x86 get_unmapped_area(): use proper mmap base for bottom-up direction
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 #include <uapi/linux/sched.h>
5
6
7 struct sched_param {
8 int sched_priority;
9 };
10
11 #include <asm/param.h> /* for HZ */
12
13 #include <linux/capability.h>
14 #include <linux/threads.h>
15 #include <linux/kernel.h>
16 #include <linux/types.h>
17 #include <linux/timex.h>
18 #include <linux/jiffies.h>
19 #include <linux/rbtree.h>
20 #include <linux/thread_info.h>
21 #include <linux/cpumask.h>
22 #include <linux/errno.h>
23 #include <linux/nodemask.h>
24 #include <linux/mm_types.h>
25
26 #include <asm/page.h>
27 #include <asm/ptrace.h>
28 #include <asm/cputime.h>
29
30 #include <linux/smp.h>
31 #include <linux/sem.h>
32 #include <linux/signal.h>
33 #include <linux/compiler.h>
34 #include <linux/completion.h>
35 #include <linux/pid.h>
36 #include <linux/percpu.h>
37 #include <linux/topology.h>
38 #include <linux/proportions.h>
39 #include <linux/seccomp.h>
40 #include <linux/rcupdate.h>
41 #include <linux/rculist.h>
42 #include <linux/rtmutex.h>
43
44 #include <linux/time.h>
45 #include <linux/param.h>
46 #include <linux/resource.h>
47 #include <linux/timer.h>
48 #include <linux/hrtimer.h>
49 #include <linux/task_io_accounting.h>
50 #include <linux/latencytop.h>
51 #include <linux/cred.h>
52 #include <linux/llist.h>
53 #include <linux/uidgid.h>
54 #include <linux/gfp.h>
55
56 #include <asm/processor.h>
57
58 struct exec_domain;
59 struct futex_pi_state;
60 struct robust_list_head;
61 struct bio_list;
62 struct fs_struct;
63 struct perf_event_context;
64 struct blk_plug;
65
66 /*
67 * List of flags we want to share for kernel threads,
68 * if only because they are not used by them anyway.
69 */
70 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
71
72 /*
73 * These are the constant used to fake the fixed-point load-average
74 * counting. Some notes:
75 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
76 * a load-average precision of 10 bits integer + 11 bits fractional
77 * - if you want to count load-averages more often, you need more
78 * precision, or rounding will get you. With 2-second counting freq,
79 * the EXP_n values would be 1981, 2034 and 2043 if still using only
80 * 11 bit fractions.
81 */
82 extern unsigned long avenrun[]; /* Load averages */
83 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
84
85 #define FSHIFT 11 /* nr of bits of precision */
86 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
87 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
88 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
89 #define EXP_5 2014 /* 1/exp(5sec/5min) */
90 #define EXP_15 2037 /* 1/exp(5sec/15min) */
91
92 #define CALC_LOAD(load,exp,n) \
93 load *= exp; \
94 load += n*(FIXED_1-exp); \
95 load >>= FSHIFT;
96
97 extern unsigned long total_forks;
98 extern int nr_threads;
99 DECLARE_PER_CPU(unsigned long, process_counts);
100 extern int nr_processes(void);
101 extern unsigned long nr_running(void);
102 extern unsigned long nr_iowait(void);
103 extern unsigned long nr_iowait_cpu(int cpu);
104 extern unsigned long this_cpu_load(void);
105
106
107 extern void calc_global_load(unsigned long ticks);
108 extern void update_cpu_load_nohz(void);
109
110 /* Notifier for when a task gets migrated to a new CPU */
111 struct task_migration_notifier {
112 struct task_struct *task;
113 int from_cpu;
114 int to_cpu;
115 };
116 extern void register_task_migration_notifier(struct notifier_block *n);
117
118 extern unsigned long get_parent_ip(unsigned long addr);
119
120 extern void dump_cpu_task(int cpu);
121
122 struct seq_file;
123 struct cfs_rq;
124 struct task_group;
125 #ifdef CONFIG_SCHED_DEBUG
126 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
127 extern void proc_sched_set_task(struct task_struct *p);
128 extern void
129 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
130 #endif
131
132 /*
133 * Task state bitmask. NOTE! These bits are also
134 * encoded in fs/proc/array.c: get_task_state().
135 *
136 * We have two separate sets of flags: task->state
137 * is about runnability, while task->exit_state are
138 * about the task exiting. Confusing, but this way
139 * modifying one set can't modify the other one by
140 * mistake.
141 */
142 #define TASK_RUNNING 0
143 #define TASK_INTERRUPTIBLE 1
144 #define TASK_UNINTERRUPTIBLE 2
145 #define __TASK_STOPPED 4
146 #define __TASK_TRACED 8
147 /* in tsk->exit_state */
148 #define EXIT_ZOMBIE 16
149 #define EXIT_DEAD 32
150 /* in tsk->state again */
151 #define TASK_DEAD 64
152 #define TASK_WAKEKILL 128
153 #define TASK_WAKING 256
154 #define TASK_PARKED 512
155 #define TASK_STATE_MAX 1024
156
157 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
158
159 extern char ___assert_task_state[1 - 2*!!(
160 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
161
162 /* Convenience macros for the sake of set_task_state */
163 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
164 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
165 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
166
167 /* Convenience macros for the sake of wake_up */
168 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
169 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
170
171 /* get_task_state() */
172 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
173 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
174 __TASK_TRACED)
175
176 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
177 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
178 #define task_is_dead(task) ((task)->exit_state != 0)
179 #define task_is_stopped_or_traced(task) \
180 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
181 #define task_contributes_to_load(task) \
182 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
183 (task->flags & PF_FROZEN) == 0)
184
185 #define __set_task_state(tsk, state_value) \
186 do { (tsk)->state = (state_value); } while (0)
187 #define set_task_state(tsk, state_value) \
188 set_mb((tsk)->state, (state_value))
189
190 /*
191 * set_current_state() includes a barrier so that the write of current->state
192 * is correctly serialised wrt the caller's subsequent test of whether to
193 * actually sleep:
194 *
195 * set_current_state(TASK_UNINTERRUPTIBLE);
196 * if (do_i_need_to_sleep())
197 * schedule();
198 *
199 * If the caller does not need such serialisation then use __set_current_state()
200 */
201 #define __set_current_state(state_value) \
202 do { current->state = (state_value); } while (0)
203 #define set_current_state(state_value) \
204 set_mb(current->state, (state_value))
205
206 /* Task command name length */
207 #define TASK_COMM_LEN 16
208
209 #include <linux/spinlock.h>
210
211 /*
212 * This serializes "schedule()" and also protects
213 * the run-queue from deletions/modifications (but
214 * _adding_ to the beginning of the run-queue has
215 * a separate lock).
216 */
217 extern rwlock_t tasklist_lock;
218 extern spinlock_t mmlist_lock;
219
220 struct task_struct;
221
222 #ifdef CONFIG_PROVE_RCU
223 extern int lockdep_tasklist_lock_is_held(void);
224 #endif /* #ifdef CONFIG_PROVE_RCU */
225
226 extern void sched_init(void);
227 extern void sched_init_smp(void);
228 extern asmlinkage void schedule_tail(struct task_struct *prev);
229 extern void init_idle(struct task_struct *idle, int cpu);
230 extern void init_idle_bootup_task(struct task_struct *idle);
231
232 extern int runqueue_is_locked(int cpu);
233
234 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
235 extern void nohz_balance_enter_idle(int cpu);
236 extern void set_cpu_sd_state_idle(void);
237 extern int get_nohz_timer_target(void);
238 #else
239 static inline void nohz_balance_enter_idle(int cpu) { }
240 static inline void set_cpu_sd_state_idle(void) { }
241 #endif
242
243 /*
244 * Only dump TASK_* tasks. (0 for all tasks)
245 */
246 extern void show_state_filter(unsigned long state_filter);
247
248 static inline void show_state(void)
249 {
250 show_state_filter(0);
251 }
252
253 extern void show_regs(struct pt_regs *);
254
255 /*
256 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
257 * task), SP is the stack pointer of the first frame that should be shown in the back
258 * trace (or NULL if the entire call-chain of the task should be shown).
