exit: change zap_other_threads() to count sub-threads
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 /*
5 * cloning flags:
6 */
7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD 0x00010000 /* Same thread group? */
16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */
25 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
26 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
27 #define CLONE_NEWUSER 0x10000000 /* New user namespace */
28 #define CLONE_NEWPID 0x20000000 /* New pid namespace */
29 #define CLONE_NEWNET 0x40000000 /* New network namespace */
30 #define CLONE_IO 0x80000000 /* Clone io context */
31
32 /*
33 * Scheduling policies
34 */
35 #define SCHED_NORMAL 0
36 #define SCHED_FIFO 1
37 #define SCHED_RR 2
38 #define SCHED_BATCH 3
39 /* SCHED_ISO: reserved but not implemented yet */
40 #define SCHED_IDLE 5
41 /* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */
42 #define SCHED_RESET_ON_FORK 0x40000000
43
44 #ifdef __KERNEL__
45
46 struct sched_param {
47 int sched_priority;
48 };
49
50 #include <asm/param.h> /* for HZ */
51
52 #include <linux/capability.h>
53 #include <linux/threads.h>
54 #include <linux/kernel.h>
55 #include <linux/types.h>
56 #include <linux/timex.h>
57 #include <linux/jiffies.h>
58 #include <linux/rbtree.h>
59 #include <linux/thread_info.h>
60 #include <linux/cpumask.h>
61 #include <linux/errno.h>
62 #include <linux/nodemask.h>
63 #include <linux/mm_types.h>
64
65 #include <asm/system.h>
66 #include <asm/page.h>
67 #include <asm/ptrace.h>
68 #include <asm/cputime.h>
69
70 #include <linux/smp.h>
71 #include <linux/sem.h>
72 #include <linux/signal.h>
73 #include <linux/path.h>
74 #include <linux/compiler.h>
75 #include <linux/completion.h>
76 #include <linux/pid.h>
77 #include <linux/percpu.h>
78 #include <linux/topology.h>
79 #include <linux/proportions.h>
80 #include <linux/seccomp.h>
81 #include <linux/rcupdate.h>
82 #include <linux/rculist.h>
83 #include <linux/rtmutex.h>
84
85 #include <linux/time.h>
86 #include <linux/param.h>
87 #include <linux/resource.h>
88 #include <linux/timer.h>
89 #include <linux/hrtimer.h>
90 #include <linux/task_io_accounting.h>
91 #include <linux/kobject.h>
92 #include <linux/latencytop.h>
93 #include <linux/cred.h>
94
95 #include <asm/processor.h>
96
97 struct exec_domain;
98 struct futex_pi_state;
99 struct robust_list_head;
100 struct bio_list;
101 struct fs_struct;
102 struct perf_event_context;
103
104 /*
105 * List of flags we want to share for kernel threads,
106 * if only because they are not used by them anyway.
107 */
108 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
109
110 /*
111 * These are the constant used to fake the fixed-point load-average
112 * counting. Some notes:
113 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
114 * a load-average precision of 10 bits integer + 11 bits fractional
115 * - if you want to count load-averages more often, you need more
116 * precision, or rounding will get you. With 2-second counting freq,
117 * the EXP_n values would be 1981, 2034 and 2043 if still using only
118 * 11 bit fractions.
119 */
120 extern unsigned long avenrun[]; /* Load averages */
121 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
122
123 #define FSHIFT 11 /* nr of bits of precision */
124 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
125 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
126 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
127 #define EXP_5 2014 /* 1/exp(5sec/5min) */
128 #define EXP_15 2037 /* 1/exp(5sec/15min) */
129
130 #define CALC_LOAD(load,exp,n) \
131 load *= exp; \
132 load += n*(FIXED_1-exp); \
133 load >>= FSHIFT;
134
135 extern unsigned long total_forks;
136 extern int nr_threads;
137 DECLARE_PER_CPU(unsigned long, process_counts);
138 extern int nr_processes(void);
139 extern unsigned long nr_running(void);
140 extern unsigned long nr_uninterruptible(void);
141 extern unsigned long nr_iowait(void);
142 extern unsigned long nr_iowait_cpu(void);
143 extern unsigned long this_cpu_load(void);
144
145
146 extern void calc_global_load(void);
147
148 extern unsigned long get_parent_ip(unsigned long addr);
149
150 struct seq_file;
151 struct cfs_rq;
152 struct task_group;
153 #ifdef CONFIG_SCHED_DEBUG
154 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
155 extern void proc_sched_set_task(struct task_struct *p);
156 extern void
157 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
158 #else
159 static inline void
160 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
161 {
162 }
163 static inline void proc_sched_set_task(struct task_struct *p)
164 {
165 }
166 static inline void
167 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
168 {
169 }
170 #endif
171
172 /*
173 * Task state bitmask. NOTE! These bits are also
174 * encoded in fs/proc/array.c: get_task_state().
175 *
176 * We have two separate sets of flags: task->state
177 * is about runnability, while task->exit_state are
178 * about the task exiting. Confusing, but this way
179 * modifying one set can't modify the other one by
180 * mistake.
181 */
182 #define TASK_RUNNING 0
183 #define TASK_INTERRUPTIBLE 1
184 #define TASK_UNINTERRUPTIBLE 2
185 #define __TASK_STOPPED 4
186 #define __TASK_TRACED 8
187 /* in tsk->exit_state */
188 #define EXIT_ZOMBIE 16
189 #define EXIT_DEAD 32
190 /* in tsk->state again */
191 #define TASK_DEAD 64
192 #define TASK_WAKEKILL 128
193 #define TASK_WAKING 256
194 #define TASK_STATE_MAX 512
195
196 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW"
197
198 extern char ___assert_task_state[1 - 2*!!(
199 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
200
201 /* Convenience macros for the sake of set_task_state */
202 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
203 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
204 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
205
206 /* Convenience macros for the sake of wake_up */
207 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
208 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
209
210 /* get_task_state() */
211 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
212 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
213 __TASK_TRACED)
214
215 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
216 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
217 #define task_is_stopped_or_traced(task) \
218 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
219 #define task_contributes_to_load(task) \
220 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
221 (task->flags & PF_FREEZING) == 0)
222
223 #define __set_task_state(tsk, state_value) \
224 do { (tsk)->state = (state_value); } while (0)
225 #define set_task_state(tsk, state_value) \
226 set_mb((tsk)->state, (state_value))
227
228 /*
229 * set_current_state() includes a barrier so that the write of current->state
230 * is correctly serialised wrt the caller's subsequent test of whether to
231 * actually sleep:
232 *
233 * set_current_state(TASK_UNINTERRUPTIBLE);
234 * if (do_i_need_to_sleep())
235 * schedule();
236 *
237 * If the caller does not need such serialisation then use __set_current_state()
238 */
239 #define __set_current_state(state_value) \
240 do { current->state = (state_value); } while (0)
241 #define set_current_state(state_value) \
242 set_mb(current->state, (state_value))
243
244 /* Task command name length */
245 #define TASK_COMM_LEN 16
246
247 #include <linux/spinlock.h>
248
249 /*
250 * This serializes "schedule()" and also protects
251 * the run-queue from deletions/modifications (but
252 * _adding_ to the beginning of the run-queue has
253 * a separate lock).
254 */
255 extern rwlock_t tasklist_lock;
256 extern spinlock_t mmlist_lock;
257
258 struct task_struct;
259
260 #ifdef CONFIG_PROVE_RCU
261 extern int lockdep_tasklist_lock_is_held(void);
262 #endif /* #ifdef CONFIG_PROVE_RCU */
263
264 extern void sched_init(void);
265 extern void sched_init_smp(void);
266 extern asmlinkage void schedule_tail(struct task_struct *prev);
267 extern void init_idle(struct task_struct *idle, int cpu);
268 extern void init_idle_bootup_task(struct task_struct *idle);
269
270 extern int runqueue_is_locked(int cpu);
271 extern void task_rq_unlock_wait(struct task_struct *p);
272
273 extern cpumask_var_t nohz_cpu_mask;
274 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
275 extern int select_nohz_load_balancer(int cpu);
276 extern int get_nohz_load_balancer(void);
277 extern int nohz_ratelimit(int cpu);
278 #else
279 static inline int select_nohz_load_balancer(int cpu)
280 {
281 return 0;
282 }
283
284 static inline int nohz_ratelimit(int cpu)
285 {
286 return 0;
287 }
288 #endif
289
290 /*
291 * Only dump TASK_* tasks. (0 for all tasks)
292 */
293 extern void show_state_filter(unsigned long state_filter);
294
295 static inline void show_state(void)
296 {
297 show_state_filter(0);
298 }
299
300 extern void show_regs(struct pt_regs *);
301
302 /*
303 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
304 * task), SP is the stack pointer of the first frame that should be shown in the back
305 * trace (or NULL if the entire call-chain of the task should be shown).
