include/linux/sched.h: don't use task->pid/tgid in same_thread_group/has_group_leader_pid
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 #include <uapi/linux/sched.h>
5
6
7 struct sched_param {
8 int sched_priority;
9 };
10
11 #include <asm/param.h> /* for HZ */
12
13 #include <linux/capability.h>
14 #include <linux/threads.h>
15 #include <linux/kernel.h>
16 #include <linux/types.h>
17 #include <linux/timex.h>
18 #include <linux/jiffies.h>
19 #include <linux/rbtree.h>
20 #include <linux/thread_info.h>
21 #include <linux/cpumask.h>
22 #include <linux/errno.h>
23 #include <linux/nodemask.h>
24 #include <linux/mm_types.h>
25
26 #include <asm/page.h>
27 #include <asm/ptrace.h>
28 #include <asm/cputime.h>
29
30 #include <linux/smp.h>
31 #include <linux/sem.h>
32 #include <linux/signal.h>
33 #include <linux/compiler.h>
34 #include <linux/completion.h>
35 #include <linux/pid.h>
36 #include <linux/percpu.h>
37 #include <linux/topology.h>
38 #include <linux/proportions.h>
39 #include <linux/seccomp.h>
40 #include <linux/rcupdate.h>
41 #include <linux/rculist.h>
42 #include <linux/rtmutex.h>
43
44 #include <linux/time.h>
45 #include <linux/param.h>
46 #include <linux/resource.h>
47 #include <linux/timer.h>
48 #include <linux/hrtimer.h>
49 #include <linux/task_io_accounting.h>
50 #include <linux/latencytop.h>
51 #include <linux/cred.h>
52 #include <linux/llist.h>
53 #include <linux/uidgid.h>
54 #include <linux/gfp.h>
55
56 #include <asm/processor.h>
57
58 struct exec_domain;
59 struct futex_pi_state;
60 struct robust_list_head;
61 struct bio_list;
62 struct fs_struct;
63 struct perf_event_context;
64 struct blk_plug;
65
66 /*
67 * List of flags we want to share for kernel threads,
68 * if only because they are not used by them anyway.
69 */
70 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
71
72 /*
73 * These are the constant used to fake the fixed-point load-average
74 * counting. Some notes:
75 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
76 * a load-average precision of 10 bits integer + 11 bits fractional
77 * - if you want to count load-averages more often, you need more
78 * precision, or rounding will get you. With 2-second counting freq,
79 * the EXP_n values would be 1981, 2034 and 2043 if still using only
80 * 11 bit fractions.
81 */
82 extern unsigned long avenrun[]; /* Load averages */
83 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
84
85 #define FSHIFT 11 /* nr of bits of precision */
86 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
87 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
88 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
89 #define EXP_5 2014 /* 1/exp(5sec/5min) */
90 #define EXP_15 2037 /* 1/exp(5sec/15min) */
91
92 #define CALC_LOAD(load,exp,n) \
93 load *= exp; \
94 load += n*(FIXED_1-exp); \
95 load >>= FSHIFT;
96
97 extern unsigned long total_forks;
98 extern int nr_threads;
99 DECLARE_PER_CPU(unsigned long, process_counts);
100 extern int nr_processes(void);
101 extern unsigned long nr_running(void);
102 extern unsigned long nr_iowait(void);
103 extern unsigned long nr_iowait_cpu(int cpu);
104 extern unsigned long this_cpu_load(void);
105
106
107 extern void calc_global_load(unsigned long ticks);
108 extern void update_cpu_load_nohz(void);
109
110 /* Notifier for when a task gets migrated to a new CPU */
111 struct task_migration_notifier {
112 struct task_struct *task;
113 int from_cpu;
114 int to_cpu;
115 };
116 extern void register_task_migration_notifier(struct notifier_block *n);
117
118 extern unsigned long get_parent_ip(unsigned long addr);
119
120 extern void dump_cpu_task(int cpu);
121
122 struct seq_file;
123 struct cfs_rq;
124 struct task_group;
125 #ifdef CONFIG_SCHED_DEBUG
126 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
127 extern void proc_sched_set_task(struct task_struct *p);
128 extern void
129 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
130 #endif
131
132 /*
133 * Task state bitmask. NOTE! These bits are also
134 * encoded in fs/proc/array.c: get_task_state().
135 *
136 * We have two separate sets of flags: task->state
137 * is about runnability, while task->exit_state are
138 * about the task exiting. Confusing, but this way
139 * modifying one set can't modify the other one by
140 * mistake.
141 */
142 #define TASK_RUNNING 0
143 #define TASK_INTERRUPTIBLE 1
144 #define TASK_UNINTERRUPTIBLE 2
145 #define __TASK_STOPPED 4
146 #define __TASK_TRACED 8
147 /* in tsk->exit_state */
148 #define EXIT_ZOMBIE 16
149 #define EXIT_DEAD 32
150 /* in tsk->state again */
151 #define TASK_DEAD 64
152 #define TASK_WAKEKILL 128
153 #define TASK_WAKING 256
154 #define TASK_PARKED 512
155 #define TASK_STATE_MAX 1024
156
157 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
158
159 extern char ___assert_task_state[1 - 2*!!(
160 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
161
162 /* Convenience macros for the sake of set_task_state */
163 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
164 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
165 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
166
167 /* Convenience macros for the sake of wake_up */
168 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
169 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
170
171 /* get_task_state() */
172 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
173 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
174 __TASK_TRACED)
175
176 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
177 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
178 #define task_is_dead(task) ((task)->exit_state != 0)
179 #define task_is_stopped_or_traced(task) \
180 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
181 #define task_contributes_to_load(task) \
182 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
183 (task->flags & PF_FROZEN) == 0)
184
185 #define __set_task_state(tsk, state_value) \
186 do { (tsk)->state = (state_value); } while (0)
187 #define set_task_state(tsk, state_value) \
188 set_mb((tsk)->state, (state_value))
189
190 /*
191 * set_current_state() includes a barrier so that the write of current->state
192 * is correctly serialised wrt the caller's subsequent test of whether to
193 * actually sleep:
194 *
195 * set_current_state(TASK_UNINTERRUPTIBLE);
196 * if (do_i_need_to_sleep())
197 * schedule();
198 *
199 * If the caller does not need such serialisation then use __set_current_state()
200 */
201 #define __set_current_state(state_value) \
202 do { current->state = (state_value); } while (0)
203 #define set_current_state(state_value) \
204 set_mb(current->state, (state_value))
205
206 /* Task command name length */
207 #define TASK_COMM_LEN 16
208
209 #include <linux/spinlock.h>
210
211 /*
212 * This serializes "schedule()" and also protects
213 * the run-queue from deletions/modifications (but
214 * _adding_ to the beginning of the run-queue has
215 * a separate lock).
216 */
217 extern rwlock_t tasklist_lock;
218 extern spinlock_t mmlist_lock;
219
220 struct task_struct;
221
222 #ifdef CONFIG_PROVE_RCU
223 extern int lockdep_tasklist_lock_is_held(void);
224 #endif /* #ifdef CONFIG_PROVE_RCU */
225
226 extern void sched_init(void);
227 extern void sched_init_smp(void);
228 extern asmlinkage void schedule_tail(struct task_struct *prev);
229 extern void init_idle(struct task_struct *idle, int cpu);
230 extern void init_idle_bootup_task(struct task_struct *idle);
231
232 extern int runqueue_is_locked(int cpu);
233
234 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
235 extern void nohz_balance_enter_idle(int cpu);
236 extern void set_cpu_sd_state_idle(void);
237 extern int get_nohz_timer_target(void);
238 #else
239 static inline void nohz_balance_enter_idle(int cpu) { }
240 static inline void set_cpu_sd_state_idle(void) { }
241 #endif
242
243 /*
244 * Only dump TASK_* tasks. (0 for all tasks)
245 */
246 extern void show_state_filter(unsigned long state_filter);
247
248 static inline void show_state(void)
249 {
250 show_state_filter(0);
251 }
252
253 extern void show_regs(struct pt_regs *);
254
255 /*
256 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
257 * task), SP is the stack pointer of the first frame that should be shown in the back
258 * trace (or NULL if the entire call-chain of the task should be shown).
