[PATCH] Vectorize aio_read/aio_write fileop methods
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / net / sock.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the AF_INET socket handler.
7 *
8 * Version: @(#)sock.h 1.0.4 05/13/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
14 *
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
33 *
34 *
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
39 */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42
43 #include <linux/list.h>
44 #include <linux/timer.h>
45 #include <linux/cache.h>
46 #include <linux/module.h>
47 #include <linux/lockdep.h>
48 #include <linux/netdevice.h>
49 #include <linux/skbuff.h> /* struct sk_buff */
50 #include <linux/security.h>
51
52 #include <linux/filter.h>
53
54 #include <asm/atomic.h>
55 #include <net/dst.h>
56 #include <net/checksum.h>
57
58 /*
59 * This structure really needs to be cleaned up.
60 * Most of it is for TCP, and not used by any of
61 * the other protocols.
62 */
63
64 /* Define this to get the SOCK_DBG debugging facility. */
65 #define SOCK_DEBUGGING
66 #ifdef SOCK_DEBUGGING
67 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
68 printk(KERN_DEBUG msg); } while (0)
69 #else
70 #define SOCK_DEBUG(sk, msg...) do { } while (0)
71 #endif
72
73 /* This is the per-socket lock. The spinlock provides a synchronization
74 * between user contexts and software interrupt processing, whereas the
75 * mini-semaphore synchronizes multiple users amongst themselves.
76 */
77 struct sock_iocb;
78 typedef struct {
79 spinlock_t slock;
80 struct sock_iocb *owner;
81 wait_queue_head_t wq;
82 /*
83 * We express the mutex-alike socket_lock semantics
84 * to the lock validator by explicitly managing
85 * the slock as a lock variant (in addition to
86 * the slock itself):
87 */
88 #ifdef CONFIG_DEBUG_LOCK_ALLOC
89 struct lockdep_map dep_map;
90 #endif
91 } socket_lock_t;
92
93 struct sock;
94 struct proto;
95
96 /**
97 * struct sock_common - minimal network layer representation of sockets
98 * @skc_family: network address family
99 * @skc_state: Connection state
100 * @skc_reuse: %SO_REUSEADDR setting
101 * @skc_bound_dev_if: bound device index if != 0
102 * @skc_node: main hash linkage for various protocol lookup tables
103 * @skc_bind_node: bind hash linkage for various protocol lookup tables
104 * @skc_refcnt: reference count
105 * @skc_hash: hash value used with various protocol lookup tables
106 * @skc_prot: protocol handlers inside a network family
107 *
108 * This is the minimal network layer representation of sockets, the header
109 * for struct sock and struct inet_timewait_sock.
110 */
111 struct sock_common {
112 unsigned short skc_family;
113 volatile unsigned char skc_state;
114 unsigned char skc_reuse;
115 int skc_bound_dev_if;
116 struct hlist_node skc_node;
117 struct hlist_node skc_bind_node;
118 atomic_t skc_refcnt;
119 unsigned int skc_hash;
120 struct proto *skc_prot;
121 };
122
123 /**
124 * struct sock - network layer representation of sockets
125 * @__sk_common: shared layout with inet_timewait_sock
126 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
127 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
128 * @sk_lock: synchronizer
129 * @sk_rcvbuf: size of receive buffer in bytes
130 * @sk_sleep: sock wait queue
131 * @sk_dst_cache: destination cache
132 * @sk_dst_lock: destination cache lock
133 * @sk_policy: flow policy
134 * @sk_rmem_alloc: receive queue bytes committed
135 * @sk_receive_queue: incoming packets
136 * @sk_wmem_alloc: transmit queue bytes committed
137 * @sk_write_queue: Packet sending queue
138 * @sk_async_wait_queue: DMA copied packets
139 * @sk_omem_alloc: "o" is "option" or "other"
140 * @sk_wmem_queued: persistent queue size
141 * @sk_forward_alloc: space allocated forward
142 * @sk_allocation: allocation mode
143 * @sk_sndbuf: size of send buffer in bytes
144 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, %SO_OOBINLINE settings
145 * @sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets
146 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
147 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
148 * @sk_lingertime: %SO_LINGER l_linger setting
149 * @sk_backlog: always used with the per-socket spinlock held
150 * @sk_callback_lock: used with the callbacks in the end of this struct
151 * @sk_error_queue: rarely used
152 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, IPV6_ADDRFORM for instance)
153 * @sk_err: last error
154 * @sk_err_soft: errors that don't cause failure but are the cause of a persistent failure not just 'timed out'
155 * @sk_ack_backlog: current listen backlog
156 * @sk_max_ack_backlog: listen backlog set in listen()
157 * @sk_priority: %SO_PRIORITY setting
158 * @sk_type: socket type (%SOCK_STREAM, etc)
159 * @sk_protocol: which protocol this socket belongs in this network family
160 * @sk_peercred: %SO_PEERCRED setting
161 * @sk_rcvlowat: %SO_RCVLOWAT setting
162 * @sk_rcvtimeo: %SO_RCVTIMEO setting
163 * @sk_sndtimeo: %SO_SNDTIMEO setting
164 * @sk_filter: socket filtering instructions
