nlm: Ensure callback code also checks that the files match
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / skbuff.h
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/bug.h>
22 #include <linux/cache.h>
23
24 #include <linux/atomic.h>
25 #include <asm/types.h>
26 #include <linux/spinlock.h>
27 #include <linux/net.h>
28 #include <linux/textsearch.h>
29 #include <net/checksum.h>
30 #include <linux/rcupdate.h>
31 #include <linux/dmaengine.h>
32 #include <linux/hrtimer.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/netdev_features.h>
35 #include <net/flow_keys.h>
36
37 /* Don't change this without changing skb_csum_unnecessary! */
38 #define CHECKSUM_NONE 0
39 #define CHECKSUM_UNNECESSARY 1
40 #define CHECKSUM_COMPLETE 2
41 #define CHECKSUM_PARTIAL 3
42
43 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
44 ~(SMP_CACHE_BYTES - 1))
45 #define SKB_WITH_OVERHEAD(X) \
46 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
47 #define SKB_MAX_ORDER(X, ORDER) \
48 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
49 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
50 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
51
52 /* return minimum truesize of one skb containing X bytes of data */
53 #define SKB_TRUESIZE(X) ((X) + \
54 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
55 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
56
57 /* A. Checksumming of received packets by device.
58 *
59 * NONE: device failed to checksum this packet.
60 * skb->csum is undefined.
61 *
62 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
63 * skb->csum is undefined.
64 * It is bad option, but, unfortunately, many of vendors do this.
65 * Apparently with secret goal to sell you new device, when you
66 * will add new protocol to your host. F.e. IPv6. 8)
67 *
68 * COMPLETE: the most generic way. Device supplied checksum of _all_
69 * the packet as seen by netif_rx in skb->csum.
70 * NOTE: Even if device supports only some protocols, but
71 * is able to produce some skb->csum, it MUST use COMPLETE,
72 * not UNNECESSARY.
73 *
74 * PARTIAL: identical to the case for output below. This may occur
75 * on a packet received directly from another Linux OS, e.g.,
76 * a virtualised Linux kernel on the same host. The packet can
77 * be treated in the same way as UNNECESSARY except that on
78 * output (i.e., forwarding) the checksum must be filled in
79 * by the OS or the hardware.
80 *
81 * B. Checksumming on output.
82 *
83 * NONE: skb is checksummed by protocol or csum is not required.
84 *
85 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
86 * from skb->csum_start to the end and to record the checksum
87 * at skb->csum_start + skb->csum_offset.
88 *
89 * Device must show its capabilities in dev->features, set
90 * at device setup time.
91 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
92 * everything.
93 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
94 * TCP/UDP over IPv4. Sigh. Vendors like this
95 * way by an unknown reason. Though, see comment above
96 * about CHECKSUM_UNNECESSARY. 8)
97 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
98 *
99 * UNNECESSARY: device will do per protocol specific csum. Protocol drivers
100 * that do not want net to perform the checksum calculation should use
101 * this flag in their outgoing skbs.
102 * NETIF_F_FCOE_CRC this indicates the device can do FCoE FC CRC
103 * offload. Correspondingly, the FCoE protocol driver
104 * stack should use CHECKSUM_UNNECESSARY.
105 *
106 * Any questions? No questions, good. --ANK
107 */
108
109 struct net_device;
110 struct scatterlist;
111 struct pipe_inode_info;
112
113 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
114 struct nf_conntrack {
115 atomic_t use;
116 };
117 #endif
118
119 #ifdef CONFIG_BRIDGE_NETFILTER
120 struct nf_bridge_info {
121 atomic_t use;
122 unsigned int mask;
123 struct net_device *physindev;
124 struct net_device *physoutdev;
125 unsigned long data[32 / sizeof(unsigned long)];
126 };
127 #endif
128
129 struct sk_buff_head {
130 /* These two members must be first. */
131 struct sk_buff *next;
132 struct sk_buff *prev;
133
134 __u32 qlen;
135 spinlock_t lock;
136 };
137
138 struct sk_buff;
139
140 /* To allow 64K frame to be packed as single skb without frag_list we
141 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
142 * buffers which do not start on a page boundary.
143 *
144 * Since GRO uses frags we allocate at least 16 regardless of page
145 * size.
146 */
147 #if (65536/PAGE_SIZE + 1) < 16
148 #define MAX_SKB_FRAGS 16UL
149 #else
150 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
151 #endif
152
153 typedef struct skb_frag_struct skb_frag_t;
154
155 struct skb_frag_struct {
156 struct {
157 struct page *p;
158 } page;
159 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
160 __u32 page_offset;
161 __u32 size;
162 #else
163 __u16 page_offset;
164 __u16 size;
165 #endif
166 };
167
168 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
169 {
170 return frag->size;
171 }
172
173 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
174 {
175 frag->size = size;
176 }
177
178 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
179 {
180 frag->size += delta;
181 }
182
183 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
184 {
185 frag->size -= delta;
186 }
187
188 #define HAVE_HW_TIME_STAMP
189
190 /**
191 * struct skb_shared_hwtstamps - hardware time stamps
192 * @hwtstamp: hardware time stamp transformed into duration
193 * since arbitrary point in time
194 * @syststamp: hwtstamp transformed to system time base
195 *
196 * Software time stamps generated by ktime_get_real() are stored in
197 * skb->tstamp. The relation between the different kinds of time
198 * stamps is as follows:
199 *
200 * syststamp and tstamp can be compared against each other in
201 * arbitrary combinations. The accuracy of a
202 * syststamp/tstamp/"syststamp from other device" comparison is
203 * limited by the accuracy of the transformation into system time
204 * base. This depends on the device driver and its underlying
205 * hardware.
206 *
207 * hwtstamps can only be compared against other hwtstamps from
208 * the same device.
209 *
210 * This structure is attached to packets as part of the
211 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
212 */
213 struct skb_shared_hwtstamps {
214 ktime_t hwtstamp;
215 ktime_t syststamp;
216 };
217
218 /* Definitions for tx_flags in struct skb_shared_info */
219 enum {
220 /* generate hardware time stamp */
221 SKBTX_HW_TSTAMP = 1 << 0,
222
223 /* generate software time stamp */
224 SKBTX_SW_TSTAMP = 1 << 1,
225
226 /* device driver is going to provide hardware time stamp */
227 SKBTX_IN_PROGRESS = 1 << 2,
228
229 /* device driver supports TX zero-copy buffers */
230 SKBTX_DEV_ZEROCOPY = 1 << 3,
231
232 /* generate wifi status information (where possible) */
233 SKBTX_WIFI_STATUS = 1 << 4,
234
235 /* This indicates at least one fragment might be overwritten
236 * (as in vmsplice(), sendfile() ...)
237 * If we need to compute a TX checksum, we'll need to copy
238 * all frags to avoid possible bad checksum
239 */
240 SKBTX_SHARED_FRAG = 1 << 5,
241 };
242
243 /*
244 * The callback notifies userspace to release buffers when skb DMA is done in
245 * lower device, the skb last reference should be 0 when calling this.
246 * The zerocopy_success argument is true if zero copy transmit occurred,
247 * false on data copy or out of memory error caused by data copy attempt.
248 * The ctx field is used to track device context.
249 * The desc field is used to track userspace buffer index.
250 */
251 struct ubuf_info {
252 void (*callback)(struct ubuf_info *, bool zerocopy_success);
253 void *ctx;
254 unsigned long desc;
255 };
256
257 /* This data is invariant across clones and lives at
258 * the end of the header data, ie. at skb->end.
259 */
260 struct skb_shared_info {
261 unsigned char nr_frags;
262 __u8 tx_flags;
263 unsigned short gso_size;
264 /* Warning: this field is not always filled in (UFO)! */
265 unsigned short gso_segs;
266 unsigned short gso_type;
267 struct sk_buff *frag_list;
268 struct skb_shared_hwtstamps hwtstamps;
269 __be32 ip6_frag_id;
270
271 /*
272 * Warning : all fields before dataref are cleared in __alloc_skb()
273 */
274 atomic_t dataref;
275
276 /* Intermediate layers must ensure that destructor_arg
277 * remains valid until skb destructor */
278 void * destructor_arg;
279
280 /* must be last field, see pskb_expand_head() */
281 skb_frag_t frags[MAX_SKB_FRAGS];
282 };
283
284 /* We divide dataref into two halves. The higher 16 bits hold references
285 * to the payload part of skb->data. The lower 16 bits hold references to
286 * the entire skb->data. A clone of a headerless skb holds the length of
287 * the header in skb->hdr_len.
288 *
289 * All users must obey the rule that the skb->data reference count must be
290 * greater than or equal to the payload reference count.
291 *
292 * Holding a reference to the payload part means that the user does not
293 * care about modifications to the header part of skb->data.
294 */
295 #define SKB_DATAREF_SHIFT 16
296 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
297
298
299 enum {
300 SKB_FCLONE_UNAVAILABLE,
301 SKB_FCLONE_ORIG,
302 SKB_FCLONE_CLONE,
303 };
304
305 enum {
306 SKB_GSO_TCPV4 = 1 << 0,
307 SKB_GSO_UDP = 1 << 1,
308
309 /* This indicates the skb is from an untrusted source. */
310 SKB_GSO_DODGY = 1 << 2,
311
312 /* This indicates the tcp segment has CWR set. */
313 SKB_GSO_TCP_ECN = 1 << 3,
314
315 SKB_GSO_TCPV6 = 1 << 4,
316
317 SKB_GSO_FCOE = 1 << 5,
318
319 SKB_GSO_GRE = 1 << 6,
320
321 SKB_GSO_UDP_TUNNEL = 1 << 7,
322 };
323
324 #if BITS_PER_LONG > 32
325 #define NET_SKBUFF_DATA_USES_OFFSET 1
326 #endif
327
328 #ifdef NET_SKBUFF_DATA_USES_OFFSET
329 typedef unsigned int sk_buff_data_t;
330 #else
331 typedef unsigned char *sk_buff_data_t;
332 #endif
333
334 /**
335 * struct sk_buff - socket buffer
336 * @next: Next buffer in list
337 * @prev: Previous buffer in list
338 * @tstamp: Time we arrived
339 * @sk: Socket we are owned by
340 * @dev: Device we arrived on/are leaving by
341 * @cb: Control buffer. Free for use by every layer. Put private vars here
342 * @_skb_refdst: destination entry (with norefcount bit)
343 * @sp: the security path, used for xfrm
344 * @len: Length of actual data
345 * @data_len: Data length
346 * @mac_len: Length of link layer header
347 * @hdr_len: writable header length of cloned skb
348 * @csum: Checksum (must include start/offset pair)
349 * @csum_start: Offset from skb->head where checksumming should start
350 * @csum_offset: Offset from csum_start where checksum should be stored
351 * @priority: Packet queueing priority
352 * @local_df: allow local fragmentation
353 * @cloned: Head may be cloned (check refcnt to be sure)
354 * @ip_summed: Driver fed us an IP checksum
355 * @nohdr: Payload reference only, must not modify header
356 * @nfctinfo: Relationship of this skb to the connection
357 * @pkt_type: Packet class
358 * @fclone: skbuff clone status
359 * @ipvs_property: skbuff is owned by ipvs
360 * @peeked: this packet has been seen already, so stats have been
361 * done for it, don't do them again
362 * @nf_trace: netfilter packet trace flag
363 * @protocol: Packet protocol from driver
364 * @destructor: Destruct function
365 * @nfct: Associated connection, if any
366 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
367 * @skb_iif: ifindex of device we arrived on
368 * @tc_index: Traffic control index
369 * @tc_verd: traffic control verdict
370 * @rxhash: the packet hash computed on receive
371 * @queue_mapping: Queue mapping for multiqueue devices
372 * @ndisc_nodetype: router type (from link layer)
373 * @ooo_okay: allow the mapping of a socket to a queue to be changed
374 * @l4_rxhash: indicate rxhash is a canonical 4-tuple hash over transport
375 * ports.
