new helper: restore_saved_sigmask()
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 /*
5 * cloning flags:
6 */
7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD 0x00010000 /* Same thread group? */
16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24 /* 0x02000000 was previously the unused CLONE_STOPPED (Start in stopped state)
25 and is now available for re-use. */
26 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
27 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
28 #define CLONE_NEWUSER 0x10000000 /* New user namespace */
29 #define CLONE_NEWPID 0x20000000 /* New pid namespace */
30 #define CLONE_NEWNET 0x40000000 /* New network namespace */
31 #define CLONE_IO 0x80000000 /* Clone io context */
32
33 /*
34 * Scheduling policies
35 */
36 #define SCHED_NORMAL 0
37 #define SCHED_FIFO 1
38 #define SCHED_RR 2
39 #define SCHED_BATCH 3
40 /* SCHED_ISO: reserved but not implemented yet */
41 #define SCHED_IDLE 5
42 /* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */
43 #define SCHED_RESET_ON_FORK 0x40000000
44
45 #ifdef __KERNEL__
46
47 struct sched_param {
48 int sched_priority;
49 };
50
51 #include <asm/param.h> /* for HZ */
52
53 #include <linux/capability.h>
54 #include <linux/threads.h>
55 #include <linux/kernel.h>
56 #include <linux/types.h>
57 #include <linux/timex.h>
58 #include <linux/jiffies.h>
59 #include <linux/rbtree.h>
60 #include <linux/thread_info.h>
61 #include <linux/cpumask.h>
62 #include <linux/errno.h>
63 #include <linux/nodemask.h>
64 #include <linux/mm_types.h>
65
66 #include <asm/page.h>
67 #include <asm/ptrace.h>
68 #include <asm/cputime.h>
69
70 #include <linux/smp.h>
71 #include <linux/sem.h>
72 #include <linux/signal.h>
73 #include <linux/compiler.h>
74 #include <linux/completion.h>
75 #include <linux/pid.h>
76 #include <linux/percpu.h>
77 #include <linux/topology.h>
78 #include <linux/proportions.h>
79 #include <linux/seccomp.h>
80 #include <linux/rcupdate.h>
81 #include <linux/rculist.h>
82 #include <linux/rtmutex.h>
83
84 #include <linux/time.h>
85 #include <linux/param.h>
86 #include <linux/resource.h>
87 #include <linux/timer.h>
88 #include <linux/hrtimer.h>
89 #include <linux/task_io_accounting.h>
90 #include <linux/latencytop.h>
91 #include <linux/cred.h>
92 #include <linux/llist.h>
93 #include <linux/uidgid.h>
94
95 #include <asm/processor.h>
96
97 struct exec_domain;
98 struct futex_pi_state;
99 struct robust_list_head;
100 struct bio_list;
101 struct fs_struct;
102 struct perf_event_context;
103 struct blk_plug;
104
105 /*
106 * List of flags we want to share for kernel threads,
107 * if only because they are not used by them anyway.
108 */
109 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
110
111 /*
112 * These are the constant used to fake the fixed-point load-average
113 * counting. Some notes:
114 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
115 * a load-average precision of 10 bits integer + 11 bits fractional
116 * - if you want to count load-averages more often, you need more
117 * precision, or rounding will get you. With 2-second counting freq,
118 * the EXP_n values would be 1981, 2034 and 2043 if still using only
119 * 11 bit fractions.
120 */
121 extern unsigned long avenrun[]; /* Load averages */
122 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
123
124 #define FSHIFT 11 /* nr of bits of precision */
125 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
126 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
127 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
128 #define EXP_5 2014 /* 1/exp(5sec/5min) */
129 #define EXP_15 2037 /* 1/exp(5sec/15min) */
130
131 #define CALC_LOAD(load,exp,n) \
132 load *= exp; \
133 load += n*(FIXED_1-exp); \
134 load >>= FSHIFT;
135
136 extern unsigned long total_forks;
137 extern int nr_threads;
138 DECLARE_PER_CPU(unsigned long, process_counts);
139 extern int nr_processes(void);
140 extern unsigned long nr_running(void);
141 extern unsigned long nr_uninterruptible(void);
142 extern unsigned long nr_iowait(void);
143 extern unsigned long nr_iowait_cpu(int cpu);
144 extern unsigned long this_cpu_load(void);
145
146
147 extern void calc_global_load(unsigned long ticks);
148
149 extern unsigned long get_parent_ip(unsigned long addr);
150
151 struct seq_file;
152 struct cfs_rq;
153 struct task_group;
154 #ifdef CONFIG_SCHED_DEBUG
155 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
156 extern void proc_sched_set_task(struct task_struct *p);
157 extern void
158 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
159 #else
160 static inline void
161 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
162 {
163 }
164 static inline void proc_sched_set_task(struct task_struct *p)
165 {
166 }
167 static inline void
168 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
169 {
170 }
171 #endif
172
173 /*
174 * Task state bitmask. NOTE! These bits are also
175 * encoded in fs/proc/array.c: get_task_state().
176 *
177 * We have two separate sets of flags: task->state
178 * is about runnability, while task->exit_state are
179 * about the task exiting. Confusing, but this way
180 * modifying one set can't modify the other one by
181 * mistake.
182 */
183 #define TASK_RUNNING 0
184 #define TASK_INTERRUPTIBLE 1
185 #define TASK_UNINTERRUPTIBLE 2
186 #define __TASK_STOPPED 4
187 #define __TASK_TRACED 8
188 /* in tsk->exit_state */
189 #define EXIT_ZOMBIE 16
190 #define EXIT_DEAD 32
191 /* in tsk->state again */
192 #define TASK_DEAD 64
193 #define TASK_WAKEKILL 128
194 #define TASK_WAKING 256
195 #define TASK_STATE_MAX 512
196
197 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW"
198
199 extern char ___assert_task_state[1 - 2*!!(
200 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
201
202 /* Convenience macros for the sake of set_task_state */
203 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
204 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
205 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
206
207 /* Convenience macros for the sake of wake_up */
208 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
209 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
210
211 /* get_task_state() */
212 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
213 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
214 __TASK_TRACED)
215
216 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
217 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
218 #define task_is_dead(task) ((task)->exit_state != 0)
219 #define task_is_stopped_or_traced(task) \
220 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
221 #define task_contributes_to_load(task) \
222 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
223 (task->flags & PF_FROZEN) == 0)
224
225 #define __set_task_state(tsk, state_value) \
226 do { (tsk)->state = (state_value); } while (0)
227 #define set_task_state(tsk, state_value) \
228 set_mb((tsk)->state, (state_value))
229
230 /*
231 * set_current_state() includes a barrier so that the write of current->state
232 * is correctly serialised wrt the caller's subsequent test of whether to
233 * actually sleep:
234 *
235 * set_current_state(TASK_UNINTERRUPTIBLE);
236 * if (do_i_need_to_sleep())
237 * schedule();
238 *
239 * If the caller does not need such serialisation then use __set_current_state()
240 */
241 #define __set_current_state(state_value) \
242 do { current->state = (state_value); } while (0)
243 #define set_current_state(state_value) \
244 set_mb(current->state, (state_value))
245
246 /* Task command name length */
247 #define TASK_COMM_LEN 16
248
249 #include <linux/spinlock.h>
250
251 /*
252 * This serializes "schedule()" and also protects
253 * the run-queue from deletions/modifications (but
254 * _adding_ to the beginning of the run-queue has
255 * a separate lock).
256 */
257 extern rwlock_t tasklist_lock;
258 extern spinlock_t mmlist_lock;
259
260 struct task_struct;
261
262 #ifdef CONFIG_PROVE_RCU
263 extern int lockdep_tasklist_lock_is_held(void);
264 #endif /* #ifdef CONFIG_PROVE_RCU */
265
266 extern void sched_init(void);
267 extern void sched_init_smp(void);
268 extern asmlinkage void schedule_tail(struct task_struct *prev);
269 extern void init_idle(struct task_struct *idle, int cpu);
270 extern void init_idle_bootup_task(struct task_struct *idle);
271
272 extern int runqueue_is_locked(int cpu);
273
274 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
275 extern void select_nohz_load_balancer(int stop_tick);
276 extern void set_cpu_sd_state_idle(void);
277 extern int get_nohz_timer_target(void);
278 #else
279 static inline void select_nohz_load_balancer(int stop_tick) { }
280 static inline void set_cpu_sd_state_idle(void) { }
281 #endif
282
283 /*
284 * Only dump TASK_* tasks. (0 for all tasks)
285 */
286 extern void show_state_filter(unsigned long state_filter);
287
288 static inline void show_state(void)
289 {
290 show_state_filter(0);
291 }
292
293 extern void show_regs(struct pt_regs *);
294
295 /*
296 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
297 * task), SP is the stack pointer of the first frame that should be shown in the back
298 * trace (or NULL if the entire call-chain of the task should be shown).
299 */
300 extern void show_stack(struct task_struct *task, unsigned long *sp);
301
302 void io_schedule(void);
303 long io_schedule_timeout(long timeout);
304
305 extern void cpu_init (void);
306 extern void trap_init(void);
307 extern void update_process_times(int user);
308 extern void scheduler_tick(void);
309
310 extern void sched_show_task(struct task_struct *p);
311
312 #ifdef CONFIG_LOCKUP_DETECTOR
313 extern void touch_softlockup_watchdog(void);
314 extern void touch_softlockup_watchdog_sync(void);
315 extern void touch_all_softlockup_watchdogs(void);
316 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
317 void __user *buffer,
318 size_t *lenp, loff_t *ppos);
319 extern unsigned int softlockup_panic;
320 void lockup_detector_init(void);
321 #else
322 static inline void touch_softlockup_watchdog(void)
323 {
324 }
325 static inline void touch_softlockup_watchdog_sync(void)
326 {
327 }
328 static inline void touch_all_softlockup_watchdogs(void)
329 {
330 }
331 static inline void lockup_detector_init(void)
332 {
333 }
334 #endif
335
336 #ifdef CONFIG_DETECT_HUNG_TASK
337 extern unsigned int sysctl_hung_task_panic;
338 extern unsigned long sysctl_hung_task_check_count;
339 extern unsigned long sysctl_hung_task_timeout_secs;
340 extern unsigned long sysctl_hung_task_warnings;
341 extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write,
342 void __user *buffer,
343 size_t *lenp, loff_t *ppos);
344 #else
345 /* Avoid need for ifdefs elsewhere in the code */
346 enum { sysctl_hung_task_timeout_secs = 0 };
347 #endif
348
349 /* Attach to any functions which should be ignored in wchan output. */
350 #define __sched __attribute__((__section__(".sched.text")))
351
352 /* Linker adds these: start and end of __sched functions */
353 extern char __sched_text_start[], __sched_text_end[];
354
355 /* Is this address in the __sched functions? */
356 extern int in_sched_functions(unsigned long addr);
357
358 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
359 extern signed long schedule_timeout(signed long timeout);
360 extern signed long schedule_timeout_interruptible(signed long timeout);
361 extern signed long schedule_timeout_killable(signed long timeout);
362 extern signed long schedule_timeout_uninterruptible(signed long timeout);
363 asmlinkage void schedule(void);
364 extern void schedule_preempt_disabled(void);
365 extern int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner);
366
367 struct nsproxy;
368 struct user_namespace;
369
370 /*
371 * Default maximum number of active map areas, this limits the number of vmas
372 * per mm struct. Users can overwrite this number by sysctl but there is a
373 * problem.
