Merge tag 'staging-3.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 #include <uapi/linux/sched.h>
5
6
7 struct sched_param {
8 int sched_priority;
9 };
10
11 #include <asm/param.h> /* for HZ */
12
13 #include <linux/capability.h>
14 #include <linux/threads.h>
15 #include <linux/kernel.h>
16 #include <linux/types.h>
17 #include <linux/timex.h>
18 #include <linux/jiffies.h>
19 #include <linux/rbtree.h>
20 #include <linux/thread_info.h>
21 #include <linux/cpumask.h>
22 #include <linux/errno.h>
23 #include <linux/nodemask.h>
24 #include <linux/mm_types.h>
25
26 #include <asm/page.h>
27 #include <asm/ptrace.h>
28 #include <asm/cputime.h>
29
30 #include <linux/smp.h>
31 #include <linux/sem.h>
32 #include <linux/signal.h>
33 #include <linux/compiler.h>
34 #include <linux/completion.h>
35 #include <linux/pid.h>
36 #include <linux/percpu.h>
37 #include <linux/topology.h>
38 #include <linux/proportions.h>
39 #include <linux/seccomp.h>
40 #include <linux/rcupdate.h>
41 #include <linux/rculist.h>
42 #include <linux/rtmutex.h>
43
44 #include <linux/time.h>
45 #include <linux/param.h>
46 #include <linux/resource.h>
47 #include <linux/timer.h>
48 #include <linux/hrtimer.h>
49 #include <linux/task_io_accounting.h>
50 #include <linux/latencytop.h>
51 #include <linux/cred.h>
52 #include <linux/llist.h>
53 #include <linux/uidgid.h>
54 #include <linux/gfp.h>
55
56 #include <asm/processor.h>
57
58 struct exec_domain;
59 struct futex_pi_state;
60 struct robust_list_head;
61 struct bio_list;
62 struct fs_struct;
63 struct perf_event_context;
64 struct blk_plug;
65
66 /*
67 * List of flags we want to share for kernel threads,
68 * if only because they are not used by them anyway.
69 */
70 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
71
72 /*
73 * These are the constant used to fake the fixed-point load-average
74 * counting. Some notes:
75 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
76 * a load-average precision of 10 bits integer + 11 bits fractional
77 * - if you want to count load-averages more often, you need more
78 * precision, or rounding will get you. With 2-second counting freq,
79 * the EXP_n values would be 1981, 2034 and 2043 if still using only
80 * 11 bit fractions.
81 */
82 extern unsigned long avenrun[]; /* Load averages */
83 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
84
85 #define FSHIFT 11 /* nr of bits of precision */
86 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
87 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
88 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
89 #define EXP_5 2014 /* 1/exp(5sec/5min) */
90 #define EXP_15 2037 /* 1/exp(5sec/15min) */
91
92 #define CALC_LOAD(load,exp,n) \
93 load *= exp; \
94 load += n*(FIXED_1-exp); \
95 load >>= FSHIFT;
96
97 extern unsigned long total_forks;
98 extern int nr_threads;
99 DECLARE_PER_CPU(unsigned long, process_counts);
100 extern int nr_processes(void);
101 extern unsigned long nr_running(void);
102 extern unsigned long nr_iowait(void);
103 extern unsigned long nr_iowait_cpu(int cpu);
104 extern unsigned long this_cpu_load(void);
105
106
107 extern void calc_global_load(unsigned long ticks);
108 extern void update_cpu_load_nohz(void);
109
110 /* Notifier for when a task gets migrated to a new CPU */
111 struct task_migration_notifier {
112 struct task_struct *task;
113 int from_cpu;
114 int to_cpu;
115 };
116 extern void register_task_migration_notifier(struct notifier_block *n);
117
118 extern unsigned long get_parent_ip(unsigned long addr);
119
120 extern void dump_cpu_task(int cpu);
121
122 struct seq_file;
123 struct cfs_rq;
124 struct task_group;
125 #ifdef CONFIG_SCHED_DEBUG
126 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
127 extern void proc_sched_set_task(struct task_struct *p);
128 extern void
129 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
130 #else
131 static inline void
132 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
133 {
134 }
135 static inline void proc_sched_set_task(struct task_struct *p)
136 {
137 }
138 static inline void
139 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
140 {
141 }
142 #endif
143
144 /*
145 * Task state bitmask. NOTE! These bits are also
146 * encoded in fs/proc/array.c: get_task_state().
147 *
148 * We have two separate sets of flags: task->state
149 * is about runnability, while task->exit_state are
150 * about the task exiting. Confusing, but this way
151 * modifying one set can't modify the other one by
152 * mistake.
153 */
154 #define TASK_RUNNING 0
155 #define TASK_INTERRUPTIBLE 1
156 #define TASK_UNINTERRUPTIBLE 2
157 #define __TASK_STOPPED 4
158 #define __TASK_TRACED 8
159 /* in tsk->exit_state */
160 #define EXIT_ZOMBIE 16
161 #define EXIT_DEAD 32
162 /* in tsk->state again */
163 #define TASK_DEAD 64
164 #define TASK_WAKEKILL 128
165 #define TASK_WAKING 256
166 #define TASK_PARKED 512
167 #define TASK_STATE_MAX 1024
168
169 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
170
171 extern char ___assert_task_state[1 - 2*!!(
172 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
173
174 /* Convenience macros for the sake of set_task_state */
175 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
176 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
177 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
178
179 /* Convenience macros for the sake of wake_up */
180 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
181 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
182
183 /* get_task_state() */
184 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
185 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
186 __TASK_TRACED)
187
188 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
189 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
190 #define task_is_dead(task) ((task)->exit_state != 0)
191 #define task_is_stopped_or_traced(task) \
192 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
193 #define task_contributes_to_load(task) \
194 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
195 (task->flags & PF_FROZEN) == 0)
196
197 #define __set_task_state(tsk, state_value) \
198 do { (tsk)->state = (state_value); } while (0)
199 #define set_task_state(tsk, state_value) \
200 set_mb((tsk)->state, (state_value))
201
202 /*
203 * set_current_state() includes a barrier so that the write of current->state
204 * is correctly serialised wrt the caller's subsequent test of whether to
205 * actually sleep:
206 *
207 * set_current_state(TASK_UNINTERRUPTIBLE);
208 * if (do_i_need_to_sleep())
209 * schedule();
210 *
211 * If the caller does not need such serialisation then use __set_current_state()
212 */
213 #define __set_current_state(state_value) \
214 do { current->state = (state_value); } while (0)
215 #define set_current_state(state_value) \
216 set_mb(current->state, (state_value))
217
218 /* Task command name length */
219 #define TASK_COMM_LEN 16
220
221 #include <linux/spinlock.h>
222
223 /*
224 * This serializes "schedule()" and also protects
225 * the run-queue from deletions/modifications (but
226 * _adding_ to the beginning of the run-queue has
227 * a separate lock).
228 */
229 extern rwlock_t tasklist_lock;
230 extern spinlock_t mmlist_lock;
231
232 struct task_struct;
233
234 #ifdef CONFIG_PROVE_RCU
235 extern int lockdep_tasklist_lock_is_held(void);
236 #endif /* #ifdef CONFIG_PROVE_RCU */
237
238 extern void sched_init(void);
239 extern void sched_init_smp(void);
240 extern asmlinkage void schedule_tail(struct task_struct *prev);
241 extern void init_idle(struct task_struct *idle, int cpu);
242 extern void init_idle_bootup_task(struct task_struct *idle);
243
244 extern int runqueue_is_locked(int cpu);
245
246 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
247 extern void nohz_balance_enter_idle(int cpu);
248 extern void set_cpu_sd_state_idle(void);
249 extern int get_nohz_timer_target(void);
250 #else
251 static inline void nohz_balance_enter_idle(int cpu) { }
252 static inline void set_cpu_sd_state_idle(void) { }
253 #endif
254
255 /*
256 * Only dump TASK_* tasks. (0 for all tasks)
257 */
258 extern void show_state_filter(unsigned long state_filter);
259
260 static inline void show_state(void)
261 {
262 show_state_filter(0);
263 }
264
265 extern void show_regs(struct pt_regs *);
266
267 /*
268 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
269 * task), SP is the stack pointer of the first frame that should be shown in the back
270 * trace (or NULL if the entire call-chain of the task should be shown).
271 */
272 extern void show_stack(struct task_struct *task, unsigned long *sp);
273
274 void io_schedule(void);
275 long io_schedule_timeout(long timeout);
276
277 extern void cpu_init (void);
278 extern void trap_init(void);
279 extern void update_process_times(int user);
280 extern void scheduler_tick(void);
281
282 extern void sched_show_task(struct task_struct *p);
283
284 #ifdef CONFIG_LOCKUP_DETECTOR
285 extern void touch_softlockup_watchdog(void);
286 extern void touch_softlockup_watchdog_sync(void);
287 extern void touch_all_softlockup_watchdogs(void);
288 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
289 void __user *buffer,
290 size_t *lenp, loff_t *ppos);
291 extern unsigned int softlockup_panic;
292 void lockup_detector_init(void);
293 #else
294 static inline void touch_softlockup_watchdog(void)
295 {
296 }
297 static inline void touch_softlockup_watchdog_sync(void)
298 {
299 }
300 static inline void touch_all_softlockup_watchdogs(void)
301 {
302 }
303 static inline void lockup_detector_init(void)
304 {
305 }
306 #endif
307
308 /* Attach to any functions which should be ignored in wchan output. */
309 #define __sched __attribute__((__section__(".sched.text")))
310
311 /* Linker adds these: start and end of __sched functions */
312 extern char __sched_text_start[], __sched_text_end[];
313
314 /* Is this address in the __sched functions? */
315 extern int in_sched_functions(unsigned long addr);
316
317 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
318 extern signed long schedule_timeout(signed long timeout);
319 extern signed long schedule_timeout_interruptible(signed long timeout);
320 extern signed long schedule_timeout_killable(signed long timeout);
321 extern signed long schedule_timeout_uninterruptible(signed long timeout);
322 asmlinkage void schedule(void);
323 extern void schedule_preempt_disabled(void);
324
325 struct nsproxy;
326 struct user_namespace;
327
328 #include <linux/aio.h>
329
330 #ifdef CONFIG_MMU
331 extern void arch_pick_mmap_layout(struct mm_struct *mm);
332 extern unsigned long
333 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
334 unsigned long, unsigned long);
335 extern unsigned long
336 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
337 unsigned long len, unsigned long pgoff,
338 unsigned long flags);
339 extern void arch_unmap_area(struct mm_struct *, unsigned long);
340 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
341 #else
342 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
343 #endif
344
345
346 extern void set_dumpable(struct mm_struct *mm, int value);
347 extern int get_dumpable(struct mm_struct *mm);
348
349 /* mm flags */
350 /* dumpable bits */
351 #define MMF_DUMPABLE 0 /* core dump is permitted */
352 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
353
354 #define MMF_DUMPABLE_BITS 2
355 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
356
357 /* coredump filter bits */
358 #define MMF_DUMP_ANON_PRIVATE 2
359 #define MMF_DUMP_ANON_SHARED 3
360 #define MMF_DUMP_MAPPED_PRIVATE 4
361 #define MMF_DUMP_MAPPED_SHARED 5
362 #define MMF_DUMP_ELF_HEADERS 6
363 #define MMF_DUMP_HUGETLB_PRIVATE 7
364 #define MMF_DUMP_HUGETLB_SHARED 8
365
366 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
367 #define MMF_DUMP_FILTER_BITS 7
368 #define MMF_DUMP_FILTER_MASK \
369 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
370 #define MMF_DUMP_FILTER_DEFAULT \
371 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
372 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
373
374 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
375 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
376 #else
377 # define MMF_DUMP_MASK_DEFAULT_ELF 0
378 #endif
379 /* leave room for more dump flags */
380 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
381 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
382 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
383
384 #define MMF_HAS_UPROBES 19 /* has uprobes */
385 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
386
387 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
388
389 struct sighand_struct {
390 atomic_t count;
391 struct k_sigaction action[_NSIG];
392 spinlock_t siglock;
393 wait_queue_head_t signalfd_wqh;
394 };
395
396 struct pacct_struct {
397 int ac_flag;
398 long ac_exitcode;
399 unsigned long ac_mem;
400 cputime_t ac_utime, ac_stime;
401 unsigned long ac_minflt, ac_majflt;
402 };
403
404 struct cpu_itimer {
405 cputime_t expires;
406 cputime_t incr;
407 u32 error;
408 u32 incr_error;
409 };
410
411 /**
412 * struct cputime - snaphsot of system and user cputime
413 * @utime: time spent in user mode
414 * @stime: time spent in system mode
415 *
416 * Gathers a generic snapshot of user and system time.
