KVM: kvm_io_bus_unregister_dev() should never fail
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / usb.h
1 #ifndef __LINUX_USB_H
2 #define __LINUX_USB_H
3
4 #include <linux/mod_devicetable.h>
5 #include <linux/usb/ch9.h>
6
7 #define USB_MAJOR 180
8 #define USB_DEVICE_MAJOR 189
9
10
11 #ifdef __KERNEL__
12
13 #include <linux/errno.h> /* for -ENODEV */
14 #include <linux/delay.h> /* for mdelay() */
15 #include <linux/interrupt.h> /* for in_interrupt() */
16 #include <linux/list.h> /* for struct list_head */
17 #include <linux/kref.h> /* for struct kref */
18 #include <linux/device.h> /* for struct device */
19 #include <linux/fs.h> /* for struct file_operations */
20 #include <linux/completion.h> /* for struct completion */
21 #include <linux/sched.h> /* for current && schedule_timeout */
22 #include <linux/mutex.h> /* for struct mutex */
23 #include <linux/pm_runtime.h> /* for runtime PM */
24
25 struct usb_device;
26 struct usb_driver;
27 struct wusb_dev;
28
29 /*-------------------------------------------------------------------------*/
30
31 /*
32 * Host-side wrappers for standard USB descriptors ... these are parsed
33 * from the data provided by devices. Parsing turns them from a flat
34 * sequence of descriptors into a hierarchy:
35 *
36 * - devices have one (usually) or more configs;
37 * - configs have one (often) or more interfaces;
38 * - interfaces have one (usually) or more settings;
39 * - each interface setting has zero or (usually) more endpoints.
40 * - a SuperSpeed endpoint has a companion descriptor
41 *
42 * And there might be other descriptors mixed in with those.
43 *
44 * Devices may also have class-specific or vendor-specific descriptors.
45 */
46
47 struct ep_device;
48
49 /**
50 * struct usb_host_endpoint - host-side endpoint descriptor and queue
51 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
52 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
53 * @urb_list: urbs queued to this endpoint; maintained by usbcore
54 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
55 * with one or more transfer descriptors (TDs) per urb
56 * @ep_dev: ep_device for sysfs info
57 * @extra: descriptors following this endpoint in the configuration
58 * @extralen: how many bytes of "extra" are valid
59 * @enabled: URBs may be submitted to this endpoint
60 *
61 * USB requests are always queued to a given endpoint, identified by a
62 * descriptor within an active interface in a given USB configuration.
63 */
64 struct usb_host_endpoint {
65 struct usb_endpoint_descriptor desc;
66 struct usb_ss_ep_comp_descriptor ss_ep_comp;
67 struct list_head urb_list;
68 void *hcpriv;
69 struct ep_device *ep_dev; /* For sysfs info */
70
71 unsigned char *extra; /* Extra descriptors */
72 int extralen;
73 int enabled;
74 };
75
76 /* host-side wrapper for one interface setting's parsed descriptors */
77 struct usb_host_interface {
78 struct usb_interface_descriptor desc;
79
80 int extralen;
81 unsigned char *extra; /* Extra descriptors */
82
83 /* array of desc.bNumEndpoint endpoints associated with this
84 * interface setting. these will be in no particular order.
85 */
86 struct usb_host_endpoint *endpoint;
87
88 char *string; /* iInterface string, if present */
89 };
90
91 enum usb_interface_condition {
92 USB_INTERFACE_UNBOUND = 0,
93 USB_INTERFACE_BINDING,
94 USB_INTERFACE_BOUND,
95 USB_INTERFACE_UNBINDING,
96 };
97
98 /**
99 * struct usb_interface - what usb device drivers talk to
100 * @altsetting: array of interface structures, one for each alternate
101 * setting that may be selected. Each one includes a set of
102 * endpoint configurations. They will be in no particular order.
103 * @cur_altsetting: the current altsetting.
104 * @num_altsetting: number of altsettings defined.
105 * @intf_assoc: interface association descriptor
106 * @minor: the minor number assigned to this interface, if this
107 * interface is bound to a driver that uses the USB major number.
108 * If this interface does not use the USB major, this field should
109 * be unused. The driver should set this value in the probe()
110 * function of the driver, after it has been assigned a minor
111 * number from the USB core by calling usb_register_dev().
112 * @condition: binding state of the interface: not bound, binding
113 * (in probe()), bound to a driver, or unbinding (in disconnect())
114 * @sysfs_files_created: sysfs attributes exist
115 * @ep_devs_created: endpoint child pseudo-devices exist
116 * @unregistering: flag set when the interface is being unregistered
117 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
118 * capability during autosuspend.
119 * @needs_altsetting0: flag set when a set-interface request for altsetting 0
120 * has been deferred.
121 * @needs_binding: flag set when the driver should be re-probed or unbound
122 * following a reset or suspend operation it doesn't support.
123 * @dev: driver model's view of this device
124 * @usb_dev: if an interface is bound to the USB major, this will point
125 * to the sysfs representation for that device.
126 * @pm_usage_cnt: PM usage counter for this interface
127 * @reset_ws: Used for scheduling resets from atomic context.
128 * @reset_running: set to 1 if the interface is currently running a
129 * queued reset so that usb_cancel_queued_reset() doesn't try to
130 * remove from the workqueue when running inside the worker
131 * thread. See __usb_queue_reset_device().
132 * @resetting_device: USB core reset the device, so use alt setting 0 as
133 * current; needs bandwidth alloc after reset.
134 *
135 * USB device drivers attach to interfaces on a physical device. Each
136 * interface encapsulates a single high level function, such as feeding
137 * an audio stream to a speaker or reporting a change in a volume control.
138 * Many USB devices only have one interface. The protocol used to talk to
139 * an interface's endpoints can be defined in a usb "class" specification,
140 * or by a product's vendor. The (default) control endpoint is part of
141 * every interface, but is never listed among the interface's descriptors.
142 *
143 * The driver that is bound to the interface can use standard driver model
144 * calls such as dev_get_drvdata() on the dev member of this structure.
145 *
146 * Each interface may have alternate settings. The initial configuration
147 * of a device sets altsetting 0, but the device driver can change
148 * that setting using usb_set_interface(). Alternate settings are often
149 * used to control the use of periodic endpoints, such as by having
150 * different endpoints use different amounts of reserved USB bandwidth.
151 * All standards-conformant USB devices that use isochronous endpoints
152 * will use them in non-default settings.
153 *
154 * The USB specification says that alternate setting numbers must run from
155 * 0 to one less than the total number of alternate settings. But some
156 * devices manage to mess this up, and the structures aren't necessarily
157 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to
158 * look up an alternate setting in the altsetting array based on its number.
159 */
160 struct usb_interface {
161 /* array of alternate settings for this interface,
162 * stored in no particular order */
163 struct usb_host_interface *altsetting;
164
165 struct usb_host_interface *cur_altsetting; /* the currently
166 * active alternate setting */
167 unsigned num_altsetting; /* number of alternate settings */
168
169 /* If there is an interface association descriptor then it will list
170 * the associated interfaces */
171 struct usb_interface_assoc_descriptor *intf_assoc;
172
173 int minor; /* minor number this interface is
174 * bound to */
175 enum usb_interface_condition condition; /* state of binding */
176 unsigned sysfs_files_created:1; /* the sysfs attributes exist */
177 unsigned ep_devs_created:1; /* endpoint "devices" exist */
178 unsigned unregistering:1; /* unregistration is in progress */
179 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */
180 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */
181 unsigned needs_binding:1; /* needs delayed unbind/rebind */
182 unsigned reset_running:1;
183 unsigned resetting_device:1; /* true: bandwidth alloc after reset */
184
185 struct device dev; /* interface specific device info */
186 struct device *usb_dev;
187 atomic_t pm_usage_cnt; /* usage counter for autosuspend */
188 struct work_struct reset_ws; /* for resets in atomic context */
189 };
190 #define to_usb_interface(d) container_of(d, struct usb_interface, dev)
191
192 static inline void *usb_get_intfdata(struct usb_interface *intf)
193 {
194 return dev_get_drvdata(&intf->dev);
195 }
196
197 static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
198 {
199 dev_set_drvdata(&intf->dev, data);
200 }
201
202 struct usb_interface *usb_get_intf(struct usb_interface *intf);
203 void usb_put_intf(struct usb_interface *intf);
204
205 /* this maximum is arbitrary */
206 #define USB_MAXINTERFACES 32
207 #define USB_MAXIADS (USB_MAXINTERFACES/2)
208
209 /*
210 * USB Resume Timer: Every Host controller driver should drive the resume
211 * signalling on the bus for the amount of time defined by this macro.
212 *
213 * That way we will have a 'stable' behavior among all HCDs supported by Linux.