374 *
375 * When a program's coredump is generated as ELF format, a section is created
376 * per a vma. In ELF, the number of sections is represented in unsigned short.
377 * This means the number of sections should be smaller than 65535 at coredump.
378 * Because the kernel adds some informative sections to a image of program at
379 * generating coredump, we need some margin. The number of extra sections is
380 * 1-3 now and depends on arch. We use "5" as safe margin, here.
381 */
382 #define MAPCOUNT_ELF_CORE_MARGIN (5)
383 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
384
385 extern int sysctl_max_map_count;
386
387 #include <linux/aio.h>
388
389 #ifdef CONFIG_MMU
390 extern void arch_pick_mmap_layout(struct mm_struct *mm);
391 extern unsigned long
392 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
393 unsigned long, unsigned long);
394 extern unsigned long
395 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
396 unsigned long len, unsigned long pgoff,
397 unsigned long flags);
398 extern void arch_unmap_area(struct mm_struct *, unsigned long);
399 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
400 #else
401 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
402 #endif
403
404
405 extern void set_dumpable(struct mm_struct *mm, int value);
406 extern int get_dumpable(struct mm_struct *mm);
407
408 /* mm flags */
409 /* dumpable bits */
410 #define MMF_DUMPABLE 0 /* core dump is permitted */
411 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
412
413 #define MMF_DUMPABLE_BITS 2
414 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
415
416 /* coredump filter bits */
417 #define MMF_DUMP_ANON_PRIVATE 2
418 #define MMF_DUMP_ANON_SHARED 3
419 #define MMF_DUMP_MAPPED_PRIVATE 4
420 #define MMF_DUMP_MAPPED_SHARED 5
421 #define MMF_DUMP_ELF_HEADERS 6
422 #define MMF_DUMP_HUGETLB_PRIVATE 7
423 #define MMF_DUMP_HUGETLB_SHARED 8
424
425 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
426 #define MMF_DUMP_FILTER_BITS 7
427 #define MMF_DUMP_FILTER_MASK \
428 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
429 #define MMF_DUMP_FILTER_DEFAULT \
430 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
431 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
432
433 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
434 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
435 #else
436 # define MMF_DUMP_MASK_DEFAULT_ELF 0
437 #endif
438 /* leave room for more dump flags */
439 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
440 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
441
442 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
443
444 struct sighand_struct {
445 atomic_t count;
446 struct k_sigaction action[_NSIG];
447 spinlock_t siglock;
448 wait_queue_head_t signalfd_wqh;
449 };
450
451 struct pacct_struct {
452 int ac_flag;
453 long ac_exitcode;
454 unsigned long ac_mem;
455 cputime_t ac_utime, ac_stime;
456 unsigned long ac_minflt, ac_majflt;
457 };
458
459 struct cpu_itimer {
460 cputime_t expires;
461 cputime_t incr;
462 u32 error;
463 u32 incr_error;
464 };
465
466 /**
467 * struct task_cputime - collected CPU time counts
468 * @utime: time spent in user mode, in &cputime_t units
469 * @stime: time spent in kernel mode, in &cputime_t units
470 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
471 *
472 * This structure groups together three kinds of CPU time that are
473 * tracked for threads and thread groups. Most things considering
474 * CPU time want to group these counts together and treat all three
475 * of them in parallel.
476 */
477 struct task_cputime {
478 cputime_t utime;
479 cputime_t stime;
480 unsigned long long sum_exec_runtime;
481 };
482 /* Alternate field names when used to cache expirations. */
483 #define prof_exp stime
484 #define virt_exp utime
485 #define sched_exp sum_exec_runtime
486
487 #define INIT_CPUTIME \
488 (struct task_cputime) { \
489 .utime = 0, \
490 .stime = 0, \
491 .sum_exec_runtime = 0, \
492 }
493
494 /*
495 * Disable preemption until the scheduler is running.
496 * Reset by start_kernel()->sched_init()->init_idle().
497 *
498 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
499 * before the scheduler is active -- see should_resched().
500 */
501 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE)
502
503 /**
504 * struct thread_group_cputimer - thread group interval timer counts
505 * @cputime: thread group interval timers.
506 * @running: non-zero when there are timers running and
507 * @cputime receives updates.
508 * @lock: lock for fields in this struct.
509 *
510 * This structure contains the version of task_cputime, above, that is
511 * used for thread group CPU timer calculations.
512 */
513 struct thread_group_cputimer {
514 struct task_cputime cputime;
515 int running;
516 raw_spinlock_t lock;
517 };
518
519 #include <linux/rwsem.h>
520 struct autogroup;
521
522 /*
523 * NOTE! "signal_struct" does not have its own
524 * locking, because a shared signal_struct always
525 * implies a shared sighand_struct, so locking
526 * sighand_struct is always a proper superset of
527 * the locking of signal_struct.
528 */
529 struct signal_struct {
530 atomic_t sigcnt;
531 atomic_t live;
532 int nr_threads;
533
534 wait_queue_head_t wait_chldexit; /* for wait4() */
535
536 /* current thread group signal load-balancing target: */
537 struct task_struct *curr_target;
538
539 /* shared signal handling: */
540 struct sigpending shared_pending;
541
542 /* thread group exit support */
543 int group_exit_code;
544 /* overloaded:
545 * - notify group_exit_task when ->count is equal to notify_count
546 * - everyone except group_exit_task is stopped during signal delivery
547 * of fatal signals, group_exit_task processes the signal.
548 */
549 int notify_count;
550 struct task_struct *group_exit_task;
551
552 /* thread group stop support, overloads group_exit_code too */
553 int group_stop_count;
554 unsigned int flags; /* see SIGNAL_* flags below */
555
556 /*
557 * PR_SET_CHILD_SUBREAPER marks a process, like a service
558 * manager, to re-parent orphan (double-forking) child processes
559 * to this process instead of 'init'. The service manager is
560 * able to receive SIGCHLD signals and is able to investigate
561 * the process until it calls wait(). All children of this
562 * process will inherit a flag if they should look for a
563 * child_subreaper process at exit.
564 */
565 unsigned int is_child_subreaper:1;
566 unsigned int has_child_subreaper:1;
567
568 /* POSIX.1b Interval Timers */
569 struct list_head posix_timers;
570
571 /* ITIMER_REAL timer for the process */
572 struct hrtimer real_timer;
573 struct pid *leader_pid;
574 ktime_t it_real_incr;
575
576 /*
577 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
578 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
579 * values are defined to 0 and 1 respectively
580 */
581 struct cpu_itimer it[2];
582
583 /*
584 * Thread group totals for process CPU timers.
585 * See thread_group_cputimer(), et al, for details.
586 */
587 struct thread_group_cputimer cputimer;
588
589 /* Earliest-expiration cache. */
590 struct task_cputime cputime_expires;
591
592 struct list_head cpu_timers[3];
593
594 struct pid *tty_old_pgrp;
595
596 /* boolean value for session group leader */
597 int leader;
598
599 struct tty_struct *tty; /* NULL if no tty */
600
601 #ifdef CONFIG_SCHED_AUTOGROUP
602 struct autogroup *autogroup;
603 #endif
604 /*
605 * Cumulative resource counters for dead threads in the group,
606 * and for reaped dead child processes forked by this group.
607 * Live threads maintain their own counters and add to these
608 * in __exit_signal, except for the group leader.
609 */
610 cputime_t utime, stime, cutime, cstime;
611 cputime_t gtime;
612 cputime_t cgtime;
613 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
614 cputime_t prev_utime, prev_stime;
615 #endif
616 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
617 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
618 unsigned long inblock, oublock, cinblock, coublock;
619 unsigned long maxrss, cmaxrss;
620 struct task_io_accounting ioac;
621
622 /*
623 * Cumulative ns of schedule CPU time fo dead threads in the
624 * group, not including a zombie group leader, (This only differs
625 * from jiffies_to_ns(utime + stime) if sched_clock uses something
626 * other than jiffies.)
627 */
628 unsigned long long sum_sched_runtime;
629
630 /*
631 * We don't bother to synchronize most readers of this at all,
632 * because there is no reader checking a limit that actually needs
633 * to get both rlim_cur and rlim_max atomically, and either one
634 * alone is a single word that can safely be read normally.
635 * getrlimit/setrlimit use task_lock(current->group_leader) to
636 * protect this instead of the siglock, because they really
637 * have no need to disable irqs.
638 */
639 struct rlimit rlim[RLIM_NLIMITS];
640
641 #ifdef CONFIG_BSD_PROCESS_ACCT
642 struct pacct_struct pacct; /* per-process accounting information */
643 #endif
644 #ifdef CONFIG_TASKSTATS
645 struct taskstats *stats;
646 #endif
647 #ifdef CONFIG_AUDIT
648 unsigned audit_tty;
649 struct tty_audit_buf *tty_audit_buf;
650 #endif
651 #ifdef CONFIG_CGROUPS
652 /*
653 * group_rwsem prevents new tasks from entering the threadgroup and
654 * member tasks from exiting,a more specifically, setting of
655 * PF_EXITING. fork and exit paths are protected with this rwsem
656 * using threadgroup_change_begin/end(). Users which require
657 * threadgroup to remain stable should use threadgroup_[un]lock()
658 * which also takes care of exec path. Currently, cgroup is the
659 * only user.
660 */
661 struct rw_semaphore group_rwsem;
662 #endif
663
664 int oom_adj; /* OOM kill score adjustment (bit shift) */
665 int oom_score_adj; /* OOM kill score adjustment */
666 int oom_score_adj_min; /* OOM kill score adjustment minimum value.
667 * Only settable by CAP_SYS_RESOURCE. */
668
669 struct mutex cred_guard_mutex; /* guard against foreign influences on
670 * credential calculations
671 * (notably. ptrace) */
672 };
673
674 /* Context switch must be unlocked if interrupts are to be enabled */
675 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
676 # define __ARCH_WANT_UNLOCKED_CTXSW
677 #endif
678
679 /*
680 * Bits in flags field of signal_struct.
681 */
682 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
683 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
684 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
685 /*
686 * Pending notifications to parent.