417 */
418 struct cputime {
419 cputime_t utime;
420 cputime_t stime;
421 };
422
423 /**
424 * struct task_cputime - collected CPU time counts
425 * @utime: time spent in user mode, in &cputime_t units
426 * @stime: time spent in kernel mode, in &cputime_t units
427 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
428 *
429 * This is an extension of struct cputime that includes the total runtime
430 * spent by the task from the scheduler point of view.
431 *
432 * As a result, this structure groups together three kinds of CPU time
433 * that are tracked for threads and thread groups. Most things considering
434 * CPU time want to group these counts together and treat all three
435 * of them in parallel.
436 */
437 struct task_cputime {
438 cputime_t utime;
439 cputime_t stime;
440 unsigned long long sum_exec_runtime;
441 };
442 /* Alternate field names when used to cache expirations. */
443 #define prof_exp stime
444 #define virt_exp utime
445 #define sched_exp sum_exec_runtime
446
447 #define INIT_CPUTIME \
448 (struct task_cputime) { \
449 .utime = 0, \
450 .stime = 0, \
451 .sum_exec_runtime = 0, \
452 }
453
454 /*
455 * Disable preemption until the scheduler is running.
456 * Reset by start_kernel()->sched_init()->init_idle().
457 *
458 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
459 * before the scheduler is active -- see should_resched().
460 */
461 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE)
462
463 /**
464 * struct thread_group_cputimer - thread group interval timer counts
465 * @cputime: thread group interval timers.
466 * @running: non-zero when there are timers running and
467 * @cputime receives updates.
468 * @lock: lock for fields in this struct.
469 *
470 * This structure contains the version of task_cputime, above, that is
471 * used for thread group CPU timer calculations.
472 */
473 struct thread_group_cputimer {
474 struct task_cputime cputime;
475 int running;
476 raw_spinlock_t lock;
477 };
478
479 #include <linux/rwsem.h>
480 struct autogroup;
481
482 /*
483 * NOTE! "signal_struct" does not have its own
484 * locking, because a shared signal_struct always
485 * implies a shared sighand_struct, so locking
486 * sighand_struct is always a proper superset of
487 * the locking of signal_struct.
488 */
489 struct signal_struct {
490 atomic_t sigcnt;
491 atomic_t live;
492 int nr_threads;
493
494 wait_queue_head_t wait_chldexit; /* for wait4() */
495
496 /* current thread group signal load-balancing target: */
497 struct task_struct *curr_target;
498
499 /* shared signal handling: */
500 struct sigpending shared_pending;
501
502 /* thread group exit support */
503 int group_exit_code;
504 /* overloaded:
505 * - notify group_exit_task when ->count is equal to notify_count
506 * - everyone except group_exit_task is stopped during signal delivery
507 * of fatal signals, group_exit_task processes the signal.
508 */
509 int notify_count;
510 struct task_struct *group_exit_task;
511
512 /* thread group stop support, overloads group_exit_code too */
513 int group_stop_count;
514 unsigned int flags; /* see SIGNAL_* flags below */
515
516 /*
517 * PR_SET_CHILD_SUBREAPER marks a process, like a service
518 * manager, to re-parent orphan (double-forking) child processes
519 * to this process instead of 'init'. The service manager is
520 * able to receive SIGCHLD signals and is able to investigate
521 * the process until it calls wait(). All children of this
522 * process will inherit a flag if they should look for a
523 * child_subreaper process at exit.
524 */
525 unsigned int is_child_subreaper:1;
526 unsigned int has_child_subreaper:1;
527
528 /* POSIX.1b Interval Timers */
529 struct list_head posix_timers;
530
531 /* ITIMER_REAL timer for the process */
532 struct hrtimer real_timer;
533 struct pid *leader_pid;
534 ktime_t it_real_incr;
535
536 /*
537 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
538 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
539 * values are defined to 0 and 1 respectively
540 */
541 struct cpu_itimer it[2];
542
543 /*
544 * Thread group totals for process CPU timers.
545 * See thread_group_cputimer(), et al, for details.
546 */
547 struct thread_group_cputimer cputimer;
548
549 /* Earliest-expiration cache. */
550 struct task_cputime cputime_expires;
551
552 struct list_head cpu_timers[3];
553
554 struct pid *tty_old_pgrp;
555
556 /* boolean value for session group leader */
557 int leader;
558
559 struct tty_struct *tty; /* NULL if no tty */
560
561 #ifdef CONFIG_SCHED_AUTOGROUP
562 struct autogroup *autogroup;
563 #endif
564 /*
565 * Cumulative resource counters for dead threads in the group,
566 * and for reaped dead child processes forked by this group.
567 * Live threads maintain their own counters and add to these
568 * in __exit_signal, except for the group leader.
569 */
570 cputime_t utime, stime, cutime, cstime;
571 cputime_t gtime;
572 cputime_t cgtime;
573 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
574 struct cputime prev_cputime;
575 #endif
576 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
577 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
578 unsigned long inblock, oublock, cinblock, coublock;
579 unsigned long maxrss, cmaxrss;
580 struct task_io_accounting ioac;
581
582 /*
583 * Cumulative ns of schedule CPU time fo dead threads in the
584 * group, not including a zombie group leader, (This only differs
585 * from jiffies_to_ns(utime + stime) if sched_clock uses something
586 * other than jiffies.)
587 */
588 unsigned long long sum_sched_runtime;
589
590 /*
591 * We don't bother to synchronize most readers of this at all,
592 * because there is no reader checking a limit that actually needs
593 * to get both rlim_cur and rlim_max atomically, and either one
594 * alone is a single word that can safely be read normally.
595 * getrlimit/setrlimit use task_lock(current->group_leader) to
596 * protect this instead of the siglock, because they really
597 * have no need to disable irqs.
598 */
599 struct rlimit rlim[RLIM_NLIMITS];
600
601 #ifdef CONFIG_BSD_PROCESS_ACCT
602 struct pacct_struct pacct; /* per-process accounting information */
603 #endif
604 #ifdef CONFIG_TASKSTATS
605 struct taskstats *stats;
606 #endif
607 #ifdef CONFIG_AUDIT
608 unsigned audit_tty;
609 struct tty_audit_buf *tty_audit_buf;
610 #endif
611 #ifdef CONFIG_CGROUPS
612 /*
613 * group_rwsem prevents new tasks from entering the threadgroup and
614 * member tasks from exiting,a more specifically, setting of
615 * PF_EXITING. fork and exit paths are protected with this rwsem
616 * using threadgroup_change_begin/end(). Users which require
617 * threadgroup to remain stable should use threadgroup_[un]lock()
618 * which also takes care of exec path. Currently, cgroup is the
619 * only user.
620 */
621 struct rw_semaphore group_rwsem;
622 #endif
623
624 oom_flags_t oom_flags;
625 short oom_score_adj; /* OOM kill score adjustment */
626 short oom_score_adj_min; /* OOM kill score adjustment min value.
627 * Only settable by CAP_SYS_RESOURCE. */
628
629 struct mutex cred_guard_mutex; /* guard against foreign influences on
630 * credential calculations
631 * (notably. ptrace) */
632 };
633
634 /*
635 * Bits in flags field of signal_struct.
636 */
637 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
638 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
639 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
640 /*
641 * Pending notifications to parent.
642 */
643 #define SIGNAL_CLD_STOPPED 0x00000010
644 #define SIGNAL_CLD_CONTINUED 0x00000020
645 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
646
647 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
648
649 /* If true, all threads except ->group_exit_task have pending SIGKILL */
650 static inline int signal_group_exit(const struct signal_struct *sig)
651 {
652 return (sig->flags & SIGNAL_GROUP_EXIT) ||
653 (sig->group_exit_task != NULL);
654 }
655
656 /*
657 * Some day this will be a full-fledged user tracking system..