259 */
260 extern void show_stack(struct task_struct *task, unsigned long *sp);
261
262 void io_schedule(void);
263 long io_schedule_timeout(long timeout);
264
265 extern void cpu_init (void);
266 extern void trap_init(void);
267 extern void update_process_times(int user);
268 extern void scheduler_tick(void);
269
270 extern void sched_show_task(struct task_struct *p);
271
272 #ifdef CONFIG_LOCKUP_DETECTOR
273 extern void touch_softlockup_watchdog(void);
274 extern void touch_softlockup_watchdog_sync(void);
275 extern void touch_all_softlockup_watchdogs(void);
276 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
277 void __user *buffer,
278 size_t *lenp, loff_t *ppos);
279 extern unsigned int softlockup_panic;
280 void lockup_detector_init(void);
281 #else
282 static inline void touch_softlockup_watchdog(void)
283 {
284 }
285 static inline void touch_softlockup_watchdog_sync(void)
286 {
287 }
288 static inline void touch_all_softlockup_watchdogs(void)
289 {
290 }
291 static inline void lockup_detector_init(void)
292 {
293 }
294 #endif
295
296 /* Attach to any functions which should be ignored in wchan output. */
297 #define __sched __attribute__((__section__(".sched.text")))
298
299 /* Linker adds these: start and end of __sched functions */
300 extern char __sched_text_start[], __sched_text_end[];
301
302 /* Is this address in the __sched functions? */
303 extern int in_sched_functions(unsigned long addr);
304
305 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
306 extern signed long schedule_timeout(signed long timeout);
307 extern signed long schedule_timeout_interruptible(signed long timeout);
308 extern signed long schedule_timeout_killable(signed long timeout);
309 extern signed long schedule_timeout_uninterruptible(signed long timeout);
310 asmlinkage void schedule(void);
311 extern void schedule_preempt_disabled(void);
312
313 struct nsproxy;
314 struct user_namespace;
315
316 #ifdef CONFIG_MMU
317 extern void arch_pick_mmap_layout(struct mm_struct *mm);
318 extern unsigned long
319 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
320 unsigned long, unsigned long);
321 extern unsigned long
322 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
323 unsigned long len, unsigned long pgoff,
324 unsigned long flags);
325 extern void arch_unmap_area(struct mm_struct *, unsigned long);
326 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
327 #else
328 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
329 #endif
330
331
332 extern void set_dumpable(struct mm_struct *mm, int value);
333 extern int get_dumpable(struct mm_struct *mm);
334
335 #define SUID_DUMP_DISABLE 0 /* No setuid dumping */
336 #define SUID_DUMP_USER 1 /* Dump as user of process */
337 #define SUID_DUMP_ROOT 2 /* Dump as root */
338
339 /* mm flags */
340 /* dumpable bits */
341 #define MMF_DUMPABLE 0 /* core dump is permitted */
342 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
343
344 #define MMF_DUMPABLE_BITS 2
345 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
346
347 /* coredump filter bits */
348 #define MMF_DUMP_ANON_PRIVATE 2
349 #define MMF_DUMP_ANON_SHARED 3
350 #define MMF_DUMP_MAPPED_PRIVATE 4
351 #define MMF_DUMP_MAPPED_SHARED 5
352 #define MMF_DUMP_ELF_HEADERS 6
353 #define MMF_DUMP_HUGETLB_PRIVATE 7
354 #define MMF_DUMP_HUGETLB_SHARED 8
355
356 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
357 #define MMF_DUMP_FILTER_BITS 7
358 #define MMF_DUMP_FILTER_MASK \
359 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
360 #define MMF_DUMP_FILTER_DEFAULT \
361 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
362 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
363
364 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
365 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
366 #else
367 # define MMF_DUMP_MASK_DEFAULT_ELF 0
368 #endif
369 /* leave room for more dump flags */
370 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
371 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
372 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
373
374 #define MMF_HAS_UPROBES 19 /* has uprobes */
375 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
376
377 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
378
379 struct sighand_struct {
380 atomic_t count;
381 struct k_sigaction action[_NSIG];
382 spinlock_t siglock;
383 wait_queue_head_t signalfd_wqh;
384 };
385
386 struct pacct_struct {
387 int ac_flag;
388 long ac_exitcode;
389 unsigned long ac_mem;
390 cputime_t ac_utime, ac_stime;
391 unsigned long ac_minflt, ac_majflt;
392 };
393
394 struct cpu_itimer {
395 cputime_t expires;
396 cputime_t incr;
397 u32 error;
398 u32 incr_error;
399 };
400
401 /**
402 * struct cputime - snaphsot of system and user cputime
403 * @utime: time spent in user mode
404 * @stime: time spent in system mode
405 *
406 * Gathers a generic snapshot of user and system time.
407 */
408 struct cputime {
409 cputime_t utime;
410 cputime_t stime;
411 };
412
413 /**
414 * struct task_cputime - collected CPU time counts
415 * @utime: time spent in user mode, in &cputime_t units
416 * @stime: time spent in kernel mode, in &cputime_t units
417 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
418 *
419 * This is an extension of struct cputime that includes the total runtime
420 * spent by the task from the scheduler point of view.
421 *
422 * As a result, this structure groups together three kinds of CPU time
423 * that are tracked for threads and thread groups. Most things considering
424 * CPU time want to group these counts together and treat all three
425 * of them in parallel.
426 */
427 struct task_cputime {
428 cputime_t utime;
429 cputime_t stime;
430 unsigned long long sum_exec_runtime;
431 };
432 /* Alternate field names when used to cache expirations. */
433 #define prof_exp stime
434 #define virt_exp utime
435 #define sched_exp sum_exec_runtime
436
437 #define INIT_CPUTIME \
438 (struct task_cputime) { \
439 .utime = 0, \
440 .stime = 0, \
441 .sum_exec_runtime = 0, \
442 }
443
444 /*
445 * Disable preemption until the scheduler is running.
446 * Reset by start_kernel()->sched_init()->init_idle().
447 *
448 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
449 * before the scheduler is active -- see should_resched().
450 */
451 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE)
452
453 /**
454 * struct thread_group_cputimer - thread group interval timer counts
455 * @cputime: thread group interval timers.
456 * @running: non-zero when there are timers running and
457 * @cputime receives updates.
458 * @lock: lock for fields in this struct.
459 *
460 * This structure contains the version of task_cputime, above, that is
461 * used for thread group CPU timer calculations.
462 */
463 struct thread_group_cputimer {
464 struct task_cputime cputime;
465 int running;
466 raw_spinlock_t lock;
467 };
468
469 #include <linux/rwsem.h>
470 struct autogroup;
471
472 /*
473 * NOTE! "signal_struct" does not have its own
474 * locking, because a shared signal_struct always
475 * implies a shared sighand_struct, so locking
476 * sighand_struct is always a proper superset of
477 * the locking of signal_struct.
478 */
479 struct signal_struct {
480 atomic_t sigcnt;
481 atomic_t live;
482 int nr_threads;
483 struct list_head thread_head;
484
485 wait_queue_head_t wait_chldexit; /* for wait4() */
486
487 /* current thread group signal load-balancing target: */
488 struct task_struct *curr_target;
489
490 /* shared signal handling: */
491 struct sigpending shared_pending;
492
493 /* thread group exit support */
494 int group_exit_code;
495 /* overloaded:
496 * - notify group_exit_task when ->count is equal to notify_count
497 * - everyone except group_exit_task is stopped during signal delivery
498 * of fatal signals, group_exit_task processes the signal.
499 */
500 int notify_count;
501 struct task_struct *group_exit_task;
502
503 /* thread group stop support, overloads group_exit_code too */
504 int group_stop_count;
505 unsigned int flags; /* see SIGNAL_* flags below */
506
507 /*
508 * PR_SET_CHILD_SUBREAPER marks a process, like a service
509 * manager, to re-parent orphan (double-forking) child processes
510 * to this process instead of 'init'. The service manager is
511 * able to receive SIGCHLD signals and is able to investigate
512 * the process until it calls wait(). All children of this
513 * process will inherit a flag if they should look for a
514 * child_subreaper process at exit.
515 */
516 unsigned int is_child_subreaper:1;
517 unsigned int has_child_subreaper:1;
518
519 /* POSIX.1b Interval Timers */
520 int posix_timer_id;
521 struct list_head posix_timers;
522
523 /* ITIMER_REAL timer for the process */
524 struct hrtimer real_timer;
525 struct pid *leader_pid;
526 ktime_t it_real_incr;
527
528 /*
529 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
530 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
531 * values are defined to 0 and 1 respectively
532 */
533 struct cpu_itimer it[2];
534
535 /*
536 * Thread group totals for process CPU timers.
537 * See thread_group_cputimer(), et al, for details.
538 */
539 struct thread_group_cputimer cputimer;
540
541 /* Earliest-expiration cache. */
542 struct task_cputime cputime_expires;
543
544 struct list_head cpu_timers[3];
545
546 struct pid *tty_old_pgrp;
547
548 /* boolean value for session group leader */
549 int leader;
550
551 struct tty_struct *tty; /* NULL if no tty */
552
553 #ifdef CONFIG_SCHED_AUTOGROUP
554 struct autogroup *autogroup;
555 #endif
556 /*
557 * Cumulative resource counters for dead threads in the group,
558 * and for reaped dead child processes forked by this group.
559 * Live threads maintain their own counters and add to these
560 * in __exit_signal, except for the group leader.
561 */
562 cputime_t utime, stime, cutime, cstime;
563 cputime_t gtime;
564 cputime_t cgtime;
565 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
566 struct cputime prev_cputime;
567 #endif
568 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
569 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
570 unsigned long inblock, oublock, cinblock, coublock;
571 unsigned long maxrss, cmaxrss;
572 struct task_io_accounting ioac;
573
574 /*
575 * Cumulative ns of schedule CPU time fo dead threads in the
576 * group, not including a zombie group leader, (This only differs
577 * from jiffies_to_ns(utime + stime) if sched_clock uses something
578 * other than jiffies.)
579 */
580 unsigned long long sum_sched_runtime;
581
582 /*
583 * We don't bother to synchronize most readers of this at all,
584 * because there is no reader checking a limit that actually needs
585 * to get both rlim_cur and rlim_max atomically, and either one
586 * alone is a single word that can safely be read normally.
587 * getrlimit/setrlimit use task_lock(current->group_leader) to
588 * protect this instead of the siglock, because they really
589 * have no need to disable irqs.
590 */
591 struct rlimit rlim[RLIM_NLIMITS];
592
593 #ifdef CONFIG_BSD_PROCESS_ACCT
594 struct pacct_struct pacct; /* per-process accounting information */
595 #endif
596 #ifdef CONFIG_TASKSTATS
597 struct taskstats *stats;
598 #endif
599 #ifdef CONFIG_AUDIT
600 unsigned audit_tty;
601 unsigned audit_tty_log_passwd;
602 struct tty_audit_buf *tty_audit_buf;
603 #endif
604 #ifdef CONFIG_CGROUPS
605 /*
606 * group_rwsem prevents new tasks from entering the threadgroup and
607 * member tasks from exiting,a more specifically, setting of
608 * PF_EXITING. fork and exit paths are protected with this rwsem
609 * using threadgroup_change_begin/end(). Users which require
610 * threadgroup to remain stable should use threadgroup_[un]lock()
611 * which also takes care of exec path. Currently, cgroup is the
612 * only user.
613 */
614 struct rw_semaphore group_rwsem;
615 #endif
616
617 oom_flags_t oom_flags;
618 short oom_score_adj; /* OOM kill score adjustment */
619 short oom_score_adj_min; /* OOM kill score adjustment min value.
620 * Only settable by CAP_SYS_RESOURCE. */
621
622 struct mutex cred_guard_mutex; /* guard against foreign influences on
623 * credential calculations
624 * (notably. ptrace) */
625 };
626
627 /*
628 * Bits in flags field of signal_struct.
629 */
630 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
631 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
632 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
633 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
634 /*
635 * Pending notifications to parent.
636 */
637 #define SIGNAL_CLD_STOPPED 0x00000010
638 #define SIGNAL_CLD_CONTINUED 0x00000020
639 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
640
641 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
642
643 /* If true, all threads except ->group_exit_task have pending SIGKILL */
644 static inline int signal_group_exit(const struct signal_struct *sig)
645 {
646 return (sig->flags & SIGNAL_GROUP_EXIT) ||
647 (sig->group_exit_task != NULL);
648 }
649
650 /*
651 * Some day this will be a full-fledged user tracking system..
