Merge branch 'fixes' of git://git.linaro.org/people/rmk/linux-arm
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 #include <uapi/linux/sched.h>
5
6
7 struct sched_param {
8 int sched_priority;
9 };
10
11 #include <asm/param.h> /* for HZ */
12
13 #include <linux/capability.h>
14 #include <linux/threads.h>
15 #include <linux/kernel.h>
16 #include <linux/types.h>
17 #include <linux/timex.h>
18 #include <linux/jiffies.h>
19 #include <linux/rbtree.h>
20 #include <linux/thread_info.h>
21 #include <linux/cpumask.h>
22 #include <linux/errno.h>
23 #include <linux/nodemask.h>
24 #include <linux/mm_types.h>
25
26 #include <asm/page.h>
27 #include <asm/ptrace.h>
28 #include <asm/cputime.h>
29
30 #include <linux/smp.h>
31 #include <linux/sem.h>
32 #include <linux/signal.h>
33 #include <linux/compiler.h>
34 #include <linux/completion.h>
35 #include <linux/pid.h>
36 #include <linux/percpu.h>
37 #include <linux/topology.h>
38 #include <linux/proportions.h>
39 #include <linux/seccomp.h>
40 #include <linux/rcupdate.h>
41 #include <linux/rculist.h>
42 #include <linux/rtmutex.h>
43
44 #include <linux/time.h>
45 #include <linux/param.h>
46 #include <linux/resource.h>
47 #include <linux/timer.h>
48 #include <linux/hrtimer.h>
49 #include <linux/task_io_accounting.h>
50 #include <linux/latencytop.h>
51 #include <linux/cred.h>
52 #include <linux/llist.h>
53 #include <linux/uidgid.h>
54 #include <linux/gfp.h>
55
56 #include <asm/processor.h>
57
58 struct exec_domain;
59 struct futex_pi_state;
60 struct robust_list_head;
61 struct bio_list;
62 struct fs_struct;
63 struct perf_event_context;
64 struct blk_plug;
65
66 /*
67 * List of flags we want to share for kernel threads,
68 * if only because they are not used by them anyway.
69 */
70 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
71
72 /*
73 * These are the constant used to fake the fixed-point load-average
74 * counting. Some notes:
75 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
76 * a load-average precision of 10 bits integer + 11 bits fractional
77 * - if you want to count load-averages more often, you need more
78 * precision, or rounding will get you. With 2-second counting freq,
79 * the EXP_n values would be 1981, 2034 and 2043 if still using only
80 * 11 bit fractions.
81 */
82 extern unsigned long avenrun[]; /* Load averages */
83 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
84
85 #define FSHIFT 11 /* nr of bits of precision */
86 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
87 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
88 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
89 #define EXP_5 2014 /* 1/exp(5sec/5min) */
90 #define EXP_15 2037 /* 1/exp(5sec/15min) */
91
92 #define CALC_LOAD(load,exp,n) \
93 load *= exp; \
94 load += n*(FIXED_1-exp); \
95 load >>= FSHIFT;
96
97 extern unsigned long total_forks;
98 extern int nr_threads;
99 DECLARE_PER_CPU(unsigned long, process_counts);
100 extern int nr_processes(void);
101 extern unsigned long nr_running(void);
102 extern unsigned long nr_iowait(void);
103 extern unsigned long nr_iowait_cpu(int cpu);
104 extern unsigned long this_cpu_load(void);
105
106
107 extern void calc_global_load(unsigned long ticks);
108 extern void update_cpu_load_nohz(void);
109
110 /* Notifier for when a task gets migrated to a new CPU */
111 struct task_migration_notifier {
112 struct task_struct *task;
113 int from_cpu;
114 int to_cpu;
115 };
116 extern void register_task_migration_notifier(struct notifier_block *n);
117
118 extern unsigned long get_parent_ip(unsigned long addr);
119
120 extern void dump_cpu_task(int cpu);
121
122 struct seq_file;
123 struct cfs_rq;
124 struct task_group;
125 #ifdef CONFIG_SCHED_DEBUG
126 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
127 extern void proc_sched_set_task(struct task_struct *p);
128 extern void
129 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
130 #else
131 static inline void
132 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
133 {
134 }
135 static inline void proc_sched_set_task(struct task_struct *p)
136 {
137 }
138 static inline void
139 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
140 {
141 }
142 #endif
143
144 /*
145 * Task state bitmask. NOTE! These bits are also
146 * encoded in fs/proc/array.c: get_task_state().
147 *
148 * We have two separate sets of flags: task->state
149 * is about runnability, while task->exit_state are
150 * about the task exiting. Confusing, but this way
151 * modifying one set can't modify the other one by
152 * mistake.
153 */
154 #define TASK_RUNNING 0
155 #define TASK_INTERRUPTIBLE 1
156 #define TASK_UNINTERRUPTIBLE 2
157 #define __TASK_STOPPED 4
158 #define __TASK_TRACED 8
159 /* in tsk->exit_state */
160 #define EXIT_ZOMBIE 16
161 #define EXIT_DEAD 32
162 /* in tsk->state again */
163 #define TASK_DEAD 64
164 #define TASK_WAKEKILL 128
165 #define TASK_WAKING 256
166 #define TASK_PARKED 512
167 #define TASK_STATE_MAX 1024
168
169 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
170
171 extern char ___assert_task_state[1 - 2*!!(
172 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
173
174 /* Convenience macros for the sake of set_task_state */
175 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
176 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
177 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
178
179 /* Convenience macros for the sake of wake_up */
180 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
181 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
182
183 /* get_task_state() */
184 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
185 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
186 __TASK_TRACED)
187
188 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
189 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
190 #define task_is_dead(task) ((task)->exit_state != 0)
191 #define task_is_stopped_or_traced(task) \
192 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
193 #define task_contributes_to_load(task) \
194 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
195 (task->flags & PF_FROZEN) == 0)
196
197 #define __set_task_state(tsk, state_value) \
198 do { (tsk)->state = (state_value); } while (0)
199 #define set_task_state(tsk, state_value) \
200 set_mb((tsk)->state, (state_value))
201
202 /*
203 * set_current_state() includes a barrier so that the write of current->state
204 * is correctly serialised wrt the caller's subsequent test of whether to
205 * actually sleep:
206 *
207 * set_current_state(TASK_UNINTERRUPTIBLE);
208 * if (do_i_need_to_sleep())
209 * schedule();
210 *
211 * If the caller does not need such serialisation then use __set_current_state()
212 */
213 #define __set_current_state(state_value) \
214 do { current->state = (state_value); } while (0)
215 #define set_current_state(state_value) \
216 set_mb(current->state, (state_value))
217
218 /* Task command name length */
219 #define TASK_COMM_LEN 16
220
221 #include <linux/spinlock.h>
222
223 /*
224 * This serializes "schedule()" and also protects
225 * the run-queue from deletions/modifications (but
226 * _adding_ to the beginning of the run-queue has
227 * a separate lock).
228 */
229 extern rwlock_t tasklist_lock;
230 extern spinlock_t mmlist_lock;
231
232 struct task_struct;
233
234 #ifdef CONFIG_PROVE_RCU
235 extern int lockdep_tasklist_lock_is_held(void);
236 #endif /* #ifdef CONFIG_PROVE_RCU */
237
238 extern void sched_init(void);
239 extern void sched_init_smp(void);
240 extern asmlinkage void schedule_tail(struct task_struct *prev);
241 extern void init_idle(struct task_struct *idle, int cpu);
242 extern void init_idle_bootup_task(struct task_struct *idle);
243
244 extern int runqueue_is_locked(int cpu);
245
246 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
247 extern void nohz_balance_enter_idle(int cpu);
248 extern void set_cpu_sd_state_idle(void);
249 extern int get_nohz_timer_target(void);
250 #else
251 static inline void nohz_balance_enter_idle(int cpu) { }
252 static inline void set_cpu_sd_state_idle(void) { }
253 #endif
254
255 /*
256 * Only dump TASK_* tasks. (0 for all tasks)
257 */
258 extern void show_state_filter(unsigned long state_filter);
259
260 static inline void show_state(void)
261 {
262 show_state_filter(0);
263 }
264
265 extern void show_regs(struct pt_regs *);
266
267 /*
268 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
269 * task), SP is the stack pointer of the first frame that should be shown in the back
270 * trace (or NULL if the entire call-chain of the task should be shown).
271 */
272 extern void show_stack(struct task_struct *task, unsigned long *sp);
273
274 void io_schedule(void);
275 long io_schedule_timeout(long timeout);
276
277 extern void cpu_init (void);
278 extern void trap_init(void);
279 extern void update_process_times(int user);
280 extern void scheduler_tick(void);
281
282 extern void sched_show_task(struct task_struct *p);
283
284 #ifdef CONFIG_LOCKUP_DETECTOR
285 extern void touch_softlockup_watchdog(void);
286 extern void touch_softlockup_watchdog_sync(void);
287 extern void touch_all_softlockup_watchdogs(void);
288 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
289 void __user *buffer,
290 size_t *lenp, loff_t *ppos);
291 extern unsigned int softlockup_panic;
292 void lockup_detector_init(void);
293 #else
294 static inline void touch_softlockup_watchdog(void)
295 {
296 }
297 static inline void touch_softlockup_watchdog_sync(void)
298 {
299 }
300 static inline void touch_all_softlockup_watchdogs(void)
301 {
302 }
303 static inline void lockup_detector_init(void)
304 {
305 }
306 #endif
307
308 /* Attach to any functions which should be ignored in wchan output. */
309 #define __sched __attribute__((__section__(".sched.text")))
310
311 /* Linker adds these: start and end of __sched functions */
312 extern char __sched_text_start[], __sched_text_end[];
313
314 /* Is this address in the __sched functions? */
315 extern int in_sched_functions(unsigned long addr);
316
317 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
318 extern signed long schedule_timeout(signed long timeout);
319 extern signed long schedule_timeout_interruptible(signed long timeout);
320 extern signed long schedule_timeout_killable(signed long timeout);
321 extern signed long schedule_timeout_uninterruptible(signed long timeout);
322 asmlinkage void schedule(void);
323 extern void schedule_preempt_disabled(void);
324 extern int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner);
325
326 struct nsproxy;
327 struct user_namespace;
328
329 #include <linux/aio.h>
330
331 #ifdef CONFIG_MMU
332 extern void arch_pick_mmap_layout(struct mm_struct *mm);
333 extern unsigned long
334 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
335 unsigned long, unsigned long);
336 extern unsigned long
337 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
338 unsigned long len, unsigned long pgoff,
339 unsigned long flags);
340 extern void arch_unmap_area(struct mm_struct *, unsigned long);
341 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
342 #else
343 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
344 #endif
345
346
347 extern void set_dumpable(struct mm_struct *mm, int value);
348 extern int get_dumpable(struct mm_struct *mm);
349
350 /* mm flags */
351 /* dumpable bits */
352 #define MMF_DUMPABLE 0 /* core dump is permitted */
353 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
354
355 #define MMF_DUMPABLE_BITS 2
356 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
357
358 /* coredump filter bits */
359 #define MMF_DUMP_ANON_PRIVATE 2
360 #define MMF_DUMP_ANON_SHARED 3
361 #define MMF_DUMP_MAPPED_PRIVATE 4
362 #define MMF_DUMP_MAPPED_SHARED 5
363 #define MMF_DUMP_ELF_HEADERS 6
364 #define MMF_DUMP_HUGETLB_PRIVATE 7
365 #define MMF_DUMP_HUGETLB_SHARED 8
366
367 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
368 #define MMF_DUMP_FILTER_BITS 7
369 #define MMF_DUMP_FILTER_MASK \
370 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
371 #define MMF_DUMP_FILTER_DEFAULT \
372 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
373 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
374
375 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
376 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
377 #else
378 # define MMF_DUMP_MASK_DEFAULT_ELF 0
379 #endif
380 /* leave room for more dump flags */
381 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
382 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
383 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
384
385 #define MMF_HAS_UPROBES 19 /* has uprobes */
386 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
387
388 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
389
390 struct sighand_struct {
391 atomic_t count;
392 struct k_sigaction action[_NSIG];
393 spinlock_t siglock;
394 wait_queue_head_t signalfd_wqh;
395 };
396
397 struct pacct_struct {
398 int ac_flag;
399 long ac_exitcode;
400 unsigned long ac_mem;
401 cputime_t ac_utime, ac_stime;
402 unsigned long ac_minflt, ac_majflt;
403 };
404
405 struct cpu_itimer {
406 cputime_t expires;
407 cputime_t incr;
408 u32 error;
409 u32 incr_error;
410 };
411
412 /**
413 * struct cputime - snaphsot of system and user cputime
414 * @utime: time spent in user mode
415 * @stime: time spent in system mode
416 *
417 * Gathers a generic snapshot of user and system time.