306 */
307 extern void show_stack(struct task_struct *task, unsigned long *sp);
308
309 void io_schedule(void);
310 long io_schedule_timeout(long timeout);
311
312 extern void cpu_init (void);
313 extern void trap_init(void);
314 extern void update_process_times(int user);
315 extern void scheduler_tick(void);
316
317 extern void sched_show_task(struct task_struct *p);
318
319 #ifdef CONFIG_DETECT_SOFTLOCKUP
320 extern void softlockup_tick(void);
321 extern void touch_softlockup_watchdog(void);
322 extern void touch_softlockup_watchdog_sync(void);
323 extern void touch_all_softlockup_watchdogs(void);
324 extern int proc_dosoftlockup_thresh(struct ctl_table *table, int write,
325 void __user *buffer,
326 size_t *lenp, loff_t *ppos);
327 extern unsigned int softlockup_panic;
328 extern int softlockup_thresh;
329 #else
330 static inline void softlockup_tick(void)
331 {
332 }
333 static inline void touch_softlockup_watchdog(void)
334 {
335 }
336 static inline void touch_softlockup_watchdog_sync(void)
337 {
338 }
339 static inline void touch_all_softlockup_watchdogs(void)
340 {
341 }
342 #endif
343
344 #ifdef CONFIG_DETECT_HUNG_TASK
345 extern unsigned int sysctl_hung_task_panic;
346 extern unsigned long sysctl_hung_task_check_count;
347 extern unsigned long sysctl_hung_task_timeout_secs;
348 extern unsigned long sysctl_hung_task_warnings;
349 extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write,
350 void __user *buffer,
351 size_t *lenp, loff_t *ppos);
352 #endif
353
354 /* Attach to any functions which should be ignored in wchan output. */
355 #define __sched __attribute__((__section__(".sched.text")))
356
357 /* Linker adds these: start and end of __sched functions */
358 extern char __sched_text_start[], __sched_text_end[];
359
360 /* Is this address in the __sched functions? */
361 extern int in_sched_functions(unsigned long addr);
362
363 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
364 extern signed long schedule_timeout(signed long timeout);
365 extern signed long schedule_timeout_interruptible(signed long timeout);
366 extern signed long schedule_timeout_killable(signed long timeout);
367 extern signed long schedule_timeout_uninterruptible(signed long timeout);
368 asmlinkage void schedule(void);
369 extern int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner);
370
371 struct nsproxy;
372 struct user_namespace;
373
374 /*
375 * Default maximum number of active map areas, this limits the number of vmas
376 * per mm struct. Users can overwrite this number by sysctl but there is a
377 * problem.
378 *
379 * When a program's coredump is generated as ELF format, a section is created
380 * per a vma. In ELF, the number of sections is represented in unsigned short.
381 * This means the number of sections should be smaller than 65535 at coredump.
382 * Because the kernel adds some informative sections to a image of program at
383 * generating coredump, we need some margin. The number of extra sections is
384 * 1-3 now and depends on arch. We use "5" as safe margin, here.
385 */
386 #define MAPCOUNT_ELF_CORE_MARGIN (5)
387 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
388
389 extern int sysctl_max_map_count;
390
391 #include <linux/aio.h>
392
393 #ifdef CONFIG_MMU
394 extern void arch_pick_mmap_layout(struct mm_struct *mm);
395 extern unsigned long
396 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
397 unsigned long, unsigned long);
398 extern unsigned long
399 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
400 unsigned long len, unsigned long pgoff,
401 unsigned long flags);
402 extern void arch_unmap_area(struct mm_struct *, unsigned long);
403 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
404 #else
405 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
406 #endif
407
408
409 extern void set_dumpable(struct mm_struct *mm, int value);
410 extern int get_dumpable(struct mm_struct *mm);
411
412 /* mm flags */
413 /* dumpable bits */
414 #define MMF_DUMPABLE 0 /* core dump is permitted */
415 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
416
417 #define MMF_DUMPABLE_BITS 2
418 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
419
420 /* coredump filter bits */
421 #define MMF_DUMP_ANON_PRIVATE 2
422 #define MMF_DUMP_ANON_SHARED 3
423 #define MMF_DUMP_MAPPED_PRIVATE 4
424 #define MMF_DUMP_MAPPED_SHARED 5
425 #define MMF_DUMP_ELF_HEADERS 6
426 #define MMF_DUMP_HUGETLB_PRIVATE 7
427 #define MMF_DUMP_HUGETLB_SHARED 8
428
429 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
430 #define MMF_DUMP_FILTER_BITS 7
431 #define MMF_DUMP_FILTER_MASK \
432 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
433 #define MMF_DUMP_FILTER_DEFAULT \
434 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
435 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
436
437 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
438 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
439 #else
440 # define MMF_DUMP_MASK_DEFAULT_ELF 0
441 #endif
442 /* leave room for more dump flags */
443 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
444
445 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
446
447 struct sighand_struct {
448 atomic_t count;
449 struct k_sigaction action[_NSIG];
450 spinlock_t siglock;
451 wait_queue_head_t signalfd_wqh;
452 };
453
454 struct pacct_struct {
455 int ac_flag;
456 long ac_exitcode;
457 unsigned long ac_mem;
458 cputime_t ac_utime, ac_stime;
459 unsigned long ac_minflt, ac_majflt;
460 };
461
462 struct cpu_itimer {
463 cputime_t expires;
464 cputime_t incr;
465 u32 error;
466 u32 incr_error;
467 };
468
469 /**
470 * struct task_cputime - collected CPU time counts
471 * @utime: time spent in user mode, in &cputime_t units
472 * @stime: time spent in kernel mode, in &cputime_t units
473 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
474 *
475 * This structure groups together three kinds of CPU time that are
476 * tracked for threads and thread groups. Most things considering
477 * CPU time want to group these counts together and treat all three
478 * of them in parallel.
479 */
480 struct task_cputime {
481 cputime_t utime;
482 cputime_t stime;
483 unsigned long long sum_exec_runtime;
484 };
485 /* Alternate field names when used to cache expirations. */
486 #define prof_exp stime
487 #define virt_exp utime
488 #define sched_exp sum_exec_runtime
489
490 #define INIT_CPUTIME \
491 (struct task_cputime) { \
492 .utime = cputime_zero, \
493 .stime = cputime_zero, \
494 .sum_exec_runtime = 0, \
495 }
496
497 /*
498 * Disable preemption until the scheduler is running.
499 * Reset by start_kernel()->sched_init()->init_idle().
500 *
501 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
502 * before the scheduler is active -- see should_resched().
503 */
504 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE)
505
506 /**
507 * struct thread_group_cputimer - thread group interval timer counts
508 * @cputime: thread group interval timers.
509 * @running: non-zero when there are timers running and
510 * @cputime receives updates.
511 * @lock: lock for fields in this struct.
512 *
513 * This structure contains the version of task_cputime, above, that is
514 * used for thread group CPU timer calculations.
515 */
516 struct thread_group_cputimer {
517 struct task_cputime cputime;
518 int running;
519 spinlock_t lock;
520 };
521
522 /*
523 * NOTE! "signal_struct" does not have it's own
524 * locking, because a shared signal_struct always
525 * implies a shared sighand_struct, so locking
526 * sighand_struct is always a proper superset of
527 * the locking of signal_struct.
528 */
529 struct signal_struct {
530 atomic_t count;
531 atomic_t live;
532
533 wait_queue_head_t wait_chldexit; /* for wait4() */
534
535 /* current thread group signal load-balancing target: */
536 struct task_struct *curr_target;
537
538 /* shared signal handling: */
539 struct sigpending shared_pending;
540
541 /* thread group exit support */
542 int group_exit_code;
543 /* overloaded:
544 * - notify group_exit_task when ->count is equal to notify_count
545 * - everyone except group_exit_task is stopped during signal delivery
546 * of fatal signals, group_exit_task processes the signal.
547 */
548 int notify_count;
549 struct task_struct *group_exit_task;
550
551 /* thread group stop support, overloads group_exit_code too */
552 int group_stop_count;
553 unsigned int flags; /* see SIGNAL_* flags below */
554
555 /* POSIX.1b Interval Timers */
556 struct list_head posix_timers;
557
558 /* ITIMER_REAL timer for the process */
559 struct hrtimer real_timer;
560 struct pid *leader_pid;
561 ktime_t it_real_incr;
562
563 /*
564 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
565 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
566 * values are defined to 0 and 1 respectively
567 */
568 struct cpu_itimer it[2];
569
570 /*
571 * Thread group totals for process CPU timers.
572 * See thread_group_cputimer(), et al, for details.
573 */
574 struct thread_group_cputimer cputimer;
575
576 /* Earliest-expiration cache. */
577 struct task_cputime cputime_expires;
578
579 struct list_head cpu_timers[3];
580
581 struct pid *tty_old_pgrp;
582
583 /* boolean value for session group leader */
584 int leader;
585
586 struct tty_struct *tty; /* NULL if no tty */
587
588 /*
589 * Cumulative resource counters for dead threads in the group,
590 * and for reaped dead child processes forked by this group.
591 * Live threads maintain their own counters and add to these
592 * in __exit_signal, except for the group leader.
593 */
594 cputime_t utime, stime, cutime, cstime;
595 cputime_t gtime;
596 cputime_t cgtime;
597 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
598 cputime_t prev_utime, prev_stime;
599 #endif
600 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
601 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
602 unsigned long inblock, oublock, cinblock, coublock;
603 unsigned long maxrss, cmaxrss;
604 struct task_io_accounting ioac;
605
606 /*
607 * Cumulative ns of schedule CPU time fo dead threads in the
608 * group, not including a zombie group leader, (This only differs
609 * from jiffies_to_ns(utime + stime) if sched_clock uses something
610 * other than jiffies.)
611 */
612 unsigned long long sum_sched_runtime;
613
614 /*
615 * We don't bother to synchronize most readers of this at all,
616 * because there is no reader checking a limit that actually needs
617 * to get both rlim_cur and rlim_max atomically, and either one
618 * alone is a single word that can safely be read normally.
619 * getrlimit/setrlimit use task_lock(current->group_leader) to
620 * protect this instead of the siglock, because they really
621 * have no need to disable irqs.
622 */
623 struct rlimit rlim[RLIM_NLIMITS];
624
625 #ifdef CONFIG_BSD_PROCESS_ACCT
626 struct pacct_struct pacct; /* per-process accounting information */
627 #endif
628 #ifdef CONFIG_TASKSTATS
629 struct taskstats *stats;
630 #endif
631 #ifdef CONFIG_AUDIT
632 unsigned audit_tty;
633 struct tty_audit_buf *tty_audit_buf;
634 #endif
635
636 int oom_adj; /* OOM kill score adjustment (bit shift) */
637 };
638
639 /* Context switch must be unlocked if interrupts are to be enabled */
640 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
641 # define __ARCH_WANT_UNLOCKED_CTXSW
642 #endif
643
644 /*
645 * Bits in flags field of signal_struct.