652 */
653 struct user_struct {
654 atomic_t __count; /* reference count */
655 atomic_t processes; /* How many processes does this user have? */
656 atomic_t files; /* How many open files does this user have? */
657 atomic_t sigpending; /* How many pending signals does this user have? */
658 #ifdef CONFIG_INOTIFY_USER
659 atomic_t inotify_watches; /* How many inotify watches does this user have? */
660 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
661 #endif
662 #ifdef CONFIG_FANOTIFY
663 atomic_t fanotify_listeners;
664 #endif
665 #ifdef CONFIG_EPOLL
666 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
667 #endif
668 #ifdef CONFIG_POSIX_MQUEUE
669 /* protected by mq_lock */
670 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
671 #endif
672 unsigned long locked_shm; /* How many pages of mlocked shm ? */
673
674 #ifdef CONFIG_KEYS
675 struct key *uid_keyring; /* UID specific keyring */
676 struct key *session_keyring; /* UID's default session keyring */
677 #endif
678
679 /* Hash table maintenance information */
680 struct hlist_node uidhash_node;
681 kuid_t uid;
682
683 #ifdef CONFIG_PERF_EVENTS
684 atomic_long_t locked_vm;
685 #endif
686 };
687
688 extern int uids_sysfs_init(void);
689
690 extern struct user_struct *find_user(kuid_t);
691
692 extern struct user_struct root_user;
693 #define INIT_USER (&root_user)
694
695
696 struct backing_dev_info;
697 struct reclaim_state;
698
699 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
700 struct sched_info {
701 /* cumulative counters */
702 unsigned long pcount; /* # of times run on this cpu */
703 unsigned long long run_delay; /* time spent waiting on a runqueue */
704
705 /* timestamps */
706 unsigned long long last_arrival,/* when we last ran on a cpu */
707 last_queued; /* when we were last queued to run */
708 };
709 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
710
711 #ifdef CONFIG_TASK_DELAY_ACCT
712 struct task_delay_info {
713 spinlock_t lock;
714 unsigned int flags; /* Private per-task flags */
715
716 /* For each stat XXX, add following, aligned appropriately
717 *
718 * struct timespec XXX_start, XXX_end;
719 * u64 XXX_delay;
720 * u32 XXX_count;
721 *
722 * Atomicity of updates to XXX_delay, XXX_count protected by
723 * single lock above (split into XXX_lock if contention is an issue).
724 */
725
726 /*
727 * XXX_count is incremented on every XXX operation, the delay
728 * associated with the operation is added to XXX_delay.
729 * XXX_delay contains the accumulated delay time in nanoseconds.
730 */
731 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
732 u64 blkio_delay; /* wait for sync block io completion */
733 u64 swapin_delay; /* wait for swapin block io completion */
734 u32 blkio_count; /* total count of the number of sync block */
735 /* io operations performed */
736 u32 swapin_count; /* total count of the number of swapin block */
737 /* io operations performed */
738
739 struct timespec freepages_start, freepages_end;
740 u64 freepages_delay; /* wait for memory reclaim */
741 u32 freepages_count; /* total count of memory reclaim */
742 };
743 #endif /* CONFIG_TASK_DELAY_ACCT */
744
745 static inline int sched_info_on(void)
746 {
747 #ifdef CONFIG_SCHEDSTATS
748 return 1;
749 #elif defined(CONFIG_TASK_DELAY_ACCT)
750 extern int delayacct_on;
751 return delayacct_on;
752 #else
753 return 0;
754 #endif
755 }
756
757 enum cpu_idle_type {
758 CPU_IDLE,
759 CPU_NOT_IDLE,
760 CPU_NEWLY_IDLE,
761 CPU_MAX_IDLE_TYPES
762 };
763
764 /*
765 * Increase resolution of cpu_power calculations
766 */
767 #define SCHED_POWER_SHIFT 10
768 #define SCHED_POWER_SCALE (1L << SCHED_POWER_SHIFT)
769
770 /*
771 * sched-domains (multiprocessor balancing) declarations:
772 */
773 #ifdef CONFIG_SMP
774 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
775 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
776 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
777 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
778 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
779 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
780 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */
781 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
782 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
783 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
784 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
785 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
786
787 extern int __weak arch_sd_sibiling_asym_packing(void);
788
789 struct sched_domain_attr {
790 int relax_domain_level;
791 };
792
793 #define SD_ATTR_INIT (struct sched_domain_attr) { \
794 .relax_domain_level = -1, \
795 }
796
797 extern int sched_domain_level_max;
798
799 struct sched_group;
800
801 struct sched_domain {
802 /* These fields must be setup */
803 struct sched_domain *parent; /* top domain must be null terminated */
804 struct sched_domain *child; /* bottom domain must be null terminated */
805 struct sched_group *groups; /* the balancing groups of the domain */
806 unsigned long min_interval; /* Minimum balance interval ms */
807 unsigned long max_interval; /* Maximum balance interval ms */
808 unsigned int busy_factor; /* less balancing by factor if busy */
809 unsigned int imbalance_pct; /* No balance until over watermark */
810 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
811 unsigned int busy_idx;
812 unsigned int idle_idx;
813 unsigned int newidle_idx;
814 unsigned int wake_idx;
815 unsigned int forkexec_idx;
816 unsigned int smt_gain;
817
818 int nohz_idle; /* NOHZ IDLE status */
819 int flags; /* See SD_* */
820 int level;
821
822 /* Runtime fields. */
823 unsigned long last_balance; /* init to jiffies. units in jiffies */
824 unsigned int balance_interval; /* initialise to 1. units in ms. */
825 unsigned int nr_balance_failed; /* initialise to 0 */
826
827 u64 last_update;
828
829 #ifdef CONFIG_SCHEDSTATS
830 /* load_balance() stats */
831 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
832 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
833 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
834 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
835 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
836 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
837 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
838 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
839
840 /* Active load balancing */
841 unsigned int alb_count;
842 unsigned int alb_failed;
843 unsigned int alb_pushed;
844
845 /* SD_BALANCE_EXEC stats */
846 unsigned int sbe_count;
847 unsigned int sbe_balanced;
848 unsigned int sbe_pushed;
849
850 /* SD_BALANCE_FORK stats */
851 unsigned int sbf_count;
852 unsigned int sbf_balanced;
853 unsigned int sbf_pushed;
854
855 /* try_to_wake_up() stats */
856 unsigned int ttwu_wake_remote;
857 unsigned int ttwu_move_affine;
858 unsigned int ttwu_move_balance;
859 #endif
860 #ifdef CONFIG_SCHED_DEBUG
861 char *name;
862 #endif
863 union {
864 void *private; /* used during construction */
865 struct rcu_head rcu; /* used during destruction */
866 };
867
868 unsigned int span_weight;
869 /*
870 * Span of all CPUs in this domain.
871 *
872 * NOTE: this field is variable length. (Allocated dynamically
873 * by attaching extra space to the end of the structure,
874 * depending on how many CPUs the kernel has booted up with)
875 */
876 unsigned long span[0];
877 };
878
879 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
880 {
881 return to_cpumask(sd->span);
882 }
883
884 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
885 struct sched_domain_attr *dattr_new);
886
887 /* Allocate an array of sched domains, for partition_sched_domains(). */
888 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
889 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
890
891 bool cpus_share_cache(int this_cpu, int that_cpu);
892
893 #else /* CONFIG_SMP */
894
895 struct sched_domain_attr;
896
897 static inline void
898 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
899 struct sched_domain_attr *dattr_new)
900 {
901 }
902
903 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
904 {
905 return true;
906 }
907
908 #endif /* !CONFIG_SMP */
909
910
911 struct io_context; /* See blkdev.h */
912
913
914 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
915 extern void prefetch_stack(struct task_struct *t);
916 #else
917 static inline void prefetch_stack(struct task_struct *t) { }
918 #endif
919
920 struct audit_context; /* See audit.c */
921 struct mempolicy;
922 struct pipe_inode_info;
923 struct uts_namespace;
924
925 struct load_weight {
926 unsigned long weight, inv_weight;
927 };
928
929 struct sched_avg {
930 /*
931 * These sums represent an infinite geometric series and so are bound
932 * above by 1024/(1-y). Thus we only need a u32 to store them for for all
933 * choices of y < 1-2^(-32)*1024.
934 */
935 u32 runnable_avg_sum, runnable_avg_period;
936 u64 last_runnable_update;
937 s64 decay_count;
938 unsigned long load_avg_contrib;
939 };
940
941 #ifdef CONFIG_SCHEDSTATS
942 struct sched_statistics {
943 u64 wait_start;
944 u64 wait_max;
945 u64 wait_count;
946 u64 wait_sum;
947 u64 iowait_count;
948 u64 iowait_sum;
949
950 u64 sleep_start;
951 u64 sleep_max;
952 s64 sum_sleep_runtime;
953
954 u64 block_start;
955 u64 block_max;
956 u64 exec_max;
957 u64 slice_max;
958
959 u64 nr_migrations_cold;
960 u64 nr_failed_migrations_affine;
961 u64 nr_failed_migrations_running;
962 u64 nr_failed_migrations_hot;
963 u64 nr_forced_migrations;
964
965 u64 nr_wakeups;
966 u64 nr_wakeups_sync;
967 u64 nr_wakeups_migrate;
968 u64 nr_wakeups_local;
969 u64 nr_wakeups_remote;
970 u64 nr_wakeups_affine;
971 u64 nr_wakeups_affine_attempts;
972 u64 nr_wakeups_passive;
973 u64 nr_wakeups_idle;
974 };
975 #endif
976
977 struct sched_entity {
978 struct load_weight load; /* for load-balancing */
979 struct rb_node run_node;
980 struct list_head group_node;
981 unsigned int on_rq;
982
983 u64 exec_start;
984 u64 sum_exec_runtime;
985 u64 vruntime;
986 u64 prev_sum_exec_runtime;
987
988 u64 nr_migrations;
989
990 #ifdef CONFIG_SCHEDSTATS
991 struct sched_statistics statistics;
992 #endif
993
994 #ifdef CONFIG_FAIR_GROUP_SCHED
995 struct sched_entity *parent;
996 /* rq on which this entity is (to be) queued: */
997 struct cfs_rq *cfs_rq;
998 /* rq "owned" by this entity/group: */
999 struct cfs_rq *my_q;
1000 #endif
1001
1002 /*
1003 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
1004 * removed when useful for applications beyond shares distribution (e.g.
1005 * load-balance).