376 * @wifi_acked_valid: wifi_acked was set
377 * @wifi_acked: whether frame was acked on wifi or not
378 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
379 * @dma_cookie: a cookie to one of several possible DMA operations
380 * done by skb DMA functions
381 * @secmark: security marking
382 * @mark: Generic packet mark
383 * @dropcount: total number of sk_receive_queue overflows
384 * @vlan_proto: vlan encapsulation protocol
385 * @vlan_tci: vlan tag control information
386 * @inner_transport_header: Inner transport layer header (encapsulation)
387 * @inner_network_header: Network layer header (encapsulation)
388 * @inner_mac_header: Link layer header (encapsulation)
389 * @transport_header: Transport layer header
390 * @network_header: Network layer header
391 * @mac_header: Link layer header
392 * @tail: Tail pointer
393 * @end: End pointer
394 * @head: Head of buffer
395 * @data: Data head pointer
396 * @truesize: Buffer size
397 * @users: User count - see {datagram,tcp}.c
398 */
399
400 struct sk_buff {
401 /* These two members must be first. */
402 struct sk_buff *next;
403 struct sk_buff *prev;
404
405 ktime_t tstamp;
406
407 struct sock *sk;
408 struct net_device *dev;
409
410 /*
411 * This is the control buffer. It is free to use for every
412 * layer. Please put your private variables there. If you
413 * want to keep them across layers you have to do a skb_clone()
414 * first. This is owned by whoever has the skb queued ATM.
415 */
416 char cb[48] __aligned(8);
417
418 unsigned long _skb_refdst;
419 #ifdef CONFIG_XFRM
420 struct sec_path *sp;
421 #endif
422 unsigned int len,
423 data_len;
424 __u16 mac_len,
425 hdr_len;
426 union {
427 __wsum csum;
428 struct {
429 __u16 csum_start;
430 __u16 csum_offset;
431 };
432 };
433 __u32 priority;
434 kmemcheck_bitfield_begin(flags1);
435 __u8 local_df:1,
436 cloned:1,
437 ip_summed:2,
438 nohdr:1,
439 nfctinfo:3;
440 __u8 pkt_type:3,
441 fclone:2,
442 ipvs_property:1,
443 peeked:1,
444 nf_trace:1;
445 kmemcheck_bitfield_end(flags1);
446 __be16 protocol;
447
448 void (*destructor)(struct sk_buff *skb);
449 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
450 struct nf_conntrack *nfct;
451 #endif
452 #ifdef CONFIG_BRIDGE_NETFILTER
453 struct nf_bridge_info *nf_bridge;
454 #endif
455
456 int skb_iif;
457
458 __u32 rxhash;
459
460 __be16 vlan_proto;
461 __u16 vlan_tci;
462
463 #ifdef CONFIG_NET_SCHED
464 __u16 tc_index; /* traffic control index */
465 #ifdef CONFIG_NET_CLS_ACT
466 __u16 tc_verd; /* traffic control verdict */
467 #endif
468 #endif
469
470 __u16 queue_mapping;
471 kmemcheck_bitfield_begin(flags2);
472 #ifdef CONFIG_IPV6_NDISC_NODETYPE
473 __u8 ndisc_nodetype:2;
474 #endif
475 __u8 pfmemalloc:1;
476 __u8 ooo_okay:1;
477 __u8 l4_rxhash:1;
478 __u8 wifi_acked_valid:1;
479 __u8 wifi_acked:1;
480 __u8 no_fcs:1;
481 __u8 head_frag:1;
482 /* Encapsulation protocol and NIC drivers should use
483 * this flag to indicate to each other if the skb contains
484 * encapsulated packet or not and maybe use the inner packet
485 * headers if needed
486 */
487 __u8 encapsulation:1;
488 /* 7/9 bit hole (depending on ndisc_nodetype presence) */
489 kmemcheck_bitfield_end(flags2);
490
491 #ifdef CONFIG_NET_DMA
492 dma_cookie_t dma_cookie;
493 #endif
494 #ifdef CONFIG_NETWORK_SECMARK
495 __u32 secmark;
496 #endif
497 union {
498 __u32 mark;
499 __u32 dropcount;
500 __u32 reserved_tailroom;
501 };
502
503 sk_buff_data_t inner_transport_header;
504 sk_buff_data_t inner_network_header;
505 sk_buff_data_t inner_mac_header;
506 sk_buff_data_t transport_header;
507 sk_buff_data_t network_header;
508 sk_buff_data_t mac_header;
509 /* These elements must be at the end, see alloc_skb() for details. */
510 sk_buff_data_t tail;
511 sk_buff_data_t end;
512 unsigned char *head,
513 *data;
514 unsigned int truesize;
515 atomic_t users;
516 };
517
518 #ifdef __KERNEL__
519 /*
520 * Handling routines are only of interest to the kernel
521 */
522 #include <linux/slab.h>
523
524
525 #define SKB_ALLOC_FCLONE 0x01
526 #define SKB_ALLOC_RX 0x02
527
528 /* Returns true if the skb was allocated from PFMEMALLOC reserves */
529 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
530 {
531 return unlikely(skb->pfmemalloc);
532 }
533
534 /*
535 * skb might have a dst pointer attached, refcounted or not.
536 * _skb_refdst low order bit is set if refcount was _not_ taken
537 */
538 #define SKB_DST_NOREF 1UL
539 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
540
541 /**
542 * skb_dst - returns skb dst_entry
543 * @skb: buffer
544 *
545 * Returns skb dst_entry, regardless of reference taken or not.
546 */
547 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
548 {
549 /* If refdst was not refcounted, check we still are in a
550 * rcu_read_lock section
551 */
552 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
553 !rcu_read_lock_held() &&
554 !rcu_read_lock_bh_held());
555 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
556 }
557
558 /**
559 * skb_dst_set - sets skb dst
560 * @skb: buffer
561 * @dst: dst entry
562 *
563 * Sets skb dst, assuming a reference was taken on dst and should
564 * be released by skb_dst_drop()
565 */
566 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
567 {
568 skb->_skb_refdst = (unsigned long)dst;
569 }
570
571 extern void __skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst,
572 bool force);
573
574 /**
575 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
576 * @skb: buffer
577 * @dst: dst entry
578 *
579 * Sets skb dst, assuming a reference was not taken on dst.
580 * If dst entry is cached, we do not take reference and dst_release
581 * will be avoided by refdst_drop. If dst entry is not cached, we take
582 * reference, so that last dst_release can destroy the dst immediately.
583 */
584 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
585 {
586 __skb_dst_set_noref(skb, dst, false);
587 }
588
589 /**
590 * skb_dst_set_noref_force - sets skb dst, without taking reference
591 * @skb: buffer
592 * @dst: dst entry
593 *
594 * Sets skb dst, assuming a reference was not taken on dst.
595 * No reference is taken and no dst_release will be called. While for
596 * cached dsts deferred reclaim is a basic feature, for entries that are
597 * not cached it is caller's job to guarantee that last dst_release for
598 * provided dst happens when nobody uses it, eg. after a RCU grace period.
599 */
600 static inline void skb_dst_set_noref_force(struct sk_buff *skb,
601 struct dst_entry *dst)
602 {
603 __skb_dst_set_noref(skb, dst, true);
604 }
605
606 /**
607 * skb_dst_is_noref - Test if skb dst isn't refcounted
608 * @skb: buffer
609 */
610 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
611 {
612 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
613 }
614
615 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
616 {
617 return (struct rtable *)skb_dst(skb);
618 }
619
620 extern void kfree_skb(struct sk_buff *skb);
621 extern void kfree_skb_list(struct sk_buff *segs);
622 extern void skb_tx_error(struct sk_buff *skb);
623 extern void consume_skb(struct sk_buff *skb);
624 extern void __kfree_skb(struct sk_buff *skb);
625 extern struct kmem_cache *skbuff_head_cache;
626
627 extern void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
628 extern bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
629 bool *fragstolen, int *delta_truesize);
630
631 extern struct sk_buff *__alloc_skb(unsigned int size,
632 gfp_t priority, int flags, int node);
633 extern struct sk_buff *build_skb(void *data, unsigned int frag_size);
634 static inline struct sk_buff *alloc_skb(unsigned int size,
635 gfp_t priority)
636 {
637 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
638 }
639
640 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
641 gfp_t priority)
642 {
643 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
644 }
645
646 extern struct sk_buff *__alloc_skb_head(gfp_t priority, int node);
647 static inline struct sk_buff *alloc_skb_head(gfp_t priority)
648 {
649 return __alloc_skb_head(priority, -1);
650 }
651
652 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
653 extern int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
654 extern struct sk_buff *skb_clone(struct sk_buff *skb,
655 gfp_t priority);
656 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
657 gfp_t priority);
658 extern struct sk_buff *__pskb_copy(struct sk_buff *skb,
659 int headroom, gfp_t gfp_mask);
660
661 extern int pskb_expand_head(struct sk_buff *skb,
662 int nhead, int ntail,
663 gfp_t gfp_mask);
664 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
665 unsigned int headroom);
666 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
667 int newheadroom, int newtailroom,
668 gfp_t priority);
669 extern int skb_to_sgvec(struct sk_buff *skb,
670 struct scatterlist *sg, int offset,
671 int len);
672 extern int skb_cow_data(struct sk_buff *skb, int tailbits,
673 struct sk_buff **trailer);
674 extern int skb_pad(struct sk_buff *skb, int pad);
675 #define dev_kfree_skb(a) consume_skb(a)
676
677 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
678 int getfrag(void *from, char *to, int offset,
679 int len,int odd, struct sk_buff *skb),
680 void *from, int length);
681
682 struct skb_seq_state {
683 __u32 lower_offset;
684 __u32 upper_offset;
685 __u32 frag_idx;
686 __u32 stepped_offset;
687 struct sk_buff *root_skb;
688 struct sk_buff *cur_skb;
689 __u8 *frag_data;
690 };
691
692 extern void skb_prepare_seq_read(struct sk_buff *skb,
693 unsigned int from, unsigned int to,
694 struct skb_seq_state *st);
695 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
696 struct skb_seq_state *st);
697 extern void skb_abort_seq_read(struct skb_seq_state *st);
698
699 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
700 unsigned int to, struct ts_config *config,
701 struct ts_state *state);
702
703 extern void __skb_get_rxhash(struct sk_buff *skb);
704 static inline __u32 skb_get_rxhash(struct sk_buff *skb)
705 {
706 if (!skb->l4_rxhash)
707 __skb_get_rxhash(skb);
708
709 return skb->rxhash;
710 }
711
712 #ifdef NET_SKBUFF_DATA_USES_OFFSET
713 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
714 {
715 return skb->head + skb->end;
716 }
717
718 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
719 {
720 return skb->end;
721 }
722 #else
723 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
724 {
725 return skb->end;
726 }
727
728 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
729 {
730 return skb->end - skb->head;
731 }
732 #endif
733
734 /* Internal */
735 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
736
737 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
738 {
739 return &skb_shinfo(skb)->hwtstamps;
740 }
741
742 /**
743 * skb_queue_empty - check if a queue is empty
744 * @list: queue head
745 *
746 * Returns true if the queue is empty, false otherwise.