646 */
647 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
648 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
649 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
650 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
651 /*
652 * Pending notifications to parent.
653 */
654 #define SIGNAL_CLD_STOPPED 0x00000010
655 #define SIGNAL_CLD_CONTINUED 0x00000020
656 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
657
658 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
659
660 /* If true, all threads except ->group_exit_task have pending SIGKILL */
661 static inline int signal_group_exit(const struct signal_struct *sig)
662 {
663 return (sig->flags & SIGNAL_GROUP_EXIT) ||
664 (sig->group_exit_task != NULL);
665 }
666
667 /*
668 * Some day this will be a full-fledged user tracking system..
669 */
670 struct user_struct {
671 atomic_t __count; /* reference count */
672 atomic_t processes; /* How many processes does this user have? */
673 atomic_t files; /* How many open files does this user have? */
674 atomic_t sigpending; /* How many pending signals does this user have? */
675 #ifdef CONFIG_INOTIFY_USER
676 atomic_t inotify_watches; /* How many inotify watches does this user have? */
677 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
678 #endif
679 #ifdef CONFIG_EPOLL
680 atomic_t epoll_watches; /* The number of file descriptors currently watched */
681 #endif
682 #ifdef CONFIG_POSIX_MQUEUE
683 /* protected by mq_lock */
684 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
685 #endif
686 unsigned long locked_shm; /* How many pages of mlocked shm ? */
687
688 #ifdef CONFIG_KEYS
689 struct key *uid_keyring; /* UID specific keyring */
690 struct key *session_keyring; /* UID's default session keyring */
691 #endif
692
693 /* Hash table maintenance information */
694 struct hlist_node uidhash_node;
695 uid_t uid;
696 struct user_namespace *user_ns;
697
698 #ifdef CONFIG_PERF_EVENTS
699 atomic_long_t locked_vm;
700 #endif
701 };
702
703 extern int uids_sysfs_init(void);
704
705 extern struct user_struct *find_user(uid_t);
706
707 extern struct user_struct root_user;
708 #define INIT_USER (&root_user)
709
710
711 struct backing_dev_info;
712 struct reclaim_state;
713
714 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
715 struct sched_info {
716 /* cumulative counters */
717 unsigned long pcount; /* # of times run on this cpu */
718 unsigned long long run_delay; /* time spent waiting on a runqueue */
719
720 /* timestamps */
721 unsigned long long last_arrival,/* when we last ran on a cpu */
722 last_queued; /* when we were last queued to run */
723 #ifdef CONFIG_SCHEDSTATS
724 /* BKL stats */
725 unsigned int bkl_count;
726 #endif
727 };
728 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
729
730 #ifdef CONFIG_TASK_DELAY_ACCT
731 struct task_delay_info {
732 spinlock_t lock;
733 unsigned int flags; /* Private per-task flags */
734
735 /* For each stat XXX, add following, aligned appropriately
736 *
737 * struct timespec XXX_start, XXX_end;
738 * u64 XXX_delay;
739 * u32 XXX_count;
740 *
741 * Atomicity of updates to XXX_delay, XXX_count protected by
742 * single lock above (split into XXX_lock if contention is an issue).
743 */
744
745 /*
746 * XXX_count is incremented on every XXX operation, the delay
747 * associated with the operation is added to XXX_delay.
748 * XXX_delay contains the accumulated delay time in nanoseconds.
749 */
750 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
751 u64 blkio_delay; /* wait for sync block io completion */
752 u64 swapin_delay; /* wait for swapin block io completion */
753 u32 blkio_count; /* total count of the number of sync block */
754 /* io operations performed */
755 u32 swapin_count; /* total count of the number of swapin block */
756 /* io operations performed */
757
758 struct timespec freepages_start, freepages_end;
759 u64 freepages_delay; /* wait for memory reclaim */
760 u32 freepages_count; /* total count of memory reclaim */
761 };
762 #endif /* CONFIG_TASK_DELAY_ACCT */
763
764 static inline int sched_info_on(void)
765 {
766 #ifdef CONFIG_SCHEDSTATS
767 return 1;
768 #elif defined(CONFIG_TASK_DELAY_ACCT)
769 extern int delayacct_on;
770 return delayacct_on;
771 #else
772 return 0;
773 #endif
774 }
775
776 enum cpu_idle_type {
777 CPU_IDLE,
778 CPU_NOT_IDLE,
779 CPU_NEWLY_IDLE,
780 CPU_MAX_IDLE_TYPES
781 };
782
783 /*
784 * sched-domains (multiprocessor balancing) declarations:
785 */
786
787 /*
788 * Increase resolution of nice-level calculations:
789 */
790 #define SCHED_LOAD_SHIFT 10
791 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
792
793 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE
794
795 #ifdef CONFIG_SMP
796 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
797 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
798 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
799 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
800 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
801 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
802 #define SD_PREFER_LOCAL 0x0040 /* Prefer to keep tasks local to this domain */
803 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */
804 #define SD_POWERSAVINGS_BALANCE 0x0100 /* Balance for power savings */
805 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
806 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
807
808 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
809
810 enum powersavings_balance_level {
811 POWERSAVINGS_BALANCE_NONE = 0, /* No power saving load balance */
812 POWERSAVINGS_BALANCE_BASIC, /* Fill one thread/core/package
813 * first for long running threads
814 */
815 POWERSAVINGS_BALANCE_WAKEUP, /* Also bias task wakeups to semi-idle
816 * cpu package for power savings
817 */
818 MAX_POWERSAVINGS_BALANCE_LEVELS
819 };
820
821 extern int sched_mc_power_savings, sched_smt_power_savings;
822
823 static inline int sd_balance_for_mc_power(void)
824 {
825 if (sched_smt_power_savings)
826 return SD_POWERSAVINGS_BALANCE;
827
828 if (!sched_mc_power_savings)
829 return SD_PREFER_SIBLING;
830
831 return 0;
832 }
833
834 static inline int sd_balance_for_package_power(void)
835 {
836 if (sched_mc_power_savings | sched_smt_power_savings)
837 return SD_POWERSAVINGS_BALANCE;
838
839 return SD_PREFER_SIBLING;
840 }
841
842 /*
843 * Optimise SD flags for power savings:
844 * SD_BALANCE_NEWIDLE helps agressive task consolidation and power savings.
845 * Keep default SD flags if sched_{smt,mc}_power_saving=0
846 */
847
848 static inline int sd_power_saving_flags(void)
849 {
850 if (sched_mc_power_savings | sched_smt_power_savings)
851 return SD_BALANCE_NEWIDLE;
852
853 return 0;
854 }
855
856 struct sched_group {
857 struct sched_group *next; /* Must be a circular list */
858
859 /*
860 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
861 * single CPU.
862 */
863 unsigned int cpu_power;
864
865 /*
866 * The CPUs this group covers.
867 *
868 * NOTE: this field is variable length. (Allocated dynamically
869 * by attaching extra space to the end of the structure,
870 * depending on how many CPUs the kernel has booted up with)
871 *
872 * It is also be embedded into static data structures at build
873 * time. (See 'struct static_sched_group' in kernel/sched.c)
874 */
875 unsigned long cpumask[0];
876 };
877
878 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
879 {
880 return to_cpumask(sg->cpumask);
881 }
882
883 enum sched_domain_level {
884 SD_LV_NONE = 0,
885 SD_LV_SIBLING,
886 SD_LV_MC,
887 SD_LV_CPU,
888 SD_LV_NODE,
889 SD_LV_ALLNODES,
890 SD_LV_MAX
891 };
892
893 struct sched_domain_attr {
894 int relax_domain_level;
895 };
896
897 #define SD_ATTR_INIT (struct sched_domain_attr) { \
898 .relax_domain_level = -1, \
899 }
900
901 struct sched_domain {
902 /* These fields must be setup */
903 struct sched_domain *parent; /* top domain must be null terminated */
904 struct sched_domain *child; /* bottom domain must be null terminated */
905 struct sched_group *groups; /* the balancing groups of the domain */
906 unsigned long min_interval; /* Minimum balance interval ms */
907 unsigned long max_interval; /* Maximum balance interval ms */
908 unsigned int busy_factor; /* less balancing by factor if busy */
909 unsigned int imbalance_pct; /* No balance until over watermark */
910 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
911 unsigned int busy_idx;
912 unsigned int idle_idx;
913 unsigned int newidle_idx;
914 unsigned int wake_idx;
915 unsigned int forkexec_idx;
916 unsigned int smt_gain;
917 int flags; /* See SD_* */
918 enum sched_domain_level level;
919
920 /* Runtime fields. */
921 unsigned long last_balance; /* init to jiffies. units in jiffies */
922 unsigned int balance_interval; /* initialise to 1. units in ms. */
923 unsigned int nr_balance_failed; /* initialise to 0 */
924
925 u64 last_update;
926
927 #ifdef CONFIG_SCHEDSTATS
928 /* load_balance() stats */
929 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
930 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
931 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
932 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
933 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
934 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
935 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
936 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
937
938 /* Active load balancing */
939 unsigned int alb_count;
940 unsigned int alb_failed;
941 unsigned int alb_pushed;
942
943 /* SD_BALANCE_EXEC stats */
944 unsigned int sbe_count;
945 unsigned int sbe_balanced;
946 unsigned int sbe_pushed;
947
948 /* SD_BALANCE_FORK stats */
949 unsigned int sbf_count;
950 unsigned int sbf_balanced;
951 unsigned int sbf_pushed;
952
953 /* try_to_wake_up() stats */
954 unsigned int ttwu_wake_remote;
955 unsigned int ttwu_move_affine;
956 unsigned int ttwu_move_balance;
957 #endif
958 #ifdef CONFIG_SCHED_DEBUG
959 char *name;
960 #endif
961
962 unsigned int span_weight;
963 /*
964 * Span of all CPUs in this domain.