1006 */
1007 #if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
1008 /* Per-entity load-tracking */
1009 struct sched_avg avg;
1010 #endif
1011 };
1012
1013 struct sched_rt_entity {
1014 struct list_head run_list;
1015 unsigned long timeout;
1016 unsigned long watchdog_stamp;
1017 unsigned int time_slice;
1018
1019 struct sched_rt_entity *back;
1020 #ifdef CONFIG_RT_GROUP_SCHED
1021 struct sched_rt_entity *parent;
1022 /* rq on which this entity is (to be) queued: */
1023 struct rt_rq *rt_rq;
1024 /* rq "owned" by this entity/group: */
1025 struct rt_rq *my_q;
1026 #endif
1027 };
1028
1029
1030 struct rcu_node;
1031
1032 enum perf_event_task_context {
1033 perf_invalid_context = -1,
1034 perf_hw_context = 0,
1035 perf_sw_context,
1036 perf_nr_task_contexts,
1037 };
1038
1039 struct task_struct {
1040 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1041 void *stack;
1042 atomic_t usage;
1043 unsigned int flags; /* per process flags, defined below */
1044 unsigned int ptrace;
1045
1046 #ifdef CONFIG_SMP
1047 struct llist_node wake_entry;
1048 int on_cpu;
1049 #endif
1050 int on_rq;
1051
1052 int prio, static_prio, normal_prio;
1053 unsigned int rt_priority;
1054 const struct sched_class *sched_class;
1055 struct sched_entity se;
1056 struct sched_rt_entity rt;
1057 #ifdef CONFIG_CGROUP_SCHED
1058 struct task_group *sched_task_group;
1059 #endif
1060
1061 #ifdef CONFIG_PREEMPT_NOTIFIERS
1062 /* list of struct preempt_notifier: */
1063 struct hlist_head preempt_notifiers;
1064 #endif
1065
1066 /*
1067 * fpu_counter contains the number of consecutive context switches
1068 * that the FPU is used. If this is over a threshold, the lazy fpu
1069 * saving becomes unlazy to save the trap. This is an unsigned char
1070 * so that after 256 times the counter wraps and the behavior turns
1071 * lazy again; this to deal with bursty apps that only use FPU for
1072 * a short time
1073 */
1074 unsigned char fpu_counter;
1075 #ifdef CONFIG_BLK_DEV_IO_TRACE
1076 unsigned int btrace_seq;
1077 #endif
1078
1079 unsigned int policy;
1080 int nr_cpus_allowed;
1081 cpumask_t cpus_allowed;
1082
1083 #ifdef CONFIG_PREEMPT_RCU
1084 int rcu_read_lock_nesting;
1085 char rcu_read_unlock_special;
1086 struct list_head rcu_node_entry;
1087 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1088 #ifdef CONFIG_TREE_PREEMPT_RCU
1089 struct rcu_node *rcu_blocked_node;
1090 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1091 #ifdef CONFIG_RCU_BOOST
1092 struct rt_mutex *rcu_boost_mutex;
1093 #endif /* #ifdef CONFIG_RCU_BOOST */
1094
1095 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1096 struct sched_info sched_info;
1097 #endif
1098
1099 struct list_head tasks;
1100 #ifdef CONFIG_SMP
1101 struct plist_node pushable_tasks;
1102 #endif
1103
1104 struct mm_struct *mm, *active_mm;
1105 #ifdef CONFIG_COMPAT_BRK
1106 unsigned brk_randomized:1;
1107 #endif
1108 #if defined(SPLIT_RSS_COUNTING)
1109 struct task_rss_stat rss_stat;
1110 #endif
1111 /* task state */
1112 int exit_state;
1113 int exit_code, exit_signal;
1114 int pdeath_signal; /* The signal sent when the parent dies */
1115 unsigned int jobctl; /* JOBCTL_*, siglock protected */
1116
1117 /* Used for emulating ABI behavior of previous Linux versions */
1118 unsigned int personality;
1119
1120 unsigned did_exec:1;
1121 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1122 * execve */
1123 unsigned in_iowait:1;
1124
1125 /* task may not gain privileges */
1126 unsigned no_new_privs:1;
1127
1128 /* Revert to default priority/policy when forking */
1129 unsigned sched_reset_on_fork:1;
1130 unsigned sched_contributes_to_load:1;
1131
1132 pid_t pid;
1133 pid_t tgid;
1134
1135 #ifdef CONFIG_CC_STACKPROTECTOR
1136 /* Canary value for the -fstack-protector gcc feature */
1137 unsigned long stack_canary;
1138 #endif
1139 /*
1140 * pointers to (original) parent process, youngest child, younger sibling,
1141 * older sibling, respectively. (p->father can be replaced with
1142 * p->real_parent->pid)
1143 */
1144 struct task_struct __rcu *real_parent; /* real parent process */
1145 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1146 /*
1147 * children/sibling forms the list of my natural children
1148 */
1149 struct list_head children; /* list of my children */
1150 struct list_head sibling; /* linkage in my parent's children list */
1151 struct task_struct *group_leader; /* threadgroup leader */
1152
1153 /*
1154 * ptraced is the list of tasks this task is using ptrace on.
1155 * This includes both natural children and PTRACE_ATTACH targets.
1156 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1157 */
1158 struct list_head ptraced;
1159 struct list_head ptrace_entry;
1160
1161 /* PID/PID hash table linkage. */
1162 struct pid_link pids[PIDTYPE_MAX];
1163 struct list_head thread_group;
1164 struct list_head thread_node;
1165
1166 struct completion *vfork_done; /* for vfork() */
1167 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1168 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1169
1170 cputime_t utime, stime, utimescaled, stimescaled;
1171 cputime_t gtime;
1172 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1173 struct cputime prev_cputime;
1174 #endif
1175 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1176 seqlock_t vtime_seqlock;
1177 unsigned long long vtime_snap;
1178 enum {
1179 VTIME_SLEEPING = 0,
1180 VTIME_USER,
1181 VTIME_SYS,
1182 } vtime_snap_whence;
1183 #endif
1184 unsigned long nvcsw, nivcsw; /* context switch counts */
1185 struct timespec start_time; /* monotonic time */
1186 struct timespec real_start_time; /* boot based time */
1187 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1188 unsigned long min_flt, maj_flt;
1189
1190 struct task_cputime cputime_expires;
1191 struct list_head cpu_timers[3];
1192
1193 /* process credentials */
1194 const struct cred __rcu *real_cred; /* objective and real subjective task
1195 * credentials (COW) */
1196 const struct cred __rcu *cred; /* effective (overridable) subjective task
1197 * credentials (COW) */
1198 char comm[TASK_COMM_LEN]; /* executable name excluding path
1199 - access with [gs]et_task_comm (which lock
1200 it with task_lock())
1201 - initialized normally by setup_new_exec */
1202 /* file system info */
1203 int link_count, total_link_count;
1204 #ifdef CONFIG_SYSVIPC
1205 /* ipc stuff */
1206 struct sysv_sem sysvsem;
1207 #endif
1208 #ifdef CONFIG_DETECT_HUNG_TASK
1209 /* hung task detection */
1210 unsigned long last_switch_count;
1211 #endif
1212 /* CPU-specific state of this task */
1213 struct thread_struct thread;
1214 /* filesystem information */
1215 struct fs_struct *fs;
1216 /* open file information */
1217 struct files_struct *files;
1218 /* namespaces */
1219 struct nsproxy *nsproxy;
1220 /* signal handlers */
1221 struct signal_struct *signal;
1222 struct sighand_struct *sighand;
1223
1224 sigset_t blocked, real_blocked;
1225 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1226 struct sigpending pending;
1227
1228 unsigned long sas_ss_sp;
1229 size_t sas_ss_size;
1230 int (*notifier)(void *priv);
1231 void *notifier_data;
1232 sigset_t *notifier_mask;
1233 struct callback_head *task_works;
1234
1235 struct audit_context *audit_context;
1236 #ifdef CONFIG_AUDITSYSCALL
1237 kuid_t loginuid;
1238 unsigned int sessionid;
1239 #endif
1240 struct seccomp seccomp;
1241
1242 /* Thread group tracking */
1243 u32 parent_exec_id;
1244 u32 self_exec_id;
1245 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1246 * mempolicy */
1247 spinlock_t alloc_lock;
1248
1249 /* Protection of the PI data structures: */
1250 raw_spinlock_t pi_lock;
1251
1252 #ifdef CONFIG_RT_MUTEXES
1253 /* PI waiters blocked on a rt_mutex held by this task */
1254 struct plist_head pi_waiters;
1255 /* Deadlock detection and priority inheritance handling */
1256 struct rt_mutex_waiter *pi_blocked_on;
1257 #endif
1258
1259 #ifdef CONFIG_DEBUG_MUTEXES
1260 /* mutex deadlock detection */
1261 struct mutex_waiter *blocked_on;
1262 #endif
1263 #ifdef CONFIG_TRACE_IRQFLAGS
1264 unsigned int irq_events;
1265 unsigned long hardirq_enable_ip;
1266 unsigned long hardirq_disable_ip;
1267 unsigned int hardirq_enable_event;
1268 unsigned int hardirq_disable_event;
1269 int hardirqs_enabled;
1270 int hardirq_context;
1271 unsigned long softirq_disable_ip;
1272 unsigned long softirq_enable_ip;
1273 unsigned int softirq_disable_event;
1274 unsigned int softirq_enable_event;
1275 int softirqs_enabled;
1276 int softirq_context;
1277 #endif
1278 #ifdef CONFIG_LOCKDEP
1279 # define MAX_LOCK_DEPTH 48UL
1280 u64 curr_chain_key;
1281 int lockdep_depth;
1282 unsigned int lockdep_recursion;
1283 struct held_lock held_locks[MAX_LOCK_DEPTH];
1284 gfp_t lockdep_reclaim_gfp;
1285 #endif
1286
1287 /* journalling filesystem info */
1288 void *journal_info;
1289
1290 /* stacked block device info */
1291 struct bio_list *bio_list;
1292
1293 #ifdef CONFIG_BLOCK
1294 /* stack plugging */
1295 struct blk_plug *plug;
1296 #endif
1297
1298 /* VM state */
1299 struct reclaim_state *reclaim_state;
1300
1301 struct backing_dev_info *backing_dev_info;
1302
1303 struct io_context *io_context;
1304
1305 unsigned long ptrace_message;
1306 siginfo_t *last_siginfo; /* For ptrace use. */
1307 struct task_io_accounting ioac;
1308 #if defined(CONFIG_TASK_XACCT)
1309 u64 acct_rss_mem1; /* accumulated rss usage */
1310 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1311 cputime_t acct_timexpd; /* stime + utime since last update */
1312 #endif
1313 #ifdef CONFIG_CPUSETS
1314 nodemask_t mems_allowed; /* Protected by alloc_lock */
1315 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
1316 int cpuset_mem_spread_rotor;
1317 int cpuset_slab_spread_rotor;
1318 #endif
1319 #ifdef CONFIG_CGROUPS
1320 /* Control Group info protected by css_set_lock */
1321 struct css_set __rcu *cgroups;
1322 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1323 struct list_head cg_list;
1324 #endif
1325 #ifdef CONFIG_FUTEX
1326 struct robust_list_head __user *robust_list;
1327 #ifdef CONFIG_COMPAT
1328 struct compat_robust_list_head __user *compat_robust_list;
1329 #endif
1330 struct list_head pi_state_list;
1331 struct futex_pi_state *pi_state_cache;
1332 #endif
1333 #ifdef CONFIG_PERF_EVENTS
1334 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1335 struct mutex perf_event_mutex;
1336 struct list_head perf_event_list;
1337 #endif
1338 #ifdef CONFIG_NUMA
1339 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1340 short il_next;
1341 short pref_node_fork;
1342 #endif
1343 #ifdef CONFIG_NUMA_BALANCING
1344 int numa_scan_seq;
1345 int numa_migrate_seq;
1346 unsigned int numa_scan_period;
1347 u64 node_stamp; /* migration stamp */
1348 struct callback_head numa_work;
1349 #endif /* CONFIG_NUMA_BALANCING */
1350
1351 struct rcu_head rcu;
1352
1353 /*
1354 * cache last used pipe for splice
1355 */
1356 struct pipe_inode_info *splice_pipe;
1357
1358 struct page_frag task_frag;
1359
1360 #ifdef CONFIG_TASK_DELAY_ACCT
1361 struct task_delay_info *delays;
1362 #endif
1363 #ifdef CONFIG_FAULT_INJECTION
1364 int make_it_fail;
1365 #endif
1366 /*
1367 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1368 * balance_dirty_pages() for some dirty throttling pause
1369 */
1370 int nr_dirtied;
1371 int nr_dirtied_pause;
1372 unsigned long dirty_paused_when; /* start of a write-and-pause period */
1373
1374 #ifdef CONFIG_LATENCYTOP
1375 int latency_record_count;
1376 struct latency_record latency_record[LT_SAVECOUNT];
1377 #endif
1378 /*
1379 * time slack values; these are used to round up poll() and
1380 * select() etc timeout values. These are in nanoseconds.
