Merge tag 'v3.10.83' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 #include <uapi/linux/sched.h>
5
6
7 struct sched_param {
8 int sched_priority;
9 };
10
11 #include <asm/param.h> /* for HZ */
12
13 #include <linux/capability.h>
14 #include <linux/threads.h>
15 #include <linux/kernel.h>
16 #include <linux/types.h>
17 #include <linux/timex.h>
18 #include <linux/jiffies.h>
19 #include <linux/rbtree.h>
20 #include <linux/thread_info.h>
21 #include <linux/cpumask.h>
22 #include <linux/errno.h>
23 #include <linux/nodemask.h>
24 #include <linux/mm_types.h>
25
26 #include <asm/page.h>
27 #include <asm/ptrace.h>
28 #include <asm/cputime.h>
29
30 #include <linux/smp.h>
31 #include <linux/sem.h>
32 #include <linux/signal.h>
33 #include <linux/compiler.h>
34 #include <linux/completion.h>
35 #include <linux/pid.h>
36 #include <linux/percpu.h>
37 #include <linux/topology.h>
38 #include <linux/proportions.h>
39 #include <linux/seccomp.h>
40 #include <linux/rcupdate.h>
41 #include <linux/rculist.h>
42 #include <linux/rtmutex.h>
43
44 #include <linux/time.h>
45 #include <linux/param.h>
46 #include <linux/resource.h>
47 #include <linux/timer.h>
48 #include <linux/hrtimer.h>
49 #include <linux/task_io_accounting.h>
50 #include <linux/latencytop.h>
51 #include <linux/cred.h>
52 #include <linux/llist.h>
53 #include <linux/uidgid.h>
54 #include <linux/gfp.h>
55
56 #include <asm/processor.h>
57 #include <linux/rtpm_prio.h>
58
59 struct exec_domain;
60 struct futex_pi_state;
61 struct robust_list_head;
62 struct bio_list;
63 struct fs_struct;
64 struct perf_event_context;
65 struct blk_plug;
66
67 /*
68 * List of flags we want to share for kernel threads,
69 * if only because they are not used by them anyway.
70 */
71 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
72
73 /*
74 * These are the constant used to fake the fixed-point load-average
75 * counting. Some notes:
76 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
77 * a load-average precision of 10 bits integer + 11 bits fractional
78 * - if you want to count load-averages more often, you need more
79 * precision, or rounding will get you. With 2-second counting freq,
80 * the EXP_n values would be 1981, 2034 and 2043 if still using only
81 * 11 bit fractions.
82 */
83 extern unsigned long avenrun[]; /* Load averages */
84 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
85
86 #define FSHIFT 11 /* nr of bits of precision */
87 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
88 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
89 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
90 #define EXP_5 2014 /* 1/exp(5sec/5min) */
91 #define EXP_15 2037 /* 1/exp(5sec/15min) */
92
93 #define CALC_LOAD(load,exp,n) \
94 load *= exp; \
95 load += n*(FIXED_1-exp); \
96 load >>= FSHIFT;
97
98 extern unsigned long total_forks;
99 extern int nr_threads;
100 DECLARE_PER_CPU(unsigned long, process_counts);
101 extern int nr_processes(void);
102 extern unsigned long nr_running(void);
103 extern unsigned long nr_iowait(void);
104 extern unsigned long nr_iowait_cpu(int cpu);
105 extern unsigned long this_cpu_load(void);
106 extern unsigned long get_cpu_load(int cpu);
107 extern unsigned long long mt_get_thread_cputime(pid_t pid);
108 extern unsigned long long mt_get_cpu_idle(int cpu);
109 extern unsigned long long mt_sched_clock(void);
110 extern void calc_global_load(unsigned long ticks);
111 extern void update_cpu_load_nohz(void);
112
113 /* Notifier for when a task gets migrated to a new CPU */
114 struct task_migration_notifier {
115 struct task_struct *task;
116 int from_cpu;
117 int to_cpu;
118 };
119 extern void register_task_migration_notifier(struct notifier_block *n);
120
121 extern unsigned long get_parent_ip(unsigned long addr);
122
123 extern void dump_cpu_task(int cpu);
124
125 struct seq_file;
126 struct cfs_rq;
127 struct task_group;
128 #ifdef CONFIG_SCHED_DEBUG
129 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
130 extern void proc_sched_set_task(struct task_struct *p);
131 extern void
132 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
133 #endif
134
135 /*
136 * Task state bitmask. NOTE! These bits are also
137 * encoded in fs/proc/array.c: get_task_state().
138 *
139 * We have two separate sets of flags: task->state
140 * is about runnability, while task->exit_state are
141 * about the task exiting. Confusing, but this way
142 * modifying one set can't modify the other one by
143 * mistake.
144 */
145 #define TASK_RUNNING 0
146 #define TASK_INTERRUPTIBLE 1
147 #define TASK_UNINTERRUPTIBLE 2
148 #define __TASK_STOPPED 4
149 #define __TASK_TRACED 8
150 /* in tsk->exit_state */
151 #define EXIT_ZOMBIE 16
152 #define EXIT_DEAD 32
153 /* in tsk->state again */
154 #define TASK_DEAD 64
155 #define TASK_WAKEKILL 128
156 #define TASK_WAKING 256
157 #define TASK_PARKED 512
158 #define TASK_STATE_MAX 1024
159
160 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
161
162 extern char ___assert_task_state[1 - 2*!!(
163 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
164
165 /* Convenience macros for the sake of set_task_state */
166 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
167 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
168 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
169
170 /* Convenience macros for the sake of wake_up */
171 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
172 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
173
174 /* get_task_state() */
175 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
176 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
177 __TASK_TRACED)
178
179 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
180 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
181 #define task_is_dead(task) ((task)->exit_state != 0)
182 #define task_is_stopped_or_traced(task) \
183 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
184 #define task_contributes_to_load(task) \
185 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
186 (task->flags & PF_FROZEN) == 0)
187
188 #define __set_task_state(tsk, state_value) \
189 do { (tsk)->state = (state_value); } while (0)
190 #define set_task_state(tsk, state_value) \
191 set_mb((tsk)->state, (state_value))
192
193 /*
194 * set_current_state() includes a barrier so that the write of current->state
195 * is correctly serialised wrt the caller's subsequent test of whether to
196 * actually sleep:
197 *
198 * set_current_state(TASK_UNINTERRUPTIBLE);
199 * if (do_i_need_to_sleep())
200 * schedule();
201 *
202 * If the caller does not need such serialisation then use __set_current_state()
203 */
204 #define __set_current_state(state_value) \
205 do { current->state = (state_value); } while (0)
206 #define set_current_state(state_value) \
207 set_mb(current->state, (state_value))
208
209 /* Task command name length */
210 #define TASK_COMM_LEN 16
211
212 #include <linux/spinlock.h>
213
214 /*
215 * This serializes "schedule()" and also protects
216 * the run-queue from deletions/modifications (but
217 * _adding_ to the beginning of the run-queue has
218 * a separate lock).
