static keys: Introduce 'struct static_key', static_key_true()/false() and static_key_...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / net / sock.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the AF_INET socket handler.
7 *
8 * Version: @(#)sock.h 1.0.4 05/13/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
14 *
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
33 *
34 *
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
39 */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/lockdep.h>
50 #include <linux/netdevice.h>
51 #include <linux/skbuff.h> /* struct sk_buff */
52 #include <linux/mm.h>
53 #include <linux/security.h>
54 #include <linux/slab.h>
55 #include <linux/uaccess.h>
56 #include <linux/memcontrol.h>
57 #include <linux/res_counter.h>
58 #include <linux/static_key.h>
59
60 #include <linux/filter.h>
61 #include <linux/rculist_nulls.h>
62 #include <linux/poll.h>
63
64 #include <linux/atomic.h>
65 #include <net/dst.h>
66 #include <net/checksum.h>
67
68 struct cgroup;
69 struct cgroup_subsys;
70 #ifdef CONFIG_NET
71 int mem_cgroup_sockets_init(struct cgroup *cgrp, struct cgroup_subsys *ss);
72 void mem_cgroup_sockets_destroy(struct cgroup *cgrp, struct cgroup_subsys *ss);
73 #else
74 static inline
75 int mem_cgroup_sockets_init(struct cgroup *cgrp, struct cgroup_subsys *ss)
76 {
77 return 0;
78 }
79 static inline
80 void mem_cgroup_sockets_destroy(struct cgroup *cgrp, struct cgroup_subsys *ss)
81 {
82 }
83 #endif
84 /*
85 * This structure really needs to be cleaned up.
86 * Most of it is for TCP, and not used by any of
87 * the other protocols.
88 */
89
90 /* Define this to get the SOCK_DBG debugging facility. */
91 #define SOCK_DEBUGGING
92 #ifdef SOCK_DEBUGGING
93 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
94 printk(KERN_DEBUG msg); } while (0)
95 #else
96 /* Validate arguments and do nothing */
97 static inline __printf(2, 3)
98 void SOCK_DEBUG(struct sock *sk, const char *msg, ...)
99 {
100 }
101 #endif
102
103 /* This is the per-socket lock. The spinlock provides a synchronization
104 * between user contexts and software interrupt processing, whereas the
105 * mini-semaphore synchronizes multiple users amongst themselves.
106 */
107 typedef struct {
108 spinlock_t slock;
109 int owned;
110 wait_queue_head_t wq;
111 /*
112 * We express the mutex-alike socket_lock semantics
113 * to the lock validator by explicitly managing
114 * the slock as a lock variant (in addition to
115 * the slock itself):
116 */
117 #ifdef CONFIG_DEBUG_LOCK_ALLOC
118 struct lockdep_map dep_map;
119 #endif
120 } socket_lock_t;
121
122 struct sock;
123 struct proto;
124 struct net;
125
126 /**
127 * struct sock_common - minimal network layer representation of sockets
128 * @skc_daddr: Foreign IPv4 addr
129 * @skc_rcv_saddr: Bound local IPv4 addr
130 * @skc_hash: hash value used with various protocol lookup tables
131 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
132 * @skc_family: network address family
133 * @skc_state: Connection state
134 * @skc_reuse: %SO_REUSEADDR setting
135 * @skc_bound_dev_if: bound device index if != 0
136 * @skc_bind_node: bind hash linkage for various protocol lookup tables
137 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
138 * @skc_prot: protocol handlers inside a network family
139 * @skc_net: reference to the network namespace of this socket
140 * @skc_node: main hash linkage for various protocol lookup tables
141 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
142 * @skc_tx_queue_mapping: tx queue number for this connection
143 * @skc_refcnt: reference count
144 *
145 * This is the minimal network layer representation of sockets, the header
146 * for struct sock and struct inet_timewait_sock.
147 */
148 struct sock_common {
149 /* skc_daddr and skc_rcv_saddr must be grouped :
150 * cf INET_MATCH() and INET_TW_MATCH()
151 */
152 __be32 skc_daddr;
153 __be32 skc_rcv_saddr;
154
155 union {
156 unsigned int skc_hash;
157 __u16 skc_u16hashes[2];
158 };
159 unsigned short skc_family;
160 volatile unsigned char skc_state;
161 unsigned char skc_reuse;
162 int skc_bound_dev_if;
163 union {
164 struct hlist_node skc_bind_node;
165 struct hlist_nulls_node skc_portaddr_node;
166 };
167 struct proto *skc_prot;
168 #ifdef CONFIG_NET_NS
169 struct net *skc_net;
170 #endif
171 /*
172 * fields between dontcopy_begin/dontcopy_end
173 * are not copied in sock_copy()
174 */
175 /* private: */
176 int skc_dontcopy_begin[0];
177 /* public: */
178 union {
179 struct hlist_node skc_node;
180 struct hlist_nulls_node skc_nulls_node;
181 };
182 int skc_tx_queue_mapping;
183 atomic_t skc_refcnt;
184 /* private: */
185 int skc_dontcopy_end[0];
186 /* public: */
187 };
188
189 struct cg_proto;
190 /**
191 * struct sock - network layer representation of sockets
192 * @__sk_common: shared layout with inet_timewait_sock
193 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
194 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
195 * @sk_lock: synchronizer
196 * @sk_rcvbuf: size of receive buffer in bytes
197 * @sk_wq: sock wait queue and async head
198 * @sk_dst_cache: destination cache
199 * @sk_dst_lock: destination cache lock
200 * @sk_policy: flow policy
201 * @sk_receive_queue: incoming packets
202 * @sk_wmem_alloc: transmit queue bytes committed
203 * @sk_write_queue: Packet sending queue
204 * @sk_async_wait_queue: DMA copied packets
205 * @sk_omem_alloc: "o" is "option" or "other"
206 * @sk_wmem_queued: persistent queue size
207 * @sk_forward_alloc: space allocated forward
208 * @sk_allocation: allocation mode
209 * @sk_sndbuf: size of send buffer in bytes
210 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
211 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
212 * @sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets
213 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
214 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
215 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
216 * @sk_gso_max_size: Maximum GSO segment size to build
217 * @sk_lingertime: %SO_LINGER l_linger setting
218 * @sk_backlog: always used with the per-socket spinlock held
219 * @sk_callback_lock: used with the callbacks in the end of this struct
220 * @sk_error_queue: rarely used
221 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
222 * IPV6_ADDRFORM for instance)
223 * @sk_err: last error
224 * @sk_err_soft: errors that don't cause failure but are the cause of a
225 * persistent failure not just 'timed out'
226 * @sk_drops: raw/udp drops counter
227 * @sk_ack_backlog: current listen backlog
228 * @sk_max_ack_backlog: listen backlog set in listen()
229 * @sk_priority: %SO_PRIORITY setting
230 * @sk_cgrp_prioidx: socket group's priority map index
231 * @sk_type: socket type (%SOCK_STREAM, etc)
232 * @sk_protocol: which protocol this socket belongs in this network family
233 * @sk_peer_pid: &struct pid for this socket's peer
234 * @sk_peer_cred: %SO_PEERCRED setting
235 * @sk_rcvlowat: %SO_RCVLOWAT setting
236 * @sk_rcvtimeo: %SO_RCVTIMEO setting
237 * @sk_sndtimeo: %SO_SNDTIMEO setting
238 * @sk_rxhash: flow hash received from netif layer
239 * @sk_filter: socket filtering instructions
240 * @sk_protinfo: private area, net family specific, when not using slab
241 * @sk_timer: sock cleanup timer
242 * @sk_stamp: time stamp of last packet received
243 * @sk_socket: Identd and reporting IO signals
244 * @sk_user_data: RPC layer private data
245 * @sk_sndmsg_page: cached page for sendmsg
246 * @sk_sndmsg_off: cached offset for sendmsg
247 * @sk_send_head: front of stuff to transmit
248 * @sk_security: used by security modules
249 * @sk_mark: generic packet mark
250 * @sk_classid: this socket's cgroup classid
251 * @sk_cgrp: this socket's cgroup-specific proto data
252 * @sk_write_pending: a write to stream socket waits to start
253 * @sk_state_change: callback to indicate change in the state of the sock
254 * @sk_data_ready: callback to indicate there is data to be processed
255 * @sk_write_space: callback to indicate there is bf sending space available
256 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
257 * @sk_backlog_rcv: callback to process the backlog
258 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
259 */
260 struct sock {
261 /*
262 * Now struct inet_timewait_sock also uses sock_common, so please just
263 * don't add nothing before this first member (__sk_common) --acme
264 */
265 struct sock_common __sk_common;
266 #define sk_node __sk_common.skc_node
267 #define sk_nulls_node __sk_common.skc_nulls_node
268 #define sk_refcnt __sk_common.skc_refcnt
269 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
270
271 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
272 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
273 #define sk_hash __sk_common.skc_hash
274 #define sk_family __sk_common.skc_family
275 #define sk_state __sk_common.skc_state
276 #define sk_reuse __sk_common.skc_reuse
277 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
278 #define sk_bind_node __sk_common.skc_bind_node
279 #define sk_prot __sk_common.skc_prot
280 #define sk_net __sk_common.skc_net
281 socket_lock_t sk_lock;
282 struct sk_buff_head sk_receive_queue;
283 /*
284 * The backlog queue is special, it is always used with
285 * the per-socket spinlock held and requires low latency
286 * access. Therefore we special case it's implementation.