658 */
659 struct user_struct {
660 atomic_t __count; /* reference count */
661 atomic_t processes; /* How many processes does this user have? */
662 atomic_t files; /* How many open files does this user have? */
663 atomic_t sigpending; /* How many pending signals does this user have? */
664 #ifdef CONFIG_INOTIFY_USER
665 atomic_t inotify_watches; /* How many inotify watches does this user have? */
666 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
667 #endif
668 #ifdef CONFIG_FANOTIFY
669 atomic_t fanotify_listeners;
670 #endif
671 #ifdef CONFIG_EPOLL
672 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
673 #endif
674 #ifdef CONFIG_POSIX_MQUEUE
675 /* protected by mq_lock */
676 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
677 #endif
678 unsigned long locked_shm; /* How many pages of mlocked shm ? */
679
680 #ifdef CONFIG_KEYS
681 struct key *uid_keyring; /* UID specific keyring */
682 struct key *session_keyring; /* UID's default session keyring */
683 #endif
684
685 /* Hash table maintenance information */
686 struct hlist_node uidhash_node;
687 kuid_t uid;
688
689 #ifdef CONFIG_PERF_EVENTS
690 atomic_long_t locked_vm;
691 #endif
692 };
693
694 extern int uids_sysfs_init(void);
695
696 extern struct user_struct *find_user(kuid_t);
697
698 extern struct user_struct root_user;
699 #define INIT_USER (&root_user)
700
701
702 struct backing_dev_info;
703 struct reclaim_state;
704
705 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
706 struct sched_info {
707 /* cumulative counters */
708 unsigned long pcount; /* # of times run on this cpu */
709 unsigned long long run_delay; /* time spent waiting on a runqueue */
710
711 /* timestamps */
712 unsigned long long last_arrival,/* when we last ran on a cpu */
713 last_queued; /* when we were last queued to run */
714 };
715 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
716
717 #ifdef CONFIG_TASK_DELAY_ACCT
718 struct task_delay_info {
719 spinlock_t lock;
720 unsigned int flags; /* Private per-task flags */
721
722 /* For each stat XXX, add following, aligned appropriately
723 *
724 * struct timespec XXX_start, XXX_end;
725 * u64 XXX_delay;
726 * u32 XXX_count;
727 *
728 * Atomicity of updates to XXX_delay, XXX_count protected by
729 * single lock above (split into XXX_lock if contention is an issue).
730 */
731
732 /*
733 * XXX_count is incremented on every XXX operation, the delay
734 * associated with the operation is added to XXX_delay.
735 * XXX_delay contains the accumulated delay time in nanoseconds.
736 */
737 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
738 u64 blkio_delay; /* wait for sync block io completion */
739 u64 swapin_delay; /* wait for swapin block io completion */
740 u32 blkio_count; /* total count of the number of sync block */
741 /* io operations performed */
742 u32 swapin_count; /* total count of the number of swapin block */
743 /* io operations performed */
744
745 struct timespec freepages_start, freepages_end;
746 u64 freepages_delay; /* wait for memory reclaim */
747 u32 freepages_count; /* total count of memory reclaim */
748 };
749 #endif /* CONFIG_TASK_DELAY_ACCT */
750
751 static inline int sched_info_on(void)
752 {
753 #ifdef CONFIG_SCHEDSTATS
754 return 1;
755 #elif defined(CONFIG_TASK_DELAY_ACCT)
756 extern int delayacct_on;
757 return delayacct_on;
758 #else
759 return 0;
760 #endif
761 }
762
763 enum cpu_idle_type {
764 CPU_IDLE,
765 CPU_NOT_IDLE,
766 CPU_NEWLY_IDLE,
767 CPU_MAX_IDLE_TYPES
768 };
769
770 /*
771 * Increase resolution of nice-level calculations for 64-bit architectures.
772 * The extra resolution improves shares distribution and load balancing of
773 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
774 * hierarchies, especially on larger systems. This is not a user-visible change
775 * and does not change the user-interface for setting shares/weights.
776 *
777 * We increase resolution only if we have enough bits to allow this increased
778 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
779 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
780 * increased costs.
781 */
782 #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
783 # define SCHED_LOAD_RESOLUTION 10
784 # define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
785 # define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
786 #else
787 # define SCHED_LOAD_RESOLUTION 0
788 # define scale_load(w) (w)
789 # define scale_load_down(w) (w)
790 #endif
791
792 #define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
793 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
794
795 /*
796 * Increase resolution of cpu_power calculations
797 */
798 #define SCHED_POWER_SHIFT 10
799 #define SCHED_POWER_SCALE (1L << SCHED_POWER_SHIFT)
800
801 /*
802 * sched-domains (multiprocessor balancing) declarations:
803 */
804 #ifdef CONFIG_SMP
805 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
806 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
807 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
808 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
809 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
810 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
811 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */
812 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
813 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
814 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
815 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
816 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
817
818 extern int __weak arch_sd_sibiling_asym_packing(void);
819
820 struct sched_group_power {
821 atomic_t ref;
822 /*
823 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
824 * single CPU.
825 */
826 unsigned int power, power_orig;
827 unsigned long next_update;
828 /*
829 * Number of busy cpus in this group.
830 */
831 atomic_t nr_busy_cpus;
832
833 unsigned long cpumask[0]; /* iteration mask */
834 };
835
836 struct sched_group {
837 struct sched_group *next; /* Must be a circular list */
838 atomic_t ref;
839
840 unsigned int group_weight;
841 struct sched_group_power *sgp;
842
843 /*
844 * The CPUs this group covers.
845 *
846 * NOTE: this field is variable length. (Allocated dynamically
847 * by attaching extra space to the end of the structure,
848 * depending on how many CPUs the kernel has booted up with)
849 */
850 unsigned long cpumask[0];
851 };
852
853 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
854 {
855 return to_cpumask(sg->cpumask);
856 }
857
858 /*
859 * cpumask masking which cpus in the group are allowed to iterate up the domain
860 * tree.
861 */
862 static inline struct cpumask *sched_group_mask(struct sched_group *sg)
863 {
864 return to_cpumask(sg->sgp->cpumask);
865 }
866
867 /**
868 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
869 * @group: The group whose first cpu is to be returned.
870 */
871 static inline unsigned int group_first_cpu(struct sched_group *group)
872 {
873 return cpumask_first(sched_group_cpus(group));
874 }
875
876 struct sched_domain_attr {
877 int relax_domain_level;
878 };
879
880 #define SD_ATTR_INIT (struct sched_domain_attr) { \
881 .relax_domain_level = -1, \
882 }
883
884 extern int sched_domain_level_max;
885
886 struct sched_domain {
887 /* These fields must be setup */
888 struct sched_domain *parent; /* top domain must be null terminated */
889 struct sched_domain *child; /* bottom domain must be null terminated */
890 struct sched_group *groups; /* the balancing groups of the domain */
891 unsigned long min_interval; /* Minimum balance interval ms */
892 unsigned long max_interval; /* Maximum balance interval ms */
893 unsigned int busy_factor; /* less balancing by factor if busy */
894 unsigned int imbalance_pct; /* No balance until over watermark */
895 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
896 unsigned int busy_idx;
897 unsigned int idle_idx;
898 unsigned int newidle_idx;
899 unsigned int wake_idx;
900 unsigned int forkexec_idx;
901 unsigned int smt_gain;
902 int flags; /* See SD_* */
903 int level;
904
905 /* Runtime fields. */
906 unsigned long last_balance; /* init to jiffies. units in jiffies */
907 unsigned int balance_interval; /* initialise to 1. units in ms. */
908 unsigned int nr_balance_failed; /* initialise to 0 */
909
910 u64 last_update;
911
912 #ifdef CONFIG_SCHEDSTATS
913 /* load_balance() stats */
914 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
915 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
916 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
917 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
918 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
919 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
920 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
921 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
922
923 /* Active load balancing */
924 unsigned int alb_count;
925 unsigned int alb_failed;
926 unsigned int alb_pushed;
927
928 /* SD_BALANCE_EXEC stats */
929 unsigned int sbe_count;
930 unsigned int sbe_balanced;
931 unsigned int sbe_pushed;
932
933 /* SD_BALANCE_FORK stats */
934 unsigned int sbf_count;
935 unsigned int sbf_balanced;
936 unsigned int sbf_pushed;
937
938 /* try_to_wake_up() stats */
939 unsigned int ttwu_wake_remote;
940 unsigned int ttwu_move_affine;
941 unsigned int ttwu_move_balance;
942 #endif
943 #ifdef CONFIG_SCHED_DEBUG
944 char *name;
945 #endif
946 union {
947 void *private; /* used during construction */
948 struct rcu_head rcu; /* used during destruction */
949 };
950
951 unsigned int span_weight;
952 /*
953 * Span of all CPUs in this domain.
954 *
955 * NOTE: this field is variable length. (Allocated dynamically
956 * by attaching extra space to the end of the structure,
957 * depending on how many CPUs the kernel has booted up with)
958 */
959 unsigned long span[0];
960 };
961
962 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
963 {
964 return to_cpumask(sd->span);
965 }
966
967 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
968 struct sched_domain_attr *dattr_new);
969
970 /* Allocate an array of sched domains, for partition_sched_domains(). */
971 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
972 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
973
974 /* Test a flag in parent sched domain */
975 static inline int test_sd_parent(struct sched_domain *sd, int flag)
976 {
977 if (sd->parent && (sd->parent->flags & flag))
978 return 1;
979
980 return 0;
981 }
982
983 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu);
984 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu);
985
986 bool cpus_share_cache(int this_cpu, int that_cpu);
987
988 #else /* CONFIG_SMP */
989
990 struct sched_domain_attr;
991
992 static inline void
993 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
994 struct sched_domain_attr *dattr_new)
995 {
996 }
997
998 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
999 {
1000 return true;
1001 }
1002
1003 #endif /* !CONFIG_SMP */
1004
1005
1006 struct io_context; /* See blkdev.h */
1007
1008
1009 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1010 extern void prefetch_stack(struct task_struct *t);
1011 #else
1012 static inline void prefetch_stack(struct task_struct *t) { }
1013 #endif
1014
1015 struct audit_context; /* See audit.c */
1016 struct mempolicy;
1017 struct pipe_inode_info;
1018 struct uts_namespace;
1019
1020 struct rq;
1021 struct sched_domain;
1022
1023 /*
1024 * wake flags
1025 */
1026 #define WF_SYNC 0x01 /* waker goes to sleep after wakup */
1027 #define WF_FORK 0x02 /* child wakeup after fork */
1028 #define WF_MIGRATED 0x04 /* internal use, task got migrated */
1029
1030 #define ENQUEUE_WAKEUP 1
1031 #define ENQUEUE_HEAD 2
1032 #ifdef CONFIG_SMP
1033 #define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
1034 #else
1035 #define ENQUEUE_WAKING 0
1036 #endif
1037
1038 #define DEQUEUE_SLEEP 1
1039
1040 struct sched_class {
1041 const struct sched_class *next;
1042
1043 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1044 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1045 void (*yield_task) (struct rq *rq);
1046 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1047
1048 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1049
1050 struct task_struct * (*pick_next_task) (struct rq *rq);
1051 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1052
1053 #ifdef CONFIG_SMP
1054 int (*select_task_rq)(struct task_struct *p, int sd_flag, int flags);
1055 void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
1056
1057 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1058 void (*post_schedule) (struct rq *this_rq);
1059 void (*task_waking) (struct task_struct *task);
1060 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1061
1062 void (*set_cpus_allowed)(struct task_struct *p,
1063 const struct cpumask *newmask);
1064
1065 void (*rq_online)(struct rq *rq);
1066 void (*rq_offline)(struct rq *rq);
1067 #endif
1068
1069 void (*set_curr_task) (struct rq *rq);
1070 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1071 void (*task_fork) (struct task_struct *p);
1072
1073 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1074 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1075 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1076 int oldprio);
1077
1078 unsigned int (*get_rr_interval) (struct rq *rq,
1079 struct task_struct *task);
1080
1081 #ifdef CONFIG_FAIR_GROUP_SCHED
1082 void (*task_move_group) (struct task_struct *p, int on_rq);
1083 #endif
1084 };
1085
1086 struct load_weight {
1087 unsigned long weight, inv_weight;
1088 };
1089
1090 struct sched_avg {
1091 /*
1092 * These sums represent an infinite geometric series and so are bound
1093 * above by 1024/(1-y). Thus we only need a u32 to store them for for all
1094 * choices of y < 1-2^(-32)*1024.