165 * @sk_protinfo: private area, net family specific, when not using slab
166 * @sk_timer: sock cleanup timer
167 * @sk_stamp: time stamp of last packet received
168 * @sk_socket: Identd and reporting IO signals
169 * @sk_user_data: RPC layer private data
170 * @sk_sndmsg_page: cached page for sendmsg
171 * @sk_sndmsg_off: cached offset for sendmsg
172 * @sk_send_head: front of stuff to transmit
173 * @sk_security: used by security modules
174 * @sk_write_pending: a write to stream socket waits to start
175 * @sk_state_change: callback to indicate change in the state of the sock
176 * @sk_data_ready: callback to indicate there is data to be processed
177 * @sk_write_space: callback to indicate there is bf sending space available
178 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
179 * @sk_backlog_rcv: callback to process the backlog
180 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
181 */
182 struct sock {
183 /*
184 * Now struct inet_timewait_sock also uses sock_common, so please just
185 * don't add nothing before this first member (__sk_common) --acme
186 */
187 struct sock_common __sk_common;
188 #define sk_family __sk_common.skc_family
189 #define sk_state __sk_common.skc_state
190 #define sk_reuse __sk_common.skc_reuse
191 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
192 #define sk_node __sk_common.skc_node
193 #define sk_bind_node __sk_common.skc_bind_node
194 #define sk_refcnt __sk_common.skc_refcnt
195 #define sk_hash __sk_common.skc_hash
196 #define sk_prot __sk_common.skc_prot
197 unsigned char sk_shutdown : 2,
198 sk_no_check : 2,
199 sk_userlocks : 4;
200 unsigned char sk_protocol;
201 unsigned short sk_type;
202 int sk_rcvbuf;
203 socket_lock_t sk_lock;
204 wait_queue_head_t *sk_sleep;
205 struct dst_entry *sk_dst_cache;
206 struct xfrm_policy *sk_policy[2];
207 rwlock_t sk_dst_lock;
208 atomic_t sk_rmem_alloc;
209 atomic_t sk_wmem_alloc;
210 atomic_t sk_omem_alloc;
211 struct sk_buff_head sk_receive_queue;
212 struct sk_buff_head sk_write_queue;
213 struct sk_buff_head sk_async_wait_queue;
214 int sk_wmem_queued;
215 int sk_forward_alloc;
216 gfp_t sk_allocation;
217 int sk_sndbuf;
218 int sk_route_caps;
219 int sk_gso_type;
220 int sk_rcvlowat;
221 unsigned long sk_flags;
222 unsigned long sk_lingertime;
223 /*
224 * The backlog queue is special, it is always used with
225 * the per-socket spinlock held and requires low latency
226 * access. Therefore we special case it's implementation.
227 */
228 struct {
229 struct sk_buff *head;
230 struct sk_buff *tail;
231 } sk_backlog;
232 struct sk_buff_head sk_error_queue;
233 struct proto *sk_prot_creator;
234 rwlock_t sk_callback_lock;
235 int sk_err,
236 sk_err_soft;
237 unsigned short sk_ack_backlog;
238 unsigned short sk_max_ack_backlog;
239 __u32 sk_priority;
240 struct ucred sk_peercred;
241 long sk_rcvtimeo;
242 long sk_sndtimeo;
243 struct sk_filter *sk_filter;
244 void *sk_protinfo;
245 struct timer_list sk_timer;
246 struct timeval sk_stamp;
247 struct socket *sk_socket;
248 void *sk_user_data;
249 struct page *sk_sndmsg_page;
250 struct sk_buff *sk_send_head;
251 __u32 sk_sndmsg_off;
252 int sk_write_pending;
253 void *sk_security;
254 void (*sk_state_change)(struct sock *sk);
255 void (*sk_data_ready)(struct sock *sk, int bytes);
256 void (*sk_write_space)(struct sock *sk);
257 void (*sk_error_report)(struct sock *sk);
258 int (*sk_backlog_rcv)(struct sock *sk,
259 struct sk_buff *skb);
260 void (*sk_destruct)(struct sock *sk);
261 };
262
263 /*
264 * Hashed lists helper routines
265 */
266 static inline struct sock *__sk_head(const struct hlist_head *head)
267 {
268 return hlist_entry(head->first, struct sock, sk_node);
269 }
270
271 static inline struct sock *sk_head(const struct hlist_head *head)
272 {
273 return hlist_empty(head) ? NULL : __sk_head(head);
274 }
275
276 static inline struct sock *sk_next(const struct sock *sk)
277 {
278 return sk->sk_node.next ?
279 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
280 }
281
282 static inline int sk_unhashed(const struct sock *sk)
283 {
284 return hlist_unhashed(&sk->sk_node);
285 }
286
287 static inline int sk_hashed(const struct sock *sk)
288 {
289 return !sk_unhashed(sk);
290 }
291
292 static __inline__ void sk_node_init(struct hlist_node *node)
293 {
294 node->pprev = NULL;
295 }
296
297 static __inline__ void __sk_del_node(struct sock *sk)
298 {
299 __hlist_del(&sk->sk_node);
300 }
301
302 static __inline__ int __sk_del_node_init(struct sock *sk)
303 {
304 if (sk_hashed(sk)) {
305 __sk_del_node(sk);
306 sk_node_init(&sk->sk_node);
307 return 1;
308 }
309 return 0;
310 }
311
312 /* Grab socket reference count. This operation is valid only
313 when sk is ALREADY grabbed f.e. it is found in hash table
314 or a list and the lookup is made under lock preventing hash table
315 modifications.
316 */
317
318 static inline void sock_hold(struct sock *sk)
319 {
320 atomic_inc(&sk->sk_refcnt);
321 }
322
323 /* Ungrab socket in the context, which assumes that socket refcnt
324 cannot hit zero, f.e. it is true in context of any socketcall.