287 * Note : rmem_alloc is in this structure to fill a hole
288 * on 64bit arches, not because its logically part of
289 * backlog.
290 */
291 struct {
292 atomic_t rmem_alloc;
293 int len;
294 struct sk_buff *head;
295 struct sk_buff *tail;
296 } sk_backlog;
297 #define sk_rmem_alloc sk_backlog.rmem_alloc
298 int sk_forward_alloc;
299 #ifdef CONFIG_RPS
300 __u32 sk_rxhash;
301 #endif
302 atomic_t sk_drops;
303 int sk_rcvbuf;
304
305 struct sk_filter __rcu *sk_filter;
306 struct socket_wq __rcu *sk_wq;
307
308 #ifdef CONFIG_NET_DMA
309 struct sk_buff_head sk_async_wait_queue;
310 #endif
311
312 #ifdef CONFIG_XFRM
313 struct xfrm_policy *sk_policy[2];
314 #endif
315 unsigned long sk_flags;
316 struct dst_entry *sk_dst_cache;
317 spinlock_t sk_dst_lock;
318 atomic_t sk_wmem_alloc;
319 atomic_t sk_omem_alloc;
320 int sk_sndbuf;
321 struct sk_buff_head sk_write_queue;
322 kmemcheck_bitfield_begin(flags);
323 unsigned int sk_shutdown : 2,
324 sk_no_check : 2,
325 sk_userlocks : 4,
326 sk_protocol : 8,
327 sk_type : 16;
328 kmemcheck_bitfield_end(flags);
329 int sk_wmem_queued;
330 gfp_t sk_allocation;
331 netdev_features_t sk_route_caps;
332 netdev_features_t sk_route_nocaps;
333 int sk_gso_type;
334 unsigned int sk_gso_max_size;
335 int sk_rcvlowat;
336 unsigned long sk_lingertime;
337 struct sk_buff_head sk_error_queue;
338 struct proto *sk_prot_creator;
339 rwlock_t sk_callback_lock;
340 int sk_err,
341 sk_err_soft;
342 unsigned short sk_ack_backlog;
343 unsigned short sk_max_ack_backlog;
344 __u32 sk_priority;
345 #ifdef CONFIG_CGROUPS
346 __u32 sk_cgrp_prioidx;
347 #endif
348 struct pid *sk_peer_pid;
349 const struct cred *sk_peer_cred;
350 long sk_rcvtimeo;
351 long sk_sndtimeo;
352 void *sk_protinfo;
353 struct timer_list sk_timer;
354 ktime_t sk_stamp;
355 struct socket *sk_socket;
356 void *sk_user_data;
357 struct page *sk_sndmsg_page;
358 struct sk_buff *sk_send_head;
359 __u32 sk_sndmsg_off;
360 int sk_write_pending;
361 #ifdef CONFIG_SECURITY
362 void *sk_security;
363 #endif
364 __u32 sk_mark;
365 u32 sk_classid;
366 struct cg_proto *sk_cgrp;
367 void (*sk_state_change)(struct sock *sk);
368 void (*sk_data_ready)(struct sock *sk, int bytes);
369 void (*sk_write_space)(struct sock *sk);
370 void (*sk_error_report)(struct sock *sk);
371 int (*sk_backlog_rcv)(struct sock *sk,
372 struct sk_buff *skb);
373 void (*sk_destruct)(struct sock *sk);
374 };
375
376 /*
377 * Hashed lists helper routines
378 */
379 static inline struct sock *sk_entry(const struct hlist_node *node)
380 {
381 return hlist_entry(node, struct sock, sk_node);
382 }
383
384 static inline struct sock *__sk_head(const struct hlist_head *head)
385 {
386 return hlist_entry(head->first, struct sock, sk_node);
387 }
388
389 static inline struct sock *sk_head(const struct hlist_head *head)
390 {
391 return hlist_empty(head) ? NULL : __sk_head(head);
392 }
393
394 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
395 {
396 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
397 }
398
399 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
400 {
401 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
402 }
403
404 static inline struct sock *sk_next(const struct sock *sk)
405 {
406 return sk->sk_node.next ?
407 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
408 }
409
410 static inline struct sock *sk_nulls_next(const struct sock *sk)
411 {
412 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
413 hlist_nulls_entry(sk->sk_nulls_node.next,
414 struct sock, sk_nulls_node) :
415 NULL;
416 }
417
418 static inline int sk_unhashed(const struct sock *sk)
419 {
420 return hlist_unhashed(&sk->sk_node);
421 }
422
423 static inline int sk_hashed(const struct sock *sk)
424 {
425 return !sk_unhashed(sk);
426 }
427
428 static __inline__ void sk_node_init(struct hlist_node *node)
429 {
430 node->pprev = NULL;
431 }
432
433 static __inline__ void sk_nulls_node_init(struct hlist_nulls_node *node)
434 {
435 node->pprev = NULL;
436 }
437
438 static __inline__ void __sk_del_node(struct sock *sk)
439 {
440 __hlist_del(&sk->sk_node);
441 }
442
443 /* NB: equivalent to hlist_del_init_rcu */
444 static __inline__ int __sk_del_node_init(struct sock *sk)
445 {
446 if (sk_hashed(sk)) {
447 __sk_del_node(sk);
448 sk_node_init(&sk->sk_node);
449 return 1;
450 }
451 return 0;
452 }
453
454 /* Grab socket reference count. This operation is valid only
455 when sk is ALREADY grabbed f.e. it is found in hash table
456 or a list and the lookup is made under lock preventing hash table
457 modifications.
458 */
459
460 static inline void sock_hold(struct sock *sk)
461 {
462 atomic_inc(&sk->sk_refcnt);
463 }
464
465 /* Ungrab socket in the context, which assumes that socket refcnt
466 cannot hit zero, f.e. it is true in context of any socketcall.
