nlm: Ensure callback code also checks that the files match
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 #include <uapi/linux/sched.h>
5
6
7 struct sched_param {
8 int sched_priority;
9 };
10
11 #include <asm/param.h> /* for HZ */
12
13 #include <linux/capability.h>
14 #include <linux/threads.h>
15 #include <linux/kernel.h>
16 #include <linux/types.h>
17 #include <linux/timex.h>
18 #include <linux/jiffies.h>
19 #include <linux/rbtree.h>
20 #include <linux/thread_info.h>
21 #include <linux/cpumask.h>
22 #include <linux/errno.h>
23 #include <linux/nodemask.h>
24 #include <linux/mm_types.h>
25
26 #include <asm/page.h>
27 #include <asm/ptrace.h>
28 #include <asm/cputime.h>
29
30 #include <linux/smp.h>
31 #include <linux/sem.h>
32 #include <linux/signal.h>
33 #include <linux/compiler.h>
34 #include <linux/completion.h>
35 #include <linux/pid.h>
36 #include <linux/percpu.h>
37 #include <linux/topology.h>
38 #include <linux/proportions.h>
39 #include <linux/seccomp.h>
40 #include <linux/rcupdate.h>
41 #include <linux/rculist.h>
42 #include <linux/rtmutex.h>
43
44 #include <linux/time.h>
45 #include <linux/param.h>
46 #include <linux/resource.h>
47 #include <linux/timer.h>
48 #include <linux/hrtimer.h>
49 #include <linux/task_io_accounting.h>
50 #include <linux/latencytop.h>
51 #include <linux/cred.h>
52 #include <linux/llist.h>
53 #include <linux/uidgid.h>
54 #include <linux/gfp.h>
55
56 #include <asm/processor.h>
57
58 struct exec_domain;
59 struct futex_pi_state;
60 struct robust_list_head;
61 struct bio_list;
62 struct fs_struct;
63 struct perf_event_context;
64 struct blk_plug;
65
66 /*
67 * List of flags we want to share for kernel threads,
68 * if only because they are not used by them anyway.
69 */
70 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
71
72 /*
73 * These are the constant used to fake the fixed-point load-average
74 * counting. Some notes:
75 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
76 * a load-average precision of 10 bits integer + 11 bits fractional
77 * - if you want to count load-averages more often, you need more
78 * precision, or rounding will get you. With 2-second counting freq,
79 * the EXP_n values would be 1981, 2034 and 2043 if still using only
80 * 11 bit fractions.
81 */
82 extern unsigned long avenrun[]; /* Load averages */
83 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
84
85 #define FSHIFT 11 /* nr of bits of precision */
86 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
87 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
88 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
89 #define EXP_5 2014 /* 1/exp(5sec/5min) */
90 #define EXP_15 2037 /* 1/exp(5sec/15min) */
91
92 #define CALC_LOAD(load,exp,n) \
93 load *= exp; \
94 load += n*(FIXED_1-exp); \
95 load >>= FSHIFT;
96
97 extern unsigned long total_forks;
98 extern int nr_threads;
99 DECLARE_PER_CPU(unsigned long, process_counts);
100 extern int nr_processes(void);
101 extern unsigned long nr_running(void);
102 extern unsigned long nr_iowait(void);
103 extern unsigned long nr_iowait_cpu(int cpu);
104 extern unsigned long this_cpu_load(void);
105
106
107 extern void calc_global_load(unsigned long ticks);
108 extern void update_cpu_load_nohz(void);
109
110 /* Notifier for when a task gets migrated to a new CPU */
111 struct task_migration_notifier {
112 struct task_struct *task;
113 int from_cpu;
114 int to_cpu;
115 };
116 extern void register_task_migration_notifier(struct notifier_block *n);
117
118 extern unsigned long get_parent_ip(unsigned long addr);
119
120 extern void dump_cpu_task(int cpu);
121
122 struct seq_file;
123 struct cfs_rq;
124 struct task_group;
125 #ifdef CONFIG_SCHED_DEBUG
126 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
127 extern void proc_sched_set_task(struct task_struct *p);
128 extern void
129 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
130 #endif
131
132 /*
133 * Task state bitmask. NOTE! These bits are also
134 * encoded in fs/proc/array.c: get_task_state().
135 *
136 * We have two separate sets of flags: task->state
137 * is about runnability, while task->exit_state are
138 * about the task exiting. Confusing, but this way
139 * modifying one set can't modify the other one by
140 * mistake.
141 */
142 #define TASK_RUNNING 0
143 #define TASK_INTERRUPTIBLE 1
144 #define TASK_UNINTERRUPTIBLE 2
145 #define __TASK_STOPPED 4
146 #define __TASK_TRACED 8
147 /* in tsk->exit_state */
148 #define EXIT_ZOMBIE 16
149 #define EXIT_DEAD 32
150 /* in tsk->state again */
151 #define TASK_DEAD 64
152 #define TASK_WAKEKILL 128
153 #define TASK_WAKING 256
154 #define TASK_PARKED 512
155 #define TASK_STATE_MAX 1024
156
157 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
158
159 extern char ___assert_task_state[1 - 2*!!(
160 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
161
162 /* Convenience macros for the sake of set_task_state */
163 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
164 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
165 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
166
167 /* Convenience macros for the sake of wake_up */
168 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
169 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
170
171 /* get_task_state() */
172 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
173 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
174 __TASK_TRACED)
175
176 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
177 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
178 #define task_is_dead(task) ((task)->exit_state != 0)
179 #define task_is_stopped_or_traced(task) \
180 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
181 #define task_contributes_to_load(task) \
182 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
183 (task->flags & PF_FROZEN) == 0)
184
185 #define __set_task_state(tsk, state_value) \
186 do { (tsk)->state = (state_value); } while (0)
187 #define set_task_state(tsk, state_value) \
188 set_mb((tsk)->state, (state_value))
189
190 /*
191 * set_current_state() includes a barrier so that the write of current->state
192 * is correctly serialised wrt the caller's subsequent test of whether to
193 * actually sleep:
194 *
195 * set_current_state(TASK_UNINTERRUPTIBLE);
196 * if (do_i_need_to_sleep())
197 * schedule();
198 *
199 * If the caller does not need such serialisation then use __set_current_state()
200 */
201 #define __set_current_state(state_value) \
202 do { current->state = (state_value); } while (0)
203 #define set_current_state(state_value) \
204 set_mb(current->state, (state_value))
205
206 /* Task command name length */
207 #define TASK_COMM_LEN 16
208
209 #include <linux/spinlock.h>
210
211 /*
212 * This serializes "schedule()" and also protects
213 * the run-queue from deletions/modifications (but
214 * _adding_ to the beginning of the run-queue has
215 * a separate lock).
216 */
217 extern rwlock_t tasklist_lock;
218 extern spinlock_t mmlist_lock;
219
220 struct task_struct;
221
222 #ifdef CONFIG_PROVE_RCU
223 extern int lockdep_tasklist_lock_is_held(void);
224 #endif /* #ifdef CONFIG_PROVE_RCU */
225
226 extern void sched_init(void);
227 extern void sched_init_smp(void);
228 extern asmlinkage void schedule_tail(struct task_struct *prev);
229 extern void init_idle(struct task_struct *idle, int cpu);
230 extern void init_idle_bootup_task(struct task_struct *idle);
231
232 extern int runqueue_is_locked(int cpu);
233
234 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
235 extern void nohz_balance_enter_idle(int cpu);
236 extern void set_cpu_sd_state_idle(void);
237 extern int get_nohz_timer_target(void);
238 #else
239 static inline void nohz_balance_enter_idle(int cpu) { }
240 static inline void set_cpu_sd_state_idle(void) { }
241 #endif
242
243 /*
244 * Only dump TASK_* tasks. (0 for all tasks)
245 */
246 extern void show_state_filter(unsigned long state_filter);
247
248 static inline void show_state(void)
249 {
250 show_state_filter(0);
251 }
252
253 extern void show_regs(struct pt_regs *);
254
255 /*
256 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
257 * task), SP is the stack pointer of the first frame that should be shown in the back
258 * trace (or NULL if the entire call-chain of the task should be shown).
259 */
260 extern void show_stack(struct task_struct *task, unsigned long *sp);
261
262 void io_schedule(void);
263 long io_schedule_timeout(long timeout);
264
265 extern void cpu_init (void);
266 extern void trap_init(void);
267 extern void update_process_times(int user);
268 extern void scheduler_tick(void);
269
270 extern void sched_show_task(struct task_struct *p);
271
272 #ifdef CONFIG_LOCKUP_DETECTOR
273 extern void touch_softlockup_watchdog(void);
274 extern void touch_softlockup_watchdog_sync(void);
275 extern void touch_all_softlockup_watchdogs(void);
276 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
277 void __user *buffer,
278 size_t *lenp, loff_t *ppos);
279 extern unsigned int softlockup_panic;
280 void lockup_detector_init(void);
281 #else
282 static inline void touch_softlockup_watchdog(void)
283 {
284 }
285 static inline void touch_softlockup_watchdog_sync(void)
286 {
287 }
288 static inline void touch_all_softlockup_watchdogs(void)
289 {
290 }
291 static inline void lockup_detector_init(void)
292 {
293 }
294 #endif
295
296 /* Attach to any functions which should be ignored in wchan output. */
297 #define __sched __attribute__((__section__(".sched.text")))
298
299 /* Linker adds these: start and end of __sched functions */
300 extern char __sched_text_start[], __sched_text_end[];
301
302 /* Is this address in the __sched functions? */
303 extern int in_sched_functions(unsigned long addr);
304
305 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
306 extern signed long schedule_timeout(signed long timeout);
307 extern signed long schedule_timeout_interruptible(signed long timeout);
308 extern signed long schedule_timeout_killable(signed long timeout);
309 extern signed long schedule_timeout_uninterruptible(signed long timeout);
310 asmlinkage void schedule(void);
311 extern void schedule_preempt_disabled(void);
312
313 struct nsproxy;
314 struct user_namespace;
315
316 #ifdef CONFIG_MMU
317 extern void arch_pick_mmap_layout(struct mm_struct *mm);
318 extern unsigned long
319 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
320 unsigned long, unsigned long);
321 extern unsigned long
322 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
323 unsigned long len, unsigned long pgoff,
324 unsigned long flags);
325 extern void arch_unmap_area(struct mm_struct *, unsigned long);
326 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
327 #else
328 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
329 #endif
330
331
332 extern void set_dumpable(struct mm_struct *mm, int value);
333 extern int get_dumpable(struct mm_struct *mm);
334
335 #define SUID_DUMP_DISABLE 0 /* No setuid dumping */
336 #define SUID_DUMP_USER 1 /* Dump as user of process */
337 #define SUID_DUMP_ROOT 2 /* Dump as root */
338
339 /* mm flags */
340 /* dumpable bits */
341 #define MMF_DUMPABLE 0 /* core dump is permitted */
342 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
343
344 #define MMF_DUMPABLE_BITS 2
345 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
346
347 /* coredump filter bits */
348 #define MMF_DUMP_ANON_PRIVATE 2
349 #define MMF_DUMP_ANON_SHARED 3
350 #define MMF_DUMP_MAPPED_PRIVATE 4
351 #define MMF_DUMP_MAPPED_SHARED 5
352 #define MMF_DUMP_ELF_HEADERS 6
353 #define MMF_DUMP_HUGETLB_PRIVATE 7
354 #define MMF_DUMP_HUGETLB_SHARED 8
355
356 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
357 #define MMF_DUMP_FILTER_BITS 7
358 #define MMF_DUMP_FILTER_MASK \
359 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
360 #define MMF_DUMP_FILTER_DEFAULT \
361 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
362 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
363
364 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
365 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
366 #else
367 # define MMF_DUMP_MASK_DEFAULT_ELF 0
368 #endif
369 /* leave room for more dump flags */
370 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
371 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
372 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
373
374 #define MMF_HAS_UPROBES 19 /* has uprobes */
375 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
376
377 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
378
379 struct sighand_struct {
380 atomic_t count;
381 struct k_sigaction action[_NSIG];
382 spinlock_t siglock;
383 wait_queue_head_t signalfd_wqh;
384 };
385
386 struct pacct_struct {
387 int ac_flag;
388 long ac_exitcode;
389 unsigned long ac_mem;
390 cputime_t ac_utime, ac_stime;
391 unsigned long ac_minflt, ac_majflt;
392 };
393
394 struct cpu_itimer {
395 cputime_t expires;
396 cputime_t incr;
397 u32 error;
398 u32 incr_error;
399 };
400
401 /**
402 * struct cputime - snaphsot of system and user cputime
403 * @utime: time spent in user mode
404 * @stime: time spent in system mode
405 *
406 * Gathers a generic snapshot of user and system time.