687 */
688 #define SIGNAL_CLD_STOPPED 0x00000010
689 #define SIGNAL_CLD_CONTINUED 0x00000020
690 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
691
692 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
693
694 /* If true, all threads except ->group_exit_task have pending SIGKILL */
695 static inline int signal_group_exit(const struct signal_struct *sig)
696 {
697 return (sig->flags & SIGNAL_GROUP_EXIT) ||
698 (sig->group_exit_task != NULL);
699 }
700
701 /*
702 * Some day this will be a full-fledged user tracking system..
703 */
704 struct user_struct {
705 atomic_t __count; /* reference count */
706 atomic_t processes; /* How many processes does this user have? */
707 atomic_t files; /* How many open files does this user have? */
708 atomic_t sigpending; /* How many pending signals does this user have? */
709 #ifdef CONFIG_INOTIFY_USER
710 atomic_t inotify_watches; /* How many inotify watches does this user have? */
711 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
712 #endif
713 #ifdef CONFIG_FANOTIFY
714 atomic_t fanotify_listeners;
715 #endif
716 #ifdef CONFIG_EPOLL
717 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
718 #endif
719 #ifdef CONFIG_POSIX_MQUEUE
720 /* protected by mq_lock */
721 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
722 #endif
723 unsigned long locked_shm; /* How many pages of mlocked shm ? */
724
725 #ifdef CONFIG_KEYS
726 struct key *uid_keyring; /* UID specific keyring */
727 struct key *session_keyring; /* UID's default session keyring */
728 #endif
729
730 /* Hash table maintenance information */
731 struct hlist_node uidhash_node;
732 kuid_t uid;
733
734 #ifdef CONFIG_PERF_EVENTS
735 atomic_long_t locked_vm;
736 #endif
737 };
738
739 extern int uids_sysfs_init(void);
740
741 extern struct user_struct *find_user(kuid_t);
742
743 extern struct user_struct root_user;
744 #define INIT_USER (&root_user)
745
746
747 struct backing_dev_info;
748 struct reclaim_state;
749
750 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
751 struct sched_info {
752 /* cumulative counters */
753 unsigned long pcount; /* # of times run on this cpu */
754 unsigned long long run_delay; /* time spent waiting on a runqueue */
755
756 /* timestamps */
757 unsigned long long last_arrival,/* when we last ran on a cpu */
758 last_queued; /* when we were last queued to run */
759 };
760 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
761
762 #ifdef CONFIG_TASK_DELAY_ACCT
763 struct task_delay_info {
764 spinlock_t lock;
765 unsigned int flags; /* Private per-task flags */
766
767 /* For each stat XXX, add following, aligned appropriately
768 *
769 * struct timespec XXX_start, XXX_end;
770 * u64 XXX_delay;
771 * u32 XXX_count;
772 *
773 * Atomicity of updates to XXX_delay, XXX_count protected by
774 * single lock above (split into XXX_lock if contention is an issue).
775 */
776
777 /*
778 * XXX_count is incremented on every XXX operation, the delay
779 * associated with the operation is added to XXX_delay.
780 * XXX_delay contains the accumulated delay time in nanoseconds.
781 */
782 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
783 u64 blkio_delay; /* wait for sync block io completion */
784 u64 swapin_delay; /* wait for swapin block io completion */
785 u32 blkio_count; /* total count of the number of sync block */
786 /* io operations performed */
787 u32 swapin_count; /* total count of the number of swapin block */
788 /* io operations performed */
789
790 struct timespec freepages_start, freepages_end;
791 u64 freepages_delay; /* wait for memory reclaim */
792 u32 freepages_count; /* total count of memory reclaim */
793 };
794 #endif /* CONFIG_TASK_DELAY_ACCT */
795
796 static inline int sched_info_on(void)
797 {
798 #ifdef CONFIG_SCHEDSTATS
799 return 1;
800 #elif defined(CONFIG_TASK_DELAY_ACCT)
801 extern int delayacct_on;
802 return delayacct_on;
803 #else
804 return 0;
805 #endif
806 }
807
808 enum cpu_idle_type {
809 CPU_IDLE,
810 CPU_NOT_IDLE,
811 CPU_NEWLY_IDLE,
812 CPU_MAX_IDLE_TYPES
813 };
814
815 /*
816 * Increase resolution of nice-level calculations for 64-bit architectures.
817 * The extra resolution improves shares distribution and load balancing of
818 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
819 * hierarchies, especially on larger systems. This is not a user-visible change
820 * and does not change the user-interface for setting shares/weights.
821 *
822 * We increase resolution only if we have enough bits to allow this increased
823 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
824 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
825 * increased costs.
826 */
827 #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
828 # define SCHED_LOAD_RESOLUTION 10
829 # define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
830 # define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
831 #else
832 # define SCHED_LOAD_RESOLUTION 0
833 # define scale_load(w) (w)
834 # define scale_load_down(w) (w)
835 #endif
836
837 #define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
838 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
839
840 /*
841 * Increase resolution of cpu_power calculations
842 */
843 #define SCHED_POWER_SHIFT 10
844 #define SCHED_POWER_SCALE (1L << SCHED_POWER_SHIFT)
845
846 /*
847 * sched-domains (multiprocessor balancing) declarations:
848 */
849 #ifdef CONFIG_SMP
850 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
851 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
852 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
853 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
854 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
855 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
856 #define SD_PREFER_LOCAL 0x0040 /* Prefer to keep tasks local to this domain */
857 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */
858 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
859 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
860 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
861 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
862 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
863
864 extern int __weak arch_sd_sibiling_asym_packing(void);
865
866 struct sched_group_power {
867 atomic_t ref;
868 /*
869 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
870 * single CPU.
871 */
872 unsigned int power, power_orig;
873 unsigned long next_update;
874 /*
875 * Number of busy cpus in this group.
876 */
877 atomic_t nr_busy_cpus;
878 };
879
880 struct sched_group {
881 struct sched_group *next; /* Must be a circular list */
882 atomic_t ref;
883
884 unsigned int group_weight;
885 struct sched_group_power *sgp;
886
887 /*
888 * The CPUs this group covers.
889 *
890 * NOTE: this field is variable length. (Allocated dynamically
891 * by attaching extra space to the end of the structure,
892 * depending on how many CPUs the kernel has booted up with)
893 */
894 unsigned long cpumask[0];
895 };
896
897 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
898 {
899 return to_cpumask(sg->cpumask);
900 }
901
902 /**
903 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
904 * @group: The group whose first cpu is to be returned.
905 */
906 static inline unsigned int group_first_cpu(struct sched_group *group)
907 {
908 return cpumask_first(sched_group_cpus(group));
909 }
910
911 struct sched_domain_attr {
912 int relax_domain_level;
913 };
914
915 #define SD_ATTR_INIT (struct sched_domain_attr) { \
916 .relax_domain_level = -1, \
917 }
918
919 extern int sched_domain_level_max;
920
921 struct sched_domain {
922 /* These fields must be setup */
923 struct sched_domain *parent; /* top domain must be null terminated */
924 struct sched_domain *child; /* bottom domain must be null terminated */
925 struct sched_group *groups; /* the balancing groups of the domain */
926 unsigned long min_interval; /* Minimum balance interval ms */
927 unsigned long max_interval; /* Maximum balance interval ms */
928 unsigned int busy_factor; /* less balancing by factor if busy */
929 unsigned int imbalance_pct; /* No balance until over watermark */
930 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
931 unsigned int busy_idx;
932 unsigned int idle_idx;
933 unsigned int newidle_idx;
934 unsigned int wake_idx;
935 unsigned int forkexec_idx;
936 unsigned int smt_gain;
937 int flags; /* See SD_* */
938 int level;
939
940 /* Runtime fields. */
941 unsigned long last_balance; /* init to jiffies. units in jiffies */
942 unsigned int balance_interval; /* initialise to 1. units in ms. */
943 unsigned int nr_balance_failed; /* initialise to 0 */
944
945 u64 last_update;
946
947 #ifdef CONFIG_SCHEDSTATS
948 /* load_balance() stats */
949 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
950 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
951 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
952 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
953 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
954 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
955 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
956 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
957
958 /* Active load balancing */
959 unsigned int alb_count;
960 unsigned int alb_failed;
961 unsigned int alb_pushed;
962
963 /* SD_BALANCE_EXEC stats */
964 unsigned int sbe_count;
965 unsigned int sbe_balanced;
966 unsigned int sbe_pushed;
967
968 /* SD_BALANCE_FORK stats */
969 unsigned int sbf_count;
970 unsigned int sbf_balanced;
971 unsigned int sbf_pushed;
972
973 /* try_to_wake_up() stats */
974 unsigned int ttwu_wake_remote;
975 unsigned int ttwu_move_affine;
976 unsigned int ttwu_move_balance;
977 #endif
978 #ifdef CONFIG_SCHED_DEBUG
979 char *name;
980 #endif
981 union {
982 void *private; /* used during construction */
983 struct rcu_head rcu; /* used during destruction */
984 };
985
986 unsigned int span_weight;
987 /*
988 * Span of all CPUs in this domain.