219 */
220 extern rwlock_t tasklist_lock;
221 extern spinlock_t mmlist_lock;
222
223 struct task_struct;
224
225 #ifdef CONFIG_PROVE_RCU
226 extern int lockdep_tasklist_lock_is_held(void);
227 #endif /* #ifdef CONFIG_PROVE_RCU */
228
229 extern void sched_init(void);
230 extern void sched_init_smp(void);
231 extern asmlinkage void schedule_tail(struct task_struct *prev);
232 extern void init_idle(struct task_struct *idle, int cpu);
233 extern void init_idle_bootup_task(struct task_struct *idle);
234
235 extern int runqueue_is_locked(int cpu);
236
237 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
238 extern void nohz_balance_enter_idle(int cpu);
239 extern void set_cpu_sd_state_idle(void);
240 extern int get_nohz_timer_target(void);
241 #else
242 static inline void nohz_balance_enter_idle(int cpu) { }
243 static inline void set_cpu_sd_state_idle(void) { }
244 #endif
245
246 /*
247 * Only dump TASK_* tasks. (0 for all tasks)
248 */
249 extern void show_state_filter(unsigned long state_filter);
250
251 static inline void show_state(void)
252 {
253 show_state_filter(0);
254 }
255
256 extern void show_regs(struct pt_regs *);
257
258 /*
259 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
260 * task), SP is the stack pointer of the first frame that should be shown in the back
261 * trace (or NULL if the entire call-chain of the task should be shown).
262 */
263 extern void show_stack(struct task_struct *task, unsigned long *sp);
264
265 void io_schedule(void);
266 long io_schedule_timeout(long timeout);
267
268 extern void cpu_init (void);
269 extern void trap_init(void);
270 extern void update_process_times(int user);
271 extern void scheduler_tick(void);
272
273 extern void sched_show_task(struct task_struct *p);
274
275 #ifdef CONFIG_LOCKUP_DETECTOR
276 extern void touch_softlockup_watchdog(void);
277 extern void touch_softlockup_watchdog_sync(void);
278 extern void touch_all_softlockup_watchdogs(void);
279 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
280 void __user *buffer,
281 size_t *lenp, loff_t *ppos);
282 extern unsigned int softlockup_panic;
283 void lockup_detector_init(void);
284 #else
285 static inline void touch_softlockup_watchdog(void)
286 {
287 }
288 static inline void touch_softlockup_watchdog_sync(void)
289 {
290 }
291 static inline void touch_all_softlockup_watchdogs(void)
292 {
293 }
294 static inline void lockup_detector_init(void)
295 {
296 }
297 #endif
298
299 /* Attach to any functions which should be ignored in wchan output. */
300 #define __sched __attribute__((__section__(".sched.text")))
301
302 /* Linker adds these: start and end of __sched functions */
303 extern char __sched_text_start[], __sched_text_end[];
304
305 /* Is this address in the __sched functions? */
306 extern int in_sched_functions(unsigned long addr);
307
308 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
309 extern signed long schedule_timeout(signed long timeout);
310 extern signed long schedule_timeout_interruptible(signed long timeout);
311 extern signed long schedule_timeout_killable(signed long timeout);
312 extern signed long schedule_timeout_uninterruptible(signed long timeout);
313 asmlinkage void schedule(void);
314 extern void schedule_preempt_disabled(void);
315
316 struct nsproxy;
317 struct user_namespace;
318
319 #ifdef CONFIG_MMU
320 extern void arch_pick_mmap_layout(struct mm_struct *mm);
321 extern unsigned long
322 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
323 unsigned long, unsigned long);
324 extern unsigned long
325 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
326 unsigned long len, unsigned long pgoff,
327 unsigned long flags);
328 extern void arch_unmap_area(struct mm_struct *, unsigned long);
329 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
330 #else
331 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
332 #endif
333
334
335 extern void set_dumpable(struct mm_struct *mm, int value);
336 extern int get_dumpable(struct mm_struct *mm);
337
338 #define SUID_DUMP_DISABLE 0 /* No setuid dumping */
339 #define SUID_DUMP_USER 1 /* Dump as user of process */
340 #define SUID_DUMP_ROOT 2 /* Dump as root */
341
342 /* mm flags */
343 /* dumpable bits */
344 #define MMF_DUMPABLE 0 /* core dump is permitted */
345 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
346
347 #define MMF_DUMPABLE_BITS 2
348 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
349
350 /* coredump filter bits */
351 #define MMF_DUMP_ANON_PRIVATE 2
352 #define MMF_DUMP_ANON_SHARED 3
353 #define MMF_DUMP_MAPPED_PRIVATE 4
354 #define MMF_DUMP_MAPPED_SHARED 5
355 #define MMF_DUMP_ELF_HEADERS 6
356 #define MMF_DUMP_HUGETLB_PRIVATE 7
357 #define MMF_DUMP_HUGETLB_SHARED 8
358
359 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
360 #define MMF_DUMP_FILTER_BITS 7
361 #define MMF_DUMP_FILTER_MASK \
362 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
363 #define MMF_DUMP_FILTER_DEFAULT \
364 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
365 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
366
367 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
368 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
369 #else
370 # define MMF_DUMP_MASK_DEFAULT_ELF 0
371 #endif
372 /* leave room for more dump flags */
373 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
374 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
375 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
376
377 #define MMF_HAS_UPROBES 19 /* has uprobes */
378 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
379
380 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
381
382 struct sighand_struct {
383 atomic_t count;
384 struct k_sigaction action[_NSIG];
385 spinlock_t siglock;
386 wait_queue_head_t signalfd_wqh;
387 };
388
389 struct pacct_struct {
390 int ac_flag;
391 long ac_exitcode;
392 unsigned long ac_mem;
393 cputime_t ac_utime, ac_stime;
394 unsigned long ac_minflt, ac_majflt;
395 };
396
397 struct cpu_itimer {
398 cputime_t expires;
399 cputime_t incr;
400 u32 error;
401 u32 incr_error;
402 };
403
404 /**
405 * struct cputime - snaphsot of system and user cputime
406 * @utime: time spent in user mode
407 * @stime: time spent in system mode
408 *
409 * Gathers a generic snapshot of user and system time.
