an error report and clear atomically
2015 */
2016
2017 static inline int sock_error(struct sock *sk)
2018 {
2019 int err;
2020 if (likely(!sk->sk_err))
2021 return 0;
2022 err = xchg(&sk->sk_err, 0);
2023 return -err;
2024 }
2025
2026 static inline unsigned long sock_wspace(struct sock *sk)
2027 {
2028 int amt = 0;
2029
2030 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2031 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
2032 if (amt < 0)
2033 amt = 0;
2034 }
2035 return amt;
2036 }
2037
2038 static inline void sk_wake_async(struct sock *sk, int how, int band)
2039 {
2040 if (sock_flag(sk, SOCK_FASYNC))
2041 sock_wake_async(sk->sk_socket, how, band);
2042 }
2043
2044 #define SOCK_MIN_SNDBUF 2048
2045 /*
2046 * Since sk_rmem_alloc sums skb->truesize, even a small frame might need
2047 * sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak
2048 */
2049 #define SOCK_MIN_RCVBUF (2048 + sizeof(struct sk_buff))
2050
2051 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2052 {
2053 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2054 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2055 sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2056 }
2057 }
2058
2059 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
2060
2061 /**
2062 * sk_page_frag - return an appropriate page_frag
2063 * @sk: socket
2064 *
2065 * If socket allocation mode allows current thread to sleep, it means its
2066 * safe to use the per task page_frag instead of the per socket one.
2067 */
2068 static inline struct page_frag *sk_page_frag(struct sock *sk)
2069 {
2070 if (sk->sk_allocation & __GFP_WAIT)
2071 return &current->task_frag;
2072
2073 return &sk->sk_frag;
2074 }
2075
2076 extern bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2077
2078 /*
2079 * Default write policy as shown to user space via poll/select/SIGIO
2080 */
2081 static inline bool sock_writeable(const struct sock *sk)
2082 {
2083 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2084 }
2085
2086 static inline gfp_t gfp_any(void)
2087 {
2088 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2089 }
2090
2091 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2092 {
2093 return noblock ? 0 : sk->sk_rcvtimeo;
2094 }
2095
2096 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2097 {
2098 return noblock ? 0 : sk->sk_sndtimeo;
2099 }
2100
2101 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2102 {
2103 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2104 }
2105
2106 /* Alas, with timeout socket operations are not restartable.
2107 * Compare this to poll().
2108 */
2109 static inline int sock_intr_errno(long timeo)
2110 {
2111 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2112 }
2113
2114 extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2115 struct sk_buff *skb);
2116 extern void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2117 struct sk_buff *skb);
2118
2119 static inline void
2120 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2121 {
2122 ktime_t kt = skb->tstamp;
2123 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2124
2125 /*
2126 * generate control messages if
2127 * - receive time stamping in software requested (SOCK_RCVTSTAMP
2128 * or SOCK_TIMESTAMPING_RX_SOFTWARE)
2129 * - software time stamp available and wanted
2130 * (SOCK_TIMESTAMPING_SOFTWARE)
2131 * - hardware time stamps available and wanted
2132 * (SOCK_TIMESTAMPING_SYS_HARDWARE or
2133 * SOCK_TIMESTAMPING_RAW_HARDWARE)
2134 */
2135 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2136 sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) ||
2137 (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) ||
2138 (hwtstamps->hwtstamp.tv64 &&
2139 sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) ||
2140 (hwtstamps->syststamp.tv64 &&
2141 sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE)))
2142 __sock_recv_timestamp(msg, sk, skb);
2143 else
2144 sk->sk_stamp = kt;
2145
2146 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2147 __sock_recv_wifi_status(msg, sk, skb);
2148 }
2149
2150 extern void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2151 struct sk_buff *skb);
2152
2153 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2154 struct sk_buff *skb)
2155 {
2156 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
2157 (1UL << SOCK_RCVTSTAMP) | \
2158 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE) | \
2159 (1UL << SOCK_TIMESTAMPING_SOFTWARE) | \
2160 (1UL << SOCK_TIMESTAMPING_RAW_HARDWARE) | \
2161 (1UL << SOCK_TIMESTAMPING_SYS_HARDWARE))
2162
2163 if (sk->sk_flags & FLAGS_TS_OR_DROPS)
2164 __sock_recv_ts_and_drops(msg, sk, skb);
2165 else
2166 sk->sk_stamp = skb->tstamp;
2167 }
2168
2169 /**
2170 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2171 * @sk: socket sending this packet
2172 * @tx_flags: filled with instructions for time stamping
2173 *
2174 * Currently only depends on SOCK_TIMESTAMPING* flags.
2175 */
2176 extern void sock_tx_timestamp(struct sock *sk, __u8 *tx_flags);
2177
2178 /**
2179 * sk_eat_skb - Release a skb if it is no longer needed
2180 * @sk: socket to eat this skb from
2181 * @skb: socket buffer to eat
2182 * @copied_early: flag indicating whether DMA operations copied this data early
2183 *
2184 * This routine must be called with interrupts disabled or with the socket
2185 * locked so that the sk_buff queue operation is ok.
2186 */
2187 #ifdef CONFIG_NET_DMA
2188 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early)
2189 {
2190 __skb_unlink(skb, &sk->sk_receive_queue);
2191 if (!copied_early)
2192 __kfree_skb(skb);
2193 else
2194 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
2195 }
2196 #else
2197 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early)
2198 {
2199 __skb_unlink(skb, &sk->sk_receive_queue);
2200 __kfree_skb(skb);
2201 }
2202 #endif
2203
2204 static inline
2205 struct net *sock_net(const struct sock *sk)
2206 {
2207 return read_pnet(&sk->sk_net);
2208 }
2209
2210 static inline
2211 void sock_net_set(struct sock *sk, struct net *net)
2212 {
2213 write_pnet(&sk->sk_net, net);
2214 }
2215
2216 /*
2217 * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
2218 * They should not hold a reference to a namespace in order to allow
2219 * to stop it.
2220 * Sockets after sk_change_net should be released using sk_release_kernel
2221 */
2222 static inline void sk_change_net(struct sock *sk, struct net *net)
2223 {
2224 put_net(sock_net(sk));
2225 sock_net_set(sk, hold_net(net));
2226 }
2227
2228 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2229 {
2230 if (skb->sk) {
2231 struct sock *sk = skb->sk;
2232
2233 skb->destructor = NULL;
2234 skb->sk = NULL;
2235 return sk;
2236 }
2237 return NULL;
2238 }
2239
2240 extern void sock_enable_timestamp(struct sock *sk, int flag);
2241 extern int sock_get_timestamp(struct sock *, struct timeval __user *);
2242 extern int sock_get_timestampns(struct sock *, struct timespec __user *);
2243
2244 /*
2245 * Enable debug/info messages
2246 */
2247 extern int net_msg_warn;
2248 #define NETDEBUG(fmt, args...) \
2249 do { if (net_msg_warn) printk(fmt,##args); } while (0)
2250
2251 #define LIMIT_NETDEBUG(fmt, args...) \
2252 do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
2253
2254 extern __u32 sysctl_wmem_max;
2255 extern __u32 sysctl_rmem_max;
2256
2257 extern int sysctl_optmem_max;
2258
2259 extern __u32 sysctl_wmem_default;
2260 extern __u32 sysctl_rmem_default;
2261
2262 #endif /* _SOCK_H */