1381 */
1382 unsigned long timer_slack_ns;
1383 unsigned long default_timer_slack_ns;
1384
1385 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1386 /* Index of current stored address in ret_stack */
1387 int curr_ret_stack;
1388 /* Stack of return addresses for return function tracing */
1389 struct ftrace_ret_stack *ret_stack;
1390 /* time stamp for last schedule */
1391 unsigned long long ftrace_timestamp;
1392 /*
1393 * Number of functions that haven't been traced
1394 * because of depth overrun.
1395 */
1396 atomic_t trace_overrun;
1397 /* Pause for the tracing */
1398 atomic_t tracing_graph_pause;
1399 #endif
1400 #ifdef CONFIG_TRACING
1401 /* state flags for use by tracers */
1402 unsigned long trace;
1403 /* bitmask and counter of trace recursion */
1404 unsigned long trace_recursion;
1405 #endif /* CONFIG_TRACING */
1406 #ifdef CONFIG_MEMCG /* memcg uses this to do batch job */
1407 struct memcg_batch_info {
1408 int do_batch; /* incremented when batch uncharge started */
1409 struct mem_cgroup *memcg; /* target memcg of uncharge */
1410 unsigned long nr_pages; /* uncharged usage */
1411 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
1412 } memcg_batch;
1413 unsigned int memcg_kmem_skip_account;
1414 struct memcg_oom_info {
1415 struct mem_cgroup *memcg;
1416 gfp_t gfp_mask;
1417 int order;
1418 unsigned int may_oom:1;
1419 } memcg_oom;
1420 #endif
1421 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1422 atomic_t ptrace_bp_refcnt;
1423 #endif
1424 #ifdef CONFIG_UPROBES
1425 struct uprobe_task *utask;
1426 #endif
1427 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1428 unsigned int sequential_io;
1429 unsigned int sequential_io_avg;
1430 #endif
1431 };
1432
1433 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1434 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1435
1436 #ifdef CONFIG_NUMA_BALANCING
1437 extern void task_numa_fault(int node, int pages, bool migrated);
1438 extern void set_numabalancing_state(bool enabled);
1439 #else
1440 static inline void task_numa_fault(int node, int pages, bool migrated)
1441 {
1442 }
1443 static inline void set_numabalancing_state(bool enabled)
1444 {
1445 }
1446 #endif
1447
1448 static inline struct pid *task_pid(struct task_struct *task)
1449 {
1450 return task->pids[PIDTYPE_PID].pid;
1451 }
1452
1453 static inline struct pid *task_tgid(struct task_struct *task)
1454 {
1455 return task->group_leader->pids[PIDTYPE_PID].pid;
1456 }
1457
1458 /*
1459 * Without tasklist or rcu lock it is not safe to dereference
1460 * the result of task_pgrp/task_session even if task == current,
1461 * we can race with another thread doing sys_setsid/sys_setpgid.
1462 */
1463 static inline struct pid *task_pgrp(struct task_struct *task)
1464 {
1465 return task->group_leader->pids[PIDTYPE_PGID].pid;
1466 }
1467
1468 static inline struct pid *task_session(struct task_struct *task)
1469 {
1470 return task->group_leader->pids[PIDTYPE_SID].pid;
1471 }
1472
1473 struct pid_namespace;
1474
1475 /*
1476 * the helpers to get the task's different pids as they are seen
1477 * from various namespaces
1478 *
1479 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1480 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1481 * current.
1482 * task_xid_nr_ns() : id seen from the ns specified;
1483 *
1484 * set_task_vxid() : assigns a virtual id to a task;
1485 *
1486 * see also pid_nr() etc in include/linux/pid.h
1487 */
1488 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1489 struct pid_namespace *ns);
1490
1491 static inline pid_t task_pid_nr(struct task_struct *tsk)
1492 {
1493 return tsk->pid;
1494 }
1495
1496 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1497 struct pid_namespace *ns)
1498 {
1499 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1500 }
1501
1502 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1503 {
1504 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1505 }
1506
1507
1508 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1509 {
1510 return tsk->tgid;
1511 }
1512
1513 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1514
1515 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1516 {
1517 return pid_vnr(task_tgid(tsk));
1518 }
1519
1520
1521 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1522 struct pid_namespace *ns)
1523 {
1524 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1525 }
1526
1527 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1528 {
1529 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1530 }
1531
1532
1533 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1534 struct pid_namespace *ns)
1535 {
1536 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1537 }
1538
1539 static inline pid_t task_session_vnr(struct task_struct *tsk)
1540 {
1541 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1542 }
1543
1544 /* obsolete, do not use */
1545 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1546 {
1547 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1548 }
1549
1550 /**
1551 * pid_alive - check that a task structure is not stale
1552 * @p: Task structure to be checked.
1553 *
1554 * Test if a process is not yet dead (at most zombie state)
1555 * If pid_alive fails, then pointers within the task structure
1556 * can be stale and must not be dereferenced.
1557 */
1558 static inline int pid_alive(struct task_struct *p)
1559 {
1560 return p->pids[PIDTYPE_PID].pid != NULL;
1561 }
1562
1563 /**
1564 * is_global_init - check if a task structure is init
1565 * @tsk: Task structure to be checked.
1566 *
1567 * Check if a task structure is the first user space task the kernel created.
1568 */
1569 static inline int is_global_init(struct task_struct *tsk)
1570 {
1571 return tsk->pid == 1;
1572 }
1573
1574 extern struct pid *cad_pid;
1575
1576 extern void free_task(struct task_struct *tsk);
1577 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1578
1579 extern void __put_task_struct(struct task_struct *t);
1580
1581 static inline void put_task_struct(struct task_struct *t)
1582 {
1583 if (atomic_dec_and_test(&t->usage))
1584 __put_task_struct(t);
1585 }
1586
1587 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1588 extern void task_cputime(struct task_struct *t,
1589 cputime_t *utime, cputime_t *stime);
1590 extern void task_cputime_scaled(struct task_struct *t,
1591 cputime_t *utimescaled, cputime_t *stimescaled);
1592 extern cputime_t task_gtime(struct task_struct *t);
1593 #else
1594 static inline void task_cputime(struct task_struct *t,
1595 cputime_t *utime, cputime_t *stime)
1596 {
1597 if (utime)
1598 *utime = t->utime;
1599 if (stime)
1600 *stime = t->stime;
1601 }
1602
1603 static inline void task_cputime_scaled(struct task_struct *t,
1604 cputime_t *utimescaled,
1605 cputime_t *stimescaled)
1606 {
1607 if (utimescaled)
1608 *utimescaled = t->utimescaled;
1609 if (stimescaled)
1610 *stimescaled = t->stimescaled;
1611 }
1612
1613 static inline cputime_t task_gtime(struct task_struct *t)
1614 {
1615 return t->gtime;
1616 }
1617 #endif
1618 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1619 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1620
1621 /*
1622 * Per process flags
1623 */
1624 #define PF_EXITING 0x00000004 /* getting shut down */
1625 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1626 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1627 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1628 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1629 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1630 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1631 #define PF_DUMPCORE 0x00000200 /* dumped core */
1632 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1633 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1634 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1635 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1636 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
1637 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1638 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1639 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1640 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1641 #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
1642 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1643 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1644 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1645 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1646 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1647 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1648 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
1649 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1650 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1651 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1652 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1653
1654 /*
1655 * Only the _current_ task can read/write to tsk->flags, but other
1656 * tasks can access tsk->flags in readonly mode for example
1657 * with tsk_used_math (like during threaded core dumping).
1658 * There is however an exception to this rule during ptrace
1659 * or during fork: the ptracer task is allowed to write to the
1660 * child->flags of its traced child (same goes for fork, the parent
1661 * can write to the child->flags), because we're guaranteed the
1662 * child is not running and in turn not changing child->flags
1663 * at the same time the parent does it.