989 *
990 * NOTE: this field is variable length. (Allocated dynamically
991 * by attaching extra space to the end of the structure,
992 * depending on how many CPUs the kernel has booted up with)
993 */
994 unsigned long span[0];
995 };
996
997 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
998 {
999 return to_cpumask(sd->span);
1000 }
1001
1002 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1003 struct sched_domain_attr *dattr_new);
1004
1005 /* Allocate an array of sched domains, for partition_sched_domains(). */
1006 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1007 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1008
1009 /* Test a flag in parent sched domain */
1010 static inline int test_sd_parent(struct sched_domain *sd, int flag)
1011 {
1012 if (sd->parent && (sd->parent->flags & flag))
1013 return 1;
1014
1015 return 0;
1016 }
1017
1018 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu);
1019 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu);
1020
1021 bool cpus_share_cache(int this_cpu, int that_cpu);
1022
1023 #else /* CONFIG_SMP */
1024
1025 struct sched_domain_attr;
1026
1027 static inline void
1028 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1029 struct sched_domain_attr *dattr_new)
1030 {
1031 }
1032
1033 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1034 {
1035 return true;
1036 }
1037
1038 #endif /* !CONFIG_SMP */
1039
1040
1041 struct io_context; /* See blkdev.h */
1042
1043
1044 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1045 extern void prefetch_stack(struct task_struct *t);
1046 #else
1047 static inline void prefetch_stack(struct task_struct *t) { }
1048 #endif
1049
1050 struct audit_context; /* See audit.c */
1051 struct mempolicy;
1052 struct pipe_inode_info;
1053 struct uts_namespace;
1054
1055 struct rq;
1056 struct sched_domain;
1057
1058 /*
1059 * wake flags
1060 */
1061 #define WF_SYNC 0x01 /* waker goes to sleep after wakup */
1062 #define WF_FORK 0x02 /* child wakeup after fork */
1063 #define WF_MIGRATED 0x04 /* internal use, task got migrated */
1064
1065 #define ENQUEUE_WAKEUP 1
1066 #define ENQUEUE_HEAD 2
1067 #ifdef CONFIG_SMP
1068 #define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
1069 #else
1070 #define ENQUEUE_WAKING 0
1071 #endif
1072
1073 #define DEQUEUE_SLEEP 1
1074
1075 struct sched_class {
1076 const struct sched_class *next;
1077
1078 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1079 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1080 void (*yield_task) (struct rq *rq);
1081 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1082
1083 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1084
1085 struct task_struct * (*pick_next_task) (struct rq *rq);
1086 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1087
1088 #ifdef CONFIG_SMP
1089 int (*select_task_rq)(struct task_struct *p, int sd_flag, int flags);
1090
1091 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1092 void (*post_schedule) (struct rq *this_rq);
1093 void (*task_waking) (struct task_struct *task);
1094 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1095
1096 void (*set_cpus_allowed)(struct task_struct *p,
1097 const struct cpumask *newmask);
1098
1099 void (*rq_online)(struct rq *rq);
1100 void (*rq_offline)(struct rq *rq);
1101 #endif
1102
1103 void (*set_curr_task) (struct rq *rq);
1104 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1105 void (*task_fork) (struct task_struct *p);
1106
1107 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1108 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1109 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1110 int oldprio);
1111
1112 unsigned int (*get_rr_interval) (struct rq *rq,
1113 struct task_struct *task);
1114
1115 #ifdef CONFIG_FAIR_GROUP_SCHED
1116 void (*task_move_group) (struct task_struct *p, int on_rq);
1117 #endif
1118 };
1119
1120 struct load_weight {
1121 unsigned long weight, inv_weight;
1122 };
1123
1124 #ifdef CONFIG_SCHEDSTATS
1125 struct sched_statistics {
1126 u64 wait_start;
1127 u64 wait_max;
1128 u64 wait_count;
1129 u64 wait_sum;
1130 u64 iowait_count;
1131 u64 iowait_sum;
1132
1133 u64 sleep_start;
1134 u64 sleep_max;
1135 s64 sum_sleep_runtime;
1136
1137 u64 block_start;
1138 u64 block_max;
1139 u64 exec_max;
1140 u64 slice_max;
1141
1142 u64 nr_migrations_cold;
1143 u64 nr_failed_migrations_affine;
1144 u64 nr_failed_migrations_running;
1145 u64 nr_failed_migrations_hot;
1146 u64 nr_forced_migrations;
1147
1148 u64 nr_wakeups;
1149 u64 nr_wakeups_sync;
1150 u64 nr_wakeups_migrate;
1151 u64 nr_wakeups_local;
1152 u64 nr_wakeups_remote;
1153 u64 nr_wakeups_affine;
1154 u64 nr_wakeups_affine_attempts;
1155 u64 nr_wakeups_passive;
1156 u64 nr_wakeups_idle;
1157 };
1158 #endif
1159
1160 struct sched_entity {
1161 struct load_weight load; /* for load-balancing */
1162 struct rb_node run_node;
1163 struct list_head group_node;
1164 unsigned int on_rq;
1165
1166 u64 exec_start;
1167 u64 sum_exec_runtime;
1168 u64 vruntime;
1169 u64 prev_sum_exec_runtime;
1170
1171 u64 nr_migrations;
1172
1173 #ifdef CONFIG_SCHEDSTATS
1174 struct sched_statistics statistics;
1175 #endif
1176
1177 #ifdef CONFIG_FAIR_GROUP_SCHED
1178 struct sched_entity *parent;
1179 /* rq on which this entity is (to be) queued: */
1180 struct cfs_rq *cfs_rq;
1181 /* rq "owned" by this entity/group: */
1182 struct cfs_rq *my_q;
1183 #endif
1184 };
1185
1186 struct sched_rt_entity {
1187 struct list_head run_list;
1188 unsigned long timeout;
1189 unsigned int time_slice;
1190 int nr_cpus_allowed;
1191
1192 struct sched_rt_entity *back;
1193 #ifdef CONFIG_RT_GROUP_SCHED
1194 struct sched_rt_entity *parent;
1195 /* rq on which this entity is (to be) queued: */
1196 struct rt_rq *rt_rq;
1197 /* rq "owned" by this entity/group: */
1198 struct rt_rq *my_q;
1199 #endif
1200 };
1201
1202 /*
1203 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1204 * Timeslices get refilled after they expire.
1205 */
1206 #define RR_TIMESLICE (100 * HZ / 1000)
1207
1208 struct rcu_node;
1209
1210 enum perf_event_task_context {
1211 perf_invalid_context = -1,
1212 perf_hw_context = 0,
1213 perf_sw_context,
1214 perf_nr_task_contexts,
1215 };
1216
1217 struct task_struct {
1218 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1219 void *stack;
1220 atomic_t usage;
1221 unsigned int flags; /* per process flags, defined below */
1222 unsigned int ptrace;
1223
1224 #ifdef CONFIG_SMP
1225 struct llist_node wake_entry;
1226 int on_cpu;
1227 #endif
1228 int on_rq;
1229
1230 int prio, static_prio, normal_prio;
1231 unsigned int rt_priority;
1232 const struct sched_class *sched_class;
1233 struct sched_entity se;
1234 struct sched_rt_entity rt;
1235
1236 #ifdef CONFIG_PREEMPT_NOTIFIERS
1237 /* list of struct preempt_notifier: */
1238 struct hlist_head preempt_notifiers;
1239 #endif
1240
1241 /*
1242 * fpu_counter contains the number of consecutive context switches
1243 * that the FPU is used. If this is over a threshold, the lazy fpu
1244 * saving becomes unlazy to save the trap. This is an unsigned char
1245 * so that after 256 times the counter wraps and the behavior turns
1246 * lazy again; this to deal with bursty apps that only use FPU for
1247 * a short time
1248 */
1249 unsigned char fpu_counter;
1250 #ifdef CONFIG_BLK_DEV_IO_TRACE
1251 unsigned int btrace_seq;
1252 #endif
1253
1254 unsigned int policy;
1255 cpumask_t cpus_allowed;
1256
1257 #ifdef CONFIG_PREEMPT_RCU
1258 int rcu_read_lock_nesting;
1259 char rcu_read_unlock_special;
1260 struct list_head rcu_node_entry;
1261 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1262 #ifdef CONFIG_TREE_PREEMPT_RCU
1263 struct rcu_node *rcu_blocked_node;
1264 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1265 #ifdef CONFIG_RCU_BOOST
1266 struct rt_mutex *rcu_boost_mutex;
1267 #endif /* #ifdef CONFIG_RCU_BOOST */
1268
1269 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1270 struct sched_info sched_info;
1271 #endif
1272
1273 struct list_head tasks;
1274 #ifdef CONFIG_SMP
1275 struct plist_node pushable_tasks;
1276 #endif
1277
1278 struct mm_struct *mm, *active_mm;
1279 #ifdef CONFIG_COMPAT_BRK
1280 unsigned brk_randomized:1;
1281 #endif
1282 #if defined(SPLIT_RSS_COUNTING)
1283 struct task_rss_stat rss_stat;
1284 #endif
1285 /* task state */
1286 int exit_state;
1287 int exit_code, exit_signal;
1288 int pdeath_signal; /* The signal sent when the parent dies */
1289 unsigned int jobctl; /* JOBCTL_*, siglock protected */
1290 /* ??? */
1291 unsigned int personality;
1292 unsigned did_exec:1;
1293 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1294 * execve */
1295 unsigned in_iowait:1;
1296
1297 /* task may not gain privileges */
1298 unsigned no_new_privs:1;
1299
1300 /* Revert to default priority/policy when forking */
1301 unsigned sched_reset_on_fork:1;
1302 unsigned sched_contributes_to_load:1;
1303
1304 pid_t pid;
1305 pid_t tgid;
1306
1307 #ifdef CONFIG_CC_STACKPROTECTOR
1308 /* Canary value for the -fstack-protector gcc feature */
1309 unsigned long stack_canary;
1310 #endif
1311 /*
1312 * pointers to (original) parent process, youngest child, younger sibling,
1313 * older sibling, respectively. (p->father can be replaced with
1314 * p->real_parent->pid)
1315 */
1316 struct task_struct __rcu *real_parent; /* real parent process */
1317 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1318 /*
1319 * children/sibling forms the list of my natural children
1320 */
1321 struct list_head children; /* list of my children */
1322 struct list_head sibling; /* linkage in my parent's children list */
1323 struct task_struct *group_leader; /* threadgroup leader */
1324
1325 /*
1326 * ptraced is the list of tasks this task is using ptrace on.
1327 * This includes both natural children and PTRACE_ATTACH targets.