214 *
215 * Note that the USB Specification states we should drive resume for *at least*
216 * 20 ms, but it doesn't give an upper bound. This creates two possible
217 * situations which we want to avoid:
218 *
219 * (a) sometimes an msleep(20) might expire slightly before 20 ms, which causes
220 * us to fail USB Electrical Tests, thus failing Certification
221 *
222 * (b) Some (many) devices actually need more than 20 ms of resume signalling,
223 * and while we can argue that's against the USB Specification, we don't have
224 * control over which devices a certification laboratory will be using for
225 * certification. If CertLab uses a device which was tested against Windows and
226 * that happens to have relaxed resume signalling rules, we might fall into
227 * situations where we fail interoperability and electrical tests.
228 *
229 * In order to avoid both conditions, we're using a 40 ms resume timeout, which
230 * should cope with both LPJ calibration errors and devices not following every
231 * detail of the USB Specification.
232 */
233 #define USB_RESUME_TIMEOUT 40 /* ms */
234
235 /**
236 * struct usb_interface_cache - long-term representation of a device interface
237 * @num_altsetting: number of altsettings defined.
238 * @ref: reference counter.
239 * @altsetting: variable-length array of interface structures, one for
240 * each alternate setting that may be selected. Each one includes a
241 * set of endpoint configurations. They will be in no particular order.
242 *
243 * These structures persist for the lifetime of a usb_device, unlike
244 * struct usb_interface (which persists only as long as its configuration
245 * is installed). The altsetting arrays can be accessed through these
246 * structures at any time, permitting comparison of configurations and
247 * providing support for the /proc/bus/usb/devices pseudo-file.
248 */
249 struct usb_interface_cache {
250 unsigned num_altsetting; /* number of alternate settings */
251 struct kref ref; /* reference counter */
252
253 /* variable-length array of alternate settings for this interface,
254 * stored in no particular order */
255 struct usb_host_interface altsetting[0];
256 };
257 #define ref_to_usb_interface_cache(r) \
258 container_of(r, struct usb_interface_cache, ref)
259 #define altsetting_to_usb_interface_cache(a) \
260 container_of(a, struct usb_interface_cache, altsetting[0])
261
262 /**
263 * struct usb_host_config - representation of a device's configuration
264 * @desc: the device's configuration descriptor.
265 * @string: pointer to the cached version of the iConfiguration string, if
266 * present for this configuration.
267 * @intf_assoc: list of any interface association descriptors in this config
268 * @interface: array of pointers to usb_interface structures, one for each
269 * interface in the configuration. The number of interfaces is stored
270 * in desc.bNumInterfaces. These pointers are valid only while the
271 * the configuration is active.
272 * @intf_cache: array of pointers to usb_interface_cache structures, one
273 * for each interface in the configuration. These structures exist
274 * for the entire life of the device.
275 * @extra: pointer to buffer containing all extra descriptors associated
276 * with this configuration (those preceding the first interface
277 * descriptor).
278 * @extralen: length of the extra descriptors buffer.
279 *
280 * USB devices may have multiple configurations, but only one can be active
281 * at any time. Each encapsulates a different operational environment;
282 * for example, a dual-speed device would have separate configurations for
283 * full-speed and high-speed operation. The number of configurations
284 * available is stored in the device descriptor as bNumConfigurations.
285 *
286 * A configuration can contain multiple interfaces. Each corresponds to
287 * a different function of the USB device, and all are available whenever
288 * the configuration is active. The USB standard says that interfaces
289 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
290 * of devices get this wrong. In addition, the interface array is not
291 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to
292 * look up an interface entry based on its number.
293 *
294 * Device drivers should not attempt to activate configurations. The choice
295 * of which configuration to install is a policy decision based on such
296 * considerations as available power, functionality provided, and the user's
297 * desires (expressed through userspace tools). However, drivers can call
298 * usb_reset_configuration() to reinitialize the current configuration and
299 * all its interfaces.
300 */
301 struct usb_host_config {
302 struct usb_config_descriptor desc;
303
304 char *string; /* iConfiguration string, if present */
305
306 /* List of any Interface Association Descriptors in this
307 * configuration. */
308 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
309
310 /* the interfaces associated with this configuration,
311 * stored in no particular order */
312 struct usb_interface *interface[USB_MAXINTERFACES];
313
314 /* Interface information available even when this is not the
315 * active configuration */
316 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
317
318 unsigned char *extra; /* Extra descriptors */
319 int extralen;
320 };
321
322 /* USB2.0 and USB3.0 device BOS descriptor set */
323 struct usb_host_bos {
324 struct usb_bos_descriptor *desc;
325
326 /* wireless cap descriptor is handled by wusb */
327 struct usb_ext_cap_descriptor *ext_cap;
328 struct usb_ss_cap_descriptor *ss_cap;
329 struct usb_ss_container_id_descriptor *ss_id;
330 };
331
332 int __usb_get_extra_descriptor(char *buffer, unsigned size,
333 unsigned char type, void **ptr);
334 #define usb_get_extra_descriptor(ifpoint, type, ptr) \
335 __usb_get_extra_descriptor((ifpoint)->extra, \
336 (ifpoint)->extralen, \
337 type, (void **)ptr)
338
339 /* ----------------------------------------------------------------------- */
340
341 /* USB device number allocation bitmap */
342 struct usb_devmap {
343 unsigned long devicemap[128 / (8*sizeof(unsigned long))];
344 };
345
346 /*
347 * Allocated per bus (tree of devices) we have:
348 */
349 struct usb_bus {
350 struct device *controller; /* host/master side hardware */
351 int busnum; /* Bus number (in order of reg) */
352 const char *bus_name; /* stable id (PCI slot_name etc) */
353 u8 uses_dma; /* Does the host controller use DMA? */
354 u8 uses_pio_for_control; /*
355 * Does the host controller use PIO
356 * for control transfers?
357 */
358 u8 otg_port; /* 0, or number of OTG/HNP port */
359 unsigned is_b_host:1; /* true during some HNP roleswitches */
360 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */
361 unsigned no_stop_on_short:1; /*
362 * Quirk: some controllers don't stop
363 * the ep queue on a short transfer
364 * with the URB_SHORT_NOT_OK flag set.
365 */
366 unsigned sg_tablesize; /* 0 or largest number of sg list entries */
367
368 int devnum_next; /* Next open device number in
369 * round-robin allocation */
370
371 struct usb_devmap devmap; /* device address allocation map */
372 struct usb_device *root_hub; /* Root hub */
373 struct usb_bus *hs_companion; /* Companion EHCI bus, if any */
374 struct list_head bus_list; /* list of busses */
375
376 int bandwidth_allocated; /* on this bus: how much of the time
377 * reserved for periodic (intr/iso)
378 * requests is used, on average?
379 * Units: microseconds/frame.
380 * Limits: Full/low speed reserve 90%,
381 * while high speed reserves 80%.
382 */
383 int bandwidth_int_reqs; /* number of Interrupt requests */
384 int bandwidth_isoc_reqs; /* number of Isoc. requests */
385
386 unsigned resuming_ports; /* bit array: resuming root-hub ports */
387
388 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
389 struct mon_bus *mon_bus; /* non-null when associated */
390 int monitored; /* non-zero when monitored */
391 #endif
392 };
393
394 /* ----------------------------------------------------------------------- */
395
396 /* This is arbitrary.
397 * From USB 2.0 spec Table 11-13, offset 7, a hub can
398 * have up to 255 ports. The most yet reported is 10.
399 *
400 * Current Wireless USB host hardware (Intel i1480 for example) allows
401 * up to 22 devices to connect. Upcoming hardware might raise that
402 * limit. Because the arrays need to add a bit for hub status data, we
403 * do 31, so plus one evens out to four bytes.
404 */
405 #define USB_MAXCHILDREN (31)
406
407 struct usb_tt;
408
409 enum usb_device_removable {
410 USB_DEVICE_REMOVABLE_UNKNOWN = 0,
411 USB_DEVICE_REMOVABLE,
412 USB_DEVICE_FIXED,
413 };
414
415 enum usb_port_connect_type {
416 USB_PORT_CONNECT_TYPE_UNKNOWN = 0,
417 USB_PORT_CONNECT_TYPE_HOT_PLUG,
418 USB_PORT_CONNECT_TYPE_HARD_WIRED,
419 USB_PORT_NOT_USED,
420 };
421
422 /*
423 * USB 3.0 Link Power Management (LPM) parameters.
424 *
425 * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit.
426 * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit.
427 * All three are stored in nanoseconds.
428 */
429 struct usb3_lpm_parameters {
430 /*
431 * Maximum exit latency (MEL) for the host to send a packet to the
432 * device (either a Ping for isoc endpoints, or a data packet for
433 * interrupt endpoints), the hubs to decode the packet, and for all hubs
434 * in the path to transition the links to U0.
435 */
436 unsigned int mel;
437 /*
438 * Maximum exit latency for a device-initiated LPM transition to bring
439 * all links into U0. Abbreviated as "PEL" in section 9.4.12 of the USB
440 * 3.0 spec, with no explanation of what "P" stands for. "Path"?