259 */
260 extern void show_stack(struct task_struct *task, unsigned long *sp);
261
262 void io_schedule(void);
263 long io_schedule_timeout(long timeout);
264
265 extern void cpu_init (void);
266 extern void trap_init(void);
267 extern void update_process_times(int user);
268 extern void scheduler_tick(void);
269
270 extern void sched_show_task(struct task_struct *p);
271
272 #ifdef CONFIG_LOCKUP_DETECTOR
273 extern void touch_softlockup_watchdog(void);
274 extern void touch_softlockup_watchdog_sync(void);
275 extern void touch_all_softlockup_watchdogs(void);
276 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
277 void __user *buffer,
278 size_t *lenp, loff_t *ppos);
279 extern unsigned int softlockup_panic;
280 void lockup_detector_init(void);
281 #else
282 static inline void touch_softlockup_watchdog(void)
283 {
284 }
285 static inline void touch_softlockup_watchdog_sync(void)
286 {
287 }
288 static inline void touch_all_softlockup_watchdogs(void)
289 {
290 }
291 static inline void lockup_detector_init(void)
292 {
293 }
294 #endif
295
296 /* Attach to any functions which should be ignored in wchan output. */
297 #define __sched __attribute__((__section__(".sched.text")))
298
299 /* Linker adds these: start and end of __sched functions */
300 extern char __sched_text_start[], __sched_text_end[];
301
302 /* Is this address in the __sched functions? */
303 extern int in_sched_functions(unsigned long addr);
304
305 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
306 extern signed long schedule_timeout(signed long timeout);
307 extern signed long schedule_timeout_interruptible(signed long timeout);
308 extern signed long schedule_timeout_killable(signed long timeout);
309 extern signed long schedule_timeout_uninterruptible(signed long timeout);
310 asmlinkage void schedule(void);
311 extern void schedule_preempt_disabled(void);
312
313 struct nsproxy;
314 struct user_namespace;
315
316 #ifdef CONFIG_MMU
317 extern unsigned long mmap_legacy_base(void);
318 extern void arch_pick_mmap_layout(struct mm_struct *mm);
319 extern unsigned long
320 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
321 unsigned long, unsigned long);
322 extern unsigned long
323 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
324 unsigned long len, unsigned long pgoff,
325 unsigned long flags);
326 extern void arch_unmap_area(struct mm_struct *, unsigned long);
327 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
328 #else
329 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
330 #endif
331
332
333 extern void set_dumpable(struct mm_struct *mm, int value);
334 extern int get_dumpable(struct mm_struct *mm);
335
336 /* mm flags */
337 /* dumpable bits */
338 #define MMF_DUMPABLE 0 /* core dump is permitted */
339 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
340
341 #define MMF_DUMPABLE_BITS 2
342 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
343
344 /* coredump filter bits */
345 #define MMF_DUMP_ANON_PRIVATE 2
346 #define MMF_DUMP_ANON_SHARED 3
347 #define MMF_DUMP_MAPPED_PRIVATE 4
348 #define MMF_DUMP_MAPPED_SHARED 5
349 #define MMF_DUMP_ELF_HEADERS 6
350 #define MMF_DUMP_HUGETLB_PRIVATE 7
351 #define MMF_DUMP_HUGETLB_SHARED 8
352
353 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
354 #define MMF_DUMP_FILTER_BITS 7
355 #define MMF_DUMP_FILTER_MASK \
356 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
357 #define MMF_DUMP_FILTER_DEFAULT \
358 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
359 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
360
361 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
362 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
363 #else
364 # define MMF_DUMP_MASK_DEFAULT_ELF 0
365 #endif
366 /* leave room for more dump flags */
367 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
368 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
369 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
370
371 #define MMF_HAS_UPROBES 19 /* has uprobes */
372 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
373
374 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
375
376 struct sighand_struct {
377 atomic_t count;
378 struct k_sigaction action[_NSIG];
379 spinlock_t siglock;
380 wait_queue_head_t signalfd_wqh;
381 };
382
383 struct pacct_struct {
384 int ac_flag;
385 long ac_exitcode;
386 unsigned long ac_mem;
387 cputime_t ac_utime, ac_stime;
388 unsigned long ac_minflt, ac_majflt;
389 };
390
391 struct cpu_itimer {
392 cputime_t expires;
393 cputime_t incr;
394 u32 error;
395 u32 incr_error;
396 };
397
398 /**
399 * struct cputime - snaphsot of system and user cputime
400 * @utime: time spent in user mode
401 * @stime: time spent in system mode
402 *
403 * Gathers a generic snapshot of user and system time.
404 */
405 struct cputime {
406 cputime_t utime;
407 cputime_t stime;
408 };
409
410 /**
411 * struct task_cputime - collected CPU time counts
412 * @utime: time spent in user mode, in &cputime_t units
413 * @stime: time spent in kernel mode, in &cputime_t units
414 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
415 *
416 * This is an extension of struct cputime that includes the total runtime
417 * spent by the task from the scheduler point of view.
418 *
419 * As a result, this structure groups together three kinds of CPU time
420 * that are tracked for threads and thread groups. Most things considering
421 * CPU time want to group these counts together and treat all three
422 * of them in parallel.
423 */
424 struct task_cputime {
425 cputime_t utime;
426 cputime_t stime;
427 unsigned long long sum_exec_runtime;
428 };
429 /* Alternate field names when used to cache expirations. */
430 #define prof_exp stime
431 #define virt_exp utime
432 #define sched_exp sum_exec_runtime
433
434 #define INIT_CPUTIME \
435 (struct task_cputime) { \
436 .utime = 0, \
437 .stime = 0, \
438 .sum_exec_runtime = 0, \
439 }
440
441 /*
442 * Disable preemption until the scheduler is running.
443 * Reset by start_kernel()->sched_init()->init_idle().
444 *
445 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
446 * before the scheduler is active -- see should_resched().
447 */
448 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE)
449
450 /**
451 * struct thread_group_cputimer - thread group interval timer counts
452 * @cputime: thread group interval timers.
453 * @running: non-zero when there are timers running and
454 * @cputime receives updates.
455 * @lock: lock for fields in this struct.
456 *
457 * This structure contains the version of task_cputime, above, that is
458 * used for thread group CPU timer calculations.
459 */
460 struct thread_group_cputimer {
461 struct task_cputime cputime;
462 int running;
463 raw_spinlock_t lock;
464 };
465
466 #include <linux/rwsem.h>
467 struct autogroup;
468
469 /*
470 * NOTE! "signal_struct" does not have its own
471 * locking, because a shared signal_struct always
472 * implies a shared sighand_struct, so locking
473 * sighand_struct is always a proper superset of
474 * the locking of signal_struct.
475 */
476 struct signal_struct {
477 atomic_t sigcnt;
478 atomic_t live;
479 int nr_threads;
480
481 wait_queue_head_t wait_chldexit; /* for wait4() */
482
483 /* current thread group signal load-balancing target: */
484 struct task_struct *curr_target;
485
486 /* shared signal handling: */
487 struct sigpending shared_pending;
488
489 /* thread group exit support */
490 int group_exit_code;
491 /* overloaded:
492 * - notify group_exit_task when ->count is equal to notify_count
493 * - everyone except group_exit_task is stopped during signal delivery
494 * of fatal signals, group_exit_task processes the signal.
495 */
496 int notify_count;
497 struct task_struct *group_exit_task;
498
499 /* thread group stop support, overloads group_exit_code too */
500 int group_stop_count;
501 unsigned int flags; /* see SIGNAL_* flags below */
502
503 /*
504 * PR_SET_CHILD_SUBREAPER marks a process, like a service
505 * manager, to re-parent orphan (double-forking) child processes
506 * to this process instead of 'init'. The service manager is
507 * able to receive SIGCHLD signals and is able to investigate
508 * the process until it calls wait(). All children of this
509 * process will inherit a flag if they should look for a
510 * child_subreaper process at exit.
511 */
512 unsigned int is_child_subreaper:1;
513 unsigned int has_child_subreaper:1;
514
515 /* POSIX.1b Interval Timers */
516 int posix_timer_id;
517 struct list_head posix_timers;
518
519 /* ITIMER_REAL timer for the process */
520 struct hrtimer real_timer;
521 struct pid *leader_pid;
522 ktime_t it_real_incr;
523
524 /*
525 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
526 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
527 * values are defined to 0 and 1 respectively
528 */
529 struct cpu_itimer it[2];
530
531 /*
532 * Thread group totals for process CPU timers.
533 * See thread_group_cputimer(), et al, for details.
534 */
535 struct thread_group_cputimer cputimer;
536
537 /* Earliest-expiration cache. */
538 struct task_cputime cputime_expires;
539
540 struct list_head cpu_timers[3];
541
542 struct pid *tty_old_pgrp;
543
544 /* boolean value for session group leader */
545 int leader;
546
547 struct tty_struct *tty; /* NULL if no tty */
548
549 #ifdef CONFIG_SCHED_AUTOGROUP
550 struct autogroup *autogroup;
551 #endif
552 /*
553 * Cumulative resource counters for dead threads in the group,
554 * and for reaped dead child processes forked by this group.
555 * Live threads maintain their own counters and add to these
556 * in __exit_signal, except for the group leader.
557 */
558 cputime_t utime, stime, cutime, cstime;
559 cputime_t gtime;
560 cputime_t cgtime;
561 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
562 struct cputime prev_cputime;
563 #endif
564 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
565 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
566 unsigned long inblock, oublock, cinblock, coublock;
567 unsigned long maxrss, cmaxrss;
568 struct task_io_accounting ioac;
569
570 /*
571 * Cumulative ns of schedule CPU time fo dead threads in the
572 * group, not including a zombie group leader, (This only differs
573 * from jiffies_to_ns(utime + stime) if sched_clock uses something
574 * other than jiffies.)
575 */
576 unsigned long long sum_sched_runtime;
577
578 /*
579 * We don't bother to synchronize most readers of this at all,
580 * because there is no reader checking a limit that actually needs
581 * to get both rlim_cur and rlim_max atomically, and either one
582 * alone is a single word that can safely be read normally.
583 * getrlimit/setrlimit use task_lock(current->group_leader) to
584 * protect this instead of the siglock, because they really
585 * have no need to disable irqs.
586 */
587 struct rlimit rlim[RLIM_NLIMITS];
588
589 #ifdef CONFIG_BSD_PROCESS_ACCT
590 struct pacct_struct pacct; /* per-process accounting information */
591 #endif
592 #ifdef CONFIG_TASKSTATS
593 struct taskstats *stats;
594 #endif
595 #ifdef CONFIG_AUDIT
596 unsigned audit_tty;
597 unsigned audit_tty_log_passwd;
598 struct tty_audit_buf *tty_audit_buf;
599 #endif
600 #ifdef CONFIG_CGROUPS
601 /*
602 * group_rwsem prevents new tasks from entering the threadgroup and
603 * member tasks from exiting,a more specifically, setting of
604 * PF_EXITING. fork and exit paths are protected with this rwsem
605 * using threadgroup_change_begin/end(). Users which require
606 * threadgroup to remain stable should use threadgroup_[un]lock()
607 * which also takes care of exec path. Currently, cgroup is the
608 * only user.
609 */
610 struct rw_semaphore group_rwsem;
611 #endif
612
613 oom_flags_t oom_flags;
614 short oom_score_adj; /* OOM kill score adjustment */
615 short oom_score_adj_min; /* OOM kill score adjustment min value.
616 * Only settable by CAP_SYS_RESOURCE. */
617
618 struct mutex cred_guard_mutex; /* guard against foreign influences on
619 * credential calculations
620 * (notably. ptrace) */
621 };
622
623 /*
624 * Bits in flags field of signal_struct.
625 */
626 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
627 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
628 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
629 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
630 /*
631 * Pending notifications to parent.
632 */
633 #define SIGNAL_CLD_STOPPED 0x00000010
634 #define SIGNAL_CLD_CONTINUED 0x00000020
635 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
636
637 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
638
639 /* If true, all threads except ->group_exit_task have pending SIGKILL */
640 static inline int signal_group_exit(const struct signal_struct *sig)
641 {
642 return (sig->flags & SIGNAL_GROUP_EXIT) ||
643 (sig->group_exit_task != NULL);
644 }
645
646 /*
647 * Some day this will be a full-fledged user tracking system..