410 */
411 struct cputime {
412 cputime_t utime;
413 cputime_t stime;
414 };
415
416 /**
417 * struct task_cputime - collected CPU time counts
418 * @utime: time spent in user mode, in &cputime_t units
419 * @stime: time spent in kernel mode, in &cputime_t units
420 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
421 *
422 * This is an extension of struct cputime that includes the total runtime
423 * spent by the task from the scheduler point of view.
424 *
425 * As a result, this structure groups together three kinds of CPU time
426 * that are tracked for threads and thread groups. Most things considering
427 * CPU time want to group these counts together and treat all three
428 * of them in parallel.
429 */
430 struct task_cputime {
431 cputime_t utime;
432 cputime_t stime;
433 unsigned long long sum_exec_runtime;
434 };
435 /* Alternate field names when used to cache expirations. */
436 #define prof_exp stime
437 #define virt_exp utime
438 #define sched_exp sum_exec_runtime
439
440 #define INIT_CPUTIME \
441 (struct task_cputime) { \
442 .utime = 0, \
443 .stime = 0, \
444 .sum_exec_runtime = 0, \
445 }
446
447 /*
448 * Disable preemption until the scheduler is running.
449 * Reset by start_kernel()->sched_init()->init_idle().
450 *
451 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
452 * before the scheduler is active -- see should_resched().
453 */
454 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE)
455
456 /**
457 * struct thread_group_cputimer - thread group interval timer counts
458 * @cputime: thread group interval timers.
459 * @running: non-zero when there are timers running and
460 * @cputime receives updates.
461 * @lock: lock for fields in this struct.
462 *
463 * This structure contains the version of task_cputime, above, that is
464 * used for thread group CPU timer calculations.
465 */
466 struct thread_group_cputimer {
467 struct task_cputime cputime;
468 int running;
469 raw_spinlock_t lock;
470 };
471
472 #include <linux/rwsem.h>
473 struct autogroup;
474
475 /*
476 * NOTE! "signal_struct" does not have its own
477 * locking, because a shared signal_struct always
478 * implies a shared sighand_struct, so locking
479 * sighand_struct is always a proper superset of
480 * the locking of signal_struct.
481 */
482 struct signal_struct {
483 atomic_t sigcnt;
484 atomic_t live;
485 int nr_threads;
486 struct list_head thread_head;
487
488 wait_queue_head_t wait_chldexit; /* for wait4() */
489
490 /* current thread group signal load-balancing target: */
491 struct task_struct *curr_target;
492
493 /* shared signal handling: */
494 struct sigpending shared_pending;
495
496 /* thread group exit support */
497 int group_exit_code;
498 /* overloaded:
499 * - notify group_exit_task when ->count is equal to notify_count
500 * - everyone except group_exit_task is stopped during signal delivery
501 * of fatal signals, group_exit_task processes the signal.
502 */
503 int notify_count;
504 struct task_struct *group_exit_task;
505
506 /* thread group stop support, overloads group_exit_code too */
507 int group_stop_count;
508 unsigned int flags; /* see SIGNAL_* flags below */
509
510 /*
511 * PR_SET_CHILD_SUBREAPER marks a process, like a service
512 * manager, to re-parent orphan (double-forking) child processes
513 * to this process instead of 'init'. The service manager is
514 * able to receive SIGCHLD signals and is able to investigate
515 * the process until it calls wait(). All children of this
516 * process will inherit a flag if they should look for a
517 * child_subreaper process at exit.
518 */
519 unsigned int is_child_subreaper:1;
520 unsigned int has_child_subreaper:1;
521
522 /* POSIX.1b Interval Timers */
523 int posix_timer_id;
524 struct list_head posix_timers;
525
526 /* ITIMER_REAL timer for the process */
527 struct hrtimer real_timer;
528 struct pid *leader_pid;
529 ktime_t it_real_incr;
530
531 /*
532 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
533 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
534 * values are defined to 0 and 1 respectively
535 */
536 struct cpu_itimer it[2];
537
538 /*
539 * Thread group totals for process CPU timers.
540 * See thread_group_cputimer(), et al, for details.
541 */
542 struct thread_group_cputimer cputimer;
543
544 /* Earliest-expiration cache. */
545 struct task_cputime cputime_expires;
546
547 struct list_head cpu_timers[3];
548
549 struct pid *tty_old_pgrp;
550
551 /* boolean value for session group leader */
552 int leader;
553
554 struct tty_struct *tty; /* NULL if no tty */
555
556 #ifdef CONFIG_SCHED_AUTOGROUP
557 struct autogroup *autogroup;
558 #endif
559 /*
560 * Cumulative resource counters for dead threads in the group,
561 * and for reaped dead child processes forked by this group.