418 */
419 struct cputime {
420 cputime_t utime;
421 cputime_t stime;
422 };
423
424 /**
425 * struct task_cputime - collected CPU time counts
426 * @utime: time spent in user mode, in &cputime_t units
427 * @stime: time spent in kernel mode, in &cputime_t units
428 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
429 *
430 * This is an extension of struct cputime that includes the total runtime
431 * spent by the task from the scheduler point of view.
432 *
433 * As a result, this structure groups together three kinds of CPU time
434 * that are tracked for threads and thread groups. Most things considering
435 * CPU time want to group these counts together and treat all three
436 * of them in parallel.
437 */
438 struct task_cputime {
439 cputime_t utime;
440 cputime_t stime;
441 unsigned long long sum_exec_runtime;
442 };
443 /* Alternate field names when used to cache expirations. */
444 #define prof_exp stime
445 #define virt_exp utime
446 #define sched_exp sum_exec_runtime
447
448 #define INIT_CPUTIME \
449 (struct task_cputime) { \
450 .utime = 0, \
451 .stime = 0, \
452 .sum_exec_runtime = 0, \
453 }
454
455 /*
456 * Disable preemption until the scheduler is running.
457 * Reset by start_kernel()->sched_init()->init_idle().
458 *
459 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
460 * before the scheduler is active -- see should_resched().
461 */
462 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE)
463
464 /**
465 * struct thread_group_cputimer - thread group interval timer counts
466 * @cputime: thread group interval timers.
467 * @running: non-zero when there are timers running and
468 * @cputime receives updates.
469 * @lock: lock for fields in this struct.
470 *
471 * This structure contains the version of task_cputime, above, that is
472 * used for thread group CPU timer calculations.
473 */
474 struct thread_group_cputimer {
475 struct task_cputime cputime;
476 int running;
477 raw_spinlock_t lock;
478 };
479
480 #include <linux/rwsem.h>
481 struct autogroup;
482
483 /*
484 * NOTE! "signal_struct" does not have its own
485 * locking, because a shared signal_struct always
486 * implies a shared sighand_struct, so locking
487 * sighand_struct is always a proper superset of
488 * the locking of signal_struct.
489 */
490 struct signal_struct {
491 atomic_t sigcnt;
492 atomic_t live;
493 int nr_threads;
494
495 wait_queue_head_t wait_chldexit; /* for wait4() */
496
497 /* current thread group signal load-balancing target: */
498 struct task_struct *curr_target;
499
500 /* shared signal handling: */
501 struct sigpending shared_pending;
502
503 /* thread group exit support */
504 int group_exit_code;
505 /* overloaded:
506 * - notify group_exit_task when ->count is equal to notify_count
507 * - everyone except group_exit_task is stopped during signal delivery
508 * of fatal signals, group_exit_task processes the signal.
509 */
510 int notify_count;
511 struct task_struct *group_exit_task;
512
513 /* thread group stop support, overloads group_exit_code too */
514 int group_stop_count;
515 unsigned int flags; /* see SIGNAL_* flags below */
516
517 /*
518 * PR_SET_CHILD_SUBREAPER marks a process, like a service
519 * manager, to re-parent orphan (double-forking) child processes
520 * to this process instead of 'init'. The service manager is
521 * able to receive SIGCHLD signals and is able to investigate
522 * the process until it calls wait(). All children of this
523 * process will inherit a flag if they should look for a
524 * child_subreaper process at exit.
525 */
526 unsigned int is_child_subreaper:1;
527 unsigned int has_child_subreaper:1;
528
529 /* POSIX.1b Interval Timers */
530 struct list_head posix_timers;
531
532 /* ITIMER_REAL timer for the process */
533 struct hrtimer real_timer;
534 struct pid *leader_pid;
535 ktime_t it_real_incr;
536
537 /*
538 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
539 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
540 * values are defined to 0 and 1 respectively
541 */
542 struct cpu_itimer it[2];
543
544 /*
545 * Thread group totals for process CPU timers.
546 * See thread_group_cputimer(), et al, for details.
547 */
548 struct thread_group_cputimer cputimer;
549
550 /* Earliest-expiration cache. */
551 struct task_cputime cputime_expires;
552
553 struct list_head cpu_timers[3];
554
555 struct pid *tty_old_pgrp;
556
557 /* boolean value for session group leader */
558 int leader;
559
560 struct tty_struct *tty; /* NULL if no tty */
561
562 #ifdef CONFIG_SCHED_AUTOGROUP
563 struct autogroup *autogroup;
564 #endif
565 /*
566 * Cumulative resource counters for dead threads in the group,
567 * and for reaped dead child processes forked by this group.
568 * Live threads maintain their own counters and add to these
569 * in __exit_signal, except for the group leader.
570 */
571 cputime_t utime, stime, cutime, cstime;
572 cputime_t gtime;
573 cputime_t cgtime;
574 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
575 struct cputime prev_cputime;
576 #endif
577 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
578 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
579 unsigned long inblock, oublock, cinblock, coublock;
580 unsigned long maxrss, cmaxrss;
581 struct task_io_accounting ioac;
582
583 /*
584 * Cumulative ns of schedule CPU time fo dead threads in the
585 * group, not including a zombie group leader, (This only differs
586 * from jiffies_to_ns(utime + stime) if sched_clock uses something
587 * other than jiffies.)
588 */
589 unsigned long long sum_sched_runtime;
590
591 /*
592 * We don't bother to synchronize most readers of this at all,
593 * because there is no reader checking a limit that actually needs
594 * to get both rlim_cur and rlim_max atomically, and either one
595 * alone is a single word that can safely be read normally.
596 * getrlimit/setrlimit use task_lock(current->group_leader) to
597 * protect this instead of the siglock, because they really
598 * have no need to disable irqs.
599 */
600 struct rlimit rlim[RLIM_NLIMITS];
601
602 #ifdef CONFIG_BSD_PROCESS_ACCT
603 struct pacct_struct pacct; /* per-process accounting information */
604 #endif
605 #ifdef CONFIG_TASKSTATS
606 struct taskstats *stats;
607 #endif
608 #ifdef CONFIG_AUDIT
609 unsigned audit_tty;
610 struct tty_audit_buf *tty_audit_buf;
611 #endif
612 #ifdef CONFIG_CGROUPS
613 /*
614 * group_rwsem prevents new tasks from entering the threadgroup and
615 * member tasks from exiting,a more specifically, setting of
616 * PF_EXITING. fork and exit paths are protected with this rwsem
617 * using threadgroup_change_begin/end(). Users which require
618 * threadgroup to remain stable should use threadgroup_[un]lock()
619 * which also takes care of exec path. Currently, cgroup is the
620 * only user.
621 */
622 struct rw_semaphore group_rwsem;
623 #endif
624
625 oom_flags_t oom_flags;
626 short oom_score_adj; /* OOM kill score adjustment */
627 short oom_score_adj_min; /* OOM kill score adjustment min value.
628 * Only settable by CAP_SYS_RESOURCE. */
629
630 struct mutex cred_guard_mutex; /* guard against foreign influences on
631 * credential calculations
632 * (notably. ptrace) */
633 };
634
635 /*
636 * Bits in flags field of signal_struct.
637 */
638 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
639 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
640 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
641 /*
642 * Pending notifications to parent.
643 */
644 #define SIGNAL_CLD_STOPPED 0x00000010
645 #define SIGNAL_CLD_CONTINUED 0x00000020
646 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
647
648 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
649
650 /* If true, all threads except ->group_exit_task have pending SIGKILL */
651 static inline int signal_group_exit(const struct signal_struct *sig)
652 {
653 return (sig->flags & SIGNAL_GROUP_EXIT) ||
654 (sig->group_exit_task != NULL);
655 }
656
657 /*
658 * Some day this will be a full-fledged user tracking system..