1095 */
1096 u32 runnable_avg_sum, runnable_avg_period;
1097 u64 last_runnable_update;
1098 s64 decay_count;
1099 unsigned long load_avg_contrib;
1100 };
1101
1102 #ifdef CONFIG_SCHEDSTATS
1103 struct sched_statistics {
1104 u64 wait_start;
1105 u64 wait_max;
1106 u64 wait_count;
1107 u64 wait_sum;
1108 u64 iowait_count;
1109 u64 iowait_sum;
1110
1111 u64 sleep_start;
1112 u64 sleep_max;
1113 s64 sum_sleep_runtime;
1114
1115 u64 block_start;
1116 u64 block_max;
1117 u64 exec_max;
1118 u64 slice_max;
1119
1120 u64 nr_migrations_cold;
1121 u64 nr_failed_migrations_affine;
1122 u64 nr_failed_migrations_running;
1123 u64 nr_failed_migrations_hot;
1124 u64 nr_forced_migrations;
1125
1126 u64 nr_wakeups;
1127 u64 nr_wakeups_sync;
1128 u64 nr_wakeups_migrate;
1129 u64 nr_wakeups_local;
1130 u64 nr_wakeups_remote;
1131 u64 nr_wakeups_affine;
1132 u64 nr_wakeups_affine_attempts;
1133 u64 nr_wakeups_passive;
1134 u64 nr_wakeups_idle;
1135 };
1136 #endif
1137
1138 struct sched_entity {
1139 struct load_weight load; /* for load-balancing */
1140 struct rb_node run_node;
1141 struct list_head group_node;
1142 unsigned int on_rq;
1143
1144 u64 exec_start;
1145 u64 sum_exec_runtime;
1146 u64 vruntime;
1147 u64 prev_sum_exec_runtime;
1148
1149 u64 nr_migrations;
1150
1151 #ifdef CONFIG_SCHEDSTATS
1152 struct sched_statistics statistics;
1153 #endif
1154
1155 #ifdef CONFIG_FAIR_GROUP_SCHED
1156 struct sched_entity *parent;
1157 /* rq on which this entity is (to be) queued: */
1158 struct cfs_rq *cfs_rq;
1159 /* rq "owned" by this entity/group: */
1160 struct cfs_rq *my_q;
1161 #endif
1162
1163 /*
1164 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
1165 * removed when useful for applications beyond shares distribution (e.g.
1166 * load-balance).
1167 */
1168 #if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
1169 /* Per-entity load-tracking */
1170 struct sched_avg avg;
1171 #endif
1172 };
1173
1174 struct sched_rt_entity {
1175 struct list_head run_list;
1176 unsigned long timeout;
1177 unsigned long watchdog_stamp;
1178 unsigned int time_slice;
1179
1180 struct sched_rt_entity *back;
1181 #ifdef CONFIG_RT_GROUP_SCHED
1182 struct sched_rt_entity *parent;
1183 /* rq on which this entity is (to be) queued: */
1184 struct rt_rq *rt_rq;
1185 /* rq "owned" by this entity/group: */
1186 struct rt_rq *my_q;
1187 #endif
1188 };
1189
1190
1191 struct rcu_node;
1192
1193 enum perf_event_task_context {
1194 perf_invalid_context = -1,
1195 perf_hw_context = 0,
1196 perf_sw_context,
1197 perf_nr_task_contexts,
1198 };
1199
1200 struct task_struct {
1201 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1202 void *stack;
1203 atomic_t usage;
1204 unsigned int flags; /* per process flags, defined below */
1205 unsigned int ptrace;
1206
1207 #ifdef CONFIG_SMP
1208 struct llist_node wake_entry;
1209 int on_cpu;
1210 #endif
1211 int on_rq;
1212
1213 int prio, static_prio, normal_prio;
1214 unsigned int rt_priority;
1215 const struct sched_class *sched_class;
1216 struct sched_entity se;
1217 struct sched_rt_entity rt;
1218 #ifdef CONFIG_CGROUP_SCHED
1219 struct task_group *sched_task_group;
1220 #endif
1221
1222 #ifdef CONFIG_PREEMPT_NOTIFIERS
1223 /* list of struct preempt_notifier: */
1224 struct hlist_head preempt_notifiers;
1225 #endif
1226
1227 /*
1228 * fpu_counter contains the number of consecutive context switches
1229 * that the FPU is used. If this is over a threshold, the lazy fpu
1230 * saving becomes unlazy to save the trap. This is an unsigned char
1231 * so that after 256 times the counter wraps and the behavior turns
1232 * lazy again; this to deal with bursty apps that only use FPU for
1233 * a short time
1234 */
1235 unsigned char fpu_counter;
1236 #ifdef CONFIG_BLK_DEV_IO_TRACE
1237 unsigned int btrace_seq;
1238 #endif
1239
1240 unsigned int policy;
1241 int nr_cpus_allowed;
1242 cpumask_t cpus_allowed;
1243
1244 #ifdef CONFIG_PREEMPT_RCU
1245 int rcu_read_lock_nesting;
1246 char rcu_read_unlock_special;
1247 struct list_head rcu_node_entry;
1248 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1249 #ifdef CONFIG_TREE_PREEMPT_RCU
1250 struct rcu_node *rcu_blocked_node;
1251 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1252 #ifdef CONFIG_RCU_BOOST
1253 struct rt_mutex *rcu_boost_mutex;
1254 #endif /* #ifdef CONFIG_RCU_BOOST */
1255
1256 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1257 struct sched_info sched_info;
1258 #endif
1259
1260 struct list_head tasks;
1261 #ifdef CONFIG_SMP
1262 struct plist_node pushable_tasks;
1263 #endif
1264
1265 struct mm_struct *mm, *active_mm;
1266 #ifdef CONFIG_COMPAT_BRK
1267 unsigned brk_randomized:1;
1268 #endif
1269 #if defined(SPLIT_RSS_COUNTING)
1270 struct task_rss_stat rss_stat;
1271 #endif
1272 /* task state */
1273 int exit_state;
1274 int exit_code, exit_signal;
1275 int pdeath_signal; /* The signal sent when the parent dies */
1276 unsigned int jobctl; /* JOBCTL_*, siglock protected */
1277 /* ??? */
1278 unsigned int personality;
1279 unsigned did_exec:1;
1280 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1281 * execve */
1282 unsigned in_iowait:1;
1283
1284 /* task may not gain privileges */
1285 unsigned no_new_privs:1;
1286
1287 /* Revert to default priority/policy when forking */
1288 unsigned sched_reset_on_fork:1;
1289 unsigned sched_contributes_to_load:1;
1290
1291 pid_t pid;
1292 pid_t tgid;
1293
1294 #ifdef CONFIG_CC_STACKPROTECTOR
1295 /* Canary value for the -fstack-protector gcc feature */
1296 unsigned long stack_canary;
1297 #endif
1298 /*
1299 * pointers to (original) parent process, youngest child, younger sibling,
1300 * older sibling, respectively. (p->father can be replaced with
1301 * p->real_parent->pid)
1302 */
1303 struct task_struct __rcu *real_parent; /* real parent process */
1304 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1305 /*
1306 * children/sibling forms the list of my natural children
1307 */
1308 struct list_head children; /* list of my children */
1309 struct list_head sibling; /* linkage in my parent's children list */
1310 struct task_struct *group_leader; /* threadgroup leader */
1311
1312 /*
1313 * ptraced is the list of tasks this task is using ptrace on.
1314 * This includes both natural children and PTRACE_ATTACH targets.