562 * Live threads maintain their own counters and add to these
563 * in __exit_signal, except for the group leader.
564 */
565 cputime_t utime, stime, cutime, cstime;
566 cputime_t gtime;
567 cputime_t cgtime;
568 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
569 struct cputime prev_cputime;
570 #endif
571 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
572 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
573 unsigned long inblock, oublock, cinblock, coublock;
574 unsigned long maxrss, cmaxrss;
575 struct task_io_accounting ioac;
576
577 /*
578 * Cumulative ns of schedule CPU time fo dead threads in the
579 * group, not including a zombie group leader, (This only differs
580 * from jiffies_to_ns(utime + stime) if sched_clock uses something
581 * other than jiffies.)
582 */
583 unsigned long long sum_sched_runtime;
584
585 /*
586 * We don't bother to synchronize most readers of this at all,
587 * because there is no reader checking a limit that actually needs
588 * to get both rlim_cur and rlim_max atomically, and either one
589 * alone is a single word that can safely be read normally.
590 * getrlimit/setrlimit use task_lock(current->group_leader) to
591 * protect this instead of the siglock, because they really
592 * have no need to disable irqs.
593 */
594 struct rlimit rlim[RLIM_NLIMITS];
595
596 #ifdef CONFIG_BSD_PROCESS_ACCT
597 struct pacct_struct pacct; /* per-process accounting information */
598 #endif
599 #ifdef CONFIG_TASKSTATS
600 struct taskstats *stats;
601 #endif
602 #ifdef CONFIG_AUDIT
603 unsigned audit_tty;
604 unsigned audit_tty_log_passwd;
605 struct tty_audit_buf *tty_audit_buf;
606 #endif
607 #ifdef CONFIG_CGROUPS
608 /*
609 * group_rwsem prevents new tasks from entering the threadgroup and
610 * member tasks from exiting,a more specifically, setting of
611 * PF_EXITING. fork and exit paths are protected with this rwsem
612 * using threadgroup_change_begin/end(). Users which require
613 * threadgroup to remain stable should use threadgroup_[un]lock()
614 * which also takes care of exec path. Currently, cgroup is the
615 * only user.
616 */
617 struct rw_semaphore group_rwsem;
618 #endif
619
620 oom_flags_t oom_flags;
621 short oom_score_adj; /* OOM kill score adjustment */
622 short oom_score_adj_min; /* OOM kill score adjustment min value.
623 * Only settable by CAP_SYS_RESOURCE. */
624
625 struct mutex cred_guard_mutex; /* guard against foreign influences on
626 * credential calculations
627 * (notably. ptrace) */
628 };
629
630 /*
631 * Bits in flags field of signal_struct.
632 */
633 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
634 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
635 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
636 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
637 /*
638 * Pending notifications to parent.
639 */
640 #define SIGNAL_CLD_STOPPED 0x00000010
641 #define SIGNAL_CLD_CONTINUED 0x00000020
642 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
643
644 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
645
646 /* If true, all threads except ->group_exit_task have pending SIGKILL */
647 static inline int signal_group_exit(const struct signal_struct *sig)
648 {
649 return (sig->flags & SIGNAL_GROUP_EXIT) ||
650 (sig->group_exit_task != NULL);
651 }
652
653 /*
654 * Some day this will be a full-fledged user tracking system..
655 */
656 struct user_struct {
657 atomic_t __count; /* reference count */
658 atomic_t processes; /* How many processes does this user have? */
659 atomic_t files; /* How many open files does this user have? */
660 atomic_t sigpending; /* How many pending signals does this user have? */
661 #ifdef CONFIG_INOTIFY_USER
662 atomic_t inotify_watches; /* How many inotify watches does this user have? */
663 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
664 #endif
665 #ifdef CONFIG_FANOTIFY
666 atomic_t fanotify_listeners;
667 #endif
668 #ifdef CONFIG_EPOLL
669 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
670 #endif
671 #ifdef CONFIG_POSIX_MQUEUE
672 /* protected by mq_lock */
673 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
674 #endif
675 unsigned long locked_shm; /* How many pages of mlocked shm ? */
676
677 #ifdef CONFIG_KEYS
678 struct key *uid_keyring; /* UID specific keyring */
679 struct key *session_keyring; /* UID's default session keyring */
680 #endif
681
682 /* Hash table maintenance information */
683 struct hlist_node uidhash_node;
684 kuid_t uid;
685
686 #ifdef CONFIG_PERF_EVENTS
687 atomic_long_t locked_vm;
688 #endif
689 };
690
691 extern int uids_sysfs_init(void);
692
693 extern struct user_struct *find_user(kuid_t);
694
695 extern struct user_struct root_user;
696 #define INIT_USER (&root_user)
697
698
699 struct backing_dev_info;
700 struct reclaim_state;
701
702 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
703 struct sched_info {
704 /* cumulative counters */
705 unsigned long pcount; /* # of times run on this cpu */
706 unsigned long long run_delay; /* time spent waiting on a runqueue */
707
708 /* timestamps */
709 unsigned long long last_arrival,/* when we last ran on a cpu */
710 last_queued; /* when we were last queued to run */
711 };
712 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
713
714 #ifdef CONFIG_TASK_DELAY_ACCT
715 struct task_delay_info {
716 spinlock_t lock;
717 unsigned int flags; /* Private per-task flags */
718
719 /* For each stat XXX, add following, aligned appropriately
720 *
721 * struct timespec XXX_start, XXX_end;
722 * u64 XXX_delay;
723 * u32 XXX_count;
724 *
725 * Atomicity of updates to XXX_delay, XXX_count protected by
726 * single lock above (split into XXX_lock if contention is an issue).
