import PULS_20160108
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 #include <uapi/linux/sched.h>
5
6
7 struct sched_param {
8 int sched_priority;
9 };
10
11 #include <asm/param.h> /* for HZ */
12
13 #include <linux/capability.h>
14 #include <linux/threads.h>
15 #include <linux/kernel.h>
16 #include <linux/types.h>
17 #include <linux/timex.h>
18 #include <linux/jiffies.h>
19 #include <linux/rbtree.h>
20 #include <linux/thread_info.h>
21 #include <linux/cpumask.h>
22 #include <linux/errno.h>
23 #include <linux/nodemask.h>
24 #include <linux/mm_types.h>
25
26 #include <asm/page.h>
27 #include <asm/ptrace.h>
28 #include <asm/cputime.h>
29
30 #include <linux/smp.h>
31 #include <linux/sem.h>
32 #include <linux/signal.h>
33 #include <linux/compiler.h>
34 #include <linux/completion.h>
35 #include <linux/pid.h>
36 #include <linux/percpu.h>
37 #include <linux/topology.h>
38 #include <linux/proportions.h>
39 #include <linux/seccomp.h>
40 #include <linux/rcupdate.h>
41 #include <linux/rculist.h>
42 #include <linux/rtmutex.h>
43
44 #include <linux/time.h>
45 #include <linux/param.h>
46 #include <linux/resource.h>
47 #include <linux/timer.h>
48 #include <linux/hrtimer.h>
49 #include <linux/task_io_accounting.h>
50 #include <linux/latencytop.h>
51 #include <linux/cred.h>
52 #include <linux/llist.h>
53 #include <linux/uidgid.h>
54 #include <linux/gfp.h>
55
56 #include <asm/processor.h>
57 #include <linux/rtpm_prio.h>
58
59 struct exec_domain;
60 struct futex_pi_state;
61 struct robust_list_head;
62 struct bio_list;
63 struct fs_struct;
64 struct perf_event_context;
65 struct blk_plug;
66
67 /*
68 * List of flags we want to share for kernel threads,
69 * if only because they are not used by them anyway.
70 */
71 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
72
73 /*
74 * These are the constant used to fake the fixed-point load-average
75 * counting. Some notes:
76 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
77 * a load-average precision of 10 bits integer + 11 bits fractional
78 * - if you want to count load-averages more often, you need more
79 * precision, or rounding will get you. With 2-second counting freq,
80 * the EXP_n values would be 1981, 2034 and 2043 if still using only
81 * 11 bit fractions.
82 */
83 extern unsigned long avenrun[]; /* Load averages */
84 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
85
86 #define FSHIFT 11 /* nr of bits of precision */
87 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
88 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
89 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
90 #define EXP_5 2014 /* 1/exp(5sec/5min) */
91 #define EXP_15 2037 /* 1/exp(5sec/15min) */
92
93 #define CALC_LOAD(load,exp,n) \
94 load *= exp; \
95 load += n*(FIXED_1-exp); \
96 load >>= FSHIFT;
97
98 extern unsigned long total_forks;
99 extern int nr_threads;
100 DECLARE_PER_CPU(unsigned long, process_counts);
101 extern int nr_processes(void);
102 extern unsigned long nr_running(void);
103 extern unsigned long nr_iowait(void);
104 extern unsigned long nr_iowait_cpu(int cpu);
105 extern unsigned long this_cpu_load(void);
106 extern unsigned long get_cpu_load(int cpu);
107 extern unsigned long long mt_get_thread_cputime(pid_t pid);
108 extern unsigned long long mt_get_cpu_idle(int cpu);
109 extern unsigned long long mt_sched_clock(void);
110 extern void calc_global_load(unsigned long ticks);
111 extern void update_cpu_load_nohz(void);
112
113 /* Notifier for when a task gets migrated to a new CPU */
114 struct task_migration_notifier {
115 struct task_struct *task;
116 int from_cpu;
117 int to_cpu;
118 };
119 extern void register_task_migration_notifier(struct notifier_block *n);
120
121 extern unsigned long get_parent_ip(unsigned long addr);
122
123 extern void dump_cpu_task(int cpu);
124
125 struct seq_file;
126 struct cfs_rq;
127 struct task_group;
128 #ifdef CONFIG_SCHED_DEBUG
129 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
130 extern void proc_sched_set_task(struct task_struct *p);
131 extern void
132 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
133 #endif
134
135 /*
136 * Task state bitmask. NOTE! These bits are also
137 * encoded in fs/proc/array.c: get_task_state().
138 *
139 * We have two separate sets of flags: task->state
140 * is about runnability, while task->exit_state are
141 * about the task exiting. Confusing, but this way
142 * modifying one set can't modify the other one by
143 * mistake.
144 */
145 #define TASK_RUNNING 0
146 #define TASK_INTERRUPTIBLE 1
147 #define TASK_UNINTERRUPTIBLE 2
148 #define __TASK_STOPPED 4
149 #define __TASK_TRACED 8
150 /* in tsk->exit_state */
151 #define EXIT_ZOMBIE 16
152 #define EXIT_DEAD 32
153 /* in tsk->state again */
154 #define TASK_DEAD 64
155 #define TASK_WAKEKILL 128
156 #define TASK_WAKING 256
157 #define TASK_PARKED 512
158 #define TASK_STATE_MAX 1024
159
160 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
161
162 extern char ___assert_task_state[1 - 2*!!(
163 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
164
165 /* Convenience macros for the sake of set_task_state */
166 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
167 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
168 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
169
170 /* Convenience macros for the sake of wake_up */
171 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
172 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
173
174 /* get_task_state() */
175 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
176 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
177 __TASK_TRACED)
178
179 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
180 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
181 #define task_is_dead(task) ((task)->exit_state != 0)
182 #define task_is_stopped_or_traced(task) \
183 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
184 #define task_contributes_to_load(task) \
185 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
186 (task->flags & PF_FROZEN) == 0)
187
188 #define __set_task_state(tsk, state_value) \
189 do { (tsk)->state = (state_value); } while (0)
190 #define set_task_state(tsk, state_value) \
191 set_mb((tsk)->state, (state_value))
192
193 /*
194 * set_current_state() includes a barrier so that the write of current->state
195 * is correctly serialised wrt the caller's subsequent test of whether to
196 * actually sleep:
197 *
198 * set_current_state(TASK_UNINTERRUPTIBLE);
199 * if (do_i_need_to_sleep())
200 * schedule();
201 *
202 * If the caller does not need such serialisation then use __set_current_state()
203 */
204 #define __set_current_state(state_value) \
205 do { current->state = (state_value); } while (0)
206 #define set_current_state(state_value) \
207 set_mb(current->state, (state_value))
208
209 /* Task command name length */
210 #define TASK_COMM_LEN 16
211
212 #include <linux/spinlock.h>
213
214 /*
215 * This serializes "schedule()" and also protects
216 * the run-queue from deletions/modifications (but
217 * _adding_ to the beginning of the run-queue has
218 * a separate lock).
219 */
220 extern rwlock_t tasklist_lock;
221 extern spinlock_t mmlist_lock;
222
223 struct task_struct;
224
225 #ifdef CONFIG_PROVE_RCU
226 extern int lockdep_tasklist_lock_is_held(void);
227 #endif /* #ifdef CONFIG_PROVE_RCU */
228
229 extern void sched_init(void);
230 extern void sched_init_smp(void);
231 extern asmlinkage void schedule_tail(struct task_struct *prev);
232 extern void init_idle(struct task_struct *idle, int cpu);
233 extern void init_idle_bootup_task(struct task_struct *idle);
234
235 extern int runqueue_is_locked(int cpu);
236
237 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
238 extern void nohz_balance_enter_idle(int cpu);
239 extern void set_cpu_sd_state_idle(void);
240 extern int get_nohz_timer_target(void);
241 #else
242 static inline void nohz_balance_enter_idle(int cpu) { }
243 static inline void set_cpu_sd_state_idle(void) { }
244 #endif
245
246 /*
247 * Only dump TASK_* tasks. (0 for all tasks)
248 */
249 extern void show_state_filter(unsigned long state_filter);
250
251 static inline void show_state(void)
252 {
253 show_state_filter(0);
254 }
255
256 extern void show_regs(struct pt_regs *);
257
258 /*
259 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
260 * task), SP is the stack pointer of the first frame that should be shown in the back
261 * trace (or NULL if the entire call-chain of the task should be shown).
262 */
263 extern void show_stack(struct task_struct *task, unsigned long *sp);
264
265 void io_schedule(void);
266 long io_schedule_timeout(long timeout);
267
268 extern void cpu_init (void);
269 extern void trap_init(void);
270 extern void update_process_times(int user);
271 extern void scheduler_tick(void);
272
273 extern void sched_show_task(struct task_struct *p);
274
275 #ifdef CONFIG_LOCKUP_DETECTOR
276 extern void touch_softlockup_watchdog(void);
277 extern void touch_softlockup_watchdog_sync(void);
278 extern void touch_all_softlockup_watchdogs(void);
279 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
280 void __user *buffer,
281 size_t *lenp, loff_t *ppos);
282 extern unsigned int softlockup_panic;
283 void lockup_detector_init(void);
284 #else
285 static inline void touch_softlockup_watchdog(void)
286 {
287 }
288 static inline void touch_softlockup_watchdog_sync(void)
289 {
290 }
291 static inline void touch_all_softlockup_watchdogs(void)
292 {
293 }
294 static inline void lockup_detector_init(void)
295 {
296 }
297 #endif
298
299 /* Attach to any functions which should be ignored in wchan output. */
300 #define __sched __attribute__((__section__(".sched.text")))
301
302 /* Linker adds these: start and end of __sched functions */
303 extern char __sched_text_start[], __sched_text_end[];
304
305 /* Is this address in the __sched functions? */
306 extern int in_sched_functions(unsigned long addr);
307
308 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
309 extern signed long schedule_timeout(signed long timeout);
310 extern signed long schedule_timeout_interruptible(signed long timeout);
311 extern signed long schedule_timeout_killable(signed long timeout);
312 extern signed long schedule_timeout_uninterruptible(signed long timeout);
313 asmlinkage void schedule(void);
314 extern void schedule_preempt_disabled(void);
315
316 struct nsproxy;
317 struct user_namespace;
318
319 #ifdef CONFIG_MMU
320 extern void arch_pick_mmap_layout(struct mm_struct *mm);
321 extern unsigned long
322 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
323 unsigned long, unsigned long);
324 extern unsigned long
325 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
326 unsigned long len, unsigned long pgoff,
327 unsigned long flags);
328 extern void arch_unmap_area(struct mm_struct *, unsigned long);
329 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
330 #else
331 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
332 #endif
333
334
335 extern void set_dumpable(struct mm_struct *mm, int value);
336 extern int get_dumpable(struct mm_struct *mm);
337
338 #define SUID_DUMP_DISABLE 0 /* No setuid dumping */
339 #define SUID_DUMP_USER 1 /* Dump as user of process */
340 #define SUID_DUMP_ROOT 2 /* Dump as root */
341
342 /* mm flags */
343 /* dumpable bits */
344 #define MMF_DUMPABLE 0 /* core dump is permitted */
345 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
346
347 #define MMF_DUMPABLE_BITS 2
348 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
349
350 /* coredump filter bits */
351 #define MMF_DUMP_ANON_PRIVATE 2
352 #define MMF_DUMP_ANON_SHARED 3
353 #define MMF_DUMP_MAPPED_PRIVATE 4
354 #define MMF_DUMP_MAPPED_SHARED 5
355 #define MMF_DUMP_ELF_HEADERS 6
356 #define MMF_DUMP_HUGETLB_PRIVATE 7
357 #define MMF_DUMP_HUGETLB_SHARED 8
358
359 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
360 #define MMF_DUMP_FILTER_BITS 7
361 #define MMF_DUMP_FILTER_MASK \
362 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
363 #define MMF_DUMP_FILTER_DEFAULT \
364 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
365 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
366
367 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
368 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
369 #else
370 # define MMF_DUMP_MASK_DEFAULT_ELF 0
371 #endif
372 /* leave room for more dump flags */
373 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
374 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
375 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
376
377 #define MMF_HAS_UPROBES 19 /* has uprobes */
378 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
379
380 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
381
382 struct sighand_struct {
383 atomic_t count;
384 struct k_sigaction action[_NSIG];
385 spinlock_t siglock;
386 wait_queue_head_t signalfd_wqh;
387 };
388
389 struct pacct_struct {
390 int ac_flag;
391 long ac_exitcode;
392 unsigned long ac_mem;
393 cputime_t ac_utime, ac_stime;
394 unsigned long ac_minflt, ac_majflt;
395 };
396
397 struct cpu_itimer {
398 cputime_t expires;
399 cputime_t incr;
400 u32 error;
401 u32 incr_error;
402 };
403
404 /**
405 * struct cputime - snaphsot of system and user cputime
406 * @utime: time spent in user mode
407 * @stime: time spent in system mode
408 *
409 * Gathers a generic snapshot of user and system time.