648 */
649 struct user_struct {
650 atomic_t __count; /* reference count */
651 atomic_t processes; /* How many processes does this user have? */
652 atomic_t files; /* How many open files does this user have? */
653 atomic_t sigpending; /* How many pending signals does this user have? */
654 #ifdef CONFIG_INOTIFY_USER
655 atomic_t inotify_watches; /* How many inotify watches does this user have? */
656 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
657 #endif
658 #ifdef CONFIG_FANOTIFY
659 atomic_t fanotify_listeners;
660 #endif
661 #ifdef CONFIG_EPOLL
662 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
663 #endif
664 #ifdef CONFIG_POSIX_MQUEUE
665 /* protected by mq_lock */
666 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
667 #endif
668 unsigned long locked_shm; /* How many pages of mlocked shm ? */
669
670 #ifdef CONFIG_KEYS
671 struct key *uid_keyring; /* UID specific keyring */
672 struct key *session_keyring; /* UID's default session keyring */
673 #endif
674
675 /* Hash table maintenance information */
676 struct hlist_node uidhash_node;
677 kuid_t uid;
678
679 #ifdef CONFIG_PERF_EVENTS
680 atomic_long_t locked_vm;
681 #endif
682 };
683
684 extern int uids_sysfs_init(void);
685
686 extern struct user_struct *find_user(kuid_t);
687
688 extern struct user_struct root_user;
689 #define INIT_USER (&root_user)
690
691
692 struct backing_dev_info;
693 struct reclaim_state;
694
695 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
696 struct sched_info {
697 /* cumulative counters */
698 unsigned long pcount; /* # of times run on this cpu */
699 unsigned long long run_delay; /* time spent waiting on a runqueue */
700
701 /* timestamps */
702 unsigned long long last_arrival,/* when we last ran on a cpu */
703 last_queued; /* when we were last queued to run */
704 };
705 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
706
707 #ifdef CONFIG_TASK_DELAY_ACCT
708 struct task_delay_info {
709 spinlock_t lock;
710 unsigned int flags; /* Private per-task flags */
711
712 /* For each stat XXX, add following, aligned appropriately
713 *
714 * struct timespec XXX_start, XXX_end;
715 * u64 XXX_delay;
716 * u32 XXX_count;
717 *
718 * Atomicity of updates to XXX_delay, XXX_count protected by
719 * single lock above (split into XXX_lock if contention is an issue).
720 */
721
722 /*
723 * XXX_count is incremented on every XXX operation, the delay
724 * associated with the operation is added to XXX_delay.
725 * XXX_delay contains the accumulated delay time in nanoseconds.
726 */
727 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
728 u64 blkio_delay; /* wait for sync block io completion */
729 u64 swapin_delay; /* wait for swapin block io completion */
730 u32 blkio_count; /* total count of the number of sync block */
731 /* io operations performed */
732 u32 swapin_count; /* total count of the number of swapin block */
733 /* io operations performed */
734
735 struct timespec freepages_start, freepages_end;
736 u64 freepages_delay; /* wait for memory reclaim */
737 u32 freepages_count; /* total count of memory reclaim */
738 };
739 #endif /* CONFIG_TASK_DELAY_ACCT */
740
741 static inline int sched_info_on(void)
742 {
743 #ifdef CONFIG_SCHEDSTATS
744 return 1;
745 #elif defined(CONFIG_TASK_DELAY_ACCT)
746 extern int delayacct_on;
747 return delayacct_on;
748 #else
749 return 0;
750 #endif
751 }
752
753 enum cpu_idle_type {
754 CPU_IDLE,
755 CPU_NOT_IDLE,
756 CPU_NEWLY_IDLE,
757 CPU_MAX_IDLE_TYPES
758 };
759
760 /*
761 * Increase resolution of cpu_power calculations
762 */
763 #define SCHED_POWER_SHIFT 10
764 #define SCHED_POWER_SCALE (1L << SCHED_POWER_SHIFT)
765
766 /*
767 * sched-domains (multiprocessor balancing) declarations:
768 */
769 #ifdef CONFIG_SMP
770 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
771 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
772 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
773 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
774 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
775 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
776 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */
777 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
778 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
779 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
780 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
781 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
782
783 extern int __weak arch_sd_sibiling_asym_packing(void);
784
785 struct sched_domain_attr {
786 int relax_domain_level;
787 };
788
789 #define SD_ATTR_INIT (struct sched_domain_attr) { \
790 .relax_domain_level = -1, \
791 }
792
793 extern int sched_domain_level_max;
794
795 struct sched_group;
796
797 struct sched_domain {
798 /* These fields must be setup */
799 struct sched_domain *parent; /* top domain must be null terminated */
800 struct sched_domain *child; /* bottom domain must be null terminated */
801 struct sched_group *groups; /* the balancing groups of the domain */
802 unsigned long min_interval; /* Minimum balance interval ms */
803 unsigned long max_interval; /* Maximum balance interval ms */
804 unsigned int busy_factor; /* less balancing by factor if busy */
805 unsigned int imbalance_pct; /* No balance until over watermark */
806 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
807 unsigned int busy_idx;
808 unsigned int idle_idx;
809 unsigned int newidle_idx;
810 unsigned int wake_idx;
811 unsigned int forkexec_idx;
812 unsigned int smt_gain;
813
814 int nohz_idle; /* NOHZ IDLE status */
815 int flags; /* See SD_* */
816 int level;
817
818 /* Runtime fields. */
819 unsigned long last_balance; /* init to jiffies. units in jiffies */
820 unsigned int balance_interval; /* initialise to 1. units in ms. */
821 unsigned int nr_balance_failed; /* initialise to 0 */
822
823 u64 last_update;
824
825 #ifdef CONFIG_SCHEDSTATS
826 /* load_balance() stats */
827 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
828 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
829 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
830 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
831 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
832 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
833 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
834 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
835
836 /* Active load balancing */
837 unsigned int alb_count;
838 unsigned int alb_failed;
839 unsigned int alb_pushed;
840
841 /* SD_BALANCE_EXEC stats */
842 unsigned int sbe_count;
843 unsigned int sbe_balanced;
844 unsigned int sbe_pushed;
845
846 /* SD_BALANCE_FORK stats */
847 unsigned int sbf_count;
848 unsigned int sbf_balanced;
849 unsigned int sbf_pushed;
850
851 /* try_to_wake_up() stats */
852 unsigned int ttwu_wake_remote;
853 unsigned int ttwu_move_affine;
854 unsigned int ttwu_move_balance;
855 #endif
856 #ifdef CONFIG_SCHED_DEBUG
857 char *name;
858 #endif
859 union {
860 void *private; /* used during construction */
861 struct rcu_head rcu; /* used during destruction */
862 };
863
864 unsigned int span_weight;
865 /*
866 * Span of all CPUs in this domain.
867 *
868 * NOTE: this field is variable length. (Allocated dynamically
869 * by attaching extra space to the end of the structure,
870 * depending on how many CPUs the kernel has booted up with)
871 */
872 unsigned long span[0];
873 };
874
875 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
876 {
877 return to_cpumask(sd->span);
878 }
879
880 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
881 struct sched_domain_attr *dattr_new);
882
883 /* Allocate an array of sched domains, for partition_sched_domains(). */
884 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
885 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
886
887 bool cpus_share_cache(int this_cpu, int that_cpu);
888
889 #else /* CONFIG_SMP */
890
891 struct sched_domain_attr;
892
893 static inline void
894 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
895 struct sched_domain_attr *dattr_new)
896 {
897 }
898
899 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
900 {
901 return true;
902 }
903
904 #endif /* !CONFIG_SMP */
905
906
907 struct io_context; /* See blkdev.h */
908
909
910 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
911 extern void prefetch_stack(struct task_struct *t);
912 #else
913 static inline void prefetch_stack(struct task_struct *t) { }
914 #endif
915
916 struct audit_context; /* See audit.c */
917 struct mempolicy;
918 struct pipe_inode_info;
919 struct uts_namespace;
920
921 struct load_weight {
922 unsigned long weight, inv_weight;
923 };
924
925 struct sched_avg {
926 /*
927 * These sums represent an infinite geometric series and so are bound
928 * above by 1024/(1-y). Thus we only need a u32 to store them for for all
929 * choices of y < 1-2^(-32)*1024.
930 */
931 u32 runnable_avg_sum, runnable_avg_period;
932 u64 last_runnable_update;
933 s64 decay_count;
934 unsigned long load_avg_contrib;
935 };
936
937 #ifdef CONFIG_SCHEDSTATS
938 struct sched_statistics {
939 u64 wait_start;
940 u64 wait_max;
941 u64 wait_count;
942 u64 wait_sum;
943 u64 iowait_count;
944 u64 iowait_sum;
945
946 u64 sleep_start;
947 u64 sleep_max;
948 s64 sum_sleep_runtime;
949
950 u64 block_start;
951 u64 block_max;
952 u64 exec_max;
953 u64 slice_max;
954
955 u64 nr_migrations_cold;
956 u64 nr_failed_migrations_affine;
957 u64 nr_failed_migrations_running;
958 u64 nr_failed_migrations_hot;
959 u64 nr_forced_migrations;
960
961 u64 nr_wakeups;
962 u64 nr_wakeups_sync;
963 u64 nr_wakeups_migrate;
964 u64 nr_wakeups_local;
965 u64 nr_wakeups_remote;
966 u64 nr_wakeups_affine;
967 u64 nr_wakeups_affine_attempts;
968 u64 nr_wakeups_passive;
969 u64 nr_wakeups_idle;
970 };
971 #endif
972
973 struct sched_entity {
974 struct load_weight load; /* for load-balancing */
975 struct rb_node run_node;
976 struct list_head group_node;
977 unsigned int on_rq;
978
979 u64 exec_start;
980 u64 sum_exec_runtime;
981 u64 vruntime;
982 u64 prev_sum_exec_runtime;
983
984 u64 nr_migrations;
985
986 #ifdef CONFIG_SCHEDSTATS
987 struct sched_statistics statistics;
988 #endif
989
990 #ifdef CONFIG_FAIR_GROUP_SCHED
991 struct sched_entity *parent;
992 /* rq on which this entity is (to be) queued: */
993 struct cfs_rq *cfs_rq;
994 /* rq "owned" by this entity/group: */
995 struct cfs_rq *my_q;
996 #endif
997
998 /*
999 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
1000 * removed when useful for applications beyond shares distribution (e.g.
