Task Control Groups: shared cgroup subsystem group arrays
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 /*
5 * cloning flags:
6 */
7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD 0x00010000 /* Same thread group? */
16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */
25 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
26 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
27 #define CLONE_NEWUSER 0x10000000 /* New user namespace */
28 #define CLONE_NEWNET 0x40000000 /* New network namespace */
29
30 /*
31 * Scheduling policies
32 */
33 #define SCHED_NORMAL 0
34 #define SCHED_FIFO 1
35 #define SCHED_RR 2
36 #define SCHED_BATCH 3
37 /* SCHED_ISO: reserved but not implemented yet */
38 #define SCHED_IDLE 5
39
40 #ifdef __KERNEL__
41
42 struct sched_param {
43 int sched_priority;
44 };
45
46 #include <asm/param.h> /* for HZ */
47
48 #include <linux/capability.h>
49 #include <linux/threads.h>
50 #include <linux/kernel.h>
51 #include <linux/types.h>
52 #include <linux/timex.h>
53 #include <linux/jiffies.h>
54 #include <linux/rbtree.h>
55 #include <linux/thread_info.h>
56 #include <linux/cpumask.h>
57 #include <linux/errno.h>
58 #include <linux/nodemask.h>
59 #include <linux/mm_types.h>
60
61 #include <asm/system.h>
62 #include <asm/semaphore.h>
63 #include <asm/page.h>
64 #include <asm/ptrace.h>
65 #include <asm/cputime.h>
66
67 #include <linux/smp.h>
68 #include <linux/sem.h>
69 #include <linux/signal.h>
70 #include <linux/securebits.h>
71 #include <linux/fs_struct.h>
72 #include <linux/compiler.h>
73 #include <linux/completion.h>
74 #include <linux/pid.h>
75 #include <linux/percpu.h>
76 #include <linux/topology.h>
77 #include <linux/proportions.h>
78 #include <linux/seccomp.h>
79 #include <linux/rcupdate.h>
80 #include <linux/futex.h>
81 #include <linux/rtmutex.h>
82
83 #include <linux/time.h>
84 #include <linux/param.h>
85 #include <linux/resource.h>
86 #include <linux/timer.h>
87 #include <linux/hrtimer.h>
88 #include <linux/task_io_accounting.h>
89 #include <linux/kobject.h>
90
91 #include <asm/processor.h>
92
93 struct exec_domain;
94 struct futex_pi_state;
95 struct bio;
96
97 /*
98 * List of flags we want to share for kernel threads,
99 * if only because they are not used by them anyway.
100 */
101 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
102
103 /*
104 * These are the constant used to fake the fixed-point load-average
105 * counting. Some notes:
106 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
107 * a load-average precision of 10 bits integer + 11 bits fractional
108 * - if you want to count load-averages more often, you need more
109 * precision, or rounding will get you. With 2-second counting freq,
110 * the EXP_n values would be 1981, 2034 and 2043 if still using only
111 * 11 bit fractions.
112 */
113 extern unsigned long avenrun[]; /* Load averages */
114
115 #define FSHIFT 11 /* nr of bits of precision */
116 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
117 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
118 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
119 #define EXP_5 2014 /* 1/exp(5sec/5min) */
120 #define EXP_15 2037 /* 1/exp(5sec/15min) */
121
122 #define CALC_LOAD(load,exp,n) \
123 load *= exp; \
124 load += n*(FIXED_1-exp); \
125 load >>= FSHIFT;
126
127 extern unsigned long total_forks;
128 extern int nr_threads;
129 DECLARE_PER_CPU(unsigned long, process_counts);
130 extern int nr_processes(void);
131 extern unsigned long nr_running(void);
132 extern unsigned long nr_uninterruptible(void);
133 extern unsigned long nr_active(void);
134 extern unsigned long nr_iowait(void);
135 extern unsigned long weighted_cpuload(const int cpu);
136
137 struct seq_file;
138 struct cfs_rq;
139 struct task_group;
140 #ifdef CONFIG_SCHED_DEBUG
141 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
142 extern void proc_sched_set_task(struct task_struct *p);
143 extern void
144 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
145 #else
146 static inline void
147 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
148 {
149 }
150 static inline void proc_sched_set_task(struct task_struct *p)
151 {
152 }
153 static inline void
154 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
155 {
156 }
157 #endif
158
159 /*
160 * Task state bitmask. NOTE! These bits are also
161 * encoded in fs/proc/array.c: get_task_state().
162 *
163 * We have two separate sets of flags: task->state
164 * is about runnability, while task->exit_state are
165 * about the task exiting. Confusing, but this way
166 * modifying one set can't modify the other one by
167 * mistake.
168 */
169 #define TASK_RUNNING 0
170 #define TASK_INTERRUPTIBLE 1
171 #define TASK_UNINTERRUPTIBLE 2
172 #define TASK_STOPPED 4
173 #define TASK_TRACED 8
174 /* in tsk->exit_state */
175 #define EXIT_ZOMBIE 16
176 #define EXIT_DEAD 32
177 /* in tsk->state again */
178 #define TASK_DEAD 64
179
180 #define __set_task_state(tsk, state_value) \
181 do { (tsk)->state = (state_value); } while (0)
182 #define set_task_state(tsk, state_value) \
183 set_mb((tsk)->state, (state_value))
184
185 /*
186 * set_current_state() includes a barrier so that the write of current->state
187 * is correctly serialised wrt the caller's subsequent test of whether to
188 * actually sleep:
189 *
190 * set_current_state(TASK_UNINTERRUPTIBLE);
191 * if (do_i_need_to_sleep())
192 * schedule();
193 *
194 * If the caller does not need such serialisation then use __set_current_state()
195 */
196 #define __set_current_state(state_value) \
197 do { current->state = (state_value); } while (0)
198 #define set_current_state(state_value) \
199 set_mb(current->state, (state_value))
200
201 /* Task command name length */
202 #define TASK_COMM_LEN 16
203
204 #include <linux/spinlock.h>
205
206 /*
207 * This serializes "schedule()" and also protects
208 * the run-queue from deletions/modifications (but
209 * _adding_ to the beginning of the run-queue has
210 * a separate lock).
211 */
212 extern rwlock_t tasklist_lock;
213 extern spinlock_t mmlist_lock;
214
215 struct task_struct;
216
217 extern void sched_init(void);
218 extern void sched_init_smp(void);
219 extern void init_idle(struct task_struct *idle, int cpu);
220 extern void init_idle_bootup_task(struct task_struct *idle);
221
222 extern cpumask_t nohz_cpu_mask;
223 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
224 extern int select_nohz_load_balancer(int cpu);
225 #else
226 static inline int select_nohz_load_balancer(int cpu)
227 {
228 return 0;
229 }
230 #endif
231
232 /*
233 * Only dump TASK_* tasks. (0 for all tasks)
234 */
235 extern void show_state_filter(unsigned long state_filter);
236
237 static inline void show_state(void)
238 {
239 show_state_filter(0);
240 }
241
242 extern void show_regs(struct pt_regs *);
243
244 /*
245 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
246 * task), SP is the stack pointer of the first frame that should be shown in the back
247 * trace (or NULL if the entire call-chain of the task should be shown).