1315 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1316 */
1317 struct list_head ptraced;
1318 struct list_head ptrace_entry;
1319
1320 /* PID/PID hash table linkage. */
1321 struct pid_link pids[PIDTYPE_MAX];
1322 struct list_head thread_group;
1323
1324 struct completion *vfork_done; /* for vfork() */
1325 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1326 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1327
1328 cputime_t utime, stime, utimescaled, stimescaled;
1329 cputime_t gtime;
1330 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1331 struct cputime prev_cputime;
1332 #endif
1333 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1334 seqlock_t vtime_seqlock;
1335 unsigned long long vtime_snap;
1336 enum {
1337 VTIME_SLEEPING = 0,
1338 VTIME_USER,
1339 VTIME_SYS,
1340 } vtime_snap_whence;
1341 #endif
1342 unsigned long nvcsw, nivcsw; /* context switch counts */
1343 struct timespec start_time; /* monotonic time */
1344 struct timespec real_start_time; /* boot based time */
1345 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1346 unsigned long min_flt, maj_flt;
1347
1348 struct task_cputime cputime_expires;
1349 struct list_head cpu_timers[3];
1350
1351 /* process credentials */
1352 const struct cred __rcu *real_cred; /* objective and real subjective task
1353 * credentials (COW) */
1354 const struct cred __rcu *cred; /* effective (overridable) subjective task
1355 * credentials (COW) */
1356 char comm[TASK_COMM_LEN]; /* executable name excluding path
1357 - access with [gs]et_task_comm (which lock
1358 it with task_lock())
1359 - initialized normally by setup_new_exec */
1360 /* file system info */
1361 int link_count, total_link_count;
1362 #ifdef CONFIG_SYSVIPC
1363 /* ipc stuff */
1364 struct sysv_sem sysvsem;
1365 #endif
1366 #ifdef CONFIG_DETECT_HUNG_TASK
1367 /* hung task detection */
1368 unsigned long last_switch_count;
1369 #endif
1370 /* CPU-specific state of this task */
1371 struct thread_struct thread;
1372 /* filesystem information */
1373 struct fs_struct *fs;
1374 /* open file information */
1375 struct files_struct *files;
1376 /* namespaces */
1377 struct nsproxy *nsproxy;
1378 /* signal handlers */
1379 struct signal_struct *signal;
1380 struct sighand_struct *sighand;
1381
1382 sigset_t blocked, real_blocked;
1383 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1384 struct sigpending pending;
1385
1386 unsigned long sas_ss_sp;
1387 size_t sas_ss_size;
1388 int (*notifier)(void *priv);
1389 void *notifier_data;
1390 sigset_t *notifier_mask;
1391 struct callback_head *task_works;
1392
1393 struct audit_context *audit_context;
1394 #ifdef CONFIG_AUDITSYSCALL
1395 kuid_t loginuid;
1396 unsigned int sessionid;
1397 #endif
1398 struct seccomp seccomp;
1399
1400 /* Thread group tracking */
1401 u32 parent_exec_id;
1402 u32 self_exec_id;
1403 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1404 * mempolicy */
1405 spinlock_t alloc_lock;
1406
1407 /* Protection of the PI data structures: */
1408 raw_spinlock_t pi_lock;
1409
1410 #ifdef CONFIG_RT_MUTEXES
1411 /* PI waiters blocked on a rt_mutex held by this task */
1412 struct plist_head pi_waiters;
1413 /* Deadlock detection and priority inheritance handling */
1414 struct rt_mutex_waiter *pi_blocked_on;
1415 #endif
1416
1417 #ifdef CONFIG_DEBUG_MUTEXES
1418 /* mutex deadlock detection */
1419 struct mutex_waiter *blocked_on;
1420 #endif
1421 #ifdef CONFIG_TRACE_IRQFLAGS
1422 unsigned int irq_events;
1423 unsigned long hardirq_enable_ip;
1424 unsigned long hardirq_disable_ip;
1425 unsigned int hardirq_enable_event;
1426 unsigned int hardirq_disable_event;
1427 int hardirqs_enabled;
1428 int hardirq_context;
1429 unsigned long softirq_disable_ip;
1430 unsigned long softirq_enable_ip;
1431 unsigned int softirq_disable_event;
1432 unsigned int softirq_enable_event;
1433 int softirqs_enabled;
1434 int softirq_context;
1435 #endif
1436 #ifdef CONFIG_LOCKDEP
1437 # define MAX_LOCK_DEPTH 48UL
1438 u64 curr_chain_key;
1439 int lockdep_depth;
1440 unsigned int lockdep_recursion;
1441 struct held_lock held_locks[MAX_LOCK_DEPTH];
1442 gfp_t lockdep_reclaim_gfp;
1443 #endif
1444
1445 /* journalling filesystem info */
1446 void *journal_info;
1447
1448 /* stacked block device info */
1449 struct bio_list *bio_list;
1450
1451 #ifdef CONFIG_BLOCK
1452 /* stack plugging */
1453 struct blk_plug *plug;
1454 #endif
1455
1456 /* VM state */
1457 struct reclaim_state *reclaim_state;
1458
1459 struct backing_dev_info *backing_dev_info;
1460
1461 struct io_context *io_context;
1462
1463 unsigned long ptrace_message;
1464 siginfo_t *last_siginfo; /* For ptrace use. */
1465 struct task_io_accounting ioac;
1466 #if defined(CONFIG_TASK_XACCT)
1467 u64 acct_rss_mem1; /* accumulated rss usage */
1468 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1469 cputime_t acct_timexpd; /* stime + utime since last update */
1470 #endif
1471 #ifdef CONFIG_CPUSETS
1472 nodemask_t mems_allowed; /* Protected by alloc_lock */
1473 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
1474 int cpuset_mem_spread_rotor;
1475 int cpuset_slab_spread_rotor;
1476 #endif
1477 #ifdef CONFIG_CGROUPS
1478 /* Control Group info protected by css_set_lock */
1479 struct css_set __rcu *cgroups;
1480 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1481 struct list_head cg_list;
1482 #endif
1483 #ifdef CONFIG_FUTEX
1484 struct robust_list_head __user *robust_list;
1485 #ifdef CONFIG_COMPAT
1486 struct compat_robust_list_head __user *compat_robust_list;
1487 #endif
1488 struct list_head pi_state_list;
1489 struct futex_pi_state *pi_state_cache;
1490 #endif
1491 #ifdef CONFIG_PERF_EVENTS
1492 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1493 struct mutex perf_event_mutex;
1494 struct list_head perf_event_list;
1495 #endif
1496 #ifdef CONFIG_NUMA
1497 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1498 short il_next;
1499 short pref_node_fork;
1500 #endif
1501 #ifdef CONFIG_NUMA_BALANCING
1502 int numa_scan_seq;
1503 int numa_migrate_seq;
1504 unsigned int numa_scan_period;
1505 u64 node_stamp; /* migration stamp */
1506 struct callback_head numa_work;
1507 #endif /* CONFIG_NUMA_BALANCING */
1508
1509 struct rcu_head rcu;
1510
1511 /*
1512 * cache last used pipe for splice
1513 */
1514 struct pipe_inode_info *splice_pipe;
1515
1516 struct page_frag task_frag;
1517
1518 #ifdef CONFIG_TASK_DELAY_ACCT
1519 struct task_delay_info *delays;
1520 #endif
1521 #ifdef CONFIG_FAULT_INJECTION
1522 int make_it_fail;
1523 #endif
1524 /*
1525 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1526 * balance_dirty_pages() for some dirty throttling pause
1527 */
1528 int nr_dirtied;
1529 int nr_dirtied_pause;
1530 unsigned long dirty_paused_when; /* start of a write-and-pause period */
1531
1532 #ifdef CONFIG_LATENCYTOP
1533 int latency_record_count;
1534 struct latency_record latency_record[LT_SAVECOUNT];
1535 #endif
1536 /*
1537 * time slack values; these are used to round up poll() and
1538 * select() etc timeout values. These are in nanoseconds.
1539 */
1540 unsigned long timer_slack_ns;
1541 unsigned long default_timer_slack_ns;
1542
1543 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1544 /* Index of current stored address in ret_stack */
1545 int curr_ret_stack;
1546 /* Stack of return addresses for return function tracing */
1547 struct ftrace_ret_stack *ret_stack;
1548 /* time stamp for last schedule */
1549 unsigned long long ftrace_timestamp;
1550 /*
1551 * Number of functions that haven't been traced
1552 * because of depth overrun.
1553 */
1554 atomic_t trace_overrun;
1555 /* Pause for the tracing */
1556 atomic_t tracing_graph_pause;
1557 #endif
1558 #ifdef CONFIG_TRACING
1559 /* state flags for use by tracers */
1560 unsigned long trace;
1561 /* bitmask and counter of trace recursion */
1562 unsigned long trace_recursion;
1563 #endif /* CONFIG_TRACING */
1564 #ifdef CONFIG_MEMCG /* memcg uses this to do batch job */
1565 struct memcg_batch_info {
1566 int do_batch; /* incremented when batch uncharge started */
1567 struct mem_cgroup *memcg; /* target memcg of uncharge */
1568 unsigned long nr_pages; /* uncharged usage */
1569 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
1570 } memcg_batch;
1571 unsigned int memcg_kmem_skip_account;
1572 #endif
1573 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1574 atomic_t ptrace_bp_refcnt;
1575 #endif
1576 #ifdef CONFIG_UPROBES
1577 struct uprobe_task *utask;
1578 #endif
1579 };
1580
1581 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1582 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1583
1584 #ifdef CONFIG_NUMA_BALANCING
1585 extern void task_numa_fault(int node, int pages, bool migrated);
1586 extern void set_numabalancing_state(bool enabled);
1587 #else
1588 static inline void task_numa_fault(int node, int pages, bool migrated)
1589 {
1590 }
1591 static inline void set_numabalancing_state(bool enabled)
1592 {
1593 }
1594 #endif
1595
1596 static inline struct pid *task_pid(struct task_struct *task)
1597 {
1598 return task->pids[PIDTYPE_PID].pid;
1599 }
1600
1601 static inline struct pid *task_tgid(struct task_struct *task)
1602 {
1603 return task->group_leader->pids[PIDTYPE_PID].pid;
1604 }
1605
1606 /*
1607 * Without tasklist or rcu lock it is not safe to dereference
1608 * the result of task_pgrp/task_session even if task == current,
1609 * we can race with another thread doing sys_setsid/sys_setpgid.
1610 */
1611 static inline struct pid *task_pgrp(struct task_struct *task)
1612 {
1613 return task->group_leader->pids[PIDTYPE_PGID].pid;
1614 }
1615
1616 static inline struct pid *task_session(struct task_struct *task)
1617 {
1618 return task->group_leader->pids[PIDTYPE_SID].pid;
1619 }
1620
1621 struct pid_namespace;
1622
1623 /*
1624 * the helpers to get the task's different pids as they are seen
1625 * from various namespaces
1626 *
1627 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1628 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1629 * current.
1630 * task_xid_nr_ns() : id seen from the ns specified;
1631 *
1632 * set_task_vxid() : assigns a virtual id to a task;
1633 *
1634 * see also pid_nr() etc in include/linux/pid.h
1635 */
1636 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1637 struct pid_namespace *ns);
1638
1639 static inline pid_t task_pid_nr(struct task_struct *tsk)
1640 {
1641 return tsk->pid;
1642 }
1643
1644 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1645 struct pid_namespace *ns)
1646 {
1647 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1648 }
1649
1650 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1651 {
1652 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1653 }
1654
1655
1656 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1657 {
1658 return tsk->tgid;
1659 }
1660
1661 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1662
1663 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1664 {
1665 return pid_vnr(task_tgid(tsk));
1666 }
1667
1668
1669 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1670 struct pid_namespace *ns)
1671 {
1672 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1673 }
1674
1675 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1676 {
1677 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1678 }
1679
1680
1681 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1682 struct pid_namespace *ns)
1683 {
1684 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1685 }
1686
1687 static inline pid_t task_session_vnr(struct task_struct *tsk)
1688 {
1689 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1690 }
1691
1692 /* obsolete, do not use */
1693 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1694 {
1695 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1696 }
1697
1698 /**
1699 * pid_alive - check that a task structure is not stale
1700 * @p: Task structure to be checked.
1701 *
1702 * Test if a process is not yet dead (at most zombie state)
1703 * If pid_alive fails, then pointers within the task structure
1704 * can be stale and must not be dereferenced.
1705 */
1706 static inline int pid_alive(struct task_struct *p)
1707 {
1708 return p->pids[PIDTYPE_PID].pid != NULL;
1709 }
1710
1711 /**
1712 * is_global_init - check if a task structure is init
1713 * @tsk: Task structure to be checked.