441 */
442 unsigned int pel;
443
444 /*
445 * The System Exit Latency (SEL) includes PEL, and three other
446 * latencies. After a device initiates a U0 transition, it will take
447 * some time from when the device sends the ERDY to when it will finally
448 * receive the data packet. Basically, SEL should be the worse-case
449 * latency from when a device starts initiating a U0 transition to when
450 * it will get data.
451 */
452 unsigned int sel;
453 /*
454 * The idle timeout value that is currently programmed into the parent
455 * hub for this device. When the timer counts to zero, the parent hub
456 * will initiate an LPM transition to either U1 or U2.
457 */
458 int timeout;
459 };
460
461 /**
462 * struct usb_device - kernel's representation of a USB device
463 * @devnum: device number; address on a USB bus
464 * @devpath: device ID string for use in messages (e.g., /port/...)
465 * @route: tree topology hex string for use with xHCI
466 * @state: device state: configured, not attached, etc.
467 * @speed: device speed: high/full/low (or error)
468 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
469 * @ttport: device port on that tt hub
470 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
471 * @parent: our hub, unless we're the root
472 * @bus: bus we're part of
473 * @ep0: endpoint 0 data (default control pipe)
474 * @dev: generic device interface
475 * @descriptor: USB device descriptor
476 * @bos: USB device BOS descriptor set
477 * @config: all of the device's configs
478 * @actconfig: the active configuration
479 * @ep_in: array of IN endpoints
480 * @ep_out: array of OUT endpoints
481 * @rawdescriptors: raw descriptors for each config
482 * @bus_mA: Current available from the bus
483 * @portnum: parent port number (origin 1)
484 * @level: number of USB hub ancestors
485 * @can_submit: URBs may be submitted
486 * @persist_enabled: USB_PERSIST enabled for this device
487 * @have_langid: whether string_langid is valid
488 * @authorized: policy has said we can use it;
489 * (user space) policy determines if we authorize this device to be
490 * used or not. By default, wired USB devices are authorized.
491 * WUSB devices are not, until we authorize them from user space.
492 * FIXME -- complete doc
493 * @authenticated: Crypto authentication passed
494 * @wusb: device is Wireless USB
495 * @lpm_capable: device supports LPM
496 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
497 * @usb2_hw_lpm_enabled: USB2 hardware LPM enabled
498 * @usb3_lpm_enabled: USB3 hardware LPM enabled
499 * @string_langid: language ID for strings
500 * @product: iProduct string, if present (static)
501 * @manufacturer: iManufacturer string, if present (static)
502 * @serial: iSerialNumber string, if present (static)
503 * @filelist: usbfs files that are open to this device
504 * @maxchild: number of ports if hub
505 * @quirks: quirks of the whole device
506 * @urbnum: number of URBs submitted for the whole device
507 * @active_duration: total time device is not suspended
508 * @connect_time: time device was first connected
509 * @do_remote_wakeup: remote wakeup should be enabled
510 * @reset_resume: needs reset instead of resume
511 * @port_is_suspended: the upstream port is suspended (L2 or U3)
512 * @wusb_dev: if this is a Wireless USB device, link to the WUSB
513 * specific data for the device.
514 * @slot_id: Slot ID assigned by xHCI
515 * @removable: Device can be physically removed from this port
516 * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout.
517 * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout.
518 * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm()
519 * to keep track of the number of functions that require USB 3.0 Link Power
520 * Management to be disabled for this usb_device. This count should only
521 * be manipulated by those functions, with the bandwidth_mutex is held.
522 *
523 * Notes:
524 * Usbcore drivers should not set usbdev->state directly. Instead use
525 * usb_set_device_state().
526 */
527 struct usb_device {
528 int devnum;
529 char devpath[16];
530 u32 route;
531 enum usb_device_state state;
532 enum usb_device_speed speed;
533
534 struct usb_tt *tt;
535 int ttport;
536
537 unsigned int toggle[2];
538
539 struct usb_device *parent;
540 struct usb_bus *bus;
541 struct usb_host_endpoint ep0;
542
543 struct device dev;
544
545 struct usb_device_descriptor descriptor;
546 struct usb_host_bos *bos;
547 struct usb_host_config *config;
548
549 struct usb_host_config *actconfig;
550 struct usb_host_endpoint *ep_in[16];
551 struct usb_host_endpoint *ep_out[16];
552
553 char **rawdescriptors;
554
555 unsigned short bus_mA;
556 u8 portnum;
557 u8 level;
558
559 unsigned can_submit:1;
560 unsigned persist_enabled:1;
561 unsigned have_langid:1;
562 unsigned authorized:1;
563 unsigned authenticated:1;
564 unsigned wusb:1;
565 unsigned lpm_capable:1;
566 unsigned usb2_hw_lpm_capable:1;
567 unsigned usb2_hw_lpm_enabled:1;
568 unsigned usb3_lpm_enabled:1;
569 int string_langid;
570
571 /* static strings from the device */
572 char *product;
573 char *manufacturer;
574 char *serial;
575
576 struct list_head filelist;
577
578 int maxchild;
579
580 u32 quirks;
581 atomic_t urbnum;
582
583 unsigned long active_duration;
584
585 #ifdef CONFIG_PM
586 unsigned long connect_time;
587
588 unsigned do_remote_wakeup:1;
589 unsigned reset_resume:1;
590 unsigned port_is_suspended:1;
591 #endif
592 struct wusb_dev *wusb_dev;
593 int slot_id;
594 enum usb_device_removable removable;
595 struct usb3_lpm_parameters u1_params;
596 struct usb3_lpm_parameters u2_params;
597 unsigned lpm_disable_count;
598 };
599 #define to_usb_device(d) container_of(d, struct usb_device, dev)
600
601 static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf)
602 {
603 return to_usb_device(intf->dev.parent);
604 }
605
606 extern struct usb_device *usb_get_dev(struct usb_device *dev);
607 extern void usb_put_dev(struct usb_device *dev);
608 extern struct usb_device *usb_hub_find_child(struct usb_device *hdev,
609 int port1);
610
611 /**
612 * usb_hub_for_each_child - iterate over all child devices on the hub
613 * @hdev: USB device belonging to the usb hub
614 * @port1: portnum associated with child device
615 * @child: child device pointer
616 */
617 #define usb_hub_for_each_child(hdev, port1, child) \
618 for (port1 = 1, child = usb_hub_find_child(hdev, port1); \
619 port1 <= hdev->maxchild; \
620 child = usb_hub_find_child(hdev, ++port1)) \
621 if (!child) continue; else
622
623 /* USB device locking */
624 #define usb_lock_device(udev) device_lock(&(udev)->dev)
625 #define usb_unlock_device(udev) device_unlock(&(udev)->dev)
626 #define usb_trylock_device(udev) device_trylock(&(udev)->dev)
627 extern int usb_lock_device_for_reset(struct usb_device *udev,
628 const struct usb_interface *iface);
629
630 /* USB port reset for device reinitialization */
631 extern int usb_reset_device(struct usb_device *dev);
632 extern void usb_queue_reset_device(struct usb_interface *dev);
633
634 #ifdef CONFIG_ACPI
635 extern int usb_acpi_set_power_state(struct usb_device *hdev, int index,
636 bool enable);
637 extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index);
638 #else
639 static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index,
640 bool enable) { return 0; }
641 static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index)
642 { return true; }
643 #endif
644
645 /* USB autosuspend and autoresume */
646 #ifdef CONFIG_PM_RUNTIME
647 extern void usb_enable_autosuspend(struct usb_device *udev);
648 extern void usb_disable_autosuspend(struct usb_device *udev);
649
650 extern int usb_autopm_get_interface(struct usb_interface *intf);
651 extern void usb_autopm_put_interface(struct usb_interface *intf);
652 extern int usb_autopm_get_interface_async(struct usb_interface *intf);
653 extern void usb_autopm_put_interface_async(struct usb_interface *intf);
654 extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
655 extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
656
657 static inline void usb_mark_last_busy(struct usb_device *udev)
658 {
659 pm_runtime_mark_last_busy(&udev->dev);
660 }
661
662 #else
663
664 static inline int usb_enable_autosuspend(struct usb_device *udev)
665 { return 0; }
666 static inline int usb_disable_autosuspend(struct usb_device *udev)
667 { return 0; }
668
669 static inline int usb_autopm_get_interface(struct usb_interface *intf)
670 { return 0; }
671 static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
672 { return 0; }
673
674 static inline void usb_autopm_put_interface(struct usb_interface *intf)
675 { }
676 static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
677 { }
678 static inline void usb_autopm_get_interface_no_resume(
679 struct usb_interface *intf)
680 { }
681 static inline void usb_autopm_put_interface_no_suspend(
682 struct usb_interface *intf)
683 { }
684 static inline void usb_mark_last_busy(struct usb_device *udev)
685 { }
686 #endif
687
688 extern int usb_disable_lpm(struct usb_device *udev);
689 extern void usb_enable_lpm(struct usb_device *udev);
690 /* Same as above, but these functions lock/unlock the bandwidth_mutex. */
691 extern int usb_unlocked_disable_lpm(struct usb_device *udev);
692 extern void usb_unlocked_enable_lpm(struct usb_device *udev);
693
694 extern int usb_disable_ltm(struct usb_device *udev);
695 extern void usb_enable_ltm(struct usb_device *udev);
696
697 static inline bool usb_device_supports_ltm(struct usb_device *udev)
698 {
699 if (udev->speed != USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap)
700 return false;
701 return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT;
702 }
703
704
705 /*-------------------------------------------------------------------------*/
706
707 /* for drivers using iso endpoints */
708 extern int usb_get_current_frame_number(struct usb_device *usb_dev);
709
710 /* Sets up a group of bulk endpoints to support multiple stream IDs. */
711 extern int usb_alloc_streams(struct usb_interface *interface,
712 struct usb_host_endpoint **eps, unsigned int num_eps,
713 unsigned int num_streams, gfp_t mem_flags);
714
715 /* Reverts a group of bulk endpoints back to not using stream IDs. */
716 extern void usb_free_streams(struct usb_interface *interface,
717 struct usb_host_endpoint **eps, unsigned int num_eps,
718 gfp_t mem_flags);
719
720 /* used these for multi-interface device registration */
721 extern int usb_driver_claim_interface(struct usb_driver *driver,
722 struct usb_interface *iface, void *priv);
723
724 /**
725 * usb_interface_claimed - returns true iff an interface is claimed
726 * @iface: the interface being checked
727 *
728 * Returns true (nonzero) iff the interface is claimed, else false (zero).