407 */
408 struct cputime {
409 cputime_t utime;
410 cputime_t stime;
411 };
412
413 /**
414 * struct task_cputime - collected CPU time counts
415 * @utime: time spent in user mode, in &cputime_t units
416 * @stime: time spent in kernel mode, in &cputime_t units
417 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
418 *
419 * This is an extension of struct cputime that includes the total runtime
420 * spent by the task from the scheduler point of view.
421 *
422 * As a result, this structure groups together three kinds of CPU time
423 * that are tracked for threads and thread groups. Most things considering
424 * CPU time want to group these counts together and treat all three
425 * of them in parallel.
426 */
427 struct task_cputime {
428 cputime_t utime;
429 cputime_t stime;
430 unsigned long long sum_exec_runtime;
431 };
432 /* Alternate field names when used to cache expirations. */
433 #define prof_exp stime
434 #define virt_exp utime
435 #define sched_exp sum_exec_runtime
436
437 #define INIT_CPUTIME \
438 (struct task_cputime) { \
439 .utime = 0, \
440 .stime = 0, \
441 .sum_exec_runtime = 0, \
442 }
443
444 /*
445 * Disable preemption until the scheduler is running.
446 * Reset by start_kernel()->sched_init()->init_idle().
447 *
448 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
449 * before the scheduler is active -- see should_resched().
450 */
451 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE)
452
453 /**
454 * struct thread_group_cputimer - thread group interval timer counts
455 * @cputime: thread group interval timers.
456 * @running: non-zero when there are timers running and
457 * @cputime receives updates.
458 * @lock: lock for fields in this struct.
459 *
460 * This structure contains the version of task_cputime, above, that is
461 * used for thread group CPU timer calculations.
462 */
463 struct thread_group_cputimer {
464 struct task_cputime cputime;
465 int running;
466 raw_spinlock_t lock;
467 };
468
469 #include <linux/rwsem.h>
470 struct autogroup;
471
472 /*
473 * NOTE! "signal_struct" does not have its own
474 * locking, because a shared signal_struct always
475 * implies a shared sighand_struct, so locking
476 * sighand_struct is always a proper superset of
477 * the locking of signal_struct.
478 */
479 struct signal_struct {
480 atomic_t sigcnt;
481 atomic_t live;
482 int nr_threads;
483 struct list_head thread_head;
484
485 wait_queue_head_t wait_chldexit; /* for wait4() */
486
487 /* current thread group signal load-balancing target: */
488 struct task_struct *curr_target;
489
490 /* shared signal handling: */
491 struct sigpending shared_pending;
492
493 /* thread group exit support */
494 int group_exit_code;
495 /* overloaded:
496 * - notify group_exit_task when ->count is equal to notify_count
497 * - everyone except group_exit_task is stopped during signal delivery
498 * of fatal signals, group_exit_task processes the signal.
499 */
500 int notify_count;
501 struct task_struct *group_exit_task;
502
503 /* thread group stop support, overloads group_exit_code too */
504 int group_stop_count;
505 unsigned int flags; /* see SIGNAL_* flags below */
506
507 /*
508 * PR_SET_CHILD_SUBREAPER marks a process, like a service
509 * manager, to re-parent orphan (double-forking) child processes
510 * to this process instead of 'init'. The service manager is
511 * able to receive SIGCHLD signals and is able to investigate
512 * the process until it calls wait(). All children of this
513 * process will inherit a flag if they should look for a
514 * child_subreaper process at exit.
515 */
516 unsigned int is_child_subreaper:1;
517 unsigned int has_child_subreaper:1;
518
519 /* POSIX.1b Interval Timers */
520 int posix_timer_id;
521 struct list_head posix_timers;
522
523 /* ITIMER_REAL timer for the process */
524 struct hrtimer real_timer;
525 struct pid *leader_pid;
526 ktime_t it_real_incr;
527
528 /*
529 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
530 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
531 * values are defined to 0 and 1 respectively
532 */
533 struct cpu_itimer it[2];
534
535 /*
536 * Thread group totals for process CPU timers.
537 * See thread_group_cputimer(), et al, for details.
538 */
539 struct thread_group_cputimer cputimer;
540
541 /* Earliest-expiration cache. */
542 struct task_cputime cputime_expires;
543
544 struct list_head cpu_timers[3];
545
546 struct pid *tty_old_pgrp;
547
548 /* boolean value for session group leader */
549 int leader;
550
551 struct tty_struct *tty; /* NULL if no tty */
552
553 #ifdef CONFIG_SCHED_AUTOGROUP
554 struct autogroup *autogroup;
555 #endif
556 /*
557 * Cumulative resource counters for dead threads in the group,
558 * and for reaped dead child processes forked by this group.
559 * Live threads maintain their own counters and add to these
560 * in __exit_signal, except for the group leader.
561 */
562 cputime_t utime, stime, cutime, cstime;
563 cputime_t gtime;
564 cputime_t cgtime;
565 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
566 struct cputime prev_cputime;
567 #endif
568 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
569 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
570 unsigned long inblock, oublock, cinblock, coublock;
571 unsigned long maxrss, cmaxrss;
572 struct task_io_accounting ioac;
573
574 /*
575 * Cumulative ns of schedule CPU time fo dead threads in the
576 * group, not including a zombie group leader, (This only differs
577 * from jiffies_to_ns(utime + stime) if sched_clock uses something
578 * other than jiffies.)
579 */
580 unsigned long long sum_sched_runtime;
581
582 /*
583 * We don't bother to synchronize most readers of this at all,
584 * because there is no reader checking a limit that actually needs
585 * to get both rlim_cur and rlim_max atomically, and either one
586 * alone is a single word that can safely be read normally.
587 * getrlimit/setrlimit use task_lock(current->group_leader) to
588 * protect this instead of the siglock, because they really
589 * have no need to disable irqs.
590 */
591 struct rlimit rlim[RLIM_NLIMITS];
592
593 #ifdef CONFIG_BSD_PROCESS_ACCT
594 struct pacct_struct pacct; /* per-process accounting information */
595 #endif
596 #ifdef CONFIG_TASKSTATS
597 struct taskstats *stats;
598 #endif
599 #ifdef CONFIG_AUDIT
600 unsigned audit_tty;
601 unsigned audit_tty_log_passwd;
602 struct tty_audit_buf *tty_audit_buf;
603 #endif
604 #ifdef CONFIG_CGROUPS
605 /*
606 * group_rwsem prevents new tasks from entering the threadgroup and
607 * member tasks from exiting,a more specifically, setting of
608 * PF_EXITING. fork and exit paths are protected with this rwsem
609 * using threadgroup_change_begin/end(). Users which require
610 * threadgroup to remain stable should use threadgroup_[un]lock()
611 * which also takes care of exec path. Currently, cgroup is the
612 * only user.
613 */
614 struct rw_semaphore group_rwsem;
615 #endif
616
617 oom_flags_t oom_flags;
618 short oom_score_adj; /* OOM kill score adjustment */
619 short oom_score_adj_min; /* OOM kill score adjustment min value.
620 * Only settable by CAP_SYS_RESOURCE. */
621
622 struct mutex cred_guard_mutex; /* guard against foreign influences on
623 * credential calculations
624 * (notably. ptrace) */
625 };
626
627 /*
628 * Bits in flags field of signal_struct.
629 */
630 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
631 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
632 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
633 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
634 /*
635 * Pending notifications to parent.
636 */
637 #define SIGNAL_CLD_STOPPED 0x00000010
638 #define SIGNAL_CLD_CONTINUED 0x00000020
639 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
640
641 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
642
643 /* If true, all threads except ->group_exit_task have pending SIGKILL */
644 static inline int signal_group_exit(const struct signal_struct *sig)
645 {
646 return (sig->flags & SIGNAL_GROUP_EXIT) ||
647 (sig->group_exit_task != NULL);
648 }
649
650 /*
651 * Some day this will be a full-fledged user tracking system..