325 */
326 static inline void __sock_put(struct sock *sk)
327 {
328 atomic_dec(&sk->sk_refcnt);
329 }
330
331 static __inline__ int sk_del_node_init(struct sock *sk)
332 {
333 int rc = __sk_del_node_init(sk);
334
335 if (rc) {
336 /* paranoid for a while -acme */
337 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
338 __sock_put(sk);
339 }
340 return rc;
341 }
342
343 static __inline__ void __sk_add_node(struct sock *sk, struct hlist_head *list)
344 {
345 hlist_add_head(&sk->sk_node, list);
346 }
347
348 static __inline__ void sk_add_node(struct sock *sk, struct hlist_head *list)
349 {
350 sock_hold(sk);
351 __sk_add_node(sk, list);
352 }
353
354 static __inline__ void __sk_del_bind_node(struct sock *sk)
355 {
356 __hlist_del(&sk->sk_bind_node);
357 }
358
359 static __inline__ void sk_add_bind_node(struct sock *sk,
360 struct hlist_head *list)
361 {
362 hlist_add_head(&sk->sk_bind_node, list);
363 }
364
365 #define sk_for_each(__sk, node, list) \
366 hlist_for_each_entry(__sk, node, list, sk_node)
367 #define sk_for_each_from(__sk, node) \
368 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
369 hlist_for_each_entry_from(__sk, node, sk_node)
370 #define sk_for_each_continue(__sk, node) \
371 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
372 hlist_for_each_entry_continue(__sk, node, sk_node)
373 #define sk_for_each_safe(__sk, node, tmp, list) \
374 hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node)
375 #define sk_for_each_bound(__sk, node, list) \
376 hlist_for_each_entry(__sk, node, list, sk_bind_node)
377
378 /* Sock flags */
379 enum sock_flags {
380 SOCK_DEAD,
381 SOCK_DONE,
382 SOCK_URGINLINE,
383 SOCK_KEEPOPEN,
384 SOCK_LINGER,
385 SOCK_DESTROY,
386 SOCK_BROADCAST,
387 SOCK_TIMESTAMP,
388 SOCK_ZAPPED,
389 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
390 SOCK_DBG, /* %SO_DEBUG setting */
391 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
392 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
393 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
394 };
395
396 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
397 {
398 nsk->sk_flags = osk->sk_flags;
399 }
400
401 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
402 {
403 __set_bit(flag, &sk->sk_flags);
404 }
405
406 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
407 {
408 __clear_bit(flag, &sk->sk_flags);
409 }
410
411 static inline int sock_flag(struct sock *sk, enum sock_flags flag)
412 {
413 return test_bit(flag, &sk->sk_flags);
414 }
415
416 static inline void sk_acceptq_removed(struct sock *sk)
417 {
418 sk->sk_ack_backlog--;
419 }
420
421 static inline void sk_acceptq_added(struct sock *sk)
422 {
423 sk->sk_ack_backlog++;
424 }
425
426 static inline int sk_acceptq_is_full(struct sock *sk)
427 {
428 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
429 }
430
431 /*
432 * Compute minimal free write space needed to queue new packets.
433 */
434 static inline int sk_stream_min_wspace(struct sock *sk)
435 {
436 return sk->sk_wmem_queued / 2;
437 }
438
439 static inline int sk_stream_wspace(struct sock *sk)
440 {
441 return sk->sk_sndbuf - sk->sk_wmem_queued;
442 }
443
444 extern void sk_stream_write_space(struct sock *sk);
445
446 static inline int sk_stream_memory_free(struct sock *sk)
447 {
448 return sk->sk_wmem_queued < sk->sk_sndbuf;
449 }
450
451 extern void sk_stream_rfree(struct sk_buff *skb);
452
453 static inline void sk_stream_set_owner_r(struct sk_buff *skb, struct sock *sk)
454 {
455 skb->sk = sk;
456 skb->destructor = sk_stream_rfree;
457 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
458 sk->sk_forward_alloc -= skb->truesize;
459 }
460
461 static inline void sk_stream_free_skb(struct sock *sk, struct sk_buff *skb)
462 {
463 skb_truesize_check(skb);
464 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
465 sk->sk_wmem_queued -= skb->truesize;
466 sk->sk_forward_alloc += skb->truesize;
467 __kfree_skb(skb);
468 }
469
470 /* The per-socket spinlock must be held here. */
471 static inline void sk_add_backlog(struct sock *sk, struct sk_buff *skb)
472 {
473 if (!sk->sk_backlog.tail) {
474 sk->sk_backlog.head = sk->sk_backlog.tail = skb;
475 } else {
476 sk->sk_backlog.tail->next = skb;
477 sk->sk_backlog.tail = skb;
478 }
479 skb->next = NULL;
480 }
481
482 #define sk_wait_event(__sk, __timeo, __condition) \
483 ({ int rc; \
484 release_sock(__sk); \
485 rc = __condition; \
486 if (!rc) { \
487 *(__timeo) = schedule_timeout(*(__timeo)); \
488 } \
489 lock_sock(__sk); \
490 rc = __condition; \
491 rc; \
492 })
493
494 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
495 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
496 extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
497 extern int sk_stream_error(struct sock *sk, int flags, int err);
498 extern void sk_stream_kill_queues(struct sock *sk);
499
500 extern int sk_wait_data(struct sock *sk, long *timeo);
501
502 struct request_sock_ops;
503 struct timewait_sock_ops;
504
505 /* Networking protocol blocks we attach to sockets.