1001 * load-balance).
1002 */
1003 #if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
1004 /* Per-entity load-tracking */
1005 struct sched_avg avg;
1006 #endif
1007 };
1008
1009 struct sched_rt_entity {
1010 struct list_head run_list;
1011 unsigned long timeout;
1012 unsigned long watchdog_stamp;
1013 unsigned int time_slice;
1014
1015 struct sched_rt_entity *back;
1016 #ifdef CONFIG_RT_GROUP_SCHED
1017 struct sched_rt_entity *parent;
1018 /* rq on which this entity is (to be) queued: */
1019 struct rt_rq *rt_rq;
1020 /* rq "owned" by this entity/group: */
1021 struct rt_rq *my_q;
1022 #endif
1023 };
1024
1025
1026 struct rcu_node;
1027
1028 enum perf_event_task_context {
1029 perf_invalid_context = -1,
1030 perf_hw_context = 0,
1031 perf_sw_context,
1032 perf_nr_task_contexts,
1033 };
1034
1035 struct task_struct {
1036 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1037 void *stack;
1038 atomic_t usage;
1039 unsigned int flags; /* per process flags, defined below */
1040 unsigned int ptrace;
1041
1042 #ifdef CONFIG_SMP
1043 struct llist_node wake_entry;
1044 int on_cpu;
1045 #endif
1046 int on_rq;
1047
1048 int prio, static_prio, normal_prio;
1049 unsigned int rt_priority;
1050 const struct sched_class *sched_class;
1051 struct sched_entity se;
1052 struct sched_rt_entity rt;
1053 #ifdef CONFIG_CGROUP_SCHED
1054 struct task_group *sched_task_group;
1055 #endif
1056
1057 #ifdef CONFIG_PREEMPT_NOTIFIERS
1058 /* list of struct preempt_notifier: */
1059 struct hlist_head preempt_notifiers;
1060 #endif
1061
1062 /*
1063 * fpu_counter contains the number of consecutive context switches
1064 * that the FPU is used. If this is over a threshold, the lazy fpu
1065 * saving becomes unlazy to save the trap. This is an unsigned char
1066 * so that after 256 times the counter wraps and the behavior turns
1067 * lazy again; this to deal with bursty apps that only use FPU for
1068 * a short time
1069 */
1070 unsigned char fpu_counter;
1071 #ifdef CONFIG_BLK_DEV_IO_TRACE
1072 unsigned int btrace_seq;
1073 #endif
1074
1075 unsigned int policy;
1076 int nr_cpus_allowed;
1077 cpumask_t cpus_allowed;
1078
1079 #ifdef CONFIG_PREEMPT_RCU
1080 int rcu_read_lock_nesting;
1081 char rcu_read_unlock_special;
1082 struct list_head rcu_node_entry;
1083 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1084 #ifdef CONFIG_TREE_PREEMPT_RCU
1085 struct rcu_node *rcu_blocked_node;
1086 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1087 #ifdef CONFIG_RCU_BOOST
1088 struct rt_mutex *rcu_boost_mutex;
1089 #endif /* #ifdef CONFIG_RCU_BOOST */
1090
1091 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1092 struct sched_info sched_info;
1093 #endif
1094
1095 struct list_head tasks;
1096 #ifdef CONFIG_SMP
1097 struct plist_node pushable_tasks;
1098 #endif
1099
1100 struct mm_struct *mm, *active_mm;
1101 #ifdef CONFIG_COMPAT_BRK
1102 unsigned brk_randomized:1;
1103 #endif
1104 #if defined(SPLIT_RSS_COUNTING)
1105 struct task_rss_stat rss_stat;
1106 #endif
1107 /* task state */
1108 int exit_state;
1109 int exit_code, exit_signal;
1110 int pdeath_signal; /* The signal sent when the parent dies */
1111 unsigned int jobctl; /* JOBCTL_*, siglock protected */
1112
1113 /* Used for emulating ABI behavior of previous Linux versions */
1114 unsigned int personality;
1115
1116 unsigned did_exec:1;
1117 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1118 * execve */
1119 unsigned in_iowait:1;
1120
1121 /* task may not gain privileges */
1122 unsigned no_new_privs:1;
1123
1124 /* Revert to default priority/policy when forking */
1125 unsigned sched_reset_on_fork:1;
1126 unsigned sched_contributes_to_load:1;
1127
1128 pid_t pid;
1129 pid_t tgid;
1130
1131 #ifdef CONFIG_CC_STACKPROTECTOR
1132 /* Canary value for the -fstack-protector gcc feature */
1133 unsigned long stack_canary;
1134 #endif
1135 /*
1136 * pointers to (original) parent process, youngest child, younger sibling,
1137 * older sibling, respectively. (p->father can be replaced with
1138 * p->real_parent->pid)
1139 */
1140 struct task_struct __rcu *real_parent; /* real parent process */
1141 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1142 /*
1143 * children/sibling forms the list of my natural children
1144 */
1145 struct list_head children; /* list of my children */
1146 struct list_head sibling; /* linkage in my parent's children list */
1147 struct task_struct *group_leader; /* threadgroup leader */
1148
1149 /*
1150 * ptraced is the list of tasks this task is using ptrace on.
1151 * This includes both natural children and PTRACE_ATTACH targets.
1152 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1153 */
1154 struct list_head ptraced;
1155 struct list_head ptrace_entry;
1156
1157 /* PID/PID hash table linkage. */
1158 struct pid_link pids[PIDTYPE_MAX];
1159 struct list_head thread_group;
1160
1161 struct completion *vfork_done; /* for vfork() */
1162 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1163 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1164
1165 cputime_t utime, stime, utimescaled, stimescaled;
1166 cputime_t gtime;
1167 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1168 struct cputime prev_cputime;
1169 #endif
1170 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1171 seqlock_t vtime_seqlock;
1172 unsigned long long vtime_snap;
1173 enum {
1174 VTIME_SLEEPING = 0,
1175 VTIME_USER,
1176 VTIME_SYS,
1177 } vtime_snap_whence;
1178 #endif
1179 unsigned long nvcsw, nivcsw; /* context switch counts */
1180 struct timespec start_time; /* monotonic time */
1181 struct timespec real_start_time; /* boot based time */
1182 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1183 unsigned long min_flt, maj_flt;
1184
1185 struct task_cputime cputime_expires;
1186 struct list_head cpu_timers[3];
1187
1188 /* process credentials */
1189 const struct cred __rcu *real_cred; /* objective and real subjective task
1190 * credentials (COW) */
1191 const struct cred __rcu *cred; /* effective (overridable) subjective task
1192 * credentials (COW) */
1193 char comm[TASK_COMM_LEN]; /* executable name excluding path
1194 - access with [gs]et_task_comm (which lock
1195 it with task_lock())
1196 - initialized normally by setup_new_exec */
1197 /* file system info */
1198 int link_count, total_link_count;
1199 #ifdef CONFIG_SYSVIPC
1200 /* ipc stuff */
1201 struct sysv_sem sysvsem;
1202 #endif
1203 #ifdef CONFIG_DETECT_HUNG_TASK
1204 /* hung task detection */
1205 unsigned long last_switch_count;
1206 #endif
1207 /* CPU-specific state of this task */
1208 struct thread_struct thread;
1209 /* filesystem information */
1210 struct fs_struct *fs;
1211 /* open file information */
1212 struct files_struct *files;
1213 /* namespaces */
1214 struct nsproxy *nsproxy;
1215 /* signal handlers */
1216 struct signal_struct *signal;
1217 struct sighand_struct *sighand;
1218
1219 sigset_t blocked, real_blocked;
1220 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1221 struct sigpending pending;
1222
1223 unsigned long sas_ss_sp;
1224 size_t sas_ss_size;
1225 int (*notifier)(void *priv);
1226 void *notifier_data;
1227 sigset_t *notifier_mask;
1228 struct callback_head *task_works;
1229
1230 struct audit_context *audit_context;
1231 #ifdef CONFIG_AUDITSYSCALL
1232 kuid_t loginuid;
1233 unsigned int sessionid;
1234 #endif
1235 struct seccomp seccomp;
1236
1237 /* Thread group tracking */
1238 u32 parent_exec_id;
1239 u32 self_exec_id;
1240 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1241 * mempolicy */
1242 spinlock_t alloc_lock;
1243
1244 /* Protection of the PI data structures: */
1245 raw_spinlock_t pi_lock;
1246
1247 #ifdef CONFIG_RT_MUTEXES
1248 /* PI waiters blocked on a rt_mutex held by this task */
1249 struct plist_head pi_waiters;
1250 /* Deadlock detection and priority inheritance handling */
1251 struct rt_mutex_waiter *pi_blocked_on;
1252 #endif
1253
1254 #ifdef CONFIG_DEBUG_MUTEXES
1255 /* mutex deadlock detection */
1256 struct mutex_waiter *blocked_on;
1257 #endif
1258 #ifdef CONFIG_TRACE_IRQFLAGS
1259 unsigned int irq_events;
1260 unsigned long hardirq_enable_ip;
1261 unsigned long hardirq_disable_ip;
1262 unsigned int hardirq_enable_event;
1263 unsigned int hardirq_disable_event;
1264 int hardirqs_enabled;
1265 int hardirq_context;
1266 unsigned long softirq_disable_ip;
1267 unsigned long softirq_enable_ip;
1268 unsigned int softirq_disable_event;
1269 unsigned int softirq_enable_event;
1270 int softirqs_enabled;
1271 int softirq_context;
1272 #endif
1273 #ifdef CONFIG_LOCKDEP
1274 # define MAX_LOCK_DEPTH 48UL
1275 u64 curr_chain_key;
1276 int lockdep_depth;
1277 unsigned int lockdep_recursion;
1278 struct held_lock held_locks[MAX_LOCK_DEPTH];
1279 gfp_t lockdep_reclaim_gfp;
1280 #endif
1281
1282 /* journalling filesystem info */
1283 void *journal_info;
1284
1285 /* stacked block device info */
1286 struct bio_list *bio_list;
1287
1288 #ifdef CONFIG_BLOCK
1289 /* stack plugging */
1290 struct blk_plug *plug;
1291 #endif
1292
1293 /* VM state */
1294 struct reclaim_state *reclaim_state;
1295
1296 struct backing_dev_info *backing_dev_info;
1297
1298 struct io_context *io_context;
1299
1300 unsigned long ptrace_message;
1301 siginfo_t *last_siginfo; /* For ptrace use. */
1302 struct task_io_accounting ioac;
1303 #if defined(CONFIG_TASK_XACCT)
1304 u64 acct_rss_mem1; /* accumulated rss usage */
1305 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1306 cputime_t acct_timexpd; /* stime + utime since last update */
1307 #endif
1308 #ifdef CONFIG_CPUSETS
1309 nodemask_t mems_allowed; /* Protected by alloc_lock */
1310 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
1311 int cpuset_mem_spread_rotor;
1312 int cpuset_slab_spread_rotor;
1313 #endif
1314 #ifdef CONFIG_CGROUPS
1315 /* Control Group info protected by css_set_lock */
1316 struct css_set __rcu *cgroups;
1317 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1318 struct list_head cg_list;
1319 #endif
1320 #ifdef CONFIG_FUTEX
1321 struct robust_list_head __user *robust_list;
1322 #ifdef CONFIG_COMPAT
1323 struct compat_robust_list_head __user *compat_robust_list;
1324 #endif
1325 struct list_head pi_state_list;
1326 struct futex_pi_state *pi_state_cache;
1327 #endif
1328 #ifdef CONFIG_PERF_EVENTS