410 */
411 struct cputime {
412 cputime_t utime;
413 cputime_t stime;
414 };
415
416 /**
417 * struct task_cputime - collected CPU time counts
418 * @utime: time spent in user mode, in &cputime_t units
419 * @stime: time spent in kernel mode, in &cputime_t units
420 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
421 *
422 * This is an extension of struct cputime that includes the total runtime
423 * spent by the task from the scheduler point of view.
424 *
425 * As a result, this structure groups together three kinds of CPU time
426 * that are tracked for threads and thread groups. Most things considering
427 * CPU time want to group these counts together and treat all three
428 * of them in parallel.
429 */
430 struct task_cputime {
431 cputime_t utime;
432 cputime_t stime;
433 unsigned long long sum_exec_runtime;
434 };
435 /* Alternate field names when used to cache expirations. */
436 #define prof_exp stime
437 #define virt_exp utime
438 #define sched_exp sum_exec_runtime
439
440 #define INIT_CPUTIME \
441 (struct task_cputime) { \
442 .utime = 0, \
443 .stime = 0, \
444 .sum_exec_runtime = 0, \
445 }
446
447 /*
448 * Disable preemption until the scheduler is running.
449 * Reset by start_kernel()->sched_init()->init_idle().
450 *
451 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
452 * before the scheduler is active -- see should_resched().
453 */
454 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE)
455
456 /**
457 * struct thread_group_cputimer - thread group interval timer counts
458 * @cputime: thread group interval timers.
459 * @running: non-zero when there are timers running and
460 * @cputime receives updates.
461 * @lock: lock for fields in this struct.
462 *
463 * This structure contains the version of task_cputime, above, that is
464 * used for thread group CPU timer calculations.
465 */
466 struct thread_group_cputimer {
467 struct task_cputime cputime;
468 int running;
469 raw_spinlock_t lock;
470 };
471
472 #include <linux/rwsem.h>
473 struct autogroup;
474
475 /*
476 * NOTE! "signal_struct" does not have its own
477 * locking, because a shared signal_struct always
478 * implies a shared sighand_struct, so locking
479 * sighand_struct is always a proper superset of
480 * the locking of signal_struct.
481 */
482 struct signal_struct {
483 atomic_t sigcnt;
484 atomic_t live;
485 int nr_threads;
486 struct list_head thread_head;
487
488 wait_queue_head_t wait_chldexit; /* for wait4() */
489
490 /* current thread group signal load-balancing target: */
491 struct task_struct *curr_target;
492
493 /* shared signal handling: */
494 struct sigpending shared_pending;
495
496 /* thread group exit support */
497 int group_exit_code;
498 /* overloaded:
499 * - notify group_exit_task when ->count is equal to notify_count
500 * - everyone except group_exit_task is stopped during signal delivery
501 * of fatal signals, group_exit_task processes the signal.
502 */
503 int notify_count;
504 struct task_struct *group_exit_task;
505
506 /* thread group stop support, overloads group_exit_code too */
507 int group_stop_count;
508 unsigned int flags; /* see SIGNAL_* flags below */
509
510 /*
511 * PR_SET_CHILD_SUBREAPER marks a process, like a service
512 * manager, to re-parent orphan (double-forking) child processes
513 * to this process instead of 'init'. The service manager is
514 * able to receive SIGCHLD signals and is able to investigate
515 * the process until it calls wait(). All children of this
516 * process will inherit a flag if they should look for a
517 * child_subreaper process at exit.
518 */
519 unsigned int is_child_subreaper:1;
520 unsigned int has_child_subreaper:1;
521
522 /* POSIX.1b Interval Timers */
523 int posix_timer_id;
524 struct list_head posix_timers;
525
526 /* ITIMER_REAL timer for the process */
527 struct hrtimer real_timer;
528 struct pid *leader_pid;
529 ktime_t it_real_incr;
530
531 /*
532 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
533 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
534 * values are defined to 0 and 1 respectively
535 */
536 struct cpu_itimer it[2];
537
538 /*
539 * Thread group totals for process CPU timers.
540 * See thread_group_cputimer(), et al, for details.
541 */
542 struct thread_group_cputimer cputimer;
543
544 /* Earliest-expiration cache. */
545 struct task_cputime cputime_expires;
546
547 struct list_head cpu_timers[3];
548
549 struct pid *tty_old_pgrp;
550
551 /* boolean value for session group leader */
552 int leader;
553
554 struct tty_struct *tty; /* NULL if no tty */
555
556 #ifdef CONFIG_SCHED_AUTOGROUP
557 struct autogroup *autogroup;
558 #endif
559 /*
560 * Cumulative resource counters for dead threads in the group,
561 * and for reaped dead child processes forked by this group.
562 * Live threads maintain their own counters and add to these
563 * in __exit_signal, except for the group leader.
564 */
565 cputime_t utime, stime, cutime, cstime;
566 cputime_t gtime;
567 cputime_t cgtime;
568 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
569 struct cputime prev_cputime;
570 #endif
571 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
572 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
573 unsigned long inblock, oublock, cinblock, coublock;
574 unsigned long maxrss, cmaxrss;
575 struct task_io_accounting ioac;
576
577 /*
578 * Cumulative ns of schedule CPU time fo dead threads in the
579 * group, not including a zombie group leader, (This only differs
580 * from jiffies_to_ns(utime + stime) if sched_clock uses something
581 * other than jiffies.)
582 */
583 unsigned long long sum_sched_runtime;
584
585 /*
586 * We don't bother to synchronize most readers of this at all,
587 * because there is no reader checking a limit that actually needs
588 * to get both rlim_cur and rlim_max atomically, and either one
589 * alone is a single word that can safely be read normally.
590 * getrlimit/setrlimit use task_lock(current->group_leader) to
591 * protect this instead of the siglock, because they really
592 * have no need to disable irqs.
593 */
594 struct rlimit rlim[RLIM_NLIMITS];
595
596 #ifdef CONFIG_BSD_PROCESS_ACCT
597 struct pacct_struct pacct; /* per-process accounting information */
598 #endif
599 #ifdef CONFIG_TASKSTATS
600 struct taskstats *stats;
601 #endif
602 #ifdef CONFIG_AUDIT
603 unsigned audit_tty;
604 unsigned audit_tty_log_passwd;
605 struct tty_audit_buf *tty_audit_buf;
606 #endif
607 #ifdef CONFIG_CGROUPS
608 /*
609 * group_rwsem prevents new tasks from entering the threadgroup and
610 * member tasks from exiting,a more specifically, setting of
611 * PF_EXITING. fork and exit paths are protected with this rwsem
612 * using threadgroup_change_begin/end(). Users which require
613 * threadgroup to remain stable should use threadgroup_[un]lock()
614 * which also takes care of exec path. Currently, cgroup is the
615 * only user.
616 */
617 struct rw_semaphore group_rwsem;
618 #endif
619
620 oom_flags_t oom_flags;
621 short oom_score_adj; /* OOM kill score adjustment */
622 short oom_score_adj_min; /* OOM kill score adjustment min value.
623 * Only settable by CAP_SYS_RESOURCE. */
624
625 struct mutex cred_guard_mutex; /* guard against foreign influences on
626 * credential calculations
627 * (notably. ptrace) */
628 };
629
630 /*
631 * Bits in flags field of signal_struct.
632 */
633 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
634 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
635 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
636 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
637 /*
638 * Pending notifications to parent.
639 */
640 #define SIGNAL_CLD_STOPPED 0x00000010
641 #define SIGNAL_CLD_CONTINUED 0x00000020
642 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
643
644 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
645
646 /* If true, all threads except ->group_exit_task have pending SIGKILL */
647 static inline int signal_group_exit(const struct signal_struct *sig)
648 {
649 return (sig->flags & SIGNAL_GROUP_EXIT) ||
650 (sig->group_exit_task != NULL);
651 }
652
653 /*
654 * Some day this will be a full-fledged user tracking system..
655 */
656 struct user_struct {
657 atomic_t __count; /* reference count */
658 atomic_t processes; /* How many processes does this user have? */
659 atomic_t files; /* How many open files does this user have? */
660 atomic_t sigpending; /* How many pending signals does this user have? */
661 #ifdef CONFIG_INOTIFY_USER
662 atomic_t inotify_watches; /* How many inotify watches does this user have? */
663 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
664 #endif
665 #ifdef CONFIG_FANOTIFY
666 atomic_t fanotify_listeners;
667 #endif
668 #ifdef CONFIG_EPOLL
669 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
670 #endif
671 #ifdef CONFIG_POSIX_MQUEUE
672 /* protected by mq_lock */
673 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
674 #endif
675 unsigned long locked_shm; /* How many pages of mlocked shm ? */
676
677 #ifdef CONFIG_KEYS
678 struct key *uid_keyring; /* UID specific keyring */
679 struct key *session_keyring; /* UID's default session keyring */
680 #endif
681
682 /* Hash table maintenance information */
683 struct hlist_node uidhash_node;
684 kuid_t uid;
685
686 #ifdef CONFIG_PERF_EVENTS
687 atomic_long_t locked_vm;
688 #endif
689 };
690
691 extern int uids_sysfs_init(void);
692
693 extern struct user_struct *find_user(kuid_t);
694
695 extern struct user_struct root_user;
696 #define INIT_USER (&root_user)
697
698
699 struct backing_dev_info;
700 struct reclaim_state;
701
702 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
703 struct sched_info {
704 /* cumulative counters */
705 unsigned long pcount; /* # of times run on this cpu */
706 unsigned long long run_delay; /* time spent waiting on a runqueue */
707
708 /* timestamps */
709 unsigned long long last_arrival,/* when we last ran on a cpu */
710 last_queued; /* when we were last queued to run */
711 };
712 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
713
714 #ifdef CONFIG_TASK_DELAY_ACCT
715 struct task_delay_info {
716 spinlock_t lock;
717 unsigned int flags; /* Private per-task flags */
718
719 /* For each stat XXX, add following, aligned appropriately
720 *
721 * struct timespec XXX_start, XXX_end;
722 * u64 XXX_delay;
723 * u32 XXX_count;
724 *
725 * Atomicity of updates to XXX_delay, XXX_count protected by
726 * single lock above (split into XXX_lock if contention is an issue).