652 */
653 struct user_struct {
654 atomic_t __count; /* reference count */
655 atomic_t processes; /* How many processes does this user have? */
656 atomic_t files; /* How many open files does this user have? */
657 atomic_t sigpending; /* How many pending signals does this user have? */
658 #ifdef CONFIG_INOTIFY_USER
659 atomic_t inotify_watches; /* How many inotify watches does this user have? */
660 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
661 #endif
662 #ifdef CONFIG_FANOTIFY
663 atomic_t fanotify_listeners;
664 #endif
665 #ifdef CONFIG_EPOLL
666 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
667 #endif
668 #ifdef CONFIG_POSIX_MQUEUE
669 /* protected by mq_lock */
670 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
671 #endif
672 unsigned long locked_shm; /* How many pages of mlocked shm ? */
673 unsigned long unix_inflight; /* How many files in flight in unix sockets */
674 atomic_long_t pipe_bufs; /* how many pages are allocated in pipe buffers */
675
676 #ifdef CONFIG_KEYS
677 struct key *uid_keyring; /* UID specific keyring */
678 struct key *session_keyring; /* UID's default session keyring */
679 #endif
680
681 /* Hash table maintenance information */
682 struct hlist_node uidhash_node;
683 kuid_t uid;
684
685 #ifdef CONFIG_PERF_EVENTS
686 atomic_long_t locked_vm;
687 #endif
688 };
689
690 extern int uids_sysfs_init(void);
691
692 extern struct user_struct *find_user(kuid_t);
693
694 extern struct user_struct root_user;
695 #define INIT_USER (&root_user)
696
697
698 struct backing_dev_info;
699 struct reclaim_state;
700
701 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
702 struct sched_info {
703 /* cumulative counters */
704 unsigned long pcount; /* # of times run on this cpu */
705 unsigned long long run_delay; /* time spent waiting on a runqueue */
706
707 /* timestamps */
708 unsigned long long last_arrival,/* when we last ran on a cpu */
709 last_queued; /* when we were last queued to run */
710 };
711 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
712
713 #ifdef CONFIG_TASK_DELAY_ACCT
714 struct task_delay_info {
715 spinlock_t lock;
716 unsigned int flags; /* Private per-task flags */
717
718 /* For each stat XXX, add following, aligned appropriately
719 *
720 * struct timespec XXX_start, XXX_end;
721 * u64 XXX_delay;
722 * u32 XXX_count;
723 *
724 * Atomicity of updates to XXX_delay, XXX_count protected by
725 * single lock above (split into XXX_lock if contention is an issue).
726 */
727
728 /*
729 * XXX_count is incremented on every XXX operation, the delay
730 * associated with the operation is added to XXX_delay.
731 * XXX_delay contains the accumulated delay time in nanoseconds.
732 */
733 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
734 u64 blkio_delay; /* wait for sync block io completion */
735 u64 swapin_delay; /* wait for swapin block io completion */
736 u32 blkio_count; /* total count of the number of sync block */
737 /* io operations performed */
738 u32 swapin_count; /* total count of the number of swapin block */
739 /* io operations performed */
740
741 struct timespec freepages_start, freepages_end;
742 u64 freepages_delay; /* wait for memory reclaim */
743 u32 freepages_count; /* total count of memory reclaim */
744 };
745 #endif /* CONFIG_TASK_DELAY_ACCT */
746
747 static inline int sched_info_on(void)
748 {
749 #ifdef CONFIG_SCHEDSTATS
750 return 1;
751 #elif defined(CONFIG_TASK_DELAY_ACCT)
752 extern int delayacct_on;
753 return delayacct_on;
754 #else
755 return 0;
756 #endif
757 }
758
759 enum cpu_idle_type {
760 CPU_IDLE,
761 CPU_NOT_IDLE,
762 CPU_NEWLY_IDLE,
763 CPU_MAX_IDLE_TYPES
764 };
765
766 /*
767 * Increase resolution of cpu_power calculations
768 */
769 #define SCHED_POWER_SHIFT 10
770 #define SCHED_POWER_SCALE (1L << SCHED_POWER_SHIFT)
771
772 /*
773 * sched-domains (multiprocessor balancing) declarations:
774 */
775 #ifdef CONFIG_SMP
776 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
777 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
778 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
779 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
780 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
781 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
782 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */
783 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
784 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
785 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
786 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
787 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
788
789 extern int __weak arch_sd_sibiling_asym_packing(void);
790
791 struct sched_domain_attr {
792 int relax_domain_level;
793 };
794
795 #define SD_ATTR_INIT (struct sched_domain_attr) { \
796 .relax_domain_level = -1, \
797 }
798
799 extern int sched_domain_level_max;
800
801 struct sched_group;
802
803 struct sched_domain {
804 /* These fields must be setup */
805 struct sched_domain *parent; /* top domain must be null terminated */
806 struct sched_domain *child; /* bottom domain must be null terminated */
807 struct sched_group *groups; /* the balancing groups of the domain */
808 unsigned long min_interval; /* Minimum balance interval ms */
809 unsigned long max_interval; /* Maximum balance interval ms */
810 unsigned int busy_factor; /* less balancing by factor if busy */
811 unsigned int imbalance_pct; /* No balance until over watermark */
812 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
813 unsigned int busy_idx;
814 unsigned int idle_idx;
815 unsigned int newidle_idx;
816 unsigned int wake_idx;
817 unsigned int forkexec_idx;
818 unsigned int smt_gain;
819
820 int nohz_idle; /* NOHZ IDLE status */
821 int flags; /* See SD_* */
822 int level;
823
824 /* Runtime fields. */
825 unsigned long last_balance; /* init to jiffies. units in jiffies */
826 unsigned int balance_interval; /* initialise to 1. units in ms. */
827 unsigned int nr_balance_failed; /* initialise to 0 */
828
829 u64 last_update;
830
831 #ifdef CONFIG_SCHEDSTATS
832 /* load_balance() stats */
833 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
834 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
835 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
836 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
837 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
838 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
839 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
840 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
841
842 /* Active load balancing */
843 unsigned int alb_count;
844 unsigned int alb_failed;
845 unsigned int alb_pushed;
846
847 /* SD_BALANCE_EXEC stats */
848 unsigned int sbe_count;
849 unsigned int sbe_balanced;
850 unsigned int sbe_pushed;
851
852 /* SD_BALANCE_FORK stats */
853 unsigned int sbf_count;
854 unsigned int sbf_balanced;
855 unsigned int sbf_pushed;
856
857 /* try_to_wake_up() stats */
858 unsigned int ttwu_wake_remote;
859 unsigned int ttwu_move_affine;
860 unsigned int ttwu_move_balance;
861 #endif
862 #ifdef CONFIG_SCHED_DEBUG
863 char *name;
864 #endif
865 union {
866 void *private; /* used during construction */
867 struct rcu_head rcu; /* used during destruction */
868 };
869
870 unsigned int span_weight;
871 /*
872 * Span of all CPUs in this domain.
873 *
874 * NOTE: this field is variable length. (Allocated dynamically
875 * by attaching extra space to the end of the structure,
876 * depending on how many CPUs the kernel has booted up with)
877 */
878 unsigned long span[0];
879 };
880
881 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
882 {
883 return to_cpumask(sd->span);
884 }
885
886 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
887 struct sched_domain_attr *dattr_new);
888
889 /* Allocate an array of sched domains, for partition_sched_domains(). */
890 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
891 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
892
893 bool cpus_share_cache(int this_cpu, int that_cpu);
894
895 #else /* CONFIG_SMP */
896
897 struct sched_domain_attr;
898
899 static inline void
900 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
901 struct sched_domain_attr *dattr_new)
902 {
903 }
904
905 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
906 {
907 return true;
908 }
909
910 #endif /* !CONFIG_SMP */
911
912
913 struct io_context; /* See blkdev.h */
914
915
916 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
917 extern void prefetch_stack(struct task_struct *t);
918 #else
919 static inline void prefetch_stack(struct task_struct *t) { }
920 #endif
921
922 struct audit_context; /* See audit.c */
923 struct mempolicy;
924 struct pipe_inode_info;
925 struct uts_namespace;
926
927 struct load_weight {
928 unsigned long weight, inv_weight;
929 };
930
931 struct sched_avg {
932 /*
933 * These sums represent an infinite geometric series and so are bound
934 * above by 1024/(1-y). Thus we only need a u32 to store them for for all
935 * choices of y < 1-2^(-32)*1024.
936 */
937 u32 runnable_avg_sum, runnable_avg_period;
938 u64 last_runnable_update;
939 s64 decay_count;
940 unsigned long load_avg_contrib;
941 };
942
943 #ifdef CONFIG_SCHEDSTATS
944 struct sched_statistics {
945 u64 wait_start;
946 u64 wait_max;
947 u64 wait_count;
948 u64 wait_sum;
949 u64 iowait_count;
950 u64 iowait_sum;
951
952 u64 sleep_start;
953 u64 sleep_max;
954 s64 sum_sleep_runtime;
955
956 u64 block_start;
957 u64 block_max;
958 u64 exec_max;
959 u64 slice_max;
960
961 u64 nr_migrations_cold;
962 u64 nr_failed_migrations_affine;
963 u64 nr_failed_migrations_running;
964 u64 nr_failed_migrations_hot;
965 u64 nr_forced_migrations;
966
967 u64 nr_wakeups;
968 u64 nr_wakeups_sync;
969 u64 nr_wakeups_migrate;
970 u64 nr_wakeups_local;
971 u64 nr_wakeups_remote;
972 u64 nr_wakeups_affine;
973 u64 nr_wakeups_affine_attempts;
974 u64 nr_wakeups_passive;
975 u64 nr_wakeups_idle;
976 };
977 #endif
978
979 struct sched_entity {
980 struct load_weight load; /* for load-balancing */
981 struct rb_node run_node;
982 struct list_head group_node;
983 unsigned int on_rq;
984
985 u64 exec_start;
986 u64 sum_exec_runtime;
987 u64 vruntime;
988 u64 prev_sum_exec_runtime;
989
990 u64 nr_migrations;
991
992 #ifdef CONFIG_SCHEDSTATS
993 struct sched_statistics statistics;
994 #endif
995
996 #ifdef CONFIG_FAIR_GROUP_SCHED
997 struct sched_entity *parent;
998 /* rq on which this entity is (to be) queued: */
999 struct cfs_rq *cfs_rq;
1000 /* rq "owned" by this entity/group: */
1001 struct cfs_rq *my_q;
1002 #endif
1003
1004 /*
1005 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
1006 * removed when useful for applications beyond shares distribution (e.g.
1007 * load-balance).