965 *
966 * NOTE: this field is variable length. (Allocated dynamically
967 * by attaching extra space to the end of the structure,
968 * depending on how many CPUs the kernel has booted up with)
969 *
970 * It is also be embedded into static data structures at build
971 * time. (See 'struct static_sched_domain' in kernel/sched.c)
972 */
973 unsigned long span[0];
974 };
975
976 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
977 {
978 return to_cpumask(sd->span);
979 }
980
981 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
982 struct sched_domain_attr *dattr_new);
983
984 /* Allocate an array of sched domains, for partition_sched_domains(). */
985 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
986 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
987
988 /* Test a flag in parent sched domain */
989 static inline int test_sd_parent(struct sched_domain *sd, int flag)
990 {
991 if (sd->parent && (sd->parent->flags & flag))
992 return 1;
993
994 return 0;
995 }
996
997 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu);
998 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu);
999
1000 #else /* CONFIG_SMP */
1001
1002 struct sched_domain_attr;
1003
1004 static inline void
1005 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1006 struct sched_domain_attr *dattr_new)
1007 {
1008 }
1009 #endif /* !CONFIG_SMP */
1010
1011
1012 struct io_context; /* See blkdev.h */
1013
1014
1015 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1016 extern void prefetch_stack(struct task_struct *t);
1017 #else
1018 static inline void prefetch_stack(struct task_struct *t) { }
1019 #endif
1020
1021 struct audit_context; /* See audit.c */
1022 struct mempolicy;
1023 struct pipe_inode_info;
1024 struct uts_namespace;
1025
1026 struct rq;
1027 struct sched_domain;
1028
1029 /*
1030 * wake flags
1031 */
1032 #define WF_SYNC 0x01 /* waker goes to sleep after wakup */
1033 #define WF_FORK 0x02 /* child wakeup after fork */
1034
1035 #define ENQUEUE_WAKEUP 1
1036 #define ENQUEUE_WAKING 2
1037 #define ENQUEUE_HEAD 4
1038
1039 #define DEQUEUE_SLEEP 1
1040
1041 struct sched_class {
1042 const struct sched_class *next;
1043
1044 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1045 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1046 void (*yield_task) (struct rq *rq);
1047
1048 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1049
1050 struct task_struct * (*pick_next_task) (struct rq *rq);
1051 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1052
1053 #ifdef CONFIG_SMP
1054 int (*select_task_rq)(struct rq *rq, struct task_struct *p,
1055 int sd_flag, int flags);
1056
1057 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1058 void (*post_schedule) (struct rq *this_rq);
1059 void (*task_waking) (struct rq *this_rq, struct task_struct *task);
1060 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1061
1062 void (*set_cpus_allowed)(struct task_struct *p,
1063 const struct cpumask *newmask);
1064
1065 void (*rq_online)(struct rq *rq);
1066 void (*rq_offline)(struct rq *rq);
1067 #endif
1068
1069 void (*set_curr_task) (struct rq *rq);
1070 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1071 void (*task_fork) (struct task_struct *p);
1072
1073 void (*switched_from) (struct rq *this_rq, struct task_struct *task,
1074 int running);
1075 void (*switched_to) (struct rq *this_rq, struct task_struct *task,
1076 int running);
1077 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1078 int oldprio, int running);
1079
1080 unsigned int (*get_rr_interval) (struct rq *rq,
1081 struct task_struct *task);
1082
1083 #ifdef CONFIG_FAIR_GROUP_SCHED
1084 void (*moved_group) (struct task_struct *p, int on_rq);
1085 #endif
1086 };
1087
1088 struct load_weight {
1089 unsigned long weight, inv_weight;
1090 };
1091
1092 #ifdef CONFIG_SCHEDSTATS
1093 struct sched_statistics {
1094 u64 wait_start;
1095 u64 wait_max;
1096 u64 wait_count;
1097 u64 wait_sum;
1098 u64 iowait_count;
1099 u64 iowait_sum;
1100
1101 u64 sleep_start;
1102 u64 sleep_max;
1103 s64 sum_sleep_runtime;
1104
1105 u64 block_start;
1106 u64 block_max;
1107 u64 exec_max;
1108 u64 slice_max;
1109
1110 u64 nr_migrations_cold;
1111 u64 nr_failed_migrations_affine;
1112 u64 nr_failed_migrations_running;
1113 u64 nr_failed_migrations_hot;
1114 u64 nr_forced_migrations;
1115
1116 u64 nr_wakeups;
1117 u64 nr_wakeups_sync;
1118 u64 nr_wakeups_migrate;
1119 u64 nr_wakeups_local;
1120 u64 nr_wakeups_remote;
1121 u64 nr_wakeups_affine;
1122 u64 nr_wakeups_affine_attempts;
1123 u64 nr_wakeups_passive;
1124 u64 nr_wakeups_idle;
1125 };
1126 #endif
1127
1128 struct sched_entity {
1129 struct load_weight load; /* for load-balancing */
1130 struct rb_node run_node;
1131 struct list_head group_node;
1132 unsigned int on_rq;
1133
1134 u64 exec_start;
1135 u64 sum_exec_runtime;
1136 u64 vruntime;
1137 u64 prev_sum_exec_runtime;
1138
1139 u64 nr_migrations;
1140
1141 #ifdef CONFIG_SCHEDSTATS
1142 struct sched_statistics statistics;
1143 #endif
1144
1145 #ifdef CONFIG_FAIR_GROUP_SCHED
1146 struct sched_entity *parent;
1147 /* rq on which this entity is (to be) queued: */
1148 struct cfs_rq *cfs_rq;
1149 /* rq "owned" by this entity/group: */
1150 struct cfs_rq *my_q;
1151 #endif
1152 };
1153
1154 struct sched_rt_entity {
1155 struct list_head run_list;
1156 unsigned long timeout;
1157 unsigned int time_slice;
1158 int nr_cpus_allowed;
1159
1160 struct sched_rt_entity *back;
1161 #ifdef CONFIG_RT_GROUP_SCHED
1162 struct sched_rt_entity *parent;
1163 /* rq on which this entity is (to be) queued: */
1164 struct rt_rq *rt_rq;
1165 /* rq "owned" by this entity/group: */
1166 struct rt_rq *my_q;
1167 #endif
1168 };
1169
1170 struct rcu_node;
1171
1172 struct task_struct {
1173 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1174 void *stack;
1175 atomic_t usage;
1176 unsigned int flags; /* per process flags, defined below */
1177 unsigned int ptrace;
1178
1179 int lock_depth; /* BKL lock depth */
1180
1181 #ifdef CONFIG_SMP
1182 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1183 int oncpu;
1184 #endif
1185 #endif
1186
1187 int prio, static_prio, normal_prio;
1188 unsigned int rt_priority;
1189 const struct sched_class *sched_class;
1190 struct sched_entity se;
1191 struct sched_rt_entity rt;
1192
1193 #ifdef CONFIG_PREEMPT_NOTIFIERS
1194 /* list of struct preempt_notifier: */
1195 struct hlist_head preempt_notifiers;
1196 #endif
1197
1198 /*
1199 * fpu_counter contains the number of consecutive context switches
1200 * that the FPU is used. If this is over a threshold, the lazy fpu
1201 * saving becomes unlazy to save the trap. This is an unsigned char
1202 * so that after 256 times the counter wraps and the behavior turns
1203 * lazy again; this to deal with bursty apps that only use FPU for
1204 * a short time
1205 */
1206 unsigned char fpu_counter;
1207 #ifdef CONFIG_BLK_DEV_IO_TRACE
1208 unsigned int btrace_seq;
1209 #endif
1210
1211 unsigned int policy;
1212 cpumask_t cpus_allowed;
1213
1214 #ifdef CONFIG_TREE_PREEMPT_RCU
1215 int rcu_read_lock_nesting;
1216 char rcu_read_unlock_special;
1217 struct rcu_node *rcu_blocked_node;
1218 struct list_head rcu_node_entry;
1219 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1220
1221 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1222 struct sched_info sched_info;
1223 #endif
1224
1225 struct list_head tasks;
1226 struct plist_node pushable_tasks;
1227
1228 struct mm_struct *mm, *active_mm;
1229 #if defined(SPLIT_RSS_COUNTING)
1230 struct task_rss_stat rss_stat;
1231 #endif
1232 /* task state */
1233 int exit_state;
1234 int exit_code, exit_signal;
1235 int pdeath_signal; /* The signal sent when the parent dies */
1236 /* ??? */
1237 unsigned int personality;
1238 unsigned did_exec:1;
1239 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1240 * execve */
1241 unsigned in_iowait:1;
1242
1243
1244 /* Revert to default priority/policy when forking */
1245 unsigned sched_reset_on_fork:1;
1246
1247 pid_t pid;
1248 pid_t tgid;
1249
1250 #ifdef CONFIG_CC_STACKPROTECTOR
1251 /* Canary value for the -fstack-protector gcc feature */
1252 unsigned long stack_canary;
1253 #endif
1254
1255 /*
1256 * pointers to (original) parent process, youngest child, younger sibling,
1257 * older sibling, respectively. (p->father can be replaced with
1258 * p->real_parent->pid)
1259 */
1260 struct task_struct *real_parent; /* real parent process */
1261 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1262 /*
1263 * children/sibling forms the list of my natural children
1264 */
1265 struct list_head children; /* list of my children */
1266 struct list_head sibling; /* linkage in my parent's children list */
1267 struct task_struct *group_leader; /* threadgroup leader */
1268
1269 /*
1270 * ptraced is the list of tasks this task is using ptrace on.
1271 * This includes both natural children and PTRACE_ATTACH targets.