729 * Callers must own the driver model's usb bus readlock. So driver
730 * probe() entries don't need extra locking, but other call contexts
731 * may need to explicitly claim that lock.
732 *
733 */
734 static inline int usb_interface_claimed(struct usb_interface *iface)
735 {
736 return (iface->dev.driver != NULL);
737 }
738
739 extern void usb_driver_release_interface(struct usb_driver *driver,
740 struct usb_interface *iface);
741 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
742 const struct usb_device_id *id);
743 extern int usb_match_one_id(struct usb_interface *interface,
744 const struct usb_device_id *id);
745
746 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
747 int minor);
748 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
749 unsigned ifnum);
750 extern struct usb_host_interface *usb_altnum_to_altsetting(
751 const struct usb_interface *intf, unsigned int altnum);
752 extern struct usb_host_interface *usb_find_alt_setting(
753 struct usb_host_config *config,
754 unsigned int iface_num,
755 unsigned int alt_num);
756
757
758 /**
759 * usb_make_path - returns stable device path in the usb tree
760 * @dev: the device whose path is being constructed
761 * @buf: where to put the string
762 * @size: how big is "buf"?
763 *
764 * Returns length of the string (> 0) or negative if size was too small.
765 *
766 * This identifier is intended to be "stable", reflecting physical paths in
767 * hardware such as physical bus addresses for host controllers or ports on
768 * USB hubs. That makes it stay the same until systems are physically
769 * reconfigured, by re-cabling a tree of USB devices or by moving USB host
770 * controllers. Adding and removing devices, including virtual root hubs
771 * in host controller driver modules, does not change these path identifiers;
772 * neither does rebooting or re-enumerating. These are more useful identifiers
773 * than changeable ("unstable") ones like bus numbers or device addresses.
774 *
775 * With a partial exception for devices connected to USB 2.0 root hubs, these
776 * identifiers are also predictable. So long as the device tree isn't changed,
777 * plugging any USB device into a given hub port always gives it the same path.
778 * Because of the use of "companion" controllers, devices connected to ports on
779 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
780 * high speed, and a different one if they are full or low speed.
781 */
782 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
783 {
784 int actual;
785 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
786 dev->devpath);
787 return (actual >= (int)size) ? -1 : actual;
788 }
789
790 /*-------------------------------------------------------------------------*/
791
792 #define USB_DEVICE_ID_MATCH_DEVICE \
793 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
794 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
795 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
796 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
797 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
798 #define USB_DEVICE_ID_MATCH_DEV_INFO \
799 (USB_DEVICE_ID_MATCH_DEV_CLASS | \
800 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
801 USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
802 #define USB_DEVICE_ID_MATCH_INT_INFO \
803 (USB_DEVICE_ID_MATCH_INT_CLASS | \
804 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
805 USB_DEVICE_ID_MATCH_INT_PROTOCOL)
806
807 /**
808 * USB_DEVICE - macro used to describe a specific usb device
809 * @vend: the 16 bit USB Vendor ID
810 * @prod: the 16 bit USB Product ID
811 *
812 * This macro is used to create a struct usb_device_id that matches a
813 * specific device.
814 */
815 #define USB_DEVICE(vend, prod) \
816 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
817 .idVendor = (vend), \
818 .idProduct = (prod)
819 /**
820 * USB_DEVICE_VER - describe a specific usb device with a version range
821 * @vend: the 16 bit USB Vendor ID
822 * @prod: the 16 bit USB Product ID
823 * @lo: the bcdDevice_lo value
824 * @hi: the bcdDevice_hi value
825 *
826 * This macro is used to create a struct usb_device_id that matches a
827 * specific device, with a version range.
828 */
829 #define USB_DEVICE_VER(vend, prod, lo, hi) \
830 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
831 .idVendor = (vend), \
832 .idProduct = (prod), \
833 .bcdDevice_lo = (lo), \
834 .bcdDevice_hi = (hi)
835
836 /**
837 * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class
838 * @vend: the 16 bit USB Vendor ID
839 * @prod: the 16 bit USB Product ID
840 * @cl: bInterfaceClass value
841 *
842 * This macro is used to create a struct usb_device_id that matches a
843 * specific interface class of devices.
844 */
845 #define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \
846 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
847 USB_DEVICE_ID_MATCH_INT_CLASS, \
848 .idVendor = (vend), \
849 .idProduct = (prod), \
850 .bInterfaceClass = (cl)
851
852 /**
853 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
854 * @vend: the 16 bit USB Vendor ID
855 * @prod: the 16 bit USB Product ID
856 * @pr: bInterfaceProtocol value
857 *
858 * This macro is used to create a struct usb_device_id that matches a
859 * specific interface protocol of devices.
860 */
861 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
862 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
863 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
864 .idVendor = (vend), \
865 .idProduct = (prod), \
866 .bInterfaceProtocol = (pr)
867
868 /**
869 * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number
870 * @vend: the 16 bit USB Vendor ID
871 * @prod: the 16 bit USB Product ID
872 * @num: bInterfaceNumber value
873 *
874 * This macro is used to create a struct usb_device_id that matches a
875 * specific interface number of devices.
876 */
877 #define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \
878 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
879 USB_DEVICE_ID_MATCH_INT_NUMBER, \
880 .idVendor = (vend), \
881 .idProduct = (prod), \
882 .bInterfaceNumber = (num)
883
884 /**
885 * USB_DEVICE_INFO - macro used to describe a class of usb devices
886 * @cl: bDeviceClass value
887 * @sc: bDeviceSubClass value
888 * @pr: bDeviceProtocol value
889 *
890 * This macro is used to create a struct usb_device_id that matches a
891 * specific class of devices.
892 */
893 #define USB_DEVICE_INFO(cl, sc, pr) \
894 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
895 .bDeviceClass = (cl), \
896 .bDeviceSubClass = (sc), \
897 .bDeviceProtocol = (pr)
898
899 /**
900 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
901 * @cl: bInterfaceClass value
902 * @sc: bInterfaceSubClass value
903 * @pr: bInterfaceProtocol value
904 *
905 * This macro is used to create a struct usb_device_id that matches a
906 * specific class of interfaces.
907 */
908 #define USB_INTERFACE_INFO(cl, sc, pr) \
909 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
910 .bInterfaceClass = (cl), \
911 .bInterfaceSubClass = (sc), \
912 .bInterfaceProtocol = (pr)
913
914 /**
915 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
916 * @vend: the 16 bit USB Vendor ID
917 * @prod: the 16 bit USB Product ID
918 * @cl: bInterfaceClass value
919 * @sc: bInterfaceSubClass value
920 * @pr: bInterfaceProtocol value
921 *
922 * This macro is used to create a struct usb_device_id that matches a
923 * specific device with a specific class of interfaces.
924 *
925 * This is especially useful when explicitly matching devices that have
926 * vendor specific bDeviceClass values, but standards-compliant interfaces.
927 */
928 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
929 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
930 | USB_DEVICE_ID_MATCH_DEVICE, \
931 .idVendor = (vend), \
932 .idProduct = (prod), \
933 .bInterfaceClass = (cl), \
934 .bInterfaceSubClass = (sc), \
935 .bInterfaceProtocol = (pr)
936
937 /**
938 * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces
939 * @vend: the 16 bit USB Vendor ID
940 * @cl: bInterfaceClass value
941 * @sc: bInterfaceSubClass value
942 * @pr: bInterfaceProtocol value
943 *
944 * This macro is used to create a struct usb_device_id that matches a
945 * specific vendor with a specific class of interfaces.