1328 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1329 */
1330 struct list_head ptraced;
1331 struct list_head ptrace_entry;
1332
1333 /* PID/PID hash table linkage. */
1334 struct pid_link pids[PIDTYPE_MAX];
1335 struct list_head thread_group;
1336
1337 struct completion *vfork_done; /* for vfork() */
1338 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1339 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1340
1341 cputime_t utime, stime, utimescaled, stimescaled;
1342 cputime_t gtime;
1343 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1344 cputime_t prev_utime, prev_stime;
1345 #endif
1346 unsigned long nvcsw, nivcsw; /* context switch counts */
1347 struct timespec start_time; /* monotonic time */
1348 struct timespec real_start_time; /* boot based time */
1349 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1350 unsigned long min_flt, maj_flt;
1351
1352 struct task_cputime cputime_expires;
1353 struct list_head cpu_timers[3];
1354
1355 /* process credentials */
1356 const struct cred __rcu *real_cred; /* objective and real subjective task
1357 * credentials (COW) */
1358 const struct cred __rcu *cred; /* effective (overridable) subjective task
1359 * credentials (COW) */
1360 char comm[TASK_COMM_LEN]; /* executable name excluding path
1361 - access with [gs]et_task_comm (which lock
1362 it with task_lock())
1363 - initialized normally by setup_new_exec */
1364 /* file system info */
1365 int link_count, total_link_count;
1366 #ifdef CONFIG_SYSVIPC
1367 /* ipc stuff */
1368 struct sysv_sem sysvsem;
1369 #endif
1370 #ifdef CONFIG_DETECT_HUNG_TASK
1371 /* hung task detection */
1372 unsigned long last_switch_count;
1373 #endif
1374 /* CPU-specific state of this task */
1375 struct thread_struct thread;
1376 /* filesystem information */
1377 struct fs_struct *fs;
1378 /* open file information */
1379 struct files_struct *files;
1380 /* namespaces */
1381 struct nsproxy *nsproxy;
1382 /* signal handlers */
1383 struct signal_struct *signal;
1384 struct sighand_struct *sighand;
1385
1386 sigset_t blocked, real_blocked;
1387 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1388 struct sigpending pending;
1389
1390 unsigned long sas_ss_sp;
1391 size_t sas_ss_size;
1392 int (*notifier)(void *priv);
1393 void *notifier_data;
1394 sigset_t *notifier_mask;
1395 struct hlist_head task_works;
1396
1397 struct audit_context *audit_context;
1398 #ifdef CONFIG_AUDITSYSCALL
1399 uid_t loginuid;
1400 unsigned int sessionid;
1401 #endif
1402 struct seccomp seccomp;
1403
1404 /* Thread group tracking */
1405 u32 parent_exec_id;
1406 u32 self_exec_id;
1407 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1408 * mempolicy */
1409 spinlock_t alloc_lock;
1410
1411 /* Protection of the PI data structures: */
1412 raw_spinlock_t pi_lock;
1413
1414 #ifdef CONFIG_RT_MUTEXES
1415 /* PI waiters blocked on a rt_mutex held by this task */
1416 struct plist_head pi_waiters;
1417 /* Deadlock detection and priority inheritance handling */
1418 struct rt_mutex_waiter *pi_blocked_on;
1419 #endif
1420
1421 #ifdef CONFIG_DEBUG_MUTEXES
1422 /* mutex deadlock detection */
1423 struct mutex_waiter *blocked_on;
1424 #endif
1425 #ifdef CONFIG_TRACE_IRQFLAGS
1426 unsigned int irq_events;
1427 unsigned long hardirq_enable_ip;
1428 unsigned long hardirq_disable_ip;
1429 unsigned int hardirq_enable_event;
1430 unsigned int hardirq_disable_event;
1431 int hardirqs_enabled;
1432 int hardirq_context;
1433 unsigned long softirq_disable_ip;
1434 unsigned long softirq_enable_ip;
1435 unsigned int softirq_disable_event;
1436 unsigned int softirq_enable_event;
1437 int softirqs_enabled;
1438 int softirq_context;
1439 #endif
1440 #ifdef CONFIG_LOCKDEP
1441 # define MAX_LOCK_DEPTH 48UL
1442 u64 curr_chain_key;
1443 int lockdep_depth;
1444 unsigned int lockdep_recursion;
1445 struct held_lock held_locks[MAX_LOCK_DEPTH];
1446 gfp_t lockdep_reclaim_gfp;
1447 #endif
1448
1449 /* journalling filesystem info */
1450 void *journal_info;
1451
1452 /* stacked block device info */
1453 struct bio_list *bio_list;
1454
1455 #ifdef CONFIG_BLOCK
1456 /* stack plugging */
1457 struct blk_plug *plug;
1458 #endif
1459
1460 /* VM state */
1461 struct reclaim_state *reclaim_state;
1462
1463 struct backing_dev_info *backing_dev_info;
1464
1465 struct io_context *io_context;
1466
1467 unsigned long ptrace_message;
1468 siginfo_t *last_siginfo; /* For ptrace use. */
1469 struct task_io_accounting ioac;
1470 #if defined(CONFIG_TASK_XACCT)
1471 u64 acct_rss_mem1; /* accumulated rss usage */
1472 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1473 cputime_t acct_timexpd; /* stime + utime since last update */
1474 #endif
1475 #ifdef CONFIG_CPUSETS
1476 nodemask_t mems_allowed; /* Protected by alloc_lock */
1477 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
1478 int cpuset_mem_spread_rotor;
1479 int cpuset_slab_spread_rotor;
1480 #endif
1481 #ifdef CONFIG_CGROUPS
1482 /* Control Group info protected by css_set_lock */
1483 struct css_set __rcu *cgroups;
1484 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1485 struct list_head cg_list;
1486 #endif
1487 #ifdef CONFIG_FUTEX
1488 struct robust_list_head __user *robust_list;
1489 #ifdef CONFIG_COMPAT
1490 struct compat_robust_list_head __user *compat_robust_list;
1491 #endif
1492 struct list_head pi_state_list;
1493 struct futex_pi_state *pi_state_cache;
1494 #endif
1495 #ifdef CONFIG_PERF_EVENTS
1496 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1497 struct mutex perf_event_mutex;
1498 struct list_head perf_event_list;
1499 #endif
1500 #ifdef CONFIG_NUMA
1501 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1502 short il_next;
1503 short pref_node_fork;
1504 #endif
1505 struct rcu_head rcu;
1506
1507 /*
1508 * cache last used pipe for splice
1509 */
1510 struct pipe_inode_info *splice_pipe;
1511 #ifdef CONFIG_TASK_DELAY_ACCT
1512 struct task_delay_info *delays;
1513 #endif
1514 #ifdef CONFIG_FAULT_INJECTION
1515 int make_it_fail;
1516 #endif
1517 /*
1518 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1519 * balance_dirty_pages() for some dirty throttling pause
1520 */
1521 int nr_dirtied;
1522 int nr_dirtied_pause;
1523 unsigned long dirty_paused_when; /* start of a write-and-pause period */
1524
1525 #ifdef CONFIG_LATENCYTOP
1526 int latency_record_count;
1527 struct latency_record latency_record[LT_SAVECOUNT];
1528 #endif
1529 /*
1530 * time slack values; these are used to round up poll() and
1531 * select() etc timeout values. These are in nanoseconds.
1532 */
1533 unsigned long timer_slack_ns;
1534 unsigned long default_timer_slack_ns;
1535
1536 struct list_head *scm_work_list;
1537 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1538 /* Index of current stored address in ret_stack */
1539 int curr_ret_stack;
1540 /* Stack of return addresses for return function tracing */
1541 struct ftrace_ret_stack *ret_stack;
1542 /* time stamp for last schedule */
1543 unsigned long long ftrace_timestamp;
1544 /*
1545 * Number of functions that haven't been traced
1546 * because of depth overrun.
1547 */
1548 atomic_t trace_overrun;
1549 /* Pause for the tracing */
1550 atomic_t tracing_graph_pause;
1551 #endif
1552 #ifdef CONFIG_TRACING
1553 /* state flags for use by tracers */
1554 unsigned long trace;
1555 /* bitmask and counter of trace recursion */
1556 unsigned long trace_recursion;
1557 #endif /* CONFIG_TRACING */
1558 #ifdef CONFIG_CGROUP_MEM_RES_CTLR /* memcg uses this to do batch job */
1559 struct memcg_batch_info {
1560 int do_batch; /* incremented when batch uncharge started */
1561 struct mem_cgroup *memcg; /* target memcg of uncharge */
1562 unsigned long nr_pages; /* uncharged usage */
1563 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
1564 } memcg_batch;
1565 #endif
1566 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1567 atomic_t ptrace_bp_refcnt;
1568 #endif
1569 #ifdef CONFIG_UPROBES
1570 struct uprobe_task *utask;
1571 int uprobe_srcu_id;
1572 #endif
1573 };
1574
1575 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1576 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1577
1578 /*
1579 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1580 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1581 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1582 * values are inverted: lower p->prio value means higher priority.
1583 *
1584 * The MAX_USER_RT_PRIO value allows the actual maximum
1585 * RT priority to be separate from the value exported to
1586 * user-space. This allows kernel threads to set their
1587 * priority to a value higher than any user task. Note:
1588 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1589 */
1590
1591 #define MAX_USER_RT_PRIO 100
1592 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1593
1594 #define MAX_PRIO (MAX_RT_PRIO + 40)
1595 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1596
1597 static inline int rt_prio(int prio)
1598 {
1599 if (unlikely(prio < MAX_RT_PRIO))
1600 return 1;
1601 return 0;
1602 }
1603
1604 static inline int rt_task(struct task_struct *p)
1605 {
1606 return rt_prio(p->prio);
1607 }
1608
1609 static inline struct pid *task_pid(struct task_struct *task)
1610 {
1611 return task->pids[PIDTYPE_PID].pid;
1612 }
1613
1614 static inline struct pid *task_tgid(struct task_struct *task)
1615 {
1616 return task->group_leader->pids[PIDTYPE_PID].pid;
1617 }
1618
1619 /*
1620 * Without tasklist or rcu lock it is not safe to dereference
1621 * the result of task_pgrp/task_session even if task == current,
1622 * we can race with another thread doing sys_setsid/sys_setpgid.
1623 */
1624 static inline struct pid *task_pgrp(struct task_struct *task)
1625 {
1626 return task->group_leader->pids[PIDTYPE_PGID].pid;
1627 }
1628
1629 static inline struct pid *task_session(struct task_struct *task)
1630 {
1631 return task->group_leader->pids[PIDTYPE_SID].pid;
1632 }
1633
1634 struct pid_namespace;
1635
1636 /*
1637 * the helpers to get the task's different pids as they are seen
1638 * from various namespaces
1639 *
1640 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1641 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1642 * current.
1643 * task_xid_nr_ns() : id seen from the ns specified;
1644 *
1645 * set_task_vxid() : assigns a virtual id to a task;
1646 *
1647 * see also pid_nr() etc in include/linux/pid.h
1648 */
1649 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1650 struct pid_namespace *ns);
1651
1652 static inline pid_t task_pid_nr(struct task_struct *tsk)
1653 {
1654 return tsk->pid;
1655 }
1656
1657 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1658 struct pid_namespace *ns)
1659 {
1660 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1661 }
1662
1663 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1664 {
1665 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1666 }
1667
1668
1669 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1670 {
1671 return tsk->tgid;
1672 }
1673
1674 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1675
1676 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1677 {
1678 return pid_vnr(task_tgid(tsk));
1679 }
1680
1681
1682 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1683 struct pid_namespace *ns)
1684 {
1685 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1686 }
1687
1688 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1689 {
1690 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1691 }
1692
1693
1694 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1695 struct pid_namespace *ns)
1696 {
1697 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1698 }
1699
1700 static inline pid_t task_session_vnr(struct task_struct *tsk)
1701 {
1702 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1703 }
1704
1705 /* obsolete, do not use */
1706 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1707 {
1708 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1709 }
1710
1711 /**
1712 * pid_alive - check that a task structure is not stale
1713 * @p: Task structure to be checked.
1714 *
1715 * Test if a process is not yet dead (at most zombie state)
1716 * If pid_alive fails, then pointers within the task structure
1717 * can be stale and must not be dereferenced.
1718 */
1719 static inline int pid_alive(struct task_struct *p)
1720 {
1721 return p->pids[PIDTYPE_PID].pid != NULL;
1722 }
1723
1724 /**
1725 * is_global_init - check if a task structure is init
1726 * @tsk: Task structure to be checked.