1008 */
1009 #if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
1010 /* Per-entity load-tracking */
1011 struct sched_avg avg;
1012 #endif
1013 };
1014
1015 struct sched_rt_entity {
1016 struct list_head run_list;
1017 unsigned long timeout;
1018 unsigned long watchdog_stamp;
1019 unsigned int time_slice;
1020
1021 struct sched_rt_entity *back;
1022 #ifdef CONFIG_RT_GROUP_SCHED
1023 struct sched_rt_entity *parent;
1024 /* rq on which this entity is (to be) queued: */
1025 struct rt_rq *rt_rq;
1026 /* rq "owned" by this entity/group: */
1027 struct rt_rq *my_q;
1028 #endif
1029 };
1030
1031
1032 struct rcu_node;
1033
1034 enum perf_event_task_context {
1035 perf_invalid_context = -1,
1036 perf_hw_context = 0,
1037 perf_sw_context,
1038 perf_nr_task_contexts,
1039 };
1040
1041 struct task_struct {
1042 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1043 void *stack;
1044 atomic_t usage;
1045 unsigned int flags; /* per process flags, defined below */
1046 unsigned int ptrace;
1047
1048 #ifdef CONFIG_SMP
1049 struct llist_node wake_entry;
1050 int on_cpu;
1051 #endif
1052 int on_rq;
1053
1054 int prio, static_prio, normal_prio;
1055 unsigned int rt_priority;
1056 const struct sched_class *sched_class;
1057 struct sched_entity se;
1058 struct sched_rt_entity rt;
1059 #ifdef CONFIG_CGROUP_SCHED
1060 struct task_group *sched_task_group;
1061 #endif
1062
1063 #ifdef CONFIG_PREEMPT_NOTIFIERS
1064 /* list of struct preempt_notifier: */
1065 struct hlist_head preempt_notifiers;
1066 #endif
1067
1068 /*
1069 * fpu_counter contains the number of consecutive context switches
1070 * that the FPU is used. If this is over a threshold, the lazy fpu
1071 * saving becomes unlazy to save the trap. This is an unsigned char
1072 * so that after 256 times the counter wraps and the behavior turns
1073 * lazy again; this to deal with bursty apps that only use FPU for
1074 * a short time
1075 */
1076 unsigned char fpu_counter;
1077 #ifdef CONFIG_BLK_DEV_IO_TRACE
1078 unsigned int btrace_seq;
1079 #endif
1080
1081 unsigned int policy;
1082 int nr_cpus_allowed;
1083 cpumask_t cpus_allowed;
1084
1085 #ifdef CONFIG_PREEMPT_RCU
1086 int rcu_read_lock_nesting;
1087 char rcu_read_unlock_special;
1088 struct list_head rcu_node_entry;
1089 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1090 #ifdef CONFIG_TREE_PREEMPT_RCU
1091 struct rcu_node *rcu_blocked_node;
1092 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1093 #ifdef CONFIG_RCU_BOOST
1094 struct rt_mutex *rcu_boost_mutex;
1095 #endif /* #ifdef CONFIG_RCU_BOOST */
1096
1097 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1098 struct sched_info sched_info;
1099 #endif
1100
1101 struct list_head tasks;
1102 #ifdef CONFIG_SMP
1103 struct plist_node pushable_tasks;
1104 #endif
1105
1106 struct mm_struct *mm, *active_mm;
1107 #ifdef CONFIG_COMPAT_BRK
1108 unsigned brk_randomized:1;
1109 #endif
1110 #if defined(SPLIT_RSS_COUNTING)
1111 struct task_rss_stat rss_stat;
1112 #endif
1113 /* task state */
1114 int exit_state;
1115 int exit_code, exit_signal;
1116 int pdeath_signal; /* The signal sent when the parent dies */
1117 unsigned int jobctl; /* JOBCTL_*, siglock protected */
1118
1119 /* Used for emulating ABI behavior of previous Linux versions */
1120 unsigned int personality;
1121
1122 unsigned did_exec:1;
1123 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1124 * execve */
1125 unsigned in_iowait:1;
1126
1127 /* task may not gain privileges */
1128 unsigned no_new_privs:1;
1129
1130 /* Revert to default priority/policy when forking */
1131 unsigned sched_reset_on_fork:1;
1132 unsigned sched_contributes_to_load:1;
1133
1134 pid_t pid;
1135 pid_t tgid;
1136
1137 #ifdef CONFIG_CC_STACKPROTECTOR
1138 /* Canary value for the -fstack-protector gcc feature */
1139 unsigned long stack_canary;
1140 #endif
1141 /*
1142 * pointers to (original) parent process, youngest child, younger sibling,
1143 * older sibling, respectively. (p->father can be replaced with
1144 * p->real_parent->pid)
1145 */
1146 struct task_struct __rcu *real_parent; /* real parent process */
1147 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1148 /*
1149 * children/sibling forms the list of my natural children
1150 */
1151 struct list_head children; /* list of my children */
1152 struct list_head sibling; /* linkage in my parent's children list */
1153 struct task_struct *group_leader; /* threadgroup leader */
1154
1155 /*
1156 * ptraced is the list of tasks this task is using ptrace on.
1157 * This includes both natural children and PTRACE_ATTACH targets.
1158 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1159 */
1160 struct list_head ptraced;
1161 struct list_head ptrace_entry;
1162
1163 /* PID/PID hash table linkage. */
1164 struct pid_link pids[PIDTYPE_MAX];
1165 struct list_head thread_group;
1166 struct list_head thread_node;
1167
1168 struct completion *vfork_done; /* for vfork() */
1169 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1170 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1171
1172 cputime_t utime, stime, utimescaled, stimescaled;
1173 cputime_t gtime;
1174 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1175 struct cputime prev_cputime;
1176 #endif
1177 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1178 seqlock_t vtime_seqlock;
1179 unsigned long long vtime_snap;
1180 enum {
1181 VTIME_SLEEPING = 0,
1182 VTIME_USER,
1183 VTIME_SYS,
1184 } vtime_snap_whence;
1185 #endif
1186 unsigned long nvcsw, nivcsw; /* context switch counts */
1187 struct timespec start_time; /* monotonic time */
1188 struct timespec real_start_time; /* boot based time */
1189 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1190 unsigned long min_flt, maj_flt;
1191
1192 struct task_cputime cputime_expires;
1193 struct list_head cpu_timers[3];
1194
1195 /* process credentials */
1196 const struct cred __rcu *real_cred; /* objective and real subjective task
1197 * credentials (COW) */
1198 const struct cred __rcu *cred; /* effective (overridable) subjective task
1199 * credentials (COW) */
1200 char comm[TASK_COMM_LEN]; /* executable name excluding path
1201 - access with [gs]et_task_comm (which lock
1202 it with task_lock())
1203 - initialized normally by setup_new_exec */
1204 /* file system info */
1205 int link_count, total_link_count;
1206 #ifdef CONFIG_SYSVIPC
1207 /* ipc stuff */
1208 struct sysv_sem sysvsem;
1209 #endif
1210 #ifdef CONFIG_DETECT_HUNG_TASK
1211 /* hung task detection */
1212 unsigned long last_switch_count;
1213 #endif
1214 /* CPU-specific state of this task */
1215 struct thread_struct thread;
1216 /* filesystem information */
1217 struct fs_struct *fs;
1218 /* open file information */
1219 struct files_struct *files;
1220 /* namespaces */
1221 struct nsproxy *nsproxy;
1222 /* signal handlers */
1223 struct signal_struct *signal;
1224 struct sighand_struct *sighand;
1225
1226 sigset_t blocked, real_blocked;
1227 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1228 struct sigpending pending;
1229
1230 unsigned long sas_ss_sp;
1231 size_t sas_ss_size;
1232 int (*notifier)(void *priv);
1233 void *notifier_data;
1234 sigset_t *notifier_mask;
1235 struct callback_head *task_works;
1236
1237 struct audit_context *audit_context;
1238 #ifdef CONFIG_AUDITSYSCALL
1239 kuid_t loginuid;
1240 unsigned int sessionid;
1241 #endif
1242 struct seccomp seccomp;
1243
1244 /* Thread group tracking */
1245 u32 parent_exec_id;
1246 u32 self_exec_id;
1247 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1248 * mempolicy */
1249 spinlock_t alloc_lock;
1250
1251 /* Protection of the PI data structures: */
1252 raw_spinlock_t pi_lock;
1253
1254 #ifdef CONFIG_RT_MUTEXES
1255 /* PI waiters blocked on a rt_mutex held by this task */
1256 struct plist_head pi_waiters;
1257 /* Deadlock detection and priority inheritance handling */
1258 struct rt_mutex_waiter *pi_blocked_on;
1259 #endif
1260
1261 #ifdef CONFIG_DEBUG_MUTEXES
1262 /* mutex deadlock detection */
1263 struct mutex_waiter *blocked_on;
1264 #endif
1265 #ifdef CONFIG_TRACE_IRQFLAGS
1266 unsigned int irq_events;
1267 unsigned long hardirq_enable_ip;
1268 unsigned long hardirq_disable_ip;
1269 unsigned int hardirq_enable_event;
1270 unsigned int hardirq_disable_event;
1271 int hardirqs_enabled;
1272 int hardirq_context;
1273 unsigned long softirq_disable_ip;
1274 unsigned long softirq_enable_ip;
1275 unsigned int softirq_disable_event;
1276 unsigned int softirq_enable_event;
1277 int softirqs_enabled;
1278 int softirq_context;
1279 #endif
1280 #ifdef CONFIG_LOCKDEP
1281 # define MAX_LOCK_DEPTH 48UL
1282 u64 curr_chain_key;
1283 int lockdep_depth;
1284 unsigned int lockdep_recursion;
1285 struct held_lock held_locks[MAX_LOCK_DEPTH];
1286 gfp_t lockdep_reclaim_gfp;
1287 #endif
1288
1289 /* journalling filesystem info */
1290 void *journal_info;
1291
1292 /* stacked block device info */
1293 struct bio_list *bio_list;
1294
1295 #ifdef CONFIG_BLOCK
1296 /* stack plugging */
1297 struct blk_plug *plug;
1298 #endif
1299
1300 /* VM state */
1301 struct reclaim_state *reclaim_state;
1302
1303 struct backing_dev_info *backing_dev_info;
1304
1305 struct io_context *io_context;
1306
1307 unsigned long ptrace_message;
1308 siginfo_t *last_siginfo; /* For ptrace use. */
1309 struct task_io_accounting ioac;
1310 #if defined(CONFIG_TASK_XACCT)
1311 u64 acct_rss_mem1; /* accumulated rss usage */
1312 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1313 cputime_t acct_timexpd; /* stime + utime since last update */
1314 #endif
1315 #ifdef CONFIG_CPUSETS
1316 nodemask_t mems_allowed; /* Protected by alloc_lock */
1317 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
1318 int cpuset_mem_spread_rotor;
1319 int cpuset_slab_spread_rotor;
1320 #endif
1321 #ifdef CONFIG_CGROUPS
1322 /* Control Group info protected by css_set_lock */
1323 struct css_set __rcu *cgroups;
1324 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1325 struct list_head cg_list;
1326 #endif
1327 #ifdef CONFIG_FUTEX
1328 struct robust_list_head __user *robust_list;
1329 #ifdef CONFIG_COMPAT
1330 struct compat_robust_list_head __user *compat_robust_list;
1331 #endif
1332 struct list_head pi_state_list;
1333 struct futex_pi_state *pi_state_cache;
1334 #endif
1335 #ifdef CONFIG_PERF_EVENTS
1336 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1337 struct mutex perf_event_mutex;
1338 struct list_head perf_event_list;
1339 #endif
1340 #ifdef CONFIG_NUMA
1341 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1342 short il_next;
1343 short pref_node_fork;
1344 #endif
1345 #ifdef CONFIG_NUMA_BALANCING
1346 int numa_scan_seq;
1347 int numa_migrate_seq;
1348 unsigned int numa_scan_period;
1349 u64 node_stamp; /* migration stamp */
1350 struct callback_head numa_work;
1351 #endif /* CONFIG_NUMA_BALANCING */
1352
1353 struct rcu_head rcu;
1354
1355 /*
1356 * cache last used pipe for splice
1357 */
1358 struct pipe_inode_info *splice_pipe;
1359
1360 struct page_frag task_frag;
1361
1362 #ifdef CONFIG_TASK_DELAY_ACCT
1363 struct task_delay_info *delays;
1364 #endif
1365 #ifdef CONFIG_FAULT_INJECTION
1366 int make_it_fail;
1367 #endif
1368 /*
1369 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1370 * balance_dirty_pages() for some dirty throttling pause
1371 */
1372 int nr_dirtied;
1373 int nr_dirtied_pause;
1374 unsigned long dirty_paused_when; /* start of a write-and-pause period */
1375
1376 #ifdef CONFIG_LATENCYTOP
1377 int latency_record_count;
1378 struct latency_record latency_record[LT_SAVECOUNT];
1379 #endif
1380 /*
1381 * time slack values; these are used to round up poll() and
1382 * select() etc timeout values. These are in nanoseconds.