1329 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1330 struct mutex perf_event_mutex;
1331 struct list_head perf_event_list;
1332 #endif
1333 #ifdef CONFIG_NUMA
1334 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1335 short il_next;
1336 short pref_node_fork;
1337 #endif
1338 #ifdef CONFIG_NUMA_BALANCING
1339 int numa_scan_seq;
1340 int numa_migrate_seq;
1341 unsigned int numa_scan_period;
1342 u64 node_stamp; /* migration stamp */
1343 struct callback_head numa_work;
1344 #endif /* CONFIG_NUMA_BALANCING */
1345
1346 struct rcu_head rcu;
1347
1348 /*
1349 * cache last used pipe for splice
1350 */
1351 struct pipe_inode_info *splice_pipe;
1352
1353 struct page_frag task_frag;
1354
1355 #ifdef CONFIG_TASK_DELAY_ACCT
1356 struct task_delay_info *delays;
1357 #endif
1358 #ifdef CONFIG_FAULT_INJECTION
1359 int make_it_fail;
1360 #endif
1361 /*
1362 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1363 * balance_dirty_pages() for some dirty throttling pause
1364 */
1365 int nr_dirtied;
1366 int nr_dirtied_pause;
1367 unsigned long dirty_paused_when; /* start of a write-and-pause period */
1368
1369 #ifdef CONFIG_LATENCYTOP
1370 int latency_record_count;
1371 struct latency_record latency_record[LT_SAVECOUNT];
1372 #endif
1373 /*
1374 * time slack values; these are used to round up poll() and
1375 * select() etc timeout values. These are in nanoseconds.
1376 */
1377 unsigned long timer_slack_ns;
1378 unsigned long default_timer_slack_ns;
1379
1380 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1381 /* Index of current stored address in ret_stack */
1382 int curr_ret_stack;
1383 /* Stack of return addresses for return function tracing */
1384 struct ftrace_ret_stack *ret_stack;
1385 /* time stamp for last schedule */
1386 unsigned long long ftrace_timestamp;
1387 /*
1388 * Number of functions that haven't been traced
1389 * because of depth overrun.
1390 */
1391 atomic_t trace_overrun;
1392 /* Pause for the tracing */
1393 atomic_t tracing_graph_pause;
1394 #endif
1395 #ifdef CONFIG_TRACING
1396 /* state flags for use by tracers */
1397 unsigned long trace;
1398 /* bitmask and counter of trace recursion */
1399 unsigned long trace_recursion;
1400 #endif /* CONFIG_TRACING */
1401 #ifdef CONFIG_MEMCG /* memcg uses this to do batch job */
1402 struct memcg_batch_info {
1403 int do_batch; /* incremented when batch uncharge started */
1404 struct mem_cgroup *memcg; /* target memcg of uncharge */
1405 unsigned long nr_pages; /* uncharged usage */
1406 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
1407 } memcg_batch;
1408 unsigned int memcg_kmem_skip_account;
1409 #endif
1410 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1411 atomic_t ptrace_bp_refcnt;
1412 #endif
1413 #ifdef CONFIG_UPROBES
1414 struct uprobe_task *utask;
1415 #endif
1416 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1417 unsigned int sequential_io;
1418 unsigned int sequential_io_avg;
1419 #endif
1420 };
1421
1422 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1423 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1424
1425 #ifdef CONFIG_NUMA_BALANCING
1426 extern void task_numa_fault(int node, int pages, bool migrated);
1427 extern void set_numabalancing_state(bool enabled);
1428 #else
1429 static inline void task_numa_fault(int node, int pages, bool migrated)
1430 {
1431 }
1432 static inline void set_numabalancing_state(bool enabled)
1433 {
1434 }
1435 #endif
1436
1437 static inline struct pid *task_pid(struct task_struct *task)
1438 {
1439 return task->pids[PIDTYPE_PID].pid;
1440 }
1441
1442 static inline struct pid *task_tgid(struct task_struct *task)
1443 {
1444 return task->group_leader->pids[PIDTYPE_PID].pid;
1445 }
1446
1447 /*
1448 * Without tasklist or rcu lock it is not safe to dereference
1449 * the result of task_pgrp/task_session even if task == current,
1450 * we can race with another thread doing sys_setsid/sys_setpgid.
1451 */
1452 static inline struct pid *task_pgrp(struct task_struct *task)
1453 {
1454 return task->group_leader->pids[PIDTYPE_PGID].pid;
1455 }
1456
1457 static inline struct pid *task_session(struct task_struct *task)
1458 {
1459 return task->group_leader->pids[PIDTYPE_SID].pid;
1460 }
1461
1462 struct pid_namespace;
1463
1464 /*
1465 * the helpers to get the task's different pids as they are seen
1466 * from various namespaces
1467 *
1468 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1469 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1470 * current.
1471 * task_xid_nr_ns() : id seen from the ns specified;
1472 *
1473 * set_task_vxid() : assigns a virtual id to a task;
1474 *
1475 * see also pid_nr() etc in include/linux/pid.h
1476 */
1477 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1478 struct pid_namespace *ns);
1479
1480 static inline pid_t task_pid_nr(struct task_struct *tsk)
1481 {
1482 return tsk->pid;
1483 }
1484
1485 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1486 struct pid_namespace *ns)
1487 {
1488 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1489 }
1490
1491 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1492 {
1493 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1494 }
1495
1496
1497 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1498 {
1499 return tsk->tgid;
1500 }
1501
1502 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1503
1504 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1505 {
1506 return pid_vnr(task_tgid(tsk));
1507 }
1508
1509
1510 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1511 struct pid_namespace *ns)
1512 {
1513 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1514 }
1515
1516 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1517 {
1518 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1519 }
1520
1521
1522 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1523 struct pid_namespace *ns)
1524 {
1525 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1526 }
1527
1528 static inline pid_t task_session_vnr(struct task_struct *tsk)
1529 {
1530 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1531 }
1532
1533 /* obsolete, do not use */
1534 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1535 {
1536 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1537 }
1538
1539 /**
1540 * pid_alive - check that a task structure is not stale
1541 * @p: Task structure to be checked.
1542 *
1543 * Test if a process is not yet dead (at most zombie state)
1544 * If pid_alive fails, then pointers within the task structure
1545 * can be stale and must not be dereferenced.
1546 */
1547 static inline int pid_alive(struct task_struct *p)
1548 {
1549 return p->pids[PIDTYPE_PID].pid != NULL;
1550 }
1551
1552 /**
1553 * is_global_init - check if a task structure is init
1554 * @tsk: Task structure to be checked.
1555 *
1556 * Check if a task structure is the first user space task the kernel created.
1557 */
1558 static inline int is_global_init(struct task_struct *tsk)
1559 {
1560 return tsk->pid == 1;
1561 }
1562
1563 extern struct pid *cad_pid;
1564
1565 extern void free_task(struct task_struct *tsk);
1566 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1567
1568 extern void __put_task_struct(struct task_struct *t);
1569
1570 static inline void put_task_struct(struct task_struct *t)
1571 {
1572 if (atomic_dec_and_test(&t->usage))
1573 __put_task_struct(t);
1574 }
1575
1576 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1577 extern void task_cputime(struct task_struct *t,
1578 cputime_t *utime, cputime_t *stime);
1579 extern void task_cputime_scaled(struct task_struct *t,
1580 cputime_t *utimescaled, cputime_t *stimescaled);
1581 extern cputime_t task_gtime(struct task_struct *t);
1582 #else
1583 static inline void task_cputime(struct task_struct *t,
1584 cputime_t *utime, cputime_t *stime)
1585 {
1586 if (utime)
1587 *utime = t->utime;
1588 if (stime)
1589 *stime = t->stime;
1590 }
1591
1592 static inline void task_cputime_scaled(struct task_struct *t,
1593 cputime_t *utimescaled,
1594 cputime_t *stimescaled)
1595 {
1596 if (utimescaled)
1597 *utimescaled = t->utimescaled;
1598 if (stimescaled)
1599 *stimescaled = t->stimescaled;
1600 }
1601
1602 static inline cputime_t task_gtime(struct task_struct *t)
1603 {
1604 return t->gtime;
1605 }
1606 #endif
1607 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1608 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1609
1610 /*
1611 * Per process flags
1612 */
1613 #define PF_EXITING 0x00000004 /* getting shut down */
1614 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1615 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1616 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1617 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1618 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1619 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1620 #define PF_DUMPCORE 0x00000200 /* dumped core */
1621 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1622 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1623 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1624 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1625 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
1626 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1627 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1628 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1629 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1630 #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
1631 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1632 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1633 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1634 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1635 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1636 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1637 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
1638 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1639 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1640 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1641 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1642
1643 /*
1644 * Only the _current_ task can read/write to tsk->flags, but other
1645 * tasks can access tsk->flags in readonly mode for example
1646 * with tsk_used_math (like during threaded core dumping).