659 */
660 struct user_struct {
661 atomic_t __count; /* reference count */
662 atomic_t processes; /* How many processes does this user have? */
663 atomic_t files; /* How many open files does this user have? */
664 atomic_t sigpending; /* How many pending signals does this user have? */
665 #ifdef CONFIG_INOTIFY_USER
666 atomic_t inotify_watches; /* How many inotify watches does this user have? */
667 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
668 #endif
669 #ifdef CONFIG_FANOTIFY
670 atomic_t fanotify_listeners;
671 #endif
672 #ifdef CONFIG_EPOLL
673 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
674 #endif
675 #ifdef CONFIG_POSIX_MQUEUE
676 /* protected by mq_lock */
677 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
678 #endif
679 unsigned long locked_shm; /* How many pages of mlocked shm ? */
680
681 #ifdef CONFIG_KEYS
682 struct key *uid_keyring; /* UID specific keyring */
683 struct key *session_keyring; /* UID's default session keyring */
684 #endif
685
686 /* Hash table maintenance information */
687 struct hlist_node uidhash_node;
688 kuid_t uid;
689
690 #ifdef CONFIG_PERF_EVENTS
691 atomic_long_t locked_vm;
692 #endif
693 };
694
695 extern int uids_sysfs_init(void);
696
697 extern struct user_struct *find_user(kuid_t);
698
699 extern struct user_struct root_user;
700 #define INIT_USER (&root_user)
701
702
703 struct backing_dev_info;
704 struct reclaim_state;
705
706 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
707 struct sched_info {
708 /* cumulative counters */
709 unsigned long pcount; /* # of times run on this cpu */
710 unsigned long long run_delay; /* time spent waiting on a runqueue */
711
712 /* timestamps */
713 unsigned long long last_arrival,/* when we last ran on a cpu */
714 last_queued; /* when we were last queued to run */
715 };
716 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
717
718 #ifdef CONFIG_TASK_DELAY_ACCT
719 struct task_delay_info {
720 spinlock_t lock;
721 unsigned int flags; /* Private per-task flags */
722
723 /* For each stat XXX, add following, aligned appropriately
724 *
725 * struct timespec XXX_start, XXX_end;
726 * u64 XXX_delay;
727 * u32 XXX_count;
728 *
729 * Atomicity of updates to XXX_delay, XXX_count protected by
730 * single lock above (split into XXX_lock if contention is an issue).
731 */
732
733 /*
734 * XXX_count is incremented on every XXX operation, the delay
735 * associated with the operation is added to XXX_delay.
736 * XXX_delay contains the accumulated delay time in nanoseconds.
737 */
738 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
739 u64 blkio_delay; /* wait for sync block io completion */
740 u64 swapin_delay; /* wait for swapin block io completion */
741 u32 blkio_count; /* total count of the number of sync block */
742 /* io operations performed */
743 u32 swapin_count; /* total count of the number of swapin block */
744 /* io operations performed */
745
746 struct timespec freepages_start, freepages_end;
747 u64 freepages_delay; /* wait for memory reclaim */
748 u32 freepages_count; /* total count of memory reclaim */
749 };
750 #endif /* CONFIG_TASK_DELAY_ACCT */
751
752 static inline int sched_info_on(void)
753 {
754 #ifdef CONFIG_SCHEDSTATS
755 return 1;
756 #elif defined(CONFIG_TASK_DELAY_ACCT)
757 extern int delayacct_on;
758 return delayacct_on;
759 #else
760 return 0;
761 #endif
762 }
763
764 enum cpu_idle_type {
765 CPU_IDLE,
766 CPU_NOT_IDLE,
767 CPU_NEWLY_IDLE,
768 CPU_MAX_IDLE_TYPES
769 };
770
771 /*
772 * Increase resolution of nice-level calculations for 64-bit architectures.
773 * The extra resolution improves shares distribution and load balancing of
774 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
775 * hierarchies, especially on larger systems. This is not a user-visible change
776 * and does not change the user-interface for setting shares/weights.
777 *
778 * We increase resolution only if we have enough bits to allow this increased
779 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
780 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
781 * increased costs.
782 */
783 #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
784 # define SCHED_LOAD_RESOLUTION 10
785 # define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
786 # define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
787 #else
788 # define SCHED_LOAD_RESOLUTION 0
789 # define scale_load(w) (w)
790 # define scale_load_down(w) (w)
791 #endif
792
793 #define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
794 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
795
796 /*
797 * Increase resolution of cpu_power calculations
798 */
799 #define SCHED_POWER_SHIFT 10
800 #define SCHED_POWER_SCALE (1L << SCHED_POWER_SHIFT)
801
802 /*
803 * sched-domains (multiprocessor balancing) declarations:
804 */
805 #ifdef CONFIG_SMP
806 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
807 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
808 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
809 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
810 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
811 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
812 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */
813 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
814 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
815 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
816 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
817 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
818
819 extern int __weak arch_sd_sibiling_asym_packing(void);
820
821 struct sched_group_power {
822 atomic_t ref;
823 /*
824 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
825 * single CPU.
826 */
827 unsigned int power, power_orig;
828 unsigned long next_update;
829 /*
830 * Number of busy cpus in this group.
831 */
832 atomic_t nr_busy_cpus;
833
834 unsigned long cpumask[0]; /* iteration mask */
835 };
836
837 struct sched_group {
838 struct sched_group *next; /* Must be a circular list */
839 atomic_t ref;
840
841 unsigned int group_weight;
842 struct sched_group_power *sgp;
843
844 /*
845 * The CPUs this group covers.
846 *
847 * NOTE: this field is variable length. (Allocated dynamically
848 * by attaching extra space to the end of the structure,
849 * depending on how many CPUs the kernel has booted up with)
850 */
851 unsigned long cpumask[0];
852 };
853
854 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
855 {
856 return to_cpumask(sg->cpumask);
857 }
858
859 /*
860 * cpumask masking which cpus in the group are allowed to iterate up the domain
861 * tree.
862 */
863 static inline struct cpumask *sched_group_mask(struct sched_group *sg)
864 {
865 return to_cpumask(sg->sgp->cpumask);
866 }
867
868 /**
869 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
870 * @group: The group whose first cpu is to be returned.
871 */
872 static inline unsigned int group_first_cpu(struct sched_group *group)
873 {
874 return cpumask_first(sched_group_cpus(group));
875 }
876
877 struct sched_domain_attr {
878 int relax_domain_level;
879 };
880
881 #define SD_ATTR_INIT (struct sched_domain_attr) { \
882 .relax_domain_level = -1, \
883 }
884
885 extern int sched_domain_level_max;
886
887 struct sched_domain {
888 /* These fields must be setup */
889 struct sched_domain *parent; /* top domain must be null terminated */
890 struct sched_domain *child; /* bottom domain must be null terminated */
891 struct sched_group *groups; /* the balancing groups of the domain */
892 unsigned long min_interval; /* Minimum balance interval ms */
893 unsigned long max_interval; /* Maximum balance interval ms */
894 unsigned int busy_factor; /* less balancing by factor if busy */
895 unsigned int imbalance_pct; /* No balance until over watermark */
896 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
897 unsigned int busy_idx;
898 unsigned int idle_idx;
899 unsigned int newidle_idx;
900 unsigned int wake_idx;
901 unsigned int forkexec_idx;
902 unsigned int smt_gain;
903 int flags; /* See SD_* */
904 int level;
905
906 /* Runtime fields. */
907 unsigned long last_balance; /* init to jiffies. units in jiffies */
908 unsigned int balance_interval; /* initialise to 1. units in ms. */
909 unsigned int nr_balance_failed; /* initialise to 0 */
910
911 u64 last_update;
912
913 #ifdef CONFIG_SCHEDSTATS
914 /* load_balance() stats */
915 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
916 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
917 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
918 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
919 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
920 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
921 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
922 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
923
924 /* Active load balancing */
925 unsigned int alb_count;
926 unsigned int alb_failed;
927 unsigned int alb_pushed;
928
929 /* SD_BALANCE_EXEC stats */
930 unsigned int sbe_count;
931 unsigned int sbe_balanced;
932 unsigned int sbe_pushed;
933
934 /* SD_BALANCE_FORK stats */
935 unsigned int sbf_count;
936 unsigned int sbf_balanced;
937 unsigned int sbf_pushed;
938
939 /* try_to_wake_up() stats */
940 unsigned int ttwu_wake_remote;
941 unsigned int ttwu_move_affine;
942 unsigned int ttwu_move_balance;
943 #endif
944 #ifdef CONFIG_SCHED_DEBUG
945 char *name;
946 #endif
947 union {
948 void *private; /* used during construction */
949 struct rcu_head rcu; /* used during destruction */
950 };
951
952 unsigned int span_weight;
953 /*
954 * Span of all CPUs in this domain.
955 *
956 * NOTE: this field is variable length. (Allocated dynamically
957 * by attaching extra space to the end of the structure,
958 * depending on how many CPUs the kernel has booted up with)
959 */
960 unsigned long span[0];
961 };
962
963 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
964 {
965 return to_cpumask(sd->span);
966 }
967
968 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
969 struct sched_domain_attr *dattr_new);
970
971 /* Allocate an array of sched domains, for partition_sched_domains(). */
972 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
973 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
974
975 /* Test a flag in parent sched domain */
976 static inline int test_sd_parent(struct sched_domain *sd, int flag)
977 {
978 if (sd->parent && (sd->parent->flags & flag))
979 return 1;
980
981 return 0;
982 }
983
984 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu);
985 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu);
986
987 bool cpus_share_cache(int this_cpu, int that_cpu);
988
989 #else /* CONFIG_SMP */
990
991 struct sched_domain_attr;
992
993 static inline void
994 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
995 struct sched_domain_attr *dattr_new)
996 {
997 }
998
999 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1000 {
1001 return true;
1002 }
1003
1004 #endif /* !CONFIG_SMP */
1005
1006
1007 struct io_context; /* See blkdev.h */
1008
1009
1010 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1011 extern void prefetch_stack(struct task_struct *t);
1012 #else
1013 static inline void prefetch_stack(struct task_struct *t) { }
1014 #endif
1015
1016 struct audit_context; /* See audit.c */
1017 struct mempolicy;
1018 struct pipe_inode_info;
1019 struct uts_namespace;
1020
1021 struct rq;
1022 struct sched_domain;
1023
1024 /*
1025 * wake flags
1026 */
1027 #define WF_SYNC 0x01 /* waker goes to sleep after wakup */
1028 #define WF_FORK 0x02 /* child wakeup after fork */
1029 #define WF_MIGRATED 0x04 /* internal use, task got migrated */
1030
1031 #define ENQUEUE_WAKEUP 1
1032 #define ENQUEUE_HEAD 2
1033 #ifdef CONFIG_SMP
1034 #define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
1035 #else
1036 #define ENQUEUE_WAKING 0
1037 #endif
1038
1039 #define DEQUEUE_SLEEP 1
1040
1041 struct sched_class {
1042 const struct sched_class *next;
1043
1044 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1045 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1046 void (*yield_task) (struct rq *rq);
1047 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1048
1049 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1050
1051 struct task_struct * (*pick_next_task) (struct rq *rq);
1052 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1053
1054 #ifdef CONFIG_SMP
1055 int (*select_task_rq)(struct task_struct *p, int sd_flag, int flags);
1056 void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
1057
1058 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1059 void (*post_schedule) (struct rq *this_rq);
1060 void (*task_waking) (struct task_struct *task);
1061 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1062
1063 void (*set_cpus_allowed)(struct task_struct *p,
1064 const struct cpumask *newmask);
1065
1066 void (*rq_online)(struct rq *rq);
1067 void (*rq_offline)(struct rq *rq);
1068 #endif
1069
1070 void (*set_curr_task) (struct rq *rq);
1071 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1072 void (*task_fork) (struct task_struct *p);
1073
1074 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1075 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1076 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1077 int oldprio);
1078
1079 unsigned int (*get_rr_interval) (struct rq *rq,
1080 struct task_struct *task);
1081
1082 #ifdef CONFIG_FAIR_GROUP_SCHED
1083 void (*task_move_group) (struct task_struct *p, int on_rq);
1084 #endif
1085 };
1086
1087 struct load_weight {
1088 unsigned long weight, inv_weight;
1089 };
1090
1091 struct sched_avg {
1092 /*
1093 * These sums represent an infinite geometric series and so are bound
1094 * above by 1024/(1-y). Thus we only need a u32 to store them for for all
1095 * choices of y < 1-2^(-32)*1024.