1727 *
1728 * Check if a task structure is the first user space task the kernel created.
1729 */
1730 static inline int is_global_init(struct task_struct *tsk)
1731 {
1732 return tsk->pid == 1;
1733 }
1734
1735 /*
1736 * is_container_init:
1737 * check whether in the task is init in its own pid namespace.
1738 */
1739 extern int is_container_init(struct task_struct *tsk);
1740
1741 extern struct pid *cad_pid;
1742
1743 extern void free_task(struct task_struct *tsk);
1744 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1745
1746 extern void __put_task_struct(struct task_struct *t);
1747
1748 static inline void put_task_struct(struct task_struct *t)
1749 {
1750 if (atomic_dec_and_test(&t->usage))
1751 __put_task_struct(t);
1752 }
1753
1754 extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1755 extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1756
1757 /*
1758 * Per process flags
1759 */
1760 #define PF_EXITING 0x00000004 /* getting shut down */
1761 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1762 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1763 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1764 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1765 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1766 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1767 #define PF_DUMPCORE 0x00000200 /* dumped core */
1768 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1769 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1770 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1771 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1772 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1773 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1774 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1775 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1776 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1777 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1778 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1779 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1780 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1781 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1782 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */
1783 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1784 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1785 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1786 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1787
1788 /*
1789 * Only the _current_ task can read/write to tsk->flags, but other
1790 * tasks can access tsk->flags in readonly mode for example
1791 * with tsk_used_math (like during threaded core dumping).
1792 * There is however an exception to this rule during ptrace
1793 * or during fork: the ptracer task is allowed to write to the
1794 * child->flags of its traced child (same goes for fork, the parent
1795 * can write to the child->flags), because we're guaranteed the
1796 * child is not running and in turn not changing child->flags
1797 * at the same time the parent does it.
1798 */
1799 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1800 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1801 #define clear_used_math() clear_stopped_child_used_math(current)
1802 #define set_used_math() set_stopped_child_used_math(current)
1803 #define conditional_stopped_child_used_math(condition, child) \
1804 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1805 #define conditional_used_math(condition) \
1806 conditional_stopped_child_used_math(condition, current)
1807 #define copy_to_stopped_child_used_math(child) \
1808 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1809 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1810 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1811 #define used_math() tsk_used_math(current)
1812
1813 /*
1814 * task->jobctl flags
1815 */
1816 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
1817
1818 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
1819 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
1820 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
1821 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
1822 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
1823 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
1824 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
1825
1826 #define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT)
1827 #define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT)
1828 #define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT)
1829 #define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT)
1830 #define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT)
1831 #define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT)
1832 #define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT)
1833
1834 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
1835 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
1836
1837 extern bool task_set_jobctl_pending(struct task_struct *task,
1838 unsigned int mask);
1839 extern void task_clear_jobctl_trapping(struct task_struct *task);
1840 extern void task_clear_jobctl_pending(struct task_struct *task,
1841 unsigned int mask);
1842
1843 #ifdef CONFIG_PREEMPT_RCU
1844
1845 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1846 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1847
1848 static inline void rcu_copy_process(struct task_struct *p)
1849 {
1850 p->rcu_read_lock_nesting = 0;
1851 p->rcu_read_unlock_special = 0;
1852 #ifdef CONFIG_TREE_PREEMPT_RCU
1853 p->rcu_blocked_node = NULL;
1854 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1855 #ifdef CONFIG_RCU_BOOST
1856 p->rcu_boost_mutex = NULL;
1857 #endif /* #ifdef CONFIG_RCU_BOOST */
1858 INIT_LIST_HEAD(&p->rcu_node_entry);
1859 }
1860
1861 static inline void rcu_switch_from(struct task_struct *prev)
1862 {
1863 if (prev->rcu_read_lock_nesting != 0)
1864 rcu_preempt_note_context_switch();
1865 }
1866
1867 #else
1868
1869 static inline void rcu_copy_process(struct task_struct *p)
1870 {
1871 }
1872
1873 static inline void rcu_switch_from(struct task_struct *prev)
1874 {
1875 }
1876
1877 #endif
1878
1879 #ifdef CONFIG_SMP
1880 extern void do_set_cpus_allowed(struct task_struct *p,
1881 const struct cpumask *new_mask);
1882
1883 extern int set_cpus_allowed_ptr(struct task_struct *p,
1884 const struct cpumask *new_mask);
1885 #else
1886 static inline void do_set_cpus_allowed(struct task_struct *p,
1887 const struct cpumask *new_mask)
1888 {
1889 }
1890 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1891 const struct cpumask *new_mask)
1892 {
1893 if (!cpumask_test_cpu(0, new_mask))
1894 return -EINVAL;
1895 return 0;
1896 }
1897 #endif
1898
1899 #ifndef CONFIG_CPUMASK_OFFSTACK
1900 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1901 {
1902 return set_cpus_allowed_ptr(p, &new_mask);
1903 }
1904 #endif
1905
1906 /*
1907 * Do not use outside of architecture code which knows its limitations.
1908 *
1909 * sched_clock() has no promise of monotonicity or bounded drift between
1910 * CPUs, use (which you should not) requires disabling IRQs.
1911 *
1912 * Please use one of the three interfaces below.
1913 */
1914 extern unsigned long long notrace sched_clock(void);
1915 /*
1916 * See the comment in kernel/sched/clock.c
1917 */
1918 extern u64 cpu_clock(int cpu);
1919 extern u64 local_clock(void);
1920 extern u64 sched_clock_cpu(int cpu);
1921
1922
1923 extern void sched_clock_init(void);
1924
1925 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1926 static inline void sched_clock_tick(void)
1927 {
1928 }
1929
1930 static inline void sched_clock_idle_sleep_event(void)
1931 {
1932 }
1933
1934 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1935 {
1936 }
1937 #else
1938 /*
1939 * Architectures can set this to 1 if they have specified
1940 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1941 * but then during bootup it turns out that sched_clock()
1942 * is reliable after all:
1943 */
1944 extern int sched_clock_stable;
1945
1946 extern void sched_clock_tick(void);
1947 extern void sched_clock_idle_sleep_event(void);
1948 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1949 #endif
1950
1951 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1952 /*
1953 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
1954 * The reason for this explicit opt-in is not to have perf penalty with
1955 * slow sched_clocks.
1956 */
1957 extern void enable_sched_clock_irqtime(void);
1958 extern void disable_sched_clock_irqtime(void);
1959 #else
1960 static inline void enable_sched_clock_irqtime(void) {}
1961 static inline void disable_sched_clock_irqtime(void) {}
1962 #endif
1963
1964 extern unsigned long long
1965 task_sched_runtime(struct task_struct *task);
1966
1967 /* sched_exec is called by processes performing an exec */
1968 #ifdef CONFIG_SMP
1969 extern void sched_exec(void);
1970 #else
1971 #define sched_exec() {}
1972 #endif
1973
1974 extern void sched_clock_idle_sleep_event(void);
1975 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1976
1977 #ifdef CONFIG_HOTPLUG_CPU
1978 extern void idle_task_exit(void);
1979 #else
1980 static inline void idle_task_exit(void) {}
1981 #endif
1982
1983 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1984 extern void wake_up_idle_cpu(int cpu);
1985 #else
1986 static inline void wake_up_idle_cpu(int cpu) { }
1987 #endif
1988
1989 extern unsigned int sysctl_sched_latency;
1990 extern unsigned int sysctl_sched_min_granularity;
1991 extern unsigned int sysctl_sched_wakeup_granularity;
1992 extern unsigned int sysctl_sched_child_runs_first;
1993
1994 enum sched_tunable_scaling {
1995 SCHED_TUNABLESCALING_NONE,
1996 SCHED_TUNABLESCALING_LOG,
1997 SCHED_TUNABLESCALING_LINEAR,
1998 SCHED_TUNABLESCALING_END,
1999 };
2000 extern enum sched_tunable_scaling sysctl_sched_tunable_scaling;
2001
2002 #ifdef CONFIG_SCHED_DEBUG
2003 extern unsigned int sysctl_sched_migration_cost;
2004 extern unsigned int sysctl_sched_nr_migrate;
2005 extern unsigned int sysctl_sched_time_avg;
2006 extern unsigned int sysctl_timer_migration;
2007 extern unsigned int sysctl_sched_shares_window;
2008
2009 int sched_proc_update_handler(struct ctl_table *table, int write,
2010 void __user *buffer, size_t *length,
2011 loff_t *ppos);
2012 #endif
2013 #ifdef CONFIG_SCHED_DEBUG
2014 static inline unsigned int get_sysctl_timer_migration(void)
2015 {
2016 return sysctl_timer_migration;
2017 }
2018 #else
2019 static inline unsigned int get_sysctl_timer_migration(void)
2020 {
2021 return 1;
2022 }
2023 #endif
2024 extern unsigned int sysctl_sched_rt_period;
2025 extern int sysctl_sched_rt_runtime;
2026
2027 int sched_rt_handler(struct ctl_table *table, int write,
2028 void __user *buffer, size_t *lenp,
2029 loff_t *ppos);
2030
2031 #ifdef CONFIG_SCHED_AUTOGROUP
2032 extern unsigned int sysctl_sched_autogroup_enabled;
2033
2034 extern void sched_autogroup_create_attach(struct task_struct *p);
2035 extern void sched_autogroup_detach(struct task_struct *p);
2036 extern void sched_autogroup_fork(struct signal_struct *sig);
2037 extern void sched_autogroup_exit(struct signal_struct *sig);
2038 #ifdef CONFIG_PROC_FS
2039 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2040 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
2041 #endif
2042 #else
2043 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2044 static inline void sched_autogroup_detach(struct task_struct *p) { }
2045 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2046 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2047 #endif
2048
2049 #ifdef CONFIG_CFS_BANDWIDTH
2050 extern unsigned int sysctl_sched_cfs_bandwidth_slice;
2051 #endif
2052
2053 #ifdef CONFIG_RT_MUTEXES
2054 extern int rt_mutex_getprio(struct task_struct *p);
2055 extern void rt_mutex_setprio(struct task_struct *p, int prio);
2056 extern void rt_mutex_adjust_pi(struct task_struct *p);
2057 static inline bool tsk_is_pi_blocked(struct task_struct *tsk)
2058 {
2059 return tsk->pi_blocked_on != NULL;
2060 }
2061 #else
2062 static inline int rt_mutex_getprio(struct task_struct *p)
2063 {
2064 return p->normal_prio;
2065 }
2066 # define rt_mutex_adjust_pi(p) do { } while (0)
2067 static inline bool tsk_is_pi_blocked(struct task_struct *tsk)
2068 {
2069 return false;
2070 }
2071 #endif
2072
2073 extern bool yield_to(struct task_struct *p, bool preempt);
2074 extern void set_user_nice(struct task_struct *p, long nice);
2075 extern int task_prio(const struct task_struct *p);
2076 extern int task_nice(const struct task_struct *p);
2077 extern int can_nice(const struct task_struct *p, const int nice);
2078 extern int task_curr(const struct task_struct *p);
2079 extern int idle_cpu(int cpu);
2080 extern int sched_setscheduler(struct task_struct *, int,
2081 const struct sched_param *);
2082 extern int sched_setscheduler_nocheck(struct task_struct *, int,
2083 const struct sched_param *);
2084 extern struct task_struct *idle_task(int cpu);
2085 /**
2086 * is_idle_task - is the specified task an idle task?