747 */
748 static inline int skb_queue_empty(const struct sk_buff_head *list)
749 {
750 return list->next == (struct sk_buff *)list;
751 }
752
753 /**
754 * skb_queue_is_last - check if skb is the last entry in the queue
755 * @list: queue head
756 * @skb: buffer
757 *
758 * Returns true if @skb is the last buffer on the list.
759 */
760 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
761 const struct sk_buff *skb)
762 {
763 return skb->next == (struct sk_buff *)list;
764 }
765
766 /**
767 * skb_queue_is_first - check if skb is the first entry in the queue
768 * @list: queue head
769 * @skb: buffer
770 *
771 * Returns true if @skb is the first buffer on the list.
772 */
773 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
774 const struct sk_buff *skb)
775 {
776 return skb->prev == (struct sk_buff *)list;
777 }
778
779 /**
780 * skb_queue_next - return the next packet in the queue
781 * @list: queue head
782 * @skb: current buffer
783 *
784 * Return the next packet in @list after @skb. It is only valid to
785 * call this if skb_queue_is_last() evaluates to false.
786 */
787 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
788 const struct sk_buff *skb)
789 {
790 /* This BUG_ON may seem severe, but if we just return then we
791 * are going to dereference garbage.
792 */
793 BUG_ON(skb_queue_is_last(list, skb));
794 return skb->next;
795 }
796
797 /**
798 * skb_queue_prev - return the prev packet in the queue
799 * @list: queue head
800 * @skb: current buffer
801 *
802 * Return the prev packet in @list before @skb. It is only valid to
803 * call this if skb_queue_is_first() evaluates to false.
804 */
805 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
806 const struct sk_buff *skb)
807 {
808 /* This BUG_ON may seem severe, but if we just return then we
809 * are going to dereference garbage.
810 */
811 BUG_ON(skb_queue_is_first(list, skb));
812 return skb->prev;
813 }
814
815 /**
816 * skb_get - reference buffer
817 * @skb: buffer to reference
818 *
819 * Makes another reference to a socket buffer and returns a pointer
820 * to the buffer.
821 */
822 static inline struct sk_buff *skb_get(struct sk_buff *skb)
823 {
824 atomic_inc(&skb->users);
825 return skb;
826 }
827
828 /*
829 * If users == 1, we are the only owner and are can avoid redundant
830 * atomic change.
831 */
832
833 /**
834 * skb_cloned - is the buffer a clone
835 * @skb: buffer to check
836 *
837 * Returns true if the buffer was generated with skb_clone() and is
838 * one of multiple shared copies of the buffer. Cloned buffers are
839 * shared data so must not be written to under normal circumstances.
840 */
841 static inline int skb_cloned(const struct sk_buff *skb)
842 {
843 return skb->cloned &&
844 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
845 }
846
847 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
848 {
849 might_sleep_if(pri & __GFP_WAIT);
850
851 if (skb_cloned(skb))
852 return pskb_expand_head(skb, 0, 0, pri);
853
854 return 0;
855 }
856
857 /**
858 * skb_header_cloned - is the header a clone
859 * @skb: buffer to check
860 *
861 * Returns true if modifying the header part of the buffer requires
862 * the data to be copied.
863 */
864 static inline int skb_header_cloned(const struct sk_buff *skb)
865 {
866 int dataref;
867
868 if (!skb->cloned)
869 return 0;
870
871 dataref = atomic_read(&skb_shinfo(skb)->dataref);
872 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
873 return dataref != 1;
874 }
875
876 /**
877 * skb_header_release - release reference to header
878 * @skb: buffer to operate on
879 *
880 * Drop a reference to the header part of the buffer. This is done
881 * by acquiring a payload reference. You must not read from the header
882 * part of skb->data after this.
883 */
884 static inline void skb_header_release(struct sk_buff *skb)
885 {
886 BUG_ON(skb->nohdr);
887 skb->nohdr = 1;
888 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
889 }
890
891 /**
892 * skb_shared - is the buffer shared
893 * @skb: buffer to check
894 *
895 * Returns true if more than one person has a reference to this
896 * buffer.
897 */
898 static inline int skb_shared(const struct sk_buff *skb)
899 {
900 return atomic_read(&skb->users) != 1;
901 }
902
903 /**
904 * skb_share_check - check if buffer is shared and if so clone it
905 * @skb: buffer to check
906 * @pri: priority for memory allocation
907 *
908 * If the buffer is shared the buffer is cloned and the old copy
909 * drops a reference. A new clone with a single reference is returned.
910 * If the buffer is not shared the original buffer is returned. When
911 * being called from interrupt status or with spinlocks held pri must
912 * be GFP_ATOMIC.
913 *
914 * NULL is returned on a memory allocation failure.
915 */
916 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
917 {
918 might_sleep_if(pri & __GFP_WAIT);
919 if (skb_shared(skb)) {
920 struct sk_buff *nskb = skb_clone(skb, pri);
921
922 if (likely(nskb))
923 consume_skb(skb);
924 else
925 kfree_skb(skb);
926 skb = nskb;
927 }
928 return skb;
929 }
930
931 /*
932 * Copy shared buffers into a new sk_buff. We effectively do COW on
933 * packets to handle cases where we have a local reader and forward
934 * and a couple of other messy ones. The normal one is tcpdumping
935 * a packet thats being forwarded.
936 */
937
938 /**
939 * skb_unshare - make a copy of a shared buffer
940 * @skb: buffer to check
941 * @pri: priority for memory allocation
942 *
943 * If the socket buffer is a clone then this function creates a new
944 * copy of the data, drops a reference count on the old copy and returns
945 * the new copy with the reference count at 1. If the buffer is not a clone
946 * the original buffer is returned. When called with a spinlock held or
947 * from interrupt state @pri must be %GFP_ATOMIC
948 *
949 * %NULL is returned on a memory allocation failure.
950 */
951 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
952 gfp_t pri)
953 {
954 might_sleep_if(pri & __GFP_WAIT);
955 if (skb_cloned(skb)) {
956 struct sk_buff *nskb = skb_copy(skb, pri);
957 kfree_skb(skb); /* Free our shared copy */
958 skb = nskb;
959 }
960 return skb;
961 }
962
963 /**
964 * skb_peek - peek at the head of an &sk_buff_head
965 * @list_: list to peek at
966 *
967 * Peek an &sk_buff. Unlike most other operations you _MUST_
968 * be careful with this one. A peek leaves the buffer on the
969 * list and someone else may run off with it. You must hold
970 * the appropriate locks or have a private queue to do this.
971 *
972 * Returns %NULL for an empty list or a pointer to the head element.
973 * The reference count is not incremented and the reference is therefore
974 * volatile. Use with caution.
975 */
976 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
977 {
978 struct sk_buff *skb = list_->next;
979
980 if (skb == (struct sk_buff *)list_)
981 skb = NULL;
982 return skb;
983 }
984
985 /**
986 * skb_peek_next - peek skb following the given one from a queue
987 * @skb: skb to start from
988 * @list_: list to peek at
989 *
990 * Returns %NULL when the end of the list is met or a pointer to the
991 * next element. The reference count is not incremented and the
992 * reference is therefore volatile. Use with caution.
993 */
994 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
995 const struct sk_buff_head *list_)
996 {
997 struct sk_buff *next = skb->next;
998
999 if (next == (struct sk_buff *)list_)
1000 next = NULL;
1001 return next;
1002 }
1003
1004 /**
1005 * skb_peek_tail - peek at the tail of an &sk_buff_head
1006 * @list_: list to peek at
1007 *
1008 * Peek an &sk_buff. Unlike most other operations you _MUST_
1009 * be careful with this one. A peek leaves the buffer on the
1010 * list and someone else may run off with it. You must hold
1011 * the appropriate locks or have a private queue to do this.
1012 *
1013 * Returns %NULL for an empty list or a pointer to the tail element.
1014 * The reference count is not incremented and the reference is therefore
1015 * volatile. Use with caution.
1016 */
1017 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1018 {
1019 struct sk_buff *skb = list_->prev;
1020
1021 if (skb == (struct sk_buff *)list_)
1022 skb = NULL;
1023 return skb;
1024
1025 }
1026
1027 /**
1028 * skb_queue_len - get queue length
1029 * @list_: list to measure
1030 *
1031 * Return the length of an &sk_buff queue.
1032 */
1033 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1034 {
1035 return list_->qlen;
1036 }
1037
1038 /**
1039 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1040 * @list: queue to initialize
1041 *
1042 * This initializes only the list and queue length aspects of
1043 * an sk_buff_head object. This allows to initialize the list
1044 * aspects of an sk_buff_head without reinitializing things like
1045 * the spinlock. It can also be used for on-stack sk_buff_head
1046 * objects where the spinlock is known to not be used.