727 */
728
729 /*
730 * XXX_count is incremented on every XXX operation, the delay
731 * associated with the operation is added to XXX_delay.
732 * XXX_delay contains the accumulated delay time in nanoseconds.
733 */
734 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
735 u64 blkio_delay; /* wait for sync block io completion */
736 u64 swapin_delay; /* wait for swapin block io completion */
737 u32 blkio_count; /* total count of the number of sync block */
738 /* io operations performed */
739 u32 swapin_count; /* total count of the number of swapin block */
740 /* io operations performed */
741
742 struct timespec freepages_start, freepages_end;
743 u64 freepages_delay; /* wait for memory reclaim */
744 u32 freepages_count; /* total count of memory reclaim */
745 };
746 #endif /* CONFIG_TASK_DELAY_ACCT */
747
748 static inline int sched_info_on(void)
749 {
750 #ifdef CONFIG_SCHEDSTATS
751 return 1;
752 #elif defined(CONFIG_TASK_DELAY_ACCT)
753 extern int delayacct_on;
754 return delayacct_on;
755 #else
756 return 0;
757 #endif
758 }
759
760 enum cpu_idle_type {
761 CPU_IDLE,
762 CPU_NOT_IDLE,
763 CPU_NEWLY_IDLE,
764 CPU_MAX_IDLE_TYPES
765 };
766
767 /*
768 * Increase resolution of cpu_power calculations
769 */
770 #define SCHED_POWER_SHIFT 10
771 #define SCHED_POWER_SCALE (1L << SCHED_POWER_SHIFT)
772
773 /*
774 * sched-domains (multiprocessor balancing) declarations:
775 */
776 #ifdef CONFIG_SMP
777 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
778 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
779 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
780 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
781 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
782 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
783 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */
784
785 #ifdef CONFIG_HMP_PACK_SMALL_TASK
786 #define SD_SHARE_POWERLINE 0x0100 /* Domain members share power domain */
787 #endif /* CONFIG_HMP_PACK_SMALL_TASK */
788
789 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
790 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
791 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
792 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
793 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
794 #ifdef CONFIG_MTK_SCHED_CMP_TGS
795 #define SD_BALANCE_TG 0x4000 /* Balance for thread group */
796 #endif
797 #ifdef CONFIG_MTK_SCHED_CMP_PACK_SMALL_TASK
798 #define SD_SHARE_POWERLINE 0x8000 /* Domain members share power domain */
799 #endif
800
801 extern int __weak arch_sd_sibiling_asym_packing(void);
802
803 struct sched_domain_attr {
804 int relax_domain_level;
805 };
806
807 #define SD_ATTR_INIT (struct sched_domain_attr) { \
808 .relax_domain_level = -1, \
809 }
810
811 extern int sched_domain_level_max;
812
813 struct sched_group;
814
815 struct sched_domain {
816 /* These fields must be setup */
817 struct sched_domain *parent; /* top domain must be null terminated */
818 struct sched_domain *child; /* bottom domain must be null terminated */
819 struct sched_group *groups; /* the balancing groups of the domain */
820 unsigned long min_interval; /* Minimum balance interval ms */
821 unsigned long max_interval; /* Maximum balance interval ms */
822 unsigned int busy_factor; /* less balancing by factor if busy */
823 unsigned int imbalance_pct; /* No balance until over watermark */
824 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
825 unsigned int busy_idx;
826 unsigned int idle_idx;
827 unsigned int newidle_idx;
828 unsigned int wake_idx;
829 unsigned int forkexec_idx;
830 unsigned int smt_gain;
831
832 int nohz_idle; /* NOHZ IDLE status */
833 int flags; /* See SD_* */
834 int level;
835
836 /* Runtime fields. */
837 unsigned long last_balance; /* init to jiffies. units in jiffies */
838 unsigned int balance_interval; /* initialise to 1. units in ms. */
839 unsigned int nr_balance_failed; /* initialise to 0 */
840 #ifdef CONFIG_MT_LOAD_BALANCE_PROFILER
841 unsigned int mt_lbprof_nr_balance_failed; /* initialise to 0 */
842 #endif
843
844 u64 last_update;
845
846 #ifdef CONFIG_SCHEDSTATS
847 /* load_balance() stats */
848 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
849 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
850 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
851 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
852 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
853 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
854 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
855 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
856
857 /* Active load balancing */
858 unsigned int alb_count;
859 unsigned int alb_failed;
860 unsigned int alb_pushed;
861
862 /* SD_BALANCE_EXEC stats */
863 unsigned int sbe_count;
864 unsigned int sbe_balanced;
865 unsigned int sbe_pushed;
866
867 /* SD_BALANCE_FORK stats */
868 unsigned int sbf_count;
869 unsigned int sbf_balanced;
870 unsigned int sbf_pushed;
871
872 /* try_to_wake_up() stats */
873 unsigned int ttwu_wake_remote;
874 unsigned int ttwu_move_affine;
875 unsigned int ttwu_move_balance;
876 #endif
877 #ifdef CONFIG_SCHED_DEBUG
878 char *name;
879 #endif
880 union {
881 void *private; /* used during construction */
882 struct rcu_head rcu; /* used during destruction */
883 };
884
885 unsigned int span_weight;
886 /*
887 * Span of all CPUs in this domain.