1096 */
1097 u32 runnable_avg_sum, runnable_avg_period;
1098 u64 last_runnable_update;
1099 s64 decay_count;
1100 unsigned long load_avg_contrib;
1101 };
1102
1103 #ifdef CONFIG_SCHEDSTATS
1104 struct sched_statistics {
1105 u64 wait_start;
1106 u64 wait_max;
1107 u64 wait_count;
1108 u64 wait_sum;
1109 u64 iowait_count;
1110 u64 iowait_sum;
1111
1112 u64 sleep_start;
1113 u64 sleep_max;
1114 s64 sum_sleep_runtime;
1115
1116 u64 block_start;
1117 u64 block_max;
1118 u64 exec_max;
1119 u64 slice_max;
1120
1121 u64 nr_migrations_cold;
1122 u64 nr_failed_migrations_affine;
1123 u64 nr_failed_migrations_running;
1124 u64 nr_failed_migrations_hot;
1125 u64 nr_forced_migrations;
1126
1127 u64 nr_wakeups;
1128 u64 nr_wakeups_sync;
1129 u64 nr_wakeups_migrate;
1130 u64 nr_wakeups_local;
1131 u64 nr_wakeups_remote;
1132 u64 nr_wakeups_affine;
1133 u64 nr_wakeups_affine_attempts;
1134 u64 nr_wakeups_passive;
1135 u64 nr_wakeups_idle;
1136 };
1137 #endif
1138
1139 struct sched_entity {
1140 struct load_weight load; /* for load-balancing */
1141 struct rb_node run_node;
1142 struct list_head group_node;
1143 unsigned int on_rq;
1144
1145 u64 exec_start;
1146 u64 sum_exec_runtime;
1147 u64 vruntime;
1148 u64 prev_sum_exec_runtime;
1149
1150 u64 nr_migrations;
1151
1152 #ifdef CONFIG_SCHEDSTATS
1153 struct sched_statistics statistics;
1154 #endif
1155
1156 #ifdef CONFIG_FAIR_GROUP_SCHED
1157 struct sched_entity *parent;
1158 /* rq on which this entity is (to be) queued: */
1159 struct cfs_rq *cfs_rq;
1160 /* rq "owned" by this entity/group: */
1161 struct cfs_rq *my_q;
1162 #endif
1163
1164 /*
1165 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
1166 * removed when useful for applications beyond shares distribution (e.g.
1167 * load-balance).
1168 */
1169 #if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
1170 /* Per-entity load-tracking */
1171 struct sched_avg avg;
1172 #endif
1173 };
1174
1175 struct sched_rt_entity {
1176 struct list_head run_list;
1177 unsigned long timeout;
1178 unsigned long watchdog_stamp;
1179 unsigned int time_slice;
1180
1181 struct sched_rt_entity *back;
1182 #ifdef CONFIG_RT_GROUP_SCHED
1183 struct sched_rt_entity *parent;
1184 /* rq on which this entity is (to be) queued: */
1185 struct rt_rq *rt_rq;
1186 /* rq "owned" by this entity/group: */
1187 struct rt_rq *my_q;
1188 #endif
1189 };
1190
1191
1192 struct rcu_node;
1193
1194 enum perf_event_task_context {
1195 perf_invalid_context = -1,
1196 perf_hw_context = 0,
1197 perf_sw_context,
1198 perf_nr_task_contexts,
1199 };
1200
1201 struct task_struct {
1202 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1203 void *stack;
1204 atomic_t usage;
1205 unsigned int flags; /* per process flags, defined below */
1206 unsigned int ptrace;
1207
1208 #ifdef CONFIG_SMP
1209 struct llist_node wake_entry;
1210 int on_cpu;
1211 #endif
1212 int on_rq;
1213
1214 int prio, static_prio, normal_prio;
1215 unsigned int rt_priority;
1216 const struct sched_class *sched_class;
1217 struct sched_entity se;
1218 struct sched_rt_entity rt;
1219 #ifdef CONFIG_CGROUP_SCHED
1220 struct task_group *sched_task_group;
1221 #endif
1222
1223 #ifdef CONFIG_PREEMPT_NOTIFIERS
1224 /* list of struct preempt_notifier: */
1225 struct hlist_head preempt_notifiers;
1226 #endif
1227
1228 /*
1229 * fpu_counter contains the number of consecutive context switches
1230 * that the FPU is used. If this is over a threshold, the lazy fpu
1231 * saving becomes unlazy to save the trap. This is an unsigned char
1232 * so that after 256 times the counter wraps and the behavior turns
1233 * lazy again; this to deal with bursty apps that only use FPU for
1234 * a short time
1235 */
1236 unsigned char fpu_counter;
1237 #ifdef CONFIG_BLK_DEV_IO_TRACE
1238 unsigned int btrace_seq;
1239 #endif
1240
1241 unsigned int policy;
1242 int nr_cpus_allowed;
1243 cpumask_t cpus_allowed;
1244
1245 #ifdef CONFIG_PREEMPT_RCU
1246 int rcu_read_lock_nesting;
1247 char rcu_read_unlock_special;
1248 struct list_head rcu_node_entry;
1249 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1250 #ifdef CONFIG_TREE_PREEMPT_RCU
1251 struct rcu_node *rcu_blocked_node;
1252 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1253 #ifdef CONFIG_RCU_BOOST
1254 struct rt_mutex *rcu_boost_mutex;
1255 #endif /* #ifdef CONFIG_RCU_BOOST */
1256
1257 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1258 struct sched_info sched_info;
1259 #endif
1260
1261 struct list_head tasks;
1262 #ifdef CONFIG_SMP
1263 struct plist_node pushable_tasks;
1264 #endif
1265
1266 struct mm_struct *mm, *active_mm;
1267 #ifdef CONFIG_COMPAT_BRK
1268 unsigned brk_randomized:1;
1269 #endif
1270 #if defined(SPLIT_RSS_COUNTING)
1271 struct task_rss_stat rss_stat;
1272 #endif
1273 /* task state */
1274 int exit_state;
1275 int exit_code, exit_signal;
1276 int pdeath_signal; /* The signal sent when the parent dies */
1277 unsigned int jobctl; /* JOBCTL_*, siglock protected */
1278 /* ??? */
1279 unsigned int personality;
1280 unsigned did_exec:1;
1281 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1282 * execve */
1283 unsigned in_iowait:1;
1284
1285 /* task may not gain privileges */
1286 unsigned no_new_privs:1;
1287
1288 /* Revert to default priority/policy when forking */
1289 unsigned sched_reset_on_fork:1;
1290 unsigned sched_contributes_to_load:1;
1291
1292 pid_t pid;
1293 pid_t tgid;
1294
1295 #ifdef CONFIG_CC_STACKPROTECTOR
1296 /* Canary value for the -fstack-protector gcc feature */
1297 unsigned long stack_canary;
1298 #endif
1299 /*
1300 * pointers to (original) parent process, youngest child, younger sibling,
1301 * older sibling, respectively. (p->father can be replaced with
1302 * p->real_parent->pid)
1303 */
1304 struct task_struct __rcu *real_parent; /* real parent process */
1305 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1306 /*
1307 * children/sibling forms the list of my natural children
1308 */
1309 struct list_head children; /* list of my children */
1310 struct list_head sibling; /* linkage in my parent's children list */
1311 struct task_struct *group_leader; /* threadgroup leader */
1312
1313 /*
1314 * ptraced is the list of tasks this task is using ptrace on.
1315 * This includes both natural children and PTRACE_ATTACH targets.