727 */
728
729 /*
730 * XXX_count is incremented on every XXX operation, the delay
731 * associated with the operation is added to XXX_delay.
732 * XXX_delay contains the accumulated delay time in nanoseconds.
733 */
734 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
735 u64 blkio_delay; /* wait for sync block io completion */
736 u64 swapin_delay; /* wait for swapin block io completion */
737 u32 blkio_count; /* total count of the number of sync block */
738 /* io operations performed */
739 u32 swapin_count; /* total count of the number of swapin block */
740 /* io operations performed */
741
742 struct timespec freepages_start, freepages_end;
743 u64 freepages_delay; /* wait for memory reclaim */
744 u32 freepages_count; /* total count of memory reclaim */
745 };
746 #endif /* CONFIG_TASK_DELAY_ACCT */
747
748 static inline int sched_info_on(void)
749 {
750 #ifdef CONFIG_SCHEDSTATS
751 return 1;
752 #elif defined(CONFIG_TASK_DELAY_ACCT)
753 extern int delayacct_on;
754 return delayacct_on;
755 #else
756 return 0;
757 #endif
758 }
759
760 enum cpu_idle_type {
761 CPU_IDLE,
762 CPU_NOT_IDLE,
763 CPU_NEWLY_IDLE,
764 CPU_MAX_IDLE_TYPES
765 };
766
767 /*
768 * Increase resolution of cpu_power calculations
769 */
770 #define SCHED_POWER_SHIFT 10
771 #define SCHED_POWER_SCALE (1L << SCHED_POWER_SHIFT)
772
773 /*
774 * sched-domains (multiprocessor balancing) declarations:
775 */
776 #ifdef CONFIG_SMP
777 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
778 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
779 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
780 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
781 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
782 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
783 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */
784
785 #ifdef CONFIG_HMP_PACK_SMALL_TASK
786 #define SD_SHARE_POWERLINE 0x0100 /* Domain members share power domain */
787 #endif /* CONFIG_HMP_PACK_SMALL_TASK */
788
789 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
790 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
791 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
792 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
793 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
794 #ifdef CONFIG_MTK_SCHED_CMP_TGS
795 #define SD_BALANCE_TG 0x4000 /* Balance for thread group */
796 #endif
797 #ifdef CONFIG_MTK_SCHED_CMP_PACK_SMALL_TASK
798 #define SD_SHARE_POWERLINE 0x8000 /* Domain members share power domain */
799 #endif
800
801 extern int __weak arch_sd_sibiling_asym_packing(void);
802
803 struct sched_domain_attr {
804 int relax_domain_level;
805 };
806
807 #define SD_ATTR_INIT (struct sched_domain_attr) { \
808 .relax_domain_level = -1, \
809 }
810
811 extern int sched_domain_level_max;
812
813 struct sched_group;
814
815 struct sched_domain {
816 /* These fields must be setup */
817 struct sched_domain *parent; /* top domain must be null terminated */
818 struct sched_domain *child; /* bottom domain must be null terminated */
819 struct sched_group *groups; /* the balancing groups of the domain */
820 unsigned long min_interval; /* Minimum balance interval ms */
821 unsigned long max_interval; /* Maximum balance interval ms */
822 unsigned int busy_factor; /* less balancing by factor if busy */
823 unsigned int imbalance_pct; /* No balance until over watermark */
824 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
825 unsigned int busy_idx;
826 unsigned int idle_idx;
827 unsigned int newidle_idx;
828 unsigned int wake_idx;
829 unsigned int forkexec_idx;
830 unsigned int smt_gain;
831
832 int nohz_idle; /* NOHZ IDLE status */
833 int flags; /* See SD_* */
834 int level;
835
836 /* Runtime fields. */
837 unsigned long last_balance; /* init to jiffies. units in jiffies */
838 unsigned int balance_interval; /* initialise to 1. units in ms. */
839 unsigned int nr_balance_failed; /* initialise to 0 */
840 #ifdef CONFIG_MT_LOAD_BALANCE_PROFILER
841 unsigned int mt_lbprof_nr_balance_failed; /* initialise to 0 */
842 #endif
843
844 u64 last_update;
845
846 #ifdef CONFIG_SCHEDSTATS
847 /* load_balance() stats */
848 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
849 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
850 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
851 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
852 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
853 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
854 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
855 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
856
857 /* Active load balancing */
858 unsigned int alb_count;
859 unsigned int alb_failed;
860 unsigned int alb_pushed;
861
862 /* SD_BALANCE_EXEC stats */
863 unsigned int sbe_count;
864 unsigned int sbe_balanced;
865 unsigned int sbe_pushed;
866
867 /* SD_BALANCE_FORK stats */
868 unsigned int sbf_count;
869 unsigned int sbf_balanced;
870 unsigned int sbf_pushed;
871
872 /* try_to_wake_up() stats */
873 unsigned int ttwu_wake_remote;
874 unsigned int ttwu_move_affine;
875 unsigned int ttwu_move_balance;
876 #endif
877 #ifdef CONFIG_SCHED_DEBUG
878 char *name;
879 #endif
880 union {
881 void *private; /* used during construction */
882 struct rcu_head rcu; /* used during destruction */
883 };
884
885 unsigned int span_weight;
886 /*
887 * Span of all CPUs in this domain.
888 *
889 * NOTE: this field is variable length. (Allocated dynamically
890 * by attaching extra space to the end of the structure,
891 * depending on how many CPUs the kernel has booted up with)
892 */
893 unsigned long span[0];
894 };
895
896 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
897 {
898 return to_cpumask(sd->span);
899 }
900
901 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
902 struct sched_domain_attr *dattr_new);
903
904 /* Allocate an array of sched domains, for partition_sched_domains(). */
905 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
906 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
907
908 bool cpus_share_cache(int this_cpu, int that_cpu);
909
910 struct clb_stats {
911 int ncpu; /* The number of CPU */
912 int ntask; /* The number of tasks */
913 int load_avg; /* Arithmetic average of task load ratio */
914 int cpu_capacity; /* Current CPU capacity */
915 int cpu_power; /* Max CPU capacity */
916 int acap; /* Available CPU capacity */
917 int scaled_acap; /* Scaled available CPU capacity */
918 int scaled_atask; /* Scaled available task */
919 int threshold; /* Dynamic threshold */
920 #ifdef CONFIG_SCHED_HMP_PRIO_FILTER
921 int nr_normal_prio_task; /* The number of normal-prio tasks */
922 int nr_dequeuing_low_prio; /* The number of dequeuing low-prio tasks */
923 #endif
924 };
925
926 #ifdef CONFIG_SCHED_HMP
927 struct hmp_domain {
928 struct cpumask cpus;
929 struct cpumask possible_cpus;
930 struct list_head hmp_domains;
931 };
932
933 #ifdef CONFIG_SCHED_HMP_ENHANCEMENT
934 #ifdef CONFIG_HMP_TRACER
935 struct hmp_statisic {
936 unsigned int nr_force_up; /* The number of task force up-migration */
937 unsigned int nr_force_down; /* The number of task force down-migration */
938 };
939 #endif /* CONFIG_HMP_TRACER */
940 #endif /* CONFIG_SCHED_HMP_ENHANCEMENT */
941 #endif /* CONFIG_SCHED_HMP */
942 #else /* CONFIG_SMP */
943
944 struct sched_domain_attr;
945
946 static inline void
947 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
948 struct sched_domain_attr *dattr_new)
949 {
950 }
951
952 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
953 {
954 return true;
955 }
956
957 #endif /* !CONFIG_SMP */
958
959
960 struct io_context; /* See blkdev.h */
961
962
963 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
964 extern void prefetch_stack(struct task_struct *t);
965 #else
966 static inline void prefetch_stack(struct task_struct *t) { }
967 #endif
968
969 struct audit_context; /* See audit.c */
970 struct mempolicy;
971 struct pipe_inode_info;
972 struct uts_namespace;
973
974 struct load_weight {
975 unsigned long weight, inv_weight;
976 };
977
978 struct sched_avg {
979 /*
980 * These sums represent an infinite geometric series and so are bound
981 * above by 1024/(1-y). Thus we only need a u32 to store them for for all
982 * choices of y < 1-2^(-32)*1024.