1047 */
1048 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1049 {
1050 list->prev = list->next = (struct sk_buff *)list;
1051 list->qlen = 0;
1052 }
1053
1054 /*
1055 * This function creates a split out lock class for each invocation;
1056 * this is needed for now since a whole lot of users of the skb-queue
1057 * infrastructure in drivers have different locking usage (in hardirq)
1058 * than the networking core (in softirq only). In the long run either the
1059 * network layer or drivers should need annotation to consolidate the
1060 * main types of usage into 3 classes.
1061 */
1062 static inline void skb_queue_head_init(struct sk_buff_head *list)
1063 {
1064 spin_lock_init(&list->lock);
1065 __skb_queue_head_init(list);
1066 }
1067
1068 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1069 struct lock_class_key *class)
1070 {
1071 skb_queue_head_init(list);
1072 lockdep_set_class(&list->lock, class);
1073 }
1074
1075 /*
1076 * Insert an sk_buff on a list.
1077 *
1078 * The "__skb_xxxx()" functions are the non-atomic ones that
1079 * can only be called with interrupts disabled.
1080 */
1081 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
1082 static inline void __skb_insert(struct sk_buff *newsk,
1083 struct sk_buff *prev, struct sk_buff *next,
1084 struct sk_buff_head *list)
1085 {
1086 newsk->next = next;
1087 newsk->prev = prev;
1088 next->prev = prev->next = newsk;
1089 list->qlen++;
1090 }
1091
1092 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1093 struct sk_buff *prev,
1094 struct sk_buff *next)
1095 {
1096 struct sk_buff *first = list->next;
1097 struct sk_buff *last = list->prev;
1098
1099 first->prev = prev;
1100 prev->next = first;
1101
1102 last->next = next;
1103 next->prev = last;
1104 }
1105
1106 /**
1107 * skb_queue_splice - join two skb lists, this is designed for stacks
1108 * @list: the new list to add
1109 * @head: the place to add it in the first list
1110 */
1111 static inline void skb_queue_splice(const struct sk_buff_head *list,
1112 struct sk_buff_head *head)
1113 {
1114 if (!skb_queue_empty(list)) {
1115 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1116 head->qlen += list->qlen;
1117 }
1118 }
1119
1120 /**
1121 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1122 * @list: the new list to add
1123 * @head: the place to add it in the first list
1124 *
1125 * The list at @list is reinitialised
1126 */
1127 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1128 struct sk_buff_head *head)
1129 {
1130 if (!skb_queue_empty(list)) {
1131 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1132 head->qlen += list->qlen;
1133 __skb_queue_head_init(list);
1134 }
1135 }
1136
1137 /**
1138 * skb_queue_splice_tail - join two skb lists, each list being a queue
1139 * @list: the new list to add
1140 * @head: the place to add it in the first list
1141 */
1142 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1143 struct sk_buff_head *head)
1144 {
1145 if (!skb_queue_empty(list)) {
1146 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1147 head->qlen += list->qlen;
1148 }
1149 }
1150
1151 /**
1152 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1153 * @list: the new list to add
1154 * @head: the place to add it in the first list
1155 *
1156 * Each of the lists is a queue.
1157 * The list at @list is reinitialised
1158 */
1159 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1160 struct sk_buff_head *head)
1161 {
1162 if (!skb_queue_empty(list)) {
1163 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1164 head->qlen += list->qlen;
1165 __skb_queue_head_init(list);
1166 }
1167 }
1168
1169 /**
1170 * __skb_queue_after - queue a buffer at the list head
1171 * @list: list to use
1172 * @prev: place after this buffer
1173 * @newsk: buffer to queue
1174 *
1175 * Queue a buffer int the middle of a list. This function takes no locks
1176 * and you must therefore hold required locks before calling it.
1177 *
1178 * A buffer cannot be placed on two lists at the same time.
1179 */
1180 static inline void __skb_queue_after(struct sk_buff_head *list,
1181 struct sk_buff *prev,
1182 struct sk_buff *newsk)
1183 {
1184 __skb_insert(newsk, prev, prev->next, list);
1185 }
1186
1187 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1188 struct sk_buff_head *list);
1189
1190 static inline void __skb_queue_before(struct sk_buff_head *list,
1191 struct sk_buff *next,
1192 struct sk_buff *newsk)
1193 {
1194 __skb_insert(newsk, next->prev, next, list);
1195 }
1196
1197 /**
1198 * __skb_queue_head - queue a buffer at the list head
1199 * @list: list to use
1200 * @newsk: buffer to queue
1201 *
1202 * Queue a buffer at the start of a list. This function takes no locks
1203 * and you must therefore hold required locks before calling it.
1204 *
1205 * A buffer cannot be placed on two lists at the same time.
1206 */
1207 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1208 static inline void __skb_queue_head(struct sk_buff_head *list,
1209 struct sk_buff *newsk)
1210 {
1211 __skb_queue_after(list, (struct sk_buff *)list, newsk);
1212 }
1213
1214 /**
1215 * __skb_queue_tail - queue a buffer at the list tail
1216 * @list: list to use
1217 * @newsk: buffer to queue
1218 *
1219 * Queue a buffer at the end of a list. This function takes no locks
1220 * and you must therefore hold required locks before calling it.
1221 *
1222 * A buffer cannot be placed on two lists at the same time.
1223 */
1224 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1225 static inline void __skb_queue_tail(struct sk_buff_head *list,
1226 struct sk_buff *newsk)
1227 {
1228 __skb_queue_before(list, (struct sk_buff *)list, newsk);
1229 }
1230
1231 /*
1232 * remove sk_buff from list. _Must_ be called atomically, and with
1233 * the list known..
1234 */
1235 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1236 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1237 {
1238 struct sk_buff *next, *prev;
1239
1240 list->qlen--;
1241 next = skb->next;
1242 prev = skb->prev;
1243 skb->next = skb->prev = NULL;
1244 next->prev = prev;
1245 prev->next = next;
1246 }
1247
1248 /**
1249 * __skb_dequeue - remove from the head of the queue
1250 * @list: list to dequeue from
1251 *
1252 * Remove the head of the list. This function does not take any locks
1253 * so must be used with appropriate locks held only. The head item is
1254 * returned or %NULL if the list is empty.
1255 */
1256 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1257 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1258 {
1259 struct sk_buff *skb = skb_peek(list);
1260 if (skb)
1261 __skb_unlink(skb, list);
1262 return skb;
1263 }
1264
1265 /**
1266 * __skb_dequeue_tail - remove from the tail of the queue
1267 * @list: list to dequeue from
1268 *
1269 * Remove the tail of the list. This function does not take any locks
1270 * so must be used with appropriate locks held only. The tail item is
1271 * returned or %NULL if the list is empty.
1272 */
1273 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1274 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1275 {
1276 struct sk_buff *skb = skb_peek_tail(list);
1277 if (skb)
1278 __skb_unlink(skb, list);
1279 return skb;
1280 }
1281
1282
1283 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1284 {
1285 return skb->data_len;
1286 }
1287
1288 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1289 {
1290 return skb->len - skb->data_len;
1291 }
1292
1293 static inline int skb_pagelen(const struct sk_buff *skb)
1294 {
1295 int i, len = 0;
1296
1297 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1298 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1299 return len + skb_headlen(skb);
1300 }
1301
1302 static inline bool skb_has_frags(const struct sk_buff *skb)
1303 {
1304 return skb_shinfo(skb)->nr_frags;
1305 }
1306
1307 /**
1308 * __skb_fill_page_desc - initialise a paged fragment in an skb
1309 * @skb: buffer containing fragment to be initialised
1310 * @i: paged fragment index to initialise
1311 * @page: the page to use for this fragment
1312 * @off: the offset to the data with @page
1313 * @size: the length of the data
1314 *
1315 * Initialises the @i'th fragment of @skb to point to &size bytes at
1316 * offset @off within @page.
1317 *
1318 * Does not take any additional reference on the fragment.
1319 */
1320 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1321 struct page *page, int off, int size)
1322 {
1323 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1324
1325 /*
1326 * Propagate page->pfmemalloc to the skb if we can. The problem is
1327 * that not all callers have unique ownership of the page. If
1328 * pfmemalloc is set, we check the mapping as a mapping implies
1329 * page->index is set (index and pfmemalloc share space).
1330 * If it's a valid mapping, we cannot use page->pfmemalloc but we
1331 * do not lose pfmemalloc information as the pages would not be
1332 * allocated using __GFP_MEMALLOC.
1333 */
1334 frag->page.p = page;
1335 frag->page_offset = off;
1336 skb_frag_size_set(frag, size);
1337
1338 page = compound_head(page);
1339 if (page->pfmemalloc && !page->mapping)
1340 skb->pfmemalloc = true;
1341 }
1342
1343 /**
1344 * skb_fill_page_desc - initialise a paged fragment in an skb
1345 * @skb: buffer containing fragment to be initialised
1346 * @i: paged fragment index to initialise
1347 * @page: the page to use for this fragment
1348 * @off: the offset to the data with @page
1349 * @size: the length of the data
1350 *
1351 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1352 * @skb to point to &size bytes at offset @off within @page. In
1353 * addition updates @skb such that @i is the last fragment.
1354 *
1355 * Does not take any additional reference on the fragment.
1356 */
1357 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1358 struct page *page, int off, int size)
1359 {
1360 __skb_fill_page_desc(skb, i, page, off, size);
1361 skb_shinfo(skb)->nr_frags = i + 1;
1362 }
1363
1364 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
1365 int off, int size, unsigned int truesize);
1366
1367 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
1368 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
1369 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1370
1371 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1372 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1373 {
1374 return skb->head + skb->tail;
1375 }
1376
1377 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1378 {
1379 skb->tail = skb->data - skb->head;
1380 }
1381
1382 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1383 {
1384 skb_reset_tail_pointer(skb);
1385 skb->tail += offset;
1386 }
1387 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1388 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1389 {
1390 return skb->tail;
1391 }
1392
1393 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1394 {
1395 skb->tail = skb->data;
1396 }
1397
1398 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1399 {
1400 skb->tail = skb->data + offset;
1401 }
1402
1403 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1404
1405 /*
1406 * Add data to an sk_buff
1407 */
1408 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1409 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1410 {
1411 unsigned char *tmp = skb_tail_pointer(skb);
1412 SKB_LINEAR_ASSERT(skb);
1413 skb->tail += len;
1414 skb->len += len;
1415 return tmp;
1416 }
1417
1418 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1419 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1420 {
1421 skb->data -= len;
1422 skb->len += len;
1423 return skb->data;
1424 }
1425
1426 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1427 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1428 {
1429 skb->len -= len;
1430 BUG_ON(skb->len < skb->data_len);
1431 return skb->data += len;
1432 }
1433
1434 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1435 {
1436 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1437 }
1438
1439 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1440
1441 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1442 {
1443 if (len > skb_headlen(skb) &&
1444 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1445 return NULL;
1446 skb->len -= len;
1447 return skb->data += len;
1448 }
1449
1450 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1451 {
1452 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1453 }
1454
1455 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1456 {
1457 if (likely(len <= skb_headlen(skb)))
1458 return 1;
1459 if (unlikely(len > skb->len))
1460 return 0;
1461 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1462 }
1463
1464 /**
1465 * skb_headroom - bytes at buffer head
1466 * @skb: buffer to check
1467 *
1468 * Return the number of bytes of free space at the head of an &sk_buff.