1316 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1317 */
1318 struct list_head ptraced;
1319 struct list_head ptrace_entry;
1320
1321 /* PID/PID hash table linkage. */
1322 struct pid_link pids[PIDTYPE_MAX];
1323 struct list_head thread_group;
1324
1325 struct completion *vfork_done; /* for vfork() */
1326 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1327 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1328
1329 cputime_t utime, stime, utimescaled, stimescaled;
1330 cputime_t gtime;
1331 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1332 struct cputime prev_cputime;
1333 #endif
1334 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1335 seqlock_t vtime_seqlock;
1336 unsigned long long vtime_snap;
1337 enum {
1338 VTIME_SLEEPING = 0,
1339 VTIME_USER,
1340 VTIME_SYS,
1341 } vtime_snap_whence;
1342 #endif
1343 unsigned long nvcsw, nivcsw; /* context switch counts */
1344 struct timespec start_time; /* monotonic time */
1345 struct timespec real_start_time; /* boot based time */
1346 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1347 unsigned long min_flt, maj_flt;
1348
1349 struct task_cputime cputime_expires;
1350 struct list_head cpu_timers[3];
1351
1352 /* process credentials */
1353 const struct cred __rcu *real_cred; /* objective and real subjective task
1354 * credentials (COW) */
1355 const struct cred __rcu *cred; /* effective (overridable) subjective task
1356 * credentials (COW) */
1357 char comm[TASK_COMM_LEN]; /* executable name excluding path
1358 - access with [gs]et_task_comm (which lock
1359 it with task_lock())
1360 - initialized normally by setup_new_exec */
1361 /* file system info */
1362 int link_count, total_link_count;
1363 #ifdef CONFIG_SYSVIPC
1364 /* ipc stuff */
1365 struct sysv_sem sysvsem;
1366 #endif
1367 #ifdef CONFIG_DETECT_HUNG_TASK
1368 /* hung task detection */
1369 unsigned long last_switch_count;
1370 #endif
1371 /* CPU-specific state of this task */
1372 struct thread_struct thread;
1373 /* filesystem information */
1374 struct fs_struct *fs;
1375 /* open file information */
1376 struct files_struct *files;
1377 /* namespaces */
1378 struct nsproxy *nsproxy;
1379 /* signal handlers */
1380 struct signal_struct *signal;
1381 struct sighand_struct *sighand;
1382
1383 sigset_t blocked, real_blocked;
1384 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1385 struct sigpending pending;
1386
1387 unsigned long sas_ss_sp;
1388 size_t sas_ss_size;
1389 int (*notifier)(void *priv);
1390 void *notifier_data;
1391 sigset_t *notifier_mask;
1392 struct callback_head *task_works;
1393
1394 struct audit_context *audit_context;
1395 #ifdef CONFIG_AUDITSYSCALL
1396 kuid_t loginuid;
1397 unsigned int sessionid;
1398 #endif
1399 struct seccomp seccomp;
1400
1401 /* Thread group tracking */
1402 u32 parent_exec_id;
1403 u32 self_exec_id;
1404 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1405 * mempolicy */
1406 spinlock_t alloc_lock;
1407
1408 /* Protection of the PI data structures: */
1409 raw_spinlock_t pi_lock;
1410
1411 #ifdef CONFIG_RT_MUTEXES
1412 /* PI waiters blocked on a rt_mutex held by this task */
1413 struct plist_head pi_waiters;
1414 /* Deadlock detection and priority inheritance handling */
1415 struct rt_mutex_waiter *pi_blocked_on;
1416 #endif
1417
1418 #ifdef CONFIG_DEBUG_MUTEXES
1419 /* mutex deadlock detection */
1420 struct mutex_waiter *blocked_on;
1421 #endif
1422 #ifdef CONFIG_TRACE_IRQFLAGS
1423 unsigned int irq_events;
1424 unsigned long hardirq_enable_ip;
1425 unsigned long hardirq_disable_ip;
1426 unsigned int hardirq_enable_event;
1427 unsigned int hardirq_disable_event;
1428 int hardirqs_enabled;
1429 int hardirq_context;
1430 unsigned long softirq_disable_ip;
1431 unsigned long softirq_enable_ip;
1432 unsigned int softirq_disable_event;
1433 unsigned int softirq_enable_event;
1434 int softirqs_enabled;
1435 int softirq_context;
1436 #endif
1437 #ifdef CONFIG_LOCKDEP
1438 # define MAX_LOCK_DEPTH 48UL
1439 u64 curr_chain_key;
1440 int lockdep_depth;
1441 unsigned int lockdep_recursion;
1442 struct held_lock held_locks[MAX_LOCK_DEPTH];
1443 gfp_t lockdep_reclaim_gfp;
1444 #endif
1445
1446 /* journalling filesystem info */
1447 void *journal_info;
1448
1449 /* stacked block device info */
1450 struct bio_list *bio_list;
1451
1452 #ifdef CONFIG_BLOCK
1453 /* stack plugging */
1454 struct blk_plug *plug;
1455 #endif
1456
1457 /* VM state */
1458 struct reclaim_state *reclaim_state;
1459
1460 struct backing_dev_info *backing_dev_info;
1461
1462 struct io_context *io_context;
1463
1464 unsigned long ptrace_message;
1465 siginfo_t *last_siginfo; /* For ptrace use. */
1466 struct task_io_accounting ioac;
1467 #if defined(CONFIG_TASK_XACCT)
1468 u64 acct_rss_mem1; /* accumulated rss usage */
1469 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1470 cputime_t acct_timexpd; /* stime + utime since last update */
1471 #endif
1472 #ifdef CONFIG_CPUSETS
1473 nodemask_t mems_allowed; /* Protected by alloc_lock */
1474 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
1475 int cpuset_mem_spread_rotor;
1476 int cpuset_slab_spread_rotor;
1477 #endif
1478 #ifdef CONFIG_CGROUPS
1479 /* Control Group info protected by css_set_lock */
1480 struct css_set __rcu *cgroups;
1481 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1482 struct list_head cg_list;
1483 #endif
1484 #ifdef CONFIG_FUTEX
1485 struct robust_list_head __user *robust_list;
1486 #ifdef CONFIG_COMPAT
1487 struct compat_robust_list_head __user *compat_robust_list;
1488 #endif
1489 struct list_head pi_state_list;
1490 struct futex_pi_state *pi_state_cache;
1491 #endif
1492 #ifdef CONFIG_PERF_EVENTS
1493 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1494 struct mutex perf_event_mutex;
1495 struct list_head perf_event_list;
1496 #endif
1497 #ifdef CONFIG_NUMA
1498 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1499 short il_next;
1500 short pref_node_fork;
1501 #endif
1502 #ifdef CONFIG_NUMA_BALANCING
1503 int numa_scan_seq;
1504 int numa_migrate_seq;
1505 unsigned int numa_scan_period;
1506 u64 node_stamp; /* migration stamp */
1507 struct callback_head numa_work;
1508 #endif /* CONFIG_NUMA_BALANCING */
1509
1510 struct rcu_head rcu;
1511
1512 /*
1513 * cache last used pipe for splice
1514 */
1515 struct pipe_inode_info *splice_pipe;
1516
1517 struct page_frag task_frag;
1518
1519 #ifdef CONFIG_TASK_DELAY_ACCT
1520 struct task_delay_info *delays;
1521 #endif
1522 #ifdef CONFIG_FAULT_INJECTION
1523 int make_it_fail;
1524 #endif
1525 /*
1526 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1527 * balance_dirty_pages() for some dirty throttling pause
1528 */
1529 int nr_dirtied;
1530 int nr_dirtied_pause;
1531 unsigned long dirty_paused_when; /* start of a write-and-pause period */
1532
1533 #ifdef CONFIG_LATENCYTOP
1534 int latency_record_count;
1535 struct latency_record latency_record[LT_SAVECOUNT];
1536 #endif
1537 /*
1538 * time slack values; these are used to round up poll() and
1539 * select() etc timeout values. These are in nanoseconds.
1540 */
1541 unsigned long timer_slack_ns;
1542 unsigned long default_timer_slack_ns;
1543
1544 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1545 /* Index of current stored address in ret_stack */
1546 int curr_ret_stack;
1547 /* Stack of return addresses for return function tracing */
1548 struct ftrace_ret_stack *ret_stack;
1549 /* time stamp for last schedule */
1550 unsigned long long ftrace_timestamp;
1551 /*
1552 * Number of functions that haven't been traced
1553 * because of depth overrun.
1554 */
1555 atomic_t trace_overrun;
1556 /* Pause for the tracing */
1557 atomic_t tracing_graph_pause;
1558 #endif
1559 #ifdef CONFIG_TRACING
1560 /* state flags for use by tracers */
1561 unsigned long trace;
1562 /* bitmask and counter of trace recursion */
1563 unsigned long trace_recursion;
1564 #endif /* CONFIG_TRACING */
1565 #ifdef CONFIG_MEMCG /* memcg uses this to do batch job */
1566 struct memcg_batch_info {
1567 int do_batch; /* incremented when batch uncharge started */
1568 struct mem_cgroup *memcg; /* target memcg of uncharge */
1569 unsigned long nr_pages; /* uncharged usage */
1570 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
1571 } memcg_batch;
1572 unsigned int memcg_kmem_skip_account;
1573 #endif
1574 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1575 atomic_t ptrace_bp_refcnt;
1576 #endif
1577 #ifdef CONFIG_UPROBES
1578 struct uprobe_task *utask;
1579 #endif
1580 };
1581
1582 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1583 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1584
1585 #ifdef CONFIG_NUMA_BALANCING
1586 extern void task_numa_fault(int node, int pages, bool migrated);
1587 extern void set_numabalancing_state(bool enabled);
1588 #else
1589 static inline void task_numa_fault(int node, int pages, bool migrated)
1590 {
1591 }
1592 static inline void set_numabalancing_state(bool enabled)
1593 {
1594 }
1595 #endif
1596
1597 static inline struct pid *task_pid(struct task_struct *task)
1598 {
1599 return task->pids[PIDTYPE_PID].pid;
1600 }
1601
1602 static inline struct pid *task_tgid(struct task_struct *task)
1603 {
1604 return task->group_leader->pids[PIDTYPE_PID].pid;
1605 }
1606
1607 /*
1608 * Without tasklist or rcu lock it is not safe to dereference
1609 * the result of task_pgrp/task_session even if task == current,
1610 * we can race with another thread doing sys_setsid/sys_setpgid.
1611 */
1612 static inline struct pid *task_pgrp(struct task_struct *task)
1613 {
1614 return task->group_leader->pids[PIDTYPE_PGID].pid;
1615 }
1616
1617 static inline struct pid *task_session(struct task_struct *task)
1618 {
1619 return task->group_leader->pids[PIDTYPE_SID].pid;
1620 }
1621
1622 struct pid_namespace;
1623
1624 /*
1625 * the helpers to get the task's different pids as they are seen
1626 * from various namespaces
1627 *
1628 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1629 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1630 * current.
1631 * task_xid_nr_ns() : id seen from the ns specified;
1632 *
1633 * set_task_vxid() : assigns a virtual id to a task;
1634 *
1635 * see also pid_nr() etc in include/linux/pid.h
1636 */
1637 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1638 struct pid_namespace *ns);
1639
1640 static inline pid_t task_pid_nr(struct task_struct *tsk)
1641 {
1642 return tsk->pid;
1643 }
1644
1645 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1646 struct pid_namespace *ns)
1647 {
1648 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1649 }
1650
1651 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1652 {
1653 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1654 }
1655
1656
1657 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1658 {
1659 return tsk->tgid;
1660 }
1661
1662 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1663
1664 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1665 {
1666 return pid_vnr(task_tgid(tsk));
1667 }
1668
1669
1670 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1671 struct pid_namespace *ns)
1672 {
1673 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1674 }
1675
1676 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1677 {
1678 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1679 }
1680
1681
1682 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1683 struct pid_namespace *ns)
1684 {
1685 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1686 }
1687
1688 static inline pid_t task_session_vnr(struct task_struct *tsk)
1689 {
1690 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1691 }
1692
1693 /* obsolete, do not use */
1694 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1695 {
1696 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1697 }
1698
1699 /**
1700 * pid_alive - check that a task structure is not stale
1701 * @p: Task structure to be checked.
1702 *
1703 * Test if a process is not yet dead (at most zombie state)
1704 * If pid_alive fails, then pointers within the task structure
1705 * can be stale and must not be dereferenced.
1706 */
1707 static inline int pid_alive(struct task_struct *p)
1708 {
1709 return p->pids[PIDTYPE_PID].pid != NULL;
1710 }
1711
1712 /**
1713 * is_global_init - check if a task structure is init
1714 * @tsk: Task structure to be checked.