1714 *
1715 * Check if a task structure is the first user space task the kernel created.
1716 */
1717 static inline int is_global_init(struct task_struct *tsk)
1718 {
1719 return tsk->pid == 1;
1720 }
1721
1722 extern struct pid *cad_pid;
1723
1724 extern void free_task(struct task_struct *tsk);
1725 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1726
1727 extern void __put_task_struct(struct task_struct *t);
1728
1729 static inline void put_task_struct(struct task_struct *t)
1730 {
1731 if (atomic_dec_and_test(&t->usage))
1732 __put_task_struct(t);
1733 }
1734
1735 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1736 extern void task_cputime(struct task_struct *t,
1737 cputime_t *utime, cputime_t *stime);
1738 extern void task_cputime_scaled(struct task_struct *t,
1739 cputime_t *utimescaled, cputime_t *stimescaled);
1740 extern cputime_t task_gtime(struct task_struct *t);
1741 #else
1742 static inline void task_cputime(struct task_struct *t,
1743 cputime_t *utime, cputime_t *stime)
1744 {
1745 if (utime)
1746 *utime = t->utime;
1747 if (stime)
1748 *stime = t->stime;
1749 }
1750
1751 static inline void task_cputime_scaled(struct task_struct *t,
1752 cputime_t *utimescaled,
1753 cputime_t *stimescaled)
1754 {
1755 if (utimescaled)
1756 *utimescaled = t->utimescaled;
1757 if (stimescaled)
1758 *stimescaled = t->stimescaled;
1759 }
1760
1761 static inline cputime_t task_gtime(struct task_struct *t)
1762 {
1763 return t->gtime;
1764 }
1765 #endif
1766 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1767 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1768
1769 /*
1770 * Per process flags
1771 */
1772 #define PF_EXITING 0x00000004 /* getting shut down */
1773 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1774 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1775 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1776 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1777 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1778 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1779 #define PF_DUMPCORE 0x00000200 /* dumped core */
1780 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1781 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1782 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1783 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1784 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
1785 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1786 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1787 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1788 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1789 #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
1790 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1791 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1792 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1793 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1794 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1795 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1796 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */
1797 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1798 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1799 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1800 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1801
1802 /*
1803 * Only the _current_ task can read/write to tsk->flags, but other
1804 * tasks can access tsk->flags in readonly mode for example
1805 * with tsk_used_math (like during threaded core dumping).
1806 * There is however an exception to this rule during ptrace
1807 * or during fork: the ptracer task is allowed to write to the
1808 * child->flags of its traced child (same goes for fork, the parent
1809 * can write to the child->flags), because we're guaranteed the
1810 * child is not running and in turn not changing child->flags
1811 * at the same time the parent does it.
1812 */
1813 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1814 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1815 #define clear_used_math() clear_stopped_child_used_math(current)
1816 #define set_used_math() set_stopped_child_used_math(current)
1817 #define conditional_stopped_child_used_math(condition, child) \
1818 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1819 #define conditional_used_math(condition) \
1820 conditional_stopped_child_used_math(condition, current)
1821 #define copy_to_stopped_child_used_math(child) \
1822 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1823 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1824 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1825 #define used_math() tsk_used_math(current)
1826
1827 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags */
1828 static inline gfp_t memalloc_noio_flags(gfp_t flags)
1829 {
1830 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
1831 flags &= ~__GFP_IO;
1832 return flags;
1833 }
1834
1835 static inline unsigned int memalloc_noio_save(void)
1836 {
1837 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
1838 current->flags |= PF_MEMALLOC_NOIO;
1839 return flags;
1840 }
1841
1842 static inline void memalloc_noio_restore(unsigned int flags)
1843 {
1844 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
1845 }
1846
1847 /*
1848 * task->jobctl flags
1849 */
1850 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
1851
1852 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
1853 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
1854 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
1855 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
1856 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
1857 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
1858 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
1859
1860 #define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT)
1861 #define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT)
1862 #define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT)
1863 #define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT)
1864 #define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT)
1865 #define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT)
1866 #define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT)
1867
1868 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
1869 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
1870
1871 extern bool task_set_jobctl_pending(struct task_struct *task,
1872 unsigned int mask);
1873 extern void task_clear_jobctl_trapping(struct task_struct *task);
1874 extern void task_clear_jobctl_pending(struct task_struct *task,
1875 unsigned int mask);
1876
1877 #ifdef CONFIG_PREEMPT_RCU
1878
1879 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1880 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1881
1882 static inline void rcu_copy_process(struct task_struct *p)
1883 {
1884 p->rcu_read_lock_nesting = 0;
1885 p->rcu_read_unlock_special = 0;
1886 #ifdef CONFIG_TREE_PREEMPT_RCU
1887 p->rcu_blocked_node = NULL;
1888 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1889 #ifdef CONFIG_RCU_BOOST
1890 p->rcu_boost_mutex = NULL;
1891 #endif /* #ifdef CONFIG_RCU_BOOST */
1892 INIT_LIST_HEAD(&p->rcu_node_entry);
1893 }
1894
1895 #else
1896
1897 static inline void rcu_copy_process(struct task_struct *p)
1898 {
1899 }
1900
1901 #endif
1902
1903 static inline void tsk_restore_flags(struct task_struct *task,
1904 unsigned long orig_flags, unsigned long flags)
1905 {
1906 task->flags &= ~flags;
1907 task->flags |= orig_flags & flags;
1908 }
1909
1910 #ifdef CONFIG_SMP
1911 extern void do_set_cpus_allowed(struct task_struct *p,
1912 const struct cpumask *new_mask);
1913
1914 extern int set_cpus_allowed_ptr(struct task_struct *p,
1915 const struct cpumask *new_mask);
1916 #else
1917 static inline void do_set_cpus_allowed(struct task_struct *p,
1918 const struct cpumask *new_mask)
1919 {
1920 }
1921 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1922 const struct cpumask *new_mask)
1923 {
1924 if (!cpumask_test_cpu(0, new_mask))
1925 return -EINVAL;
1926 return 0;
1927 }
1928 #endif
1929
1930 #ifdef CONFIG_NO_HZ
1931 void calc_load_enter_idle(void);
1932 void calc_load_exit_idle(void);
1933 #else
1934 static inline void calc_load_enter_idle(void) { }
1935 static inline void calc_load_exit_idle(void) { }
1936 #endif /* CONFIG_NO_HZ */
1937
1938 #ifndef CONFIG_CPUMASK_OFFSTACK
1939 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1940 {
1941 return set_cpus_allowed_ptr(p, &new_mask);
1942 }
1943 #endif
1944
1945 /*
1946 * Do not use outside of architecture code which knows its limitations.
1947 *
1948 * sched_clock() has no promise of monotonicity or bounded drift between
1949 * CPUs, use (which you should not) requires disabling IRQs.
1950 *
1951 * Please use one of the three interfaces below.
1952 */
1953 extern unsigned long long notrace sched_clock(void);
1954 /*
1955 * See the comment in kernel/sched/clock.c
1956 */
1957 extern u64 cpu_clock(int cpu);
1958 extern u64 local_clock(void);
1959 extern u64 sched_clock_cpu(int cpu);
1960
1961
1962 extern void sched_clock_init(void);
1963
1964 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1965 static inline void sched_clock_tick(void)
1966 {
1967 }
1968
1969 static inline void sched_clock_idle_sleep_event(void)
1970 {
1971 }
1972
1973 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1974 {
1975 }
1976 #else
1977 /*
1978 * Architectures can set this to 1 if they have specified
1979 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1980 * but then during bootup it turns out that sched_clock()
1981 * is reliable after all:
1982 */
1983 extern int sched_clock_stable;
1984
1985 extern void sched_clock_tick(void);
1986 extern void sched_clock_idle_sleep_event(void);
1987 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1988 #endif
1989
1990 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1991 /*
1992 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
1993 * The reason for this explicit opt-in is not to have perf penalty with
1994 * slow sched_clocks.
1995 */
1996 extern void enable_sched_clock_irqtime(void);
1997 extern void disable_sched_clock_irqtime(void);
1998 #else
1999 static inline void enable_sched_clock_irqtime(void) {}
2000 static inline void disable_sched_clock_irqtime(void) {}
2001 #endif
2002
2003 extern unsigned long long
2004 task_sched_runtime(struct task_struct *task);
2005
2006 /* sched_exec is called by processes performing an exec */
2007 #ifdef CONFIG_SMP
2008 extern void sched_exec(void);
2009 #else
2010 #define sched_exec() {}
2011 #endif
2012
2013 extern void sched_clock_idle_sleep_event(void);
2014 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2015
2016 #ifdef CONFIG_HOTPLUG_CPU
2017 extern void idle_task_exit(void);
2018 #else
2019 static inline void idle_task_exit(void) {}
2020 #endif
2021
2022 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
2023 extern void wake_up_idle_cpu(int cpu);
2024 #else
2025 static inline void wake_up_idle_cpu(int cpu) { }
2026 #endif
2027
2028 #ifdef CONFIG_SCHED_AUTOGROUP
2029 extern void sched_autogroup_create_attach(struct task_struct *p);
2030 extern void sched_autogroup_detach(struct task_struct *p);
2031 extern void sched_autogroup_fork(struct signal_struct *sig);
2032 extern void sched_autogroup_exit(struct signal_struct *sig);
2033 #ifdef CONFIG_PROC_FS
2034 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2035 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
2036 #endif
2037 #else
2038 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2039 static inline void sched_autogroup_detach(struct task_struct *p) { }
2040 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2041 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2042 #endif
2043
2044 extern bool yield_to(struct task_struct *p, bool preempt);
2045 extern void set_user_nice(struct task_struct *p, long nice);
2046 extern int task_prio(const struct task_struct *p);
2047 extern int task_nice(const struct task_struct *p);
2048 extern int can_nice(const struct task_struct *p, const int nice);
2049 extern int task_curr(const struct task_struct *p);
2050 extern int idle_cpu(int cpu);
2051 extern int sched_setscheduler(struct task_struct *, int,
2052 const struct sched_param *);
2053 extern int sched_setscheduler_nocheck(struct task_struct *, int,
2054 const struct sched_param *);
2055 extern struct task_struct *idle_task(int cpu);
2056 /**
2057 * is_idle_task - is the specified task an idle task?
2058 * @p: the task in question.
2059 */
2060 static inline bool is_idle_task(const struct task_struct *p)
2061 {
2062 return p->pid == 0;
2063 }
2064 extern struct task_struct *curr_task(int cpu);
2065 extern void set_curr_task(int cpu, struct task_struct *p);
2066
2067 void yield(void);
2068
2069 /*
2070 * The default (Linux) execution domain.