2087 * @p: the task in question.
2088 */
2089 static inline bool is_idle_task(const struct task_struct *p)
2090 {
2091 return p->pid == 0;
2092 }
2093 extern struct task_struct *curr_task(int cpu);
2094 extern void set_curr_task(int cpu, struct task_struct *p);
2095
2096 void yield(void);
2097
2098 /*
2099 * The default (Linux) execution domain.
2100 */
2101 extern struct exec_domain default_exec_domain;
2102
2103 union thread_union {
2104 struct thread_info thread_info;
2105 unsigned long stack[THREAD_SIZE/sizeof(long)];
2106 };
2107
2108 #ifndef __HAVE_ARCH_KSTACK_END
2109 static inline int kstack_end(void *addr)
2110 {
2111 /* Reliable end of stack detection:
2112 * Some APM bios versions misalign the stack
2113 */
2114 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2115 }
2116 #endif
2117
2118 extern union thread_union init_thread_union;
2119 extern struct task_struct init_task;
2120
2121 extern struct mm_struct init_mm;
2122
2123 extern struct pid_namespace init_pid_ns;
2124
2125 /*
2126 * find a task by one of its numerical ids
2127 *
2128 * find_task_by_pid_ns():
2129 * finds a task by its pid in the specified namespace
2130 * find_task_by_vpid():
2131 * finds a task by its virtual pid
2132 *
2133 * see also find_vpid() etc in include/linux/pid.h
2134 */
2135
2136 extern struct task_struct *find_task_by_vpid(pid_t nr);
2137 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2138 struct pid_namespace *ns);
2139
2140 extern void __set_special_pids(struct pid *pid);
2141
2142 /* per-UID process charging. */
2143 extern struct user_struct * alloc_uid(kuid_t);
2144 static inline struct user_struct *get_uid(struct user_struct *u)
2145 {
2146 atomic_inc(&u->__count);
2147 return u;
2148 }
2149 extern void free_uid(struct user_struct *);
2150
2151 #include <asm/current.h>
2152
2153 extern void xtime_update(unsigned long ticks);
2154
2155 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2156 extern int wake_up_process(struct task_struct *tsk);
2157 extern void wake_up_new_task(struct task_struct *tsk);
2158 #ifdef CONFIG_SMP
2159 extern void kick_process(struct task_struct *tsk);
2160 #else
2161 static inline void kick_process(struct task_struct *tsk) { }
2162 #endif
2163 extern void sched_fork(struct task_struct *p);
2164 extern void sched_dead(struct task_struct *p);
2165
2166 extern void proc_caches_init(void);
2167 extern void flush_signals(struct task_struct *);
2168 extern void __flush_signals(struct task_struct *);
2169 extern void ignore_signals(struct task_struct *);
2170 extern void flush_signal_handlers(struct task_struct *, int force_default);
2171 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2172
2173 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2174 {
2175 unsigned long flags;
2176 int ret;
2177
2178 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2179 ret = dequeue_signal(tsk, mask, info);
2180 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2181
2182 return ret;
2183 }
2184
2185 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2186 sigset_t *mask);
2187 extern void unblock_all_signals(void);
2188 extern void release_task(struct task_struct * p);
2189 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2190 extern int force_sigsegv(int, struct task_struct *);
2191 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2192 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2193 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2194 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2195 const struct cred *, u32);
2196 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2197 extern int kill_pid(struct pid *pid, int sig, int priv);
2198 extern int kill_proc_info(int, struct siginfo *, pid_t);
2199 extern __must_check bool do_notify_parent(struct task_struct *, int);
2200 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2201 extern void force_sig(int, struct task_struct *);
2202 extern int send_sig(int, struct task_struct *, int);
2203 extern int zap_other_threads(struct task_struct *p);
2204 extern struct sigqueue *sigqueue_alloc(void);
2205 extern void sigqueue_free(struct sigqueue *);
2206 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2207 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2208 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
2209
2210 static inline void restore_saved_sigmask(void)
2211 {
2212 if (test_and_clear_restore_sigmask())
2213 set_current_blocked(&current->saved_sigmask);
2214 }
2215
2216 static inline int kill_cad_pid(int sig, int priv)
2217 {
2218 return kill_pid(cad_pid, sig, priv);
2219 }
2220
2221 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2222 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2223 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2224 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2225
2226 /*
2227 * True if we are on the alternate signal stack.
2228 */
2229 static inline int on_sig_stack(unsigned long sp)
2230 {
2231 #ifdef CONFIG_STACK_GROWSUP
2232 return sp >= current->sas_ss_sp &&
2233 sp - current->sas_ss_sp < current->sas_ss_size;
2234 #else
2235 return sp > current->sas_ss_sp &&
2236 sp - current->sas_ss_sp <= current->sas_ss_size;
2237 #endif
2238 }
2239
2240 static inline int sas_ss_flags(unsigned long sp)
2241 {
2242 return (current->sas_ss_size == 0 ? SS_DISABLE
2243 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2244 }
2245
2246 /*
2247 * Routines for handling mm_structs
2248 */
2249 extern struct mm_struct * mm_alloc(void);
2250
2251 /* mmdrop drops the mm and the page tables */
2252 extern void __mmdrop(struct mm_struct *);
2253 static inline void mmdrop(struct mm_struct * mm)
2254 {
2255 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2256 __mmdrop(mm);
2257 }
2258
2259 /* mmput gets rid of the mappings and all user-space */
2260 extern void mmput(struct mm_struct *);
2261 /* Grab a reference to a task's mm, if it is not already going away */
2262 extern struct mm_struct *get_task_mm(struct task_struct *task);
2263 /*
2264 * Grab a reference to a task's mm, if it is not already going away
2265 * and ptrace_may_access with the mode parameter passed to it
2266 * succeeds.
2267 */
2268 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2269 /* Remove the current tasks stale references to the old mm_struct */
2270 extern void mm_release(struct task_struct *, struct mm_struct *);
2271 /* Allocate a new mm structure and copy contents from tsk->mm */
2272 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2273
2274 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2275 struct task_struct *, struct pt_regs *);
2276 extern void flush_thread(void);
2277 extern void exit_thread(void);
2278
2279 extern void exit_files(struct task_struct *);
2280 extern void __cleanup_sighand(struct sighand_struct *);
2281
2282 extern void exit_itimers(struct signal_struct *);
2283 extern void flush_itimer_signals(void);
2284
2285 extern void do_group_exit(int);
2286
2287 extern void daemonize(const char *, ...);
2288 extern int allow_signal(int);
2289 extern int disallow_signal(int);
2290
2291 extern int do_execve(const char *,
2292 const char __user * const __user *,
2293 const char __user * const __user *, struct pt_regs *);
2294 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
2295 struct task_struct *fork_idle(int);
2296
2297 extern void set_task_comm(struct task_struct *tsk, char *from);
2298 extern char *get_task_comm(char *to, struct task_struct *tsk);
2299
2300 #ifdef CONFIG_SMP
2301 void scheduler_ipi(void);
2302 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2303 #else
2304 static inline void scheduler_ipi(void) { }
2305 static inline unsigned long wait_task_inactive(struct task_struct *p,
2306 long match_state)
2307 {
2308 return 1;
2309 }
2310 #endif
2311
2312 #define next_task(p) \
2313 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2314
2315 #define for_each_process(p) \
2316 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2317
2318 extern bool current_is_single_threaded(void);
2319
2320 /*
2321 * Careful: do_each_thread/while_each_thread is a double loop so
2322 * 'break' will not work as expected - use goto instead.
2323 */
2324 #define do_each_thread(g, t) \
2325 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2326
2327 #define while_each_thread(g, t) \
2328 while ((t = next_thread(t)) != g)
2329
2330 static inline int get_nr_threads(struct task_struct *tsk)
2331 {
2332 return tsk->signal->nr_threads;
2333 }
2334
2335 static inline bool thread_group_leader(struct task_struct *p)
2336 {
2337 return p->exit_signal >= 0;
2338 }
2339
2340 /* Do to the insanities of de_thread it is possible for a process
2341 * to have the pid of the thread group leader without actually being
2342 * the thread group leader. For iteration through the pids in proc
2343 * all we care about is that we have a task with the appropriate
2344 * pid, we don't actually care if we have the right task.
2345 */
2346 static inline int has_group_leader_pid(struct task_struct *p)
2347 {
2348 return p->pid == p->tgid;
2349 }
2350
2351 static inline
2352 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2353 {
2354 return p1->tgid == p2->tgid;
2355 }
2356
2357 static inline struct task_struct *next_thread(const struct task_struct *p)
2358 {
2359 return list_entry_rcu(p->thread_group.next,
2360 struct task_struct, thread_group);
2361 }
2362
2363 static inline int thread_group_empty(struct task_struct *p)
2364 {
2365 return list_empty(&p->thread_group);
2366 }
2367
2368 #define delay_group_leader(p) \
2369 (thread_group_leader(p) && !thread_group_empty(p))
2370
2371 /*
2372 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2373 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2374 * pins the final release of task.io_context. Also protects ->cpuset and
2375 * ->cgroup.subsys[]. And ->vfork_done.
2376 *
2377 * Nests both inside and outside of read_lock(&tasklist_lock).
2378 * It must not be nested with write_lock_irq(&tasklist_lock),
2379 * neither inside nor outside.
2380 */
2381 static inline void task_lock(struct task_struct *p)
2382 {
2383 spin_lock(&p->alloc_lock);
2384 }
2385
2386 static inline void task_unlock(struct task_struct *p)
2387 {
2388 spin_unlock(&p->alloc_lock);
2389 }
2390
2391 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2392 unsigned long *flags);
2393
2394 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2395 unsigned long *flags)
2396 {
2397 struct sighand_struct *ret;
2398
2399 ret = __lock_task_sighand(tsk, flags);
2400 (void)__cond_lock(&tsk->sighand->siglock, ret);
2401 return ret;
2402 }
2403
2404 static inline void unlock_task_sighand(struct task_struct *tsk,
2405 unsigned long *flags)
2406 {
2407 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2408 }
2409
2410 #ifdef CONFIG_CGROUPS
2411 static inline void threadgroup_change_begin(struct task_struct *tsk)
2412 {
2413 down_read(&tsk->signal->group_rwsem);
2414 }
2415 static inline void threadgroup_change_end(struct task_struct *tsk)
2416 {
2417 up_read(&tsk->signal->group_rwsem);
2418 }
2419
2420 /**
2421 * threadgroup_lock - lock threadgroup
2422 * @tsk: member task of the threadgroup to lock
2423 *
2424 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter
2425 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
2426 * perform exec. This is useful for cases where the threadgroup needs to
2427 * stay stable across blockable operations.