467 */
468 static inline void __sock_put(struct sock *sk)
469 {
470 atomic_dec(&sk->sk_refcnt);
471 }
472
473 static __inline__ int sk_del_node_init(struct sock *sk)
474 {
475 int rc = __sk_del_node_init(sk);
476
477 if (rc) {
478 /* paranoid for a while -acme */
479 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
480 __sock_put(sk);
481 }
482 return rc;
483 }
484 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
485
486 static __inline__ int __sk_nulls_del_node_init_rcu(struct sock *sk)
487 {
488 if (sk_hashed(sk)) {
489 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
490 return 1;
491 }
492 return 0;
493 }
494
495 static __inline__ int sk_nulls_del_node_init_rcu(struct sock *sk)
496 {
497 int rc = __sk_nulls_del_node_init_rcu(sk);
498
499 if (rc) {
500 /* paranoid for a while -acme */
501 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
502 __sock_put(sk);
503 }
504 return rc;
505 }
506
507 static __inline__ void __sk_add_node(struct sock *sk, struct hlist_head *list)
508 {
509 hlist_add_head(&sk->sk_node, list);
510 }
511
512 static __inline__ void sk_add_node(struct sock *sk, struct hlist_head *list)
513 {
514 sock_hold(sk);
515 __sk_add_node(sk, list);
516 }
517
518 static __inline__ void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
519 {
520 sock_hold(sk);
521 hlist_add_head_rcu(&sk->sk_node, list);
522 }
523
524 static __inline__ void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
525 {
526 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
527 }
528
529 static __inline__ void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
530 {
531 sock_hold(sk);
532 __sk_nulls_add_node_rcu(sk, list);
533 }
534
535 static __inline__ void __sk_del_bind_node(struct sock *sk)
536 {
537 __hlist_del(&sk->sk_bind_node);
538 }
539
540 static __inline__ void sk_add_bind_node(struct sock *sk,
541 struct hlist_head *list)
542 {
543 hlist_add_head(&sk->sk_bind_node, list);
544 }
545
546 #define sk_for_each(__sk, node, list) \
547 hlist_for_each_entry(__sk, node, list, sk_node)
548 #define sk_for_each_rcu(__sk, node, list) \
549 hlist_for_each_entry_rcu(__sk, node, list, sk_node)
550 #define sk_nulls_for_each(__sk, node, list) \
551 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
552 #define sk_nulls_for_each_rcu(__sk, node, list) \
553 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
554 #define sk_for_each_from(__sk, node) \
555 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
556 hlist_for_each_entry_from(__sk, node, sk_node)
557 #define sk_nulls_for_each_from(__sk, node) \
558 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
559 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
560 #define sk_for_each_safe(__sk, node, tmp, list) \
561 hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node)
562 #define sk_for_each_bound(__sk, node, list) \
563 hlist_for_each_entry(__sk, node, list, sk_bind_node)
564
565 /* Sock flags */
566 enum sock_flags {
567 SOCK_DEAD,
568 SOCK_DONE,
569 SOCK_URGINLINE,
570 SOCK_KEEPOPEN,
571 SOCK_LINGER,
572 SOCK_DESTROY,
573 SOCK_BROADCAST,
574 SOCK_TIMESTAMP,
575 SOCK_ZAPPED,
576 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
577 SOCK_DBG, /* %SO_DEBUG setting */
578 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
579 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
580 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
581 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
582 SOCK_TIMESTAMPING_TX_HARDWARE, /* %SOF_TIMESTAMPING_TX_HARDWARE */
583 SOCK_TIMESTAMPING_TX_SOFTWARE, /* %SOF_TIMESTAMPING_TX_SOFTWARE */
584 SOCK_TIMESTAMPING_RX_HARDWARE, /* %SOF_TIMESTAMPING_RX_HARDWARE */
585 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
586 SOCK_TIMESTAMPING_SOFTWARE, /* %SOF_TIMESTAMPING_SOFTWARE */
587 SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */
588 SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */
589 SOCK_FASYNC, /* fasync() active */
590 SOCK_RXQ_OVFL,
591 SOCK_ZEROCOPY, /* buffers from userspace */
592 SOCK_WIFI_STATUS, /* push wifi status to userspace */
593 };
594
595 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
596 {
597 nsk->sk_flags = osk->sk_flags;
598 }
599
600 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
601 {
602 __set_bit(flag, &sk->sk_flags);
603 }
604
605 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
606 {
607 __clear_bit(flag, &sk->sk_flags);
608 }
609
610 static inline int sock_flag(struct sock *sk, enum sock_flags flag)
611 {
612 return test_bit(flag, &sk->sk_flags);
613 }
614
615 static inline void sk_acceptq_removed(struct sock *sk)
616 {
617 sk->sk_ack_backlog--;
618 }
619
620 static inline void sk_acceptq_added(struct sock *sk)
621 {
622 sk->sk_ack_backlog++;
623 }
624
625 static inline int sk_acceptq_is_full(struct sock *sk)
626 {
627 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
628 }
629
630 /*
631 * Compute minimal free write space needed to queue new packets.
632 */
633 static inline int sk_stream_min_wspace(struct sock *sk)
634 {
635 return sk->sk_wmem_queued >> 1;
636 }
637
638 static inline int sk_stream_wspace(struct sock *sk)
639 {
640 return sk->sk_sndbuf - sk->sk_wmem_queued;
641 }
642
643 extern void sk_stream_write_space(struct sock *sk);
644
645 static inline int sk_stream_memory_free(struct sock *sk)
646 {
647 return sk->sk_wmem_queued < sk->sk_sndbuf;
648 }
649
650 /* OOB backlog add */
651 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
652 {
653 /* dont let skb dst not refcounted, we are going to leave rcu lock */
654 skb_dst_force(skb);
655
656 if (!sk->sk_backlog.tail)
657 sk->sk_backlog.head = skb;
658 else
659 sk->sk_backlog.tail->next = skb;
660
661 sk->sk_backlog.tail = skb;
662 skb->next = NULL;
663 }
664
665 /*
666 * Take into account size of receive queue and backlog queue
667 * Do not take into account this skb truesize,
668 * to allow even a single big packet to come.
669 */
670 static inline bool sk_rcvqueues_full(const struct sock *sk, const struct sk_buff *skb)
671 {
672 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
673
674 return qsize > sk->sk_rcvbuf;
675 }
676
677 /* The per-socket spinlock must be held here. */
678 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb)
679 {
680 if (sk_rcvqueues_full(sk, skb))
681 return -ENOBUFS;
682
683 __sk_add_backlog(sk, skb);
684 sk->sk_backlog.len += skb->truesize;
685 return 0;
686 }
687
688 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
689 {
690 return sk->sk_backlog_rcv(sk, skb);
691 }
692
693 static inline void sock_rps_record_flow(const struct sock *sk)
694 {
695 #ifdef CONFIG_RPS
696 struct rps_sock_flow_table *sock_flow_table;
697
698 rcu_read_lock();
699 sock_flow_table = rcu_dereference(rps_sock_flow_table);
700 rps_record_sock_flow(sock_flow_table, sk->sk_rxhash);
701 rcu_read_unlock();
702 #endif
703 }
704
705 static inline void sock_rps_reset_flow(const struct sock *sk)
706 {
707 #ifdef CONFIG_RPS
708 struct rps_sock_flow_table *sock_flow_table;
709
710 rcu_read_lock();
711 sock_flow_table = rcu_dereference(rps_sock_flow_table);
712 rps_reset_sock_flow(sock_flow_table, sk->sk_rxhash);
713 rcu_read_unlock();
714 #endif
715 }
716
717 static inline void sock_rps_save_rxhash(struct sock *sk,
718 const struct sk_buff *skb)
719 {
720 #ifdef CONFIG_RPS
721 if (unlikely(sk->sk_rxhash != skb->rxhash)) {
722 sock_rps_reset_flow(sk);
723 sk->sk_rxhash = skb->rxhash;
724 }
725 #endif
726 }
727
728 static inline void sock_rps_reset_rxhash(struct sock *sk)
729 {
730 #ifdef CONFIG_RPS
731 sock_rps_reset_flow(sk);
732 sk->sk_rxhash = 0;
733 #endif
734 }
735
736 #define sk_wait_event(__sk, __timeo, __condition) \
737 ({ int __rc; \
738 release_sock(__sk); \
739 __rc = __condition; \
740 if (!__rc) { \
741 *(__timeo) = schedule_timeout(*(__timeo)); \
742 } \
743 lock_sock(__sk); \
744 __rc = __condition; \
745 __rc; \
746 })
747
748 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
749 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
750 extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
751 extern int sk_stream_error(struct sock *sk, int flags, int err);
752 extern void sk_stream_kill_queues(struct sock *sk);
753
754 extern int sk_wait_data(struct sock *sk, long *timeo);
755
756 struct request_sock_ops;
757 struct timewait_sock_ops;
758 struct inet_hashinfo;
759 struct raw_hashinfo;
760 struct module;
761
762 /* Networking protocol blocks we attach to sockets.