1647 * There is however an exception to this rule during ptrace
1648 * or during fork: the ptracer task is allowed to write to the
1649 * child->flags of its traced child (same goes for fork, the parent
1650 * can write to the child->flags), because we're guaranteed the
1651 * child is not running and in turn not changing child->flags
1652 * at the same time the parent does it.
1653 */
1654 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1655 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1656 #define clear_used_math() clear_stopped_child_used_math(current)
1657 #define set_used_math() set_stopped_child_used_math(current)
1658 #define conditional_stopped_child_used_math(condition, child) \
1659 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1660 #define conditional_used_math(condition) \
1661 conditional_stopped_child_used_math(condition, current)
1662 #define copy_to_stopped_child_used_math(child) \
1663 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1664 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1665 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1666 #define used_math() tsk_used_math(current)
1667
1668 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags */
1669 static inline gfp_t memalloc_noio_flags(gfp_t flags)
1670 {
1671 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
1672 flags &= ~__GFP_IO;
1673 return flags;
1674 }
1675
1676 static inline unsigned int memalloc_noio_save(void)
1677 {
1678 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
1679 current->flags |= PF_MEMALLOC_NOIO;
1680 return flags;
1681 }
1682
1683 static inline void memalloc_noio_restore(unsigned int flags)
1684 {
1685 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
1686 }
1687
1688 /*
1689 * task->jobctl flags
1690 */
1691 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
1692
1693 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
1694 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
1695 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
1696 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
1697 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
1698 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
1699 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
1700
1701 #define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT)
1702 #define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT)
1703 #define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT)
1704 #define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT)
1705 #define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT)
1706 #define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT)
1707 #define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT)
1708
1709 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
1710 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
1711
1712 extern bool task_set_jobctl_pending(struct task_struct *task,
1713 unsigned int mask);
1714 extern void task_clear_jobctl_trapping(struct task_struct *task);
1715 extern void task_clear_jobctl_pending(struct task_struct *task,
1716 unsigned int mask);
1717
1718 #ifdef CONFIG_PREEMPT_RCU
1719
1720 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1721 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1722
1723 static inline void rcu_copy_process(struct task_struct *p)
1724 {
1725 p->rcu_read_lock_nesting = 0;
1726 p->rcu_read_unlock_special = 0;
1727 #ifdef CONFIG_TREE_PREEMPT_RCU
1728 p->rcu_blocked_node = NULL;
1729 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1730 #ifdef CONFIG_RCU_BOOST
1731 p->rcu_boost_mutex = NULL;
1732 #endif /* #ifdef CONFIG_RCU_BOOST */
1733 INIT_LIST_HEAD(&p->rcu_node_entry);
1734 }
1735
1736 #else
1737
1738 static inline void rcu_copy_process(struct task_struct *p)
1739 {
1740 }
1741
1742 #endif
1743
1744 static inline void tsk_restore_flags(struct task_struct *task,
1745 unsigned long orig_flags, unsigned long flags)
1746 {
1747 task->flags &= ~flags;
1748 task->flags |= orig_flags & flags;
1749 }
1750
1751 #ifdef CONFIG_SMP
1752 extern void do_set_cpus_allowed(struct task_struct *p,
1753 const struct cpumask *new_mask);
1754
1755 extern int set_cpus_allowed_ptr(struct task_struct *p,
1756 const struct cpumask *new_mask);
1757 #else
1758 static inline void do_set_cpus_allowed(struct task_struct *p,
1759 const struct cpumask *new_mask)
1760 {
1761 }
1762 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1763 const struct cpumask *new_mask)
1764 {
1765 if (!cpumask_test_cpu(0, new_mask))
1766 return -EINVAL;
1767 return 0;
1768 }
1769 #endif
1770
1771 #ifdef CONFIG_NO_HZ_COMMON
1772 void calc_load_enter_idle(void);
1773 void calc_load_exit_idle(void);
1774 #else
1775 static inline void calc_load_enter_idle(void) { }
1776 static inline void calc_load_exit_idle(void) { }
1777 #endif /* CONFIG_NO_HZ_COMMON */
1778
1779 #ifndef CONFIG_CPUMASK_OFFSTACK
1780 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1781 {
1782 return set_cpus_allowed_ptr(p, &new_mask);
1783 }
1784 #endif
1785
1786 /*
1787 * Do not use outside of architecture code which knows its limitations.
1788 *
1789 * sched_clock() has no promise of monotonicity or bounded drift between
1790 * CPUs, use (which you should not) requires disabling IRQs.
1791 *
1792 * Please use one of the three interfaces below.
1793 */
1794 extern unsigned long long notrace sched_clock(void);
1795 /*
1796 * See the comment in kernel/sched/clock.c
1797 */
1798 extern u64 cpu_clock(int cpu);
1799 extern u64 local_clock(void);
1800 extern u64 sched_clock_cpu(int cpu);
1801
1802
1803 extern void sched_clock_init(void);
1804
1805 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1806 static inline void sched_clock_tick(void)
1807 {
1808 }
1809
1810 static inline void sched_clock_idle_sleep_event(void)
1811 {
1812 }
1813
1814 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1815 {
1816 }
1817 #else
1818 /*
1819 * Architectures can set this to 1 if they have specified
1820 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1821 * but then during bootup it turns out that sched_clock()
1822 * is reliable after all:
1823 */
1824 extern int sched_clock_stable;
1825
1826 extern void sched_clock_tick(void);
1827 extern void sched_clock_idle_sleep_event(void);
1828 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1829 #endif
1830
1831 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1832 /*
1833 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
1834 * The reason for this explicit opt-in is not to have perf penalty with
1835 * slow sched_clocks.
1836 */
1837 extern void enable_sched_clock_irqtime(void);
1838 extern void disable_sched_clock_irqtime(void);
1839 #else
1840 static inline void enable_sched_clock_irqtime(void) {}
1841 static inline void disable_sched_clock_irqtime(void) {}
1842 #endif
1843
1844 extern unsigned long long
1845 task_sched_runtime(struct task_struct *task);
1846
1847 /* sched_exec is called by processes performing an exec */
1848 #ifdef CONFIG_SMP
1849 extern void sched_exec(void);
1850 #else
1851 #define sched_exec() {}
1852 #endif
1853
1854 extern void sched_clock_idle_sleep_event(void);
1855 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1856
1857 #ifdef CONFIG_HOTPLUG_CPU
1858 extern void idle_task_exit(void);
1859 #else
1860 static inline void idle_task_exit(void) {}
1861 #endif
1862
1863 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
1864 extern void wake_up_nohz_cpu(int cpu);
1865 #else
1866 static inline void wake_up_nohz_cpu(int cpu) { }
1867 #endif
1868
1869 #ifdef CONFIG_NO_HZ_FULL
1870 extern bool sched_can_stop_tick(void);
1871 extern u64 scheduler_tick_max_deferment(void);
1872 #else
1873 static inline bool sched_can_stop_tick(void) { return false; }
1874 #endif
1875
1876 #ifdef CONFIG_SCHED_AUTOGROUP
1877 extern void sched_autogroup_create_attach(struct task_struct *p);
1878 extern void sched_autogroup_detach(struct task_struct *p);
1879 extern void sched_autogroup_fork(struct signal_struct *sig);
1880 extern void sched_autogroup_exit(struct signal_struct *sig);
1881 #ifdef CONFIG_PROC_FS
1882 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
1883 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
1884 #endif
1885 #else
1886 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
1887 static inline void sched_autogroup_detach(struct task_struct *p) { }
1888 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
1889 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
1890 #endif
1891
1892 extern bool yield_to(struct task_struct *p, bool preempt);
1893 extern void set_user_nice(struct task_struct *p, long nice);
1894 extern int task_prio(const struct task_struct *p);
1895 extern int task_nice(const struct task_struct *p);
1896 extern int can_nice(const struct task_struct *p, const int nice);
1897 extern int task_curr(const struct task_struct *p);
1898 extern int idle_cpu(int cpu);
1899 extern int sched_setscheduler(struct task_struct *, int,
1900 const struct sched_param *);
1901 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1902 const struct sched_param *);
1903 extern struct task_struct *idle_task(int cpu);
1904 /**
1905 * is_idle_task - is the specified task an idle task?
1906 * @p: the task in question.
1907 */
1908 static inline bool is_idle_task(const struct task_struct *p)
1909 {
1910 return p->pid == 0;
1911 }
1912 extern struct task_struct *curr_task(int cpu);
1913 extern void set_curr_task(int cpu, struct task_struct *p);
1914
1915 void yield(void);
1916
1917 /*
1918 * The default (Linux) execution domain.