1383 */
1384 unsigned long timer_slack_ns;
1385 unsigned long default_timer_slack_ns;
1386
1387 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1388 /* Index of current stored address in ret_stack */
1389 int curr_ret_stack;
1390 /* Stack of return addresses for return function tracing */
1391 struct ftrace_ret_stack *ret_stack;
1392 /* time stamp for last schedule */
1393 unsigned long long ftrace_timestamp;
1394 /*
1395 * Number of functions that haven't been traced
1396 * because of depth overrun.
1397 */
1398 atomic_t trace_overrun;
1399 /* Pause for the tracing */
1400 atomic_t tracing_graph_pause;
1401 #endif
1402 #ifdef CONFIG_TRACING
1403 /* state flags for use by tracers */
1404 unsigned long trace;
1405 /* bitmask and counter of trace recursion */
1406 unsigned long trace_recursion;
1407 #endif /* CONFIG_TRACING */
1408 #ifdef CONFIG_MEMCG /* memcg uses this to do batch job */
1409 struct memcg_batch_info {
1410 int do_batch; /* incremented when batch uncharge started */
1411 struct mem_cgroup *memcg; /* target memcg of uncharge */
1412 unsigned long nr_pages; /* uncharged usage */
1413 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
1414 } memcg_batch;
1415 unsigned int memcg_kmem_skip_account;
1416 struct memcg_oom_info {
1417 struct mem_cgroup *memcg;
1418 gfp_t gfp_mask;
1419 int order;
1420 unsigned int may_oom:1;
1421 } memcg_oom;
1422 #endif
1423 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1424 atomic_t ptrace_bp_refcnt;
1425 #endif
1426 #ifdef CONFIG_UPROBES
1427 struct uprobe_task *utask;
1428 #endif
1429 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1430 unsigned int sequential_io;
1431 unsigned int sequential_io_avg;
1432 #endif
1433 };
1434
1435 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1436 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1437
1438 #ifdef CONFIG_NUMA_BALANCING
1439 extern void task_numa_fault(int node, int pages, bool migrated);
1440 extern void set_numabalancing_state(bool enabled);
1441 #else
1442 static inline void task_numa_fault(int node, int pages, bool migrated)
1443 {
1444 }
1445 static inline void set_numabalancing_state(bool enabled)
1446 {
1447 }
1448 #endif
1449
1450 static inline struct pid *task_pid(struct task_struct *task)
1451 {
1452 return task->pids[PIDTYPE_PID].pid;
1453 }
1454
1455 static inline struct pid *task_tgid(struct task_struct *task)
1456 {
1457 return task->group_leader->pids[PIDTYPE_PID].pid;
1458 }
1459
1460 /*
1461 * Without tasklist or rcu lock it is not safe to dereference
1462 * the result of task_pgrp/task_session even if task == current,
1463 * we can race with another thread doing sys_setsid/sys_setpgid.
1464 */
1465 static inline struct pid *task_pgrp(struct task_struct *task)
1466 {
1467 return task->group_leader->pids[PIDTYPE_PGID].pid;
1468 }
1469
1470 static inline struct pid *task_session(struct task_struct *task)
1471 {
1472 return task->group_leader->pids[PIDTYPE_SID].pid;
1473 }
1474
1475 struct pid_namespace;
1476
1477 /*
1478 * the helpers to get the task's different pids as they are seen
1479 * from various namespaces
1480 *
1481 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1482 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1483 * current.
1484 * task_xid_nr_ns() : id seen from the ns specified;
1485 *
1486 * set_task_vxid() : assigns a virtual id to a task;
1487 *
1488 * see also pid_nr() etc in include/linux/pid.h
1489 */
1490 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1491 struct pid_namespace *ns);
1492
1493 static inline pid_t task_pid_nr(struct task_struct *tsk)
1494 {
1495 return tsk->pid;
1496 }
1497
1498 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1499 struct pid_namespace *ns)
1500 {
1501 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1502 }
1503
1504 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1505 {
1506 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1507 }
1508
1509
1510 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1511 {
1512 return tsk->tgid;
1513 }
1514
1515 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1516
1517 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1518 {
1519 return pid_vnr(task_tgid(tsk));
1520 }
1521
1522
1523 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1524 struct pid_namespace *ns)
1525 {
1526 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1527 }
1528
1529 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1530 {
1531 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1532 }
1533
1534
1535 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1536 struct pid_namespace *ns)
1537 {
1538 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1539 }
1540
1541 static inline pid_t task_session_vnr(struct task_struct *tsk)
1542 {
1543 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1544 }
1545
1546 /* obsolete, do not use */
1547 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1548 {
1549 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1550 }
1551
1552 /**
1553 * pid_alive - check that a task structure is not stale
1554 * @p: Task structure to be checked.
1555 *
1556 * Test if a process is not yet dead (at most zombie state)
1557 * If pid_alive fails, then pointers within the task structure
1558 * can be stale and must not be dereferenced.
1559 */
1560 static inline int pid_alive(struct task_struct *p)
1561 {
1562 return p->pids[PIDTYPE_PID].pid != NULL;
1563 }
1564
1565 /**
1566 * is_global_init - check if a task structure is init
1567 * @tsk: Task structure to be checked.
1568 *
1569 * Check if a task structure is the first user space task the kernel created.
1570 */
1571 static inline int is_global_init(struct task_struct *tsk)
1572 {
1573 return tsk->pid == 1;
1574 }
1575
1576 extern struct pid *cad_pid;
1577
1578 extern void free_task(struct task_struct *tsk);
1579 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1580
1581 extern void __put_task_struct(struct task_struct *t);
1582
1583 static inline void put_task_struct(struct task_struct *t)
1584 {
1585 if (atomic_dec_and_test(&t->usage))
1586 __put_task_struct(t);
1587 }
1588
1589 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1590 extern void task_cputime(struct task_struct *t,
1591 cputime_t *utime, cputime_t *stime);
1592 extern void task_cputime_scaled(struct task_struct *t,
1593 cputime_t *utimescaled, cputime_t *stimescaled);
1594 extern cputime_t task_gtime(struct task_struct *t);
1595 #else
1596 static inline void task_cputime(struct task_struct *t,
1597 cputime_t *utime, cputime_t *stime)
1598 {
1599 if (utime)
1600 *utime = t->utime;
1601 if (stime)
1602 *stime = t->stime;
1603 }
1604
1605 static inline void task_cputime_scaled(struct task_struct *t,
1606 cputime_t *utimescaled,
1607 cputime_t *stimescaled)
1608 {
1609 if (utimescaled)
1610 *utimescaled = t->utimescaled;
1611 if (stimescaled)
1612 *stimescaled = t->stimescaled;
1613 }
1614
1615 static inline cputime_t task_gtime(struct task_struct *t)
1616 {
1617 return t->gtime;
1618 }
1619 #endif
1620 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1621 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1622
1623 /*
1624 * Per process flags
1625 */
1626 #define PF_EXITING 0x00000004 /* getting shut down */
1627 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1628 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1629 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1630 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1631 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1632 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1633 #define PF_DUMPCORE 0x00000200 /* dumped core */
1634 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1635 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1636 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1637 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1638 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
1639 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1640 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1641 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1642 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1643 #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
1644 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1645 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1646 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1647 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1648 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1649 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1650 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
1651 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1652 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1653 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1654 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1655
1656 /*
1657 * Only the _current_ task can read/write to tsk->flags, but other
1658 * tasks can access tsk->flags in readonly mode for example
1659 * with tsk_used_math (like during threaded core dumping).
1660 * There is however an exception to this rule during ptrace
1661 * or during fork: the ptracer task is allowed to write to the
1662 * child->flags of its traced child (same goes for fork, the parent
1663 * can write to the child->flags), because we're guaranteed the
1664 * child is not running and in turn not changing child->flags
1665 * at the same time the parent does it.