946 *
947 * This is especially useful when explicitly matching devices that have
948 * vendor specific bDeviceClass values, but standards-compliant interfaces.
949 */
950 #define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \
951 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
952 | USB_DEVICE_ID_MATCH_VENDOR, \
953 .idVendor = (vend), \
954 .bInterfaceClass = (cl), \
955 .bInterfaceSubClass = (sc), \
956 .bInterfaceProtocol = (pr)
957
958 /* ----------------------------------------------------------------------- */
959
960 /* Stuff for dynamic usb ids */
961 struct usb_dynids {
962 spinlock_t lock;
963 struct list_head list;
964 };
965
966 struct usb_dynid {
967 struct list_head node;
968 struct usb_device_id id;
969 };
970
971 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
972 struct device_driver *driver,
973 const char *buf, size_t count);
974
975 extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf);
976
977 /**
978 * struct usbdrv_wrap - wrapper for driver-model structure
979 * @driver: The driver-model core driver structure.
980 * @for_devices: Non-zero for device drivers, 0 for interface drivers.
981 */
982 struct usbdrv_wrap {
983 struct device_driver driver;
984 int for_devices;
985 };
986
987 /**
988 * struct usb_driver - identifies USB interface driver to usbcore
989 * @name: The driver name should be unique among USB drivers,
990 * and should normally be the same as the module name.
991 * @probe: Called to see if the driver is willing to manage a particular
992 * interface on a device. If it is, probe returns zero and uses
993 * usb_set_intfdata() to associate driver-specific data with the
994 * interface. It may also use usb_set_interface() to specify the
995 * appropriate altsetting. If unwilling to manage the interface,
996 * return -ENODEV, if genuine IO errors occurred, an appropriate
997 * negative errno value.
998 * @disconnect: Called when the interface is no longer accessible, usually
999 * because its device has been (or is being) disconnected or the
1000 * driver module is being unloaded.
1001 * @unlocked_ioctl: Used for drivers that want to talk to userspace through
1002 * the "usbfs" filesystem. This lets devices provide ways to
1003 * expose information to user space regardless of where they
1004 * do (or don't) show up otherwise in the filesystem.
1005 * @suspend: Called when the device is going to be suspended by the
1006 * system either from system sleep or runtime suspend context. The
1007 * return value will be ignored in system sleep context, so do NOT
1008 * try to continue using the device if suspend fails in this case.
1009 * Instead, let the resume or reset-resume routine recover from
1010 * the failure.
1011 * @resume: Called when the device is being resumed by the system.
1012 * @reset_resume: Called when the suspended device has been reset instead
1013 * of being resumed.
1014 * @pre_reset: Called by usb_reset_device() when the device is about to be
1015 * reset. This routine must not return until the driver has no active
1016 * URBs for the device, and no more URBs may be submitted until the
1017 * post_reset method is called.
1018 * @post_reset: Called by usb_reset_device() after the device
1019 * has been reset
1020 * @id_table: USB drivers use ID table to support hotplugging.
1021 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set
1022 * or your driver's probe function will never get called.
1023 * @dynids: used internally to hold the list of dynamically added device
1024 * ids for this driver.
1025 * @drvwrap: Driver-model core structure wrapper.
1026 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
1027 * added to this driver by preventing the sysfs file from being created.
1028 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1029 * for interfaces bound to this driver.
1030 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
1031 * endpoints before calling the driver's disconnect method.
1032 * @disable_hub_initiated_lpm: if set to 0, the USB core will not allow hubs
1033 * to initiate lower power link state transitions when an idle timeout
1034 * occurs. Device-initiated USB 3.0 link PM will still be allowed.
1035 *
1036 * USB interface drivers must provide a name, probe() and disconnect()
1037 * methods, and an id_table. Other driver fields are optional.
1038 *
1039 * The id_table is used in hotplugging. It holds a set of descriptors,
1040 * and specialized data may be associated with each entry. That table
1041 * is used by both user and kernel mode hotplugging support.
1042 *
1043 * The probe() and disconnect() methods are called in a context where
1044 * they can sleep, but they should avoid abusing the privilege. Most
1045 * work to connect to a device should be done when the device is opened,
1046 * and undone at the last close. The disconnect code needs to address
1047 * concurrency issues with respect to open() and close() methods, as
1048 * well as forcing all pending I/O requests to complete (by unlinking
1049 * them as necessary, and blocking until the unlinks complete).
1050 */
1051 struct usb_driver {
1052 const char *name;
1053
1054 int (*probe) (struct usb_interface *intf,
1055 const struct usb_device_id *id);
1056
1057 void (*disconnect) (struct usb_interface *intf);
1058
1059 int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
1060 void *buf);
1061
1062 int (*suspend) (struct usb_interface *intf, pm_message_t message);
1063 int (*resume) (struct usb_interface *intf);
1064 int (*reset_resume)(struct usb_interface *intf);
1065
1066 int (*pre_reset)(struct usb_interface *intf);
1067 int (*post_reset)(struct usb_interface *intf);
1068
1069 const struct usb_device_id *id_table;
1070
1071 struct usb_dynids dynids;
1072 struct usbdrv_wrap drvwrap;
1073 unsigned int no_dynamic_id:1;
1074 unsigned int supports_autosuspend:1;
1075 unsigned int disable_hub_initiated_lpm:1;
1076 unsigned int soft_unbind:1;
1077 };
1078 #define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
1079
1080 /**
1081 * struct usb_device_driver - identifies USB device driver to usbcore
1082 * @name: The driver name should be unique among USB drivers,
1083 * and should normally be the same as the module name.
1084 * @probe: Called to see if the driver is willing to manage a particular
1085 * device. If it is, probe returns zero and uses dev_set_drvdata()
1086 * to associate driver-specific data with the device. If unwilling
1087 * to manage the device, return a negative errno value.
1088 * @disconnect: Called when the device is no longer accessible, usually
1089 * because it has been (or is being) disconnected or the driver's
1090 * module is being unloaded.
1091 * @suspend: Called when the device is going to be suspended by the system.
1092 * @resume: Called when the device is being resumed by the system.
1093 * @drvwrap: Driver-model core structure wrapper.
1094 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1095 * for devices bound to this driver.
1096 *
1097 * USB drivers must provide all the fields listed above except drvwrap.
1098 */
1099 struct usb_device_driver {
1100 const char *name;
1101
1102 int (*probe) (struct usb_device *udev);
1103 void (*disconnect) (struct usb_device *udev);
1104
1105 int (*suspend) (struct usb_device *udev, pm_message_t message);
1106 int (*resume) (struct usb_device *udev, pm_message_t message);
1107 struct usbdrv_wrap drvwrap;
1108 unsigned int supports_autosuspend:1;
1109 };
1110 #define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1111 drvwrap.driver)
1112
1113 extern struct bus_type usb_bus_type;
1114
1115 /**
1116 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1117 * @name: the usb class device name for this driver. Will show up in sysfs.
1118 * @devnode: Callback to provide a naming hint for a possible
1119 * device node to create.
1120 * @fops: pointer to the struct file_operations of this driver.
1121 * @minor_base: the start of the minor range for this driver.
1122 *
1123 * This structure is used for the usb_register_dev() and
1124 * usb_unregister_dev() functions, to consolidate a number of the
1125 * parameters used for them.