248 */
249 extern void show_stack(struct task_struct *task, unsigned long *sp);
250
251 void io_schedule(void);
252 long io_schedule_timeout(long timeout);
253
254 extern void cpu_init (void);
255 extern void trap_init(void);
256 extern void update_process_times(int user);
257 extern void scheduler_tick(void);
258
259 #ifdef CONFIG_DETECT_SOFTLOCKUP
260 extern void softlockup_tick(void);
261 extern void spawn_softlockup_task(void);
262 extern void touch_softlockup_watchdog(void);
263 extern void touch_all_softlockup_watchdogs(void);
264 extern int softlockup_thresh;
265 #else
266 static inline void softlockup_tick(void)
267 {
268 }
269 static inline void spawn_softlockup_task(void)
270 {
271 }
272 static inline void touch_softlockup_watchdog(void)
273 {
274 }
275 static inline void touch_all_softlockup_watchdogs(void)
276 {
277 }
278 #endif
279
280
281 /* Attach to any functions which should be ignored in wchan output. */
282 #define __sched __attribute__((__section__(".sched.text")))
283 /* Is this address in the __sched functions? */
284 extern int in_sched_functions(unsigned long addr);
285
286 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
287 extern signed long FASTCALL(schedule_timeout(signed long timeout));
288 extern signed long schedule_timeout_interruptible(signed long timeout);
289 extern signed long schedule_timeout_uninterruptible(signed long timeout);
290 asmlinkage void schedule(void);
291
292 struct nsproxy;
293 struct user_namespace;
294
295 /* Maximum number of active map areas.. This is a random (large) number */
296 #define DEFAULT_MAX_MAP_COUNT 65536
297
298 extern int sysctl_max_map_count;
299
300 #include <linux/aio.h>
301
302 extern unsigned long
303 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
304 unsigned long, unsigned long);
305 extern unsigned long
306 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
307 unsigned long len, unsigned long pgoff,
308 unsigned long flags);
309 extern void arch_unmap_area(struct mm_struct *, unsigned long);
310 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
311
312 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
313 /*
314 * The mm counters are not protected by its page_table_lock,
315 * so must be incremented atomically.
316 */
317 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
318 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
319 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
320 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
321 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
322
323 #else /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
324 /*
325 * The mm counters are protected by its page_table_lock,
326 * so can be incremented directly.
327 */
328 #define set_mm_counter(mm, member, value) (mm)->_##member = (value)
329 #define get_mm_counter(mm, member) ((mm)->_##member)
330 #define add_mm_counter(mm, member, value) (mm)->_##member += (value)
331 #define inc_mm_counter(mm, member) (mm)->_##member++
332 #define dec_mm_counter(mm, member) (mm)->_##member--
333
334 #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
335
336 #define get_mm_rss(mm) \
337 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
338 #define update_hiwater_rss(mm) do { \
339 unsigned long _rss = get_mm_rss(mm); \
340 if ((mm)->hiwater_rss < _rss) \
341 (mm)->hiwater_rss = _rss; \
342 } while (0)
343 #define update_hiwater_vm(mm) do { \
344 if ((mm)->hiwater_vm < (mm)->total_vm) \
345 (mm)->hiwater_vm = (mm)->total_vm; \
346 } while (0)
347
348 extern void set_dumpable(struct mm_struct *mm, int value);
349 extern int get_dumpable(struct mm_struct *mm);
350
351 /* mm flags */
352 /* dumpable bits */
353 #define MMF_DUMPABLE 0 /* core dump is permitted */
354 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
355 #define MMF_DUMPABLE_BITS 2
356
357 /* coredump filter bits */
358 #define MMF_DUMP_ANON_PRIVATE 2
359 #define MMF_DUMP_ANON_SHARED 3
360 #define MMF_DUMP_MAPPED_PRIVATE 4
361 #define MMF_DUMP_MAPPED_SHARED 5
362 #define MMF_DUMP_ELF_HEADERS 6
363 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
364 #define MMF_DUMP_FILTER_BITS 5
365 #define MMF_DUMP_FILTER_MASK \
366 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
367 #define MMF_DUMP_FILTER_DEFAULT \
368 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED))
369
370 struct sighand_struct {
371 atomic_t count;
372 struct k_sigaction action[_NSIG];
373 spinlock_t siglock;
374 wait_queue_head_t signalfd_wqh;
375 };
376
377 struct pacct_struct {
378 int ac_flag;
379 long ac_exitcode;
380 unsigned long ac_mem;
381 cputime_t ac_utime, ac_stime;
382 unsigned long ac_minflt, ac_majflt;
383 };
384
385 /*
386 * NOTE! "signal_struct" does not have it's own
387 * locking, because a shared signal_struct always
388 * implies a shared sighand_struct, so locking
389 * sighand_struct is always a proper superset of
390 * the locking of signal_struct.
391 */
392 struct signal_struct {
393 atomic_t count;
394 atomic_t live;
395
396 wait_queue_head_t wait_chldexit; /* for wait4() */
397
398 /* current thread group signal load-balancing target: */
399 struct task_struct *curr_target;
400
401 /* shared signal handling: */
402 struct sigpending shared_pending;
403
404 /* thread group exit support */
405 int group_exit_code;
406 /* overloaded:
407 * - notify group_exit_task when ->count is equal to notify_count
408 * - everyone except group_exit_task is stopped during signal delivery
409 * of fatal signals, group_exit_task processes the signal.
410 */
411 struct task_struct *group_exit_task;
412 int notify_count;
413
414 /* thread group stop support, overloads group_exit_code too */
415 int group_stop_count;
416 unsigned int flags; /* see SIGNAL_* flags below */
417
418 /* POSIX.1b Interval Timers */
419 struct list_head posix_timers;
420
421 /* ITIMER_REAL timer for the process */
422 struct hrtimer real_timer;
423 struct task_struct *tsk;
424 ktime_t it_real_incr;
425
426 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
427 cputime_t it_prof_expires, it_virt_expires;
428 cputime_t it_prof_incr, it_virt_incr;
429
430 /* job control IDs */
431 pid_t pgrp;
432 struct pid *tty_old_pgrp;
433
434 union {
435 pid_t session __deprecated;
436 pid_t __session;
437 };
438
439 /* boolean value for session group leader */
440 int leader;
441
442 struct tty_struct *tty; /* NULL if no tty */
443
444 /*
445 * Cumulative resource counters for dead threads in the group,
446 * and for reaped dead child processes forked by this group.
447 * Live threads maintain their own counters and add to these
448 * in __exit_signal, except for the group leader.
449 */
450 cputime_t utime, stime, cutime, cstime;
451 cputime_t gtime;
452 cputime_t cgtime;
453 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
454 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
455 unsigned long inblock, oublock, cinblock, coublock;
456
457 /*
458 * Cumulative ns of scheduled CPU time for dead threads in the
459 * group, not including a zombie group leader. (This only differs
460 * from jiffies_to_ns(utime + stime) if sched_clock uses something
461 * other than jiffies.)
462 */
463 unsigned long long sum_sched_runtime;
464
465 /*
466 * We don't bother to synchronize most readers of this at all,
467 * because there is no reader checking a limit that actually needs
468 * to get both rlim_cur and rlim_max atomically, and either one
469 * alone is a single word that can safely be read normally.
470 * getrlimit/setrlimit use task_lock(current->group_leader) to
471 * protect this instead of the siglock, because they really
472 * have no need to disable irqs.
473 */
474 struct rlimit rlim[RLIM_NLIMITS];
475
476 struct list_head cpu_timers[3];
477
478 /* keep the process-shared keyrings here so that they do the right
479 * thing in threads created with CLONE_THREAD */
480 #ifdef CONFIG_KEYS
481 struct key *session_keyring; /* keyring inherited over fork */
482 struct key *process_keyring; /* keyring private to this process */
483 #endif
484 #ifdef CONFIG_BSD_PROCESS_ACCT
485 struct pacct_struct pacct; /* per-process accounting information */
486 #endif
487 #ifdef CONFIG_TASKSTATS
488 struct taskstats *stats;
489 #endif
490 #ifdef CONFIG_AUDIT
491 unsigned audit_tty;
492 struct tty_audit_buf *tty_audit_buf;
493 #endif
494 };
495
496 /* Context switch must be unlocked if interrupts are to be enabled */
497 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
498 # define __ARCH_WANT_UNLOCKED_CTXSW
499 #endif
500
501 /*
502 * Bits in flags field of signal_struct.