888 *
889 * NOTE: this field is variable length. (Allocated dynamically
890 * by attaching extra space to the end of the structure,
891 * depending on how many CPUs the kernel has booted up with)
892 */
893 unsigned long span[0];
894 };
895
896 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
897 {
898 return to_cpumask(sd->span);
899 }
900
901 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
902 struct sched_domain_attr *dattr_new);
903
904 /* Allocate an array of sched domains, for partition_sched_domains(). */
905 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
906 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
907
908 bool cpus_share_cache(int this_cpu, int that_cpu);
909
910 struct clb_stats {
911 int ncpu; /* The number of CPU */
912 int ntask; /* The number of tasks */
913 int load_avg; /* Arithmetic average of task load ratio */
914 int cpu_capacity; /* Current CPU capacity */
915 int cpu_power; /* Max CPU capacity */
916 int acap; /* Available CPU capacity */
917 int scaled_acap; /* Scaled available CPU capacity */
918 int scaled_atask; /* Scaled available task */
919 int threshold; /* Dynamic threshold */
920 #ifdef CONFIG_SCHED_HMP_PRIO_FILTER
921 int nr_normal_prio_task; /* The number of normal-prio tasks */
922 int nr_dequeuing_low_prio; /* The number of dequeuing low-prio tasks */
923 #endif
924 };
925
926 #ifdef CONFIG_SCHED_HMP
927 struct hmp_domain {
928 struct cpumask cpus;
929 struct cpumask possible_cpus;
930 struct list_head hmp_domains;
931 };
932
933 #ifdef CONFIG_SCHED_HMP_ENHANCEMENT
934 #ifdef CONFIG_HMP_TRACER
935 struct hmp_statisic {
936 unsigned int nr_force_up; /* The number of task force up-migration */
937 unsigned int nr_force_down; /* The number of task force down-migration */
938 };
939 #endif /* CONFIG_HMP_TRACER */
940 #endif /* CONFIG_SCHED_HMP_ENHANCEMENT */
941 #endif /* CONFIG_SCHED_HMP */
942 #else /* CONFIG_SMP */
943
944 struct sched_domain_attr;
945
946 static inline void
947 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
948 struct sched_domain_attr *dattr_new)
949 {
950 }
951
952 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
953 {
954 return true;
955 }
956
957 #endif /* !CONFIG_SMP */
958
959
960 struct io_context; /* See blkdev.h */
961
962
963 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
964 extern void prefetch_stack(struct task_struct *t);
965 #else
966 static inline void prefetch_stack(struct task_struct *t) { }
967 #endif
968
969 struct audit_context; /* See audit.c */
970 struct mempolicy;
971 struct pipe_inode_info;
972 struct uts_namespace;
973
974 struct load_weight {
975 unsigned long weight, inv_weight;
976 };
977
978 struct sched_avg {
979 /*
980 * These sums represent an infinite geometric series and so are bound
981 * above by 1024/(1-y). Thus we only need a u32 to store them for for all
982 * choices of y < 1-2^(-32)*1024.
983 */
984 u32 runnable_avg_sum, runnable_avg_period;
985 u64 last_runnable_update;
986 s64 decay_count;
987 unsigned long load_avg_contrib;
988 unsigned long load_avg_ratio;
989 #ifdef CONFIG_SCHED_HMP
990 #ifdef CONFIG_SCHED_HMP_ENHANCEMENT
991 unsigned long pending_load;
992 u32 nr_pending;
993 #ifdef CONFIG_SCHED_HMP_PRIO_FILTER
994 u32 nr_dequeuing_low_prio;
995 u32 nr_normal_prio;
996 #endif
997 #endif
998 u64 hmp_last_up_migration;
999 u64 hmp_last_down_migration;
1000 #endif /* CONFIG_SCHED_HMP */
1001 u32 usage_avg_sum;
1002 };
1003
1004 #ifdef CONFIG_SCHEDSTATS
1005 struct sched_statistics {
1006 u64 wait_start;
1007 u64 wait_max;
1008 u64 wait_count;
1009 u64 wait_sum;
1010 u64 iowait_count;
1011 u64 iowait_sum;
1012
1013 u64 sleep_start;
1014 u64 sleep_max;
1015 s64 sum_sleep_runtime;
1016
1017 u64 block_start;
1018 u64 block_max;
1019 u64 exec_max;
1020 u64 slice_max;
1021
1022 u64 nr_migrations_cold;
1023 u64 nr_failed_migrations_affine;
1024 u64 nr_failed_migrations_running;
1025 u64 nr_failed_migrations_hot;
1026 u64 nr_forced_migrations;
1027
1028 u64 nr_wakeups;
1029 u64 nr_wakeups_sync;
1030 u64 nr_wakeups_migrate;
1031 u64 nr_wakeups_local;
1032 u64 nr_wakeups_remote;
1033 u64 nr_wakeups_affine;
1034 u64 nr_wakeups_affine_attempts;
1035 u64 nr_wakeups_passive;
1036 u64 nr_wakeups_idle;
1037 };
1038 #endif
1039
1040 #ifdef CONFIG_MTPROF_CPUTIME
1041 struct mtk_isr_info{
1042 int isr_num;
1043 int isr_count;
1044 u64 isr_time;
1045 char *isr_name;
1046 struct mtk_isr_info *next;
1047 } ;
1048 #endif
1049 struct sched_entity {
1050 struct load_weight load; /* for load-balancing */
1051 struct rb_node run_node;
1052 struct list_head group_node;
1053 unsigned int on_rq;
1054
1055 u64 exec_start;
1056 u64 sum_exec_runtime;
1057 u64 vruntime;
1058 u64 prev_sum_exec_runtime;
1059
1060 u64 nr_migrations;
1061
1062 #ifdef CONFIG_SCHEDSTATS
1063 struct sched_statistics statistics;
1064 #endif
1065
1066 #ifdef CONFIG_FAIR_GROUP_SCHED
1067 struct sched_entity *parent;
1068 /* rq on which this entity is (to be) queued: */
1069 struct cfs_rq *cfs_rq;
1070 /* rq "owned" by this entity/group: */
1071 struct cfs_rq *my_q;
1072 #endif
1073
1074 #ifdef CONFIG_SMP
1075 /* Per-entity load-tracking */
1076 struct sched_avg avg;
1077 #endif
1078 #ifdef CONFIG_MTPROF_CPUTIME
1079 u64 mtk_isr_time;
1080 int mtk_isr_count;
1081 struct mtk_isr_info *mtk_isr;
1082 #endif
1083 };
1084
1085 struct sched_rt_entity {
1086 struct list_head run_list;