983 */
984 u32 runnable_avg_sum, runnable_avg_period;
985 u64 last_runnable_update;
986 s64 decay_count;
987 unsigned long load_avg_contrib;
988 unsigned long load_avg_ratio;
989 #ifdef CONFIG_SCHED_HMP
990 #ifdef CONFIG_SCHED_HMP_ENHANCEMENT
991 unsigned long pending_load;
992 u32 nr_pending;
993 #ifdef CONFIG_SCHED_HMP_PRIO_FILTER
994 u32 nr_dequeuing_low_prio;
995 u32 nr_normal_prio;
996 #endif
997 #endif
998 u64 hmp_last_up_migration;
999 u64 hmp_last_down_migration;
1000 #endif /* CONFIG_SCHED_HMP */
1001 u32 usage_avg_sum;
1002 };
1003
1004 #ifdef CONFIG_SCHEDSTATS
1005 struct sched_statistics {
1006 u64 wait_start;
1007 u64 wait_max;
1008 u64 wait_count;
1009 u64 wait_sum;
1010 u64 iowait_count;
1011 u64 iowait_sum;
1012
1013 u64 sleep_start;
1014 u64 sleep_max;
1015 s64 sum_sleep_runtime;
1016
1017 u64 block_start;
1018 u64 block_max;
1019 u64 exec_max;
1020 u64 slice_max;
1021
1022 u64 nr_migrations_cold;
1023 u64 nr_failed_migrations_affine;
1024 u64 nr_failed_migrations_running;
1025 u64 nr_failed_migrations_hot;
1026 u64 nr_forced_migrations;
1027
1028 u64 nr_wakeups;
1029 u64 nr_wakeups_sync;
1030 u64 nr_wakeups_migrate;
1031 u64 nr_wakeups_local;
1032 u64 nr_wakeups_remote;
1033 u64 nr_wakeups_affine;
1034 u64 nr_wakeups_affine_attempts;
1035 u64 nr_wakeups_passive;
1036 u64 nr_wakeups_idle;
1037 };
1038 #endif
1039
1040 #ifdef CONFIG_MTPROF_CPUTIME
1041 struct mtk_isr_info{
1042 int isr_num;
1043 int isr_count;
1044 u64 isr_time;
1045 char *isr_name;
1046 struct mtk_isr_info *next;
1047 } ;
1048 #endif
1049 struct sched_entity {
1050 struct load_weight load; /* for load-balancing */
1051 struct rb_node run_node;
1052 struct list_head group_node;
1053 unsigned int on_rq;
1054
1055 u64 exec_start;
1056 u64 sum_exec_runtime;
1057 u64 vruntime;
1058 u64 prev_sum_exec_runtime;
1059
1060 u64 nr_migrations;
1061
1062 #ifdef CONFIG_SCHEDSTATS
1063 struct sched_statistics statistics;
1064 #endif
1065
1066 #ifdef CONFIG_FAIR_GROUP_SCHED
1067 struct sched_entity *parent;
1068 /* rq on which this entity is (to be) queued: */
1069 struct cfs_rq *cfs_rq;
1070 /* rq "owned" by this entity/group: */
1071 struct cfs_rq *my_q;
1072 #endif
1073
1074 #ifdef CONFIG_SMP
1075 /* Per-entity load-tracking */
1076 struct sched_avg avg;
1077 #endif
1078 #ifdef CONFIG_MTPROF_CPUTIME
1079 u64 mtk_isr_time;
1080 int mtk_isr_count;
1081 struct mtk_isr_info *mtk_isr;
1082 #endif
1083 };
1084
1085 struct sched_rt_entity {
1086 struct list_head run_list;
1087 unsigned long timeout;
1088 unsigned long watchdog_stamp;
1089 unsigned int time_slice;
1090
1091 struct sched_rt_entity *back;
1092 #ifdef CONFIG_RT_GROUP_SCHED
1093 struct sched_rt_entity *parent;
1094 /* rq on which this entity is (to be) queued: */
1095 struct rt_rq *rt_rq;
1096 /* rq "owned" by this entity/group: */
1097 struct rt_rq *my_q;
1098 #endif
1099 };
1100
1101
1102 struct rcu_node;
1103
1104 enum perf_event_task_context {
1105 perf_invalid_context = -1,
1106 perf_hw_context = 0,
1107 perf_sw_context,
1108 perf_nr_task_contexts,
1109 };
1110
1111 #ifdef CONFIG_MTK_SCHED_CMP_TGS
1112 #define NUM_CLUSTER 2
1113 struct thread_group_info_t {
1114 /* # of cfs threas in the thread group per cluster*/
1115 unsigned long cfs_nr_running;
1116 /* # of threads in the thread group per cluster */
1117 unsigned long nr_running;
1118 /* runnable load of the thread group per cluster */
1119 unsigned long load_avg_ratio;
1120 };
1121
1122 #endif
1123
1124 #ifdef CONFIG_MT_SCHED_NOTICE
1125 #ifdef CONFIG_MT_SCHED_DEBUG
1126 #define mt_sched_printf(x...) \
1127 do{ \
1128 char strings[128]=""; \
1129 snprintf(strings, 128, x); \
1130 printk(KERN_NOTICE x); \
1131 trace_sched_log(strings); \
1132 }while (0)
1133 #else
1134 #define mt_sched_printf(x...) \
1135 do{ \
1136 char strings[128]=""; \
1137 snprintf(strings, 128, x); \
1138 trace_sched_log(strings); \
1139 }while (0)
1140 #endif
1141
1142 #else
1143 #define mt_sched_printf(x...) do {} while (0)
1144 #endif
1145
1146 struct task_struct {
1147 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1148 void *stack;
1149 atomic_t usage;
1150 unsigned int flags; /* per process flags, defined below */
1151 unsigned int ptrace;
1152
1153 #ifdef CONFIG_SMP
1154 struct llist_node wake_entry;
1155 int on_cpu;
1156 #endif
1157 int on_rq;
1158
1159 int prio, static_prio, normal_prio;
1160 unsigned int rt_priority;
1161 const struct sched_class *sched_class;
1162 struct sched_entity se;
1163 struct sched_rt_entity rt;
1164 #ifdef CONFIG_CGROUP_SCHED
1165 struct task_group *sched_task_group;
1166 #endif
1167
1168 #ifdef CONFIG_PREEMPT_NOTIFIERS
1169 /* list of struct preempt_notifier: */
1170 struct hlist_head preempt_notifiers;
1171 #endif
1172
1173 /*
1174 * fpu_counter contains the number of consecutive context switches
1175 * that the FPU is used. If this is over a threshold, the lazy fpu
1176 * saving becomes unlazy to save the trap. This is an unsigned char
1177 * so that after 256 times the counter wraps and the behavior turns
1178 * lazy again; this to deal with bursty apps that only use FPU for
1179 * a short time
1180 */
1181 unsigned char fpu_counter;
1182 #ifdef CONFIG_BLK_DEV_IO_TRACE
1183 unsigned int btrace_seq;
1184 #endif
1185
1186 unsigned int policy;
1187 int nr_cpus_allowed;
1188 cpumask_t cpus_allowed;
1189
1190 #ifdef CONFIG_PREEMPT_RCU
1191 int rcu_read_lock_nesting;
1192 char rcu_read_unlock_special;
1193 struct list_head rcu_node_entry;
1194 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1195 #ifdef CONFIG_TREE_PREEMPT_RCU
1196 struct rcu_node *rcu_blocked_node;
1197 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1198 #ifdef CONFIG_RCU_BOOST
1199 struct rt_mutex *rcu_boost_mutex;
1200 #endif /* #ifdef CONFIG_RCU_BOOST */
1201
1202 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1203 struct sched_info sched_info;
1204 #endif
1205
1206 struct list_head tasks;
1207 #ifdef CONFIG_SMP
1208 struct plist_node pushable_tasks;
1209 #endif
1210
1211 struct mm_struct *mm, *active_mm;
1212 #ifdef CONFIG_COMPAT_BRK
1213 unsigned brk_randomized:1;
1214 #endif
1215 #if defined(SPLIT_RSS_COUNTING)
1216 struct task_rss_stat rss_stat;
1217 #endif
1218 /* task state */
1219 int exit_state;
1220 int exit_code, exit_signal;
1221 int pdeath_signal; /* The signal sent when the parent dies */
1222 unsigned int jobctl; /* JOBCTL_*, siglock protected */
1223
1224 /* Used for emulating ABI behavior of previous Linux versions */
1225 unsigned int personality;
1226
1227 unsigned did_exec:1;
1228 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1229 * execve */
1230 unsigned in_iowait:1;
1231
1232 /* Revert to default priority/policy when forking */
1233 unsigned sched_reset_on_fork:1;
1234 unsigned sched_contributes_to_load:1;
1235
1236 unsigned long atomic_flags; /* Flags needing atomic access. */
1237
1238 pid_t pid;
1239 pid_t tgid;
1240
1241 #ifdef CONFIG_CC_STACKPROTECTOR
1242 /* Canary value for the -fstack-protector gcc feature */
1243 unsigned long stack_canary;
1244 #endif
1245 /*
1246 * pointers to (original) parent process, youngest child, younger sibling,
1247 * older sibling, respectively. (p->father can be replaced with
1248 * p->real_parent->pid)
1249 */
1250 struct task_struct __rcu *real_parent; /* real parent process */
1251 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1252 /*
1253 * children/sibling forms the list of my natural children
1254 */
1255 struct list_head children; /* list of my children */
1256 struct list_head sibling; /* linkage in my parent's children list */
1257 struct task_struct *group_leader; /* threadgroup leader */
1258
1259 #ifdef CONFIG_MTK_SCHED_CMP_TGS
1260 raw_spinlock_t thread_group_info_lock;
1261 struct thread_group_info_t thread_group_info[NUM_CLUSTER];
1262 #endif
1263
1264 /*
1265 * ptraced is the list of tasks this task is using ptrace on.
1266 * This includes both natural children and PTRACE_ATTACH targets.
1267 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1268 */
1269 struct list_head ptraced;
1270 struct list_head ptrace_entry;
1271
1272 /* PID/PID hash table linkage. */
1273 struct pid_link pids[PIDTYPE_MAX];
1274 struct list_head thread_group;
1275 struct list_head thread_node;
1276
1277 struct completion *vfork_done; /* for vfork() */
1278 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1279 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1280
1281 cputime_t utime, stime, utimescaled, stimescaled;
1282 cputime_t gtime;
1283 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1284 struct cputime prev_cputime;
1285 #endif
1286 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1287 seqlock_t vtime_seqlock;
1288 unsigned long long vtime_snap;
1289 enum {
1290 VTIME_SLEEPING = 0,
1291 VTIME_USER,
1292 VTIME_SYS,
1293 } vtime_snap_whence;
1294 #endif
1295 unsigned long nvcsw, nivcsw; /* context switch counts */
1296 struct timespec start_time; /* monotonic time */
1297 struct timespec real_start_time; /* boot based time */
1298 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1299 unsigned long min_flt, maj_flt;
1300 /* for thrashing accounting */
1301 #ifdef CONFIG_ZRAM
1302 unsigned long fm_flt, swap_in, swap_out;
1303 #endif
1304
1305 struct task_cputime cputime_expires;
1306 struct list_head cpu_timers[3];
1307
1308 /* process credentials */
1309 const struct cred __rcu *real_cred; /* objective and real subjective task
1310 * credentials (COW) */
1311 const struct cred __rcu *cred; /* effective (overridable) subjective task
1312 * credentials (COW) */
1313 char comm[TASK_COMM_LEN]; /* executable name excluding path
1314 - access with [gs]et_task_comm (which lock
1315 it with task_lock())
1316 - initialized normally by setup_new_exec */
1317 /* file system info */
1318 int link_count, total_link_count;
1319 #ifdef CONFIG_SYSVIPC
1320 /* ipc stuff */
1321 struct sysv_sem sysvsem;
1322 #endif
1323 #ifdef CONFIG_DETECT_HUNG_TASK
1324 /* hung task detection */
1325 unsigned long last_switch_count;
1326 #endif
1327 /* CPU-specific state of this task */
1328 struct thread_struct thread;
1329 /* filesystem information */
1330 struct fs_struct *fs;
1331 /* open file information */
1332 struct files_struct *files;
1333 /* namespaces */
1334 struct nsproxy *nsproxy;
1335 /* signal handlers */
1336 struct signal_struct *signal;
1337 struct sighand_struct *sighand;
1338
1339 sigset_t blocked, real_blocked;
1340 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1341 struct sigpending pending;
1342
1343 unsigned long sas_ss_sp;
1344 size_t sas_ss_size;
1345 int (*notifier)(void *priv);
1346 void *notifier_data;
1347 sigset_t *notifier_mask;
1348 struct callback_head *task_works;
1349
1350 struct audit_context *audit_context;
1351 #ifdef CONFIG_AUDITSYSCALL
1352 kuid_t loginuid;
1353 unsigned int sessionid;
1354 #endif
1355 struct seccomp seccomp;
1356
1357 /* Thread group tracking */
1358 u32 parent_exec_id;
1359 u32 self_exec_id;
1360 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1361 * mempolicy */
1362 spinlock_t alloc_lock;
1363
1364 /* Protection of the PI data structures: */
1365 raw_spinlock_t pi_lock;
1366
1367 #ifdef CONFIG_RT_MUTEXES
1368 /* PI waiters blocked on a rt_mutex held by this task */
1369 struct plist_head pi_waiters;
1370 /* Deadlock detection and priority inheritance handling */
1371 struct rt_mutex_waiter *pi_blocked_on;
1372 #endif
1373
1374 #ifdef CONFIG_DEBUG_MUTEXES
1375 /* mutex deadlock detection */
1376 struct mutex_waiter *blocked_on;
1377 #endif
1378 #ifdef CONFIG_TRACE_IRQFLAGS
1379 unsigned int irq_events;
1380 unsigned long hardirq_enable_ip;
1381 unsigned long hardirq_disable_ip;
1382 unsigned int hardirq_enable_event;
1383 unsigned int hardirq_disable_event;
1384 int hardirqs_enabled;
1385 int hardirq_context;
1386 unsigned long softirq_disable_ip;
1387 unsigned long softirq_enable_ip;
1388 unsigned int softirq_disable_event;
1389 unsigned int softirq_enable_event;
1390 int softirqs_enabled;
1391 int softirq_context;
1392 #endif
1393 #ifdef CONFIG_LOCKDEP
1394 # define MAX_LOCK_DEPTH 48UL
1395 u64 curr_chain_key;
1396 int lockdep_depth;
1397 unsigned int lockdep_recursion;
1398 struct held_lock held_locks[MAX_LOCK_DEPTH];
1399 gfp_t lockdep_reclaim_gfp;
1400 #endif
1401
1402 /* journalling filesystem info */
1403 void *journal_info;
1404
1405 /* stacked block device info */
1406 struct bio_list *bio_list;