503 */
504 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
505 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
506 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
507 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
508
509 /*
510 * Some day this will be a full-fledged user tracking system..
511 */
512 struct user_struct {
513 atomic_t __count; /* reference count */
514 atomic_t processes; /* How many processes does this user have? */
515 atomic_t files; /* How many open files does this user have? */
516 atomic_t sigpending; /* How many pending signals does this user have? */
517 #ifdef CONFIG_INOTIFY_USER
518 atomic_t inotify_watches; /* How many inotify watches does this user have? */
519 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
520 #endif
521 #ifdef CONFIG_POSIX_MQUEUE
522 /* protected by mq_lock */
523 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
524 #endif
525 unsigned long locked_shm; /* How many pages of mlocked shm ? */
526
527 #ifdef CONFIG_KEYS
528 struct key *uid_keyring; /* UID specific keyring */
529 struct key *session_keyring; /* UID's default session keyring */
530 #endif
531
532 /* Hash table maintenance information */
533 struct hlist_node uidhash_node;
534 uid_t uid;
535
536 #ifdef CONFIG_FAIR_USER_SCHED
537 struct task_group *tg;
538 #ifdef CONFIG_SYSFS
539 struct kset kset;
540 struct subsys_attribute user_attr;
541 struct work_struct work;
542 #endif
543 #endif
544 };
545
546 #ifdef CONFIG_FAIR_USER_SCHED
547 extern int uids_kobject_init(void);
548 #else
549 static inline int uids_kobject_init(void) { return 0; }
550 #endif
551
552 extern struct user_struct *find_user(uid_t);
553
554 extern struct user_struct root_user;
555 #define INIT_USER (&root_user)
556
557 struct backing_dev_info;
558 struct reclaim_state;
559
560 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
561 struct sched_info {
562 /* cumulative counters */
563 unsigned long pcount; /* # of times run on this cpu */
564 unsigned long long cpu_time, /* time spent on the cpu */
565 run_delay; /* time spent waiting on a runqueue */
566
567 /* timestamps */
568 unsigned long long last_arrival,/* when we last ran on a cpu */
569 last_queued; /* when we were last queued to run */
570 #ifdef CONFIG_SCHEDSTATS
571 /* BKL stats */
572 unsigned int bkl_count;
573 #endif
574 };
575 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
576
577 #ifdef CONFIG_SCHEDSTATS
578 extern const struct file_operations proc_schedstat_operations;
579 #endif /* CONFIG_SCHEDSTATS */
580
581 #ifdef CONFIG_TASK_DELAY_ACCT
582 struct task_delay_info {
583 spinlock_t lock;
584 unsigned int flags; /* Private per-task flags */
585
586 /* For each stat XXX, add following, aligned appropriately
587 *
588 * struct timespec XXX_start, XXX_end;
589 * u64 XXX_delay;
590 * u32 XXX_count;
591 *
592 * Atomicity of updates to XXX_delay, XXX_count protected by
593 * single lock above (split into XXX_lock if contention is an issue).
594 */
595
596 /*
597 * XXX_count is incremented on every XXX operation, the delay
598 * associated with the operation is added to XXX_delay.
599 * XXX_delay contains the accumulated delay time in nanoseconds.
600 */
601 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
602 u64 blkio_delay; /* wait for sync block io completion */
603 u64 swapin_delay; /* wait for swapin block io completion */
604 u32 blkio_count; /* total count of the number of sync block */
605 /* io operations performed */
606 u32 swapin_count; /* total count of the number of swapin block */
607 /* io operations performed */
608 };
609 #endif /* CONFIG_TASK_DELAY_ACCT */
610
611 static inline int sched_info_on(void)
612 {
613 #ifdef CONFIG_SCHEDSTATS
614 return 1;
615 #elif defined(CONFIG_TASK_DELAY_ACCT)
616 extern int delayacct_on;
617 return delayacct_on;
618 #else
619 return 0;
620 #endif
621 }
622
623 enum cpu_idle_type {
624 CPU_IDLE,
625 CPU_NOT_IDLE,
626 CPU_NEWLY_IDLE,
627 CPU_MAX_IDLE_TYPES
628 };
629
630 /*
631 * sched-domains (multiprocessor balancing) declarations:
632 */
633
634 /*
635 * Increase resolution of nice-level calculations:
636 */
637 #define SCHED_LOAD_SHIFT 10
638 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
639
640 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE
641
642 #ifdef CONFIG_SMP
643 #define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */
644 #define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */
645 #define SD_BALANCE_EXEC 4 /* Balance on exec */
646 #define SD_BALANCE_FORK 8 /* Balance on fork, clone */
647 #define SD_WAKE_IDLE 16 /* Wake to idle CPU on task wakeup */
648 #define SD_WAKE_AFFINE 32 /* Wake task to waking CPU */
649 #define SD_WAKE_BALANCE 64 /* Perform balancing at task wakeup */
650 #define SD_SHARE_CPUPOWER 128 /* Domain members share cpu power */
651 #define SD_POWERSAVINGS_BALANCE 256 /* Balance for power savings */
652 #define SD_SHARE_PKG_RESOURCES 512 /* Domain members share cpu pkg resources */
653 #define SD_SERIALIZE 1024 /* Only a single load balancing instance */
654
655 #define BALANCE_FOR_MC_POWER \
656 (sched_smt_power_savings ? SD_POWERSAVINGS_BALANCE : 0)
657
658 #define BALANCE_FOR_PKG_POWER \
659 ((sched_mc_power_savings || sched_smt_power_savings) ? \
660 SD_POWERSAVINGS_BALANCE : 0)
661
662 #define test_sd_parent(sd, flag) ((sd->parent && \
663 (sd->parent->flags & flag)) ? 1 : 0)
664
665
666 struct sched_group {
667 struct sched_group *next; /* Must be a circular list */
668 cpumask_t cpumask;
669
670 /*
671 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
672 * single CPU. This is read only (except for setup, hotplug CPU).