1666 */
1667 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1668 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1669 #define clear_used_math() clear_stopped_child_used_math(current)
1670 #define set_used_math() set_stopped_child_used_math(current)
1671 #define conditional_stopped_child_used_math(condition, child) \
1672 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1673 #define conditional_used_math(condition) \
1674 conditional_stopped_child_used_math(condition, current)
1675 #define copy_to_stopped_child_used_math(child) \
1676 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1677 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1678 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1679 #define used_math() tsk_used_math(current)
1680
1681 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags
1682 * __GFP_FS is also cleared as it implies __GFP_IO.
1683 */
1684 static inline gfp_t memalloc_noio_flags(gfp_t flags)
1685 {
1686 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
1687 flags &= ~(__GFP_IO | __GFP_FS);
1688 return flags;
1689 }
1690
1691 static inline unsigned int memalloc_noio_save(void)
1692 {
1693 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
1694 current->flags |= PF_MEMALLOC_NOIO;
1695 return flags;
1696 }
1697
1698 static inline void memalloc_noio_restore(unsigned int flags)
1699 {
1700 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
1701 }
1702
1703 /*
1704 * task->jobctl flags
1705 */
1706 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
1707
1708 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
1709 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
1710 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
1711 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
1712 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
1713 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
1714 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
1715
1716 #define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT)
1717 #define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT)
1718 #define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT)
1719 #define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT)
1720 #define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT)
1721 #define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT)
1722 #define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT)
1723
1724 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
1725 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
1726
1727 extern bool task_set_jobctl_pending(struct task_struct *task,
1728 unsigned int mask);
1729 extern void task_clear_jobctl_trapping(struct task_struct *task);
1730 extern void task_clear_jobctl_pending(struct task_struct *task,
1731 unsigned int mask);
1732
1733 #ifdef CONFIG_PREEMPT_RCU
1734
1735 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1736 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1737
1738 static inline void rcu_copy_process(struct task_struct *p)
1739 {
1740 p->rcu_read_lock_nesting = 0;
1741 p->rcu_read_unlock_special = 0;
1742 #ifdef CONFIG_TREE_PREEMPT_RCU
1743 p->rcu_blocked_node = NULL;
1744 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1745 #ifdef CONFIG_RCU_BOOST
1746 p->rcu_boost_mutex = NULL;
1747 #endif /* #ifdef CONFIG_RCU_BOOST */
1748 INIT_LIST_HEAD(&p->rcu_node_entry);
1749 }
1750
1751 #else
1752
1753 static inline void rcu_copy_process(struct task_struct *p)
1754 {
1755 }
1756
1757 #endif
1758
1759 static inline void tsk_restore_flags(struct task_struct *task,
1760 unsigned long orig_flags, unsigned long flags)
1761 {
1762 task->flags &= ~flags;
1763 task->flags |= orig_flags & flags;
1764 }
1765
1766 #ifdef CONFIG_SMP
1767 extern void do_set_cpus_allowed(struct task_struct *p,
1768 const struct cpumask *new_mask);
1769
1770 extern int set_cpus_allowed_ptr(struct task_struct *p,
1771 const struct cpumask *new_mask);
1772 #else
1773 static inline void do_set_cpus_allowed(struct task_struct *p,
1774 const struct cpumask *new_mask)
1775 {
1776 }
1777 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1778 const struct cpumask *new_mask)
1779 {
1780 if (!cpumask_test_cpu(0, new_mask))
1781 return -EINVAL;
1782 return 0;
1783 }
1784 #endif
1785
1786 #ifdef CONFIG_NO_HZ_COMMON
1787 void calc_load_enter_idle(void);
1788 void calc_load_exit_idle(void);
1789 #else
1790 static inline void calc_load_enter_idle(void) { }
1791 static inline void calc_load_exit_idle(void) { }
1792 #endif /* CONFIG_NO_HZ_COMMON */
1793
1794 #ifndef CONFIG_CPUMASK_OFFSTACK
1795 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1796 {
1797 return set_cpus_allowed_ptr(p, &new_mask);
1798 }
1799 #endif
1800
1801 /*
1802 * Do not use outside of architecture code which knows its limitations.
1803 *
1804 * sched_clock() has no promise of monotonicity or bounded drift between
1805 * CPUs, use (which you should not) requires disabling IRQs.
1806 *
1807 * Please use one of the three interfaces below.
1808 */
1809 extern unsigned long long notrace sched_clock(void);
1810 /*
1811 * See the comment in kernel/sched/clock.c
1812 */
1813 extern u64 cpu_clock(int cpu);
1814 extern u64 local_clock(void);
1815 extern u64 sched_clock_cpu(int cpu);
1816
1817
1818 extern void sched_clock_init(void);
1819
1820 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1821 static inline void sched_clock_tick(void)
1822 {
1823 }
1824
1825 static inline void sched_clock_idle_sleep_event(void)
1826 {
1827 }
1828
1829 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1830 {
1831 }
1832 #else
1833 /*
1834 * Architectures can set this to 1 if they have specified
1835 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1836 * but then during bootup it turns out that sched_clock()
1837 * is reliable after all:
1838 */
1839 extern int sched_clock_stable;
1840
1841 extern void sched_clock_tick(void);
1842 extern void sched_clock_idle_sleep_event(void);
1843 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1844 #endif
1845
1846 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1847 /*
1848 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
1849 * The reason for this explicit opt-in is not to have perf penalty with
1850 * slow sched_clocks.
1851 */
1852 extern void enable_sched_clock_irqtime(void);
1853 extern void disable_sched_clock_irqtime(void);
1854 #else
1855 static inline void enable_sched_clock_irqtime(void) {}
1856 static inline void disable_sched_clock_irqtime(void) {}
1857 #endif
1858
1859 extern unsigned long long
1860 task_sched_runtime(struct task_struct *task);
1861
1862 /* sched_exec is called by processes performing an exec */
1863 #ifdef CONFIG_SMP
1864 extern void sched_exec(void);
1865 #else
1866 #define sched_exec() {}
1867 #endif
1868
1869 extern void sched_clock_idle_sleep_event(void);
1870 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1871
1872 #ifdef CONFIG_HOTPLUG_CPU
1873 extern void idle_task_exit(void);
1874 #else
1875 static inline void idle_task_exit(void) {}
1876 #endif
1877
1878 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
1879 extern void wake_up_nohz_cpu(int cpu);
1880 #else
1881 static inline void wake_up_nohz_cpu(int cpu) { }
1882 #endif
1883
1884 #ifdef CONFIG_NO_HZ_FULL
1885 extern bool sched_can_stop_tick(void);
1886 extern u64 scheduler_tick_max_deferment(void);
1887 #else
1888 static inline bool sched_can_stop_tick(void) { return false; }
1889 #endif
1890
1891 #ifdef CONFIG_SCHED_AUTOGROUP
1892 extern void sched_autogroup_create_attach(struct task_struct *p);
1893 extern void sched_autogroup_detach(struct task_struct *p);
1894 extern void sched_autogroup_fork(struct signal_struct *sig);
1895 extern void sched_autogroup_exit(struct signal_struct *sig);
1896 #ifdef CONFIG_PROC_FS
1897 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
1898 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
1899 #endif
1900 #else
1901 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
1902 static inline void sched_autogroup_detach(struct task_struct *p) { }
1903 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
1904 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
1905 #endif
1906
1907 extern bool yield_to(struct task_struct *p, bool preempt);
1908 extern void set_user_nice(struct task_struct *p, long nice);
1909 extern int task_prio(const struct task_struct *p);
1910 extern int task_nice(const struct task_struct *p);
1911 extern int can_nice(const struct task_struct *p, const int nice);
1912 extern int task_curr(const struct task_struct *p);
1913 extern int idle_cpu(int cpu);
1914 extern int sched_setscheduler(struct task_struct *, int,
1915 const struct sched_param *);
1916 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1917 const struct sched_param *);
1918 extern struct task_struct *idle_task(int cpu);
1919 /**
1920 * is_idle_task - is the specified task an idle task?
1921 * @p: the task in question.
1922 */
1923 static inline bool is_idle_task(const struct task_struct *p)
1924 {
1925 return p->pid == 0;
1926 }
1927 extern struct task_struct *curr_task(int cpu);
1928 extern void set_curr_task(int cpu, struct task_struct *p);
1929
1930 void yield(void);
1931
1932 /*
1933 * The default (Linux) execution domain.
1934 */
1935 extern struct exec_domain default_exec_domain;
1936
1937 union thread_union {
1938 struct thread_info thread_info;
1939 unsigned long stack[THREAD_SIZE/sizeof(long)];
1940 };
1941
1942 #ifndef __HAVE_ARCH_KSTACK_END
1943 static inline int kstack_end(void *addr)
1944 {
1945 /* Reliable end of stack detection:
1946 * Some APM bios versions misalign the stack
1947 */
1948 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1949 }
1950 #endif
1951
1952 extern union thread_union init_thread_union;
1953 extern struct task_struct init_task;
1954
1955 extern struct mm_struct init_mm;
1956
1957 extern struct pid_namespace init_pid_ns;
1958
1959 /*
1960 * find a task by one of its numerical ids
1961 *
1962 * find_task_by_pid_ns():
1963 * finds a task by its pid in the specified namespace
1964 * find_task_by_vpid():
1965 * finds a task by its virtual pid
1966 *
1967 * see also find_vpid() etc in include/linux/pid.h
1968 */
1969
1970 extern struct task_struct *find_task_by_vpid(pid_t nr);
1971 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1972 struct pid_namespace *ns);
1973
1974 extern void __set_special_pids(struct pid *pid);
1975
1976 /* per-UID process charging. */
1977 extern struct user_struct * alloc_uid(kuid_t);
1978 static inline struct user_struct *get_uid(struct user_struct *u)
1979 {
1980 atomic_inc(&u->__count);
1981 return u;
1982 }
1983 extern void free_uid(struct user_struct *);
1984
1985 #include <asm/current.h>
1986
1987 extern void xtime_update(unsigned long ticks);
1988
1989 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1990 extern int wake_up_process(struct task_struct *tsk);
1991 extern void wake_up_new_task(struct task_struct *tsk);
1992 #ifdef CONFIG_SMP
1993 extern void kick_process(struct task_struct *tsk);
1994 #else
1995 static inline void kick_process(struct task_struct *tsk) { }
1996 #endif
1997 extern void sched_fork(struct task_struct *p);
1998 extern void sched_dead(struct task_struct *p);
1999
2000 extern void proc_caches_init(void);
2001 extern void flush_signals(struct task_struct *);
2002 extern void __flush_signals(struct task_struct *);
2003 extern void ignore_signals(struct task_struct *);
2004 extern void flush_signal_handlers(struct task_struct *, int force_default);
2005 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2006
2007 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2008 {
2009 unsigned long flags;
2010 int ret;
2011
2012 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2013 ret = dequeue_signal(tsk, mask, info);
2014 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2015
2016 return ret;
2017 }
2018
2019 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2020 sigset_t *mask);
2021 extern void unblock_all_signals(void);
2022 extern void release_task(struct task_struct * p);
2023 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2024 extern int force_sigsegv(int, struct task_struct *);
2025 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2026 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2027 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2028 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2029 const struct cred *, u32);
2030 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2031 extern int kill_pid(struct pid *pid, int sig, int priv);
2032 extern int kill_proc_info(int, struct siginfo *, pid_t);
2033 extern __must_check bool do_notify_parent(struct task_struct *, int);
2034 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2035 extern void force_sig(int, struct task_struct *);
2036 extern int send_sig(int, struct task_struct *, int);
2037 extern int zap_other_threads(struct task_struct *p);
2038 extern struct sigqueue *sigqueue_alloc(void);
2039 extern void sigqueue_free(struct sigqueue *);
2040 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2041 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2042
2043 static inline void restore_saved_sigmask(void)
2044 {
2045 if (test_and_clear_restore_sigmask())
2046 __set_current_blocked(&current->saved_sigmask);
2047 }
2048
2049 static inline sigset_t *sigmask_to_save(void)
2050 {
2051 sigset_t *res = &current->blocked;
2052 if (unlikely(test_restore_sigmask()))
2053 res = &current->saved_sigmask;
2054 return res;
2055 }
2056
2057 static inline int kill_cad_pid(int sig, int priv)
2058 {
2059 return kill_pid(cad_pid, sig, priv);
2060 }
2061
2062 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2063 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2064 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2065 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2066
2067 /*
2068 * True if we are on the alternate signal stack.