1469 */
1470 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1471 {
1472 return skb->data - skb->head;
1473 }
1474
1475 /**
1476 * skb_tailroom - bytes at buffer end
1477 * @skb: buffer to check
1478 *
1479 * Return the number of bytes of free space at the tail of an sk_buff
1480 */
1481 static inline int skb_tailroom(const struct sk_buff *skb)
1482 {
1483 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1484 }
1485
1486 /**
1487 * skb_availroom - bytes at buffer end
1488 * @skb: buffer to check
1489 *
1490 * Return the number of bytes of free space at the tail of an sk_buff
1491 * allocated by sk_stream_alloc()
1492 */
1493 static inline int skb_availroom(const struct sk_buff *skb)
1494 {
1495 if (skb_is_nonlinear(skb))
1496 return 0;
1497
1498 return skb->end - skb->tail - skb->reserved_tailroom;
1499 }
1500
1501 /**
1502 * skb_reserve - adjust headroom
1503 * @skb: buffer to alter
1504 * @len: bytes to move
1505 *
1506 * Increase the headroom of an empty &sk_buff by reducing the tail
1507 * room. This is only allowed for an empty buffer.
1508 */
1509 static inline void skb_reserve(struct sk_buff *skb, int len)
1510 {
1511 skb->data += len;
1512 skb->tail += len;
1513 }
1514
1515 static inline void skb_reset_inner_headers(struct sk_buff *skb)
1516 {
1517 skb->inner_mac_header = skb->mac_header;
1518 skb->inner_network_header = skb->network_header;
1519 skb->inner_transport_header = skb->transport_header;
1520 }
1521
1522 static inline void skb_reset_mac_len(struct sk_buff *skb)
1523 {
1524 skb->mac_len = skb->network_header - skb->mac_header;
1525 }
1526
1527 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1528 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
1529 *skb)
1530 {
1531 return skb->head + skb->inner_transport_header;
1532 }
1533
1534 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
1535 {
1536 skb->inner_transport_header = skb->data - skb->head;
1537 }
1538
1539 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
1540 const int offset)
1541 {
1542 skb_reset_inner_transport_header(skb);
1543 skb->inner_transport_header += offset;
1544 }
1545
1546 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
1547 {
1548 return skb->head + skb->inner_network_header;
1549 }
1550
1551 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
1552 {
1553 skb->inner_network_header = skb->data - skb->head;
1554 }
1555
1556 static inline void skb_set_inner_network_header(struct sk_buff *skb,
1557 const int offset)
1558 {
1559 skb_reset_inner_network_header(skb);
1560 skb->inner_network_header += offset;
1561 }
1562
1563 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
1564 {
1565 return skb->head + skb->inner_mac_header;
1566 }
1567
1568 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
1569 {
1570 skb->inner_mac_header = skb->data - skb->head;
1571 }
1572
1573 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
1574 const int offset)
1575 {
1576 skb_reset_inner_mac_header(skb);
1577 skb->inner_mac_header += offset;
1578 }
1579 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
1580 {
1581 return skb->transport_header != ~0U;
1582 }
1583
1584 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1585 {
1586 return skb->head + skb->transport_header;
1587 }
1588
1589 static inline void skb_reset_transport_header(struct sk_buff *skb)
1590 {
1591 skb->transport_header = skb->data - skb->head;
1592 }
1593
1594 static inline void skb_set_transport_header(struct sk_buff *skb,
1595 const int offset)
1596 {
1597 skb_reset_transport_header(skb);
1598 skb->transport_header += offset;
1599 }
1600
1601 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1602 {
1603 return skb->head + skb->network_header;
1604 }
1605
1606 static inline void skb_reset_network_header(struct sk_buff *skb)
1607 {
1608 skb->network_header = skb->data - skb->head;
1609 }
1610
1611 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1612 {
1613 skb_reset_network_header(skb);
1614 skb->network_header += offset;
1615 }
1616
1617 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1618 {
1619 return skb->head + skb->mac_header;
1620 }
1621
1622 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1623 {
1624 return skb->mac_header != ~0U;
1625 }
1626
1627 static inline void skb_reset_mac_header(struct sk_buff *skb)
1628 {
1629 skb->mac_header = skb->data - skb->head;
1630 }
1631
1632 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1633 {
1634 skb_reset_mac_header(skb);
1635 skb->mac_header += offset;
1636 }
1637
1638 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1639 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
1640 *skb)
1641 {
1642 return skb->inner_transport_header;
1643 }
1644
1645 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
1646 {
1647 skb->inner_transport_header = skb->data;
1648 }
1649
1650 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
1651 const int offset)
1652 {
1653 skb->inner_transport_header = skb->data + offset;
1654 }
1655
1656 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
1657 {
1658 return skb->inner_network_header;
1659 }
1660
1661 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
1662 {
1663 skb->inner_network_header = skb->data;
1664 }
1665
1666 static inline void skb_set_inner_network_header(struct sk_buff *skb,
1667 const int offset)
1668 {
1669 skb->inner_network_header = skb->data + offset;
1670 }
1671
1672 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
1673 {
1674 return skb->inner_mac_header;
1675 }
1676
1677 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
1678 {
1679 skb->inner_mac_header = skb->data;
1680 }
1681
1682 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
1683 const int offset)
1684 {
1685 skb->inner_mac_header = skb->data + offset;
1686 }
1687 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
1688 {
1689 return skb->transport_header != NULL;
1690 }
1691
1692 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1693 {
1694 return skb->transport_header;
1695 }
1696
1697 static inline void skb_reset_transport_header(struct sk_buff *skb)
1698 {
1699 skb->transport_header = skb->data;
1700 }
1701
1702 static inline void skb_set_transport_header(struct sk_buff *skb,
1703 const int offset)
1704 {
1705 skb->transport_header = skb->data + offset;
1706 }
1707
1708 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1709 {
1710 return skb->network_header;
1711 }
1712
1713 static inline void skb_reset_network_header(struct sk_buff *skb)
1714 {
1715 skb->network_header = skb->data;
1716 }
1717
1718 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1719 {
1720 skb->network_header = skb->data + offset;
1721 }
1722
1723 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1724 {
1725 return skb->mac_header;
1726 }
1727
1728 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1729 {
1730 return skb->mac_header != NULL;
1731 }
1732
1733 static inline void skb_reset_mac_header(struct sk_buff *skb)
1734 {
1735 skb->mac_header = skb->data;
1736 }
1737
1738 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1739 {
1740 skb->mac_header = skb->data + offset;
1741 }
1742 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1743
1744 static inline void skb_pop_mac_header(struct sk_buff *skb)
1745 {
1746 skb->mac_header = skb->network_header;
1747 }
1748
1749 static inline void skb_probe_transport_header(struct sk_buff *skb,
1750 const int offset_hint)
1751 {
1752 struct flow_keys keys;
1753
1754 if (skb_transport_header_was_set(skb))
1755 return;
1756 else if (skb_flow_dissect(skb, &keys))
1757 skb_set_transport_header(skb, keys.thoff);
1758 else
1759 skb_set_transport_header(skb, offset_hint);
1760 }
1761
1762 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
1763 {
1764 if (skb_mac_header_was_set(skb)) {
1765 const unsigned char *old_mac = skb_mac_header(skb);
1766
1767 skb_set_mac_header(skb, -skb->mac_len);
1768 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
1769 }
1770 }
1771
1772 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
1773 {
1774 return skb->csum_start - skb_headroom(skb);
1775 }
1776
1777 static inline int skb_transport_offset(const struct sk_buff *skb)
1778 {
1779 return skb_transport_header(skb) - skb->data;
1780 }
1781
1782 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1783 {
1784 return skb->transport_header - skb->network_header;
1785 }
1786
1787 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
1788 {
1789 return skb->inner_transport_header - skb->inner_network_header;
1790 }
1791
1792 static inline int skb_network_offset(const struct sk_buff *skb)
1793 {
1794 return skb_network_header(skb) - skb->data;
1795 }
1796
1797 static inline int skb_inner_network_offset(const struct sk_buff *skb)
1798 {
1799 return skb_inner_network_header(skb) - skb->data;
1800 }
1801
1802 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
1803 {
1804 return pskb_may_pull(skb, skb_network_offset(skb) + len);
1805 }
1806
1807 /*
1808 * CPUs often take a performance hit when accessing unaligned memory
1809 * locations. The actual performance hit varies, it can be small if the
1810 * hardware handles it or large if we have to take an exception and fix it
1811 * in software.
1812 *
1813 * Since an ethernet header is 14 bytes network drivers often end up with
1814 * the IP header at an unaligned offset. The IP header can be aligned by
1815 * shifting the start of the packet by 2 bytes. Drivers should do this
1816 * with:
1817 *
1818 * skb_reserve(skb, NET_IP_ALIGN);
1819 *
1820 * The downside to this alignment of the IP header is that the DMA is now
1821 * unaligned. On some architectures the cost of an unaligned DMA is high
1822 * and this cost outweighs the gains made by aligning the IP header.
1823 *
1824 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1825 * to be overridden.
1826 */
1827 #ifndef NET_IP_ALIGN
1828 #define NET_IP_ALIGN 2
1829 #endif
1830
1831 /*
1832 * The networking layer reserves some headroom in skb data (via
1833 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1834 * the header has to grow. In the default case, if the header has to grow
1835 * 32 bytes or less we avoid the reallocation.
1836 *
1837 * Unfortunately this headroom changes the DMA alignment of the resulting
1838 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1839 * on some architectures. An architecture can override this value,
1840 * perhaps setting it to a cacheline in size (since that will maintain
1841 * cacheline alignment of the DMA). It must be a power of 2.
1842 *
1843 * Various parts of the networking layer expect at least 32 bytes of
1844 * headroom, you should not reduce this.
1845 *
1846 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
1847 * to reduce average number of cache lines per packet.