1407
1408 #ifdef CONFIG_BLOCK
1409 /* stack plugging */
1410 struct blk_plug *plug;
1411 #endif
1412
1413 /* VM state */
1414 struct reclaim_state *reclaim_state;
1415
1416 struct backing_dev_info *backing_dev_info;
1417
1418 struct io_context *io_context;
1419
1420 unsigned long ptrace_message;
1421 siginfo_t *last_siginfo; /* For ptrace use. */
1422 struct task_io_accounting ioac;
1423 #if defined(CONFIG_TASK_XACCT)
1424 u64 acct_rss_mem1; /* accumulated rss usage */
1425 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1426 cputime_t acct_timexpd; /* stime + utime since last update */
1427 #endif
1428 #ifdef CONFIG_CPUSETS
1429 nodemask_t mems_allowed; /* Protected by alloc_lock */
1430 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
1431 int cpuset_mem_spread_rotor;
1432 int cpuset_slab_spread_rotor;
1433 #endif
1434 #ifdef CONFIG_CGROUPS
1435 /* Control Group info protected by css_set_lock */
1436 struct css_set __rcu *cgroups;
1437 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1438 struct list_head cg_list;
1439 #endif
1440 #ifdef CONFIG_FUTEX
1441 struct robust_list_head __user *robust_list;
1442 #ifdef CONFIG_COMPAT
1443 struct compat_robust_list_head __user *compat_robust_list;
1444 #endif
1445 struct list_head pi_state_list;
1446 struct futex_pi_state *pi_state_cache;
1447 #endif
1448 #ifdef CONFIG_PERF_EVENTS
1449 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1450 struct mutex perf_event_mutex;
1451 struct list_head perf_event_list;
1452 #endif
1453 #ifdef CONFIG_NUMA
1454 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1455 short il_next;
1456 short pref_node_fork;
1457 #endif
1458 #ifdef CONFIG_NUMA_BALANCING
1459 int numa_scan_seq;
1460 int numa_migrate_seq;
1461 unsigned int numa_scan_period;
1462 u64 node_stamp; /* migration stamp */
1463 struct callback_head numa_work;
1464 #endif /* CONFIG_NUMA_BALANCING */
1465
1466 struct rcu_head rcu;
1467
1468 /*
1469 * cache last used pipe for splice
1470 */
1471 struct pipe_inode_info *splice_pipe;
1472
1473 struct page_frag task_frag;
1474
1475 #ifdef CONFIG_TASK_DELAY_ACCT
1476 struct task_delay_info *delays;
1477 #endif
1478 #ifdef CONFIG_FAULT_INJECTION
1479 int make_it_fail;
1480 #endif
1481 /*
1482 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1483 * balance_dirty_pages() for some dirty throttling pause
1484 */
1485 int nr_dirtied;
1486 int nr_dirtied_pause;
1487 unsigned long dirty_paused_when; /* start of a write-and-pause period */
1488
1489 #ifdef CONFIG_LATENCYTOP
1490 int latency_record_count;
1491 struct latency_record latency_record[LT_SAVECOUNT];
1492 #endif
1493 /*
1494 * time slack values; these are used to round up poll() and
1495 * select() etc timeout values. These are in nanoseconds.
1496 */
1497 unsigned long timer_slack_ns;
1498 unsigned long default_timer_slack_ns;
1499
1500 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1501 /* Index of current stored address in ret_stack */
1502 int curr_ret_stack;
1503 /* Stack of return addresses for return function tracing */
1504 struct ftrace_ret_stack *ret_stack;
1505 /* time stamp for last schedule */
1506 unsigned long long ftrace_timestamp;
1507 /*
1508 * Number of functions that haven't been traced
1509 * because of depth overrun.
1510 */
1511 atomic_t trace_overrun;
1512 /* Pause for the tracing */
1513 atomic_t tracing_graph_pause;
1514 #endif
1515 #ifdef CONFIG_TRACING
1516 /* state flags for use by tracers */
1517 unsigned long trace;
1518 /* bitmask and counter of trace recursion */
1519 unsigned long trace_recursion;
1520 #endif /* CONFIG_TRACING */
1521 #ifdef CONFIG_MEMCG /* memcg uses this to do batch job */
1522 struct memcg_batch_info {
1523 int do_batch; /* incremented when batch uncharge started */
1524 struct mem_cgroup *memcg; /* target memcg of uncharge */
1525 unsigned long nr_pages; /* uncharged usage */
1526 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
1527 } memcg_batch;
1528 unsigned int memcg_kmem_skip_account;
1529 #endif
1530 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1531 atomic_t ptrace_bp_refcnt;
1532 #endif
1533 #ifdef CONFIG_UPROBES
1534 struct uprobe_task *utask;
1535 #endif
1536 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1537 unsigned int sequential_io;
1538 unsigned int sequential_io_avg;
1539 #endif
1540 };
1541
1542 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1543 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1544
1545 #ifdef CONFIG_NUMA_BALANCING
1546 extern void task_numa_fault(int node, int pages, bool migrated);
1547 extern void set_numabalancing_state(bool enabled);
1548 #else
1549 static inline void task_numa_fault(int node, int pages, bool migrated)
1550 {
1551 }
1552 static inline void set_numabalancing_state(bool enabled)
1553 {
1554 }
1555 #endif
1556
1557 static inline struct pid *task_pid(struct task_struct *task)
1558 {
1559 return task->pids[PIDTYPE_PID].pid;
1560 }
1561
1562 static inline struct pid *task_tgid(struct task_struct *task)
1563 {
1564 return task->group_leader->pids[PIDTYPE_PID].pid;
1565 }
1566
1567 /*
1568 * Without tasklist or rcu lock it is not safe to dereference
1569 * the result of task_pgrp/task_session even if task == current,
1570 * we can race with another thread doing sys_setsid/sys_setpgid.
1571 */
1572 static inline struct pid *task_pgrp(struct task_struct *task)
1573 {
1574 return task->group_leader->pids[PIDTYPE_PGID].pid;
1575 }
1576
1577 static inline struct pid *task_session(struct task_struct *task)
1578 {
1579 return task->group_leader->pids[PIDTYPE_SID].pid;
1580 }
1581
1582 struct pid_namespace;
1583
1584 /*
1585 * the helpers to get the task's different pids as they are seen
1586 * from various namespaces
1587 *
1588 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1589 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1590 * current.
1591 * task_xid_nr_ns() : id seen from the ns specified;
1592 *
1593 * set_task_vxid() : assigns a virtual id to a task;
1594 *
1595 * see also pid_nr() etc in include/linux/pid.h
1596 */
1597 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1598 struct pid_namespace *ns);
1599
1600 static inline pid_t task_pid_nr(struct task_struct *tsk)
1601 {
1602 return tsk->pid;
1603 }
1604
1605 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1606 struct pid_namespace *ns)
1607 {
1608 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1609 }
1610
1611 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1612 {
1613 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1614 }
1615
1616
1617 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1618 {
1619 return tsk->tgid;
1620 }
1621
1622 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1623
1624 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1625 {
1626 return pid_vnr(task_tgid(tsk));
1627 }
1628
1629
1630 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1631 struct pid_namespace *ns)
1632 {
1633 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1634 }
1635
1636 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1637 {
1638 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1639 }
1640
1641
1642 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1643 struct pid_namespace *ns)
1644 {
1645 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1646 }
1647
1648 static inline pid_t task_session_vnr(struct task_struct *tsk)
1649 {
1650 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1651 }
1652
1653 /* obsolete, do not use */
1654 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1655 {
1656 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1657 }
1658
1659 /**
1660 * pid_alive - check that a task structure is not stale
1661 * @p: Task structure to be checked.
1662 *
1663 * Test if a process is not yet dead (at most zombie state)
1664 * If pid_alive fails, then pointers within the task structure
1665 * can be stale and must not be dereferenced.
1666 */
1667 static inline int pid_alive(struct task_struct *p)
1668 {
1669 return p->pids[PIDTYPE_PID].pid != NULL;
1670 }
1671
1672 /**
1673 * is_global_init - check if a task structure is init
1674 * @tsk: Task structure to be checked.
1675 *
1676 * Check if a task structure is the first user space task the kernel created.
1677 */
1678 static inline int is_global_init(struct task_struct *tsk)
1679 {
1680 return tsk->pid == 1;
1681 }
1682
1683 extern struct pid *cad_pid;
1684
1685 extern void free_task(struct task_struct *tsk);
1686 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1687
1688 extern void __put_task_struct(struct task_struct *t);
1689
1690 static inline void put_task_struct(struct task_struct *t)
1691 {
1692 if (atomic_dec_and_test(&t->usage))
1693 __put_task_struct(t);
1694 }
1695
1696 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1697 extern void task_cputime(struct task_struct *t,
1698 cputime_t *utime, cputime_t *stime);
1699 extern void task_cputime_scaled(struct task_struct *t,
1700 cputime_t *utimescaled, cputime_t *stimescaled);
1701 extern cputime_t task_gtime(struct task_struct *t);
1702 #else
1703 static inline void task_cputime(struct task_struct *t,
1704 cputime_t *utime, cputime_t *stime)
1705 {
1706 if (utime)
1707 *utime = t->utime;
1708 if (stime)
1709 *stime = t->stime;
1710 }
1711
1712 static inline void task_cputime_scaled(struct task_struct *t,
1713 cputime_t *utimescaled,
1714 cputime_t *stimescaled)
1715 {
1716 if (utimescaled)
1717 *utimescaled = t->utimescaled;
1718 if (stimescaled)
1719 *stimescaled = t->stimescaled;
1720 }
1721
1722 static inline cputime_t task_gtime(struct task_struct *t)
1723 {
1724 return t->gtime;
1725 }
1726 #endif
1727 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1728 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1729
1730 extern int task_free_register(struct notifier_block *n);
1731 extern int task_free_unregister(struct notifier_block *n);
1732
1733 /*
1734 * Per process flags
1735 */
1736 #define PF_EXITING 0x00000004 /* getting shut down */
1737 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1738 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1739 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1740 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1741 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1742 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1743 #define PF_DUMPCORE 0x00000200 /* dumped core */
1744 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1745 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1746 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1747 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1748 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
1749 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1750 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1751 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1752 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1753 #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
1754 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1755 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1756 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1757 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1758 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1759 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1760 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
1761 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1762 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1763 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1764 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1765 #define PF_MTKPASR 0x80000000 /* I am in MTKPASR process */
1766
1767 #define task_in_mtkpasr(task) unlikely(task->flags & PF_MTKPASR)
1768
1769 /*
1770 * Only the _current_ task can read/write to tsk->flags, but other
1771 * tasks can access tsk->flags in readonly mode for example
1772 * with tsk_used_math (like during threaded core dumping).
1773 * There is however an exception to this rule during ptrace
1774 * or during fork: the ptracer task is allowed to write to the
1775 * child->flags of its traced child (same goes for fork, the parent
1776 * can write to the child->flags), because we're guaranteed the
1777 * child is not running and in turn not changing child->flags
1778 * at the same time the parent does it.