506 * socket layer -> transport layer interface
507 * transport -> network interface is defined by struct inet_proto
508 */
509 struct proto {
510 void (*close)(struct sock *sk,
511 long timeout);
512 int (*connect)(struct sock *sk,
513 struct sockaddr *uaddr,
514 int addr_len);
515 int (*disconnect)(struct sock *sk, int flags);
516
517 struct sock * (*accept) (struct sock *sk, int flags, int *err);
518
519 int (*ioctl)(struct sock *sk, int cmd,
520 unsigned long arg);
521 int (*init)(struct sock *sk);
522 int (*destroy)(struct sock *sk);
523 void (*shutdown)(struct sock *sk, int how);
524 int (*setsockopt)(struct sock *sk, int level,
525 int optname, char __user *optval,
526 int optlen);
527 int (*getsockopt)(struct sock *sk, int level,
528 int optname, char __user *optval,
529 int __user *option);
530 int (*compat_setsockopt)(struct sock *sk,
531 int level,
532 int optname, char __user *optval,
533 int optlen);
534 int (*compat_getsockopt)(struct sock *sk,
535 int level,
536 int optname, char __user *optval,
537 int __user *option);
538 int (*sendmsg)(struct kiocb *iocb, struct sock *sk,
539 struct msghdr *msg, size_t len);
540 int (*recvmsg)(struct kiocb *iocb, struct sock *sk,
541 struct msghdr *msg,
542 size_t len, int noblock, int flags,
543 int *addr_len);
544 int (*sendpage)(struct sock *sk, struct page *page,
545 int offset, size_t size, int flags);
546 int (*bind)(struct sock *sk,
547 struct sockaddr *uaddr, int addr_len);
548
549 int (*backlog_rcv) (struct sock *sk,
550 struct sk_buff *skb);
551
552 /* Keeping track of sk's, looking them up, and port selection methods. */
553 void (*hash)(struct sock *sk);
554 void (*unhash)(struct sock *sk);
555 int (*get_port)(struct sock *sk, unsigned short snum);
556
557 /* Memory pressure */
558 void (*enter_memory_pressure)(void);
559 atomic_t *memory_allocated; /* Current allocated memory. */
560 atomic_t *sockets_allocated; /* Current number of sockets. */
561 /*
562 * Pressure flag: try to collapse.
563 * Technical note: it is used by multiple contexts non atomically.
564 * All the sk_stream_mem_schedule() is of this nature: accounting
565 * is strict, actions are advisory and have some latency.
566 */
567 int *memory_pressure;
568 int *sysctl_mem;
569 int *sysctl_wmem;
570 int *sysctl_rmem;
571 int max_header;
572
573 kmem_cache_t *slab;
574 unsigned int obj_size;
575
576 atomic_t *orphan_count;
577
578 struct request_sock_ops *rsk_prot;
579 struct timewait_sock_ops *twsk_prot;
580
581 struct module *owner;
582
583 char name[32];
584
585 struct list_head node;
586 #ifdef SOCK_REFCNT_DEBUG
587 atomic_t socks;
588 #endif
589 struct {
590 int inuse;
591 u8 __pad[SMP_CACHE_BYTES - sizeof(int)];
592 } stats[NR_CPUS];
593 };
594
595 extern int proto_register(struct proto *prot, int alloc_slab);
596 extern void proto_unregister(struct proto *prot);
597
598 #ifdef SOCK_REFCNT_DEBUG
599 static inline void sk_refcnt_debug_inc(struct sock *sk)
600 {
601 atomic_inc(&sk->sk_prot->socks);
602 }
603
604 static inline void sk_refcnt_debug_dec(struct sock *sk)
605 {
606 atomic_dec(&sk->sk_prot->socks);
607 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
608 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
609 }
610
611 static inline void sk_refcnt_debug_release(const struct sock *sk)
612 {
613 if (atomic_read(&sk->sk_refcnt) != 1)
614 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
615 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
616 }
617 #else /* SOCK_REFCNT_DEBUG */
618 #define sk_refcnt_debug_inc(sk) do { } while (0)
619 #define sk_refcnt_debug_dec(sk) do { } while (0)
620 #define sk_refcnt_debug_release(sk) do { } while (0)
621 #endif /* SOCK_REFCNT_DEBUG */
622
623 /* Called with local bh disabled */
624 static __inline__ void sock_prot_inc_use(struct proto *prot)
625 {
626 prot->stats[smp_processor_id()].inuse++;
627 }
628
629 static __inline__ void sock_prot_dec_use(struct proto *prot)
630 {
631 prot->stats[smp_processor_id()].inuse--;
632 }
633
634 /* With per-bucket locks this operation is not-atomic, so that
635 * this version is not worse.
636 */
637 static inline void __sk_prot_rehash(struct sock *sk)
638 {
639 sk->sk_prot->unhash(sk);
640 sk->sk_prot->hash(sk);
641 }
642
643 /* About 10 seconds */
644 #define SOCK_DESTROY_TIME (10*HZ)
645
646 /* Sockets 0-1023 can't be bound to unless you are superuser */
647 #define PROT_SOCK 1024
648
649 #define SHUTDOWN_MASK 3
650 #define RCV_SHUTDOWN 1
651 #define SEND_SHUTDOWN 2
652
653 #define SOCK_SNDBUF_LOCK 1
654 #define SOCK_RCVBUF_LOCK 2
655 #define SOCK_BINDADDR_LOCK 4
656 #define SOCK_BINDPORT_LOCK 8
657
658 /* sock_iocb: used to kick off async processing of socket ios */
659 struct sock_iocb {
660 struct list_head list;
661
662 int flags;
663 int size;
664 struct socket *sock;
665 struct sock *sk;
666 struct scm_cookie *scm;
667 struct msghdr *msg, async_msg;
668 struct kiocb *kiocb;
669 };
670
671 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
672 {
673 return (struct sock_iocb *)iocb->private;
674 }
675
676 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
677 {
678 return si->kiocb;
679 }
680
681 struct socket_alloc {
682 struct socket socket;
683 struct inode vfs_inode;
684 };
685
686 static inline struct socket *SOCKET_I(struct inode *inode)
687 {
688 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
689 }
690
691 static inline struct inode *SOCK_INODE(struct socket *socket)
692 {
693 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
694 }
695
696 extern void __sk_stream_mem_reclaim(struct sock *sk);
697 extern int sk_stream_mem_schedule(struct sock *sk, int size, int kind);
698
699 #define SK_STREAM_MEM_QUANTUM ((int)PAGE_SIZE)
700
701 static inline int sk_stream_pages(int amt)
702 {
703 return (amt + SK_STREAM_MEM_QUANTUM - 1) / SK_STREAM_MEM_QUANTUM;
704 }
705
706 static inline void sk_stream_mem_reclaim(struct sock *sk)
707 {
708 if (sk->sk_forward_alloc >= SK_STREAM_MEM_QUANTUM)
709 __sk_stream_mem_reclaim(sk);
710 }
711
712 static inline void sk_stream_writequeue_purge(struct sock *sk)
713 {
714 struct sk_buff *skb;
715
716 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL)
717 sk_stream_free_skb(sk, skb);
718 sk_stream_mem_reclaim(sk);
719 }
720
721 static inline int sk_stream_rmem_schedule(struct sock *sk, struct sk_buff *skb)
722 {
723 return (int)skb->truesize <= sk->sk_forward_alloc ||
724 sk_stream_mem_schedule(sk, skb->truesize, 1);
725 }
726
727 static inline int sk_stream_wmem_schedule(struct sock *sk, int size)
728 {
729 return size <= sk->sk_forward_alloc ||
730 sk_stream_mem_schedule(sk, size, 0);
731 }
732
733 /* Used by processes to "lock" a socket state, so that
734 * interrupts and bottom half handlers won't change it
735 * from under us. It essentially blocks any incoming
736 * packets, so that we won't get any new data or any
737 * packets that change the state of the socket.