1126 */
1127 struct usb_class_driver {
1128 char *name;
1129 char *(*devnode)(struct device *dev, umode_t *mode);
1130 const struct file_operations *fops;
1131 int minor_base;
1132 };
1133
1134 /*
1135 * use these in module_init()/module_exit()
1136 * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1137 */
1138 extern int usb_register_driver(struct usb_driver *, struct module *,
1139 const char *);
1140
1141 /* use a define to avoid include chaining to get THIS_MODULE & friends */
1142 #define usb_register(driver) \
1143 usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
1144
1145 extern void usb_deregister(struct usb_driver *);
1146
1147 /**
1148 * module_usb_driver() - Helper macro for registering a USB driver
1149 * @__usb_driver: usb_driver struct
1150 *
1151 * Helper macro for USB drivers which do not do anything special in module
1152 * init/exit. This eliminates a lot of boilerplate. Each module may only
1153 * use this macro once, and calling it replaces module_init() and module_exit()
1154 */
1155 #define module_usb_driver(__usb_driver) \
1156 module_driver(__usb_driver, usb_register, \
1157 usb_deregister)
1158
1159 extern int usb_register_device_driver(struct usb_device_driver *,
1160 struct module *);
1161 extern void usb_deregister_device_driver(struct usb_device_driver *);
1162
1163 extern int usb_register_dev(struct usb_interface *intf,
1164 struct usb_class_driver *class_driver);
1165 extern void usb_deregister_dev(struct usb_interface *intf,
1166 struct usb_class_driver *class_driver);
1167
1168 extern int usb_disabled(void);
1169
1170 /* ----------------------------------------------------------------------- */
1171
1172 /*
1173 * URB support, for asynchronous request completions
1174 */
1175
1176 /*
1177 * urb->transfer_flags:
1178 *
1179 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1180 */
1181 #define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */
1182 #define URB_ISO_ASAP 0x0002 /* iso-only; use the first unexpired
1183 * slot in the schedule */
1184 #define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */
1185 #define URB_NO_FSBR 0x0020 /* UHCI-specific */
1186 #define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */
1187 #define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt
1188 * needed */
1189 #define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */
1190
1191 /* The following flags are used internally by usbcore and HCDs */
1192 #define URB_DIR_IN 0x0200 /* Transfer from device to host */
1193 #define URB_DIR_OUT 0
1194 #define URB_DIR_MASK URB_DIR_IN
1195
1196 #define URB_DMA_MAP_SINGLE 0x00010000 /* Non-scatter-gather mapping */
1197 #define URB_DMA_MAP_PAGE 0x00020000 /* HCD-unsupported S-G */
1198 #define URB_DMA_MAP_SG 0x00040000 /* HCD-supported S-G */
1199 #define URB_MAP_LOCAL 0x00080000 /* HCD-local-memory mapping */
1200 #define URB_SETUP_MAP_SINGLE 0x00100000 /* Setup packet DMA mapped */
1201 #define URB_SETUP_MAP_LOCAL 0x00200000 /* HCD-local setup packet */
1202 #define URB_DMA_SG_COMBINED 0x00400000 /* S-G entries were combined */
1203 #define URB_ALIGNED_TEMP_BUFFER 0x00800000 /* Temp buffer was alloc'd */
1204
1205 struct usb_iso_packet_descriptor {
1206 unsigned int offset;
1207 unsigned int length; /* expected length */
1208 unsigned int actual_length;
1209 int status;
1210 };
1211
1212 struct urb;
1213
1214 struct usb_anchor {
1215 struct list_head urb_list;
1216 wait_queue_head_t wait;
1217 spinlock_t lock;
1218 unsigned int poisoned:1;
1219 };
1220
1221 static inline void init_usb_anchor(struct usb_anchor *anchor)
1222 {
1223 INIT_LIST_HEAD(&anchor->urb_list);
1224 init_waitqueue_head(&anchor->wait);
1225 spin_lock_init(&anchor->lock);
1226 }
1227
1228 typedef void (*usb_complete_t)(struct urb *);
1229
1230 /**
1231 * struct urb - USB Request Block
1232 * @urb_list: For use by current owner of the URB.
1233 * @anchor_list: membership in the list of an anchor
1234 * @anchor: to anchor URBs to a common mooring
1235 * @ep: Points to the endpoint's data structure. Will eventually
1236 * replace @pipe.
1237 * @pipe: Holds endpoint number, direction, type, and more.
1238 * Create these values with the eight macros available;
1239 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1240 * (control), "bulk", "int" (interrupt), or "iso" (isochronous).
1241 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint
1242 * numbers range from zero to fifteen. Note that "in" endpoint two
1243 * is a different endpoint (and pipe) from "out" endpoint two.
1244 * The current configuration controls the existence, type, and
1245 * maximum packet size of any given endpoint.
1246 * @stream_id: the endpoint's stream ID for bulk streams
1247 * @dev: Identifies the USB device to perform the request.
1248 * @status: This is read in non-iso completion functions to get the
1249 * status of the particular request. ISO requests only use it
1250 * to tell whether the URB was unlinked; detailed status for
1251 * each frame is in the fields of the iso_frame-desc.
1252 * @transfer_flags: A variety of flags may be used to affect how URB
1253 * submission, unlinking, or operation are handled. Different
1254 * kinds of URB can use different flags.
1255 * @transfer_buffer: This identifies the buffer to (or from) which the I/O
1256 * request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1257 * (however, do not leave garbage in transfer_buffer even then).
1258 * This buffer must be suitable for DMA; allocate it with
1259 * kmalloc() or equivalent. For transfers to "in" endpoints, contents
1260 * of this buffer will be modified. This buffer is used for the data
1261 * stage of control transfers.
1262 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1263 * the device driver is saying that it provided this DMA address,
1264 * which the host controller driver should use in preference to the
1265 * transfer_buffer.
1266 * @sg: scatter gather buffer list
1267 * @num_mapped_sgs: (internal) number of mapped sg entries
1268 * @num_sgs: number of entries in the sg list
1269 * @transfer_buffer_length: How big is transfer_buffer. The transfer may
1270 * be broken up into chunks according to the current maximum packet
1271 * size for the endpoint, which is a function of the configuration
1272 * and is encoded in the pipe. When the length is zero, neither
1273 * transfer_buffer nor transfer_dma is used.
1274 * @actual_length: This is read in non-iso completion functions, and
1275 * it tells how many bytes (out of transfer_buffer_length) were
1276 * transferred. It will normally be the same as requested, unless
1277 * either an error was reported or a short read was performed.
1278 * The URB_SHORT_NOT_OK transfer flag may be used to make such
1279 * short reads be reported as errors.
1280 * @setup_packet: Only used for control transfers, this points to eight bytes
1281 * of setup data. Control transfers always start by sending this data
1282 * to the device. Then transfer_buffer is read or written, if needed.
1283 * @setup_dma: DMA pointer for the setup packet. The caller must not use
1284 * this field; setup_packet must point to a valid buffer.
1285 * @start_frame: Returns the initial frame for isochronous transfers.
1286 * @number_of_packets: Lists the number of ISO transfer buffers.
1287 * @interval: Specifies the polling interval for interrupt or isochronous
1288 * transfers. The units are frames (milliseconds) for full and low
1289 * speed devices, and microframes (1/8 millisecond) for highspeed
1290 * and SuperSpeed devices.
1291 * @error_count: Returns the number of ISO transfers that reported errors.
1292 * @context: For use in completion functions. This normally points to
1293 * request-specific driver context.
1294 * @complete: Completion handler. This URB is passed as the parameter to the
1295 * completion function. The completion function may then do what
1296 * it likes with the URB, including resubmitting or freeing it.
1297 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1298 * collect the transfer status for each buffer.
1299 *
1300 * This structure identifies USB transfer requests. URBs must be allocated by
1301 * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1302 * Initialization may be done using various usb_fill_*_urb() functions. URBs
1303 * are submitted using usb_submit_urb(), and pending requests may be canceled
1304 * using usb_unlink_urb() or usb_kill_urb().
1305 *
1306 * Data Transfer Buffers:
1307 *
1308 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1309 * taken from the general page pool. That is provided by transfer_buffer
1310 * (control requests also use setup_packet), and host controller drivers
1311 * perform a dma mapping (and unmapping) for each buffer transferred. Those
1312 * mapping operations can be expensive on some platforms (perhaps using a dma
1313 * bounce buffer or talking to an IOMMU),
1314 * although they're cheap on commodity x86 and ppc hardware.
1315 *
1316 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1317 * which tells the host controller driver that no such mapping is needed for
1318 * the transfer_buffer since
1319 * the device driver is DMA-aware. For example, a device driver might
1320 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1321 * When this transfer flag is provided, host controller drivers will
1322 * attempt to use the dma address found in the transfer_dma
1323 * field rather than determining a dma address themselves.
1324 *
1325 * Note that transfer_buffer must still be set if the controller
1326 * does not support DMA (as indicated by bus.uses_dma) and when talking
1327 * to root hub. If you have to trasfer between highmem zone and the device
1328 * on such controller, create a bounce buffer or bail out with an error.
1329 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1330 * capable, assign NULL to it, so that usbmon knows not to use the value.
1331 * The setup_packet must always be set, so it cannot be located in highmem.
1332 *
1333 * Initialization:
1334 *
1335 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1336 * zero), and complete fields. All URBs must also initialize
1337 * transfer_buffer and transfer_buffer_length. They may provide the
1338 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1339 * to be treated as errors; that flag is invalid for write requests.
1340 *
1341 * Bulk URBs may
1342 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1343 * should always terminate with a short packet, even if it means adding an
1344 * extra zero length packet.
1345 *
1346 * Control URBs must provide a valid pointer in the setup_packet field.
1347 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1348 * beforehand.
1349 *
1350 * Interrupt URBs must provide an interval, saying how often (in milliseconds
1351 * or, for highspeed devices, 125 microsecond units)
1352 * to poll for transfers. After the URB has been submitted, the interval
1353 * field reflects how the transfer was actually scheduled.
1354 * The polling interval may be more frequent than requested.
1355 * For example, some controllers have a maximum interval of 32 milliseconds,
1356 * while others support intervals of up to 1024 milliseconds.
1357 * Isochronous URBs also have transfer intervals. (Note that for isochronous
1358 * endpoints, as well as high speed interrupt endpoints, the encoding of
1359 * the transfer interval in the endpoint descriptor is logarithmic.
1360 * Device drivers must convert that value to linear units themselves.)