1848 * get_rps_cpus() for example only access one 64 bytes aligned block :
1849 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
1850 */
1851 #ifndef NET_SKB_PAD
1852 #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
1853 #endif
1854
1855 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1856
1857 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1858 {
1859 if (unlikely(skb_is_nonlinear(skb))) {
1860 WARN_ON(1);
1861 return;
1862 }
1863 skb->len = len;
1864 skb_set_tail_pointer(skb, len);
1865 }
1866
1867 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1868
1869 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1870 {
1871 if (skb->data_len)
1872 return ___pskb_trim(skb, len);
1873 __skb_trim(skb, len);
1874 return 0;
1875 }
1876
1877 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1878 {
1879 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1880 }
1881
1882 /**
1883 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1884 * @skb: buffer to alter
1885 * @len: new length
1886 *
1887 * This is identical to pskb_trim except that the caller knows that
1888 * the skb is not cloned so we should never get an error due to out-
1889 * of-memory.
1890 */
1891 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1892 {
1893 int err = pskb_trim(skb, len);
1894 BUG_ON(err);
1895 }
1896
1897 /**
1898 * skb_orphan - orphan a buffer
1899 * @skb: buffer to orphan
1900 *
1901 * If a buffer currently has an owner then we call the owner's
1902 * destructor function and make the @skb unowned. The buffer continues
1903 * to exist but is no longer charged to its former owner.
1904 */
1905 static inline void skb_orphan(struct sk_buff *skb)
1906 {
1907 if (skb->destructor)
1908 skb->destructor(skb);
1909 skb->destructor = NULL;
1910 skb->sk = NULL;
1911 }
1912
1913 /**
1914 * skb_orphan_frags - orphan the frags contained in a buffer
1915 * @skb: buffer to orphan frags from
1916 * @gfp_mask: allocation mask for replacement pages
1917 *
1918 * For each frag in the SKB which needs a destructor (i.e. has an
1919 * owner) create a copy of that frag and release the original
1920 * page by calling the destructor.
1921 */
1922 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
1923 {
1924 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
1925 return 0;
1926 return skb_copy_ubufs(skb, gfp_mask);
1927 }
1928
1929 /**
1930 * __skb_queue_purge - empty a list
1931 * @list: list to empty
1932 *
1933 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1934 * the list and one reference dropped. This function does not take the
1935 * list lock and the caller must hold the relevant locks to use it.
1936 */
1937 extern void skb_queue_purge(struct sk_buff_head *list);
1938 static inline void __skb_queue_purge(struct sk_buff_head *list)
1939 {
1940 struct sk_buff *skb;
1941 while ((skb = __skb_dequeue(list)) != NULL)
1942 kfree_skb(skb);
1943 }
1944
1945 #define NETDEV_FRAG_PAGE_MAX_ORDER get_order(32768)
1946 #define NETDEV_FRAG_PAGE_MAX_SIZE (PAGE_SIZE << NETDEV_FRAG_PAGE_MAX_ORDER)
1947 #define NETDEV_PAGECNT_MAX_BIAS NETDEV_FRAG_PAGE_MAX_SIZE
1948
1949 extern void *netdev_alloc_frag(unsigned int fragsz);
1950
1951 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1952 unsigned int length,
1953 gfp_t gfp_mask);
1954
1955 /**
1956 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1957 * @dev: network device to receive on
1958 * @length: length to allocate
1959 *
1960 * Allocate a new &sk_buff and assign it a usage count of one. The
1961 * buffer has unspecified headroom built in. Users should allocate
1962 * the headroom they think they need without accounting for the
1963 * built in space. The built in space is used for optimisations.
1964 *
1965 * %NULL is returned if there is no free memory. Although this function
1966 * allocates memory it can be called from an interrupt.
1967 */
1968 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1969 unsigned int length)
1970 {
1971 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1972 }
1973
1974 /* legacy helper around __netdev_alloc_skb() */
1975 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1976 gfp_t gfp_mask)
1977 {
1978 return __netdev_alloc_skb(NULL, length, gfp_mask);
1979 }
1980
1981 /* legacy helper around netdev_alloc_skb() */
1982 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
1983 {
1984 return netdev_alloc_skb(NULL, length);
1985 }
1986
1987
1988 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
1989 unsigned int length, gfp_t gfp)
1990 {
1991 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
1992
1993 if (NET_IP_ALIGN && skb)
1994 skb_reserve(skb, NET_IP_ALIGN);
1995 return skb;
1996 }
1997
1998 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
1999 unsigned int length)
2000 {
2001 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2002 }
2003
2004 /*
2005 * __skb_alloc_page - allocate pages for ps-rx on a skb and preserve pfmemalloc data
2006 * @gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX
2007 * @skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used
2008 * @order: size of the allocation
2009 *
2010 * Allocate a new page.
2011 *
2012 * %NULL is returned if there is no free memory.
2013 */
2014 static inline struct page *__skb_alloc_pages(gfp_t gfp_mask,
2015 struct sk_buff *skb,
2016 unsigned int order)
2017 {
2018 struct page *page;
2019
2020 gfp_mask |= __GFP_COLD;
2021
2022 if (!(gfp_mask & __GFP_NOMEMALLOC))
2023 gfp_mask |= __GFP_MEMALLOC;
2024
2025 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2026 if (skb && page && page->pfmemalloc)
2027 skb->pfmemalloc = true;
2028
2029 return page;
2030 }
2031
2032 /**
2033 * __skb_alloc_page - allocate a page for ps-rx for a given skb and preserve pfmemalloc data
2034 * @gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX
2035 * @skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used
2036 *
2037 * Allocate a new page.
2038 *
2039 * %NULL is returned if there is no free memory.
2040 */
2041 static inline struct page *__skb_alloc_page(gfp_t gfp_mask,
2042 struct sk_buff *skb)
2043 {
2044 return __skb_alloc_pages(gfp_mask, skb, 0);
2045 }
2046
2047 /**
2048 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2049 * @page: The page that was allocated from skb_alloc_page
2050 * @skb: The skb that may need pfmemalloc set
2051 */
2052 static inline void skb_propagate_pfmemalloc(struct page *page,
2053 struct sk_buff *skb)
2054 {
2055 if (page && page->pfmemalloc)
2056 skb->pfmemalloc = true;
2057 }
2058
2059 /**
2060 * skb_frag_page - retrieve the page refered to by a paged fragment
2061 * @frag: the paged fragment
2062 *
2063 * Returns the &struct page associated with @frag.
2064 */
2065 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2066 {
2067 return frag->page.p;
2068 }
2069
2070 /**
2071 * __skb_frag_ref - take an addition reference on a paged fragment.
2072 * @frag: the paged fragment
2073 *
2074 * Takes an additional reference on the paged fragment @frag.
2075 */
2076 static inline void __skb_frag_ref(skb_frag_t *frag)
2077 {
2078 get_page(skb_frag_page(frag));
2079 }
2080
2081 /**
2082 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2083 * @skb: the buffer
2084 * @f: the fragment offset.
2085 *
2086 * Takes an additional reference on the @f'th paged fragment of @skb.
2087 */
2088 static inline void skb_frag_ref(struct sk_buff *skb, int f)
2089 {
2090 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2091 }
2092
2093 /**
2094 * __skb_frag_unref - release a reference on a paged fragment.
2095 * @frag: the paged fragment
2096 *
2097 * Releases a reference on the paged fragment @frag.
2098 */
2099 static inline void __skb_frag_unref(skb_frag_t *frag)
2100 {
2101 put_page(skb_frag_page(frag));
2102 }
2103
2104 /**
2105 * skb_frag_unref - release a reference on a paged fragment of an skb.
2106 * @skb: the buffer
2107 * @f: the fragment offset
2108 *
2109 * Releases a reference on the @f'th paged fragment of @skb.
2110 */
2111 static inline void skb_frag_unref(struct sk_buff *skb, int f)
2112 {
2113 __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2114 }
2115
2116 /**
2117 * skb_frag_address - gets the address of the data contained in a paged fragment
2118 * @frag: the paged fragment buffer
2119 *
2120 * Returns the address of the data within @frag. The page must already
2121 * be mapped.
2122 */
2123 static inline void *skb_frag_address(const skb_frag_t *frag)
2124 {
2125 return page_address(skb_frag_page(frag)) + frag->page_offset;
2126 }
2127
2128 /**
2129 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2130 * @frag: the paged fragment buffer
2131 *
2132 * Returns the address of the data within @frag. Checks that the page
2133 * is mapped and returns %NULL otherwise.
2134 */
2135 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2136 {
2137 void *ptr = page_address(skb_frag_page(frag));
2138 if (unlikely(!ptr))
2139 return NULL;
2140
2141 return ptr + frag->page_offset;
2142 }
2143
2144 /**
2145 * __skb_frag_set_page - sets the page contained in a paged fragment
2146 * @frag: the paged fragment
2147 * @page: the page to set
2148 *
2149 * Sets the fragment @frag to contain @page.
2150 */
2151 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2152 {
2153 frag->page.p = page;
2154 }
2155
2156 /**
2157 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2158 * @skb: the buffer
2159 * @f: the fragment offset
2160 * @page: the page to set
2161 *
2162 * Sets the @f'th fragment of @skb to contain @page.
2163 */
2164 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2165 struct page *page)
2166 {
2167 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2168 }
2169
2170 /**
2171 * skb_frag_dma_map - maps a paged fragment via the DMA API
2172 * @dev: the device to map the fragment to
2173 * @frag: the paged fragment to map
2174 * @offset: the offset within the fragment (starting at the
2175 * fragment's own offset)
2176 * @size: the number of bytes to map
2177 * @dir: the direction of the mapping (%PCI_DMA_*)
2178 *
2179 * Maps the page associated with @frag to @device.
2180 */
2181 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2182 const skb_frag_t *frag,
2183 size_t offset, size_t size,
2184 enum dma_data_direction dir)
2185 {
2186 return dma_map_page(dev, skb_frag_page(frag),
2187 frag->page_offset + offset, size, dir);
2188 }
2189
2190 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2191 gfp_t gfp_mask)
2192 {
2193 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2194 }
2195
2196 /**
2197 * skb_clone_writable - is the header of a clone writable
2198 * @skb: buffer to check
2199 * @len: length up to which to write
2200 *
2201 * Returns true if modifying the header part of the cloned buffer
2202 * does not requires the data to be copied.