763 * socket layer -> transport layer interface
764 * transport -> network interface is defined by struct inet_proto
765 */
766 struct proto {
767 void (*close)(struct sock *sk,
768 long timeout);
769 int (*connect)(struct sock *sk,
770 struct sockaddr *uaddr,
771 int addr_len);
772 int (*disconnect)(struct sock *sk, int flags);
773
774 struct sock * (*accept) (struct sock *sk, int flags, int *err);
775
776 int (*ioctl)(struct sock *sk, int cmd,
777 unsigned long arg);
778 int (*init)(struct sock *sk);
779 void (*destroy)(struct sock *sk);
780 void (*shutdown)(struct sock *sk, int how);
781 int (*setsockopt)(struct sock *sk, int level,
782 int optname, char __user *optval,
783 unsigned int optlen);
784 int (*getsockopt)(struct sock *sk, int level,
785 int optname, char __user *optval,
786 int __user *option);
787 #ifdef CONFIG_COMPAT
788 int (*compat_setsockopt)(struct sock *sk,
789 int level,
790 int optname, char __user *optval,
791 unsigned int optlen);
792 int (*compat_getsockopt)(struct sock *sk,
793 int level,
794 int optname, char __user *optval,
795 int __user *option);
796 int (*compat_ioctl)(struct sock *sk,
797 unsigned int cmd, unsigned long arg);
798 #endif
799 int (*sendmsg)(struct kiocb *iocb, struct sock *sk,
800 struct msghdr *msg, size_t len);
801 int (*recvmsg)(struct kiocb *iocb, struct sock *sk,
802 struct msghdr *msg,
803 size_t len, int noblock, int flags,
804 int *addr_len);
805 int (*sendpage)(struct sock *sk, struct page *page,
806 int offset, size_t size, int flags);
807 int (*bind)(struct sock *sk,
808 struct sockaddr *uaddr, int addr_len);
809
810 int (*backlog_rcv) (struct sock *sk,
811 struct sk_buff *skb);
812
813 /* Keeping track of sk's, looking them up, and port selection methods. */
814 void (*hash)(struct sock *sk);
815 void (*unhash)(struct sock *sk);
816 void (*rehash)(struct sock *sk);
817 int (*get_port)(struct sock *sk, unsigned short snum);
818 void (*clear_sk)(struct sock *sk, int size);
819
820 /* Keeping track of sockets in use */
821 #ifdef CONFIG_PROC_FS
822 unsigned int inuse_idx;
823 #endif
824
825 /* Memory pressure */
826 void (*enter_memory_pressure)(struct sock *sk);
827 atomic_long_t *memory_allocated; /* Current allocated memory. */
828 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
829 /*
830 * Pressure flag: try to collapse.
831 * Technical note: it is used by multiple contexts non atomically.
832 * All the __sk_mem_schedule() is of this nature: accounting
833 * is strict, actions are advisory and have some latency.
834 */
835 int *memory_pressure;
836 long *sysctl_mem;
837 int *sysctl_wmem;
838 int *sysctl_rmem;
839 int max_header;
840 bool no_autobind;
841
842 struct kmem_cache *slab;
843 unsigned int obj_size;
844 int slab_flags;
845
846 struct percpu_counter *orphan_count;
847
848 struct request_sock_ops *rsk_prot;
849 struct timewait_sock_ops *twsk_prot;
850
851 union {
852 struct inet_hashinfo *hashinfo;
853 struct udp_table *udp_table;
854 struct raw_hashinfo *raw_hash;
855 } h;
856
857 struct module *owner;
858
859 char name[32];
860
861 struct list_head node;
862 #ifdef SOCK_REFCNT_DEBUG
863 atomic_t socks;
864 #endif
865 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
866 /*
867 * cgroup specific init/deinit functions. Called once for all
868 * protocols that implement it, from cgroups populate function.
869 * This function has to setup any files the protocol want to
870 * appear in the kmem cgroup filesystem.
871 */
872 int (*init_cgroup)(struct cgroup *cgrp,
873 struct cgroup_subsys *ss);
874 void (*destroy_cgroup)(struct cgroup *cgrp,
875 struct cgroup_subsys *ss);
876 struct cg_proto *(*proto_cgroup)(struct mem_cgroup *memcg);
877 #endif
878 };
879
880 struct cg_proto {
881 void (*enter_memory_pressure)(struct sock *sk);
882 struct res_counter *memory_allocated; /* Current allocated memory. */
883 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
884 int *memory_pressure;
885 long *sysctl_mem;
886 /*
887 * memcg field is used to find which memcg we belong directly
888 * Each memcg struct can hold more than one cg_proto, so container_of
889 * won't really cut.
890 *
891 * The elegant solution would be having an inverse function to
892 * proto_cgroup in struct proto, but that means polluting the structure
893 * for everybody, instead of just for memcg users.
894 */
895 struct mem_cgroup *memcg;
896 };
897
898 extern int proto_register(struct proto *prot, int alloc_slab);
899 extern void proto_unregister(struct proto *prot);
900
901 #ifdef SOCK_REFCNT_DEBUG
902 static inline void sk_refcnt_debug_inc(struct sock *sk)
903 {
904 atomic_inc(&sk->sk_prot->socks);
905 }
906
907 static inline void sk_refcnt_debug_dec(struct sock *sk)
908 {
909 atomic_dec(&sk->sk_prot->socks);
910 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
911 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
912 }
913
914 inline void sk_refcnt_debug_release(const struct sock *sk)
915 {
916 if (atomic_read(&sk->sk_refcnt) != 1)
917 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
918 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
919 }
920 #else /* SOCK_REFCNT_DEBUG */
921 #define sk_refcnt_debug_inc(sk) do { } while (0)
922 #define sk_refcnt_debug_dec(sk) do { } while (0)
923 #define sk_refcnt_debug_release(sk) do { } while (0)
924 #endif /* SOCK_REFCNT_DEBUG */
925
926 #if defined(CONFIG_CGROUP_MEM_RES_CTLR_KMEM) && defined(CONFIG_NET)
927 extern struct static_key memcg_socket_limit_enabled;
928 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
929 struct cg_proto *cg_proto)
930 {
931 return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg));
932 }
933 #define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled)
934 #else
935 #define mem_cgroup_sockets_enabled 0
936 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
937 struct cg_proto *cg_proto)
938 {
939 return NULL;
940 }
941 #endif
942
943
944 static inline bool sk_has_memory_pressure(const struct sock *sk)
945 {
946 return sk->sk_prot->memory_pressure != NULL;
947 }
948
949 static inline bool sk_under_memory_pressure(const struct sock *sk)
950 {
951 if (!sk->sk_prot->memory_pressure)
952 return false;
953
954 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
955 return !!*sk->sk_cgrp->memory_pressure;
956
957 return !!*sk->sk_prot->memory_pressure;
958 }
959
960 static inline void sk_leave_memory_pressure(struct sock *sk)
961 {
962 int *memory_pressure = sk->sk_prot->memory_pressure;
963
964 if (!memory_pressure)
965 return;
966
967 if (*memory_pressure)
968 *memory_pressure = 0;
969
970 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
971 struct cg_proto *cg_proto = sk->sk_cgrp;
972 struct proto *prot = sk->sk_prot;
973
974 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
975 if (*cg_proto->memory_pressure)
976 *cg_proto->memory_pressure = 0;
977 }
978
979 }
980
981 static inline void sk_enter_memory_pressure(struct sock *sk)
982 {
983 if (!sk->sk_prot->enter_memory_pressure)
984 return;
985
986 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
987 struct cg_proto *cg_proto = sk->sk_cgrp;
988 struct proto *prot = sk->sk_prot;
989
990 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
991 cg_proto->enter_memory_pressure(sk);
992 }
993
994 sk->sk_prot->enter_memory_pressure(sk);
995 }
996
997 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
998 {
999 long *prot = sk->sk_prot->sysctl_mem;
1000 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1001 prot = sk->sk_cgrp->sysctl_mem;
1002 return prot[index];
1003 }
1004
1005 static inline void memcg_memory_allocated_add(struct cg_proto *prot,
1006 unsigned long amt,
1007 int *parent_status)
1008 {
1009 struct res_counter *fail;
1010 int ret;
1011
1012 ret = res_counter_charge_nofail(prot->memory_allocated,
1013 amt << PAGE_SHIFT, &fail);
1014 if (ret < 0)
1015 *parent_status = OVER_LIMIT;
1016 }
1017
1018 static inline void memcg_memory_allocated_sub(struct cg_proto *prot,
1019 unsigned long amt)
1020 {
1021 res_counter_uncharge(prot->memory_allocated, amt << PAGE_SHIFT);
1022 }
1023
1024 static inline u64 memcg_memory_allocated_read(struct cg_proto *prot)
1025 {
1026 u64 ret;
1027 ret = res_counter_read_u64(prot->memory_allocated, RES_USAGE);
1028 return ret >> PAGE_SHIFT;
1029 }
1030
1031 static inline long
1032 sk_memory_allocated(const struct sock *sk)
1033 {
1034 struct proto *prot = sk->sk_prot;
1035 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1036 return memcg_memory_allocated_read(sk->sk_cgrp);
1037
1038 return atomic_long_read(prot->memory_allocated);
1039 }
1040
1041 static inline long