1919 */
1920 extern struct exec_domain default_exec_domain;
1921
1922 union thread_union {
1923 struct thread_info thread_info;
1924 unsigned long stack[THREAD_SIZE/sizeof(long)];
1925 };
1926
1927 #ifndef __HAVE_ARCH_KSTACK_END
1928 static inline int kstack_end(void *addr)
1929 {
1930 /* Reliable end of stack detection:
1931 * Some APM bios versions misalign the stack
1932 */
1933 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1934 }
1935 #endif
1936
1937 extern union thread_union init_thread_union;
1938 extern struct task_struct init_task;
1939
1940 extern struct mm_struct init_mm;
1941
1942 extern struct pid_namespace init_pid_ns;
1943
1944 /*
1945 * find a task by one of its numerical ids
1946 *
1947 * find_task_by_pid_ns():
1948 * finds a task by its pid in the specified namespace
1949 * find_task_by_vpid():
1950 * finds a task by its virtual pid
1951 *
1952 * see also find_vpid() etc in include/linux/pid.h
1953 */
1954
1955 extern struct task_struct *find_task_by_vpid(pid_t nr);
1956 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1957 struct pid_namespace *ns);
1958
1959 extern void __set_special_pids(struct pid *pid);
1960
1961 /* per-UID process charging. */
1962 extern struct user_struct * alloc_uid(kuid_t);
1963 static inline struct user_struct *get_uid(struct user_struct *u)
1964 {
1965 atomic_inc(&u->__count);
1966 return u;
1967 }
1968 extern void free_uid(struct user_struct *);
1969
1970 #include <asm/current.h>
1971
1972 extern void xtime_update(unsigned long ticks);
1973
1974 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1975 extern int wake_up_process(struct task_struct *tsk);
1976 extern void wake_up_new_task(struct task_struct *tsk);
1977 #ifdef CONFIG_SMP
1978 extern void kick_process(struct task_struct *tsk);
1979 #else
1980 static inline void kick_process(struct task_struct *tsk) { }
1981 #endif
1982 extern void sched_fork(struct task_struct *p);
1983 extern void sched_dead(struct task_struct *p);
1984
1985 extern void proc_caches_init(void);
1986 extern void flush_signals(struct task_struct *);
1987 extern void __flush_signals(struct task_struct *);
1988 extern void ignore_signals(struct task_struct *);
1989 extern void flush_signal_handlers(struct task_struct *, int force_default);
1990 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1991
1992 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1993 {
1994 unsigned long flags;
1995 int ret;
1996
1997 spin_lock_irqsave(&tsk->sighand->siglock, flags);
1998 ret = dequeue_signal(tsk, mask, info);
1999 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2000
2001 return ret;
2002 }
2003
2004 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2005 sigset_t *mask);
2006 extern void unblock_all_signals(void);
2007 extern void release_task(struct task_struct * p);
2008 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2009 extern int force_sigsegv(int, struct task_struct *);
2010 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2011 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2012 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2013 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2014 const struct cred *, u32);
2015 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2016 extern int kill_pid(struct pid *pid, int sig, int priv);
2017 extern int kill_proc_info(int, struct siginfo *, pid_t);
2018 extern __must_check bool do_notify_parent(struct task_struct *, int);
2019 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2020 extern void force_sig(int, struct task_struct *);
2021 extern int send_sig(int, struct task_struct *, int);
2022 extern int zap_other_threads(struct task_struct *p);
2023 extern struct sigqueue *sigqueue_alloc(void);
2024 extern void sigqueue_free(struct sigqueue *);
2025 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2026 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2027
2028 static inline void restore_saved_sigmask(void)
2029 {
2030 if (test_and_clear_restore_sigmask())
2031 __set_current_blocked(&current->saved_sigmask);
2032 }
2033
2034 static inline sigset_t *sigmask_to_save(void)
2035 {
2036 sigset_t *res = &current->blocked;
2037 if (unlikely(test_restore_sigmask()))
2038 res = &current->saved_sigmask;
2039 return res;
2040 }
2041
2042 static inline int kill_cad_pid(int sig, int priv)
2043 {
2044 return kill_pid(cad_pid, sig, priv);
2045 }
2046
2047 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2048 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2049 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2050 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2051
2052 /*
2053 * True if we are on the alternate signal stack.
2054 */
2055 static inline int on_sig_stack(unsigned long sp)
2056 {
2057 #ifdef CONFIG_STACK_GROWSUP
2058 return sp >= current->sas_ss_sp &&
2059 sp - current->sas_ss_sp < current->sas_ss_size;
2060 #else
2061 return sp > current->sas_ss_sp &&
2062 sp - current->sas_ss_sp <= current->sas_ss_size;
2063 #endif
2064 }
2065
2066 static inline int sas_ss_flags(unsigned long sp)
2067 {
2068 return (current->sas_ss_size == 0 ? SS_DISABLE
2069 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2070 }
2071
2072 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2073 {
2074 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2075 #ifdef CONFIG_STACK_GROWSUP
2076 return current->sas_ss_sp;
2077 #else
2078 return current->sas_ss_sp + current->sas_ss_size;
2079 #endif
2080 return sp;
2081 }
2082
2083 /*
2084 * Routines for handling mm_structs
2085 */
2086 extern struct mm_struct * mm_alloc(void);
2087
2088 /* mmdrop drops the mm and the page tables */
2089 extern void __mmdrop(struct mm_struct *);
2090 static inline void mmdrop(struct mm_struct * mm)
2091 {
2092 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2093 __mmdrop(mm);
2094 }
2095
2096 /* mmput gets rid of the mappings and all user-space */
2097 extern void mmput(struct mm_struct *);
2098 /* Grab a reference to a task's mm, if it is not already going away */
2099 extern struct mm_struct *get_task_mm(struct task_struct *task);
2100 /*
2101 * Grab a reference to a task's mm, if it is not already going away
2102 * and ptrace_may_access with the mode parameter passed to it
2103 * succeeds.
2104 */
2105 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2106 /* Remove the current tasks stale references to the old mm_struct */
2107 extern void mm_release(struct task_struct *, struct mm_struct *);
2108 /* Allocate a new mm structure and copy contents from tsk->mm */
2109 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2110
2111 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2112 struct task_struct *);
2113 extern void flush_thread(void);
2114 extern void exit_thread(void);
2115
2116 extern void exit_files(struct task_struct *);
2117 extern void __cleanup_sighand(struct sighand_struct *);
2118
2119 extern void exit_itimers(struct signal_struct *);
2120 extern void flush_itimer_signals(void);
2121
2122 extern void do_group_exit(int);
2123
2124 extern int allow_signal(int);
2125 extern int disallow_signal(int);
2126
2127 extern int do_execve(const char *,
2128 const char __user * const __user *,
2129 const char __user * const __user *);
2130 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2131 struct task_struct *fork_idle(int);
2132 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2133
2134 extern void set_task_comm(struct task_struct *tsk, char *from);
2135 extern char *get_task_comm(char *to, struct task_struct *tsk);
2136
2137 #ifdef CONFIG_SMP
2138 void scheduler_ipi(void);
2139 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2140 #else
2141 static inline void scheduler_ipi(void) { }
2142 static inline unsigned long wait_task_inactive(struct task_struct *p,
2143 long match_state)
2144 {
2145 return 1;
2146 }
2147 #endif
2148
2149 #define next_task(p) \
2150 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2151
2152 #define for_each_process(p) \
2153 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2154
2155 extern bool current_is_single_threaded(void);
2156
2157 /*
2158 * Careful: do_each_thread/while_each_thread is a double loop so
2159 * 'break' will not work as expected - use goto instead.
2160 */
2161 #define do_each_thread(g, t) \
2162 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2163
2164 #define while_each_thread(g, t) \
2165 while ((t = next_thread(t)) != g)
2166
2167 static inline int get_nr_threads(struct task_struct *tsk)
2168 {
2169 return tsk->signal->nr_threads;
2170 }
2171
2172 static inline bool thread_group_leader(struct task_struct *p)
2173 {
2174 return p->exit_signal >= 0;
2175 }
2176
2177 /* Do to the insanities of de_thread it is possible for a process
2178 * to have the pid of the thread group leader without actually being
2179 * the thread group leader. For iteration through the pids in proc
2180 * all we care about is that we have a task with the appropriate
2181 * pid, we don't actually care if we have the right task.
2182 */
2183 static inline int has_group_leader_pid(struct task_struct *p)
2184 {
2185 return p->pid == p->tgid;
2186 }
2187
2188 static inline
2189 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2190 {
2191 return p1->tgid == p2->tgid;
2192 }
2193
2194 static inline struct task_struct *next_thread(const struct task_struct *p)
2195 {
2196 return list_entry_rcu(p->thread_group.next,
2197 struct task_struct, thread_group);
2198 }
2199
2200 static inline int thread_group_empty(struct task_struct *p)
2201 {
2202 return list_empty(&p->thread_group);
2203 }
2204
2205 #define delay_group_leader(p) \
2206 (thread_group_leader(p) && !thread_group_empty(p))
2207
2208 /*
2209 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2210 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2211 * pins the final release of task.io_context. Also protects ->cpuset and
2212 * ->cgroup.subsys[]. And ->vfork_done.
2213 *
2214 * Nests both inside and outside of read_lock(&tasklist_lock).
2215 * It must not be nested with write_lock_irq(&tasklist_lock),
2216 * neither inside nor outside.
2217 */
2218 static inline void task_lock(struct task_struct *p)
2219 {
2220 spin_lock(&p->alloc_lock);
2221 }
2222
2223 static inline void task_unlock(struct task_struct *p)
2224 {
2225 spin_unlock(&p->alloc_lock);
2226 }
2227
2228 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2229 unsigned long *flags);
2230
2231 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2232 unsigned long *flags)
2233 {
2234 struct sighand_struct *ret;
2235
2236 ret = __lock_task_sighand(tsk, flags);
2237 (void)__cond_lock(&tsk->sighand->siglock, ret);
2238 return ret;
2239 }
2240
2241 static inline void unlock_task_sighand(struct task_struct *tsk,
2242 unsigned long *flags)
2243 {
2244 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2245 }
2246
2247 #ifdef CONFIG_CGROUPS
2248 static inline void threadgroup_change_begin(struct task_struct *tsk)
2249 {
2250 down_read(&tsk->signal->group_rwsem);
2251 }
2252 static inline void threadgroup_change_end(struct task_struct *tsk)
2253 {
2254 up_read(&tsk->signal->group_rwsem);
2255 }
2256
2257 /**
2258 * threadgroup_lock - lock threadgroup
2259 * @tsk: member task of the threadgroup to lock
2260 *
2261 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter
2262 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
2263 * change ->group_leader/pid. This is useful for cases where the threadgroup
2264 * needs to stay stable across blockable operations.
2265 *
2266 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2267 * synchronization. While held, no new task will be added to threadgroup
2268 * and no existing live task will have its PF_EXITING set.