1664 */
1665 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1666 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1667 #define clear_used_math() clear_stopped_child_used_math(current)
1668 #define set_used_math() set_stopped_child_used_math(current)
1669 #define conditional_stopped_child_used_math(condition, child) \
1670 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1671 #define conditional_used_math(condition) \
1672 conditional_stopped_child_used_math(condition, current)
1673 #define copy_to_stopped_child_used_math(child) \
1674 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1675 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1676 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1677 #define used_math() tsk_used_math(current)
1678
1679 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags
1680 * __GFP_FS is also cleared as it implies __GFP_IO.
1681 */
1682 static inline gfp_t memalloc_noio_flags(gfp_t flags)
1683 {
1684 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
1685 flags &= ~(__GFP_IO | __GFP_FS);
1686 return flags;
1687 }
1688
1689 static inline unsigned int memalloc_noio_save(void)
1690 {
1691 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
1692 current->flags |= PF_MEMALLOC_NOIO;
1693 return flags;
1694 }
1695
1696 static inline void memalloc_noio_restore(unsigned int flags)
1697 {
1698 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
1699 }
1700
1701 /*
1702 * task->jobctl flags
1703 */
1704 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
1705
1706 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
1707 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
1708 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
1709 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
1710 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
1711 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
1712 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
1713
1714 #define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT)
1715 #define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT)
1716 #define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT)
1717 #define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT)
1718 #define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT)
1719 #define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT)
1720 #define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT)
1721
1722 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
1723 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
1724
1725 extern bool task_set_jobctl_pending(struct task_struct *task,
1726 unsigned int mask);
1727 extern void task_clear_jobctl_trapping(struct task_struct *task);
1728 extern void task_clear_jobctl_pending(struct task_struct *task,
1729 unsigned int mask);
1730
1731 #ifdef CONFIG_PREEMPT_RCU
1732
1733 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1734 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1735
1736 static inline void rcu_copy_process(struct task_struct *p)
1737 {
1738 p->rcu_read_lock_nesting = 0;
1739 p->rcu_read_unlock_special = 0;
1740 #ifdef CONFIG_TREE_PREEMPT_RCU
1741 p->rcu_blocked_node = NULL;
1742 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1743 #ifdef CONFIG_RCU_BOOST
1744 p->rcu_boost_mutex = NULL;
1745 #endif /* #ifdef CONFIG_RCU_BOOST */
1746 INIT_LIST_HEAD(&p->rcu_node_entry);
1747 }
1748
1749 #else
1750
1751 static inline void rcu_copy_process(struct task_struct *p)
1752 {
1753 }
1754
1755 #endif
1756
1757 static inline void tsk_restore_flags(struct task_struct *task,
1758 unsigned long orig_flags, unsigned long flags)
1759 {
1760 task->flags &= ~flags;
1761 task->flags |= orig_flags & flags;
1762 }
1763
1764 #ifdef CONFIG_SMP
1765 extern void do_set_cpus_allowed(struct task_struct *p,
1766 const struct cpumask *new_mask);
1767
1768 extern int set_cpus_allowed_ptr(struct task_struct *p,
1769 const struct cpumask *new_mask);
1770 #else
1771 static inline void do_set_cpus_allowed(struct task_struct *p,
1772 const struct cpumask *new_mask)
1773 {
1774 }
1775 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1776 const struct cpumask *new_mask)
1777 {
1778 if (!cpumask_test_cpu(0, new_mask))
1779 return -EINVAL;
1780 return 0;
1781 }
1782 #endif
1783
1784 #ifdef CONFIG_NO_HZ_COMMON
1785 void calc_load_enter_idle(void);
1786 void calc_load_exit_idle(void);
1787 #else
1788 static inline void calc_load_enter_idle(void) { }
1789 static inline void calc_load_exit_idle(void) { }
1790 #endif /* CONFIG_NO_HZ_COMMON */
1791
1792 #ifndef CONFIG_CPUMASK_OFFSTACK
1793 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1794 {
1795 return set_cpus_allowed_ptr(p, &new_mask);
1796 }
1797 #endif
1798
1799 /*
1800 * Do not use outside of architecture code which knows its limitations.
1801 *
1802 * sched_clock() has no promise of monotonicity or bounded drift between
1803 * CPUs, use (which you should not) requires disabling IRQs.
1804 *
1805 * Please use one of the three interfaces below.
1806 */
1807 extern unsigned long long notrace sched_clock(void);
1808 /*
1809 * See the comment in kernel/sched/clock.c
1810 */
1811 extern u64 cpu_clock(int cpu);
1812 extern u64 local_clock(void);
1813 extern u64 sched_clock_cpu(int cpu);
1814
1815
1816 extern void sched_clock_init(void);
1817
1818 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1819 static inline void sched_clock_tick(void)
1820 {
1821 }
1822
1823 static inline void sched_clock_idle_sleep_event(void)
1824 {
1825 }
1826
1827 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1828 {
1829 }
1830 #else
1831 /*
1832 * Architectures can set this to 1 if they have specified
1833 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1834 * but then during bootup it turns out that sched_clock()
1835 * is reliable after all:
1836 */
1837 extern int sched_clock_stable;
1838
1839 extern void sched_clock_tick(void);
1840 extern void sched_clock_idle_sleep_event(void);
1841 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1842 #endif
1843
1844 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1845 /*
1846 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
1847 * The reason for this explicit opt-in is not to have perf penalty with
1848 * slow sched_clocks.
1849 */
1850 extern void enable_sched_clock_irqtime(void);
1851 extern void disable_sched_clock_irqtime(void);
1852 #else
1853 static inline void enable_sched_clock_irqtime(void) {}
1854 static inline void disable_sched_clock_irqtime(void) {}
1855 #endif
1856
1857 extern unsigned long long
1858 task_sched_runtime(struct task_struct *task);
1859
1860 /* sched_exec is called by processes performing an exec */
1861 #ifdef CONFIG_SMP
1862 extern void sched_exec(void);
1863 #else
1864 #define sched_exec() {}
1865 #endif
1866
1867 extern void sched_clock_idle_sleep_event(void);
1868 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1869
1870 #ifdef CONFIG_HOTPLUG_CPU
1871 extern void idle_task_exit(void);
1872 #else
1873 static inline void idle_task_exit(void) {}
1874 #endif
1875
1876 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
1877 extern void wake_up_nohz_cpu(int cpu);
1878 #else
1879 static inline void wake_up_nohz_cpu(int cpu) { }
1880 #endif
1881
1882 #ifdef CONFIG_NO_HZ_FULL
1883 extern bool sched_can_stop_tick(void);
1884 extern u64 scheduler_tick_max_deferment(void);
1885 #else
1886 static inline bool sched_can_stop_tick(void) { return false; }
1887 #endif
1888
1889 #ifdef CONFIG_SCHED_AUTOGROUP
1890 extern void sched_autogroup_create_attach(struct task_struct *p);
1891 extern void sched_autogroup_detach(struct task_struct *p);
1892 extern void sched_autogroup_fork(struct signal_struct *sig);
1893 extern void sched_autogroup_exit(struct signal_struct *sig);
1894 #ifdef CONFIG_PROC_FS
1895 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
1896 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
1897 #endif
1898 #else
1899 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
1900 static inline void sched_autogroup_detach(struct task_struct *p) { }
1901 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
1902 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
1903 #endif
1904
1905 extern bool yield_to(struct task_struct *p, bool preempt);
1906 extern void set_user_nice(struct task_struct *p, long nice);
1907 extern int task_prio(const struct task_struct *p);
1908 extern int task_nice(const struct task_struct *p);
1909 extern int can_nice(const struct task_struct *p, const int nice);
1910 extern int task_curr(const struct task_struct *p);
1911 extern int idle_cpu(int cpu);
1912 extern int sched_setscheduler(struct task_struct *, int,
1913 const struct sched_param *);
1914 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1915 const struct sched_param *);
1916 extern struct task_struct *idle_task(int cpu);
1917 /**
1918 * is_idle_task - is the specified task an idle task?
1919 * @p: the task in question.
1920 */
1921 static inline bool is_idle_task(const struct task_struct *p)
1922 {
1923 return p->pid == 0;
1924 }
1925 extern struct task_struct *curr_task(int cpu);
1926 extern void set_curr_task(int cpu, struct task_struct *p);
1927
1928 void yield(void);
1929
1930 /*
1931 * The default (Linux) execution domain.
1932 */
1933 extern struct exec_domain default_exec_domain;
1934
1935 union thread_union {
1936 struct thread_info thread_info;
1937 unsigned long stack[THREAD_SIZE/sizeof(long)];
1938 };
1939
1940 #ifndef __HAVE_ARCH_KSTACK_END
1941 static inline int kstack_end(void *addr)
1942 {
1943 /* Reliable end of stack detection:
1944 * Some APM bios versions misalign the stack
1945 */
1946 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1947 }
1948 #endif
1949
1950 extern union thread_union init_thread_union;
1951 extern struct task_struct init_task;
1952
1953 extern struct mm_struct init_mm;
1954
1955 extern struct pid_namespace init_pid_ns;
1956
1957 /*
1958 * find a task by one of its numerical ids
1959 *
1960 * find_task_by_pid_ns():
1961 * finds a task by its pid in the specified namespace
1962 * find_task_by_vpid():
1963 * finds a task by its virtual pid
1964 *
1965 * see also find_vpid() etc in include/linux/pid.h
1966 */
1967
1968 extern struct task_struct *find_task_by_vpid(pid_t nr);
1969 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1970 struct pid_namespace *ns);
1971
1972 extern void __set_special_pids(struct pid *pid);
1973
1974 /* per-UID process charging. */
1975 extern struct user_struct * alloc_uid(kuid_t);
1976 static inline struct user_struct *get_uid(struct user_struct *u)
1977 {
1978 atomic_inc(&u->__count);
1979 return u;
1980 }
1981 extern void free_uid(struct user_struct *);
1982
1983 #include <asm/current.h>
1984
1985 extern void xtime_update(unsigned long ticks);
1986
1987 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1988 extern int wake_up_process(struct task_struct *tsk);
1989 extern void wake_up_new_task(struct task_struct *tsk);
1990 #ifdef CONFIG_SMP
1991 extern void kick_process(struct task_struct *tsk);
1992 #else
1993 static inline void kick_process(struct task_struct *tsk) { }
1994 #endif
1995 extern void sched_fork(struct task_struct *p);
1996 extern void sched_dead(struct task_struct *p);
1997
1998 extern void proc_caches_init(void);
1999 extern void flush_signals(struct task_struct *);
2000 extern void __flush_signals(struct task_struct *);
2001 extern void ignore_signals(struct task_struct *);
2002 extern void flush_signal_handlers(struct task_struct *, int force_default);
2003 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2004
2005 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2006 {
2007 unsigned long flags;
2008 int ret;
2009
2010 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2011 ret = dequeue_signal(tsk, mask, info);
2012 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2013
2014 return ret;
2015 }
2016
2017 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2018 sigset_t *mask);
2019 extern void unblock_all_signals(void);
2020 extern void release_task(struct task_struct * p);
2021 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2022 extern int force_sigsegv(int, struct task_struct *);
2023 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2024 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2025 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2026 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2027 const struct cred *, u32);
2028 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2029 extern int kill_pid(struct pid *pid, int sig, int priv);
2030 extern int kill_proc_info(int, struct siginfo *, pid_t);
2031 extern __must_check bool do_notify_parent(struct task_struct *, int);
2032 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2033 extern void force_sig(int, struct task_struct *);
2034 extern int send_sig(int, struct task_struct *, int);
2035 extern int zap_other_threads(struct task_struct *p);
2036 extern struct sigqueue *sigqueue_alloc(void);
2037 extern void sigqueue_free(struct sigqueue *);
2038 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2039 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2040
2041 static inline void restore_saved_sigmask(void)
2042 {
2043 if (test_and_clear_restore_sigmask())
2044 __set_current_blocked(&current->saved_sigmask);
2045 }
2046
2047 static inline sigset_t *sigmask_to_save(void)
2048 {
2049 sigset_t *res = &current->blocked;
2050 if (unlikely(test_restore_sigmask()))
2051 res = &current->saved_sigmask;
2052 return res;
2053 }
2054
2055 static inline int kill_cad_pid(int sig, int priv)
2056 {
2057 return kill_pid(cad_pid, sig, priv);
2058 }
2059
2060 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2061 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2062 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2063 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2064
2065 /*
2066 * True if we are on the alternate signal stack.