2203 */
2204 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2205 {
2206 return !skb_header_cloned(skb) &&
2207 skb_headroom(skb) + len <= skb->hdr_len;
2208 }
2209
2210 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2211 int cloned)
2212 {
2213 int delta = 0;
2214
2215 if (headroom > skb_headroom(skb))
2216 delta = headroom - skb_headroom(skb);
2217
2218 if (delta || cloned)
2219 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2220 GFP_ATOMIC);
2221 return 0;
2222 }
2223
2224 /**
2225 * skb_cow - copy header of skb when it is required
2226 * @skb: buffer to cow
2227 * @headroom: needed headroom
2228 *
2229 * If the skb passed lacks sufficient headroom or its data part
2230 * is shared, data is reallocated. If reallocation fails, an error
2231 * is returned and original skb is not changed.
2232 *
2233 * The result is skb with writable area skb->head...skb->tail
2234 * and at least @headroom of space at head.
2235 */
2236 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2237 {
2238 return __skb_cow(skb, headroom, skb_cloned(skb));
2239 }
2240
2241 /**
2242 * skb_cow_head - skb_cow but only making the head writable
2243 * @skb: buffer to cow
2244 * @headroom: needed headroom
2245 *
2246 * This function is identical to skb_cow except that we replace the
2247 * skb_cloned check by skb_header_cloned. It should be used when
2248 * you only need to push on some header and do not need to modify
2249 * the data.
2250 */
2251 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2252 {
2253 return __skb_cow(skb, headroom, skb_header_cloned(skb));
2254 }
2255
2256 /**
2257 * skb_padto - pad an skbuff up to a minimal size
2258 * @skb: buffer to pad
2259 * @len: minimal length
2260 *
2261 * Pads up a buffer to ensure the trailing bytes exist and are
2262 * blanked. If the buffer already contains sufficient data it
2263 * is untouched. Otherwise it is extended. Returns zero on
2264 * success. The skb is freed on error.
2265 */
2266
2267 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
2268 {
2269 unsigned int size = skb->len;
2270 if (likely(size >= len))
2271 return 0;
2272 return skb_pad(skb, len - size);
2273 }
2274
2275 static inline int skb_add_data(struct sk_buff *skb,
2276 char __user *from, int copy)
2277 {
2278 const int off = skb->len;
2279
2280 if (skb->ip_summed == CHECKSUM_NONE) {
2281 int err = 0;
2282 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
2283 copy, 0, &err);
2284 if (!err) {
2285 skb->csum = csum_block_add(skb->csum, csum, off);
2286 return 0;
2287 }
2288 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
2289 return 0;
2290
2291 __skb_trim(skb, off);
2292 return -EFAULT;
2293 }
2294
2295 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
2296 const struct page *page, int off)
2297 {
2298 if (i) {
2299 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
2300
2301 return page == skb_frag_page(frag) &&
2302 off == frag->page_offset + skb_frag_size(frag);
2303 }
2304 return false;
2305 }
2306
2307 static inline int __skb_linearize(struct sk_buff *skb)
2308 {
2309 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
2310 }
2311
2312 /**
2313 * skb_linearize - convert paged skb to linear one
2314 * @skb: buffer to linarize
2315 *
2316 * If there is no free memory -ENOMEM is returned, otherwise zero
2317 * is returned and the old skb data released.
2318 */
2319 static inline int skb_linearize(struct sk_buff *skb)
2320 {
2321 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
2322 }
2323
2324 /**
2325 * skb_has_shared_frag - can any frag be overwritten
2326 * @skb: buffer to test
2327 *
2328 * Return true if the skb has at least one frag that might be modified
2329 * by an external entity (as in vmsplice()/sendfile())
2330 */
2331 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
2332 {
2333 return skb_is_nonlinear(skb) &&
2334 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2335 }
2336
2337 /**
2338 * skb_linearize_cow - make sure skb is linear and writable
2339 * @skb: buffer to process
2340 *
2341 * If there is no free memory -ENOMEM is returned, otherwise zero
2342 * is returned and the old skb data released.
2343 */
2344 static inline int skb_linearize_cow(struct sk_buff *skb)
2345 {
2346 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
2347 __skb_linearize(skb) : 0;
2348 }
2349
2350 /**
2351 * skb_postpull_rcsum - update checksum for received skb after pull
2352 * @skb: buffer to update
2353 * @start: start of data before pull
2354 * @len: length of data pulled
2355 *
2356 * After doing a pull on a received packet, you need to call this to
2357 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
2358 * CHECKSUM_NONE so that it can be recomputed from scratch.
2359 */
2360
2361 static inline void skb_postpull_rcsum(struct sk_buff *skb,
2362 const void *start, unsigned int len)
2363 {
2364 if (skb->ip_summed == CHECKSUM_COMPLETE)
2365 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
2366 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
2367 skb_checksum_start_offset(skb) < 0)
2368 skb->ip_summed = CHECKSUM_NONE;
2369 }
2370
2371 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
2372
2373 /**
2374 * pskb_trim_rcsum - trim received skb and update checksum
2375 * @skb: buffer to trim
2376 * @len: new length
2377 *
2378 * This is exactly the same as pskb_trim except that it ensures the
2379 * checksum of received packets are still valid after the operation.
2380 */
2381
2382 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2383 {
2384 if (likely(len >= skb->len))
2385 return 0;
2386 if (skb->ip_summed == CHECKSUM_COMPLETE)
2387 skb->ip_summed = CHECKSUM_NONE;
2388 return __pskb_trim(skb, len);
2389 }
2390
2391 #define skb_queue_walk(queue, skb) \
2392 for (skb = (queue)->next; \
2393 skb != (struct sk_buff *)(queue); \
2394 skb = skb->next)
2395
2396 #define skb_queue_walk_safe(queue, skb, tmp) \
2397 for (skb = (queue)->next, tmp = skb->next; \
2398 skb != (struct sk_buff *)(queue); \
2399 skb = tmp, tmp = skb->next)
2400
2401 #define skb_queue_walk_from(queue, skb) \
2402 for (; skb != (struct sk_buff *)(queue); \
2403 skb = skb->next)
2404
2405 #define skb_queue_walk_from_safe(queue, skb, tmp) \
2406 for (tmp = skb->next; \
2407 skb != (struct sk_buff *)(queue); \
2408 skb = tmp, tmp = skb->next)
2409
2410 #define skb_queue_reverse_walk(queue, skb) \
2411 for (skb = (queue)->prev; \
2412 skb != (struct sk_buff *)(queue); \
2413 skb = skb->prev)
2414
2415 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
2416 for (skb = (queue)->prev, tmp = skb->prev; \
2417 skb != (struct sk_buff *)(queue); \
2418 skb = tmp, tmp = skb->prev)
2419
2420 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
2421 for (tmp = skb->prev; \
2422 skb != (struct sk_buff *)(queue); \
2423 skb = tmp, tmp = skb->prev)
2424
2425 static inline bool skb_has_frag_list(const struct sk_buff *skb)
2426 {
2427 return skb_shinfo(skb)->frag_list != NULL;
2428 }
2429
2430 static inline void skb_frag_list_init(struct sk_buff *skb)
2431 {
2432 skb_shinfo(skb)->frag_list = NULL;
2433 }
2434
2435 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
2436 {
2437 frag->next = skb_shinfo(skb)->frag_list;
2438 skb_shinfo(skb)->frag_list = frag;
2439 }
2440
2441 #define skb_walk_frags(skb, iter) \
2442 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2443
2444 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
2445 int *peeked, int *off, int *err);
2446 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
2447 int noblock, int *err);
2448 extern unsigned int datagram_poll(struct file *file, struct socket *sock,
2449 struct poll_table_struct *wait);
2450 extern int skb_copy_datagram_iovec(const struct sk_buff *from,
2451 int offset, struct iovec *to,
2452 int size);
2453 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
2454 int hlen,
2455 struct iovec *iov);
2456 extern int skb_copy_datagram_from_iovec(struct sk_buff *skb,
2457 int offset,
2458 const struct iovec *from,
2459 int from_offset,
2460 int len);
2461 extern int skb_copy_datagram_const_iovec(const struct sk_buff *from,
2462 int offset,
2463 const struct iovec *to,
2464 int to_offset,
2465 int size);
2466 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
2467 extern void skb_free_datagram_locked(struct sock *sk,
2468 struct sk_buff *skb);
2469 extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
2470 unsigned int flags);
2471 extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
2472 int len, __wsum csum);
2473 extern int skb_copy_bits(const struct sk_buff *skb, int offset,
2474 void *to, int len);
2475 extern int skb_store_bits(struct sk_buff *skb, int offset,
2476 const void *from, int len);
2477 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
2478 int offset, u8 *to, int len,
2479 __wsum csum);
2480 extern int skb_splice_bits(struct sk_buff *skb,
2481 unsigned int offset,
2482 struct pipe_inode_info *pipe,
2483 unsigned int len,
2484 unsigned int flags);
2485 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
2486 extern void skb_split(struct sk_buff *skb,
2487 struct sk_buff *skb1, const u32 len);
2488 extern int skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
2489 int shiftlen);
2490
2491 extern struct sk_buff *skb_segment(struct sk_buff *skb,
2492 netdev_features_t features);
2493
2494 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
2495
2496 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
2497 int len, void *buffer)
2498 {
2499 int hlen = skb_headlen(skb);
2500
2501 if (hlen - offset >= len)
2502 return skb->data + offset;
2503
2504 if (skb_copy_bits(skb, offset, buffer, len) < 0)
2505 return NULL;
2506
2507 return buffer;
2508 }
2509
2510 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
2511 void *to,
2512 const unsigned int len)
2513 {
2514 memcpy(to, skb->data, len);
2515 }
2516
2517 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
2518 const int offset, void *to,
2519 const unsigned int len)
2520 {
2521 memcpy(to, skb->data + offset, len);
2522 }
2523
2524 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
2525 const void *from,
2526 const unsigned int len)
2527 {
2528 memcpy(skb->data, from, len);
2529 }
2530
2531 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
2532 const int offset,
2533 const void *from,
2534 const unsigned int len)
2535 {
2536 memcpy(skb->data + offset, from, len);
2537 }
2538
2539 extern void skb_init(void);
2540
2541 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
2542 {
2543 return skb->tstamp;
2544 }
2545
2546 /**
2547 * skb_get_timestamp - get timestamp from a skb
2548 * @skb: skb to get stamp from
2549 * @stamp: pointer to struct timeval to store stamp in
2550 *
2551 * Timestamps are stored in the skb as offsets to a base timestamp.
2552 * This function converts the offset back to a struct timeval and stores
2553 * it in stamp.