673 * Note : Never change cpu_power without recompute its reciprocal
674 */
675 unsigned int __cpu_power;
676 /*
677 * reciprocal value of cpu_power to avoid expensive divides
678 * (see include/linux/reciprocal_div.h)
679 */
680 u32 reciprocal_cpu_power;
681 };
682
683 struct sched_domain {
684 /* These fields must be setup */
685 struct sched_domain *parent; /* top domain must be null terminated */
686 struct sched_domain *child; /* bottom domain must be null terminated */
687 struct sched_group *groups; /* the balancing groups of the domain */
688 cpumask_t span; /* span of all CPUs in this domain */
689 unsigned long min_interval; /* Minimum balance interval ms */
690 unsigned long max_interval; /* Maximum balance interval ms */
691 unsigned int busy_factor; /* less balancing by factor if busy */
692 unsigned int imbalance_pct; /* No balance until over watermark */
693 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
694 unsigned int busy_idx;
695 unsigned int idle_idx;
696 unsigned int newidle_idx;
697 unsigned int wake_idx;
698 unsigned int forkexec_idx;
699 int flags; /* See SD_* */
700
701 /* Runtime fields. */
702 unsigned long last_balance; /* init to jiffies. units in jiffies */
703 unsigned int balance_interval; /* initialise to 1. units in ms. */
704 unsigned int nr_balance_failed; /* initialise to 0 */
705
706 #ifdef CONFIG_SCHEDSTATS
707 /* load_balance() stats */
708 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
709 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
710 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
711 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
712 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
713 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
714 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
715 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
716
717 /* Active load balancing */
718 unsigned int alb_count;
719 unsigned int alb_failed;
720 unsigned int alb_pushed;
721
722 /* SD_BALANCE_EXEC stats */
723 unsigned int sbe_count;
724 unsigned int sbe_balanced;
725 unsigned int sbe_pushed;
726
727 /* SD_BALANCE_FORK stats */
728 unsigned int sbf_count;
729 unsigned int sbf_balanced;
730 unsigned int sbf_pushed;
731
732 /* try_to_wake_up() stats */
733 unsigned int ttwu_wake_remote;
734 unsigned int ttwu_move_affine;
735 unsigned int ttwu_move_balance;
736 #endif
737 };
738
739 #endif /* CONFIG_SMP */
740
741 /*
742 * A runqueue laden with a single nice 0 task scores a weighted_cpuload of
743 * SCHED_LOAD_SCALE. This function returns 1 if any cpu is laden with a
744 * task of nice 0 or enough lower priority tasks to bring up the
745 * weighted_cpuload
746 */
747 static inline int above_background_load(void)
748 {
749 unsigned long cpu;
750
751 for_each_online_cpu(cpu) {
752 if (weighted_cpuload(cpu) >= SCHED_LOAD_SCALE)
753 return 1;
754 }
755 return 0;
756 }
757
758 struct io_context; /* See blkdev.h */
759 struct cpuset;
760
761 #define NGROUPS_SMALL 32
762 #define NGROUPS_PER_BLOCK ((int)(PAGE_SIZE / sizeof(gid_t)))
763 struct group_info {
764 int ngroups;
765 atomic_t usage;
766 gid_t small_block[NGROUPS_SMALL];
767 int nblocks;
768 gid_t *blocks[0];
769 };
770
771 /*
772 * get_group_info() must be called with the owning task locked (via task_lock())
773 * when task != current. The reason being that the vast majority of callers are
774 * looking at current->group_info, which can not be changed except by the
775 * current task. Changing current->group_info requires the task lock, too.
776 */
777 #define get_group_info(group_info) do { \
778 atomic_inc(&(group_info)->usage); \
779 } while (0)
780
781 #define put_group_info(group_info) do { \
782 if (atomic_dec_and_test(&(group_info)->usage)) \
783 groups_free(group_info); \
784 } while (0)
785
786 extern struct group_info *groups_alloc(int gidsetsize);
787 extern void groups_free(struct group_info *group_info);
788 extern int set_current_groups(struct group_info *group_info);
789 extern int groups_search(struct group_info *group_info, gid_t grp);
790 /* access the groups "array" with this macro */
791 #define GROUP_AT(gi, i) \
792 ((gi)->blocks[(i)/NGROUPS_PER_BLOCK][(i)%NGROUPS_PER_BLOCK])
793
794 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
795 extern void prefetch_stack(struct task_struct *t);
796 #else
797 static inline void prefetch_stack(struct task_struct *t) { }
798 #endif
799
800 struct audit_context; /* See audit.c */
801 struct mempolicy;
802 struct pipe_inode_info;
803 struct uts_namespace;
804
805 struct rq;
806 struct sched_domain;
807
808 struct sched_class {
809 const struct sched_class *next;
810
811 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup);
812 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
813 void (*yield_task) (struct rq *rq);
814
815 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p);
816
817 struct task_struct * (*pick_next_task) (struct rq *rq);
818 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
819
820 unsigned long (*load_balance) (struct rq *this_rq, int this_cpu,
821 struct rq *busiest,
822 unsigned long max_nr_move, unsigned long max_load_move,
823 struct sched_domain *sd, enum cpu_idle_type idle,
824 int *all_pinned, int *this_best_prio);
825
826 void (*set_curr_task) (struct rq *rq);
827 void (*task_tick) (struct rq *rq, struct task_struct *p);
828 void (*task_new) (struct rq *rq, struct task_struct *p);
829 };
830
831 struct load_weight {
832 unsigned long weight, inv_weight;
833 };
834
835 /*
836 * CFS stats for a schedulable entity (task, task-group etc)
837 *
838 * Current field usage histogram:
839 *
840 * 4 se->block_start
841 * 4 se->run_node
842 * 4 se->sleep_start
843 * 6 se->load.weight
844 */
845 struct sched_entity {
846 struct load_weight load; /* for load-balancing */
847 struct rb_node run_node;
848 unsigned int on_rq;
849 int peer_preempt;
850
851 u64 exec_start;
852 u64 sum_exec_runtime;
853 u64 vruntime;
854 u64 prev_sum_exec_runtime;
855
856 #ifdef CONFIG_SCHEDSTATS
857 u64 wait_start;
858 u64 wait_max;
859
860 u64 sleep_start;
861 u64 sleep_max;
862 s64 sum_sleep_runtime;
863
864 u64 block_start;
865 u64 block_max;
866 u64 exec_max;
867 u64 slice_max;
868
869 u64 nr_migrations;
870 u64 nr_migrations_cold;
871 u64 nr_failed_migrations_affine;
872 u64 nr_failed_migrations_running;
873 u64 nr_failed_migrations_hot;
874 u64 nr_forced_migrations;
875 u64 nr_forced2_migrations;
876
877 u64 nr_wakeups;
878 u64 nr_wakeups_sync;
879 u64 nr_wakeups_migrate;
880 u64 nr_wakeups_local;
881 u64 nr_wakeups_remote;
882 u64 nr_wakeups_affine;
883 u64 nr_wakeups_affine_attempts;
884 u64 nr_wakeups_passive;
885 u64 nr_wakeups_idle;
886 #endif
887
888 #ifdef CONFIG_FAIR_GROUP_SCHED
889 struct sched_entity *parent;
890 /* rq on which this entity is (to be) queued: */
891 struct cfs_rq *cfs_rq;
892 /* rq "owned" by this entity/group: */
893 struct cfs_rq *my_q;
894 #endif
895 };
896
897 struct task_struct {
898 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
899 void *stack;
900 atomic_t usage;
901 unsigned int flags; /* per process flags, defined below */
902 unsigned int ptrace;
903
904 int lock_depth; /* BKL lock depth */
905
906 #ifdef CONFIG_SMP
907 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
908 int oncpu;
909 #endif
910 #endif
911
912 int prio, static_prio, normal_prio;
913 struct list_head run_list;
914 const struct sched_class *sched_class;
915 struct sched_entity se;
916
917 #ifdef CONFIG_PREEMPT_NOTIFIERS
918 /* list of struct preempt_notifier: */
919 struct hlist_head preempt_notifiers;
920 #endif
921
922 unsigned short ioprio;
923 /*
924 * fpu_counter contains the number of consecutive context switches
925 * that the FPU is used. If this is over a threshold, the lazy fpu
926 * saving becomes unlazy to save the trap. This is an unsigned char
927 * so that after 256 times the counter wraps and the behavior turns
928 * lazy again; this to deal with bursty apps that only use FPU for
929 * a short time
930 */
931 unsigned char fpu_counter;
932 s8 oomkilladj; /* OOM kill score adjustment (bit shift). */
933 #ifdef CONFIG_BLK_DEV_IO_TRACE
934 unsigned int btrace_seq;
935 #endif
936
937 unsigned int policy;
938 cpumask_t cpus_allowed;
939 unsigned int time_slice;
940
941 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
942 struct sched_info sched_info;
943 #endif
944
945 struct list_head tasks;
946 /*
947 * ptrace_list/ptrace_children forms the list of my children
948 * that were stolen by a ptracer.