2069 */
2070 static inline int on_sig_stack(unsigned long sp)
2071 {
2072 #ifdef CONFIG_STACK_GROWSUP
2073 return sp >= current->sas_ss_sp &&
2074 sp - current->sas_ss_sp < current->sas_ss_size;
2075 #else
2076 return sp > current->sas_ss_sp &&
2077 sp - current->sas_ss_sp <= current->sas_ss_size;
2078 #endif
2079 }
2080
2081 static inline int sas_ss_flags(unsigned long sp)
2082 {
2083 return (current->sas_ss_size == 0 ? SS_DISABLE
2084 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2085 }
2086
2087 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2088 {
2089 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2090 #ifdef CONFIG_STACK_GROWSUP
2091 return current->sas_ss_sp;
2092 #else
2093 return current->sas_ss_sp + current->sas_ss_size;
2094 #endif
2095 return sp;
2096 }
2097
2098 /*
2099 * Routines for handling mm_structs
2100 */
2101 extern struct mm_struct * mm_alloc(void);
2102
2103 /* mmdrop drops the mm and the page tables */
2104 extern void __mmdrop(struct mm_struct *);
2105 static inline void mmdrop(struct mm_struct * mm)
2106 {
2107 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2108 __mmdrop(mm);
2109 }
2110
2111 /* mmput gets rid of the mappings and all user-space */
2112 extern void mmput(struct mm_struct *);
2113 /* Grab a reference to a task's mm, if it is not already going away */
2114 extern struct mm_struct *get_task_mm(struct task_struct *task);
2115 /*
2116 * Grab a reference to a task's mm, if it is not already going away
2117 * and ptrace_may_access with the mode parameter passed to it
2118 * succeeds.
2119 */
2120 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2121 /* Remove the current tasks stale references to the old mm_struct */
2122 extern void mm_release(struct task_struct *, struct mm_struct *);
2123 /* Allocate a new mm structure and copy contents from tsk->mm */
2124 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2125
2126 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2127 struct task_struct *);
2128 extern void flush_thread(void);
2129 extern void exit_thread(void);
2130
2131 extern void exit_files(struct task_struct *);
2132 extern void __cleanup_sighand(struct sighand_struct *);
2133
2134 extern void exit_itimers(struct signal_struct *);
2135 extern void flush_itimer_signals(void);
2136
2137 extern void do_group_exit(int);
2138
2139 extern int allow_signal(int);
2140 extern int disallow_signal(int);
2141
2142 extern int do_execve(const char *,
2143 const char __user * const __user *,
2144 const char __user * const __user *);
2145 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2146 struct task_struct *fork_idle(int);
2147 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2148
2149 extern void set_task_comm(struct task_struct *tsk, char *from);
2150 extern char *get_task_comm(char *to, struct task_struct *tsk);
2151
2152 #ifdef CONFIG_SMP
2153 void scheduler_ipi(void);
2154 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2155 #else
2156 static inline void scheduler_ipi(void) { }
2157 static inline unsigned long wait_task_inactive(struct task_struct *p,
2158 long match_state)
2159 {
2160 return 1;
2161 }
2162 #endif
2163
2164 #define next_task(p) \
2165 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2166
2167 #define for_each_process(p) \
2168 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2169
2170 extern bool current_is_single_threaded(void);
2171
2172 /*
2173 * Careful: do_each_thread/while_each_thread is a double loop so
2174 * 'break' will not work as expected - use goto instead.
2175 */
2176 #define do_each_thread(g, t) \
2177 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2178
2179 #define while_each_thread(g, t) \
2180 while ((t = next_thread(t)) != g)
2181
2182 #define __for_each_thread(signal, t) \
2183 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
2184
2185 #define for_each_thread(p, t) \
2186 __for_each_thread((p)->signal, t)
2187
2188 /* Careful: this is a double loop, 'break' won't work as expected. */
2189 #define for_each_process_thread(p, t) \
2190 for_each_process(p) for_each_thread(p, t)
2191
2192 static inline int get_nr_threads(struct task_struct *tsk)
2193 {
2194 return tsk->signal->nr_threads;
2195 }
2196
2197 static inline bool thread_group_leader(struct task_struct *p)
2198 {
2199 return p->exit_signal >= 0;
2200 }
2201
2202 /* Do to the insanities of de_thread it is possible for a process
2203 * to have the pid of the thread group leader without actually being
2204 * the thread group leader. For iteration through the pids in proc
2205 * all we care about is that we have a task with the appropriate
2206 * pid, we don't actually care if we have the right task.
2207 */
2208 static inline bool has_group_leader_pid(struct task_struct *p)
2209 {
2210 return task_pid(p) == p->signal->leader_pid;
2211 }
2212
2213 static inline
2214 bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
2215 {
2216 return p1->signal == p2->signal;
2217 }
2218
2219 static inline struct task_struct *next_thread(const struct task_struct *p)
2220 {
2221 return list_entry_rcu(p->thread_group.next,
2222 struct task_struct, thread_group);
2223 }
2224
2225 static inline int thread_group_empty(struct task_struct *p)
2226 {
2227 return list_empty(&p->thread_group);
2228 }
2229
2230 #define delay_group_leader(p) \
2231 (thread_group_leader(p) && !thread_group_empty(p))
2232
2233 /*
2234 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2235 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2236 * pins the final release of task.io_context. Also protects ->cpuset and
2237 * ->cgroup.subsys[]. And ->vfork_done.
2238 *
2239 * Nests both inside and outside of read_lock(&tasklist_lock).
2240 * It must not be nested with write_lock_irq(&tasklist_lock),
2241 * neither inside nor outside.
2242 */
2243 static inline void task_lock(struct task_struct *p)
2244 {
2245 spin_lock(&p->alloc_lock);
2246 }
2247
2248 static inline void task_unlock(struct task_struct *p)
2249 {
2250 spin_unlock(&p->alloc_lock);
2251 }
2252
2253 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2254 unsigned long *flags);
2255
2256 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2257 unsigned long *flags)
2258 {
2259 struct sighand_struct *ret;
2260
2261 ret = __lock_task_sighand(tsk, flags);
2262 (void)__cond_lock(&tsk->sighand->siglock, ret);
2263 return ret;
2264 }
2265
2266 static inline void unlock_task_sighand(struct task_struct *tsk,
2267 unsigned long *flags)
2268 {
2269 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2270 }
2271
2272 #ifdef CONFIG_CGROUPS
2273 static inline void threadgroup_change_begin(struct task_struct *tsk)
2274 {
2275 down_read(&tsk->signal->group_rwsem);
2276 }
2277 static inline void threadgroup_change_end(struct task_struct *tsk)
2278 {
2279 up_read(&tsk->signal->group_rwsem);
2280 }
2281
2282 /**
2283 * threadgroup_lock - lock threadgroup
2284 * @tsk: member task of the threadgroup to lock
2285 *
2286 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter
2287 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
2288 * change ->group_leader/pid. This is useful for cases where the threadgroup
2289 * needs to stay stable across blockable operations.
2290 *
2291 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2292 * synchronization. While held, no new task will be added to threadgroup
2293 * and no existing live task will have its PF_EXITING set.
2294 *
2295 * de_thread() does threadgroup_change_{begin|end}() when a non-leader
2296 * sub-thread becomes a new leader.
2297 */
2298 static inline void threadgroup_lock(struct task_struct *tsk)
2299 {
2300 down_write(&tsk->signal->group_rwsem);
2301 }
2302
2303 /**
2304 * threadgroup_unlock - unlock threadgroup
2305 * @tsk: member task of the threadgroup to unlock
2306 *
2307 * Reverse threadgroup_lock().