738 *
739 * While locked, BH processing will add new packets to
740 * the backlog queue. This queue is processed by the
741 * owner of the socket lock right before it is released.
742 *
743 * Since ~2.3.5 it is also exclusive sleep lock serializing
744 * accesses from user process context.
745 */
746 #define sock_owned_by_user(sk) ((sk)->sk_lock.owner)
747
748 extern void FASTCALL(lock_sock(struct sock *sk));
749 extern void FASTCALL(release_sock(struct sock *sk));
750
751 /* BH context may only use the following locking interface. */
752 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
753 #define bh_lock_sock_nested(__sk) \
754 spin_lock_nested(&((__sk)->sk_lock.slock), \
755 SINGLE_DEPTH_NESTING)
756 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
757
758 extern struct sock *sk_alloc(int family,
759 gfp_t priority,
760 struct proto *prot, int zero_it);
761 extern void sk_free(struct sock *sk);
762 extern struct sock *sk_clone(const struct sock *sk,
763 const gfp_t priority);
764
765 extern struct sk_buff *sock_wmalloc(struct sock *sk,
766 unsigned long size, int force,
767 gfp_t priority);
768 extern struct sk_buff *sock_rmalloc(struct sock *sk,
769 unsigned long size, int force,
770 gfp_t priority);
771 extern void sock_wfree(struct sk_buff *skb);
772 extern void sock_rfree(struct sk_buff *skb);
773
774 extern int sock_setsockopt(struct socket *sock, int level,
775 int op, char __user *optval,
776 int optlen);
777
778 extern int sock_getsockopt(struct socket *sock, int level,
779 int op, char __user *optval,
780 int __user *optlen);
781 extern struct sk_buff *sock_alloc_send_skb(struct sock *sk,
782 unsigned long size,
783 int noblock,
784 int *errcode);
785 extern void *sock_kmalloc(struct sock *sk, int size,
786 gfp_t priority);
787 extern void sock_kfree_s(struct sock *sk, void *mem, int size);
788 extern void sk_send_sigurg(struct sock *sk);
789
790 /*
791 * Functions to fill in entries in struct proto_ops when a protocol
792 * does not implement a particular function.
793 */
794 extern int sock_no_bind(struct socket *,
795 struct sockaddr *, int);
796 extern int sock_no_connect(struct socket *,
797 struct sockaddr *, int, int);
798 extern int sock_no_socketpair(struct socket *,
799 struct socket *);
800 extern int sock_no_accept(struct socket *,
801 struct socket *, int);
802 extern int sock_no_getname(struct socket *,
803 struct sockaddr *, int *, int);
804 extern unsigned int sock_no_poll(struct file *, struct socket *,
805 struct poll_table_struct *);
806 extern int sock_no_ioctl(struct socket *, unsigned int,
807 unsigned long);
808 extern int sock_no_listen(struct socket *, int);
809 extern int sock_no_shutdown(struct socket *, int);
810 extern int sock_no_getsockopt(struct socket *, int , int,
811 char __user *, int __user *);
812 extern int sock_no_setsockopt(struct socket *, int, int,
813 char __user *, int);
814 extern int sock_no_sendmsg(struct kiocb *, struct socket *,
815 struct msghdr *, size_t);
816 extern int sock_no_recvmsg(struct kiocb *, struct socket *,
817 struct msghdr *, size_t, int);
818 extern int sock_no_mmap(struct file *file,
819 struct socket *sock,
820 struct vm_area_struct *vma);
821 extern ssize_t sock_no_sendpage(struct socket *sock,
822 struct page *page,
823 int offset, size_t size,
824 int flags);
825
826 /*
827 * Functions to fill in entries in struct proto_ops when a protocol
828 * uses the inet style.
829 */
830 extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
831 char __user *optval, int __user *optlen);
832 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
833 struct msghdr *msg, size_t size, int flags);
834 extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
835 char __user *optval, int optlen);
836 extern int compat_sock_common_getsockopt(struct socket *sock, int level,
837 int optname, char __user *optval, int __user *optlen);
838 extern int compat_sock_common_setsockopt(struct socket *sock, int level,
839 int optname, char __user *optval, int optlen);
840
841 extern void sk_common_release(struct sock *sk);
842
843 /*
844 * Default socket callbacks and setup code
845 */
846
847 /* Initialise core socket variables */
848 extern void sock_init_data(struct socket *sock, struct sock *sk);
849
850 /**
851 * sk_filter - run a packet through a socket filter
852 * @sk: sock associated with &sk_buff
853 * @skb: buffer to filter
854 * @needlock: set to 1 if the sock is not locked by caller.