1779 */
1780 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1781 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1782 #define clear_used_math() clear_stopped_child_used_math(current)
1783 #define set_used_math() set_stopped_child_used_math(current)
1784 #define conditional_stopped_child_used_math(condition, child) \
1785 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1786 #define conditional_used_math(condition) \
1787 conditional_stopped_child_used_math(condition, current)
1788 #define copy_to_stopped_child_used_math(child) \
1789 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1790 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1791 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1792 #define used_math() tsk_used_math(current)
1793
1794 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags */
1795 static inline gfp_t memalloc_noio_flags(gfp_t flags)
1796 {
1797 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
1798 flags &= ~__GFP_IO;
1799 return flags;
1800 }
1801
1802 static inline unsigned int memalloc_noio_save(void)
1803 {
1804 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
1805 current->flags |= PF_MEMALLOC_NOIO;
1806 return flags;
1807 }
1808
1809 static inline void memalloc_noio_restore(unsigned int flags)
1810 {
1811 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
1812 }
1813
1814 /* Per-process atomic flags. */
1815 #define PFA_NO_NEW_PRIVS 0x00000001 /* May not gain new privileges. */
1816
1817 static inline bool task_no_new_privs(struct task_struct *p)
1818 {
1819 return test_bit(PFA_NO_NEW_PRIVS, &p->atomic_flags);
1820 }
1821
1822 static inline void task_set_no_new_privs(struct task_struct *p)
1823 {
1824 set_bit(PFA_NO_NEW_PRIVS, &p->atomic_flags);
1825 }
1826
1827 /*
1828 * task->jobctl flags
1829 */
1830 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
1831
1832 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
1833 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
1834 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
1835 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
1836 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
1837 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
1838 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
1839
1840 #define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT)
1841 #define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT)
1842 #define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT)
1843 #define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT)
1844 #define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT)
1845 #define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT)
1846 #define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT)
1847
1848 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
1849 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
1850
1851 extern bool task_set_jobctl_pending(struct task_struct *task,
1852 unsigned int mask);
1853 extern void task_clear_jobctl_trapping(struct task_struct *task);
1854 extern void task_clear_jobctl_pending(struct task_struct *task,
1855 unsigned int mask);
1856
1857 #ifdef CONFIG_PREEMPT_RCU
1858
1859 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1860 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1861
1862 static inline void rcu_copy_process(struct task_struct *p)
1863 {
1864 p->rcu_read_lock_nesting = 0;
1865 p->rcu_read_unlock_special = 0;
1866 #ifdef CONFIG_TREE_PREEMPT_RCU
1867 p->rcu_blocked_node = NULL;
1868 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1869 #ifdef CONFIG_RCU_BOOST
1870 p->rcu_boost_mutex = NULL;
1871 #endif /* #ifdef CONFIG_RCU_BOOST */
1872 INIT_LIST_HEAD(&p->rcu_node_entry);
1873 }
1874
1875 #else
1876
1877 static inline void rcu_copy_process(struct task_struct *p)
1878 {
1879 }
1880
1881 #endif
1882
1883 static inline void tsk_restore_flags(struct task_struct *task,
1884 unsigned long orig_flags, unsigned long flags)
1885 {
1886 task->flags &= ~flags;
1887 task->flags |= orig_flags & flags;
1888 }
1889
1890 #ifdef CONFIG_SMP
1891 extern void do_set_cpus_allowed(struct task_struct *p,
1892 const struct cpumask *new_mask);
1893
1894 extern int set_cpus_allowed_ptr(struct task_struct *p,
1895 const struct cpumask *new_mask);
1896 #else
1897 static inline void do_set_cpus_allowed(struct task_struct *p,
1898 const struct cpumask *new_mask)
1899 {
1900 }
1901 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1902 const struct cpumask *new_mask)
1903 {
1904 if (!cpumask_test_cpu(0, new_mask))
1905 return -EINVAL;
1906 return 0;
1907 }
1908 #endif
1909
1910 #ifdef CONFIG_NO_HZ_COMMON
1911 void calc_load_enter_idle(void);
1912 void calc_load_exit_idle(void);
1913 #else
1914 static inline void calc_load_enter_idle(void) { }
1915 static inline void calc_load_exit_idle(void) { }
1916 #endif /* CONFIG_NO_HZ_COMMON */
1917
1918 #ifndef CONFIG_CPUMASK_OFFSTACK
1919 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1920 {
1921 return set_cpus_allowed_ptr(p, &new_mask);
1922 }
1923 #endif
1924
1925 /*
1926 * Do not use outside of architecture code which knows its limitations.
1927 *
1928 * sched_clock() has no promise of monotonicity or bounded drift between
1929 * CPUs, use (which you should not) requires disabling IRQs.
1930 *
1931 * Please use one of the three interfaces below.
1932 */
1933 extern unsigned long long notrace sched_clock(void);
1934 /*
1935 * See the comment in kernel/sched/clock.c
1936 */
1937 extern u64 cpu_clock(int cpu);
1938 extern u64 local_clock(void);
1939 extern u64 sched_clock_cpu(int cpu);
1940
1941
1942 extern void sched_clock_init(void);
1943
1944 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1945 static inline void sched_clock_tick(void)
1946 {
1947 }
1948
1949 static inline void sched_clock_idle_sleep_event(void)
1950 {
1951 }
1952
1953 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1954 {
1955 }
1956 #else
1957 /*
1958 * Architectures can set this to 1 if they have specified
1959 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1960 * but then during bootup it turns out that sched_clock()
1961 * is reliable after all:
1962 */
1963 extern int sched_clock_stable;
1964
1965 extern void sched_clock_tick(void);
1966 extern void sched_clock_idle_sleep_event(void);
1967 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1968 #endif
1969
1970 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1971 /*
1972 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
1973 * The reason for this explicit opt-in is not to have perf penalty with
1974 * slow sched_clocks.
1975 */
1976 extern void enable_sched_clock_irqtime(void);
1977 extern void disable_sched_clock_irqtime(void);
1978 #else
1979 static inline void enable_sched_clock_irqtime(void) {}
1980 static inline void disable_sched_clock_irqtime(void) {}
1981 #endif
1982
1983 extern unsigned long long
1984 task_sched_runtime(struct task_struct *task);
1985
1986 /* sched_exec is called by processes performing an exec */
1987 #ifdef CONFIG_SMP
1988 extern void sched_exec(void);
1989 #else
1990 #define sched_exec() {}
1991 #endif
1992
1993 extern void sched_clock_idle_sleep_event(void);
1994 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1995
1996 #ifdef CONFIG_HOTPLUG_CPU
1997 extern void idle_task_exit(void);
1998 #else
1999 static inline void idle_task_exit(void) {}
2000 #endif
2001
2002 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
2003 extern void wake_up_nohz_cpu(int cpu);
2004 #else
2005 static inline void wake_up_nohz_cpu(int cpu) { }
2006 #endif
2007
2008 #ifdef CONFIG_NO_HZ_FULL
2009 extern bool sched_can_stop_tick(void);
2010 extern u64 scheduler_tick_max_deferment(void);
2011 #else
2012 static inline bool sched_can_stop_tick(void) { return false; }
2013 #endif
2014
2015 #ifdef CONFIG_SCHED_AUTOGROUP
2016 extern void sched_autogroup_create_attach(struct task_struct *p);
2017 extern void sched_autogroup_detach(struct task_struct *p);
2018 extern void sched_autogroup_fork(struct signal_struct *sig);
2019 extern void sched_autogroup_exit(struct signal_struct *sig);
2020 #ifdef CONFIG_PROC_FS
2021 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2022 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
2023 #endif
2024 #else
2025 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2026 static inline void sched_autogroup_detach(struct task_struct *p) { }
2027 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2028 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2029 #endif
2030
2031 extern bool yield_to(struct task_struct *p, bool preempt);
2032 extern void set_user_nice(struct task_struct *p, long nice);
2033 extern int task_prio(const struct task_struct *p);
2034 extern int task_nice(const struct task_struct *p);
2035 extern int can_nice(const struct task_struct *p, const int nice);
2036 extern int task_curr(const struct task_struct *p);
2037 extern int idle_cpu(int cpu);
2038 extern int sched_setscheduler(struct task_struct *, int,
2039 const struct sched_param *);
2040 extern int sched_setscheduler_nocheck(struct task_struct *, int,
2041 const struct sched_param *);
2042
2043 #ifdef CONFIG_MT_PRIO_TRACER
2044 extern void set_user_nice_core(struct task_struct *p, long nice);
2045 extern int sched_setscheduler_core(struct task_struct *, int,
2046 const struct sched_param *);
2047 extern int sched_setscheduler_nocheck_core(struct task_struct *, int,
2048 const struct sched_param *);
2049 #endif
2050
2051 extern struct task_struct *idle_task(int cpu);
2052 /**
2053 * is_idle_task - is the specified task an idle task?
2054 * @p: the task in question.
2055 */
2056 static inline bool is_idle_task(const struct task_struct *p)
2057 {
2058 return p->pid == 0;
2059 }
2060 extern struct task_struct *curr_task(int cpu);
2061 extern void set_curr_task(int cpu, struct task_struct *p);
2062
2063 void yield(void);
2064
2065 /*
2066 * The default (Linux) execution domain.
2067 */
2068 extern struct exec_domain default_exec_domain;
2069
2070 union thread_union {
2071 struct thread_info thread_info;
2072 unsigned long stack[THREAD_SIZE/sizeof(long)];
2073 };
2074
2075 #ifndef __HAVE_ARCH_KSTACK_END
2076 static inline int kstack_end(void *addr)
2077 {
2078 /* Reliable end of stack detection:
2079 * Some APM bios versions misalign the stack
2080 */
2081 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2082 }
2083 #endif
2084
2085 extern union thread_union init_thread_union;
2086 extern struct task_struct init_task;
2087
2088 extern struct mm_struct init_mm;
2089
2090 extern struct pid_namespace init_pid_ns;
2091
2092 /*
2093 * find a task by one of its numerical ids
2094 *
2095 * find_task_by_pid_ns():
2096 * finds a task by its pid in the specified namespace
2097 * find_task_by_vpid():
2098 * finds a task by its virtual pid
2099 *
2100 * see also find_vpid() etc in include/linux/pid.h
2101 */
2102
2103 extern struct task_struct *find_task_by_vpid(pid_t nr);
2104 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2105 struct pid_namespace *ns);
2106
2107 extern void __set_special_pids(struct pid *pid);
2108
2109 /* per-UID process charging. */
2110 extern struct user_struct * alloc_uid(kuid_t);
2111 static inline struct user_struct *get_uid(struct user_struct *u)
2112 {
2113 atomic_inc(&u->__count);
2114 return u;
2115 }
2116 extern void free_uid(struct user_struct *);
2117
2118 #include <asm/current.h>
2119
2120 extern void xtime_update(unsigned long ticks);
2121
2122 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2123 extern int wake_up_process(struct task_struct *tsk);
2124 extern void wake_up_new_task(struct task_struct *tsk);
2125 #ifdef CONFIG_SMP
2126 extern void kick_process(struct task_struct *tsk);
2127 #else
2128 static inline void kick_process(struct task_struct *tsk) { }
2129 #endif
2130 extern void sched_fork(struct task_struct *p);
2131 extern void sched_dead(struct task_struct *p);
2132
2133 extern void proc_caches_init(void);
2134 extern void flush_signals(struct task_struct *);
2135 extern void __flush_signals(struct task_struct *);
2136 extern void ignore_signals(struct task_struct *);
2137 extern void flush_signal_handlers(struct task_struct *, int force_default);
2138 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2139
2140 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2141 {
2142 unsigned long flags;
2143 int ret;
2144
2145 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2146 ret = dequeue_signal(tsk, mask, info);
2147 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2148
2149 return ret;
2150 }
2151
2152 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2153 sigset_t *mask);
2154 extern void unblock_all_signals(void);
2155 extern void release_task(struct task_struct * p);
2156 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2157 extern int force_sigsegv(int, struct task_struct *);
2158 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2159 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2160 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2161 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2162 const struct cred *, u32);
2163 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2164 extern int kill_pid(struct pid *pid, int sig, int priv);
2165 extern int kill_proc_info(int, struct siginfo *, pid_t);
2166 extern __must_check bool do_notify_parent(struct task_struct *, int);
2167 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2168 extern void force_sig(int, struct task_struct *);
2169 extern int send_sig(int, struct task_struct *, int);
2170 extern int zap_other_threads(struct task_struct *p);
2171 extern struct sigqueue *sigqueue_alloc(void);
2172 extern void sigqueue_free(struct sigqueue *);
2173 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2174 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2175
2176 static inline void restore_saved_sigmask(void)
2177 {
2178 if (test_and_clear_restore_sigmask())
2179 __set_current_blocked(&current->saved_sigmask);
2180 }
2181
2182 static inline sigset_t *sigmask_to_save(void)
2183 {
2184 sigset_t *res = &current->blocked;
2185 if (unlikely(test_restore_sigmask()))
2186 res = &current->saved_sigmask;
2187 return res;
2188 }
2189
2190 static inline int kill_cad_pid(int sig, int priv)
2191 {
2192 return kill_pid(cad_pid, sig, priv);
2193 }
2194
2195 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2196 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2197 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2198 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2199
2200 /*
2201 * True if we are on the alternate signal stack.