949 */
950 struct list_head ptrace_children;
951 struct list_head ptrace_list;
952
953 struct mm_struct *mm, *active_mm;
954
955 /* task state */
956 struct linux_binfmt *binfmt;
957 int exit_state;
958 int exit_code, exit_signal;
959 int pdeath_signal; /* The signal sent when the parent dies */
960 /* ??? */
961 unsigned int personality;
962 unsigned did_exec:1;
963 pid_t pid;
964 pid_t tgid;
965
966 #ifdef CONFIG_CC_STACKPROTECTOR
967 /* Canary value for the -fstack-protector gcc feature */
968 unsigned long stack_canary;
969 #endif
970 /*
971 * pointers to (original) parent process, youngest child, younger sibling,
972 * older sibling, respectively. (p->father can be replaced with
973 * p->parent->pid)
974 */
975 struct task_struct *real_parent; /* real parent process (when being debugged) */
976 struct task_struct *parent; /* parent process */
977 /*
978 * children/sibling forms the list of my children plus the
979 * tasks I'm ptracing.
980 */
981 struct list_head children; /* list of my children */
982 struct list_head sibling; /* linkage in my parent's children list */
983 struct task_struct *group_leader; /* threadgroup leader */
984
985 /* PID/PID hash table linkage. */
986 struct pid_link pids[PIDTYPE_MAX];
987 struct list_head thread_group;
988
989 struct completion *vfork_done; /* for vfork() */
990 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
991 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
992
993 unsigned int rt_priority;
994 cputime_t utime, stime, utimescaled, stimescaled;
995 cputime_t gtime;
996 unsigned long nvcsw, nivcsw; /* context switch counts */
997 struct timespec start_time; /* monotonic time */
998 struct timespec real_start_time; /* boot based time */
999 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1000 unsigned long min_flt, maj_flt;
1001
1002 cputime_t it_prof_expires, it_virt_expires;
1003 unsigned long long it_sched_expires;
1004 struct list_head cpu_timers[3];
1005
1006 /* process credentials */
1007 uid_t uid,euid,suid,fsuid;
1008 gid_t gid,egid,sgid,fsgid;
1009 struct group_info *group_info;
1010 kernel_cap_t cap_effective, cap_inheritable, cap_permitted;
1011 unsigned keep_capabilities:1;
1012 struct user_struct *user;
1013 #ifdef CONFIG_KEYS
1014 struct key *request_key_auth; /* assumed request_key authority */
1015 struct key *thread_keyring; /* keyring private to this thread */
1016 unsigned char jit_keyring; /* default keyring to attach requested keys to */
1017 #endif
1018 char comm[TASK_COMM_LEN]; /* executable name excluding path
1019 - access with [gs]et_task_comm (which lock
1020 it with task_lock())
1021 - initialized normally by flush_old_exec */
1022 /* file system info */
1023 int link_count, total_link_count;
1024 #ifdef CONFIG_SYSVIPC
1025 /* ipc stuff */
1026 struct sysv_sem sysvsem;
1027 #endif
1028 /* CPU-specific state of this task */
1029 struct thread_struct thread;
1030 /* filesystem information */
1031 struct fs_struct *fs;
1032 /* open file information */
1033 struct files_struct *files;
1034 /* namespaces */
1035 struct nsproxy *nsproxy;
1036 /* signal handlers */
1037 struct signal_struct *signal;
1038 struct sighand_struct *sighand;
1039
1040 sigset_t blocked, real_blocked;
1041 sigset_t saved_sigmask; /* To be restored with TIF_RESTORE_SIGMASK */
1042 struct sigpending pending;
1043
1044 unsigned long sas_ss_sp;
1045 size_t sas_ss_size;
1046 int (*notifier)(void *priv);
1047 void *notifier_data;
1048 sigset_t *notifier_mask;
1049 #ifdef CONFIG_SECURITY
1050 void *security;
1051 #endif
1052 struct audit_context *audit_context;
1053 seccomp_t seccomp;
1054
1055 /* Thread group tracking */
1056 u32 parent_exec_id;
1057 u32 self_exec_id;
1058 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings */
1059 spinlock_t alloc_lock;
1060
1061 /* Protection of the PI data structures: */
1062 spinlock_t pi_lock;
1063
1064 #ifdef CONFIG_RT_MUTEXES
1065 /* PI waiters blocked on a rt_mutex held by this task */
1066 struct plist_head pi_waiters;
1067 /* Deadlock detection and priority inheritance handling */
1068 struct rt_mutex_waiter *pi_blocked_on;
1069 #endif
1070
1071 #ifdef CONFIG_DEBUG_MUTEXES
1072 /* mutex deadlock detection */
1073 struct mutex_waiter *blocked_on;
1074 #endif
1075 #ifdef CONFIG_TRACE_IRQFLAGS
1076 unsigned int irq_events;
1077 int hardirqs_enabled;
1078 unsigned long hardirq_enable_ip;
1079 unsigned int hardirq_enable_event;
1080 unsigned long hardirq_disable_ip;
1081 unsigned int hardirq_disable_event;
1082 int softirqs_enabled;
1083 unsigned long softirq_disable_ip;
1084 unsigned int softirq_disable_event;
1085 unsigned long softirq_enable_ip;
1086 unsigned int softirq_enable_event;
1087 int hardirq_context;
1088 int softirq_context;
1089 #endif
1090 #ifdef CONFIG_LOCKDEP
1091 # define MAX_LOCK_DEPTH 30UL
1092 u64 curr_chain_key;
1093 int lockdep_depth;
1094 struct held_lock held_locks[MAX_LOCK_DEPTH];
1095 unsigned int lockdep_recursion;
1096 #endif
1097
1098 /* journalling filesystem info */
1099 void *journal_info;
1100
1101 /* stacked block device info */
1102 struct bio *bio_list, **bio_tail;
1103
1104 /* VM state */
1105 struct reclaim_state *reclaim_state;
1106
1107 struct backing_dev_info *backing_dev_info;
1108
1109 struct io_context *io_context;
1110
1111 unsigned long ptrace_message;
1112 siginfo_t *last_siginfo; /* For ptrace use. */
1113 #ifdef CONFIG_TASK_XACCT
1114 /* i/o counters(bytes read/written, #syscalls */
1115 u64 rchar, wchar, syscr, syscw;
1116 #endif
1117 struct task_io_accounting ioac;
1118 #if defined(CONFIG_TASK_XACCT)
1119 u64 acct_rss_mem1; /* accumulated rss usage */
1120 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1121 cputime_t acct_stimexpd;/* stime since last update */
1122 #endif
1123 #ifdef CONFIG_NUMA
1124 struct mempolicy *mempolicy;
1125 short il_next;
1126 #endif
1127 #ifdef CONFIG_CPUSETS
1128 struct cpuset *cpuset;
1129 nodemask_t mems_allowed;
1130 int cpuset_mems_generation;
1131 int cpuset_mem_spread_rotor;
1132 #endif
1133 #ifdef CONFIG_CGROUPS
1134 /* Control Group info protected by css_set_lock */
1135 struct css_set *cgroups;
1136 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1137 struct list_head cg_list;
1138 #endif
1139 #ifdef CONFIG_FUTEX
1140 struct robust_list_head __user *robust_list;
1141 #ifdef CONFIG_COMPAT
1142 struct compat_robust_list_head __user *compat_robust_list;
1143 #endif
1144 struct list_head pi_state_list;
1145 struct futex_pi_state *pi_state_cache;
1146 #endif
1147 atomic_t fs_excl; /* holding fs exclusive resources */
1148 struct rcu_head rcu;
1149
1150 /*
1151 * cache last used pipe for splice
1152 */
1153 struct pipe_inode_info *splice_pipe;
1154 #ifdef CONFIG_TASK_DELAY_ACCT
1155 struct task_delay_info *delays;
1156 #endif
1157 #ifdef CONFIG_FAULT_INJECTION
1158 int make_it_fail;
1159 #endif
1160 struct prop_local_single dirties;
1161 };
1162
1163 /*
1164 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1165 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1166 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1167 * values are inverted: lower p->prio value means higher priority.