855 *
856 * Run the filter code and then cut skb->data to correct size returned by
857 * sk_run_filter. If pkt_len is 0 we toss packet. If skb->len is smaller
858 * than pkt_len we keep whole skb->data. This is the socket level
859 * wrapper to sk_run_filter. It returns 0 if the packet should
860 * be accepted or -EPERM if the packet should be tossed.
861 *
862 */
863
864 static inline int sk_filter(struct sock *sk, struct sk_buff *skb)
865 {
866 int err;
867 struct sk_filter *filter;
868
869 err = security_sock_rcv_skb(sk, skb);
870 if (err)
871 return err;
872
873 rcu_read_lock_bh();
874 filter = sk->sk_filter;
875 if (filter) {
876 unsigned int pkt_len = sk_run_filter(skb, filter->insns,
877 filter->len);
878 err = pkt_len ? pskb_trim(skb, pkt_len) : -EPERM;
879 }
880 rcu_read_unlock_bh();
881
882 return err;
883 }
884
885 /**
886 * sk_filter_release: Release a socket filter
887 * @sk: socket
888 * @fp: filter to remove
889 *
890 * Remove a filter from a socket and release its resources.
891 */
892
893 static inline void sk_filter_rcu_free(struct rcu_head *rcu)
894 {
895 struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
896 kfree(fp);
897 }
898
899 static inline void sk_filter_release(struct sock *sk, struct sk_filter *fp)
900 {
901 unsigned int size = sk_filter_len(fp);
902
903 atomic_sub(size, &sk->sk_omem_alloc);
904
905 if (atomic_dec_and_test(&fp->refcnt))
906 call_rcu_bh(&fp->rcu, sk_filter_rcu_free);
907 }
908
909 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
910 {
911 atomic_inc(&fp->refcnt);
912 atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
913 }
914
915 /*
916 * Socket reference counting postulates.
917 *
918 * * Each user of socket SHOULD hold a reference count.
919 * * Each access point to socket (an hash table bucket, reference from a list,
920 * running timer, skb in flight MUST hold a reference count.
921 * * When reference count hits 0, it means it will never increase back.
922 * * When reference count hits 0, it means that no references from
923 * outside exist to this socket and current process on current CPU
924 * is last user and may/should destroy this socket.
925 * * sk_free is called from any context: process, BH, IRQ. When
926 * it is called, socket has no references from outside -> sk_free
927 * may release descendant resources allocated by the socket, but
928 * to the time when it is called, socket is NOT referenced by any
929 * hash tables, lists etc.
930 * * Packets, delivered from outside (from network or from another process)
931 * and enqueued on receive/error queues SHOULD NOT grab reference count,
932 * when they sit in queue. Otherwise, packets will leak to hole, when
933 * socket is looked up by one cpu and unhasing is made by another CPU.
934 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
935 * (leak to backlog). Packet socket does all the processing inside
936 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
937 * use separate SMP lock, so that they are prone too.
938 */
939
940 /* Ungrab socket and destroy it, if it was the last reference. */
941 static inline void sock_put(struct sock *sk)
942 {
943 if (atomic_dec_and_test(&sk->sk_refcnt))
944 sk_free(sk);
945 }
946
947 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb);
948
949 /* Detach socket from process context.
950 * Announce socket dead, detach it from wait queue and inode.
951 * Note that parent inode held reference count on this struct sock,
952 * we do not release it in this function, because protocol
953 * probably wants some additional cleanups or even continuing
954 * to work with this socket (TCP).
955 */
956 static inline void sock_orphan(struct sock *sk)
957 {
958 write_lock_bh(&sk->sk_callback_lock);
959 sock_set_flag(sk, SOCK_DEAD);
960 sk->sk_socket = NULL;
961 sk->sk_sleep = NULL;
962 write_unlock_bh(&sk->sk_callback_lock);
963 }
964
965 static inline void sock_graft(struct sock *sk, struct socket *parent)
966 {
967 write_lock_bh(&sk->sk_callback_lock);
968 sk->sk_sleep = &parent->wait;
969 parent->sk = sk;
970 sk->sk_socket = parent;
971 security_sock_graft(sk, parent);
972 write_unlock_bh(&sk->sk_callback_lock);
973 }
974
975 static inline void sock_copy(struct sock *nsk, const struct sock *osk)
976 {
977 #ifdef CONFIG_SECURITY_NETWORK
978 void *sptr = nsk->sk_security;
979 #endif
980
981 memcpy(nsk, osk, osk->sk_prot->obj_size);
982 #ifdef CONFIG_SECURITY_NETWORK
983 nsk->sk_security = sptr;
984 security_sk_clone(osk, nsk);
985 #endif
986 }
987
988 extern int sock_i_uid(struct sock *sk);
989 extern unsigned long sock_i_ino(struct sock *sk);
990
991 static inline struct dst_entry *
992 __sk_dst_get(struct sock *sk)
993 {
994 return sk->sk_dst_cache;
995 }
996
997 static inline struct dst_entry *
998 sk_dst_get(struct sock *sk)
999 {
1000 struct dst_entry *dst;
1001
1002 read_lock(&sk->sk_dst_lock);
1003 dst = sk->sk_dst_cache;
1004 if (dst)
1005 dst_hold(dst);
1006 read_unlock(&sk->sk_dst_lock);
1007 return dst;
1008 }
1009
1010 static inline void
1011 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1012 {
1013 struct dst_entry *old_dst;
1014
1015 old_dst = sk->sk_dst_cache;
1016 sk->sk_dst_cache = dst;
1017 dst_release(old_dst);
1018 }
1019
1020 static inline void
1021 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1022 {
1023 write_lock(&sk->sk_dst_lock);
1024 __sk_dst_set(sk, dst);
1025 write_unlock(&sk->sk_dst_lock);
1026 }
1027
1028 static inline void
1029 __sk_dst_reset(struct sock *sk)
1030 {
1031 struct dst_entry *old_dst;
1032
1033 old_dst = sk->sk_dst_cache;
1034 sk->sk_dst_cache = NULL;
1035 dst_release(old_dst);
1036 }
1037
1038 static inline void
1039 sk_dst_reset(struct sock *sk)
1040 {
1041 write_lock(&sk->sk_dst_lock);
1042 __sk_dst_reset(sk);
1043 write_unlock(&sk->sk_dst_lock);
1044 }
1045
1046 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1047
1048 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1049
1050 static inline int sk_can_gso(const struct sock *sk)
1051 {
1052 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1053 }
1054