1087 unsigned long timeout;
1088 unsigned long watchdog_stamp;
1089 unsigned int time_slice;
1090
1091 struct sched_rt_entity *back;
1092 #ifdef CONFIG_RT_GROUP_SCHED
1093 struct sched_rt_entity *parent;
1094 /* rq on which this entity is (to be) queued: */
1095 struct rt_rq *rt_rq;
1096 /* rq "owned" by this entity/group: */
1097 struct rt_rq *my_q;
1098 #endif
1099 };
1100
1101
1102 struct rcu_node;
1103
1104 enum perf_event_task_context {
1105 perf_invalid_context = -1,
1106 perf_hw_context = 0,
1107 perf_sw_context,
1108 perf_nr_task_contexts,
1109 };
1110
1111 #ifdef CONFIG_MTK_SCHED_CMP_TGS
1112 #define NUM_CLUSTER 2
1113 struct thread_group_info_t {
1114 /* # of cfs threas in the thread group per cluster*/
1115 unsigned long cfs_nr_running;
1116 /* # of threads in the thread group per cluster */
1117 unsigned long nr_running;
1118 /* runnable load of the thread group per cluster */
1119 unsigned long load_avg_ratio;
1120 };
1121
1122 #endif
1123
1124 #ifdef CONFIG_MT_SCHED_NOTICE
1125 #ifdef CONFIG_MT_SCHED_DEBUG
1126 #define mt_sched_printf(x...) \
1127 do{ \
1128 char strings[128]=""; \
1129 snprintf(strings, 128, x); \
1130 printk(KERN_NOTICE x); \
1131 trace_sched_log(strings); \
1132 }while (0)
1133 #else
1134 #define mt_sched_printf(x...) \
1135 do{ \
1136 char strings[128]=""; \
1137 snprintf(strings, 128, x); \
1138 trace_sched_log(strings); \
1139 }while (0)
1140 #endif
1141
1142 #else
1143 #define mt_sched_printf(x...) do {} while (0)
1144 #endif
1145
1146 struct task_struct {
1147 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1148 void *stack;
1149 atomic_t usage;
1150 unsigned int flags; /* per process flags, defined below */
1151 unsigned int ptrace;
1152
1153 #ifdef CONFIG_SMP
1154 struct llist_node wake_entry;
1155 int on_cpu;
1156 #endif
1157 int on_rq;
1158
1159 int prio, static_prio, normal_prio;
1160 unsigned int rt_priority;
1161 const struct sched_class *sched_class;
1162 struct sched_entity se;
1163 struct sched_rt_entity rt;
1164 #ifdef CONFIG_CGROUP_SCHED
1165 struct task_group *sched_task_group;
1166 #endif
1167
1168 #ifdef CONFIG_PREEMPT_NOTIFIERS
1169 /* list of struct preempt_notifier: */
1170 struct hlist_head preempt_notifiers;
1171 #endif
1172
1173 /*
1174 * fpu_counter contains the number of consecutive context switches
1175 * that the FPU is used. If this is over a threshold, the lazy fpu
1176 * saving becomes unlazy to save the trap. This is an unsigned char
1177 * so that after 256 times the counter wraps and the behavior turns
1178 * lazy again; this to deal with bursty apps that only use FPU for
1179 * a short time
1180 */
1181 unsigned char fpu_counter;
1182 #ifdef CONFIG_BLK_DEV_IO_TRACE
1183 unsigned int btrace_seq;
1184 #endif
1185
1186 unsigned int policy;
1187 int nr_cpus_allowed;
1188 cpumask_t cpus_allowed;
1189
1190 #ifdef CONFIG_PREEMPT_RCU
1191 int rcu_read_lock_nesting;
1192 char rcu_read_unlock_special;
1193 struct list_head rcu_node_entry;
1194 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1195 #ifdef CONFIG_TREE_PREEMPT_RCU
1196 struct rcu_node *rcu_blocked_node;
1197 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1198 #ifdef CONFIG_RCU_BOOST
1199 struct rt_mutex *rcu_boost_mutex;
1200 #endif /* #ifdef CONFIG_RCU_BOOST */
1201
1202 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1203 struct sched_info sched_info;
1204 #endif
1205
1206 struct list_head tasks;
1207 #ifdef CONFIG_SMP
1208 struct plist_node pushable_tasks;
1209 #endif
1210
1211 struct mm_struct *mm, *active_mm;
1212 #ifdef CONFIG_COMPAT_BRK
1213 unsigned brk_randomized:1;
1214 #endif
1215 #if defined(SPLIT_RSS_COUNTING)
1216 struct task_rss_stat rss_stat;
1217 #endif
1218 /* task state */
1219 int exit_state;
1220 int exit_code, exit_signal;
1221 int pdeath_signal; /* The signal sent when the parent dies */
1222 unsigned int jobctl; /* JOBCTL_*, siglock protected */
1223
1224 /* Used for emulating ABI behavior of previous Linux versions */
1225 unsigned int personality;
1226
1227 unsigned did_exec:1;
1228 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1229 * execve */
1230 unsigned in_iowait:1;
1231
1232 /* Revert to default priority/policy when forking */
1233 unsigned sched_reset_on_fork:1;
1234 unsigned sched_contributes_to_load:1;
1235
1236 unsigned long atomic_flags; /* Flags needing atomic access. */
1237
1238 pid_t pid;
1239 pid_t tgid;
1240
1241 #ifdef CONFIG_CC_STACKPROTECTOR
1242 /* Canary value for the -fstack-protector gcc feature */
1243 unsigned long stack_canary;
1244 #endif
1245 /*
1246 * pointers to (original) parent process, youngest child, younger sibling,
1247 * older sibling, respectively. (p->father can be replaced with
1248 * p->real_parent->pid)
1249 */
1250 struct task_struct __rcu *real_parent; /* real parent process */
1251 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1252 /*
1253 * children/sibling forms the list of my natural children
1254 */
1255 struct list_head children; /* list of my children */
1256 struct list_head sibling; /* linkage in my parent's children list */
1257 struct task_struct *group_leader; /* threadgroup leader */
1258
1259 #ifdef CONFIG_MTK_SCHED_CMP_TGS
1260 raw_spinlock_t thread_group_info_lock;
1261 struct thread_group_info_t thread_group_info[NUM_CLUSTER];
1262 #endif
1263
1264 /*
1265 * ptraced is the list of tasks this task is using ptrace on.