1715 *
1716 * Check if a task structure is the first user space task the kernel created.
1717 */
1718 static inline int is_global_init(struct task_struct *tsk)
1719 {
1720 return tsk->pid == 1;
1721 }
1722
1723 extern struct pid *cad_pid;
1724
1725 extern void free_task(struct task_struct *tsk);
1726 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1727
1728 extern void __put_task_struct(struct task_struct *t);
1729
1730 static inline void put_task_struct(struct task_struct *t)
1731 {
1732 if (atomic_dec_and_test(&t->usage))
1733 __put_task_struct(t);
1734 }
1735
1736 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1737 extern void task_cputime(struct task_struct *t,
1738 cputime_t *utime, cputime_t *stime);
1739 extern void task_cputime_scaled(struct task_struct *t,
1740 cputime_t *utimescaled, cputime_t *stimescaled);
1741 extern cputime_t task_gtime(struct task_struct *t);
1742 #else
1743 static inline void task_cputime(struct task_struct *t,
1744 cputime_t *utime, cputime_t *stime)
1745 {
1746 if (utime)
1747 *utime = t->utime;
1748 if (stime)
1749 *stime = t->stime;
1750 }
1751
1752 static inline void task_cputime_scaled(struct task_struct *t,
1753 cputime_t *utimescaled,
1754 cputime_t *stimescaled)
1755 {
1756 if (utimescaled)
1757 *utimescaled = t->utimescaled;
1758 if (stimescaled)
1759 *stimescaled = t->stimescaled;
1760 }
1761
1762 static inline cputime_t task_gtime(struct task_struct *t)
1763 {
1764 return t->gtime;
1765 }
1766 #endif
1767 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1768 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1769
1770 /*
1771 * Per process flags
1772 */
1773 #define PF_EXITING 0x00000004 /* getting shut down */
1774 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1775 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1776 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1777 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1778 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1779 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1780 #define PF_DUMPCORE 0x00000200 /* dumped core */
1781 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1782 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1783 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1784 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1785 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
1786 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1787 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1788 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1789 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1790 #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
1791 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1792 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1793 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1794 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1795 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1796 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1797 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */
1798 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1799 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1800 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1801 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1802
1803 /*
1804 * Only the _current_ task can read/write to tsk->flags, but other
1805 * tasks can access tsk->flags in readonly mode for example
1806 * with tsk_used_math (like during threaded core dumping).
1807 * There is however an exception to this rule during ptrace
1808 * or during fork: the ptracer task is allowed to write to the
1809 * child->flags of its traced child (same goes for fork, the parent
1810 * can write to the child->flags), because we're guaranteed the
1811 * child is not running and in turn not changing child->flags
1812 * at the same time the parent does it.
1813 */
1814 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1815 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1816 #define clear_used_math() clear_stopped_child_used_math(current)
1817 #define set_used_math() set_stopped_child_used_math(current)
1818 #define conditional_stopped_child_used_math(condition, child) \
1819 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1820 #define conditional_used_math(condition) \
1821 conditional_stopped_child_used_math(condition, current)
1822 #define copy_to_stopped_child_used_math(child) \
1823 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1824 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1825 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1826 #define used_math() tsk_used_math(current)
1827
1828 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags */
1829 static inline gfp_t memalloc_noio_flags(gfp_t flags)
1830 {
1831 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
1832 flags &= ~__GFP_IO;
1833 return flags;
1834 }
1835
1836 static inline unsigned int memalloc_noio_save(void)
1837 {
1838 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
1839 current->flags |= PF_MEMALLOC_NOIO;
1840 return flags;
1841 }
1842
1843 static inline void memalloc_noio_restore(unsigned int flags)
1844 {
1845 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
1846 }
1847
1848 /*
1849 * task->jobctl flags
1850 */
1851 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
1852
1853 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
1854 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
1855 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
1856 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
1857 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
1858 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
1859 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
1860
1861 #define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT)
1862 #define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT)
1863 #define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT)
1864 #define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT)
1865 #define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT)
1866 #define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT)
1867 #define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT)
1868
1869 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
1870 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
1871
1872 extern bool task_set_jobctl_pending(struct task_struct *task,
1873 unsigned int mask);
1874 extern void task_clear_jobctl_trapping(struct task_struct *task);
1875 extern void task_clear_jobctl_pending(struct task_struct *task,
1876 unsigned int mask);
1877
1878 #ifdef CONFIG_PREEMPT_RCU
1879
1880 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1881 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1882
1883 static inline void rcu_copy_process(struct task_struct *p)
1884 {
1885 p->rcu_read_lock_nesting = 0;
1886 p->rcu_read_unlock_special = 0;
1887 #ifdef CONFIG_TREE_PREEMPT_RCU
1888 p->rcu_blocked_node = NULL;
1889 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1890 #ifdef CONFIG_RCU_BOOST
1891 p->rcu_boost_mutex = NULL;
1892 #endif /* #ifdef CONFIG_RCU_BOOST */
1893 INIT_LIST_HEAD(&p->rcu_node_entry);
1894 }
1895
1896 #else
1897
1898 static inline void rcu_copy_process(struct task_struct *p)
1899 {
1900 }
1901
1902 #endif
1903
1904 static inline void tsk_restore_flags(struct task_struct *task,
1905 unsigned long orig_flags, unsigned long flags)
1906 {
1907 task->flags &= ~flags;
1908 task->flags |= orig_flags & flags;
1909 }
1910
1911 #ifdef CONFIG_SMP
1912 extern void do_set_cpus_allowed(struct task_struct *p,
1913 const struct cpumask *new_mask);
1914
1915 extern int set_cpus_allowed_ptr(struct task_struct *p,
1916 const struct cpumask *new_mask);
1917 #else
1918 static inline void do_set_cpus_allowed(struct task_struct *p,
1919 const struct cpumask *new_mask)
1920 {
1921 }
1922 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1923 const struct cpumask *new_mask)
1924 {
1925 if (!cpumask_test_cpu(0, new_mask))
1926 return -EINVAL;
1927 return 0;
1928 }
1929 #endif
1930
1931 #ifdef CONFIG_NO_HZ
1932 void calc_load_enter_idle(void);
1933 void calc_load_exit_idle(void);
1934 #else
1935 static inline void calc_load_enter_idle(void) { }
1936 static inline void calc_load_exit_idle(void) { }
1937 #endif /* CONFIG_NO_HZ */
1938
1939 #ifndef CONFIG_CPUMASK_OFFSTACK
1940 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1941 {
1942 return set_cpus_allowed_ptr(p, &new_mask);
1943 }
1944 #endif
1945
1946 /*
1947 * Do not use outside of architecture code which knows its limitations.
1948 *
1949 * sched_clock() has no promise of monotonicity or bounded drift between
1950 * CPUs, use (which you should not) requires disabling IRQs.
1951 *
1952 * Please use one of the three interfaces below.
1953 */
1954 extern unsigned long long notrace sched_clock(void);
1955 /*
1956 * See the comment in kernel/sched/clock.c
1957 */
1958 extern u64 cpu_clock(int cpu);
1959 extern u64 local_clock(void);
1960 extern u64 sched_clock_cpu(int cpu);
1961
1962
1963 extern void sched_clock_init(void);
1964
1965 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1966 static inline void sched_clock_tick(void)
1967 {
1968 }
1969
1970 static inline void sched_clock_idle_sleep_event(void)
1971 {
1972 }
1973
1974 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1975 {
1976 }
1977 #else
1978 /*
1979 * Architectures can set this to 1 if they have specified
1980 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1981 * but then during bootup it turns out that sched_clock()
1982 * is reliable after all:
1983 */
1984 extern int sched_clock_stable;
1985
1986 extern void sched_clock_tick(void);
1987 extern void sched_clock_idle_sleep_event(void);
1988 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1989 #endif
1990
1991 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1992 /*
1993 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
1994 * The reason for this explicit opt-in is not to have perf penalty with
1995 * slow sched_clocks.
1996 */
1997 extern void enable_sched_clock_irqtime(void);
1998 extern void disable_sched_clock_irqtime(void);
1999 #else
2000 static inline void enable_sched_clock_irqtime(void) {}
2001 static inline void disable_sched_clock_irqtime(void) {}
2002 #endif
2003
2004 extern unsigned long long
2005 task_sched_runtime(struct task_struct *task);
2006
2007 /* sched_exec is called by processes performing an exec */
2008 #ifdef CONFIG_SMP
2009 extern void sched_exec(void);
2010 #else
2011 #define sched_exec() {}
2012 #endif
2013
2014 extern void sched_clock_idle_sleep_event(void);
2015 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2016
2017 #ifdef CONFIG_HOTPLUG_CPU
2018 extern void idle_task_exit(void);
2019 #else
2020 static inline void idle_task_exit(void) {}
2021 #endif
2022
2023 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
2024 extern void wake_up_idle_cpu(int cpu);
2025 #else
2026 static inline void wake_up_idle_cpu(int cpu) { }
2027 #endif
2028
2029 #ifdef CONFIG_SCHED_AUTOGROUP
2030 extern void sched_autogroup_create_attach(struct task_struct *p);
2031 extern void sched_autogroup_detach(struct task_struct *p);
2032 extern void sched_autogroup_fork(struct signal_struct *sig);
2033 extern void sched_autogroup_exit(struct signal_struct *sig);
2034 #ifdef CONFIG_PROC_FS
2035 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2036 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
2037 #endif
2038 #else
2039 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2040 static inline void sched_autogroup_detach(struct task_struct *p) { }
2041 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2042 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2043 #endif
2044
2045 extern bool yield_to(struct task_struct *p, bool preempt);
2046 extern void set_user_nice(struct task_struct *p, long nice);
2047 extern int task_prio(const struct task_struct *p);
2048 extern int task_nice(const struct task_struct *p);
2049 extern int can_nice(const struct task_struct *p, const int nice);
2050 extern int task_curr(const struct task_struct *p);
2051 extern int idle_cpu(int cpu);
2052 extern int sched_setscheduler(struct task_struct *, int,
2053 const struct sched_param *);
2054 extern int sched_setscheduler_nocheck(struct task_struct *, int,
2055 const struct sched_param *);
2056 extern struct task_struct *idle_task(int cpu);
2057 /**
2058 * is_idle_task - is the specified task an idle task?
2059 * @p: the task in question.
2060 */
2061 static inline bool is_idle_task(const struct task_struct *p)
2062 {
2063 return p->pid == 0;
2064 }
2065 extern struct task_struct *curr_task(int cpu);
2066 extern void set_curr_task(int cpu, struct task_struct *p);
2067
2068 void yield(void);
2069
2070 /*
2071 * The default (Linux) execution domain.