2428 *
2429 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2430 * synchronization. While held, no new task will be added to threadgroup
2431 * and no existing live task will have its PF_EXITING set.
2432 *
2433 * During exec, a task goes and puts its thread group through unusual
2434 * changes. After de-threading, exclusive access is assumed to resources
2435 * which are usually shared by tasks in the same group - e.g. sighand may
2436 * be replaced with a new one. Also, the exec'ing task takes over group
2437 * leader role including its pid. Exclude these changes while locked by
2438 * grabbing cred_guard_mutex which is used to synchronize exec path.
2439 */
2440 static inline void threadgroup_lock(struct task_struct *tsk)
2441 {
2442 /*
2443 * exec uses exit for de-threading nesting group_rwsem inside
2444 * cred_guard_mutex. Grab cred_guard_mutex first.
2445 */
2446 mutex_lock(&tsk->signal->cred_guard_mutex);
2447 down_write(&tsk->signal->group_rwsem);
2448 }
2449
2450 /**
2451 * threadgroup_unlock - unlock threadgroup
2452 * @tsk: member task of the threadgroup to unlock
2453 *
2454 * Reverse threadgroup_lock().
2455 */
2456 static inline void threadgroup_unlock(struct task_struct *tsk)
2457 {
2458 up_write(&tsk->signal->group_rwsem);
2459 mutex_unlock(&tsk->signal->cred_guard_mutex);
2460 }
2461 #else
2462 static inline void threadgroup_change_begin(struct task_struct *tsk) {}
2463 static inline void threadgroup_change_end(struct task_struct *tsk) {}
2464 static inline void threadgroup_lock(struct task_struct *tsk) {}
2465 static inline void threadgroup_unlock(struct task_struct *tsk) {}
2466 #endif
2467
2468 #ifndef __HAVE_THREAD_FUNCTIONS
2469
2470 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2471 #define task_stack_page(task) ((task)->stack)
2472
2473 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2474 {
2475 *task_thread_info(p) = *task_thread_info(org);
2476 task_thread_info(p)->task = p;
2477 }
2478
2479 static inline unsigned long *end_of_stack(struct task_struct *p)
2480 {
2481 return (unsigned long *)(task_thread_info(p) + 1);
2482 }
2483
2484 #endif
2485
2486 static inline int object_is_on_stack(void *obj)
2487 {
2488 void *stack = task_stack_page(current);
2489
2490 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2491 }
2492
2493 extern void thread_info_cache_init(void);
2494
2495 #ifdef CONFIG_DEBUG_STACK_USAGE
2496 static inline unsigned long stack_not_used(struct task_struct *p)
2497 {
2498 unsigned long *n = end_of_stack(p);
2499
2500 do { /* Skip over canary */
2501 n++;
2502 } while (!*n);
2503
2504 return (unsigned long)n - (unsigned long)end_of_stack(p);
2505 }
2506 #endif
2507
2508 /* set thread flags in other task's structures
2509 * - see asm/thread_info.h for TIF_xxxx flags available
2510 */
2511 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2512 {
2513 set_ti_thread_flag(task_thread_info(tsk), flag);
2514 }
2515
2516 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2517 {
2518 clear_ti_thread_flag(task_thread_info(tsk), flag);
2519 }
2520
2521 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2522 {
2523 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2524 }
2525
2526 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2527 {
2528 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2529 }
2530
2531 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2532 {
2533 return test_ti_thread_flag(task_thread_info(tsk), flag);
2534 }
2535
2536 static inline void set_tsk_need_resched(struct task_struct *tsk)
2537 {
2538 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2539 }
2540
2541 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2542 {
2543 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2544 }
2545
2546 static inline int test_tsk_need_resched(struct task_struct *tsk)
2547 {
2548 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2549 }
2550
2551 static inline int restart_syscall(void)
2552 {
2553 set_tsk_thread_flag(current, TIF_SIGPENDING);
2554 return -ERESTARTNOINTR;
2555 }
2556
2557 static inline int signal_pending(struct task_struct *p)
2558 {
2559 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2560 }
2561
2562 static inline int __fatal_signal_pending(struct task_struct *p)
2563 {
2564 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2565 }
2566
2567 static inline int fatal_signal_pending(struct task_struct *p)
2568 {
2569 return signal_pending(p) && __fatal_signal_pending(p);
2570 }
2571
2572 static inline int signal_pending_state(long state, struct task_struct *p)
2573 {
2574 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2575 return 0;
2576 if (!signal_pending(p))
2577 return 0;
2578
2579 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2580 }
2581
2582 static inline int need_resched(void)
2583 {
2584 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2585 }
2586
2587 /*
2588 * cond_resched() and cond_resched_lock(): latency reduction via
2589 * explicit rescheduling in places that are safe. The return
2590 * value indicates whether a reschedule was done in fact.
2591 * cond_resched_lock() will drop the spinlock before scheduling,
2592 * cond_resched_softirq() will enable bhs before scheduling.
2593 */
2594 extern int _cond_resched(void);
2595
2596 #define cond_resched() ({ \
2597 __might_sleep(__FILE__, __LINE__, 0); \
2598 _cond_resched(); \
2599 })
2600
2601 extern int __cond_resched_lock(spinlock_t *lock);
2602
2603 #ifdef CONFIG_PREEMPT_COUNT
2604 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
2605 #else
2606 #define PREEMPT_LOCK_OFFSET 0
2607 #endif
2608
2609 #define cond_resched_lock(lock) ({ \
2610 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2611 __cond_resched_lock(lock); \
2612 })
2613
2614 extern int __cond_resched_softirq(void);
2615
2616 #define cond_resched_softirq() ({ \
2617 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
2618 __cond_resched_softirq(); \
2619 })
2620
2621 /*
2622 * Does a critical section need to be broken due to another
2623 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2624 * but a general need for low latency)
2625 */
2626 static inline int spin_needbreak(spinlock_t *lock)
2627 {
2628 #ifdef CONFIG_PREEMPT
2629 return spin_is_contended(lock);
2630 #else
2631 return 0;
2632 #endif
2633 }
2634
2635 /*
2636 * Thread group CPU time accounting.
2637 */
2638 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2639 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2640
2641 static inline void thread_group_cputime_init(struct signal_struct *sig)
2642 {
2643 raw_spin_lock_init(&sig->cputimer.lock);
2644 }
2645
2646 /*
2647 * Reevaluate whether the task has signals pending delivery.
2648 * Wake the task if so.
2649 * This is required every time the blocked sigset_t changes.
2650 * callers must hold sighand->siglock.
2651 */
2652 extern void recalc_sigpending_and_wake(struct task_struct *t);
2653 extern void recalc_sigpending(void);
2654
2655 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2656
2657 /*
2658 * Wrappers for p->thread_info->cpu access. No-op on UP.
2659 */
2660 #ifdef CONFIG_SMP
2661
2662 static inline unsigned int task_cpu(const struct task_struct *p)
2663 {
2664 return task_thread_info(p)->cpu;
2665 }
2666
2667 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2668
2669 #else
2670
2671 static inline unsigned int task_cpu(const struct task_struct *p)
2672 {
2673 return 0;
2674 }
2675
2676 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2677 {
2678 }
2679
2680 #endif /* CONFIG_SMP */
2681
2682 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2683 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2684
2685 extern void normalize_rt_tasks(void);
2686
2687 #ifdef CONFIG_CGROUP_SCHED
2688
2689 extern struct task_group root_task_group;
2690
2691 extern struct task_group *sched_create_group(struct task_group *parent);
2692 extern void sched_destroy_group(struct task_group *tg);
2693 extern void sched_move_task(struct task_struct *tsk);
2694 #ifdef CONFIG_FAIR_GROUP_SCHED
2695 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2696 extern unsigned long sched_group_shares(struct task_group *tg);
2697 #endif
2698 #ifdef CONFIG_RT_GROUP_SCHED
2699 extern int sched_group_set_rt_runtime(struct task_group *tg,
2700 long rt_runtime_us);
2701 extern long sched_group_rt_runtime(struct task_group *tg);
2702 extern int sched_group_set_rt_period(struct task_group *tg,
2703 long rt_period_us);
2704 extern long sched_group_rt_period(struct task_group *tg);
2705 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2706 #endif
2707 #endif
2708
2709 extern int task_can_switch_user(struct user_struct *up,
2710 struct task_struct *tsk);
2711
2712 #ifdef CONFIG_TASK_XACCT
2713 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2714 {
2715 tsk->ioac.rchar += amt;
2716 }
2717
2718 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2719 {
2720 tsk->ioac.wchar += amt;
2721 }
2722
2723 static inline void inc_syscr(struct task_struct *tsk)
2724 {
2725 tsk->ioac.syscr++;
2726 }
2727
2728 static inline void inc_syscw(struct task_struct *tsk)
2729 {
2730 tsk->ioac.syscw++;
2731 }
2732 #else
2733 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2734 {
2735 }
2736
2737 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2738 {
2739 }
2740
2741 static inline void inc_syscr(struct task_struct *tsk)
2742 {
2743 }
2744
2745 static inline void inc_syscw(struct task_struct *tsk)
2746 {
2747 }
2748 #endif
2749
2750 #ifndef TASK_SIZE_OF
2751 #define TASK_SIZE_OF(tsk) TASK_SIZE
2752 #endif
2753
2754 #ifdef CONFIG_MM_OWNER
2755 extern void mm_update_next_owner(struct mm_struct *mm);
2756 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2757 #else
2758 static inline void mm_update_next_owner(struct mm_struct *mm)
2759 {
2760 }
2761
2762 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2763 {
2764 }
2765 #endif /* CONFIG_MM_OWNER */
2766
2767 static inline unsigned long task_rlimit(const struct task_struct *tsk,
2768 unsigned int limit)
2769 {
2770 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2771 }
2772
2773 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2774 unsigned int limit)
2775 {
2776 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2777 }
2778
2779 static inline unsigned long rlimit(unsigned int limit)
2780 {
2781 return task_rlimit(current, limit);
2782 }
2783
2784 static inline unsigned long rlimit_max(unsigned int limit)
2785 {
2786 return task_rlimit_max(current, limit);
2787 }
2788
2789 #endif /* __KERNEL__ */
2790
2791 #endif