1168 *
1169 * The MAX_USER_RT_PRIO value allows the actual maximum
1170 * RT priority to be separate from the value exported to
1171 * user-space. This allows kernel threads to set their
1172 * priority to a value higher than any user task. Note:
1173 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1174 */
1175
1176 #define MAX_USER_RT_PRIO 100
1177 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1178
1179 #define MAX_PRIO (MAX_RT_PRIO + 40)
1180 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1181
1182 static inline int rt_prio(int prio)
1183 {
1184 if (unlikely(prio < MAX_RT_PRIO))
1185 return 1;
1186 return 0;
1187 }
1188
1189 static inline int rt_task(struct task_struct *p)
1190 {
1191 return rt_prio(p->prio);
1192 }
1193
1194 static inline pid_t process_group(struct task_struct *tsk)
1195 {
1196 return tsk->signal->pgrp;
1197 }
1198
1199 static inline pid_t signal_session(struct signal_struct *sig)
1200 {
1201 return sig->__session;
1202 }
1203
1204 static inline pid_t process_session(struct task_struct *tsk)
1205 {
1206 return signal_session(tsk->signal);
1207 }
1208
1209 static inline void set_signal_session(struct signal_struct *sig, pid_t session)
1210 {
1211 sig->__session = session;
1212 }
1213
1214 static inline struct pid *task_pid(struct task_struct *task)
1215 {
1216 return task->pids[PIDTYPE_PID].pid;
1217 }
1218
1219 static inline struct pid *task_tgid(struct task_struct *task)
1220 {
1221 return task->group_leader->pids[PIDTYPE_PID].pid;
1222 }
1223
1224 static inline struct pid *task_pgrp(struct task_struct *task)
1225 {
1226 return task->group_leader->pids[PIDTYPE_PGID].pid;
1227 }
1228
1229 static inline struct pid *task_session(struct task_struct *task)
1230 {
1231 return task->group_leader->pids[PIDTYPE_SID].pid;
1232 }
1233
1234 /**
1235 * pid_alive - check that a task structure is not stale
1236 * @p: Task structure to be checked.
1237 *
1238 * Test if a process is not yet dead (at most zombie state)
1239 * If pid_alive fails, then pointers within the task structure
1240 * can be stale and must not be dereferenced.
1241 */
1242 static inline int pid_alive(struct task_struct *p)
1243 {
1244 return p->pids[PIDTYPE_PID].pid != NULL;
1245 }
1246
1247 /**
1248 * is_init - check if a task structure is init
1249 * @tsk: Task structure to be checked.
1250 *
1251 * Check if a task structure is the first user space task the kernel created.
1252 */
1253 static inline int is_init(struct task_struct *tsk)
1254 {
1255 return tsk->pid == 1;
1256 }
1257
1258 extern struct pid *cad_pid;
1259
1260 extern void free_task(struct task_struct *tsk);
1261 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1262
1263 extern void __put_task_struct(struct task_struct *t);
1264
1265 static inline void put_task_struct(struct task_struct *t)
1266 {
1267 if (atomic_dec_and_test(&t->usage))
1268 __put_task_struct(t);
1269 }
1270
1271 /*
1272 * Per process flags
1273 */
1274 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */
1275 /* Not implemented yet, only for 486*/
1276 #define PF_STARTING 0x00000002 /* being created */
1277 #define PF_EXITING 0x00000004 /* getting shut down */
1278 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1279 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1280 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1281 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1282 #define PF_DUMPCORE 0x00000200 /* dumped core */
1283 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1284 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1285 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */
1286 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1287 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1288 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1289 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1290 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1291 #define PF_SWAPOFF 0x00080000 /* I am in swapoff */
1292 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1293 #define PF_BORROWED_MM 0x00200000 /* I am a kthread doing use_mm */
1294 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1295 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1296 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1297 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1298 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1299 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1300 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */
1301
1302 /*
1303 * Only the _current_ task can read/write to tsk->flags, but other
1304 * tasks can access tsk->flags in readonly mode for example
1305 * with tsk_used_math (like during threaded core dumping).
1306 * There is however an exception to this rule during ptrace
1307 * or during fork: the ptracer task is allowed to write to the
1308 * child->flags of its traced child (same goes for fork, the parent
1309 * can write to the child->flags), because we're guaranteed the
1310 * child is not running and in turn not changing child->flags
1311 * at the same time the parent does it.
1312 */
1313 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1314 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1315 #define clear_used_math() clear_stopped_child_used_math(current)
1316 #define set_used_math() set_stopped_child_used_math(current)
1317 #define conditional_stopped_child_used_math(condition, child) \
1318 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1319 #define conditional_used_math(condition) \
1320 conditional_stopped_child_used_math(condition, current)
1321 #define copy_to_stopped_child_used_math(child) \
1322 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1323 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1324 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1325 #define used_math() tsk_used_math(current)
1326
1327 #ifdef CONFIG_SMP
1328 extern int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask);
1329 #else
1330 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1331 {
1332 if (!cpu_isset(0, new_mask))
1333 return -EINVAL;
1334 return 0;
1335 }
1336 #endif
1337
1338 extern unsigned long long sched_clock(void);
1339
1340 /*
1341 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1342 * clock constructed from sched_clock():
1343 */
1344 extern unsigned long long cpu_clock(int cpu);
1345
1346 extern unsigned long long
1347 task_sched_runtime(struct task_struct *task);
1348
1349 /* sched_exec is called by processes performing an exec */
1350 #ifdef CONFIG_SMP
1351 extern void sched_exec(void);
1352 #else
1353 #define sched_exec() {}
1354 #endif
1355
1356 extern void sched_clock_idle_sleep_event(void);
1357 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1358
1359 #ifdef CONFIG_HOTPLUG_CPU
1360 extern void idle_task_exit(void);
1361 #else
1362 static inline void idle_task_exit(void) {}
1363 #endif
1364
1365 extern void sched_idle_next(void);
1366
1367 #ifdef CONFIG_SCHED_DEBUG
1368 extern unsigned int sysctl_sched_latency;
1369 extern unsigned int sysctl_sched_nr_latency;
1370 extern unsigned int sysctl_sched_wakeup_granularity;
1371 extern unsigned int sysctl_sched_batch_wakeup_granularity;
1372 extern unsigned int sysctl_sched_child_runs_first;
1373 extern unsigned int sysctl_sched_features;
1374 extern unsigned int sysctl_sched_migration_cost;
1375 #endif
1376
1377 extern unsigned int sysctl_sched_compat_yield;
1378
1379 #ifdef CONFIG_RT_MUTEXES
1380 extern int rt_mutex_getprio(struct task_struct *p);
1381 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1382 extern void rt_mutex_adjust_pi(struct task_struct *p);
1383 #else
1384 static inline int rt_mutex_getprio(struct task_struct *p)
1385 {
1386 return p->normal_prio;
1387 }
1388 # define rt_mutex_adjust_pi(p) do { } while (0)
1389 #endif
1390
1391 extern void set_user_nice(struct task_struct *p, long nice);
1392 extern int task_prio(const struct task_struct *p);
1393 extern int task_nice(const struct task_struct *p);
1394 extern int can_nice(const struct task_struct *p, const int nice);
1395 extern int task_curr(const struct task_struct *p);
1396 extern int idle_cpu(int cpu);
1397 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1398 extern struct task_struct *idle_task(int cpu);
1399 extern struct task_struct *curr_task(int cpu);
1400 extern void set_curr_task(int cpu, struct task_struct *p);
1401
1402 void yield(void);
1403
1404 /*
1405 * The default (Linux) execution domain.