2072 */
2073 extern struct exec_domain default_exec_domain;
2074
2075 union thread_union {
2076 struct thread_info thread_info;
2077 unsigned long stack[THREAD_SIZE/sizeof(long)];
2078 };
2079
2080 #ifndef __HAVE_ARCH_KSTACK_END
2081 static inline int kstack_end(void *addr)
2082 {
2083 /* Reliable end of stack detection:
2084 * Some APM bios versions misalign the stack
2085 */
2086 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2087 }
2088 #endif
2089
2090 extern union thread_union init_thread_union;
2091 extern struct task_struct init_task;
2092
2093 extern struct mm_struct init_mm;
2094
2095 extern struct pid_namespace init_pid_ns;
2096
2097 /*
2098 * find a task by one of its numerical ids
2099 *
2100 * find_task_by_pid_ns():
2101 * finds a task by its pid in the specified namespace
2102 * find_task_by_vpid():
2103 * finds a task by its virtual pid
2104 *
2105 * see also find_vpid() etc in include/linux/pid.h
2106 */
2107
2108 extern struct task_struct *find_task_by_vpid(pid_t nr);
2109 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2110 struct pid_namespace *ns);
2111
2112 extern void __set_special_pids(struct pid *pid);
2113
2114 /* per-UID process charging. */
2115 extern struct user_struct * alloc_uid(kuid_t);
2116 static inline struct user_struct *get_uid(struct user_struct *u)
2117 {
2118 atomic_inc(&u->__count);
2119 return u;
2120 }
2121 extern void free_uid(struct user_struct *);
2122
2123 #include <asm/current.h>
2124
2125 extern void xtime_update(unsigned long ticks);
2126
2127 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2128 extern int wake_up_process(struct task_struct *tsk);
2129 extern void wake_up_new_task(struct task_struct *tsk);
2130 #ifdef CONFIG_SMP
2131 extern void kick_process(struct task_struct *tsk);
2132 #else
2133 static inline void kick_process(struct task_struct *tsk) { }
2134 #endif
2135 extern void sched_fork(struct task_struct *p);
2136 extern void sched_dead(struct task_struct *p);
2137
2138 extern void proc_caches_init(void);
2139 extern void flush_signals(struct task_struct *);
2140 extern void __flush_signals(struct task_struct *);
2141 extern void ignore_signals(struct task_struct *);
2142 extern void flush_signal_handlers(struct task_struct *, int force_default);
2143 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2144
2145 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2146 {
2147 unsigned long flags;
2148 int ret;
2149
2150 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2151 ret = dequeue_signal(tsk, mask, info);
2152 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2153
2154 return ret;
2155 }
2156
2157 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2158 sigset_t *mask);
2159 extern void unblock_all_signals(void);
2160 extern void release_task(struct task_struct * p);
2161 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2162 extern int force_sigsegv(int, struct task_struct *);
2163 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2164 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2165 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2166 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2167 const struct cred *, u32);
2168 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2169 extern int kill_pid(struct pid *pid, int sig, int priv);
2170 extern int kill_proc_info(int, struct siginfo *, pid_t);
2171 extern __must_check bool do_notify_parent(struct task_struct *, int);
2172 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2173 extern void force_sig(int, struct task_struct *);
2174 extern int send_sig(int, struct task_struct *, int);
2175 extern int zap_other_threads(struct task_struct *p);
2176 extern struct sigqueue *sigqueue_alloc(void);
2177 extern void sigqueue_free(struct sigqueue *);
2178 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2179 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2180
2181 static inline void restore_saved_sigmask(void)
2182 {
2183 if (test_and_clear_restore_sigmask())
2184 __set_current_blocked(&current->saved_sigmask);
2185 }
2186
2187 static inline sigset_t *sigmask_to_save(void)
2188 {
2189 sigset_t *res = &current->blocked;
2190 if (unlikely(test_restore_sigmask()))
2191 res = &current->saved_sigmask;
2192 return res;
2193 }
2194
2195 static inline int kill_cad_pid(int sig, int priv)
2196 {
2197 return kill_pid(cad_pid, sig, priv);
2198 }
2199
2200 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2201 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2202 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2203 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2204
2205 /*
2206 * True if we are on the alternate signal stack.
2207 */
2208 static inline int on_sig_stack(unsigned long sp)
2209 {
2210 #ifdef CONFIG_STACK_GROWSUP
2211 return sp >= current->sas_ss_sp &&
2212 sp - current->sas_ss_sp < current->sas_ss_size;
2213 #else
2214 return sp > current->sas_ss_sp &&
2215 sp - current->sas_ss_sp <= current->sas_ss_size;
2216 #endif
2217 }
2218
2219 static inline int sas_ss_flags(unsigned long sp)
2220 {
2221 return (current->sas_ss_size == 0 ? SS_DISABLE
2222 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2223 }
2224
2225 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2226 {
2227 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2228 #ifdef CONFIG_STACK_GROWSUP
2229 return current->sas_ss_sp;
2230 #else
2231 return current->sas_ss_sp + current->sas_ss_size;
2232 #endif
2233 return sp;
2234 }
2235
2236 /*
2237 * Routines for handling mm_structs
2238 */
2239 extern struct mm_struct * mm_alloc(void);
2240
2241 /* mmdrop drops the mm and the page tables */
2242 extern void __mmdrop(struct mm_struct *);
2243 static inline void mmdrop(struct mm_struct * mm)
2244 {
2245 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2246 __mmdrop(mm);
2247 }
2248
2249 /* mmput gets rid of the mappings and all user-space */
2250 extern void mmput(struct mm_struct *);
2251 /* Grab a reference to a task's mm, if it is not already going away */
2252 extern struct mm_struct *get_task_mm(struct task_struct *task);
2253 /*
2254 * Grab a reference to a task's mm, if it is not already going away
2255 * and ptrace_may_access with the mode parameter passed to it
2256 * succeeds.
2257 */
2258 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2259 /* Remove the current tasks stale references to the old mm_struct */
2260 extern void mm_release(struct task_struct *, struct mm_struct *);
2261 /* Allocate a new mm structure and copy contents from tsk->mm */
2262 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2263
2264 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2265 struct task_struct *);
2266 extern void flush_thread(void);
2267 extern void exit_thread(void);
2268
2269 extern void exit_files(struct task_struct *);
2270 extern void __cleanup_sighand(struct sighand_struct *);
2271
2272 extern void exit_itimers(struct signal_struct *);
2273 extern void flush_itimer_signals(void);
2274
2275 extern void do_group_exit(int);
2276
2277 extern int allow_signal(int);
2278 extern int disallow_signal(int);
2279
2280 extern int do_execve(const char *,
2281 const char __user * const __user *,
2282 const char __user * const __user *);
2283 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2284 struct task_struct *fork_idle(int);
2285 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2286
2287 extern void set_task_comm(struct task_struct *tsk, char *from);
2288 extern char *get_task_comm(char *to, struct task_struct *tsk);
2289
2290 #ifdef CONFIG_SMP
2291 void scheduler_ipi(void);
2292 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2293 #else
2294 static inline void scheduler_ipi(void) { }
2295 static inline unsigned long wait_task_inactive(struct task_struct *p,
2296 long match_state)
2297 {
2298 return 1;
2299 }
2300 #endif
2301
2302 #define next_task(p) \
2303 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2304
2305 #define for_each_process(p) \
2306 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2307
2308 extern bool current_is_single_threaded(void);
2309
2310 /*
2311 * Careful: do_each_thread/while_each_thread is a double loop so
2312 * 'break' will not work as expected - use goto instead.
2313 */
2314 #define do_each_thread(g, t) \
2315 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2316
2317 #define while_each_thread(g, t) \
2318 while ((t = next_thread(t)) != g)
2319
2320 static inline int get_nr_threads(struct task_struct *tsk)
2321 {
2322 return tsk->signal->nr_threads;
2323 }
2324
2325 static inline bool thread_group_leader(struct task_struct *p)
2326 {
2327 return p->exit_signal >= 0;
2328 }
2329
2330 /* Do to the insanities of de_thread it is possible for a process
2331 * to have the pid of the thread group leader without actually being
2332 * the thread group leader. For iteration through the pids in proc
2333 * all we care about is that we have a task with the appropriate
2334 * pid, we don't actually care if we have the right task.
2335 */
2336 static inline int has_group_leader_pid(struct task_struct *p)
2337 {
2338 return p->pid == p->tgid;
2339 }
2340
2341 static inline
2342 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2343 {
2344 return p1->tgid == p2->tgid;
2345 }
2346
2347 static inline struct task_struct *next_thread(const struct task_struct *p)
2348 {
2349 return list_entry_rcu(p->thread_group.next,
2350 struct task_struct, thread_group);
2351 }
2352
2353 static inline int thread_group_empty(struct task_struct *p)
2354 {
2355 return list_empty(&p->thread_group);
2356 }
2357
2358 #define delay_group_leader(p) \
2359 (thread_group_leader(p) && !thread_group_empty(p))
2360
2361 /*
2362 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2363 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2364 * pins the final release of task.io_context. Also protects ->cpuset and
2365 * ->cgroup.subsys[]. And ->vfork_done.
2366 *
2367 * Nests both inside and outside of read_lock(&tasklist_lock).
2368 * It must not be nested with write_lock_irq(&tasklist_lock),
2369 * neither inside nor outside.
2370 */
2371 static inline void task_lock(struct task_struct *p)
2372 {
2373 spin_lock(&p->alloc_lock);
2374 }
2375
2376 static inline void task_unlock(struct task_struct *p)
2377 {
2378 spin_unlock(&p->alloc_lock);
2379 }
2380
2381 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2382 unsigned long *flags);
2383
2384 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2385 unsigned long *flags)
2386 {
2387 struct sighand_struct *ret;
2388
2389 ret = __lock_task_sighand(tsk, flags);
2390 (void)__cond_lock(&tsk->sighand->siglock, ret);
2391 return ret;
2392 }
2393
2394 static inline void unlock_task_sighand(struct task_struct *tsk,
2395 unsigned long *flags)
2396 {
2397 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2398 }
2399
2400 #ifdef CONFIG_CGROUPS
2401 static inline void threadgroup_change_begin(struct task_struct *tsk)
2402 {
2403 down_read(&tsk->signal->group_rwsem);
2404 }
2405 static inline void threadgroup_change_end(struct task_struct *tsk)
2406 {
2407 up_read(&tsk->signal->group_rwsem);
2408 }
2409
2410 /**
2411 * threadgroup_lock - lock threadgroup
2412 * @tsk: member task of the threadgroup to lock
2413 *
2414 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter
2415 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
2416 * perform exec. This is useful for cases where the threadgroup needs to
2417 * stay stable across blockable operations.