1272 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1273 */
1274 struct list_head ptraced;
1275 struct list_head ptrace_entry;
1276
1277 /* PID/PID hash table linkage. */
1278 struct pid_link pids[PIDTYPE_MAX];
1279 struct list_head thread_group;
1280
1281 struct completion *vfork_done; /* for vfork() */
1282 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1283 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1284
1285 cputime_t utime, stime, utimescaled, stimescaled;
1286 cputime_t gtime;
1287 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1288 cputime_t prev_utime, prev_stime;
1289 #endif
1290 unsigned long nvcsw, nivcsw; /* context switch counts */
1291 struct timespec start_time; /* monotonic time */
1292 struct timespec real_start_time; /* boot based time */
1293 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1294 unsigned long min_flt, maj_flt;
1295
1296 struct task_cputime cputime_expires;
1297 struct list_head cpu_timers[3];
1298
1299 /* process credentials */
1300 const struct cred *real_cred; /* objective and real subjective task
1301 * credentials (COW) */
1302 const struct cred *cred; /* effective (overridable) subjective task
1303 * credentials (COW) */
1304 struct mutex cred_guard_mutex; /* guard against foreign influences on
1305 * credential calculations
1306 * (notably. ptrace) */
1307 struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */
1308
1309 char comm[TASK_COMM_LEN]; /* executable name excluding path
1310 - access with [gs]et_task_comm (which lock
1311 it with task_lock())
1312 - initialized normally by setup_new_exec */
1313 /* file system info */
1314 int link_count, total_link_count;
1315 #ifdef CONFIG_SYSVIPC
1316 /* ipc stuff */
1317 struct sysv_sem sysvsem;
1318 #endif
1319 #ifdef CONFIG_DETECT_HUNG_TASK
1320 /* hung task detection */
1321 unsigned long last_switch_count;
1322 #endif
1323 /* CPU-specific state of this task */
1324 struct thread_struct thread;
1325 /* filesystem information */
1326 struct fs_struct *fs;
1327 /* open file information */
1328 struct files_struct *files;
1329 /* namespaces */
1330 struct nsproxy *nsproxy;
1331 /* signal handlers */
1332 struct signal_struct *signal;
1333 struct sighand_struct *sighand;
1334
1335 sigset_t blocked, real_blocked;
1336 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1337 struct sigpending pending;
1338
1339 unsigned long sas_ss_sp;
1340 size_t sas_ss_size;
1341 int (*notifier)(void *priv);
1342 void *notifier_data;
1343 sigset_t *notifier_mask;
1344 struct audit_context *audit_context;
1345 #ifdef CONFIG_AUDITSYSCALL
1346 uid_t loginuid;
1347 unsigned int sessionid;
1348 #endif
1349 seccomp_t seccomp;
1350
1351 /* Thread group tracking */
1352 u32 parent_exec_id;
1353 u32 self_exec_id;
1354 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1355 * mempolicy */
1356 spinlock_t alloc_lock;
1357
1358 #ifdef CONFIG_GENERIC_HARDIRQS
1359 /* IRQ handler threads */
1360 struct irqaction *irqaction;
1361 #endif
1362
1363 /* Protection of the PI data structures: */
1364 raw_spinlock_t pi_lock;
1365
1366 #ifdef CONFIG_RT_MUTEXES
1367 /* PI waiters blocked on a rt_mutex held by this task */
1368 struct plist_head pi_waiters;
1369 /* Deadlock detection and priority inheritance handling */
1370 struct rt_mutex_waiter *pi_blocked_on;
1371 #endif
1372
1373 #ifdef CONFIG_DEBUG_MUTEXES
1374 /* mutex deadlock detection */
1375 struct mutex_waiter *blocked_on;
1376 #endif
1377 #ifdef CONFIG_TRACE_IRQFLAGS
1378 unsigned int irq_events;
1379 unsigned long hardirq_enable_ip;
1380 unsigned long hardirq_disable_ip;
1381 unsigned int hardirq_enable_event;
1382 unsigned int hardirq_disable_event;
1383 int hardirqs_enabled;
1384 int hardirq_context;
1385 unsigned long softirq_disable_ip;
1386 unsigned long softirq_enable_ip;
1387 unsigned int softirq_disable_event;
1388 unsigned int softirq_enable_event;
1389 int softirqs_enabled;
1390 int softirq_context;
1391 #endif
1392 #ifdef CONFIG_LOCKDEP
1393 # define MAX_LOCK_DEPTH 48UL
1394 u64 curr_chain_key;
1395 int lockdep_depth;
1396 unsigned int lockdep_recursion;
1397 struct held_lock held_locks[MAX_LOCK_DEPTH];
1398 gfp_t lockdep_reclaim_gfp;
1399 #endif
1400
1401 /* journalling filesystem info */
1402 void *journal_info;
1403
1404 /* stacked block device info */
1405 struct bio_list *bio_list;
1406
1407 /* VM state */
1408 struct reclaim_state *reclaim_state;
1409
1410 struct backing_dev_info *backing_dev_info;
1411
1412 struct io_context *io_context;
1413
1414 unsigned long ptrace_message;
1415 siginfo_t *last_siginfo; /* For ptrace use. */
1416 struct task_io_accounting ioac;
1417 #if defined(CONFIG_TASK_XACCT)
1418 u64 acct_rss_mem1; /* accumulated rss usage */
1419 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1420 cputime_t acct_timexpd; /* stime + utime since last update */
1421 #endif
1422 #ifdef CONFIG_CPUSETS
1423 nodemask_t mems_allowed; /* Protected by alloc_lock */
1424 int mems_allowed_change_disable;
1425 int cpuset_mem_spread_rotor;
1426 int cpuset_slab_spread_rotor;
1427 #endif
1428 #ifdef CONFIG_CGROUPS
1429 /* Control Group info protected by css_set_lock */
1430 struct css_set *cgroups;
1431 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1432 struct list_head cg_list;
1433 #endif
1434 #ifdef CONFIG_FUTEX
1435 struct robust_list_head __user *robust_list;
1436 #ifdef CONFIG_COMPAT
1437 struct compat_robust_list_head __user *compat_robust_list;
1438 #endif
1439 struct list_head pi_state_list;
1440 struct futex_pi_state *pi_state_cache;
1441 #endif
1442 #ifdef CONFIG_PERF_EVENTS
1443 struct perf_event_context *perf_event_ctxp;
1444 struct mutex perf_event_mutex;
1445 struct list_head perf_event_list;
1446 #endif
1447 #ifdef CONFIG_NUMA
1448 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1449 short il_next;
1450 #endif
1451 atomic_t fs_excl; /* holding fs exclusive resources */
1452 struct rcu_head rcu;
1453
1454 /*
1455 * cache last used pipe for splice
1456 */
1457 struct pipe_inode_info *splice_pipe;
1458 #ifdef CONFIG_TASK_DELAY_ACCT
1459 struct task_delay_info *delays;
1460 #endif
1461 #ifdef CONFIG_FAULT_INJECTION
1462 int make_it_fail;
1463 #endif
1464 struct prop_local_single dirties;
1465 #ifdef CONFIG_LATENCYTOP
1466 int latency_record_count;
1467 struct latency_record latency_record[LT_SAVECOUNT];
1468 #endif
1469 /*
1470 * time slack values; these are used to round up poll() and
1471 * select() etc timeout values. These are in nanoseconds.
1472 */
1473 unsigned long timer_slack_ns;
1474 unsigned long default_timer_slack_ns;
1475
1476 struct list_head *scm_work_list;
1477 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1478 /* Index of current stored address in ret_stack */
1479 int curr_ret_stack;
1480 /* Stack of return addresses for return function tracing */
1481 struct ftrace_ret_stack *ret_stack;
1482 /* time stamp for last schedule */
1483 unsigned long long ftrace_timestamp;
1484 /*
1485 * Number of functions that haven't been traced
1486 * because of depth overrun.
1487 */
1488 atomic_t trace_overrun;
1489 /* Pause for the tracing */
1490 atomic_t tracing_graph_pause;
1491 #endif
1492 #ifdef CONFIG_TRACING
1493 /* state flags for use by tracers */
1494 unsigned long trace;
1495 /* bitmask of trace recursion */
1496 unsigned long trace_recursion;
1497 #endif /* CONFIG_TRACING */
1498 #ifdef CONFIG_CGROUP_MEM_RES_CTLR /* memcg uses this to do batch job */
1499 struct memcg_batch_info {
1500 int do_batch; /* incremented when batch uncharge started */
1501 struct mem_cgroup *memcg; /* target memcg of uncharge */
1502 unsigned long bytes; /* uncharged usage */
1503 unsigned long memsw_bytes; /* uncharged mem+swap usage */
1504 } memcg_batch;
1505 #endif
1506 };
1507
1508 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1509 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1510
1511 /*
1512 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1513 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1514 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1515 * values are inverted: lower p->prio value means higher priority.
1516 *
1517 * The MAX_USER_RT_PRIO value allows the actual maximum
1518 * RT priority to be separate from the value exported to
1519 * user-space. This allows kernel threads to set their
1520 * priority to a value higher than any user task. Note:
1521 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1522 */
1523
1524 #define MAX_USER_RT_PRIO 100
1525 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1526
1527 #define MAX_PRIO (MAX_RT_PRIO + 40)
1528 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1529
1530 static inline int rt_prio(int prio)
1531 {
1532 if (unlikely(prio < MAX_RT_PRIO))
1533 return 1;
1534 return 0;
1535 }
1536
1537 static inline int rt_task(struct task_struct *p)
1538 {
1539 return rt_prio(p->prio);
1540 }
1541
1542 static inline struct pid *task_pid(struct task_struct *task)
1543 {
1544 return task->pids[PIDTYPE_PID].pid;
1545 }
1546
1547 static inline struct pid *task_tgid(struct task_struct *task)
1548 {
1549 return task->group_leader->pids[PIDTYPE_PID].pid;
1550 }
1551
1552 /*
1553 * Without tasklist or rcu lock it is not safe to dereference
1554 * the result of task_pgrp/task_session even if task == current,
1555 * we can race with another thread doing sys_setsid/sys_setpgid.