1361 *
1362 * If an isochronous endpoint queue isn't already running, the host
1363 * controller will schedule a new URB to start as soon as bandwidth
1364 * utilization allows. If the queue is running then a new URB will be
1365 * scheduled to start in the first transfer slot following the end of the
1366 * preceding URB, if that slot has not already expired. If the slot has
1367 * expired (which can happen when IRQ delivery is delayed for a long time),
1368 * the scheduling behavior depends on the URB_ISO_ASAP flag. If the flag
1369 * is clear then the URB will be scheduled to start in the expired slot,
1370 * implying that some of its packets will not be transferred; if the flag
1371 * is set then the URB will be scheduled in the first unexpired slot,
1372 * breaking the queue's synchronization. Upon URB completion, the
1373 * start_frame field will be set to the (micro)frame number in which the
1374 * transfer was scheduled. Ranges for frame counter values are HC-specific
1375 * and can go from as low as 256 to as high as 65536 frames.
1376 *
1377 * Isochronous URBs have a different data transfer model, in part because
1378 * the quality of service is only "best effort". Callers provide specially
1379 * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1380 * at the end. Each such packet is an individual ISO transfer. Isochronous
1381 * URBs are normally queued, submitted by drivers to arrange that
1382 * transfers are at least double buffered, and then explicitly resubmitted
1383 * in completion handlers, so
1384 * that data (such as audio or video) streams at as constant a rate as the
1385 * host controller scheduler can support.
1386 *
1387 * Completion Callbacks:
1388 *
1389 * The completion callback is made in_interrupt(), and one of the first
1390 * things that a completion handler should do is check the status field.
1391 * The status field is provided for all URBs. It is used to report
1392 * unlinked URBs, and status for all non-ISO transfers. It should not
1393 * be examined before the URB is returned to the completion handler.
1394 *
1395 * The context field is normally used to link URBs back to the relevant
1396 * driver or request state.
1397 *
1398 * When the completion callback is invoked for non-isochronous URBs, the
1399 * actual_length field tells how many bytes were transferred. This field
1400 * is updated even when the URB terminated with an error or was unlinked.
1401 *
1402 * ISO transfer status is reported in the status and actual_length fields
1403 * of the iso_frame_desc array, and the number of errors is reported in
1404 * error_count. Completion callbacks for ISO transfers will normally
1405 * (re)submit URBs to ensure a constant transfer rate.
1406 *
1407 * Note that even fields marked "public" should not be touched by the driver
1408 * when the urb is owned by the hcd, that is, since the call to
1409 * usb_submit_urb() till the entry into the completion routine.
1410 */
1411 struct urb {
1412 /* private: usb core and host controller only fields in the urb */
1413 struct kref kref; /* reference count of the URB */
1414 void *hcpriv; /* private data for host controller */
1415 atomic_t use_count; /* concurrent submissions counter */
1416 atomic_t reject; /* submissions will fail */
1417 int unlinked; /* unlink error code */
1418
1419 /* public: documented fields in the urb that can be used by drivers */
1420 struct list_head urb_list; /* list head for use by the urb's
1421 * current owner */
1422 struct list_head anchor_list; /* the URB may be anchored */
1423 struct usb_anchor *anchor;
1424 struct usb_device *dev; /* (in) pointer to associated device */
1425 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */
1426 unsigned int pipe; /* (in) pipe information */
1427 unsigned int stream_id; /* (in) stream ID */
1428 int status; /* (return) non-ISO status */
1429 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/
1430 void *transfer_buffer; /* (in) associated data buffer */
1431 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */
1432 struct scatterlist *sg; /* (in) scatter gather buffer list */
1433 int num_mapped_sgs; /* (internal) mapped sg entries */
1434 int num_sgs; /* (in) number of entries in the sg list */
1435 u32 transfer_buffer_length; /* (in) data buffer length */
1436 u32 actual_length; /* (return) actual transfer length */
1437 unsigned char *setup_packet; /* (in) setup packet (control only) */
1438 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */
1439 int start_frame; /* (modify) start frame (ISO) */
1440 int number_of_packets; /* (in) number of ISO packets */
1441 int interval; /* (modify) transfer interval
1442 * (INT/ISO) */
1443 int error_count; /* (return) number of ISO errors */
1444 void *context; /* (in) context for completion */
1445 usb_complete_t complete; /* (in) completion routine */
1446 struct usb_iso_packet_descriptor iso_frame_desc[0];
1447 /* (in) ISO ONLY */
1448 };
1449
1450 /* ----------------------------------------------------------------------- */
1451
1452 /**
1453 * usb_fill_control_urb - initializes a control urb
1454 * @urb: pointer to the urb to initialize.
1455 * @dev: pointer to the struct usb_device for this urb.
1456 * @pipe: the endpoint pipe
1457 * @setup_packet: pointer to the setup_packet buffer
1458 * @transfer_buffer: pointer to the transfer buffer
1459 * @buffer_length: length of the transfer buffer
1460 * @complete_fn: pointer to the usb_complete_t function
1461 * @context: what to set the urb context to.
1462 *
1463 * Initializes a control urb with the proper information needed to submit
1464 * it to a device.
1465 */
1466 static inline void usb_fill_control_urb(struct urb *urb,
1467 struct usb_device *dev,
1468 unsigned int pipe,
1469 unsigned char *setup_packet,
1470 void *transfer_buffer,
1471 int buffer_length,
1472 usb_complete_t complete_fn,
1473 void *context)
1474 {
1475 urb->dev = dev;
1476 urb->pipe = pipe;
1477 urb->setup_packet = setup_packet;
1478 urb->transfer_buffer = transfer_buffer;
1479 urb->transfer_buffer_length = buffer_length;
1480 urb->complete = complete_fn;
1481 urb->context = context;
1482 }
1483
1484 /**
1485 * usb_fill_bulk_urb - macro to help initialize a bulk urb
1486 * @urb: pointer to the urb to initialize.
1487 * @dev: pointer to the struct usb_device for this urb.
1488 * @pipe: the endpoint pipe
1489 * @transfer_buffer: pointer to the transfer buffer
1490 * @buffer_length: length of the transfer buffer
1491 * @complete_fn: pointer to the usb_complete_t function
1492 * @context: what to set the urb context to.
1493 *
1494 * Initializes a bulk urb with the proper information needed to submit it
1495 * to a device.
1496 */
1497 static inline void usb_fill_bulk_urb(struct urb *urb,
1498 struct usb_device *dev,
1499 unsigned int pipe,
1500 void *transfer_buffer,
1501 int buffer_length,
1502 usb_complete_t complete_fn,
1503 void *context)
1504 {
1505 urb->dev = dev;
1506 urb->pipe = pipe;
1507 urb->transfer_buffer = transfer_buffer;
1508 urb->transfer_buffer_length = buffer_length;
1509 urb->complete = complete_fn;
1510 urb->context = context;
1511 }
1512
1513 /**
1514 * usb_fill_int_urb - macro to help initialize a interrupt urb
1515 * @urb: pointer to the urb to initialize.
1516 * @dev: pointer to the struct usb_device for this urb.
1517 * @pipe: the endpoint pipe
1518 * @transfer_buffer: pointer to the transfer buffer
1519 * @buffer_length: length of the transfer buffer
1520 * @complete_fn: pointer to the usb_complete_t function
1521 * @context: what to set the urb context to.
1522 * @interval: what to set the urb interval to, encoded like
1523 * the endpoint descriptor's bInterval value.
1524 *
1525 * Initializes a interrupt urb with the proper information needed to submit
1526 * it to a device.
1527 *
1528 * Note that High Speed and SuperSpeed interrupt endpoints use a logarithmic
1529 * encoding of the endpoint interval, and express polling intervals in
1530 * microframes (eight per millisecond) rather than in frames (one per
1531 * millisecond).
1532 *
1533 * Wireless USB also uses the logarithmic encoding, but specifies it in units of
1534 * 128us instead of 125us. For Wireless USB devices, the interval is passed
1535 * through to the host controller, rather than being translated into microframe
1536 * units.
1537 */
1538 static inline void usb_fill_int_urb(struct urb *urb,
1539 struct usb_device *dev,
1540 unsigned int pipe,
1541 void *transfer_buffer,
1542 int buffer_length,
1543 usb_complete_t complete_fn,
1544 void *context,
1545 int interval)
1546 {
1547 urb->dev = dev;
1548 urb->pipe = pipe;
1549 urb->transfer_buffer = transfer_buffer;
1550 urb->transfer_buffer_length = buffer_length;
1551 urb->complete = complete_fn;
1552 urb->context = context;
1553 if (dev->speed == USB_SPEED_HIGH || dev->speed == USB_SPEED_SUPER)
1554 urb->interval = 1 << (interval - 1);
1555 else
1556 urb->interval = interval;
1557 urb->start_frame = -1;
1558 }
1559
1560 extern void usb_init_urb(struct urb *urb);
1561 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1562 extern void usb_free_urb(struct urb *urb);
1563 #define usb_put_urb usb_free_urb
1564 extern struct urb *usb_get_urb(struct urb *urb);
1565 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1566 extern int usb_unlink_urb(struct urb *urb);
1567 extern void usb_kill_urb(struct urb *urb);
1568 extern void usb_poison_urb(struct urb *urb);
1569 extern void usb_unpoison_urb(struct urb *urb);
1570 extern void usb_block_urb(struct urb *urb);
1571 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1572 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1573 extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1574 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1575 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1576 extern void usb_unanchor_urb(struct urb *urb);
1577 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1578 unsigned int timeout);
1579 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1580 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1581 extern int usb_anchor_empty(struct usb_anchor *anchor);
1582
1583 #define usb_unblock_urb usb_unpoison_urb
1584
1585 /**
1586 * usb_urb_dir_in - check if an URB describes an IN transfer
1587 * @urb: URB to be checked
1588 *
1589 * Returns 1 if @urb describes an IN transfer (device-to-host),
1590 * otherwise 0.