1055 static inline void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1056 {
1057 __sk_dst_set(sk, dst);
1058 sk->sk_route_caps = dst->dev->features;
1059 if (sk->sk_route_caps & NETIF_F_GSO)
1060 sk->sk_route_caps |= NETIF_F_GSO_MASK;
1061 if (sk_can_gso(sk)) {
1062 if (dst->header_len)
1063 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1064 else
1065 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1066 }
1067 }
1068
1069 static inline void sk_charge_skb(struct sock *sk, struct sk_buff *skb)
1070 {
1071 sk->sk_wmem_queued += skb->truesize;
1072 sk->sk_forward_alloc -= skb->truesize;
1073 }
1074
1075 static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1076 struct sk_buff *skb, struct page *page,
1077 int off, int copy)
1078 {
1079 if (skb->ip_summed == CHECKSUM_NONE) {
1080 int err = 0;
1081 unsigned int csum = csum_and_copy_from_user(from,
1082 page_address(page) + off,
1083 copy, 0, &err);
1084 if (err)
1085 return err;
1086 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1087 } else if (copy_from_user(page_address(page) + off, from, copy))
1088 return -EFAULT;
1089
1090 skb->len += copy;
1091 skb->data_len += copy;
1092 skb->truesize += copy;
1093 sk->sk_wmem_queued += copy;
1094 sk->sk_forward_alloc -= copy;
1095 return 0;
1096 }
1097
1098 /*
1099 * Queue a received datagram if it will fit. Stream and sequenced
1100 * protocols can't normally use this as they need to fit buffers in
1101 * and play with them.
1102 *
1103 * Inlined as it's very short and called for pretty much every
1104 * packet ever received.
1105 */
1106
1107 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1108 {
1109 sock_hold(sk);
1110 skb->sk = sk;
1111 skb->destructor = sock_wfree;
1112 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1113 }
1114
1115 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1116 {
1117 skb->sk = sk;
1118 skb->destructor = sock_rfree;
1119 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1120 }
1121
1122 extern void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1123 unsigned long expires);
1124
1125 extern void sk_stop_timer(struct sock *sk, struct timer_list* timer);
1126
1127 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1128
1129 static inline int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
1130 {
1131 /* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
1132 number of warnings when compiling with -W --ANK
1133 */
1134 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
1135 (unsigned)sk->sk_rcvbuf)
1136 return -ENOMEM;
1137 skb_set_owner_r(skb, sk);
1138 skb_queue_tail(&sk->sk_error_queue, skb);
1139 if (!sock_flag(sk, SOCK_DEAD))
1140 sk->sk_data_ready(sk, skb->len);
1141 return 0;
1142 }
1143
1144 /*
1145 * Recover an error report and clear atomically
1146 */
1147
1148 static inline int sock_error(struct sock *sk)
1149 {
1150 int err;
1151 if (likely(!sk->sk_err))
1152 return 0;
1153 err = xchg(&sk->sk_err, 0);
1154 return -err;
1155 }
1156
1157 static inline unsigned long sock_wspace(struct sock *sk)
1158 {
1159 int amt = 0;
1160
1161 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1162 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1163 if (amt < 0)
1164 amt = 0;
1165 }
1166 return amt;
1167 }
1168
1169 static inline void sk_wake_async(struct sock *sk, int how, int band)
1170 {
1171 if (sk->sk_socket && sk->sk_socket->fasync_list)
1172 sock_wake_async(sk->sk_socket, how, band);
1173 }
1174
1175 #define SOCK_MIN_SNDBUF 2048
1176 #define SOCK_MIN_RCVBUF 256
1177
1178 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
1179 {
1180 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
1181 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued / 2);
1182 sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
1183 }
1184 }
1185
1186 static inline struct sk_buff *sk_stream_alloc_pskb(struct sock *sk,
1187 int size, int mem,
1188 gfp_t gfp)
1189 {
1190 struct sk_buff *skb;
1191 int hdr_len;
1192
1193 hdr_len = SKB_DATA_ALIGN(sk->sk_prot->max_header);
1194 skb = alloc_skb_fclone(size + hdr_len, gfp);
1195 if (skb) {
1196 skb->truesize += mem;
1197 if (sk_stream_wmem_schedule(sk, skb->truesize)) {
1198 skb_reserve(skb, hdr_len);
1199 return skb;
1200 }
1201 __kfree_skb(skb);
1202 } else {
1203 sk->sk_prot->enter_memory_pressure();
1204 sk_stream_moderate_sndbuf(sk);
1205 }
1206 return NULL;
1207 }
1208
1209 static inline struct sk_buff *sk_stream_alloc_skb(struct sock *sk,
1210 int size,
1211 gfp_t gfp)
1212 {
1213 return sk_stream_alloc_pskb(sk, size, 0, gfp);
1214 }
1215
1216 static inline struct page *sk_stream_alloc_page(struct sock *sk)
1217 {
1218 struct page *page = NULL;
1219
1220 page = alloc_pages(sk->sk_allocation, 0);
1221 if (!page) {
1222 sk->sk_prot->enter_memory_pressure();
1223 sk_stream_moderate_sndbuf(sk);
1224 }
1225 return page;
1226 }
1227
1228 #define sk_stream_for_retrans_queue(skb, sk) \
1229 for (skb = (sk)->sk_write_queue.next; \
1230 (skb != (sk)->sk_send_head) && \
1231 (skb != (struct sk_buff *)&(sk)->sk_write_queue); \
1232 skb = skb->next)
1233
1234 /*from STCP for fast SACK Process*/
1235 #define sk_stream_for_retrans_queue_from(skb, sk) \
1236 for (; (skb != (sk)->sk_send_head) && \
1237 (skb != (struct sk_buff *)&(sk)->sk_write_queue); \
1238 skb = skb->next)
1239
1240 /*
1241 * Default write policy as shown to user space via poll/select/SIGIO
1242 */
1243 static inline int sock_writeable(const struct sock *sk)
1244 {
1245 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf / 2);
1246 }
1247
1248 static inline gfp_t gfp_any(void)
1249 {
1250 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
1251 }
1252
1253 static inline long sock_rcvtimeo(const struct sock *sk, int noblock)
1254 {
1255 return noblock ? 0 : sk->sk_rcvtimeo;
1256 }
1257
1258 static inline long sock_sndtimeo(const struct sock *sk, int noblock)
1259 {
1260 return noblock ? 0 : sk->sk_sndtimeo;
1261 }
1262
1263 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
1264 {
1265 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
1266 }
1267
1268 /* Alas, with timeout socket operations are not restartable.