2418 *
2419 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2420 * synchronization. While held, no new task will be added to threadgroup
2421 * and no existing live task will have its PF_EXITING set.
2422 *
2423 * During exec, a task goes and puts its thread group through unusual
2424 * changes. After de-threading, exclusive access is assumed to resources
2425 * which are usually shared by tasks in the same group - e.g. sighand may
2426 * be replaced with a new one. Also, the exec'ing task takes over group
2427 * leader role including its pid. Exclude these changes while locked by
2428 * grabbing cred_guard_mutex which is used to synchronize exec path.
2429 */
2430 static inline void threadgroup_lock(struct task_struct *tsk)
2431 {
2432 /*
2433 * exec uses exit for de-threading nesting group_rwsem inside
2434 * cred_guard_mutex. Grab cred_guard_mutex first.
2435 */
2436 mutex_lock(&tsk->signal->cred_guard_mutex);
2437 down_write(&tsk->signal->group_rwsem);
2438 }
2439
2440 /**
2441 * threadgroup_unlock - unlock threadgroup
2442 * @tsk: member task of the threadgroup to unlock
2443 *
2444 * Reverse threadgroup_lock().
2445 */
2446 static inline void threadgroup_unlock(struct task_struct *tsk)
2447 {
2448 up_write(&tsk->signal->group_rwsem);
2449 mutex_unlock(&tsk->signal->cred_guard_mutex);
2450 }
2451 #else
2452 static inline void threadgroup_change_begin(struct task_struct *tsk) {}
2453 static inline void threadgroup_change_end(struct task_struct *tsk) {}
2454 static inline void threadgroup_lock(struct task_struct *tsk) {}
2455 static inline void threadgroup_unlock(struct task_struct *tsk) {}
2456 #endif
2457
2458 #ifndef __HAVE_THREAD_FUNCTIONS
2459
2460 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2461 #define task_stack_page(task) ((task)->stack)
2462
2463 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2464 {
2465 *task_thread_info(p) = *task_thread_info(org);
2466 task_thread_info(p)->task = p;
2467 }
2468
2469 static inline unsigned long *end_of_stack(struct task_struct *p)
2470 {
2471 return (unsigned long *)(task_thread_info(p) + 1);
2472 }
2473
2474 #endif
2475
2476 static inline int object_is_on_stack(void *obj)
2477 {
2478 void *stack = task_stack_page(current);
2479
2480 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2481 }
2482
2483 extern void thread_info_cache_init(void);
2484
2485 #ifdef CONFIG_DEBUG_STACK_USAGE
2486 static inline unsigned long stack_not_used(struct task_struct *p)
2487 {
2488 unsigned long *n = end_of_stack(p);
2489
2490 do { /* Skip over canary */
2491 n++;
2492 } while (!*n);
2493
2494 return (unsigned long)n - (unsigned long)end_of_stack(p);
2495 }
2496 #endif
2497
2498 /* set thread flags in other task's structures
2499 * - see asm/thread_info.h for TIF_xxxx flags available
2500 */
2501 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2502 {
2503 set_ti_thread_flag(task_thread_info(tsk), flag);
2504 }
2505
2506 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2507 {
2508 clear_ti_thread_flag(task_thread_info(tsk), flag);
2509 }
2510
2511 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2512 {
2513 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2514 }
2515
2516 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2517 {
2518 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2519 }
2520
2521 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2522 {
2523 return test_ti_thread_flag(task_thread_info(tsk), flag);
2524 }
2525
2526 static inline void set_tsk_need_resched(struct task_struct *tsk)
2527 {
2528 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2529 }
2530
2531 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2532 {
2533 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2534 }
2535
2536 static inline int test_tsk_need_resched(struct task_struct *tsk)
2537 {
2538 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2539 }
2540
2541 static inline int restart_syscall(void)
2542 {
2543 set_tsk_thread_flag(current, TIF_SIGPENDING);
2544 return -ERESTARTNOINTR;
2545 }
2546
2547 static inline int signal_pending(struct task_struct *p)
2548 {
2549 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2550 }
2551
2552 static inline int __fatal_signal_pending(struct task_struct *p)
2553 {
2554 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2555 }
2556
2557 static inline int fatal_signal_pending(struct task_struct *p)
2558 {
2559 return signal_pending(p) && __fatal_signal_pending(p);
2560 }
2561
2562 static inline int signal_pending_state(long state, struct task_struct *p)
2563 {
2564 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2565 return 0;
2566 if (!signal_pending(p))
2567 return 0;
2568
2569 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2570 }
2571
2572 static inline int need_resched(void)
2573 {
2574 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2575 }
2576
2577 /*
2578 * cond_resched() and cond_resched_lock(): latency reduction via
2579 * explicit rescheduling in places that are safe. The return
2580 * value indicates whether a reschedule was done in fact.
2581 * cond_resched_lock() will drop the spinlock before scheduling,
2582 * cond_resched_softirq() will enable bhs before scheduling.
2583 */
2584 extern int _cond_resched(void);
2585
2586 #define cond_resched() ({ \
2587 __might_sleep(__FILE__, __LINE__, 0); \
2588 _cond_resched(); \
2589 })
2590
2591 extern int __cond_resched_lock(spinlock_t *lock);
2592
2593 #ifdef CONFIG_PREEMPT_COUNT
2594 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
2595 #else
2596 #define PREEMPT_LOCK_OFFSET 0
2597 #endif
2598
2599 #define cond_resched_lock(lock) ({ \
2600 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2601 __cond_resched_lock(lock); \
2602 })
2603
2604 extern int __cond_resched_softirq(void);
2605
2606 #define cond_resched_softirq() ({ \
2607 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
2608 __cond_resched_softirq(); \
2609 })
2610
2611 /*
2612 * Does a critical section need to be broken due to another
2613 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2614 * but a general need for low latency)
2615 */
2616 static inline int spin_needbreak(spinlock_t *lock)
2617 {
2618 #ifdef CONFIG_PREEMPT
2619 return spin_is_contended(lock);
2620 #else
2621 return 0;
2622 #endif
2623 }
2624
2625 /*
2626 * Thread group CPU time accounting.
2627 */
2628 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2629 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2630
2631 static inline void thread_group_cputime_init(struct signal_struct *sig)
2632 {
2633 raw_spin_lock_init(&sig->cputimer.lock);
2634 }
2635
2636 /*
2637 * Reevaluate whether the task has signals pending delivery.
2638 * Wake the task if so.
2639 * This is required every time the blocked sigset_t changes.
2640 * callers must hold sighand->siglock.
2641 */
2642 extern void recalc_sigpending_and_wake(struct task_struct *t);
2643 extern void recalc_sigpending(void);
2644
2645 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
2646
2647 static inline void signal_wake_up(struct task_struct *t, bool resume)
2648 {
2649 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
2650 }
2651 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
2652 {
2653 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
2654 }
2655
2656 /*
2657 * Wrappers for p->thread_info->cpu access. No-op on UP.
2658 */
2659 #ifdef CONFIG_SMP
2660
2661 static inline unsigned int task_cpu(const struct task_struct *p)
2662 {
2663 return task_thread_info(p)->cpu;
2664 }
2665
2666 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2667
2668 #else
2669
2670 static inline unsigned int task_cpu(const struct task_struct *p)
2671 {
2672 return 0;
2673 }
2674
2675 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2676 {
2677 }
2678
2679 #endif /* CONFIG_SMP */
2680
2681 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2682 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2683
2684 #ifdef CONFIG_CGROUP_SCHED
2685
2686 extern struct task_group root_task_group;
2687
2688 extern struct task_group *sched_create_group(struct task_group *parent);
2689 extern void sched_online_group(struct task_group *tg,
2690 struct task_group *parent);
2691 extern void sched_destroy_group(struct task_group *tg);
2692 extern void sched_offline_group(struct task_group *tg);
2693 extern void sched_move_task(struct task_struct *tsk);
2694 #ifdef CONFIG_FAIR_GROUP_SCHED
2695 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2696 extern unsigned long sched_group_shares(struct task_group *tg);
2697 #endif
2698 #ifdef CONFIG_RT_GROUP_SCHED
2699 extern int sched_group_set_rt_runtime(struct task_group *tg,
2700 long rt_runtime_us);
2701 extern long sched_group_rt_runtime(struct task_group *tg);
2702 extern int sched_group_set_rt_period(struct task_group *tg,
2703 long rt_period_us);
2704 extern long sched_group_rt_period(struct task_group *tg);
2705 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2706 #endif
2707 #endif /* CONFIG_CGROUP_SCHED */
2708
2709 extern int task_can_switch_user(struct user_struct *up,
2710 struct task_struct *tsk);
2711
2712 #ifdef CONFIG_TASK_XACCT
2713 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2714 {
2715 tsk->ioac.rchar += amt;
2716 }
2717
2718 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2719 {
2720 tsk->ioac.wchar += amt;
2721 }
2722
2723 static inline void inc_syscr(struct task_struct *tsk)
2724 {
2725 tsk->ioac.syscr++;
2726 }
2727
2728 static inline void inc_syscw(struct task_struct *tsk)
2729 {
2730 tsk->ioac.syscw++;
2731 }
2732 #else
2733 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2734 {
2735 }
2736
2737 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2738 {
2739 }
2740
2741 static inline void inc_syscr(struct task_struct *tsk)
2742 {
2743 }
2744
2745 static inline void inc_syscw(struct task_struct *tsk)
2746 {
2747 }
2748 #endif
2749
2750 #ifndef TASK_SIZE_OF
2751 #define TASK_SIZE_OF(tsk) TASK_SIZE
2752 #endif
2753
2754 #ifdef CONFIG_MM_OWNER
2755 extern void mm_update_next_owner(struct mm_struct *mm);
2756 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2757 #else
2758 static inline void mm_update_next_owner(struct mm_struct *mm)
2759 {
2760 }
2761
2762 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2763 {
2764 }
2765 #endif /* CONFIG_MM_OWNER */
2766
2767 static inline unsigned long task_rlimit(const struct task_struct *tsk,
2768 unsigned int limit)
2769 {
2770 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2771 }
2772
2773 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2774 unsigned int limit)
2775 {
2776 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2777 }
2778
2779 static inline unsigned long rlimit(unsigned int limit)
2780 {
2781 return task_rlimit(current, limit);
2782 }
2783
2784 static inline unsigned long rlimit_max(unsigned int limit)
2785 {
2786 return task_rlimit_max(current, limit);
2787 }
2788
2789 #endif