1591 */
1592 static inline int usb_urb_dir_in(struct urb *urb)
1593 {
1594 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1595 }
1596
1597 /**
1598 * usb_urb_dir_out - check if an URB describes an OUT transfer
1599 * @urb: URB to be checked
1600 *
1601 * Returns 1 if @urb describes an OUT transfer (host-to-device),
1602 * otherwise 0.
1603 */
1604 static inline int usb_urb_dir_out(struct urb *urb)
1605 {
1606 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1607 }
1608
1609 void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1610 gfp_t mem_flags, dma_addr_t *dma);
1611 void usb_free_coherent(struct usb_device *dev, size_t size,
1612 void *addr, dma_addr_t dma);
1613
1614 #if 0
1615 struct urb *usb_buffer_map(struct urb *urb);
1616 void usb_buffer_dmasync(struct urb *urb);
1617 void usb_buffer_unmap(struct urb *urb);
1618 #endif
1619
1620 struct scatterlist;
1621 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1622 struct scatterlist *sg, int nents);
1623 #if 0
1624 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1625 struct scatterlist *sg, int n_hw_ents);
1626 #endif
1627 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1628 struct scatterlist *sg, int n_hw_ents);
1629
1630 /*-------------------------------------------------------------------*
1631 * SYNCHRONOUS CALL SUPPORT *
1632 *-------------------------------------------------------------------*/
1633
1634 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1635 __u8 request, __u8 requesttype, __u16 value, __u16 index,
1636 void *data, __u16 size, int timeout);
1637 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1638 void *data, int len, int *actual_length, int timeout);
1639 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1640 void *data, int len, int *actual_length,
1641 int timeout);
1642
1643 /* wrappers around usb_control_msg() for the most common standard requests */
1644 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1645 unsigned char descindex, void *buf, int size);
1646 extern int usb_get_status(struct usb_device *dev,
1647 int type, int target, void *data);
1648 extern int usb_string(struct usb_device *dev, int index,
1649 char *buf, size_t size);
1650
1651 /* wrappers that also update important state inside usbcore */
1652 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1653 extern int usb_reset_configuration(struct usb_device *dev);
1654 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1655 extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1656
1657 /* this request isn't really synchronous, but it belongs with the others */
1658 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1659
1660 /*
1661 * timeouts, in milliseconds, used for sending/receiving control messages
1662 * they typically complete within a few frames (msec) after they're issued
1663 * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1664 * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1665 */
1666 #define USB_CTRL_GET_TIMEOUT 5000
1667 #define USB_CTRL_SET_TIMEOUT 5000
1668
1669
1670 /**
1671 * struct usb_sg_request - support for scatter/gather I/O
1672 * @status: zero indicates success, else negative errno
1673 * @bytes: counts bytes transferred.
1674 *
1675 * These requests are initialized using usb_sg_init(), and then are used
1676 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most
1677 * members of the request object aren't for driver access.
1678 *
1679 * The status and bytecount values are valid only after usb_sg_wait()
1680 * returns. If the status is zero, then the bytecount matches the total
1681 * from the request.
1682 *
1683 * After an error completion, drivers may need to clear a halt condition
1684 * on the endpoint.
1685 */
1686 struct usb_sg_request {
1687 int status;
1688 size_t bytes;
1689
1690 /* private:
1691 * members below are private to usbcore,
1692 * and are not provided for driver access!
1693 */
1694 spinlock_t lock;
1695
1696 struct usb_device *dev;
1697 int pipe;
1698
1699 int entries;
1700 struct urb **urbs;
1701
1702 int count;
1703 struct completion complete;
1704 };
1705
1706 int usb_sg_init(
1707 struct usb_sg_request *io,
1708 struct usb_device *dev,
1709 unsigned pipe,
1710 unsigned period,
1711 struct scatterlist *sg,
1712 int nents,
1713 size_t length,
1714 gfp_t mem_flags
1715 );
1716 void usb_sg_cancel(struct usb_sg_request *io);
1717 void usb_sg_wait(struct usb_sg_request *io);
1718
1719
1720 /* ----------------------------------------------------------------------- */
1721
1722 /*
1723 * For various legacy reasons, Linux has a small cookie that's paired with
1724 * a struct usb_device to identify an endpoint queue. Queue characteristics
1725 * are defined by the endpoint's descriptor. This cookie is called a "pipe",
1726 * an unsigned int encoded as:
1727 *
1728 * - direction: bit 7 (0 = Host-to-Device [Out],
1729 * 1 = Device-to-Host [In] ...
1730 * like endpoint bEndpointAddress)
1731 * - device address: bits 8-14 ... bit positions known to uhci-hcd
1732 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd
1733 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt,
1734 * 10 = control, 11 = bulk)
1735 *
1736 * Given the device address and endpoint descriptor, pipes are redundant.
1737 */
1738
1739 /* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */
1740 /* (yet ... they're the values used by usbfs) */
1741 #define PIPE_ISOCHRONOUS 0
1742 #define PIPE_INTERRUPT 1
1743 #define PIPE_CONTROL 2
1744 #define PIPE_BULK 3
1745
1746 #define usb_pipein(pipe) ((pipe) & USB_DIR_IN)
1747 #define usb_pipeout(pipe) (!usb_pipein(pipe))
1748
1749 #define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f)
1750 #define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf)
1751
1752 #define usb_pipetype(pipe) (((pipe) >> 30) & 3)
1753 #define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1754 #define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT)
1755 #define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL)
1756 #define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK)
1757
1758 static inline unsigned int __create_pipe(struct usb_device *dev,
1759 unsigned int endpoint)
1760 {
1761 return (dev->devnum << 8) | (endpoint << 15);
1762 }
1763
1764 /* Create various pipes... */
1765 #define usb_sndctrlpipe(dev, endpoint) \
1766 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1767 #define usb_rcvctrlpipe(dev, endpoint) \
1768 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1769 #define usb_sndisocpipe(dev, endpoint) \
1770 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1771 #define usb_rcvisocpipe(dev, endpoint) \
1772 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1773 #define usb_sndbulkpipe(dev, endpoint) \
1774 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1775 #define usb_rcvbulkpipe(dev, endpoint) \
1776 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1777 #define usb_sndintpipe(dev, endpoint) \
1778 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
1779 #define usb_rcvintpipe(dev, endpoint) \
1780 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1781
1782 static inline struct usb_host_endpoint *
1783 usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
1784 {
1785 struct usb_host_endpoint **eps;
1786 eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
1787 return eps[usb_pipeendpoint(pipe)];
1788 }
1789
1790 /*-------------------------------------------------------------------------*/
1791
1792 static inline __u16
1793 usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1794 {
1795 struct usb_host_endpoint *ep;
1796 unsigned epnum = usb_pipeendpoint(pipe);
1797
1798 if (is_out) {
1799 WARN_ON(usb_pipein(pipe));
1800 ep = udev->ep_out[epnum];
1801 } else {
1802 WARN_ON(usb_pipeout(pipe));
1803 ep = udev->ep_in[epnum];
1804 }
1805 if (!ep)
1806 return 0;
1807
1808 /* NOTE: only 0x07ff bits are for packet size... */
1809 return usb_endpoint_maxp(&ep->desc);
1810 }
1811
1812 /* ----------------------------------------------------------------------- */
1813
1814 /* translate USB error codes to codes user space understands */
1815 static inline int usb_translate_errors(int error_code)
1816 {
1817 switch (error_code) {
1818 case 0:
1819 case -ENOMEM:
1820 case -ENODEV:
1821 case -EOPNOTSUPP:
1822 return error_code;
1823 default:
1824 return -EIO;
1825 }
1826 }
1827
1828 /* Events from the usb core */
1829 #define USB_DEVICE_ADD 0x0001
1830 #define USB_DEVICE_REMOVE 0x0002
1831 #define USB_BUS_ADD 0x0003
1832 #define USB_BUS_REMOVE 0x0004
1833 extern void usb_register_notify(struct notifier_block *nb);
1834 extern void usb_unregister_notify(struct notifier_block *nb);
1835
1836 /* debugfs stuff */
1837 extern struct dentry *usb_debug_root;
1838
1839 #endif /* __KERNEL__ */
1840
1841 #endif