2067 */
2068 static inline int on_sig_stack(unsigned long sp)
2069 {
2070 #ifdef CONFIG_STACK_GROWSUP
2071 return sp >= current->sas_ss_sp &&
2072 sp - current->sas_ss_sp < current->sas_ss_size;
2073 #else
2074 return sp > current->sas_ss_sp &&
2075 sp - current->sas_ss_sp <= current->sas_ss_size;
2076 #endif
2077 }
2078
2079 static inline int sas_ss_flags(unsigned long sp)
2080 {
2081 return (current->sas_ss_size == 0 ? SS_DISABLE
2082 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2083 }
2084
2085 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2086 {
2087 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2088 #ifdef CONFIG_STACK_GROWSUP
2089 return current->sas_ss_sp;
2090 #else
2091 return current->sas_ss_sp + current->sas_ss_size;
2092 #endif
2093 return sp;
2094 }
2095
2096 /*
2097 * Routines for handling mm_structs
2098 */
2099 extern struct mm_struct * mm_alloc(void);
2100
2101 /* mmdrop drops the mm and the page tables */
2102 extern void __mmdrop(struct mm_struct *);
2103 static inline void mmdrop(struct mm_struct * mm)
2104 {
2105 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2106 __mmdrop(mm);
2107 }
2108
2109 /* mmput gets rid of the mappings and all user-space */
2110 extern void mmput(struct mm_struct *);
2111 /* Grab a reference to a task's mm, if it is not already going away */
2112 extern struct mm_struct *get_task_mm(struct task_struct *task);
2113 /*
2114 * Grab a reference to a task's mm, if it is not already going away
2115 * and ptrace_may_access with the mode parameter passed to it
2116 * succeeds.
2117 */
2118 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2119 /* Remove the current tasks stale references to the old mm_struct */
2120 extern void mm_release(struct task_struct *, struct mm_struct *);
2121 /* Allocate a new mm structure and copy contents from tsk->mm */
2122 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2123
2124 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2125 struct task_struct *);
2126 extern void flush_thread(void);
2127 extern void exit_thread(void);
2128
2129 extern void exit_files(struct task_struct *);
2130 extern void __cleanup_sighand(struct sighand_struct *);
2131
2132 extern void exit_itimers(struct signal_struct *);
2133 extern void flush_itimer_signals(void);
2134
2135 extern void do_group_exit(int);
2136
2137 extern int allow_signal(int);
2138 extern int disallow_signal(int);
2139
2140 extern int do_execve(const char *,
2141 const char __user * const __user *,
2142 const char __user * const __user *);
2143 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2144 struct task_struct *fork_idle(int);
2145 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2146
2147 extern void set_task_comm(struct task_struct *tsk, char *from);
2148 extern char *get_task_comm(char *to, struct task_struct *tsk);
2149
2150 #ifdef CONFIG_SMP
2151 void scheduler_ipi(void);
2152 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2153 #else
2154 static inline void scheduler_ipi(void) { }
2155 static inline unsigned long wait_task_inactive(struct task_struct *p,
2156 long match_state)
2157 {
2158 return 1;
2159 }
2160 #endif
2161
2162 #define next_task(p) \
2163 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2164
2165 #define for_each_process(p) \
2166 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2167
2168 extern bool current_is_single_threaded(void);
2169
2170 /*
2171 * Careful: do_each_thread/while_each_thread is a double loop so
2172 * 'break' will not work as expected - use goto instead.
2173 */
2174 #define do_each_thread(g, t) \
2175 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2176
2177 #define while_each_thread(g, t) \
2178 while ((t = next_thread(t)) != g)
2179
2180 #define __for_each_thread(signal, t) \
2181 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
2182
2183 #define for_each_thread(p, t) \
2184 __for_each_thread((p)->signal, t)
2185
2186 /* Careful: this is a double loop, 'break' won't work as expected. */
2187 #define for_each_process_thread(p, t) \
2188 for_each_process(p) for_each_thread(p, t)
2189
2190 static inline int get_nr_threads(struct task_struct *tsk)
2191 {
2192 return tsk->signal->nr_threads;
2193 }
2194
2195 static inline bool thread_group_leader(struct task_struct *p)
2196 {
2197 return p->exit_signal >= 0;
2198 }
2199
2200 /* Do to the insanities of de_thread it is possible for a process
2201 * to have the pid of the thread group leader without actually being
2202 * the thread group leader. For iteration through the pids in proc
2203 * all we care about is that we have a task with the appropriate
2204 * pid, we don't actually care if we have the right task.
2205 */
2206 static inline bool has_group_leader_pid(struct task_struct *p)
2207 {
2208 return task_pid(p) == p->signal->leader_pid;
2209 }
2210
2211 static inline
2212 bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
2213 {
2214 return p1->signal == p2->signal;
2215 }
2216
2217 static inline struct task_struct *next_thread(const struct task_struct *p)
2218 {
2219 return list_entry_rcu(p->thread_group.next,
2220 struct task_struct, thread_group);
2221 }
2222
2223 static inline int thread_group_empty(struct task_struct *p)
2224 {
2225 return list_empty(&p->thread_group);
2226 }
2227
2228 #define delay_group_leader(p) \
2229 (thread_group_leader(p) && !thread_group_empty(p))
2230
2231 /*
2232 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2233 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2234 * pins the final release of task.io_context. Also protects ->cpuset and
2235 * ->cgroup.subsys[]. And ->vfork_done.
2236 *
2237 * Nests both inside and outside of read_lock(&tasklist_lock).
2238 * It must not be nested with write_lock_irq(&tasklist_lock),
2239 * neither inside nor outside.
2240 */
2241 static inline void task_lock(struct task_struct *p)
2242 {
2243 spin_lock(&p->alloc_lock);
2244 }
2245
2246 static inline void task_unlock(struct task_struct *p)
2247 {
2248 spin_unlock(&p->alloc_lock);
2249 }
2250
2251 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2252 unsigned long *flags);
2253
2254 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2255 unsigned long *flags)
2256 {
2257 struct sighand_struct *ret;
2258
2259 ret = __lock_task_sighand(tsk, flags);
2260 (void)__cond_lock(&tsk->sighand->siglock, ret);
2261 return ret;
2262 }
2263
2264 static inline void unlock_task_sighand(struct task_struct *tsk,
2265 unsigned long *flags)
2266 {
2267 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2268 }
2269
2270 #ifdef CONFIG_CGROUPS
2271 static inline void threadgroup_change_begin(struct task_struct *tsk)
2272 {
2273 down_read(&tsk->signal->group_rwsem);
2274 }
2275 static inline void threadgroup_change_end(struct task_struct *tsk)
2276 {
2277 up_read(&tsk->signal->group_rwsem);
2278 }
2279
2280 /**
2281 * threadgroup_lock - lock threadgroup
2282 * @tsk: member task of the threadgroup to lock
2283 *
2284 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter
2285 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
2286 * change ->group_leader/pid. This is useful for cases where the threadgroup
2287 * needs to stay stable across blockable operations.
2288 *
2289 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2290 * synchronization. While held, no new task will be added to threadgroup
2291 * and no existing live task will have its PF_EXITING set.
2292 *
2293 * de_thread() does threadgroup_change_{begin|end}() when a non-leader
2294 * sub-thread becomes a new leader.
2295 */
2296 static inline void threadgroup_lock(struct task_struct *tsk)
2297 {
2298 down_write(&tsk->signal->group_rwsem);
2299 }
2300
2301 /**
2302 * threadgroup_unlock - unlock threadgroup
2303 * @tsk: member task of the threadgroup to unlock
2304 *
2305 * Reverse threadgroup_lock().