2269 *
2270 * de_thread() does threadgroup_change_{begin|end}() when a non-leader
2271 * sub-thread becomes a new leader.
2272 */
2273 static inline void threadgroup_lock(struct task_struct *tsk)
2274 {
2275 down_write(&tsk->signal->group_rwsem);
2276 }
2277
2278 /**
2279 * threadgroup_unlock - unlock threadgroup
2280 * @tsk: member task of the threadgroup to unlock
2281 *
2282 * Reverse threadgroup_lock().
2283 */
2284 static inline void threadgroup_unlock(struct task_struct *tsk)
2285 {
2286 up_write(&tsk->signal->group_rwsem);
2287 }
2288 #else
2289 static inline void threadgroup_change_begin(struct task_struct *tsk) {}
2290 static inline void threadgroup_change_end(struct task_struct *tsk) {}
2291 static inline void threadgroup_lock(struct task_struct *tsk) {}
2292 static inline void threadgroup_unlock(struct task_struct *tsk) {}
2293 #endif
2294
2295 #ifndef __HAVE_THREAD_FUNCTIONS
2296
2297 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2298 #define task_stack_page(task) ((task)->stack)
2299
2300 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2301 {
2302 *task_thread_info(p) = *task_thread_info(org);
2303 task_thread_info(p)->task = p;
2304 }
2305
2306 static inline unsigned long *end_of_stack(struct task_struct *p)
2307 {
2308 return (unsigned long *)(task_thread_info(p) + 1);
2309 }
2310
2311 #endif
2312
2313 static inline int object_is_on_stack(void *obj)
2314 {
2315 void *stack = task_stack_page(current);
2316
2317 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2318 }
2319
2320 extern void thread_info_cache_init(void);
2321
2322 #ifdef CONFIG_DEBUG_STACK_USAGE
2323 static inline unsigned long stack_not_used(struct task_struct *p)
2324 {
2325 unsigned long *n = end_of_stack(p);
2326
2327 do { /* Skip over canary */
2328 n++;
2329 } while (!*n);
2330
2331 return (unsigned long)n - (unsigned long)end_of_stack(p);
2332 }
2333 #endif
2334
2335 /* set thread flags in other task's structures
2336 * - see asm/thread_info.h for TIF_xxxx flags available
2337 */
2338 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2339 {
2340 set_ti_thread_flag(task_thread_info(tsk), flag);
2341 }
2342
2343 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2344 {
2345 clear_ti_thread_flag(task_thread_info(tsk), flag);
2346 }
2347
2348 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2349 {
2350 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2351 }
2352
2353 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2354 {
2355 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2356 }
2357
2358 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2359 {
2360 return test_ti_thread_flag(task_thread_info(tsk), flag);
2361 }
2362
2363 static inline void set_tsk_need_resched(struct task_struct *tsk)
2364 {
2365 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2366 }
2367
2368 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2369 {
2370 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2371 }
2372
2373 static inline int test_tsk_need_resched(struct task_struct *tsk)
2374 {
2375 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2376 }
2377
2378 static inline int restart_syscall(void)
2379 {
2380 set_tsk_thread_flag(current, TIF_SIGPENDING);
2381 return -ERESTARTNOINTR;
2382 }
2383
2384 static inline int signal_pending(struct task_struct *p)
2385 {
2386 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2387 }
2388
2389 static inline int __fatal_signal_pending(struct task_struct *p)
2390 {
2391 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2392 }
2393
2394 static inline int fatal_signal_pending(struct task_struct *p)
2395 {
2396 return signal_pending(p) && __fatal_signal_pending(p);
2397 }
2398
2399 static inline int signal_pending_state(long state, struct task_struct *p)
2400 {
2401 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2402 return 0;
2403 if (!signal_pending(p))
2404 return 0;
2405
2406 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2407 }
2408
2409 static inline int need_resched(void)
2410 {
2411 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2412 }
2413
2414 /*
2415 * cond_resched() and cond_resched_lock(): latency reduction via
2416 * explicit rescheduling in places that are safe. The return
2417 * value indicates whether a reschedule was done in fact.
2418 * cond_resched_lock() will drop the spinlock before scheduling,
2419 * cond_resched_softirq() will enable bhs before scheduling.
2420 */
2421 extern int _cond_resched(void);
2422
2423 #define cond_resched() ({ \
2424 __might_sleep(__FILE__, __LINE__, 0); \
2425 _cond_resched(); \
2426 })
2427
2428 extern int __cond_resched_lock(spinlock_t *lock);
2429
2430 #ifdef CONFIG_PREEMPT_COUNT
2431 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
2432 #else
2433 #define PREEMPT_LOCK_OFFSET 0
2434 #endif
2435
2436 #define cond_resched_lock(lock) ({ \
2437 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2438 __cond_resched_lock(lock); \
2439 })
2440
2441 extern int __cond_resched_softirq(void);
2442
2443 #define cond_resched_softirq() ({ \
2444 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
2445 __cond_resched_softirq(); \
2446 })
2447
2448 /*
2449 * Does a critical section need to be broken due to another
2450 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2451 * but a general need for low latency)
2452 */
2453 static inline int spin_needbreak(spinlock_t *lock)
2454 {
2455 #ifdef CONFIG_PREEMPT
2456 return spin_is_contended(lock);
2457 #else
2458 return 0;
2459 #endif
2460 }
2461
2462 /*
2463 * Idle thread specific functions to determine the need_resched
2464 * polling state. We have two versions, one based on TS_POLLING in
2465 * thread_info.status and one based on TIF_POLLING_NRFLAG in
2466 * thread_info.flags
2467 */
2468 #ifdef TS_POLLING
2469 static inline int tsk_is_polling(struct task_struct *p)
2470 {
2471 return task_thread_info(p)->status & TS_POLLING;
2472 }
2473 static inline void current_set_polling(void)
2474 {
2475 current_thread_info()->status |= TS_POLLING;
2476 }
2477
2478 static inline void current_clr_polling(void)
2479 {
2480 current_thread_info()->status &= ~TS_POLLING;
2481 smp_mb__after_clear_bit();
2482 }
2483 #elif defined(TIF_POLLING_NRFLAG)
2484 static inline int tsk_is_polling(struct task_struct *p)
2485 {
2486 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
2487 }
2488 static inline void current_set_polling(void)
2489 {
2490 set_thread_flag(TIF_POLLING_NRFLAG);
2491 }
2492
2493 static inline void current_clr_polling(void)
2494 {
2495 clear_thread_flag(TIF_POLLING_NRFLAG);
2496 }
2497 #else
2498 static inline int tsk_is_polling(struct task_struct *p) { return 0; }
2499 static inline void current_set_polling(void) { }
2500 static inline void current_clr_polling(void) { }
2501 #endif
2502
2503 /*
2504 * Thread group CPU time accounting.
2505 */
2506 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2507 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2508
2509 static inline void thread_group_cputime_init(struct signal_struct *sig)
2510 {
2511 raw_spin_lock_init(&sig->cputimer.lock);
2512 }
2513
2514 /*
2515 * Reevaluate whether the task has signals pending delivery.
2516 * Wake the task if so.
2517 * This is required every time the blocked sigset_t changes.
2518 * callers must hold sighand->siglock.
2519 */
2520 extern void recalc_sigpending_and_wake(struct task_struct *t);
2521 extern void recalc_sigpending(void);
2522
2523 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
2524
2525 static inline void signal_wake_up(struct task_struct *t, bool resume)
2526 {
2527 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
2528 }
2529 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
2530 {
2531 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
2532 }
2533
2534 /*
2535 * Wrappers for p->thread_info->cpu access. No-op on UP.
2536 */
2537 #ifdef CONFIG_SMP
2538
2539 static inline unsigned int task_cpu(const struct task_struct *p)
2540 {
2541 return task_thread_info(p)->cpu;
2542 }
2543
2544 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2545
2546 #else
2547
2548 static inline unsigned int task_cpu(const struct task_struct *p)
2549 {
2550 return 0;
2551 }
2552
2553 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2554 {
2555 }
2556
2557 #endif /* CONFIG_SMP */
2558
2559 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2560 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2561
2562 #ifdef CONFIG_CGROUP_SCHED
2563 extern struct task_group root_task_group;
2564 #endif /* CONFIG_CGROUP_SCHED */
2565
2566 extern int task_can_switch_user(struct user_struct *up,
2567 struct task_struct *tsk);
2568
2569 #ifdef CONFIG_TASK_XACCT
2570 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2571 {
2572 tsk->ioac.rchar += amt;
2573 }
2574
2575 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2576 {
2577 tsk->ioac.wchar += amt;
2578 }
2579
2580 static inline void inc_syscr(struct task_struct *tsk)
2581 {
2582 tsk->ioac.syscr++;
2583 }
2584
2585 static inline void inc_syscw(struct task_struct *tsk)
2586 {
2587 tsk->ioac.syscw++;
2588 }
2589 #else
2590 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2591 {
2592 }
2593
2594 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2595 {
2596 }
2597
2598 static inline void inc_syscr(struct task_struct *tsk)
2599 {
2600 }
2601
2602 static inline void inc_syscw(struct task_struct *tsk)
2603 {
2604 }
2605 #endif
2606
2607 #ifndef TASK_SIZE_OF
2608 #define TASK_SIZE_OF(tsk) TASK_SIZE
2609 #endif
2610
2611 #ifdef CONFIG_MM_OWNER
2612 extern void mm_update_next_owner(struct mm_struct *mm);
2613 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2614 #else
2615 static inline void mm_update_next_owner(struct mm_struct *mm)
2616 {
2617 }
2618
2619 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2620 {
2621 }
2622 #endif /* CONFIG_MM_OWNER */
2623
2624 static inline unsigned long task_rlimit(const struct task_struct *tsk,
2625 unsigned int limit)
2626 {
2627 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2628 }
2629
2630 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2631 unsigned int limit)
2632 {
2633 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2634 }
2635
2636 static inline unsigned long rlimit(unsigned int limit)
2637 {
2638 return task_rlimit(current, limit);
2639 }
2640
2641 static inline unsigned long rlimit_max(unsigned int limit)
2642 {
2643 return task_rlimit_max(current, limit);
2644 }
2645
2646 #endif