1556 */
1557 static inline struct pid *task_pgrp(struct task_struct *task)
1558 {
1559 return task->group_leader->pids[PIDTYPE_PGID].pid;
1560 }
1561
1562 static inline struct pid *task_session(struct task_struct *task)
1563 {
1564 return task->group_leader->pids[PIDTYPE_SID].pid;
1565 }
1566
1567 struct pid_namespace;
1568
1569 /*
1570 * the helpers to get the task's different pids as they are seen
1571 * from various namespaces
1572 *
1573 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1574 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1575 * current.
1576 * task_xid_nr_ns() : id seen from the ns specified;
1577 *
1578 * set_task_vxid() : assigns a virtual id to a task;
1579 *
1580 * see also pid_nr() etc in include/linux/pid.h
1581 */
1582 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1583 struct pid_namespace *ns);
1584
1585 static inline pid_t task_pid_nr(struct task_struct *tsk)
1586 {
1587 return tsk->pid;
1588 }
1589
1590 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1591 struct pid_namespace *ns)
1592 {
1593 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1594 }
1595
1596 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1597 {
1598 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1599 }
1600
1601
1602 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1603 {
1604 return tsk->tgid;
1605 }
1606
1607 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1608
1609 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1610 {
1611 return pid_vnr(task_tgid(tsk));
1612 }
1613
1614
1615 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1616 struct pid_namespace *ns)
1617 {
1618 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1619 }
1620
1621 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1622 {
1623 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1624 }
1625
1626
1627 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1628 struct pid_namespace *ns)
1629 {
1630 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1631 }
1632
1633 static inline pid_t task_session_vnr(struct task_struct *tsk)
1634 {
1635 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1636 }
1637
1638 /* obsolete, do not use */
1639 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1640 {
1641 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1642 }
1643
1644 /**
1645 * pid_alive - check that a task structure is not stale
1646 * @p: Task structure to be checked.
1647 *
1648 * Test if a process is not yet dead (at most zombie state)
1649 * If pid_alive fails, then pointers within the task structure
1650 * can be stale and must not be dereferenced.
1651 */
1652 static inline int pid_alive(struct task_struct *p)
1653 {
1654 return p->pids[PIDTYPE_PID].pid != NULL;
1655 }
1656
1657 /**
1658 * is_global_init - check if a task structure is init
1659 * @tsk: Task structure to be checked.
1660 *
1661 * Check if a task structure is the first user space task the kernel created.
1662 */
1663 static inline int is_global_init(struct task_struct *tsk)
1664 {
1665 return tsk->pid == 1;
1666 }
1667
1668 /*
1669 * is_container_init:
1670 * check whether in the task is init in its own pid namespace.
1671 */
1672 extern int is_container_init(struct task_struct *tsk);
1673
1674 extern struct pid *cad_pid;
1675
1676 extern void free_task(struct task_struct *tsk);
1677 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1678
1679 extern void __put_task_struct(struct task_struct *t);
1680
1681 static inline void put_task_struct(struct task_struct *t)
1682 {
1683 if (atomic_dec_and_test(&t->usage))
1684 __put_task_struct(t);
1685 }
1686
1687 extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1688 extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1689
1690 /*
1691 * Per process flags
1692 */
1693 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */
1694 /* Not implemented yet, only for 486*/
1695 #define PF_STARTING 0x00000002 /* being created */
1696 #define PF_EXITING 0x00000004 /* getting shut down */
1697 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1698 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1699 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1700 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1701 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1702 #define PF_DUMPCORE 0x00000200 /* dumped core */
1703 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1704 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1705 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */
1706 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1707 #define PF_FREEZING 0x00004000 /* freeze in progress. do not account to load */
1708 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1709 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1710 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1711 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1712 #define PF_OOM_ORIGIN 0x00080000 /* Allocating much memory to others */
1713 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1714 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1715 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1716 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1717 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1718 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1719 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */
1720 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1721 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1722 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1723 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */
1724 #define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */
1725
1726 /*
1727 * Only the _current_ task can read/write to tsk->flags, but other
1728 * tasks can access tsk->flags in readonly mode for example
1729 * with tsk_used_math (like during threaded core dumping).
1730 * There is however an exception to this rule during ptrace
1731 * or during fork: the ptracer task is allowed to write to the
1732 * child->flags of its traced child (same goes for fork, the parent
1733 * can write to the child->flags), because we're guaranteed the
1734 * child is not running and in turn not changing child->flags
1735 * at the same time the parent does it.
1736 */
1737 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1738 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1739 #define clear_used_math() clear_stopped_child_used_math(current)
1740 #define set_used_math() set_stopped_child_used_math(current)
1741 #define conditional_stopped_child_used_math(condition, child) \
1742 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1743 #define conditional_used_math(condition) \
1744 conditional_stopped_child_used_math(condition, current)
1745 #define copy_to_stopped_child_used_math(child) \
1746 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1747 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1748 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1749 #define used_math() tsk_used_math(current)
1750
1751 #ifdef CONFIG_TREE_PREEMPT_RCU
1752
1753 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1754 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1755
1756 static inline void rcu_copy_process(struct task_struct *p)
1757 {
1758 p->rcu_read_lock_nesting = 0;
1759 p->rcu_read_unlock_special = 0;
1760 p->rcu_blocked_node = NULL;
1761 INIT_LIST_HEAD(&p->rcu_node_entry);
1762 }
1763
1764 #else
1765
1766 static inline void rcu_copy_process(struct task_struct *p)
1767 {
1768 }
1769
1770 #endif
1771
1772 #ifdef CONFIG_SMP
1773 extern int set_cpus_allowed_ptr(struct task_struct *p,
1774 const struct cpumask *new_mask);
1775 #else
1776 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1777 const struct cpumask *new_mask)
1778 {
1779 if (!cpumask_test_cpu(0, new_mask))
1780 return -EINVAL;
1781 return 0;
1782 }
1783 #endif
1784
1785 #ifndef CONFIG_CPUMASK_OFFSTACK
1786 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1787 {
1788 return set_cpus_allowed_ptr(p, &new_mask);
1789 }
1790 #endif
1791
1792 /*
1793 * Architectures can set this to 1 if they have specified
1794 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1795 * but then during bootup it turns out that sched_clock()
1796 * is reliable after all:
1797 */
1798 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1799 extern int sched_clock_stable;
1800 #endif
1801
1802 /* ftrace calls sched_clock() directly */
1803 extern unsigned long long notrace sched_clock(void);
1804
1805 extern void sched_clock_init(void);
1806 extern u64 sched_clock_cpu(int cpu);
1807
1808 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1809 static inline void sched_clock_tick(void)
1810 {
1811 }
1812
1813 static inline void sched_clock_idle_sleep_event(void)
1814 {
1815 }
1816
1817 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1818 {
1819 }
1820 #else
1821 extern void sched_clock_tick(void);
1822 extern void sched_clock_idle_sleep_event(void);
1823 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1824 #endif
1825
1826 /*
1827 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1828 * clock constructed from sched_clock():
1829 */
1830 extern unsigned long long cpu_clock(int cpu);
1831
1832 extern unsigned long long
1833 task_sched_runtime(struct task_struct *task);
1834 extern unsigned long long thread_group_sched_runtime(struct task_struct *task);
1835
1836 /* sched_exec is called by processes performing an exec */
1837 #ifdef CONFIG_SMP
1838 extern void sched_exec(void);
1839 #else
1840 #define sched_exec() {}
1841 #endif
1842
1843 extern void sched_clock_idle_sleep_event(void);
1844 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1845
1846 #ifdef CONFIG_HOTPLUG_CPU
1847 extern void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p);
1848 extern void idle_task_exit(void);
1849 #else
1850 static inline void idle_task_exit(void) {}
1851 #endif
1852
1853 extern void sched_idle_next(void);
1854
1855 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1856 extern void wake_up_idle_cpu(int cpu);
1857 #else
1858 static inline void wake_up_idle_cpu(int cpu) { }
1859 #endif
1860
1861 extern unsigned int sysctl_sched_latency;
1862 extern unsigned int sysctl_sched_min_granularity;
1863 extern unsigned int sysctl_sched_wakeup_granularity;
1864 extern unsigned int sysctl_sched_shares_ratelimit;
1865 extern unsigned int sysctl_sched_shares_thresh;
1866 extern unsigned int sysctl_sched_child_runs_first;
1867
1868 enum sched_tunable_scaling {
1869 SCHED_TUNABLESCALING_NONE,
1870 SCHED_TUNABLESCALING_LOG,
1871 SCHED_TUNABLESCALING_LINEAR,
1872 SCHED_TUNABLESCALING_END,
1873 };
1874 extern enum sched_tunable_scaling sysctl_sched_tunable_scaling;
1875
1876 #ifdef CONFIG_SCHED_DEBUG
1877 extern unsigned int sysctl_sched_migration_cost;
1878 extern unsigned int sysctl_sched_nr_migrate;
1879 extern unsigned int sysctl_sched_time_avg;
1880 extern unsigned int sysctl_timer_migration;
1881
1882 int sched_proc_update_handler(struct ctl_table *table, int write,
1883 void __user *buffer, size_t *length,
1884 loff_t *ppos);
1885 #endif
1886 #ifdef CONFIG_SCHED_DEBUG
1887 static inline unsigned int get_sysctl_timer_migration(void)
1888 {
1889 return sysctl_timer_migration;
1890 }
1891 #else
1892 static inline unsigned int get_sysctl_timer_migration(void)
1893 {
1894 return 1;
1895 }
1896 #endif
1897 extern unsigned int sysctl_sched_rt_period;
1898 extern int sysctl_sched_rt_runtime;
1899
1900 int sched_rt_handler(struct ctl_table *table, int write,
1901 void __user *buffer, size_t *lenp,
1902 loff_t *ppos);
1903
1904 extern unsigned int sysctl_sched_compat_yield;
1905
1906 #ifdef CONFIG_RT_MUTEXES
1907 extern int rt_mutex_getprio(struct task_struct *p);
1908 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1909 extern void rt_mutex_adjust_pi(struct task_struct *p);
1910 #else
1911 static inline int rt_mutex_getprio(struct task_struct *p)
1912 {
1913 return p->normal_prio;
1914 }
1915 # define rt_mutex_adjust_pi(p) do { } while (0)
1916 #endif
1917
1918 extern void set_user_nice(struct task_struct *p, long nice);
1919 extern int task_prio(const struct task_struct *p);
1920 extern int task_nice(const struct task_struct *p);
1921 extern int can_nice(const struct task_struct *p, const int nice);
1922 extern int task_curr(const struct task_struct *p);
1923 extern int idle_cpu(int cpu);
1924 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1925 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1926 struct sched_param *);
1927 extern struct task_struct *idle_task(int cpu);
1928 extern struct task_struct *curr_task(int cpu);
1929 extern void set_curr_task(int cpu, struct task_struct *p);
1930
1931 void yield(void);
1932
1933 /*
1934 * The default (Linux) execution domain.