2306 */
2307 static inline void threadgroup_unlock(struct task_struct *tsk)
2308 {
2309 up_write(&tsk->signal->group_rwsem);
2310 }
2311 #else
2312 static inline void threadgroup_change_begin(struct task_struct *tsk) {}
2313 static inline void threadgroup_change_end(struct task_struct *tsk) {}
2314 static inline void threadgroup_lock(struct task_struct *tsk) {}
2315 static inline void threadgroup_unlock(struct task_struct *tsk) {}
2316 #endif
2317
2318 #ifndef __HAVE_THREAD_FUNCTIONS
2319
2320 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2321 #define task_stack_page(task) ((task)->stack)
2322
2323 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2324 {
2325 *task_thread_info(p) = *task_thread_info(org);
2326 task_thread_info(p)->task = p;
2327 }
2328
2329 static inline unsigned long *end_of_stack(struct task_struct *p)
2330 {
2331 return (unsigned long *)(task_thread_info(p) + 1);
2332 }
2333
2334 #endif
2335
2336 static inline int object_is_on_stack(void *obj)
2337 {
2338 void *stack = task_stack_page(current);
2339
2340 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2341 }
2342
2343 extern void thread_info_cache_init(void);
2344
2345 #ifdef CONFIG_DEBUG_STACK_USAGE
2346 static inline unsigned long stack_not_used(struct task_struct *p)
2347 {
2348 unsigned long *n = end_of_stack(p);
2349
2350 do { /* Skip over canary */
2351 n++;
2352 } while (!*n);
2353
2354 return (unsigned long)n - (unsigned long)end_of_stack(p);
2355 }
2356 #endif
2357
2358 /* set thread flags in other task's structures
2359 * - see asm/thread_info.h for TIF_xxxx flags available
2360 */
2361 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2362 {
2363 set_ti_thread_flag(task_thread_info(tsk), flag);
2364 }
2365
2366 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2367 {
2368 clear_ti_thread_flag(task_thread_info(tsk), flag);
2369 }
2370
2371 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2372 {
2373 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2374 }
2375
2376 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2377 {
2378 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2379 }
2380
2381 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2382 {
2383 return test_ti_thread_flag(task_thread_info(tsk), flag);
2384 }
2385
2386 static inline void set_tsk_need_resched(struct task_struct *tsk)
2387 {
2388 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2389 }
2390
2391 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2392 {
2393 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2394 }
2395
2396 static inline int test_tsk_need_resched(struct task_struct *tsk)
2397 {
2398 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2399 }
2400
2401 static inline int restart_syscall(void)
2402 {
2403 set_tsk_thread_flag(current, TIF_SIGPENDING);
2404 return -ERESTARTNOINTR;
2405 }
2406
2407 static inline int signal_pending(struct task_struct *p)
2408 {
2409 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2410 }
2411
2412 static inline int __fatal_signal_pending(struct task_struct *p)
2413 {
2414 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2415 }
2416
2417 static inline int fatal_signal_pending(struct task_struct *p)
2418 {
2419 return signal_pending(p) && __fatal_signal_pending(p);
2420 }
2421
2422 static inline int signal_pending_state(long state, struct task_struct *p)
2423 {
2424 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2425 return 0;
2426 if (!signal_pending(p))
2427 return 0;
2428
2429 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2430 }
2431
2432 static inline int need_resched(void)
2433 {
2434 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2435 }
2436
2437 /*
2438 * cond_resched() and cond_resched_lock(): latency reduction via
2439 * explicit rescheduling in places that are safe. The return
2440 * value indicates whether a reschedule was done in fact.
2441 * cond_resched_lock() will drop the spinlock before scheduling,
2442 * cond_resched_softirq() will enable bhs before scheduling.
2443 */
2444 extern int _cond_resched(void);
2445
2446 #define cond_resched() ({ \
2447 __might_sleep(__FILE__, __LINE__, 0); \
2448 _cond_resched(); \
2449 })
2450
2451 extern int __cond_resched_lock(spinlock_t *lock);
2452
2453 #ifdef CONFIG_PREEMPT_COUNT
2454 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
2455 #else
2456 #define PREEMPT_LOCK_OFFSET 0
2457 #endif
2458
2459 #define cond_resched_lock(lock) ({ \
2460 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2461 __cond_resched_lock(lock); \
2462 })
2463
2464 extern int __cond_resched_softirq(void);
2465
2466 #define cond_resched_softirq() ({ \
2467 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
2468 __cond_resched_softirq(); \
2469 })
2470
2471 /*
2472 * Does a critical section need to be broken due to another
2473 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2474 * but a general need for low latency)
2475 */
2476 static inline int spin_needbreak(spinlock_t *lock)
2477 {
2478 #ifdef CONFIG_PREEMPT
2479 return spin_is_contended(lock);
2480 #else
2481 return 0;
2482 #endif
2483 }
2484
2485 /*
2486 * Idle thread specific functions to determine the need_resched
2487 * polling state. We have two versions, one based on TS_POLLING in
2488 * thread_info.status and one based on TIF_POLLING_NRFLAG in
2489 * thread_info.flags
2490 */
2491 #ifdef TS_POLLING
2492 static inline int tsk_is_polling(struct task_struct *p)
2493 {
2494 return task_thread_info(p)->status & TS_POLLING;
2495 }
2496 static inline void __current_set_polling(void)
2497 {
2498 current_thread_info()->status |= TS_POLLING;
2499 }
2500
2501 static inline bool __must_check current_set_polling_and_test(void)
2502 {
2503 __current_set_polling();
2504
2505 /*
2506 * Polling state must be visible before we test NEED_RESCHED,
2507 * paired by resched_task()
2508 */
2509 smp_mb();
2510
2511 return unlikely(tif_need_resched());
2512 }
2513
2514 static inline void __current_clr_polling(void)
2515 {
2516 current_thread_info()->status &= ~TS_POLLING;
2517 }
2518
2519 static inline bool __must_check current_clr_polling_and_test(void)
2520 {
2521 __current_clr_polling();
2522
2523 /*
2524 * Polling state must be visible before we test NEED_RESCHED,
2525 * paired by resched_task()
2526 */
2527 smp_mb();
2528
2529 return unlikely(tif_need_resched());
2530 }
2531 #elif defined(TIF_POLLING_NRFLAG)
2532 static inline int tsk_is_polling(struct task_struct *p)
2533 {
2534 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
2535 }
2536
2537 static inline void __current_set_polling(void)
2538 {
2539 set_thread_flag(TIF_POLLING_NRFLAG);
2540 }
2541
2542 static inline bool __must_check current_set_polling_and_test(void)
2543 {
2544 __current_set_polling();
2545
2546 /*
2547 * Polling state must be visible before we test NEED_RESCHED,
2548 * paired by resched_task()
2549 *
2550 * XXX: assumes set/clear bit are identical barrier wise.
2551 */
2552 smp_mb__after_clear_bit();
2553
2554 return unlikely(tif_need_resched());
2555 }
2556
2557 static inline void __current_clr_polling(void)
2558 {
2559 clear_thread_flag(TIF_POLLING_NRFLAG);
2560 }
2561
2562 static inline bool __must_check current_clr_polling_and_test(void)
2563 {
2564 __current_clr_polling();
2565
2566 /*
2567 * Polling state must be visible before we test NEED_RESCHED,
2568 * paired by resched_task()
2569 */
2570 smp_mb__after_clear_bit();
2571
2572 return unlikely(tif_need_resched());
2573 }
2574
2575 #else
2576 static inline int tsk_is_polling(struct task_struct *p) { return 0; }
2577 static inline void __current_set_polling(void) { }
2578 static inline void __current_clr_polling(void) { }
2579
2580 static inline bool __must_check current_set_polling_and_test(void)
2581 {
2582 return unlikely(tif_need_resched());
2583 }
2584 static inline bool __must_check current_clr_polling_and_test(void)
2585 {
2586 return unlikely(tif_need_resched());
2587 }
2588 #endif
2589
2590 /*
2591 * Thread group CPU time accounting.
2592 */
2593 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2594 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2595
2596 static inline void thread_group_cputime_init(struct signal_struct *sig)
2597 {
2598 raw_spin_lock_init(&sig->cputimer.lock);
2599 }
2600
2601 /*
2602 * Reevaluate whether the task has signals pending delivery.
2603 * Wake the task if so.
2604 * This is required every time the blocked sigset_t changes.
2605 * callers must hold sighand->siglock.
2606 */
2607 extern void recalc_sigpending_and_wake(struct task_struct *t);
2608 extern void recalc_sigpending(void);
2609
2610 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
2611
2612 static inline void signal_wake_up(struct task_struct *t, bool resume)
2613 {
2614 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
2615 }
2616 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
2617 {
2618 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
2619 }
2620
2621 /*
2622 * Wrappers for p->thread_info->cpu access. No-op on UP.
2623 */
2624 #ifdef CONFIG_SMP
2625
2626 static inline unsigned int task_cpu(const struct task_struct *p)
2627 {
2628 return task_thread_info(p)->cpu;
2629 }
2630
2631 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2632
2633 #else
2634
2635 static inline unsigned int task_cpu(const struct task_struct *p)
2636 {
2637 return 0;
2638 }
2639
2640 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2641 {
2642 }
2643
2644 #endif /* CONFIG_SMP */
2645
2646 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2647 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2648
2649 #ifdef CONFIG_CGROUP_SCHED
2650 extern struct task_group root_task_group;
2651 #endif /* CONFIG_CGROUP_SCHED */
2652
2653 extern int task_can_switch_user(struct user_struct *up,
2654 struct task_struct *tsk);
2655
2656 #ifdef CONFIG_TASK_XACCT
2657 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2658 {
2659 tsk->ioac.rchar += amt;
2660 }
2661
2662 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2663 {
2664 tsk->ioac.wchar += amt;
2665 }
2666
2667 static inline void inc_syscr(struct task_struct *tsk)
2668 {
2669 tsk->ioac.syscr++;
2670 }
2671
2672 static inline void inc_syscw(struct task_struct *tsk)
2673 {
2674 tsk->ioac.syscw++;
2675 }
2676 #else
2677 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2678 {
2679 }
2680
2681 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2682 {
2683 }
2684
2685 static inline void inc_syscr(struct task_struct *tsk)
2686 {
2687 }
2688
2689 static inline void inc_syscw(struct task_struct *tsk)
2690 {
2691 }
2692 #endif
2693
2694 #ifndef TASK_SIZE_OF
2695 #define TASK_SIZE_OF(tsk) TASK_SIZE
2696 #endif
2697
2698 #ifdef CONFIG_MM_OWNER
2699 extern void mm_update_next_owner(struct mm_struct *mm);
2700 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2701 #else
2702 static inline void mm_update_next_owner(struct mm_struct *mm)
2703 {
2704 }
2705
2706 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2707 {
2708 }
2709 #endif /* CONFIG_MM_OWNER */
2710
2711 static inline unsigned long task_rlimit(const struct task_struct *tsk,
2712 unsigned int limit)
2713 {
2714 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2715 }
2716
2717 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2718 unsigned int limit)
2719 {
2720 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2721 }
2722
2723 static inline unsigned long rlimit(unsigned int limit)
2724 {
2725 return task_rlimit(current, limit);
2726 }
2727
2728 static inline unsigned long rlimit_max(unsigned int limit)
2729 {
2730 return task_rlimit_max(current, limit);
2731 }
2732
2733 #endif