1042 sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status)
1043 {
1044 struct proto *prot = sk->sk_prot;
1045
1046 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1047 memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status);
1048 /* update the root cgroup regardless */
1049 atomic_long_add_return(amt, prot->memory_allocated);
1050 return memcg_memory_allocated_read(sk->sk_cgrp);
1051 }
1052
1053 return atomic_long_add_return(amt, prot->memory_allocated);
1054 }
1055
1056 static inline void
1057 sk_memory_allocated_sub(struct sock *sk, int amt)
1058 {
1059 struct proto *prot = sk->sk_prot;
1060
1061 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1062 memcg_memory_allocated_sub(sk->sk_cgrp, amt);
1063
1064 atomic_long_sub(amt, prot->memory_allocated);
1065 }
1066
1067 static inline void sk_sockets_allocated_dec(struct sock *sk)
1068 {
1069 struct proto *prot = sk->sk_prot;
1070
1071 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1072 struct cg_proto *cg_proto = sk->sk_cgrp;
1073
1074 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1075 percpu_counter_dec(cg_proto->sockets_allocated);
1076 }
1077
1078 percpu_counter_dec(prot->sockets_allocated);
1079 }
1080
1081 static inline void sk_sockets_allocated_inc(struct sock *sk)
1082 {
1083 struct proto *prot = sk->sk_prot;
1084
1085 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1086 struct cg_proto *cg_proto = sk->sk_cgrp;
1087
1088 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1089 percpu_counter_inc(cg_proto->sockets_allocated);
1090 }
1091
1092 percpu_counter_inc(prot->sockets_allocated);
1093 }
1094
1095 static inline int
1096 sk_sockets_allocated_read_positive(struct sock *sk)
1097 {
1098 struct proto *prot = sk->sk_prot;
1099
1100 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1101 return percpu_counter_sum_positive(sk->sk_cgrp->sockets_allocated);
1102
1103 return percpu_counter_sum_positive(prot->sockets_allocated);
1104 }
1105
1106 static inline int
1107 proto_sockets_allocated_sum_positive(struct proto *prot)
1108 {
1109 return percpu_counter_sum_positive(prot->sockets_allocated);
1110 }
1111
1112 static inline long
1113 proto_memory_allocated(struct proto *prot)
1114 {
1115 return atomic_long_read(prot->memory_allocated);
1116 }
1117
1118 static inline bool
1119 proto_memory_pressure(struct proto *prot)
1120 {
1121 if (!prot->memory_pressure)
1122 return false;
1123 return !!*prot->memory_pressure;
1124 }
1125
1126
1127 #ifdef CONFIG_PROC_FS
1128 /* Called with local bh disabled */
1129 extern void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1130 extern int sock_prot_inuse_get(struct net *net, struct proto *proto);
1131 #else
1132 static void inline sock_prot_inuse_add(struct net *net, struct proto *prot,
1133 int inc)
1134 {
1135 }
1136 #endif
1137
1138
1139 /* With per-bucket locks this operation is not-atomic, so that
1140 * this version is not worse.
1141 */
1142 static inline void __sk_prot_rehash(struct sock *sk)
1143 {
1144 sk->sk_prot->unhash(sk);
1145 sk->sk_prot->hash(sk);
1146 }
1147
1148 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
1149
1150 /* About 10 seconds */
1151 #define SOCK_DESTROY_TIME (10*HZ)
1152
1153 /* Sockets 0-1023 can't be bound to unless you are superuser */
1154 #define PROT_SOCK 1024
1155
1156 #define SHUTDOWN_MASK 3
1157 #define RCV_SHUTDOWN 1
1158 #define SEND_SHUTDOWN 2
1159
1160 #define SOCK_SNDBUF_LOCK 1
1161 #define SOCK_RCVBUF_LOCK 2
1162 #define SOCK_BINDADDR_LOCK 4
1163 #define SOCK_BINDPORT_LOCK 8
1164
1165 /* sock_iocb: used to kick off async processing of socket ios */
1166 struct sock_iocb {
1167 struct list_head list;
1168
1169 int flags;
1170 int size;
1171 struct socket *sock;
1172 struct sock *sk;
1173 struct scm_cookie *scm;
1174 struct msghdr *msg, async_msg;
1175 struct kiocb *kiocb;
1176 };
1177
1178 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
1179 {
1180 return (struct sock_iocb *)iocb->private;
1181 }
1182
1183 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
1184 {
1185 return si->kiocb;
1186 }
1187
1188 struct socket_alloc {
1189 struct socket socket;
1190 struct inode vfs_inode;
1191 };
1192
1193 static inline struct socket *SOCKET_I(struct inode *inode)
1194 {
1195 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1196 }
1197
1198 static inline struct inode *SOCK_INODE(struct socket *socket)
1199 {
1200 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1201 }
1202
1203 /*
1204 * Functions for memory accounting
1205 */
1206 extern int __sk_mem_schedule(struct sock *sk, int size, int kind);
1207 extern void __sk_mem_reclaim(struct sock *sk);
1208
1209 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
1210 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1211 #define SK_MEM_SEND 0
1212 #define SK_MEM_RECV 1
1213
1214 static inline int sk_mem_pages(int amt)
1215 {
1216 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1217 }
1218
1219 static inline int sk_has_account(struct sock *sk)
1220 {
1221 /* return true if protocol supports memory accounting */
1222 return !!sk->sk_prot->memory_allocated;
1223 }
1224
1225 static inline int sk_wmem_schedule(struct sock *sk, int size)
1226 {
1227 if (!sk_has_account(sk))
1228 return 1;
1229 return size <= sk->sk_forward_alloc ||
1230 __sk_mem_schedule(sk, size, SK_MEM_SEND);
1231 }
1232
1233 static inline int sk_rmem_schedule(struct sock *sk, int size)
1234 {
1235 if (!sk_has_account(sk))
1236 return 1;
1237 return size <= sk->sk_forward_alloc ||
1238 __sk_mem_schedule(sk, size, SK_MEM_RECV);
1239 }
1240
1241 static inline void sk_mem_reclaim(struct sock *sk)
1242 {
1243 if (!sk_has_account(sk))
1244 return;
1245 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1246 __sk_mem_reclaim(sk);
1247 }
1248
1249 static inline void sk_mem_reclaim_partial(struct sock *sk)
1250 {
1251 if (!sk_has_account(sk))
1252 return;
1253 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1254 __sk_mem_reclaim(sk);
1255 }
1256
1257 static inline void sk_mem_charge(struct sock *sk, int size)
1258 {
1259 if (!sk_has_account(sk))
1260 return;
1261 sk->sk_forward_alloc -= size;
1262 }
1263
1264 static inline void sk_mem_uncharge(struct sock *sk, int size)
1265 {
1266 if (!sk_has_account(sk))
1267 return;
1268 sk->sk_forward_alloc += size;
1269 }
1270
1271 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1272 {
1273 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1274 sk->sk_wmem_queued -= skb->truesize;
1275 sk_mem_uncharge(sk, skb->truesize);
1276 __kfree_skb(skb);
1277 }
1278
1279 /* Used by processes to "lock" a socket state, so that
1280 * interrupts and bottom half handlers won't change it
1281 * from under us. It essentially blocks any incoming
1282 * packets, so that we won't get any new data or any
1283 * packets that change the state of the socket.
1284 *
1285 * While locked, BH processing will add new packets to
1286 * the backlog queue. This queue is processed by the
1287 * owner of the socket lock right before it is released.
1288 *
1289 * Since ~2.3.5 it is also exclusive sleep lock serializing
1290 * accesses from user process context.
1291 */
1292 #define sock_owned_by_user(sk) ((sk)->sk_lock.owned)
1293
1294 /*
1295 * Macro so as to not evaluate some arguments when
1296 * lockdep is not enabled.
1297 *
1298 * Mark both the sk_lock and the sk_lock.slock as a
1299 * per-address-family lock class.
1300 */
1301 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1302 do { \
1303 sk->sk_lock.owned = 0; \
1304 init_waitqueue_head(&sk->sk_lock.wq); \
1305 spin_lock_init(&(sk)->sk_lock.slock); \
1306 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1307 sizeof((sk)->sk_lock)); \
1308 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1309 (skey), (sname)); \
1310 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1311 } while (0)
1312
1313 extern void lock_sock_nested(struct sock *sk, int subclass);
1314
1315 static inline void lock_sock(struct sock *sk)
1316 {
1317 lock_sock_nested(sk, 0);
1318 }
1319
1320 extern void release_sock(struct sock *sk);
1321
1322 /* BH context may only use the following locking interface. */
1323 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1324 #define bh_lock_sock_nested(__sk) \
1325 spin_lock_nested(&((__sk)->sk_lock.slock), \
1326 SINGLE_DEPTH_NESTING)
1327 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1328
1329 extern bool lock_sock_fast(struct sock *sk);
1330 /**
1331 * unlock_sock_fast - complement of lock_sock_fast
1332 * @sk: socket
1333 * @slow: slow mode
1334 *
1335 * fast unlock socket for user context.