1935 */
1936 extern struct exec_domain default_exec_domain;
1937
1938 union thread_union {
1939 struct thread_info thread_info;
1940 unsigned long stack[THREAD_SIZE/sizeof(long)];
1941 };
1942
1943 #ifndef __HAVE_ARCH_KSTACK_END
1944 static inline int kstack_end(void *addr)
1945 {
1946 /* Reliable end of stack detection:
1947 * Some APM bios versions misalign the stack
1948 */
1949 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1950 }
1951 #endif
1952
1953 extern union thread_union init_thread_union;
1954 extern struct task_struct init_task;
1955
1956 extern struct mm_struct init_mm;
1957
1958 extern struct pid_namespace init_pid_ns;
1959
1960 /*
1961 * find a task by one of its numerical ids
1962 *
1963 * find_task_by_pid_ns():
1964 * finds a task by its pid in the specified namespace
1965 * find_task_by_vpid():
1966 * finds a task by its virtual pid
1967 *
1968 * see also find_vpid() etc in include/linux/pid.h
1969 */
1970
1971 extern struct task_struct *find_task_by_vpid(pid_t nr);
1972 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1973 struct pid_namespace *ns);
1974
1975 extern void __set_special_pids(struct pid *pid);
1976
1977 /* per-UID process charging. */
1978 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
1979 static inline struct user_struct *get_uid(struct user_struct *u)
1980 {
1981 atomic_inc(&u->__count);
1982 return u;
1983 }
1984 extern void free_uid(struct user_struct *);
1985 extern void release_uids(struct user_namespace *ns);
1986
1987 #include <asm/current.h>
1988
1989 extern void do_timer(unsigned long ticks);
1990
1991 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1992 extern int wake_up_process(struct task_struct *tsk);
1993 extern void wake_up_new_task(struct task_struct *tsk,
1994 unsigned long clone_flags);
1995 #ifdef CONFIG_SMP
1996 extern void kick_process(struct task_struct *tsk);
1997 #else
1998 static inline void kick_process(struct task_struct *tsk) { }
1999 #endif
2000 extern void sched_fork(struct task_struct *p, int clone_flags);
2001 extern void sched_dead(struct task_struct *p);
2002
2003 extern void proc_caches_init(void);
2004 extern void flush_signals(struct task_struct *);
2005 extern void __flush_signals(struct task_struct *);
2006 extern void ignore_signals(struct task_struct *);
2007 extern void flush_signal_handlers(struct task_struct *, int force_default);
2008 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2009
2010 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2011 {
2012 unsigned long flags;
2013 int ret;
2014
2015 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2016 ret = dequeue_signal(tsk, mask, info);
2017 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2018
2019 return ret;
2020 }
2021
2022 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2023 sigset_t *mask);
2024 extern void unblock_all_signals(void);
2025 extern void release_task(struct task_struct * p);
2026 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2027 extern int force_sigsegv(int, struct task_struct *);
2028 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2029 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2030 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2031 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
2032 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2033 extern int kill_pid(struct pid *pid, int sig, int priv);
2034 extern int kill_proc_info(int, struct siginfo *, pid_t);
2035 extern int do_notify_parent(struct task_struct *, int);
2036 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2037 extern void force_sig(int, struct task_struct *);
2038 extern int send_sig(int, struct task_struct *, int);
2039 extern int zap_other_threads(struct task_struct *p);
2040 extern struct sigqueue *sigqueue_alloc(void);
2041 extern void sigqueue_free(struct sigqueue *);
2042 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2043 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2044 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
2045
2046 static inline int kill_cad_pid(int sig, int priv)
2047 {
2048 return kill_pid(cad_pid, sig, priv);
2049 }
2050
2051 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2052 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2053 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2054 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2055
2056 /*
2057 * True if we are on the alternate signal stack.
2058 */
2059 static inline int on_sig_stack(unsigned long sp)
2060 {
2061 #ifdef CONFIG_STACK_GROWSUP
2062 return sp >= current->sas_ss_sp &&
2063 sp - current->sas_ss_sp < current->sas_ss_size;
2064 #else
2065 return sp > current->sas_ss_sp &&
2066 sp - current->sas_ss_sp <= current->sas_ss_size;
2067 #endif
2068 }
2069
2070 static inline int sas_ss_flags(unsigned long sp)
2071 {
2072 return (current->sas_ss_size == 0 ? SS_DISABLE
2073 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2074 }
2075
2076 /*
2077 * Routines for handling mm_structs
2078 */
2079 extern struct mm_struct * mm_alloc(void);
2080
2081 /* mmdrop drops the mm and the page tables */
2082 extern void __mmdrop(struct mm_struct *);
2083 static inline void mmdrop(struct mm_struct * mm)
2084 {
2085 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2086 __mmdrop(mm);
2087 }
2088
2089 /* mmput gets rid of the mappings and all user-space */
2090 extern void mmput(struct mm_struct *);
2091 /* Grab a reference to a task's mm, if it is not already going away */
2092 extern struct mm_struct *get_task_mm(struct task_struct *task);
2093 /* Remove the current tasks stale references to the old mm_struct */
2094 extern void mm_release(struct task_struct *, struct mm_struct *);
2095 /* Allocate a new mm structure and copy contents from tsk->mm */
2096 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2097
2098 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2099 struct task_struct *, struct pt_regs *);
2100 extern void flush_thread(void);
2101 extern void exit_thread(void);
2102
2103 extern void exit_files(struct task_struct *);
2104 extern void __cleanup_signal(struct signal_struct *);
2105 extern void __cleanup_sighand(struct sighand_struct *);
2106
2107 extern void exit_itimers(struct signal_struct *);
2108 extern void flush_itimer_signals(void);
2109
2110 extern NORET_TYPE void do_group_exit(int);
2111
2112 extern void daemonize(const char *, ...);
2113 extern int allow_signal(int);
2114 extern int disallow_signal(int);
2115
2116 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
2117 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
2118 struct task_struct *fork_idle(int);
2119
2120 extern void set_task_comm(struct task_struct *tsk, char *from);
2121 extern char *get_task_comm(char *to, struct task_struct *tsk);
2122
2123 #ifdef CONFIG_SMP
2124 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2125 #else
2126 static inline unsigned long wait_task_inactive(struct task_struct *p,
2127 long match_state)
2128 {
2129 return 1;
2130 }
2131 #endif
2132
2133 #define next_task(p) \
2134 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2135
2136 #define for_each_process(p) \
2137 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2138
2139 extern bool current_is_single_threaded(void);
2140
2141 /*
2142 * Careful: do_each_thread/while_each_thread is a double loop so
2143 * 'break' will not work as expected - use goto instead.
2144 */
2145 #define do_each_thread(g, t) \
2146 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2147
2148 #define while_each_thread(g, t) \
2149 while ((t = next_thread(t)) != g)
2150
2151 /* de_thread depends on thread_group_leader not being a pid based check */
2152 #define thread_group_leader(p) (p == p->group_leader)
2153
2154 /* Do to the insanities of de_thread it is possible for a process
2155 * to have the pid of the thread group leader without actually being
2156 * the thread group leader. For iteration through the pids in proc
2157 * all we care about is that we have a task with the appropriate
2158 * pid, we don't actually care if we have the right task.
2159 */
2160 static inline int has_group_leader_pid(struct task_struct *p)
2161 {
2162 return p->pid == p->tgid;
2163 }
2164
2165 static inline
2166 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2167 {
2168 return p1->tgid == p2->tgid;
2169 }
2170
2171 static inline struct task_struct *next_thread(const struct task_struct *p)
2172 {
2173 return list_entry_rcu(p->thread_group.next,
2174 struct task_struct, thread_group);
2175 }
2176
2177 static inline int thread_group_empty(struct task_struct *p)
2178 {
2179 return list_empty(&p->thread_group);
2180 }
2181
2182 #define delay_group_leader(p) \
2183 (thread_group_leader(p) && !thread_group_empty(p))
2184
2185 static inline int task_detached(struct task_struct *p)
2186 {
2187 return p->exit_signal == -1;
2188 }
2189
2190 /*
2191 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2192 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2193 * pins the final release of task.io_context. Also protects ->cpuset and
2194 * ->cgroup.subsys[].
2195 *
2196 * Nests both inside and outside of read_lock(&tasklist_lock).