1406 */
1407 extern struct exec_domain default_exec_domain;
1408
1409 union thread_union {
1410 struct thread_info thread_info;
1411 unsigned long stack[THREAD_SIZE/sizeof(long)];
1412 };
1413
1414 #ifndef __HAVE_ARCH_KSTACK_END
1415 static inline int kstack_end(void *addr)
1416 {
1417 /* Reliable end of stack detection:
1418 * Some APM bios versions misalign the stack
1419 */
1420 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1421 }
1422 #endif
1423
1424 extern union thread_union init_thread_union;
1425 extern struct task_struct init_task;
1426
1427 extern struct mm_struct init_mm;
1428
1429 #define find_task_by_pid(nr) find_task_by_pid_type(PIDTYPE_PID, nr)
1430 extern struct task_struct *find_task_by_pid_type(int type, int pid);
1431 extern void __set_special_pids(pid_t session, pid_t pgrp);
1432
1433 /* per-UID process charging. */
1434 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
1435 static inline struct user_struct *get_uid(struct user_struct *u)
1436 {
1437 atomic_inc(&u->__count);
1438 return u;
1439 }
1440 extern void free_uid(struct user_struct *);
1441 extern void switch_uid(struct user_struct *);
1442 extern void release_uids(struct user_namespace *ns);
1443
1444 #include <asm/current.h>
1445
1446 extern void do_timer(unsigned long ticks);
1447
1448 extern int FASTCALL(wake_up_state(struct task_struct * tsk, unsigned int state));
1449 extern int FASTCALL(wake_up_process(struct task_struct * tsk));
1450 extern void FASTCALL(wake_up_new_task(struct task_struct * tsk,
1451 unsigned long clone_flags));
1452 #ifdef CONFIG_SMP
1453 extern void kick_process(struct task_struct *tsk);
1454 #else
1455 static inline void kick_process(struct task_struct *tsk) { }
1456 #endif
1457 extern void sched_fork(struct task_struct *p, int clone_flags);
1458 extern void sched_dead(struct task_struct *p);
1459
1460 extern int in_group_p(gid_t);
1461 extern int in_egroup_p(gid_t);
1462
1463 extern void proc_caches_init(void);
1464 extern void flush_signals(struct task_struct *);
1465 extern void ignore_signals(struct task_struct *);
1466 extern void flush_signal_handlers(struct task_struct *, int force_default);
1467 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1468
1469 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1470 {
1471 unsigned long flags;
1472 int ret;
1473
1474 spin_lock_irqsave(&tsk->sighand->siglock, flags);
1475 ret = dequeue_signal(tsk, mask, info);
1476 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1477
1478 return ret;
1479 }
1480
1481 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
1482 sigset_t *mask);
1483 extern void unblock_all_signals(void);
1484 extern void release_task(struct task_struct * p);
1485 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1486 extern int send_group_sig_info(int, struct siginfo *, struct task_struct *);
1487 extern int force_sigsegv(int, struct task_struct *);
1488 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
1489 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1490 extern int kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1491 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
1492 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
1493 extern int kill_pgrp(struct pid *pid, int sig, int priv);
1494 extern int kill_pid(struct pid *pid, int sig, int priv);
1495 extern int kill_proc_info(int, struct siginfo *, pid_t);
1496 extern void do_notify_parent(struct task_struct *, int);
1497 extern void force_sig(int, struct task_struct *);
1498 extern void force_sig_specific(int, struct task_struct *);
1499 extern int send_sig(int, struct task_struct *, int);
1500 extern void zap_other_threads(struct task_struct *p);
1501 extern int kill_proc(pid_t, int, int);
1502 extern struct sigqueue *sigqueue_alloc(void);
1503 extern void sigqueue_free(struct sigqueue *);
1504 extern int send_sigqueue(int, struct sigqueue *, struct task_struct *);
1505 extern int send_group_sigqueue(int, struct sigqueue *, struct task_struct *);
1506 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1507 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
1508
1509 static inline int kill_cad_pid(int sig, int priv)
1510 {
1511 return kill_pid(cad_pid, sig, priv);
1512 }
1513
1514 /* These can be the second arg to send_sig_info/send_group_sig_info. */
1515 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
1516 #define SEND_SIG_PRIV ((struct siginfo *) 1)
1517 #define SEND_SIG_FORCED ((struct siginfo *) 2)
1518
1519 static inline int is_si_special(const struct siginfo *info)
1520 {
1521 return info <= SEND_SIG_FORCED;
1522 }
1523
1524 /* True if we are on the alternate signal stack. */
1525
1526 static inline int on_sig_stack(unsigned long sp)
1527 {
1528 return (sp - current->sas_ss_sp < current->sas_ss_size);
1529 }
1530
1531 static inline int sas_ss_flags(unsigned long sp)
1532 {
1533 return (current->sas_ss_size == 0 ? SS_DISABLE
1534 : on_sig_stack(sp) ? SS_ONSTACK : 0);
1535 }
1536
1537 /*
1538 * Routines for handling mm_structs
1539 */
1540 extern struct mm_struct * mm_alloc(void);
1541
1542 /* mmdrop drops the mm and the page tables */
1543 extern void FASTCALL(__mmdrop(struct mm_struct *));
1544 static inline void mmdrop(struct mm_struct * mm)
1545 {
1546 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1547 __mmdrop(mm);
1548 }
1549
1550 /* mmput gets rid of the mappings and all user-space */
1551 extern void mmput(struct mm_struct *);
1552 /* Grab a reference to a task's mm, if it is not already going away */
1553 extern struct mm_struct *get_task_mm(struct task_struct *task);
1554 /* Remove the current tasks stale references to the old mm_struct */
1555 extern void mm_release(struct task_struct *, struct mm_struct *);
1556
1557 extern int copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *);
1558 extern void flush_thread(void);
1559 extern void exit_thread(void);
1560
1561 extern void exit_files(struct task_struct *);
1562 extern void __cleanup_signal(struct signal_struct *);
1563 extern void __cleanup_sighand(struct sighand_struct *);
1564 extern void exit_itimers(struct signal_struct *);
1565
1566 extern NORET_TYPE void do_group_exit(int);
1567
1568 extern void daemonize(const char *, ...);
1569 extern int allow_signal(int);
1570 extern int disallow_signal(int);
1571
1572 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
1573 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
1574 struct task_struct *fork_idle(int);
1575
1576 extern void set_task_comm(struct task_struct *tsk, char *from);
1577 extern void get_task_comm(char *to, struct task_struct *tsk);
1578
1579 #ifdef CONFIG_SMP
1580 extern void wait_task_inactive(struct task_struct * p);
1581 #else
1582 #define wait_task_inactive(p) do { } while (0)
1583 #endif
1584
1585 #define remove_parent(p) list_del_init(&(p)->sibling)
1586 #define add_parent(p) list_add_tail(&(p)->sibling,&(p)->parent->children)
1587
1588 #define next_task(p) list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks)
1589
1590 #define for_each_process(p) \
1591 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
1592
1593 /*
1594 * Careful: do_each_thread/while_each_thread is a double loop so
1595 * 'break' will not work as expected - use goto instead.