2071 */
2072 extern struct exec_domain default_exec_domain;
2073
2074 union thread_union {
2075 struct thread_info thread_info;
2076 unsigned long stack[THREAD_SIZE/sizeof(long)];
2077 };
2078
2079 #ifndef __HAVE_ARCH_KSTACK_END
2080 static inline int kstack_end(void *addr)
2081 {
2082 /* Reliable end of stack detection:
2083 * Some APM bios versions misalign the stack
2084 */
2085 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2086 }
2087 #endif
2088
2089 extern union thread_union init_thread_union;
2090 extern struct task_struct init_task;
2091
2092 extern struct mm_struct init_mm;
2093
2094 extern struct pid_namespace init_pid_ns;
2095
2096 /*
2097 * find a task by one of its numerical ids
2098 *
2099 * find_task_by_pid_ns():
2100 * finds a task by its pid in the specified namespace
2101 * find_task_by_vpid():
2102 * finds a task by its virtual pid
2103 *
2104 * see also find_vpid() etc in include/linux/pid.h
2105 */
2106
2107 extern struct task_struct *find_task_by_vpid(pid_t nr);
2108 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2109 struct pid_namespace *ns);
2110
2111 extern void __set_special_pids(struct pid *pid);
2112
2113 /* per-UID process charging. */
2114 extern struct user_struct * alloc_uid(kuid_t);
2115 static inline struct user_struct *get_uid(struct user_struct *u)
2116 {
2117 atomic_inc(&u->__count);
2118 return u;
2119 }
2120 extern void free_uid(struct user_struct *);
2121
2122 #include <asm/current.h>
2123
2124 extern void xtime_update(unsigned long ticks);
2125
2126 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2127 extern int wake_up_process(struct task_struct *tsk);
2128 extern void wake_up_new_task(struct task_struct *tsk);
2129 #ifdef CONFIG_SMP
2130 extern void kick_process(struct task_struct *tsk);
2131 #else
2132 static inline void kick_process(struct task_struct *tsk) { }
2133 #endif
2134 extern void sched_fork(struct task_struct *p);
2135 extern void sched_dead(struct task_struct *p);
2136
2137 extern void proc_caches_init(void);
2138 extern void flush_signals(struct task_struct *);
2139 extern void __flush_signals(struct task_struct *);
2140 extern void ignore_signals(struct task_struct *);
2141 extern void flush_signal_handlers(struct task_struct *, int force_default);
2142 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2143
2144 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2145 {
2146 unsigned long flags;
2147 int ret;
2148
2149 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2150 ret = dequeue_signal(tsk, mask, info);
2151 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2152
2153 return ret;
2154 }
2155
2156 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2157 sigset_t *mask);
2158 extern void unblock_all_signals(void);
2159 extern void release_task(struct task_struct * p);
2160 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2161 extern int force_sigsegv(int, struct task_struct *);
2162 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2163 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2164 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2165 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2166 const struct cred *, u32);
2167 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2168 extern int kill_pid(struct pid *pid, int sig, int priv);
2169 extern int kill_proc_info(int, struct siginfo *, pid_t);
2170 extern __must_check bool do_notify_parent(struct task_struct *, int);
2171 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2172 extern void force_sig(int, struct task_struct *);
2173 extern int send_sig(int, struct task_struct *, int);
2174 extern int zap_other_threads(struct task_struct *p);
2175 extern struct sigqueue *sigqueue_alloc(void);
2176 extern void sigqueue_free(struct sigqueue *);
2177 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2178 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2179
2180 static inline void restore_saved_sigmask(void)
2181 {
2182 if (test_and_clear_restore_sigmask())
2183 __set_current_blocked(&current->saved_sigmask);
2184 }
2185
2186 static inline sigset_t *sigmask_to_save(void)
2187 {
2188 sigset_t *res = &current->blocked;
2189 if (unlikely(test_restore_sigmask()))
2190 res = &current->saved_sigmask;
2191 return res;
2192 }
2193
2194 static inline int kill_cad_pid(int sig, int priv)
2195 {
2196 return kill_pid(cad_pid, sig, priv);
2197 }
2198
2199 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2200 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2201 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2202 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2203
2204 /*
2205 * True if we are on the alternate signal stack.
2206 */
2207 static inline int on_sig_stack(unsigned long sp)
2208 {
2209 #ifdef CONFIG_STACK_GROWSUP
2210 return sp >= current->sas_ss_sp &&
2211 sp - current->sas_ss_sp < current->sas_ss_size;
2212 #else
2213 return sp > current->sas_ss_sp &&
2214 sp - current->sas_ss_sp <= current->sas_ss_size;
2215 #endif
2216 }
2217
2218 static inline int sas_ss_flags(unsigned long sp)
2219 {
2220 return (current->sas_ss_size == 0 ? SS_DISABLE
2221 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2222 }
2223
2224 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2225 {
2226 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2227 #ifdef CONFIG_STACK_GROWSUP
2228 return current->sas_ss_sp;
2229 #else
2230 return current->sas_ss_sp + current->sas_ss_size;
2231 #endif
2232 return sp;
2233 }
2234
2235 /*
2236 * Routines for handling mm_structs
2237 */
2238 extern struct mm_struct * mm_alloc(void);
2239
2240 /* mmdrop drops the mm and the page tables */
2241 extern void __mmdrop(struct mm_struct *);
2242 static inline void mmdrop(struct mm_struct * mm)
2243 {
2244 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2245 __mmdrop(mm);
2246 }
2247
2248 /* mmput gets rid of the mappings and all user-space */
2249 extern void mmput(struct mm_struct *);
2250 /* Grab a reference to a task's mm, if it is not already going away */
2251 extern struct mm_struct *get_task_mm(struct task_struct *task);
2252 /*
2253 * Grab a reference to a task's mm, if it is not already going away
2254 * and ptrace_may_access with the mode parameter passed to it
2255 * succeeds.
2256 */
2257 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2258 /* Remove the current tasks stale references to the old mm_struct */
2259 extern void mm_release(struct task_struct *, struct mm_struct *);
2260 /* Allocate a new mm structure and copy contents from tsk->mm */
2261 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2262
2263 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2264 struct task_struct *);
2265 extern void flush_thread(void);
2266 extern void exit_thread(void);
2267
2268 extern void exit_files(struct task_struct *);
2269 extern void __cleanup_sighand(struct sighand_struct *);
2270
2271 extern void exit_itimers(struct signal_struct *);
2272 extern void flush_itimer_signals(void);
2273
2274 extern void do_group_exit(int);
2275
2276 extern int allow_signal(int);
2277 extern int disallow_signal(int);
2278
2279 extern int do_execve(const char *,
2280 const char __user * const __user *,
2281 const char __user * const __user *);
2282 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2283 struct task_struct *fork_idle(int);
2284 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2285
2286 extern void set_task_comm(struct task_struct *tsk, char *from);
2287 extern char *get_task_comm(char *to, struct task_struct *tsk);
2288
2289 #ifdef CONFIG_SMP
2290 void scheduler_ipi(void);
2291 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2292 #else
2293 static inline void scheduler_ipi(void) { }
2294 static inline unsigned long wait_task_inactive(struct task_struct *p,
2295 long match_state)
2296 {
2297 return 1;
2298 }
2299 #endif
2300
2301 #define next_task(p) \
2302 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2303
2304 #define for_each_process(p) \
2305 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2306
2307 extern bool current_is_single_threaded(void);
2308
2309 /*
2310 * Careful: do_each_thread/while_each_thread is a double loop so
2311 * 'break' will not work as expected - use goto instead.
2312 */
2313 #define do_each_thread(g, t) \
2314 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2315
2316 #define while_each_thread(g, t) \
2317 while ((t = next_thread(t)) != g)
2318
2319 static inline int get_nr_threads(struct task_struct *tsk)
2320 {
2321 return tsk->signal->nr_threads;
2322 }
2323
2324 static inline bool thread_group_leader(struct task_struct *p)
2325 {
2326 return p->exit_signal >= 0;
2327 }
2328
2329 /* Do to the insanities of de_thread it is possible for a process
2330 * to have the pid of the thread group leader without actually being
2331 * the thread group leader. For iteration through the pids in proc
2332 * all we care about is that we have a task with the appropriate
2333 * pid, we don't actually care if we have the right task.
2334 */
2335 static inline int has_group_leader_pid(struct task_struct *p)
2336 {
2337 return p->pid == p->tgid;
2338 }
2339
2340 static inline
2341 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2342 {
2343 return p1->tgid == p2->tgid;
2344 }
2345
2346 static inline struct task_struct *next_thread(const struct task_struct *p)
2347 {
2348 return list_entry_rcu(p->thread_group.next,
2349 struct task_struct, thread_group);
2350 }
2351
2352 static inline int thread_group_empty(struct task_struct *p)
2353 {
2354 return list_empty(&p->thread_group);
2355 }
2356
2357 #define delay_group_leader(p) \
2358 (thread_group_leader(p) && !thread_group_empty(p))
2359
2360 /*
2361 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2362 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2363 * pins the final release of task.io_context. Also protects ->cpuset and
2364 * ->cgroup.subsys[]. And ->vfork_done.
2365 *
2366 * Nests both inside and outside of read_lock(&tasklist_lock).
2367 * It must not be nested with write_lock_irq(&tasklist_lock),
2368 * neither inside nor outside.
2369 */
2370 static inline void task_lock(struct task_struct *p)
2371 {
2372 spin_lock(&p->alloc_lock);
2373 }
2374
2375 static inline void task_unlock(struct task_struct *p)
2376 {
2377 spin_unlock(&p->alloc_lock);
2378 }
2379
2380 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2381 unsigned long *flags);
2382
2383 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2384 unsigned long *flags)
2385 {
2386 struct sighand_struct *ret;
2387
2388 ret = __lock_task_sighand(tsk, flags);
2389 (void)__cond_lock(&tsk->sighand->siglock, ret);
2390 return ret;
2391 }
2392
2393 static inline void unlock_task_sighand(struct task_struct *tsk,
2394 unsigned long *flags)
2395 {
2396 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2397 }
2398
2399 #ifdef CONFIG_CGROUPS
2400 static inline void threadgroup_change_begin(struct task_struct *tsk)
2401 {
2402 down_read(&tsk->signal->group_rwsem);
2403 }
2404 static inline void threadgroup_change_end(struct task_struct *tsk)
2405 {
2406 up_read(&tsk->signal->group_rwsem);
2407 }
2408
2409 /**
2410 * threadgroup_lock - lock threadgroup
2411 * @tsk: member task of the threadgroup to lock
2412 *
2413 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter
2414 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
2415 * perform exec. This is useful for cases where the threadgroup needs to
2416 * stay stable across blockable operations.