2202 */
2203 static inline int on_sig_stack(unsigned long sp)
2204 {
2205 #ifdef CONFIG_STACK_GROWSUP
2206 return sp >= current->sas_ss_sp &&
2207 sp - current->sas_ss_sp < current->sas_ss_size;
2208 #else
2209 return sp > current->sas_ss_sp &&
2210 sp - current->sas_ss_sp <= current->sas_ss_size;
2211 #endif
2212 }
2213
2214 static inline int sas_ss_flags(unsigned long sp)
2215 {
2216 return (current->sas_ss_size == 0 ? SS_DISABLE
2217 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2218 }
2219
2220 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2221 {
2222 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2223 #ifdef CONFIG_STACK_GROWSUP
2224 return current->sas_ss_sp;
2225 #else
2226 return current->sas_ss_sp + current->sas_ss_size;
2227 #endif
2228 return sp;
2229 }
2230
2231 /*
2232 * Routines for handling mm_structs
2233 */
2234 extern struct mm_struct * mm_alloc(void);
2235
2236 /* mmdrop drops the mm and the page tables */
2237 extern void __mmdrop(struct mm_struct *);
2238 static inline void mmdrop(struct mm_struct * mm)
2239 {
2240 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2241 __mmdrop(mm);
2242 }
2243
2244 /* mmput gets rid of the mappings and all user-space */
2245 extern void mmput(struct mm_struct *);
2246 /* Grab a reference to a task's mm, if it is not already going away */
2247 extern struct mm_struct *get_task_mm(struct task_struct *task);
2248 /*
2249 * Grab a reference to a task's mm, if it is not already going away
2250 * and ptrace_may_access with the mode parameter passed to it
2251 * succeeds.
2252 */
2253 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2254 /* Remove the current tasks stale references to the old mm_struct */
2255 extern void mm_release(struct task_struct *, struct mm_struct *);
2256 /* Allocate a new mm structure and copy contents from tsk->mm */
2257 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2258
2259 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2260 struct task_struct *);
2261 extern void flush_thread(void);
2262 extern void exit_thread(void);
2263
2264 extern void exit_files(struct task_struct *);
2265 extern void __cleanup_sighand(struct sighand_struct *);
2266
2267 extern void exit_itimers(struct signal_struct *);
2268 extern void flush_itimer_signals(void);
2269
2270 extern void do_group_exit(int);
2271
2272 extern int allow_signal(int);
2273 extern int disallow_signal(int);
2274
2275 extern int do_execve(const char *,
2276 const char __user * const __user *,
2277 const char __user * const __user *);
2278 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2279 struct task_struct *fork_idle(int);
2280 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2281
2282 extern void set_task_comm(struct task_struct *tsk, char *from);
2283 extern char *get_task_comm(char *to, struct task_struct *tsk);
2284
2285 #ifdef CONFIG_SMP
2286 void scheduler_ipi(void);
2287 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2288 #else
2289 static inline void scheduler_ipi(void) { }
2290 static inline unsigned long wait_task_inactive(struct task_struct *p,
2291 long match_state)
2292 {
2293 return 1;
2294 }
2295 #endif
2296
2297 #define next_task(p) \
2298 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2299
2300 #define for_each_process(p) \
2301 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2302
2303 extern bool current_is_single_threaded(void);
2304
2305 /*
2306 * Careful: do_each_thread/while_each_thread is a double loop so
2307 * 'break' will not work as expected - use goto instead.
2308 */
2309 #define do_each_thread(g, t) \
2310 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2311
2312 #define while_each_thread(g, t) \
2313 while ((t = next_thread(t)) != g)
2314
2315 #define __for_each_thread(signal, t) \
2316 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
2317
2318 #define for_each_thread(p, t) \
2319 __for_each_thread((p)->signal, t)
2320
2321 /* Careful: this is a double loop, 'break' won't work as expected. */
2322 #define for_each_process_thread(p, t) \
2323 for_each_process(p) for_each_thread(p, t)
2324
2325 static inline int get_nr_threads(struct task_struct *tsk)
2326 {
2327 return tsk->signal->nr_threads;
2328 }
2329
2330 static inline bool thread_group_leader(struct task_struct *p)
2331 {
2332 return p->exit_signal >= 0;
2333 }
2334
2335 /* Do to the insanities of de_thread it is possible for a process
2336 * to have the pid of the thread group leader without actually being
2337 * the thread group leader. For iteration through the pids in proc
2338 * all we care about is that we have a task with the appropriate
2339 * pid, we don't actually care if we have the right task.
2340 */
2341 static inline int has_group_leader_pid(struct task_struct *p)
2342 {
2343 return p->pid == p->tgid;
2344 }
2345
2346 static inline
2347 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2348 {
2349 return p1->tgid == p2->tgid;
2350 }
2351
2352 static inline struct task_struct *next_thread(const struct task_struct *p)
2353 {
2354 return list_entry_rcu(p->thread_group.next,
2355 struct task_struct, thread_group);
2356 }
2357
2358 static inline int thread_group_empty(struct task_struct *p)
2359 {
2360 return list_empty(&p->thread_group);
2361 }
2362
2363 #define delay_group_leader(p) \
2364 (thread_group_leader(p) && !thread_group_empty(p))
2365
2366 /*
2367 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2368 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2369 * pins the final release of task.io_context. Also protects ->cpuset and
2370 * ->cgroup.subsys[]. And ->vfork_done.
2371 *
2372 * Nests both inside and outside of read_lock(&tasklist_lock).
2373 * It must not be nested with write_lock_irq(&tasklist_lock),
2374 * neither inside nor outside.
2375 */
2376 static inline void task_lock(struct task_struct *p)
2377 {
2378 spin_lock(&p->alloc_lock);
2379 }
2380
2381 static inline void task_unlock(struct task_struct *p)
2382 {
2383 spin_unlock(&p->alloc_lock);
2384 }
2385
2386 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2387 unsigned long *flags);
2388
2389 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2390 unsigned long *flags)
2391 {
2392 struct sighand_struct *ret;
2393
2394 ret = __lock_task_sighand(tsk, flags);
2395 (void)__cond_lock(&tsk->sighand->siglock, ret);
2396 return ret;
2397 }
2398
2399 static inline void unlock_task_sighand(struct task_struct *tsk,
2400 unsigned long *flags)
2401 {
2402 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2403 }
2404
2405 #ifdef CONFIG_CGROUPS
2406 static inline void threadgroup_change_begin(struct task_struct *tsk)
2407 {
2408 down_read(&tsk->signal->group_rwsem);
2409 }
2410 static inline void threadgroup_change_end(struct task_struct *tsk)
2411 {
2412 up_read(&tsk->signal->group_rwsem);
2413 }
2414
2415 /**
2416 * threadgroup_lock - lock threadgroup
2417 * @tsk: member task of the threadgroup to lock
2418 *
2419 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter
2420 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
2421 * change ->group_leader/pid. This is useful for cases where the threadgroup
2422 * needs to stay stable across blockable operations.
2423 *
2424 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2425 * synchronization. While held, no new task will be added to threadgroup
2426 * and no existing live task will have its PF_EXITING set.
2427 *
2428 * de_thread() does threadgroup_change_{begin|end}() when a non-leader
2429 * sub-thread becomes a new leader.
2430 */
2431 static inline void threadgroup_lock(struct task_struct *tsk)
2432 {
2433 down_write(&tsk->signal->group_rwsem);
2434 }
2435
2436 /**
2437 * threadgroup_unlock - unlock threadgroup
2438 * @tsk: member task of the threadgroup to unlock
2439 *
2440 * Reverse threadgroup_lock().