1336 * If slow mode is on, we call regular release_sock()
1337 */
1338 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1339 {
1340 if (slow)
1341 release_sock(sk);
1342 else
1343 spin_unlock_bh(&sk->sk_lock.slock);
1344 }
1345
1346
1347 extern struct sock *sk_alloc(struct net *net, int family,
1348 gfp_t priority,
1349 struct proto *prot);
1350 extern void sk_free(struct sock *sk);
1351 extern void sk_release_kernel(struct sock *sk);
1352 extern struct sock *sk_clone_lock(const struct sock *sk,
1353 const gfp_t priority);
1354
1355 extern struct sk_buff *sock_wmalloc(struct sock *sk,
1356 unsigned long size, int force,
1357 gfp_t priority);
1358 extern struct sk_buff *sock_rmalloc(struct sock *sk,
1359 unsigned long size, int force,
1360 gfp_t priority);
1361 extern void sock_wfree(struct sk_buff *skb);
1362 extern void sock_rfree(struct sk_buff *skb);
1363
1364 extern int sock_setsockopt(struct socket *sock, int level,
1365 int op, char __user *optval,
1366 unsigned int optlen);
1367
1368 extern int sock_getsockopt(struct socket *sock, int level,
1369 int op, char __user *optval,
1370 int __user *optlen);
1371 extern struct sk_buff *sock_alloc_send_skb(struct sock *sk,
1372 unsigned long size,
1373 int noblock,
1374 int *errcode);
1375 extern struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
1376 unsigned long header_len,
1377 unsigned long data_len,
1378 int noblock,
1379 int *errcode);
1380 extern void *sock_kmalloc(struct sock *sk, int size,
1381 gfp_t priority);
1382 extern void sock_kfree_s(struct sock *sk, void *mem, int size);
1383 extern void sk_send_sigurg(struct sock *sk);
1384
1385 #ifdef CONFIG_CGROUPS
1386 extern void sock_update_classid(struct sock *sk);
1387 #else
1388 static inline void sock_update_classid(struct sock *sk)
1389 {
1390 }
1391 #endif
1392
1393 /*
1394 * Functions to fill in entries in struct proto_ops when a protocol
1395 * does not implement a particular function.
1396 */
1397 extern int sock_no_bind(struct socket *,
1398 struct sockaddr *, int);
1399 extern int sock_no_connect(struct socket *,
1400 struct sockaddr *, int, int);
1401 extern int sock_no_socketpair(struct socket *,
1402 struct socket *);
1403 extern int sock_no_accept(struct socket *,
1404 struct socket *, int);
1405 extern int sock_no_getname(struct socket *,
1406 struct sockaddr *, int *, int);
1407 extern unsigned int sock_no_poll(struct file *, struct socket *,
1408 struct poll_table_struct *);
1409 extern int sock_no_ioctl(struct socket *, unsigned int,
1410 unsigned long);
1411 extern int sock_no_listen(struct socket *, int);
1412 extern int sock_no_shutdown(struct socket *, int);
1413 extern int sock_no_getsockopt(struct socket *, int , int,
1414 char __user *, int __user *);
1415 extern int sock_no_setsockopt(struct socket *, int, int,
1416 char __user *, unsigned int);
1417 extern int sock_no_sendmsg(struct kiocb *, struct socket *,
1418 struct msghdr *, size_t);
1419 extern int sock_no_recvmsg(struct kiocb *, struct socket *,
1420 struct msghdr *, size_t, int);
1421 extern int sock_no_mmap(struct file *file,
1422 struct socket *sock,
1423 struct vm_area_struct *vma);
1424 extern ssize_t sock_no_sendpage(struct socket *sock,
1425 struct page *page,
1426 int offset, size_t size,
1427 int flags);
1428
1429 /*
1430 * Functions to fill in entries in struct proto_ops when a protocol
1431 * uses the inet style.
1432 */
1433 extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
1434 char __user *optval, int __user *optlen);
1435 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1436 struct msghdr *msg, size_t size, int flags);
1437 extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
1438 char __user *optval, unsigned int optlen);
1439 extern int compat_sock_common_getsockopt(struct socket *sock, int level,
1440 int optname, char __user *optval, int __user *optlen);
1441 extern int compat_sock_common_setsockopt(struct socket *sock, int level,
1442 int optname, char __user *optval, unsigned int optlen);
1443
1444 extern void sk_common_release(struct sock *sk);
1445
1446 /*
1447 * Default socket callbacks and setup code
1448 */
1449
1450 /* Initialise core socket variables */
1451 extern void sock_init_data(struct socket *sock, struct sock *sk);
1452
1453 extern void sk_filter_release_rcu(struct rcu_head *rcu);
1454
1455 /**
1456 * sk_filter_release - release a socket filter
1457 * @fp: filter to remove
1458 *
1459 * Remove a filter from a socket and release its resources.
1460 */
1461
1462 static inline void sk_filter_release(struct sk_filter *fp)
1463 {
1464 if (atomic_dec_and_test(&fp->refcnt))
1465 call_rcu(&fp->rcu, sk_filter_release_rcu);
1466 }
1467
1468 static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1469 {
1470 unsigned int size = sk_filter_len(fp);
1471
1472 atomic_sub(size, &sk->sk_omem_alloc);
1473 sk_filter_release(fp);
1474 }
1475
1476 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1477 {
1478 atomic_inc(&fp->refcnt);
1479 atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
1480 }
1481
1482 /*
1483 * Socket reference counting postulates.
1484 *
1485 * * Each user of socket SHOULD hold a reference count.
1486 * * Each access point to socket (an hash table bucket, reference from a list,
1487 * running timer, skb in flight MUST hold a reference count.
1488 * * When reference count hits 0, it means it will never increase back.
1489 * * When reference count hits 0, it means that no references from
1490 * outside exist to this socket and current process on current CPU
1491 * is last user and may/should destroy this socket.
1492 * * sk_free is called from any context: process, BH, IRQ. When
1493 * it is called, socket has no references from outside -> sk_free
1494 * may release descendant resources allocated by the socket, but
1495 * to the time when it is called, socket is NOT referenced by any
1496 * hash tables, lists etc.
1497 * * Packets, delivered from outside (from network or from another process)
1498 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1499 * when they sit in queue. Otherwise, packets will leak to hole, when
1500 * socket is looked up by one cpu and unhasing is made by another CPU.
1501 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1502 * (leak to backlog). Packet socket does all the processing inside
1503 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1504 * use separate SMP lock, so that they are prone too.
1505 */
1506
1507 /* Ungrab socket and destroy it, if it was the last reference. */
1508 static inline void sock_put(struct sock *sk)
1509 {
1510 if (atomic_dec_and_test(&sk->sk_refcnt))
1511 sk_free(sk);
1512 }
1513
1514 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1515 const int nested);
1516
1517 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1518 {
1519 sk->sk_tx_queue_mapping = tx_queue;
1520 }
1521
1522 static inline void sk_tx_queue_clear(struct sock *sk)
1523 {
1524 sk->sk_tx_queue_mapping = -1;
1525 }
1526
1527 static inline int sk_tx_queue_get(const struct sock *sk)
1528 {
1529 return sk ? sk->sk_tx_queue_mapping : -1;
1530 }
1531
1532 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1533 {
1534 sk_tx_queue_clear(sk);
1535 sk->sk_socket = sock;
1536 }
1537
1538 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1539 {
1540 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1541 return &rcu_dereference_raw(sk->sk_wq)->wait;
1542 }
1543 /* Detach socket from process context.
1544 * Announce socket dead, detach it from wait queue and inode.
1545 * Note that parent inode held reference count on this struct sock,
1546 * we do not release it in this function, because protocol
1547 * probably wants some additional cleanups or even continuing
1548 * to work with this socket (TCP).