1269 * Compare this to poll().
1270 */
1271 static inline int sock_intr_errno(long timeo)
1272 {
1273 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
1274 }
1275
1276 static __inline__ void
1277 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
1278 {
1279 struct timeval stamp;
1280
1281 skb_get_timestamp(skb, &stamp);
1282 if (sock_flag(sk, SOCK_RCVTSTAMP)) {
1283 /* Race occurred between timestamp enabling and packet
1284 receiving. Fill in the current time for now. */
1285 if (stamp.tv_sec == 0)
1286 do_gettimeofday(&stamp);
1287 skb_set_timestamp(skb, &stamp);
1288 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP, sizeof(struct timeval),
1289 &stamp);
1290 } else
1291 sk->sk_stamp = stamp;
1292 }
1293
1294 /**
1295 * sk_eat_skb - Release a skb if it is no longer needed
1296 * @sk: socket to eat this skb from
1297 * @skb: socket buffer to eat
1298 * @copied_early: flag indicating whether DMA operations copied this data early
1299 *
1300 * This routine must be called with interrupts disabled or with the socket
1301 * locked so that the sk_buff queue operation is ok.
1302 */
1303 #ifdef CONFIG_NET_DMA
1304 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1305 {
1306 __skb_unlink(skb, &sk->sk_receive_queue);
1307 if (!copied_early)
1308 __kfree_skb(skb);
1309 else
1310 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
1311 }
1312 #else
1313 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1314 {
1315 __skb_unlink(skb, &sk->sk_receive_queue);
1316 __kfree_skb(skb);
1317 }
1318 #endif
1319
1320 extern void sock_enable_timestamp(struct sock *sk);
1321 extern int sock_get_timestamp(struct sock *, struct timeval __user *);
1322
1323 /*
1324 * Enable debug/info messages
1325 */
1326
1327 #ifdef CONFIG_NETDEBUG
1328 #define NETDEBUG(fmt, args...) printk(fmt,##args)
1329 #define LIMIT_NETDEBUG(fmt, args...) do { if (net_ratelimit()) printk(fmt,##args); } while(0)
1330 #else
1331 #define NETDEBUG(fmt, args...) do { } while (0)
1332 #define LIMIT_NETDEBUG(fmt, args...) do { } while(0)
1333 #endif
1334
1335 /*
1336 * Macros for sleeping on a socket. Use them like this:
1337 *
1338 * SOCK_SLEEP_PRE(sk)
1339 * if (condition)
1340 * schedule();
1341 * SOCK_SLEEP_POST(sk)
1342 *
1343 * N.B. These are now obsolete and were, afaik, only ever used in DECnet
1344 * and when the last use of them in DECnet has gone, I'm intending to
1345 * remove them.
1346 */
1347
1348 #define SOCK_SLEEP_PRE(sk) { struct task_struct *tsk = current; \
1349 DECLARE_WAITQUEUE(wait, tsk); \
1350 tsk->state = TASK_INTERRUPTIBLE; \
1351 add_wait_queue((sk)->sk_sleep, &wait); \
1352 release_sock(sk);
1353
1354 #define SOCK_SLEEP_POST(sk) tsk->state = TASK_RUNNING; \
1355 remove_wait_queue((sk)->sk_sleep, &wait); \
1356 lock_sock(sk); \
1357 }
1358
1359 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
1360 {
1361 if (valbool)
1362 sock_set_flag(sk, bit);
1363 else
1364 sock_reset_flag(sk, bit);
1365 }
1366
1367 extern __u32 sysctl_wmem_max;
1368 extern __u32 sysctl_rmem_max;
1369
1370 #ifdef CONFIG_NET
1371 int siocdevprivate_ioctl(unsigned int fd, unsigned int cmd, unsigned long arg);
1372 #else
1373 static inline int siocdevprivate_ioctl(unsigned int fd, unsigned int cmd, unsigned long arg)
1374 {
1375 return -ENODEV;
1376 }
1377 #endif
1378
1379 extern void sk_init(void);
1380
1381 #ifdef CONFIG_SYSCTL
1382 extern struct ctl_table core_table[];
1383 #endif
1384
1385 extern int sysctl_optmem_max;
1386
1387 extern __u32 sysctl_wmem_default;
1388 extern __u32 sysctl_rmem_default;
1389
1390 #endif /* _SOCK_H */