2417 *
2418 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2419 * synchronization. While held, no new task will be added to threadgroup
2420 * and no existing live task will have its PF_EXITING set.
2421 *
2422 * During exec, a task goes and puts its thread group through unusual
2423 * changes. After de-threading, exclusive access is assumed to resources
2424 * which are usually shared by tasks in the same group - e.g. sighand may
2425 * be replaced with a new one. Also, the exec'ing task takes over group
2426 * leader role including its pid. Exclude these changes while locked by
2427 * grabbing cred_guard_mutex which is used to synchronize exec path.
2428 */
2429 static inline void threadgroup_lock(struct task_struct *tsk)
2430 {
2431 /*
2432 * exec uses exit for de-threading nesting group_rwsem inside
2433 * cred_guard_mutex. Grab cred_guard_mutex first.
2434 */
2435 mutex_lock(&tsk->signal->cred_guard_mutex);
2436 down_write(&tsk->signal->group_rwsem);
2437 }
2438
2439 /**
2440 * threadgroup_unlock - unlock threadgroup
2441 * @tsk: member task of the threadgroup to unlock
2442 *
2443 * Reverse threadgroup_lock().
2444 */
2445 static inline void threadgroup_unlock(struct task_struct *tsk)
2446 {
2447 up_write(&tsk->signal->group_rwsem);
2448 mutex_unlock(&tsk->signal->cred_guard_mutex);
2449 }
2450 #else
2451 static inline void threadgroup_change_begin(struct task_struct *tsk) {}
2452 static inline void threadgroup_change_end(struct task_struct *tsk) {}
2453 static inline void threadgroup_lock(struct task_struct *tsk) {}
2454 static inline void threadgroup_unlock(struct task_struct *tsk) {}
2455 #endif
2456
2457 #ifndef __HAVE_THREAD_FUNCTIONS
2458
2459 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2460 #define task_stack_page(task) ((task)->stack)
2461
2462 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2463 {
2464 *task_thread_info(p) = *task_thread_info(org);
2465 task_thread_info(p)->task = p;
2466 }
2467
2468 static inline unsigned long *end_of_stack(struct task_struct *p)
2469 {
2470 return (unsigned long *)(task_thread_info(p) + 1);
2471 }
2472
2473 #endif
2474
2475 static inline int object_is_on_stack(void *obj)
2476 {
2477 void *stack = task_stack_page(current);
2478
2479 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2480 }
2481
2482 extern void thread_info_cache_init(void);
2483
2484 #ifdef CONFIG_DEBUG_STACK_USAGE
2485 static inline unsigned long stack_not_used(struct task_struct *p)
2486 {
2487 unsigned long *n = end_of_stack(p);
2488
2489 do { /* Skip over canary */
2490 n++;
2491 } while (!*n);
2492
2493 return (unsigned long)n - (unsigned long)end_of_stack(p);
2494 }
2495 #endif
2496
2497 /* set thread flags in other task's structures
2498 * - see asm/thread_info.h for TIF_xxxx flags available
2499 */
2500 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2501 {
2502 set_ti_thread_flag(task_thread_info(tsk), flag);
2503 }
2504
2505 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2506 {
2507 clear_ti_thread_flag(task_thread_info(tsk), flag);
2508 }
2509
2510 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2511 {
2512 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2513 }
2514
2515 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2516 {
2517 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2518 }
2519
2520 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2521 {
2522 return test_ti_thread_flag(task_thread_info(tsk), flag);
2523 }
2524
2525 static inline void set_tsk_need_resched(struct task_struct *tsk)
2526 {
2527 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2528 }
2529
2530 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2531 {
2532 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2533 }
2534
2535 static inline int test_tsk_need_resched(struct task_struct *tsk)
2536 {
2537 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2538 }
2539
2540 static inline int restart_syscall(void)
2541 {
2542 set_tsk_thread_flag(current, TIF_SIGPENDING);
2543 return -ERESTARTNOINTR;
2544 }
2545
2546 static inline int signal_pending(struct task_struct *p)
2547 {
2548 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2549 }
2550
2551 static inline int __fatal_signal_pending(struct task_struct *p)
2552 {
2553 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2554 }
2555
2556 static inline int fatal_signal_pending(struct task_struct *p)
2557 {
2558 return signal_pending(p) && __fatal_signal_pending(p);
2559 }
2560
2561 static inline int signal_pending_state(long state, struct task_struct *p)
2562 {
2563 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2564 return 0;
2565 if (!signal_pending(p))
2566 return 0;
2567
2568 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2569 }
2570
2571 static inline int need_resched(void)
2572 {
2573 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2574 }
2575
2576 /*
2577 * cond_resched() and cond_resched_lock(): latency reduction via
2578 * explicit rescheduling in places that are safe. The return
2579 * value indicates whether a reschedule was done in fact.
2580 * cond_resched_lock() will drop the spinlock before scheduling,
2581 * cond_resched_softirq() will enable bhs before scheduling.
2582 */
2583 extern int _cond_resched(void);
2584
2585 #define cond_resched() ({ \
2586 __might_sleep(__FILE__, __LINE__, 0); \
2587 _cond_resched(); \
2588 })
2589
2590 extern int __cond_resched_lock(spinlock_t *lock);
2591
2592 #ifdef CONFIG_PREEMPT_COUNT
2593 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
2594 #else
2595 #define PREEMPT_LOCK_OFFSET 0
2596 #endif
2597
2598 #define cond_resched_lock(lock) ({ \
2599 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2600 __cond_resched_lock(lock); \
2601 })
2602
2603 extern int __cond_resched_softirq(void);
2604
2605 #define cond_resched_softirq() ({ \
2606 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
2607 __cond_resched_softirq(); \
2608 })
2609
2610 /*
2611 * Does a critical section need to be broken due to another
2612 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2613 * but a general need for low latency)
2614 */
2615 static inline int spin_needbreak(spinlock_t *lock)
2616 {
2617 #ifdef CONFIG_PREEMPT
2618 return spin_is_contended(lock);
2619 #else
2620 return 0;
2621 #endif
2622 }
2623
2624 /*
2625 * Thread group CPU time accounting.
2626 */
2627 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2628 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2629
2630 static inline void thread_group_cputime_init(struct signal_struct *sig)
2631 {
2632 raw_spin_lock_init(&sig->cputimer.lock);
2633 }
2634
2635 /*
2636 * Reevaluate whether the task has signals pending delivery.
2637 * Wake the task if so.
2638 * This is required every time the blocked sigset_t changes.
2639 * callers must hold sighand->siglock.
2640 */
2641 extern void recalc_sigpending_and_wake(struct task_struct *t);
2642 extern void recalc_sigpending(void);
2643
2644 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
2645
2646 static inline void signal_wake_up(struct task_struct *t, bool resume)
2647 {
2648 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
2649 }
2650 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
2651 {
2652 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
2653 }
2654
2655 /*
2656 * Wrappers for p->thread_info->cpu access. No-op on UP.
2657 */
2658 #ifdef CONFIG_SMP
2659
2660 static inline unsigned int task_cpu(const struct task_struct *p)
2661 {
2662 return task_thread_info(p)->cpu;
2663 }
2664
2665 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2666
2667 #else
2668
2669 static inline unsigned int task_cpu(const struct task_struct *p)
2670 {
2671 return 0;
2672 }
2673
2674 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2675 {
2676 }
2677
2678 #endif /* CONFIG_SMP */
2679
2680 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2681 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2682
2683 #ifdef CONFIG_CGROUP_SCHED
2684
2685 extern struct task_group root_task_group;
2686
2687 extern struct task_group *sched_create_group(struct task_group *parent);
2688 extern void sched_online_group(struct task_group *tg,
2689 struct task_group *parent);
2690 extern void sched_destroy_group(struct task_group *tg);
2691 extern void sched_offline_group(struct task_group *tg);
2692 extern void sched_move_task(struct task_struct *tsk);
2693 #ifdef CONFIG_FAIR_GROUP_SCHED
2694 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2695 extern unsigned long sched_group_shares(struct task_group *tg);
2696 #endif
2697 #ifdef CONFIG_RT_GROUP_SCHED
2698 extern int sched_group_set_rt_runtime(struct task_group *tg,
2699 long rt_runtime_us);
2700 extern long sched_group_rt_runtime(struct task_group *tg);
2701 extern int sched_group_set_rt_period(struct task_group *tg,
2702 long rt_period_us);
2703 extern long sched_group_rt_period(struct task_group *tg);
2704 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2705 #endif
2706 #endif /* CONFIG_CGROUP_SCHED */
2707
2708 extern int task_can_switch_user(struct user_struct *up,
2709 struct task_struct *tsk);
2710
2711 #ifdef CONFIG_TASK_XACCT
2712 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2713 {
2714 tsk->ioac.rchar += amt;
2715 }
2716
2717 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2718 {
2719 tsk->ioac.wchar += amt;
2720 }
2721
2722 static inline void inc_syscr(struct task_struct *tsk)
2723 {
2724 tsk->ioac.syscr++;
2725 }
2726
2727 static inline void inc_syscw(struct task_struct *tsk)
2728 {
2729 tsk->ioac.syscw++;
2730 }
2731 #else
2732 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2733 {
2734 }
2735
2736 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2737 {
2738 }
2739
2740 static inline void inc_syscr(struct task_struct *tsk)
2741 {
2742 }
2743
2744 static inline void inc_syscw(struct task_struct *tsk)
2745 {
2746 }
2747 #endif
2748
2749 #ifndef TASK_SIZE_OF
2750 #define TASK_SIZE_OF(tsk) TASK_SIZE
2751 #endif
2752
2753 #ifdef CONFIG_MM_OWNER
2754 extern void mm_update_next_owner(struct mm_struct *mm);
2755 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2756 #else
2757 static inline void mm_update_next_owner(struct mm_struct *mm)
2758 {
2759 }
2760
2761 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2762 {
2763 }
2764 #endif /* CONFIG_MM_OWNER */
2765
2766 static inline unsigned long task_rlimit(const struct task_struct *tsk,
2767 unsigned int limit)
2768 {
2769 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2770 }
2771
2772 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2773 unsigned int limit)
2774 {
2775 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2776 }
2777
2778 static inline unsigned long rlimit(unsigned int limit)
2779 {
2780 return task_rlimit(current, limit);
2781 }
2782
2783 static inline unsigned long rlimit_max(unsigned int limit)
2784 {
2785 return task_rlimit_max(current, limit);
2786 }
2787
2788 #endif