1549 */
1550 static inline void sock_orphan(struct sock *sk)
1551 {
1552 write_lock_bh(&sk->sk_callback_lock);
1553 sock_set_flag(sk, SOCK_DEAD);
1554 sk_set_socket(sk, NULL);
1555 sk->sk_wq = NULL;
1556 write_unlock_bh(&sk->sk_callback_lock);
1557 }
1558
1559 static inline void sock_graft(struct sock *sk, struct socket *parent)
1560 {
1561 write_lock_bh(&sk->sk_callback_lock);
1562 sk->sk_wq = parent->wq;
1563 parent->sk = sk;
1564 sk_set_socket(sk, parent);
1565 security_sock_graft(sk, parent);
1566 write_unlock_bh(&sk->sk_callback_lock);
1567 }
1568
1569 extern int sock_i_uid(struct sock *sk);
1570 extern unsigned long sock_i_ino(struct sock *sk);
1571
1572 static inline struct dst_entry *
1573 __sk_dst_get(struct sock *sk)
1574 {
1575 return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) ||
1576 lockdep_is_held(&sk->sk_lock.slock));
1577 }
1578
1579 static inline struct dst_entry *
1580 sk_dst_get(struct sock *sk)
1581 {
1582 struct dst_entry *dst;
1583
1584 rcu_read_lock();
1585 dst = rcu_dereference(sk->sk_dst_cache);
1586 if (dst)
1587 dst_hold(dst);
1588 rcu_read_unlock();
1589 return dst;
1590 }
1591
1592 extern void sk_reset_txq(struct sock *sk);
1593
1594 static inline void dst_negative_advice(struct sock *sk)
1595 {
1596 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1597
1598 if (dst && dst->ops->negative_advice) {
1599 ndst = dst->ops->negative_advice(dst);
1600
1601 if (ndst != dst) {
1602 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1603 sk_reset_txq(sk);
1604 }
1605 }
1606 }
1607
1608 static inline void
1609 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1610 {
1611 struct dst_entry *old_dst;
1612
1613 sk_tx_queue_clear(sk);
1614 /*
1615 * This can be called while sk is owned by the caller only,
1616 * with no state that can be checked in a rcu_dereference_check() cond
1617 */
1618 old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1619 rcu_assign_pointer(sk->sk_dst_cache, dst);
1620 dst_release(old_dst);
1621 }
1622
1623 static inline void
1624 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1625 {
1626 spin_lock(&sk->sk_dst_lock);
1627 __sk_dst_set(sk, dst);
1628 spin_unlock(&sk->sk_dst_lock);
1629 }
1630
1631 static inline void
1632 __sk_dst_reset(struct sock *sk)
1633 {
1634 __sk_dst_set(sk, NULL);
1635 }
1636
1637 static inline void
1638 sk_dst_reset(struct sock *sk)
1639 {
1640 spin_lock(&sk->sk_dst_lock);
1641 __sk_dst_reset(sk);
1642 spin_unlock(&sk->sk_dst_lock);
1643 }
1644
1645 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1646
1647 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1648
1649 static inline int sk_can_gso(const struct sock *sk)
1650 {
1651 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1652 }
1653
1654 extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1655
1656 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1657 {
1658 sk->sk_route_nocaps |= flags;
1659 sk->sk_route_caps &= ~flags;
1660 }
1661
1662 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1663 char __user *from, char *to,
1664 int copy, int offset)
1665 {
1666 if (skb->ip_summed == CHECKSUM_NONE) {
1667 int err = 0;
1668 __wsum csum = csum_and_copy_from_user(from, to, copy, 0, &err);
1669 if (err)
1670 return err;
1671 skb->csum = csum_block_add(skb->csum, csum, offset);
1672 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1673 if (!access_ok(VERIFY_READ, from, copy) ||
1674 __copy_from_user_nocache(to, from, copy))
1675 return -EFAULT;
1676 } else if (copy_from_user(to, from, copy))
1677 return -EFAULT;
1678
1679 return 0;
1680 }
1681
1682 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1683 char __user *from, int copy)
1684 {
1685 int err, offset = skb->len;
1686
1687 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1688 copy, offset);
1689 if (err)
1690 __skb_trim(skb, offset);
1691
1692 return err;
1693 }
1694
1695 static inline int skb_copy_to_page_nocache(struct sock *sk, char __user *from,
1696 struct sk_buff *skb,
1697 struct page *page,
1698 int off, int copy)
1699 {
1700 int err;
1701
1702 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1703 copy, skb->len);
1704 if (err)
1705 return err;
1706
1707 skb->len += copy;
1708 skb->data_len += copy;
1709 skb->truesize += copy;
1710 sk->sk_wmem_queued += copy;
1711 sk_mem_charge(sk, copy);
1712 return 0;
1713 }
1714
1715 static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1716 struct sk_buff *skb, struct page *page,
1717 int off, int copy)
1718 {
1719 if (skb->ip_summed == CHECKSUM_NONE) {
1720 int err = 0;
1721 __wsum csum = csum_and_copy_from_user(from,
1722 page_address(page) + off,
1723 copy, 0, &err);
1724 if (err)
1725 return err;
1726 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1727 } else if (copy_from_user(page_address(page) + off, from, copy))
1728 return -EFAULT;
1729
1730 skb->len += copy;
1731 skb->data_len += copy;
1732 skb->truesize += copy;
1733 sk->sk_wmem_queued += copy;
1734 sk_mem_charge(sk, copy);
1735 return 0;
1736 }
1737
1738 /**
1739 * sk_wmem_alloc_get - returns write allocations
1740 * @sk: socket
1741 *
1742 * Returns sk_wmem_alloc minus initial offset of one
1743 */
1744 static inline int sk_wmem_alloc_get(const struct sock *sk)
1745 {
1746 return atomic_read(&sk->sk_wmem_alloc) - 1;
1747 }
1748
1749 /**
1750 * sk_rmem_alloc_get - returns read allocations
1751 * @sk: socket
1752 *
1753 * Returns sk_rmem_alloc
1754 */
1755 static inline int sk_rmem_alloc_get(const struct sock *sk)
1756 {
1757 return atomic_read(&sk->sk_rmem_alloc);
1758 }
1759
1760 /**
1761 * sk_has_allocations - check if allocations are outstanding
1762 * @sk: socket
1763 *
1764 * Returns true if socket has write or read allocations
1765 */
1766 static inline int sk_has_allocations(const struct sock *sk)
1767 {
1768 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1769 }
1770
1771 /**
1772 * wq_has_sleeper - check if there are any waiting processes
1773 * @wq: struct socket_wq
1774 *
1775 * Returns true if socket_wq has waiting processes
1776 *
1777 * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1778 * barrier call. They were added due to the race found within the tcp code.
1779 *
1780 * Consider following tcp code paths:
1781 *
1782 * CPU1 CPU2
1783 *
1784 * sys_select receive packet
1785 * ... ...
1786 * __add_wait_queue update tp->rcv_nxt
1787 * ... ...
1788 * tp->rcv_nxt check sock_def_readable
1789 * ... {
1790 * schedule rcu_read_lock();
1791 * wq = rcu_dereference(sk->sk_wq);
1792 * if (wq && waitqueue_active(&wq->wait))
1793 * wake_up_interruptible(&wq->wait)
1794 * ...
1795 * }
1796 *
1797 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1798 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
1799 * could then endup calling schedule and sleep forever if there are no more
1800 * data on the socket.
1801 *
1802 */
1803 static inline bool wq_has_sleeper(struct socket_wq *wq)
1804 {
1805
1806 /*
1807 * We need to be sure we are in sync with the
1808 * add_wait_queue modifications to the wait queue.
1809 *
1810 * This memory barrier is paired in the sock_poll_wait.
1811 */
1812 smp_mb();
1813 return wq && waitqueue_active(&wq->wait);
1814 }
1815
1816 /**
1817 * sock_poll_wait - place memory barrier behind the poll_wait call.
1818 * @filp: file
1819 * @wait_address: socket wait queue
1820 * @p: poll_table
1821 *
1822 * See the comments in the wq_has_sleeper function.
1823 */
1824 static inline void sock_poll_wait(struct file *filp,
1825 wait_queue_head_t *wait_address, poll_table *p)
1826 {
1827 if (p && wait_address) {
1828 poll_wait(filp, wait_address, p);
1829 /*
1830 * We need to be sure we are in sync with the
1831 * socket flags modification.
1832 *
1833 * This memory barrier is paired in the wq_has_sleeper.
1834 */
1835 smp_mb();
1836 }
1837 }
1838
1839 /*
1840 * Queue a received datagram if it will fit. Stream and sequenced
1841 * protocols can't normally use this as they need to fit buffers in
1842 * and play with them.