2308 */
2309 static inline void threadgroup_unlock(struct task_struct *tsk)
2310 {
2311 up_write(&tsk->signal->group_rwsem);
2312 }
2313 #else
2314 static inline void threadgroup_change_begin(struct task_struct *tsk) {}
2315 static inline void threadgroup_change_end(struct task_struct *tsk) {}
2316 static inline void threadgroup_lock(struct task_struct *tsk) {}
2317 static inline void threadgroup_unlock(struct task_struct *tsk) {}
2318 #endif
2319
2320 #ifndef __HAVE_THREAD_FUNCTIONS
2321
2322 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2323 #define task_stack_page(task) ((task)->stack)
2324
2325 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2326 {
2327 *task_thread_info(p) = *task_thread_info(org);
2328 task_thread_info(p)->task = p;
2329 }
2330
2331 static inline unsigned long *end_of_stack(struct task_struct *p)
2332 {
2333 return (unsigned long *)(task_thread_info(p) + 1);
2334 }
2335
2336 #endif
2337
2338 static inline int object_is_on_stack(void *obj)
2339 {
2340 void *stack = task_stack_page(current);
2341
2342 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2343 }
2344
2345 extern void thread_info_cache_init(void);
2346
2347 #ifdef CONFIG_DEBUG_STACK_USAGE
2348 static inline unsigned long stack_not_used(struct task_struct *p)
2349 {
2350 unsigned long *n = end_of_stack(p);
2351
2352 do { /* Skip over canary */
2353 n++;
2354 } while (!*n);
2355
2356 return (unsigned long)n - (unsigned long)end_of_stack(p);
2357 }
2358 #endif
2359
2360 /* set thread flags in other task's structures
2361 * - see asm/thread_info.h for TIF_xxxx flags available
2362 */
2363 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2364 {
2365 set_ti_thread_flag(task_thread_info(tsk), flag);
2366 }
2367
2368 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2369 {
2370 clear_ti_thread_flag(task_thread_info(tsk), flag);
2371 }
2372
2373 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2374 {
2375 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2376 }
2377
2378 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2379 {
2380 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2381 }
2382
2383 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2384 {
2385 return test_ti_thread_flag(task_thread_info(tsk), flag);
2386 }
2387
2388 static inline void set_tsk_need_resched(struct task_struct *tsk)
2389 {
2390 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2391 }
2392
2393 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2394 {
2395 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2396 }
2397
2398 static inline int test_tsk_need_resched(struct task_struct *tsk)
2399 {
2400 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2401 }
2402
2403 static inline int restart_syscall(void)
2404 {
2405 set_tsk_thread_flag(current, TIF_SIGPENDING);
2406 return -ERESTARTNOINTR;
2407 }
2408
2409 static inline int signal_pending(struct task_struct *p)
2410 {
2411 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2412 }
2413
2414 static inline int __fatal_signal_pending(struct task_struct *p)
2415 {
2416 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2417 }
2418
2419 static inline int fatal_signal_pending(struct task_struct *p)
2420 {
2421 return signal_pending(p) && __fatal_signal_pending(p);
2422 }
2423
2424 static inline int signal_pending_state(long state, struct task_struct *p)
2425 {
2426 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2427 return 0;
2428 if (!signal_pending(p))
2429 return 0;
2430
2431 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2432 }
2433
2434 static inline int need_resched(void)
2435 {
2436 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2437 }
2438
2439 /*
2440 * cond_resched() and cond_resched_lock(): latency reduction via
2441 * explicit rescheduling in places that are safe. The return
2442 * value indicates whether a reschedule was done in fact.
2443 * cond_resched_lock() will drop the spinlock before scheduling,
2444 * cond_resched_softirq() will enable bhs before scheduling.
2445 */
2446 extern int _cond_resched(void);
2447
2448 #define cond_resched() ({ \
2449 __might_sleep(__FILE__, __LINE__, 0); \
2450 _cond_resched(); \
2451 })
2452
2453 extern int __cond_resched_lock(spinlock_t *lock);
2454
2455 #ifdef CONFIG_PREEMPT_COUNT
2456 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
2457 #else
2458 #define PREEMPT_LOCK_OFFSET 0
2459 #endif
2460
2461 #define cond_resched_lock(lock) ({ \
2462 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2463 __cond_resched_lock(lock); \
2464 })
2465
2466 extern int __cond_resched_softirq(void);
2467
2468 #define cond_resched_softirq() ({ \
2469 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
2470 __cond_resched_softirq(); \
2471 })
2472
2473 /*
2474 * Does a critical section need to be broken due to another
2475 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2476 * but a general need for low latency)
2477 */
2478 static inline int spin_needbreak(spinlock_t *lock)
2479 {
2480 #ifdef CONFIG_PREEMPT
2481 return spin_is_contended(lock);
2482 #else
2483 return 0;
2484 #endif
2485 }
2486
2487 /*
2488 * Idle thread specific functions to determine the need_resched
2489 * polling state. We have two versions, one based on TS_POLLING in
2490 * thread_info.status and one based on TIF_POLLING_NRFLAG in
2491 * thread_info.flags
2492 */
2493 #ifdef TS_POLLING
2494 static inline int tsk_is_polling(struct task_struct *p)
2495 {
2496 return task_thread_info(p)->status & TS_POLLING;
2497 }
2498 static inline void __current_set_polling(void)
2499 {
2500 current_thread_info()->status |= TS_POLLING;
2501 }
2502
2503 static inline bool __must_check current_set_polling_and_test(void)
2504 {
2505 __current_set_polling();
2506
2507 /*
2508 * Polling state must be visible before we test NEED_RESCHED,
2509 * paired by resched_task()
2510 */
2511 smp_mb();
2512
2513 return unlikely(tif_need_resched());
2514 }
2515
2516 static inline void __current_clr_polling(void)
2517 {
2518 current_thread_info()->status &= ~TS_POLLING;
2519 }
2520
2521 static inline bool __must_check current_clr_polling_and_test(void)
2522 {
2523 __current_clr_polling();
2524
2525 /*
2526 * Polling state must be visible before we test NEED_RESCHED,
2527 * paired by resched_task()
2528 */
2529 smp_mb();
2530
2531 return unlikely(tif_need_resched());
2532 }
2533 #elif defined(TIF_POLLING_NRFLAG)
2534 static inline int tsk_is_polling(struct task_struct *p)
2535 {
2536 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
2537 }
2538
2539 static inline void __current_set_polling(void)
2540 {
2541 set_thread_flag(TIF_POLLING_NRFLAG);
2542 }
2543
2544 static inline bool __must_check current_set_polling_and_test(void)
2545 {
2546 __current_set_polling();
2547
2548 /*
2549 * Polling state must be visible before we test NEED_RESCHED,
2550 * paired by resched_task()
2551 *
2552 * XXX: assumes set/clear bit are identical barrier wise.
2553 */
2554 smp_mb__after_clear_bit();
2555
2556 return unlikely(tif_need_resched());
2557 }
2558
2559 static inline void __current_clr_polling(void)
2560 {
2561 clear_thread_flag(TIF_POLLING_NRFLAG);
2562 }
2563
2564 static inline bool __must_check current_clr_polling_and_test(void)
2565 {
2566 __current_clr_polling();
2567
2568 /*
2569 * Polling state must be visible before we test NEED_RESCHED,
2570 * paired by resched_task()
2571 */
2572 smp_mb__after_clear_bit();
2573
2574 return unlikely(tif_need_resched());
2575 }
2576
2577 #else
2578 static inline int tsk_is_polling(struct task_struct *p) { return 0; }
2579 static inline void __current_set_polling(void) { }
2580 static inline void __current_clr_polling(void) { }
2581
2582 static inline bool __must_check current_set_polling_and_test(void)
2583 {
2584 return unlikely(tif_need_resched());
2585 }
2586 static inline bool __must_check current_clr_polling_and_test(void)
2587 {
2588 return unlikely(tif_need_resched());
2589 }
2590 #endif
2591
2592 /*
2593 * Thread group CPU time accounting.
2594 */
2595 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2596 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2597
2598 static inline void thread_group_cputime_init(struct signal_struct *sig)
2599 {
2600 raw_spin_lock_init(&sig->cputimer.lock);
2601 }
2602
2603 /*
2604 * Reevaluate whether the task has signals pending delivery.
2605 * Wake the task if so.
2606 * This is required every time the blocked sigset_t changes.
2607 * callers must hold sighand->siglock.
2608 */
2609 extern void recalc_sigpending_and_wake(struct task_struct *t);
2610 extern void recalc_sigpending(void);
2611
2612 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
2613
2614 static inline void signal_wake_up(struct task_struct *t, bool resume)
2615 {
2616 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
2617 }
2618 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
2619 {
2620 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
2621 }
2622
2623 /*
2624 * Wrappers for p->thread_info->cpu access. No-op on UP.
2625 */
2626 #ifdef CONFIG_SMP
2627
2628 static inline unsigned int task_cpu(const struct task_struct *p)
2629 {
2630 return task_thread_info(p)->cpu;
2631 }
2632
2633 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2634
2635 #else
2636
2637 static inline unsigned int task_cpu(const struct task_struct *p)
2638 {
2639 return 0;
2640 }
2641
2642 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2643 {
2644 }
2645
2646 #endif /* CONFIG_SMP */
2647
2648 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2649 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2650
2651 #ifdef CONFIG_CGROUP_SCHED
2652 extern struct task_group root_task_group;
2653 #endif /* CONFIG_CGROUP_SCHED */
2654
2655 extern int task_can_switch_user(struct user_struct *up,
2656 struct task_struct *tsk);
2657
2658 #ifdef CONFIG_TASK_XACCT
2659 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2660 {
2661 tsk->ioac.rchar += amt;
2662 }
2663
2664 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2665 {
2666 tsk->ioac.wchar += amt;
2667 }
2668
2669 static inline void inc_syscr(struct task_struct *tsk)
2670 {
2671 tsk->ioac.syscr++;
2672 }
2673
2674 static inline void inc_syscw(struct task_struct *tsk)
2675 {
2676 tsk->ioac.syscw++;
2677 }
2678 #else
2679 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2680 {
2681 }
2682
2683 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2684 {
2685 }
2686
2687 static inline void inc_syscr(struct task_struct *tsk)
2688 {
2689 }
2690
2691 static inline void inc_syscw(struct task_struct *tsk)
2692 {
2693 }
2694 #endif
2695
2696 #ifndef TASK_SIZE_OF
2697 #define TASK_SIZE_OF(tsk) TASK_SIZE
2698 #endif
2699
2700 #ifdef CONFIG_MM_OWNER
2701 extern void mm_update_next_owner(struct mm_struct *mm);
2702 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2703 #else
2704 static inline void mm_update_next_owner(struct mm_struct *mm)
2705 {
2706 }
2707
2708 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2709 {
2710 }
2711 #endif /* CONFIG_MM_OWNER */
2712
2713 static inline unsigned long task_rlimit(const struct task_struct *tsk,
2714 unsigned int limit)
2715 {
2716 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2717 }
2718
2719 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2720 unsigned int limit)
2721 {
2722 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2723 }
2724
2725 static inline unsigned long rlimit(unsigned int limit)
2726 {
2727 return task_rlimit(current, limit);
2728 }
2729
2730 static inline unsigned long rlimit_max(unsigned int limit)
2731 {
2732 return task_rlimit_max(current, limit);
2733 }
2734
2735 #endif