2554 */
2555 static inline void skb_get_timestamp(const struct sk_buff *skb,
2556 struct timeval *stamp)
2557 {
2558 *stamp = ktime_to_timeval(skb->tstamp);
2559 }
2560
2561 static inline void skb_get_timestampns(const struct sk_buff *skb,
2562 struct timespec *stamp)
2563 {
2564 *stamp = ktime_to_timespec(skb->tstamp);
2565 }
2566
2567 static inline void __net_timestamp(struct sk_buff *skb)
2568 {
2569 skb->tstamp = ktime_get_real();
2570 }
2571
2572 static inline ktime_t net_timedelta(ktime_t t)
2573 {
2574 return ktime_sub(ktime_get_real(), t);
2575 }
2576
2577 static inline ktime_t net_invalid_timestamp(void)
2578 {
2579 return ktime_set(0, 0);
2580 }
2581
2582 extern void skb_timestamping_init(void);
2583
2584 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2585
2586 extern void skb_clone_tx_timestamp(struct sk_buff *skb);
2587 extern bool skb_defer_rx_timestamp(struct sk_buff *skb);
2588
2589 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
2590
2591 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
2592 {
2593 }
2594
2595 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
2596 {
2597 return false;
2598 }
2599
2600 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
2601
2602 /**
2603 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
2604 *
2605 * PHY drivers may accept clones of transmitted packets for
2606 * timestamping via their phy_driver.txtstamp method. These drivers
2607 * must call this function to return the skb back to the stack, with
2608 * or without a timestamp.
2609 *
2610 * @skb: clone of the the original outgoing packet
2611 * @hwtstamps: hardware time stamps, may be NULL if not available
2612 *
2613 */
2614 void skb_complete_tx_timestamp(struct sk_buff *skb,
2615 struct skb_shared_hwtstamps *hwtstamps);
2616
2617 /**
2618 * skb_tstamp_tx - queue clone of skb with send time stamps
2619 * @orig_skb: the original outgoing packet
2620 * @hwtstamps: hardware time stamps, may be NULL if not available
2621 *
2622 * If the skb has a socket associated, then this function clones the
2623 * skb (thus sharing the actual data and optional structures), stores
2624 * the optional hardware time stamping information (if non NULL) or
2625 * generates a software time stamp (otherwise), then queues the clone
2626 * to the error queue of the socket. Errors are silently ignored.
2627 */
2628 extern void skb_tstamp_tx(struct sk_buff *orig_skb,
2629 struct skb_shared_hwtstamps *hwtstamps);
2630
2631 static inline void sw_tx_timestamp(struct sk_buff *skb)
2632 {
2633 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
2634 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2635 skb_tstamp_tx(skb, NULL);
2636 }
2637
2638 /**
2639 * skb_tx_timestamp() - Driver hook for transmit timestamping
2640 *
2641 * Ethernet MAC Drivers should call this function in their hard_xmit()
2642 * function immediately before giving the sk_buff to the MAC hardware.
2643 *
2644 * @skb: A socket buffer.
2645 */
2646 static inline void skb_tx_timestamp(struct sk_buff *skb)
2647 {
2648 skb_clone_tx_timestamp(skb);
2649 sw_tx_timestamp(skb);
2650 }
2651
2652 /**
2653 * skb_complete_wifi_ack - deliver skb with wifi status
2654 *
2655 * @skb: the original outgoing packet
2656 * @acked: ack status
2657 *
2658 */
2659 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
2660
2661 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
2662 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
2663
2664 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
2665 {
2666 return skb->ip_summed & CHECKSUM_UNNECESSARY;
2667 }
2668
2669 /**
2670 * skb_checksum_complete - Calculate checksum of an entire packet
2671 * @skb: packet to process
2672 *
2673 * This function calculates the checksum over the entire packet plus
2674 * the value of skb->csum. The latter can be used to supply the
2675 * checksum of a pseudo header as used by TCP/UDP. It returns the
2676 * checksum.
2677 *
2678 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
2679 * this function can be used to verify that checksum on received
2680 * packets. In that case the function should return zero if the
2681 * checksum is correct. In particular, this function will return zero
2682 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
2683 * hardware has already verified the correctness of the checksum.
2684 */
2685 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
2686 {
2687 return skb_csum_unnecessary(skb) ?
2688 0 : __skb_checksum_complete(skb);
2689 }
2690
2691 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2692 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
2693 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
2694 {
2695 if (nfct && atomic_dec_and_test(&nfct->use))
2696 nf_conntrack_destroy(nfct);
2697 }
2698 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
2699 {
2700 if (nfct)
2701 atomic_inc(&nfct->use);
2702 }
2703 #endif
2704 #ifdef CONFIG_BRIDGE_NETFILTER
2705 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
2706 {
2707 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
2708 kfree(nf_bridge);
2709 }
2710 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
2711 {
2712 if (nf_bridge)
2713 atomic_inc(&nf_bridge->use);
2714 }
2715 #endif /* CONFIG_BRIDGE_NETFILTER */
2716 static inline void nf_reset(struct sk_buff *skb)
2717 {
2718 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2719 nf_conntrack_put(skb->nfct);
2720 skb->nfct = NULL;
2721 #endif
2722 #ifdef CONFIG_BRIDGE_NETFILTER
2723 nf_bridge_put(skb->nf_bridge);
2724 skb->nf_bridge = NULL;
2725 #endif
2726 }
2727
2728 static inline void nf_reset_trace(struct sk_buff *skb)
2729 {
2730 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE)
2731 skb->nf_trace = 0;
2732 #endif
2733 }
2734
2735 /* Note: This doesn't put any conntrack and bridge info in dst. */
2736 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2737 {
2738 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2739 dst->nfct = src->nfct;
2740 nf_conntrack_get(src->nfct);
2741 dst->nfctinfo = src->nfctinfo;
2742 #endif
2743 #ifdef CONFIG_BRIDGE_NETFILTER
2744 dst->nf_bridge = src->nf_bridge;
2745 nf_bridge_get(src->nf_bridge);
2746 #endif
2747 }
2748
2749 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2750 {
2751 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2752 nf_conntrack_put(dst->nfct);
2753 #endif
2754 #ifdef CONFIG_BRIDGE_NETFILTER
2755 nf_bridge_put(dst->nf_bridge);
2756 #endif
2757 __nf_copy(dst, src);
2758 }
2759
2760 #ifdef CONFIG_NETWORK_SECMARK
2761 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2762 {
2763 to->secmark = from->secmark;
2764 }
2765
2766 static inline void skb_init_secmark(struct sk_buff *skb)
2767 {
2768 skb->secmark = 0;
2769 }
2770 #else
2771 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2772 { }
2773
2774 static inline void skb_init_secmark(struct sk_buff *skb)
2775 { }
2776 #endif
2777
2778 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
2779 {
2780 skb->queue_mapping = queue_mapping;
2781 }
2782
2783 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
2784 {
2785 return skb->queue_mapping;
2786 }
2787
2788 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
2789 {
2790 to->queue_mapping = from->queue_mapping;
2791 }
2792
2793 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
2794 {
2795 skb->queue_mapping = rx_queue + 1;
2796 }
2797
2798 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
2799 {
2800 return skb->queue_mapping - 1;
2801 }
2802
2803 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
2804 {
2805 return skb->queue_mapping != 0;
2806 }
2807
2808 extern u16 __skb_tx_hash(const struct net_device *dev,
2809 const struct sk_buff *skb,
2810 unsigned int num_tx_queues);
2811
2812 #ifdef CONFIG_XFRM
2813 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2814 {
2815 return skb->sp;
2816 }
2817 #else
2818 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2819 {
2820 return NULL;
2821 }
2822 #endif
2823
2824 /* Keeps track of mac header offset relative to skb->head.
2825 * It is useful for TSO of Tunneling protocol. e.g. GRE.
2826 * For non-tunnel skb it points to skb_mac_header() and for
2827 * tunnel skb it points to outer mac header. */
2828 struct skb_gso_cb {
2829 int mac_offset;
2830 };
2831 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)(skb)->cb)
2832
2833 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
2834 {
2835 return (skb_mac_header(inner_skb) - inner_skb->head) -
2836 SKB_GSO_CB(inner_skb)->mac_offset;
2837 }
2838
2839 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
2840 {
2841 int new_headroom, headroom;
2842 int ret;
2843
2844 headroom = skb_headroom(skb);
2845 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
2846 if (ret)
2847 return ret;
2848
2849 new_headroom = skb_headroom(skb);
2850 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
2851 return 0;
2852 }
2853
2854 static inline bool skb_is_gso(const struct sk_buff *skb)
2855 {
2856 return skb_shinfo(skb)->gso_size;
2857 }
2858
2859 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
2860 {
2861 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
2862 }
2863
2864 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
2865
2866 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
2867 {
2868 /* LRO sets gso_size but not gso_type, whereas if GSO is really
2869 * wanted then gso_type will be set. */
2870 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2871
2872 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
2873 unlikely(shinfo->gso_type == 0)) {
2874 __skb_warn_lro_forwarding(skb);
2875 return true;
2876 }
2877 return false;
2878 }
2879
2880 static inline void skb_forward_csum(struct sk_buff *skb)
2881 {
2882 /* Unfortunately we don't support this one. Any brave souls? */
2883 if (skb->ip_summed == CHECKSUM_COMPLETE)
2884 skb->ip_summed = CHECKSUM_NONE;
2885 }
2886
2887 /**
2888 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
2889 * @skb: skb to check
2890 *
2891 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
2892 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
2893 * use this helper, to document places where we make this assertion.
2894 */
2895 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
2896 {
2897 #ifdef DEBUG
2898 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
2899 #endif
2900 }
2901
2902 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
2903
2904 u32 __skb_get_poff(const struct sk_buff *skb);
2905
2906 /**
2907 * skb_head_is_locked - Determine if the skb->head is locked down
2908 * @skb: skb to check
2909 *
2910 * The head on skbs build around a head frag can be removed if they are
2911 * not cloned. This function returns true if the skb head is locked down
2912 * due to either being allocated via kmalloc, or by being a clone with
2913 * multiple references to the head.
2914 */
2915 static inline bool skb_head_is_locked(const struct sk_buff *skb)
2916 {
2917 return !skb->head_frag || skb_cloned(skb);
2918 }
2919
2920 /**
2921 * skb_gso_network_seglen - Return length of individual segments of a gso packet
2922 *
2923 * @skb: GSO skb
2924 *
2925 * skb_gso_network_seglen is used to determine the real size of the
2926 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
2927 *
2928 * The MAC/L2 header is not accounted for.
2929 */
2930 static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
2931 {
2932 unsigned int hdr_len = skb_transport_header(skb) -
2933 skb_network_header(skb);
2934 return hdr_len + skb_gso_transport_seglen(skb);
2935 }
2936 #endif /* __KERNEL__ */
2937 #endif /* _LINUX_SKBUFF_H */