1843 *
1844 * Inlined as it's very short and called for pretty much every
1845 * packet ever received.
1846 */
1847
1848 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1849 {
1850 skb_orphan(skb);
1851 skb->sk = sk;
1852 skb->destructor = sock_wfree;
1853 /*
1854 * We used to take a refcount on sk, but following operation
1855 * is enough to guarantee sk_free() wont free this sock until
1856 * all in-flight packets are completed
1857 */
1858 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1859 }
1860
1861 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1862 {
1863 skb_orphan(skb);
1864 skb->sk = sk;
1865 skb->destructor = sock_rfree;
1866 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1867 sk_mem_charge(sk, skb->truesize);
1868 }
1869
1870 extern void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1871 unsigned long expires);
1872
1873 extern void sk_stop_timer(struct sock *sk, struct timer_list* timer);
1874
1875 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1876
1877 extern int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
1878
1879 /*
1880 * Recover an error report and clear atomically
1881 */
1882
1883 static inline int sock_error(struct sock *sk)
1884 {
1885 int err;
1886 if (likely(!sk->sk_err))
1887 return 0;
1888 err = xchg(&sk->sk_err, 0);
1889 return -err;
1890 }
1891
1892 static inline unsigned long sock_wspace(struct sock *sk)
1893 {
1894 int amt = 0;
1895
1896 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1897 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1898 if (amt < 0)
1899 amt = 0;
1900 }
1901 return amt;
1902 }
1903
1904 static inline void sk_wake_async(struct sock *sk, int how, int band)
1905 {
1906 if (sock_flag(sk, SOCK_FASYNC))
1907 sock_wake_async(sk->sk_socket, how, band);
1908 }
1909
1910 #define SOCK_MIN_SNDBUF 2048
1911 /*
1912 * Since sk_rmem_alloc sums skb->truesize, even a small frame might need
1913 * sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak
1914 */
1915 #define SOCK_MIN_RCVBUF (2048 + sizeof(struct sk_buff))
1916
1917 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
1918 {
1919 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
1920 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
1921 sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
1922 }
1923 }
1924
1925 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
1926
1927 static inline struct page *sk_stream_alloc_page(struct sock *sk)
1928 {
1929 struct page *page = NULL;
1930
1931 page = alloc_pages(sk->sk_allocation, 0);
1932 if (!page) {
1933 sk_enter_memory_pressure(sk);
1934 sk_stream_moderate_sndbuf(sk);
1935 }
1936 return page;
1937 }
1938
1939 /*
1940 * Default write policy as shown to user space via poll/select/SIGIO
1941 */
1942 static inline int sock_writeable(const struct sock *sk)
1943 {
1944 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
1945 }
1946
1947 static inline gfp_t gfp_any(void)
1948 {
1949 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
1950 }
1951
1952 static inline long sock_rcvtimeo(const struct sock *sk, int noblock)
1953 {
1954 return noblock ? 0 : sk->sk_rcvtimeo;
1955 }
1956
1957 static inline long sock_sndtimeo(const struct sock *sk, int noblock)
1958 {
1959 return noblock ? 0 : sk->sk_sndtimeo;
1960 }
1961
1962 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
1963 {
1964 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
1965 }
1966
1967 /* Alas, with timeout socket operations are not restartable.
1968 * Compare this to poll().
1969 */
1970 static inline int sock_intr_errno(long timeo)
1971 {
1972 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
1973 }
1974
1975 extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
1976 struct sk_buff *skb);
1977 extern void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
1978 struct sk_buff *skb);
1979
1980 static __inline__ void
1981 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
1982 {
1983 ktime_t kt = skb->tstamp;
1984 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
1985
1986 /*
1987 * generate control messages if
1988 * - receive time stamping in software requested (SOCK_RCVTSTAMP
1989 * or SOCK_TIMESTAMPING_RX_SOFTWARE)
1990 * - software time stamp available and wanted
1991 * (SOCK_TIMESTAMPING_SOFTWARE)
1992 * - hardware time stamps available and wanted
1993 * (SOCK_TIMESTAMPING_SYS_HARDWARE or
1994 * SOCK_TIMESTAMPING_RAW_HARDWARE)
1995 */
1996 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
1997 sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) ||
1998 (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) ||
1999 (hwtstamps->hwtstamp.tv64 &&
2000 sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) ||
2001 (hwtstamps->syststamp.tv64 &&
2002 sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE)))
2003 __sock_recv_timestamp(msg, sk, skb);
2004 else
2005 sk->sk_stamp = kt;
2006
2007 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2008 __sock_recv_wifi_status(msg, sk, skb);
2009 }
2010
2011 extern void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2012 struct sk_buff *skb);
2013
2014 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2015 struct sk_buff *skb)
2016 {
2017 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
2018 (1UL << SOCK_RCVTSTAMP) | \
2019 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE) | \
2020 (1UL << SOCK_TIMESTAMPING_SOFTWARE) | \
2021 (1UL << SOCK_TIMESTAMPING_RAW_HARDWARE) | \
2022 (1UL << SOCK_TIMESTAMPING_SYS_HARDWARE))
2023
2024 if (sk->sk_flags & FLAGS_TS_OR_DROPS)
2025 __sock_recv_ts_and_drops(msg, sk, skb);
2026 else
2027 sk->sk_stamp = skb->tstamp;
2028 }
2029
2030 /**
2031 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2032 * @sk: socket sending this packet
2033 * @tx_flags: filled with instructions for time stamping
2034 *
2035 * Currently only depends on SOCK_TIMESTAMPING* flags. Returns error code if
2036 * parameters are invalid.
2037 */
2038 extern int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags);
2039
2040 /**
2041 * sk_eat_skb - Release a skb if it is no longer needed
2042 * @sk: socket to eat this skb from
2043 * @skb: socket buffer to eat
2044 * @copied_early: flag indicating whether DMA operations copied this data early
2045 *
2046 * This routine must be called with interrupts disabled or with the socket
2047 * locked so that the sk_buff queue operation is ok.
2048 */
2049 #ifdef CONFIG_NET_DMA
2050 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
2051 {
2052 __skb_unlink(skb, &sk->sk_receive_queue);
2053 if (!copied_early)
2054 __kfree_skb(skb);
2055 else
2056 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
2057 }
2058 #else
2059 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
2060 {
2061 __skb_unlink(skb, &sk->sk_receive_queue);
2062 __kfree_skb(skb);
2063 }
2064 #endif
2065
2066 static inline
2067 struct net *sock_net(const struct sock *sk)
2068 {
2069 return read_pnet(&sk->sk_net);
2070 }
2071
2072 static inline
2073 void sock_net_set(struct sock *sk, struct net *net)
2074 {
2075 write_pnet(&sk->sk_net, net);
2076 }
2077
2078 /*
2079 * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
2080 * They should not hold a reference to a namespace in order to allow
2081 * to stop it.
2082 * Sockets after sk_change_net should be released using sk_release_kernel
2083 */
2084 static inline void sk_change_net(struct sock *sk, struct net *net)
2085 {
2086 put_net(sock_net(sk));
2087 sock_net_set(sk, hold_net(net));
2088 }
2089
2090 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2091 {
2092 if (unlikely(skb->sk)) {
2093 struct sock *sk = skb->sk;
2094
2095 skb->destructor = NULL;
2096 skb->sk = NULL;
2097 return sk;
2098 }
2099 return NULL;
2100 }
2101
2102 extern void sock_enable_timestamp(struct sock *sk, int flag);
2103 extern int sock_get_timestamp(struct sock *, struct timeval __user *);
2104 extern int sock_get_timestampns(struct sock *, struct timespec __user *);
2105
2106 /*
2107 * Enable debug/info messages
2108 */
2109 extern int net_msg_warn;
2110 #define NETDEBUG(fmt, args...) \
2111 do { if (net_msg_warn) printk(fmt,##args); } while (0)
2112
2113 #define LIMIT_NETDEBUG(fmt, args...) \
2114 do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
2115
2116 extern __u32 sysctl_wmem_max;
2117 extern __u32 sysctl_rmem_max;
2118
2119 extern void sk_init(void);
2120
2121 extern int sysctl_optmem_max;
2122
2123 extern __u32 sysctl_wmem_default;
2124 extern __u32 sysctl_rmem_default;
2125
2126 #endif /* _SOCK_H */