2441 */
2442 static inline void threadgroup_unlock(struct task_struct *tsk)
2443 {
2444 up_write(&tsk->signal->group_rwsem);
2445 }
2446 #else
2447 static inline void threadgroup_change_begin(struct task_struct *tsk) {}
2448 static inline void threadgroup_change_end(struct task_struct *tsk) {}
2449 static inline void threadgroup_lock(struct task_struct *tsk) {}
2450 static inline void threadgroup_unlock(struct task_struct *tsk) {}
2451 #endif
2452
2453 #ifndef __HAVE_THREAD_FUNCTIONS
2454
2455 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2456 #define task_stack_page(task) ((task)->stack)
2457
2458 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2459 {
2460 *task_thread_info(p) = *task_thread_info(org);
2461 task_thread_info(p)->task = p;
2462 }
2463
2464 static inline unsigned long *end_of_stack(struct task_struct *p)
2465 {
2466 return (unsigned long *)(task_thread_info(p) + 1);
2467 }
2468
2469 #endif
2470
2471 static inline int object_is_on_stack(void *obj)
2472 {
2473 void *stack = task_stack_page(current);
2474
2475 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2476 }
2477
2478 extern void thread_info_cache_init(void);
2479
2480 #ifdef CONFIG_DEBUG_STACK_USAGE
2481 static inline unsigned long stack_not_used(struct task_struct *p)
2482 {
2483 unsigned long *n = end_of_stack(p);
2484
2485 do { /* Skip over canary */
2486 n++;
2487 } while (!*n);
2488
2489 return (unsigned long)n - (unsigned long)end_of_stack(p);
2490 }
2491 #endif
2492
2493 /* set thread flags in other task's structures
2494 * - see asm/thread_info.h for TIF_xxxx flags available
2495 */
2496 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2497 {
2498 set_ti_thread_flag(task_thread_info(tsk), flag);
2499 }
2500
2501 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2502 {
2503 clear_ti_thread_flag(task_thread_info(tsk), flag);
2504 }
2505
2506 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2507 {
2508 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2509 }
2510
2511 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2512 {
2513 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2514 }
2515
2516 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2517 {
2518 return test_ti_thread_flag(task_thread_info(tsk), flag);
2519 }
2520
2521 static inline void set_tsk_need_resched(struct task_struct *tsk)
2522 {
2523 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2524 }
2525
2526 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2527 {
2528 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2529 }
2530
2531 static inline int test_tsk_need_resched(struct task_struct *tsk)
2532 {
2533 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2534 }
2535
2536 #if defined(CONFIG_MT_RT_SCHED) || defined(CONFIG_MT_RT_SCHED_LOG)
2537 static inline void set_tsk_need_released(struct task_struct *tsk)
2538 {
2539 set_tsk_thread_flag(tsk, TIF_NEED_RELEASED);
2540 }
2541
2542 static inline void clear_tsk_need_released(struct task_struct *tsk)
2543 {
2544 clear_tsk_thread_flag(tsk,TIF_NEED_RELEASED);
2545 }
2546
2547 static inline int test_tsk_need_released(struct task_struct *tsk)
2548 {
2549 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RELEASED));
2550 }
2551 #endif
2552
2553 static inline int restart_syscall(void)
2554 {
2555 set_tsk_thread_flag(current, TIF_SIGPENDING);
2556 return -ERESTARTNOINTR;
2557 }
2558
2559 static inline int signal_pending(struct task_struct *p)
2560 {
2561 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2562 }
2563
2564 static inline int __fatal_signal_pending(struct task_struct *p)
2565 {
2566 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2567 }
2568
2569 static inline int fatal_signal_pending(struct task_struct *p)
2570 {
2571 return signal_pending(p) && __fatal_signal_pending(p);
2572 }
2573
2574 static inline int signal_pending_state(long state, struct task_struct *p)
2575 {
2576 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2577 return 0;
2578 if (!signal_pending(p))
2579 return 0;
2580
2581 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2582 }
2583
2584 static inline int need_resched(void)
2585 {
2586 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2587 }
2588
2589 /*
2590 * cond_resched() and cond_resched_lock(): latency reduction via
2591 * explicit rescheduling in places that are safe. The return
2592 * value indicates whether a reschedule was done in fact.
2593 * cond_resched_lock() will drop the spinlock before scheduling,
2594 * cond_resched_softirq() will enable bhs before scheduling.
2595 */
2596 extern int _cond_resched(void);
2597
2598 #define cond_resched() ({ \
2599 __might_sleep(__FILE__, __LINE__, 0); \
2600 _cond_resched(); \
2601 })
2602
2603 extern int __cond_resched_lock(spinlock_t *lock);
2604
2605 #ifdef CONFIG_PREEMPT_COUNT
2606 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
2607 #else
2608 #define PREEMPT_LOCK_OFFSET 0
2609 #endif
2610
2611 #define cond_resched_lock(lock) ({ \
2612 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2613 __cond_resched_lock(lock); \
2614 })
2615
2616 extern int __cond_resched_softirq(void);
2617
2618 #define cond_resched_softirq() ({ \
2619 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
2620 __cond_resched_softirq(); \
2621 })
2622
2623 /*
2624 * Does a critical section need to be broken due to another
2625 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2626 * but a general need for low latency)
2627 */
2628 static inline int spin_needbreak(spinlock_t *lock)
2629 {
2630 #ifdef CONFIG_PREEMPT
2631 return spin_is_contended(lock);
2632 #else
2633 return 0;
2634 #endif
2635 }
2636
2637 /*
2638 * Idle thread specific functions to determine the need_resched
2639 * polling state. We have two versions, one based on TS_POLLING in
2640 * thread_info.status and one based on TIF_POLLING_NRFLAG in
2641 * thread_info.flags
2642 */
2643 #ifdef TS_POLLING
2644 static inline int tsk_is_polling(struct task_struct *p)
2645 {
2646 return task_thread_info(p)->status & TS_POLLING;
2647 }
2648 static inline void __current_set_polling(void)
2649 {
2650 current_thread_info()->status |= TS_POLLING;
2651 }
2652
2653 static inline bool __must_check current_set_polling_and_test(void)
2654 {
2655 __current_set_polling();
2656
2657 /*
2658 * Polling state must be visible before we test NEED_RESCHED,
2659 * paired by resched_task()
2660 */
2661 smp_mb();
2662
2663 return unlikely(tif_need_resched());
2664 }
2665
2666 static inline void __current_clr_polling(void)
2667 {
2668 current_thread_info()->status &= ~TS_POLLING;
2669 }
2670
2671 static inline bool __must_check current_clr_polling_and_test(void)
2672 {
2673 __current_clr_polling();
2674
2675 /*
2676 * Polling state must be visible before we test NEED_RESCHED,
2677 * paired by resched_task()
2678 */
2679 smp_mb();
2680
2681 return unlikely(tif_need_resched());
2682 }
2683 #elif defined(TIF_POLLING_NRFLAG)
2684 static inline int tsk_is_polling(struct task_struct *p)
2685 {
2686 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
2687 }
2688
2689 static inline void __current_set_polling(void)
2690 {
2691 set_thread_flag(TIF_POLLING_NRFLAG);
2692 }
2693
2694 static inline bool __must_check current_set_polling_and_test(void)
2695 {
2696 __current_set_polling();
2697
2698 /*
2699 * Polling state must be visible before we test NEED_RESCHED,
2700 * paired by resched_task()
2701 *
2702 * XXX: assumes set/clear bit are identical barrier wise.
2703 */
2704 smp_mb__after_clear_bit();
2705
2706 return unlikely(tif_need_resched());
2707 }
2708
2709 static inline void __current_clr_polling(void)
2710 {
2711 clear_thread_flag(TIF_POLLING_NRFLAG);
2712 }
2713
2714 static inline bool __must_check current_clr_polling_and_test(void)
2715 {
2716 __current_clr_polling();
2717
2718 /*
2719 * Polling state must be visible before we test NEED_RESCHED,
2720 * paired by resched_task()
2721 */
2722 smp_mb__after_clear_bit();
2723
2724 return unlikely(tif_need_resched());
2725 }
2726
2727 #else
2728 static inline int tsk_is_polling(struct task_struct *p) { return 0; }
2729 static inline void __current_set_polling(void) { }
2730 static inline void __current_clr_polling(void) { }
2731
2732 static inline bool __must_check current_set_polling_and_test(void)
2733 {
2734 return unlikely(tif_need_resched());
2735 }
2736 static inline bool __must_check current_clr_polling_and_test(void)
2737 {
2738 return unlikely(tif_need_resched());
2739 }
2740 #endif
2741
2742 /*
2743 * Thread group CPU time accounting.
2744 */
2745 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2746 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2747
2748 static inline void thread_group_cputime_init(struct signal_struct *sig)
2749 {
2750 raw_spin_lock_init(&sig->cputimer.lock);
2751 }
2752
2753 /*
2754 * Reevaluate whether the task has signals pending delivery.
2755 * Wake the task if so.
2756 * This is required every time the blocked sigset_t changes.
2757 * callers must hold sighand->siglock.
2758 */
2759 extern void recalc_sigpending_and_wake(struct task_struct *t);
2760 extern void recalc_sigpending(void);
2761
2762 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
2763
2764 static inline void signal_wake_up(struct task_struct *t, bool resume)
2765 {
2766 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
2767 }
2768 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
2769 {
2770 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
2771 }
2772
2773 /*
2774 * Wrappers for p->thread_info->cpu access. No-op on UP.
2775 */
2776 #ifdef CONFIG_SMP
2777
2778 static inline unsigned int task_cpu(const struct task_struct *p)
2779 {
2780 return task_thread_info(p)->cpu;
2781 }
2782
2783 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2784
2785 #else
2786
2787 static inline unsigned int task_cpu(const struct task_struct *p)
2788 {
2789 return 0;
2790 }
2791
2792 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2793 {
2794 }
2795
2796 #endif /* CONFIG_SMP */
2797
2798 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2799 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2800
2801 #ifdef CONFIG_CGROUP_SCHED
2802 extern struct task_group root_task_group;
2803 #endif /* CONFIG_CGROUP_SCHED */
2804
2805 extern int task_can_switch_user(struct user_struct *up,
2806 struct task_struct *tsk);
2807
2808 #ifdef CONFIG_TASK_XACCT
2809 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2810 {
2811 tsk->ioac.rchar += amt;
2812 }
2813
2814 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2815 {
2816 tsk->ioac.wchar += amt;
2817 }
2818
2819 static inline void inc_syscr(struct task_struct *tsk)
2820 {
2821 tsk->ioac.syscr++;
2822 }
2823
2824 static inline void inc_syscw(struct task_struct *tsk)
2825 {
2826 tsk->ioac.syscw++;
2827 }
2828 #else
2829 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2830 {
2831 }
2832
2833 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2834 {
2835 }
2836
2837 static inline void inc_syscr(struct task_struct *tsk)
2838 {
2839 }
2840
2841 static inline void inc_syscw(struct task_struct *tsk)
2842 {
2843 }
2844 #endif
2845
2846 #ifndef TASK_SIZE_OF
2847 #define TASK_SIZE_OF(tsk) TASK_SIZE
2848 #endif
2849
2850 #ifdef CONFIG_MM_OWNER
2851 extern void mm_update_next_owner(struct mm_struct *mm);
2852 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2853 #else
2854 static inline void mm_update_next_owner(struct mm_struct *mm)
2855 {
2856 }
2857
2858 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2859 {
2860 }
2861 #endif /* CONFIG_MM_OWNER */
2862
2863 static inline unsigned long task_rlimit(const struct task_struct *tsk,
2864 unsigned int limit)
2865 {
2866 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2867 }
2868
2869 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2870 unsigned int limit)
2871 {
2872 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2873 }
2874
2875 static inline unsigned long rlimit(unsigned int limit)
2876 {
2877 return task_rlimit(current, limit);
2878 }
2879
2880 static inline unsigned long rlimit_max(unsigned int limit)
2881 {
2882 return task_rlimit_max(current, limit);
2883 }
2884
2885 #ifdef CONFIG_MTK_SCHED_RQAVG_US
2886 /*
2887 * @cpu: cpu id
2888 * @reset: reset the statistic start time after this time query
2889 * @use_maxfreq: caculate cpu loading with max cpu max frequency
2890 * return: cpu loading as percentage (0~100)
2891 */
2892 extern unsigned int sched_get_percpu_load(int cpu, bool reset, bool use_maxfreq);
2893
2894 /*
2895 * return: heavy task(loading>90%) number in the system
2896 */
2897 extern unsigned int sched_get_nr_heavy_task(void);
2898
2899 /*
2900 * @threshold: heavy task loading threshold (0~1023)
2901 * return: heavy task(loading>threshold) number in the system
2902 */
2903 extern unsigned int sched_get_nr_heavy_task_by_threshold(unsigned int threshold);
2904 #endif /* CONFIG_MTK_SCHED_RQAVG_US */
2905
2906 #ifdef CONFIG_MTK_SCHED_RQAVG_KS
2907 extern void sched_update_nr_prod(int cpu, unsigned long nr, bool inc);
2908 extern void sched_get_nr_running_avg(int *avg, int *iowait_avg);
2909 #endif /* CONFIG_MTK_SCHED_RQAVG_KS */
2910
2911 extern void sched_get_big_little_cpus(struct cpumask *big, struct cpumask *little);
2912
2913 #endif