2197 * It must not be nested with write_lock_irq(&tasklist_lock),
2198 * neither inside nor outside.
2199 */
2200 static inline void task_lock(struct task_struct *p)
2201 {
2202 spin_lock(&p->alloc_lock);
2203 }
2204
2205 static inline void task_unlock(struct task_struct *p)
2206 {
2207 spin_unlock(&p->alloc_lock);
2208 }
2209
2210 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2211 unsigned long *flags);
2212
2213 static inline void unlock_task_sighand(struct task_struct *tsk,
2214 unsigned long *flags)
2215 {
2216 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2217 }
2218
2219 #ifndef __HAVE_THREAD_FUNCTIONS
2220
2221 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2222 #define task_stack_page(task) ((task)->stack)
2223
2224 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2225 {
2226 *task_thread_info(p) = *task_thread_info(org);
2227 task_thread_info(p)->task = p;
2228 }
2229
2230 static inline unsigned long *end_of_stack(struct task_struct *p)
2231 {
2232 return (unsigned long *)(task_thread_info(p) + 1);
2233 }
2234
2235 #endif
2236
2237 static inline int object_is_on_stack(void *obj)
2238 {
2239 void *stack = task_stack_page(current);
2240
2241 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2242 }
2243
2244 extern void thread_info_cache_init(void);
2245
2246 #ifdef CONFIG_DEBUG_STACK_USAGE
2247 static inline unsigned long stack_not_used(struct task_struct *p)
2248 {
2249 unsigned long *n = end_of_stack(p);
2250
2251 do { /* Skip over canary */
2252 n++;
2253 } while (!*n);
2254
2255 return (unsigned long)n - (unsigned long)end_of_stack(p);
2256 }
2257 #endif
2258
2259 /* set thread flags in other task's structures
2260 * - see asm/thread_info.h for TIF_xxxx flags available
2261 */
2262 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2263 {
2264 set_ti_thread_flag(task_thread_info(tsk), flag);
2265 }
2266
2267 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2268 {
2269 clear_ti_thread_flag(task_thread_info(tsk), flag);
2270 }
2271
2272 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2273 {
2274 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2275 }
2276
2277 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2278 {
2279 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2280 }
2281
2282 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2283 {
2284 return test_ti_thread_flag(task_thread_info(tsk), flag);
2285 }
2286
2287 static inline void set_tsk_need_resched(struct task_struct *tsk)
2288 {
2289 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2290 }
2291
2292 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2293 {
2294 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2295 }
2296
2297 static inline int test_tsk_need_resched(struct task_struct *tsk)
2298 {
2299 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2300 }
2301
2302 static inline int restart_syscall(void)
2303 {
2304 set_tsk_thread_flag(current, TIF_SIGPENDING);
2305 return -ERESTARTNOINTR;
2306 }
2307
2308 static inline int signal_pending(struct task_struct *p)
2309 {
2310 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2311 }
2312
2313 static inline int __fatal_signal_pending(struct task_struct *p)
2314 {
2315 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2316 }
2317
2318 static inline int fatal_signal_pending(struct task_struct *p)
2319 {
2320 return signal_pending(p) && __fatal_signal_pending(p);
2321 }
2322
2323 static inline int signal_pending_state(long state, struct task_struct *p)
2324 {
2325 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2326 return 0;
2327 if (!signal_pending(p))
2328 return 0;
2329
2330 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2331 }
2332
2333 static inline int need_resched(void)
2334 {
2335 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2336 }
2337
2338 /*
2339 * cond_resched() and cond_resched_lock(): latency reduction via
2340 * explicit rescheduling in places that are safe. The return
2341 * value indicates whether a reschedule was done in fact.
2342 * cond_resched_lock() will drop the spinlock before scheduling,
2343 * cond_resched_softirq() will enable bhs before scheduling.
2344 */
2345 extern int _cond_resched(void);
2346
2347 #define cond_resched() ({ \
2348 __might_sleep(__FILE__, __LINE__, 0); \
2349 _cond_resched(); \
2350 })
2351
2352 extern int __cond_resched_lock(spinlock_t *lock);
2353
2354 #ifdef CONFIG_PREEMPT
2355 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
2356 #else
2357 #define PREEMPT_LOCK_OFFSET 0
2358 #endif
2359
2360 #define cond_resched_lock(lock) ({ \
2361 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2362 __cond_resched_lock(lock); \
2363 })
2364
2365 extern int __cond_resched_softirq(void);
2366
2367 #define cond_resched_softirq() ({ \
2368 __might_sleep(__FILE__, __LINE__, SOFTIRQ_OFFSET); \
2369 __cond_resched_softirq(); \
2370 })
2371
2372 /*
2373 * Does a critical section need to be broken due to another
2374 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2375 * but a general need for low latency)
2376 */
2377 static inline int spin_needbreak(spinlock_t *lock)
2378 {
2379 #ifdef CONFIG_PREEMPT
2380 return spin_is_contended(lock);
2381 #else
2382 return 0;
2383 #endif
2384 }
2385
2386 /*
2387 * Thread group CPU time accounting.
2388 */
2389 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2390 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2391
2392 static inline void thread_group_cputime_init(struct signal_struct *sig)
2393 {
2394 spin_lock_init(&sig->cputimer.lock);
2395 }
2396
2397 static inline void thread_group_cputime_free(struct signal_struct *sig)
2398 {
2399 }
2400
2401 /*
2402 * Reevaluate whether the task has signals pending delivery.
2403 * Wake the task if so.
2404 * This is required every time the blocked sigset_t changes.
2405 * callers must hold sighand->siglock.
2406 */
2407 extern void recalc_sigpending_and_wake(struct task_struct *t);
2408 extern void recalc_sigpending(void);
2409
2410 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2411
2412 /*
2413 * Wrappers for p->thread_info->cpu access. No-op on UP.
2414 */
2415 #ifdef CONFIG_SMP
2416
2417 static inline unsigned int task_cpu(const struct task_struct *p)
2418 {
2419 return task_thread_info(p)->cpu;
2420 }
2421
2422 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2423
2424 #else
2425
2426 static inline unsigned int task_cpu(const struct task_struct *p)
2427 {
2428 return 0;
2429 }
2430
2431 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2432 {
2433 }
2434
2435 #endif /* CONFIG_SMP */
2436
2437 #ifdef CONFIG_TRACING
2438 extern void
2439 __trace_special(void *__tr, void *__data,
2440 unsigned long arg1, unsigned long arg2, unsigned long arg3);
2441 #else
2442 static inline void
2443 __trace_special(void *__tr, void *__data,
2444 unsigned long arg1, unsigned long arg2, unsigned long arg3)
2445 {
2446 }
2447 #endif
2448
2449 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2450 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2451
2452 extern void normalize_rt_tasks(void);
2453
2454 #ifdef CONFIG_CGROUP_SCHED
2455
2456 extern struct task_group init_task_group;
2457
2458 extern struct task_group *sched_create_group(struct task_group *parent);
2459 extern void sched_destroy_group(struct task_group *tg);
2460 extern void sched_move_task(struct task_struct *tsk);
2461 #ifdef CONFIG_FAIR_GROUP_SCHED
2462 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2463 extern unsigned long sched_group_shares(struct task_group *tg);
2464 #endif
2465 #ifdef CONFIG_RT_GROUP_SCHED
2466 extern int sched_group_set_rt_runtime(struct task_group *tg,
2467 long rt_runtime_us);
2468 extern long sched_group_rt_runtime(struct task_group *tg);
2469 extern int sched_group_set_rt_period(struct task_group *tg,
2470 long rt_period_us);
2471 extern long sched_group_rt_period(struct task_group *tg);
2472 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2473 #endif
2474 #endif
2475
2476 extern int task_can_switch_user(struct user_struct *up,
2477 struct task_struct *tsk);
2478
2479 #ifdef CONFIG_TASK_XACCT
2480 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2481 {
2482 tsk->ioac.rchar += amt;
2483 }
2484
2485 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2486 {
2487 tsk->ioac.wchar += amt;
2488 }
2489
2490 static inline void inc_syscr(struct task_struct *tsk)
2491 {
2492 tsk->ioac.syscr++;
2493 }
2494
2495 static inline void inc_syscw(struct task_struct *tsk)
2496 {
2497 tsk->ioac.syscw++;
2498 }
2499 #else
2500 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2501 {
2502 }
2503
2504 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2505 {
2506 }
2507
2508 static inline void inc_syscr(struct task_struct *tsk)
2509 {
2510 }
2511
2512 static inline void inc_syscw(struct task_struct *tsk)
2513 {
2514 }
2515 #endif
2516
2517 #ifndef TASK_SIZE_OF
2518 #define TASK_SIZE_OF(tsk) TASK_SIZE
2519 #endif
2520
2521 /*
2522 * Call the function if the target task is executing on a CPU right now:
2523 */
2524 extern void task_oncpu_function_call(struct task_struct *p,
2525 void (*func) (void *info), void *info);
2526
2527
2528 #ifdef CONFIG_MM_OWNER
2529 extern void mm_update_next_owner(struct mm_struct *mm);
2530 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2531 #else
2532 static inline void mm_update_next_owner(struct mm_struct *mm)
2533 {
2534 }
2535
2536 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2537 {
2538 }
2539 #endif /* CONFIG_MM_OWNER */
2540
2541 static inline unsigned long task_rlimit(const struct task_struct *tsk,
2542 unsigned int limit)
2543 {
2544 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2545 }
2546
2547 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2548 unsigned int limit)
2549 {
2550 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2551 }
2552
2553 static inline unsigned long rlimit(unsigned int limit)
2554 {
2555 return task_rlimit(current, limit);
2556 }
2557
2558 static inline unsigned long rlimit_max(unsigned int limit)
2559 {
2560 return task_rlimit_max(current, limit);
2561 }
2562
2563 #endif /* __KERNEL__ */
2564
2565 #endif