1596 */
1597 #define do_each_thread(g, t) \
1598 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
1599
1600 #define while_each_thread(g, t) \
1601 while ((t = next_thread(t)) != g)
1602
1603 /* de_thread depends on thread_group_leader not being a pid based check */
1604 #define thread_group_leader(p) (p == p->group_leader)
1605
1606 /* Do to the insanities of de_thread it is possible for a process
1607 * to have the pid of the thread group leader without actually being
1608 * the thread group leader. For iteration through the pids in proc
1609 * all we care about is that we have a task with the appropriate
1610 * pid, we don't actually care if we have the right task.
1611 */
1612 static inline int has_group_leader_pid(struct task_struct *p)
1613 {
1614 return p->pid == p->tgid;
1615 }
1616
1617 static inline struct task_struct *next_thread(const struct task_struct *p)
1618 {
1619 return list_entry(rcu_dereference(p->thread_group.next),
1620 struct task_struct, thread_group);
1621 }
1622
1623 static inline int thread_group_empty(struct task_struct *p)
1624 {
1625 return list_empty(&p->thread_group);
1626 }
1627
1628 #define delay_group_leader(p) \
1629 (thread_group_leader(p) && !thread_group_empty(p))
1630
1631 /*
1632 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
1633 * subscriptions and synchronises with wait4(). Also used in procfs. Also
1634 * pins the final release of task.io_context. Also protects ->cpuset and
1635 * ->cgroup.subsys[].
1636 *
1637 * Nests both inside and outside of read_lock(&tasklist_lock).
1638 * It must not be nested with write_lock_irq(&tasklist_lock),
1639 * neither inside nor outside.
1640 */
1641 static inline void task_lock(struct task_struct *p)
1642 {
1643 spin_lock(&p->alloc_lock);
1644 }
1645
1646 static inline void task_unlock(struct task_struct *p)
1647 {
1648 spin_unlock(&p->alloc_lock);
1649 }
1650
1651 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
1652 unsigned long *flags);
1653
1654 static inline void unlock_task_sighand(struct task_struct *tsk,
1655 unsigned long *flags)
1656 {
1657 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
1658 }
1659
1660 #ifndef __HAVE_THREAD_FUNCTIONS
1661
1662 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
1663 #define task_stack_page(task) ((task)->stack)
1664
1665 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
1666 {
1667 *task_thread_info(p) = *task_thread_info(org);
1668 task_thread_info(p)->task = p;
1669 }
1670
1671 static inline unsigned long *end_of_stack(struct task_struct *p)
1672 {
1673 return (unsigned long *)(task_thread_info(p) + 1);
1674 }
1675
1676 #endif
1677
1678 /* set thread flags in other task's structures
1679 * - see asm/thread_info.h for TIF_xxxx flags available
1680 */
1681 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1682 {
1683 set_ti_thread_flag(task_thread_info(tsk), flag);
1684 }
1685
1686 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1687 {
1688 clear_ti_thread_flag(task_thread_info(tsk), flag);
1689 }
1690
1691 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1692 {
1693 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1694 }
1695
1696 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1697 {
1698 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1699 }
1700
1701 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1702 {
1703 return test_ti_thread_flag(task_thread_info(tsk), flag);
1704 }
1705
1706 static inline void set_tsk_need_resched(struct task_struct *tsk)
1707 {
1708 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1709 }
1710
1711 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1712 {
1713 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1714 }
1715
1716 static inline int signal_pending(struct task_struct *p)
1717 {
1718 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
1719 }
1720
1721 static inline int need_resched(void)
1722 {
1723 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
1724 }
1725
1726 /*
1727 * cond_resched() and cond_resched_lock(): latency reduction via
1728 * explicit rescheduling in places that are safe. The return
1729 * value indicates whether a reschedule was done in fact.
1730 * cond_resched_lock() will drop the spinlock before scheduling,
1731 * cond_resched_softirq() will enable bhs before scheduling.
1732 */
1733 extern int cond_resched(void);
1734 extern int cond_resched_lock(spinlock_t * lock);
1735 extern int cond_resched_softirq(void);
1736
1737 /*
1738 * Does a critical section need to be broken due to another
1739 * task waiting?:
1740 */
1741 #if defined(CONFIG_PREEMPT) && defined(CONFIG_SMP)
1742 # define need_lockbreak(lock) ((lock)->break_lock)
1743 #else
1744 # define need_lockbreak(lock) 0
1745 #endif
1746
1747 /*
1748 * Does a critical section need to be broken due to another
1749 * task waiting or preemption being signalled:
1750 */
1751 static inline int lock_need_resched(spinlock_t *lock)
1752 {
1753 if (need_lockbreak(lock) || need_resched())
1754 return 1;
1755 return 0;
1756 }
1757
1758 /*
1759 * Reevaluate whether the task has signals pending delivery.
1760 * Wake the task if so.
1761 * This is required every time the blocked sigset_t changes.
1762 * callers must hold sighand->siglock.
1763 */
1764 extern void recalc_sigpending_and_wake(struct task_struct *t);
1765 extern void recalc_sigpending(void);
1766
1767 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
1768
1769 /*
1770 * Wrappers for p->thread_info->cpu access. No-op on UP.
1771 */
1772 #ifdef CONFIG_SMP
1773
1774 static inline unsigned int task_cpu(const struct task_struct *p)
1775 {
1776 return task_thread_info(p)->cpu;
1777 }
1778
1779 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1780
1781 #else
1782
1783 static inline unsigned int task_cpu(const struct task_struct *p)
1784 {
1785 return 0;
1786 }
1787
1788 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1789 {
1790 }
1791
1792 #endif /* CONFIG_SMP */
1793
1794 #ifdef HAVE_ARCH_PICK_MMAP_LAYOUT
1795 extern void arch_pick_mmap_layout(struct mm_struct *mm);
1796 #else
1797 static inline void arch_pick_mmap_layout(struct mm_struct *mm)
1798 {
1799 mm->mmap_base = TASK_UNMAPPED_BASE;
1800 mm->get_unmapped_area = arch_get_unmapped_area;
1801 mm->unmap_area = arch_unmap_area;
1802 }
1803 #endif
1804
1805 extern long sched_setaffinity(pid_t pid, cpumask_t new_mask);
1806 extern long sched_getaffinity(pid_t pid, cpumask_t *mask);
1807
1808 extern int sched_mc_power_savings, sched_smt_power_savings;
1809
1810 extern void normalize_rt_tasks(void);
1811
1812 #ifdef CONFIG_FAIR_GROUP_SCHED
1813
1814 extern struct task_group init_task_group;
1815
1816 extern struct task_group *sched_create_group(void);
1817 extern void sched_destroy_group(struct task_group *tg);
1818 extern void sched_move_task(struct task_struct *tsk);
1819 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
1820 extern unsigned long sched_group_shares(struct task_group *tg);
1821
1822 #endif
1823
1824 #ifdef CONFIG_TASK_XACCT
1825 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
1826 {
1827 tsk->rchar += amt;
1828 }
1829
1830 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
1831 {
1832 tsk->wchar += amt;
1833 }
1834
1835 static inline void inc_syscr(struct task_struct *tsk)
1836 {
1837 tsk->syscr++;
1838 }
1839
1840 static inline void inc_syscw(struct task_struct *tsk)
1841 {
1842 tsk->syscw++;
1843 }
1844 #else
1845 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
1846 {
1847 }
1848
1849 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
1850 {
1851 }
1852
1853 static inline void inc_syscr(struct task_struct *tsk)
1854 {
1855 }
1856
1857 static inline void inc_syscw(struct task_struct *tsk)
1858 {
1859 }
1860 #endif
1861
1862 #endif /* __KERNEL__ */
1863
1864 #endif