1266 * This includes both natural children and PTRACE_ATTACH targets.
1267 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1268 */
1269 struct list_head ptraced;
1270 struct list_head ptrace_entry;
1271
1272 /* PID/PID hash table linkage. */
1273 struct pid_link pids[PIDTYPE_MAX];
1274 struct list_head thread_group;
1275 struct list_head thread_node;
1276
1277 struct completion *vfork_done; /* for vfork() */
1278 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1279 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1280
1281 cputime_t utime, stime, utimescaled, stimescaled;
1282 cputime_t gtime;
1283 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1284 struct cputime prev_cputime;
1285 #endif
1286 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1287 seqlock_t vtime_seqlock;
1288 unsigned long long vtime_snap;
1289 enum {
1290 VTIME_SLEEPING = 0,
1291 VTIME_USER,
1292 VTIME_SYS,
1293 } vtime_snap_whence;
1294 #endif
1295 unsigned long nvcsw, nivcsw; /* context switch counts */
1296 struct timespec start_time; /* monotonic time */
1297 struct timespec real_start_time; /* boot based time */
1298 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1299 unsigned long min_flt, maj_flt;
1300 /* for thrashing accounting */
1301 #ifdef CONFIG_ZRAM
1302 unsigned long fm_flt, swap_in, swap_out;
1303 #endif
1304
1305 struct task_cputime cputime_expires;
1306 struct list_head cpu_timers[3];
1307
1308 /* process credentials */
1309 const struct cred __rcu *real_cred; /* objective and real subjective task
1310 * credentials (COW) */
1311 const struct cred __rcu *cred; /* effective (overridable) subjective task
1312 * credentials (COW) */
1313 char comm[TASK_COMM_LEN]; /* executable name excluding path
1314 - access with [gs]et_task_comm (which lock
1315 it with task_lock())
1316 - initialized normally by setup_new_exec */
1317 /* file system info */
1318 int link_count, total_link_count;
1319 #ifdef CONFIG_SYSVIPC
1320 /* ipc stuff */
1321 struct sysv_sem sysvsem;
1322 #endif
1323 #ifdef CONFIG_DETECT_HUNG_TASK
1324 /* hung task detection */
1325 unsigned long last_switch_count;
1326 #endif
1327 /* CPU-specific state of this task */
1328 struct thread_struct thread;
1329 /* filesystem information */
1330 struct fs_struct *fs;
1331 /* open file information */
1332 struct files_struct *files;
1333 /* namespaces */
1334 struct nsproxy *nsproxy;
1335 /* signal handlers */
1336 struct signal_struct *signal;
1337 struct sighand_struct *sighand;
1338
1339 sigset_t blocked, real_blocked;
1340 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1341 struct sigpending pending;
1342
1343 unsigned long sas_ss_sp;
1344 size_t sas_ss_size;
1345 int (*notifier)(void *priv);
1346 void *notifier_data;
1347 sigset_t *notifier_mask;
1348 struct callback_head *task_works;
1349
1350 struct audit_context *audit_context;
1351 #ifdef CONFIG_AUDITSYSCALL
1352 kuid_t loginuid;
1353 unsigned int sessionid;
1354 #endif
1355 struct seccomp seccomp;
1356
1357 /* Thread group tracking */
1358 u32 parent_exec_id;
1359 u32 self_exec_id;
1360 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1361 * mempolicy */
1362 spinlock_t alloc_lock;
1363
1364 /* Protection of the PI data structures: */
1365 raw_spinlock_t pi_lock;
1366
1367 #ifdef CONFIG_RT_MUTEXES
1368 /* PI waiters blocked on a rt_mutex held by this task */
1369 struct plist_head pi_waiters;
1370 /* Deadlock detection and priority inheritance handling */
1371 struct rt_mutex_waiter *pi_blocked_on;
1372 #endif
1373
1374 #ifdef CONFIG_DEBUG_MUTEXES
1375 /* mutex deadlock detection */
1376 struct mutex_waiter *blocked_on;
1377 #endif
1378 #ifdef CONFIG_TRACE_IRQFLAGS
1379 unsigned int irq_events;
1380 unsigned long hardirq_enable_ip;
1381 unsigned long hardirq_disable_ip;
1382 unsigned int hardirq_enable_event;
1383 unsigned int hardirq_disable_event;
1384 int hardirqs_enabled;
1385 int hardirq_context;
1386 unsigned long softirq_disable_ip;
1387 unsigned long softirq_enable_ip;
1388 unsigned int softirq_disable_event;
1389 unsigned int softirq_enable_event;
1390 int softirqs_enabled;
1391 int softirq_context;
1392 #endif
1393 #ifdef CONFIG_LOCKDEP
1394 # define MAX_LOCK_DEPTH 48UL
1395 u64 curr_chain_key;
1396 int lockdep_depth;
1397 unsigned int lockdep_recursion;
1398 struct held_lock held_locks[MAX_LOCK_DEPTH];
1399 gfp_t lockdep_reclaim_gfp;
1400 #endif
1401
1402 /* journalling filesystem info */
1403 void *journal_info;
1404
1405 /* stacked block device info */
1406 struct bio_list *bio_list;
1407
1408 #ifdef CONFIG_BLOCK
1409 /* stack plugging */
1410 struct blk_plug *plug;
1411 #endif
1412
1413 /* VM state */
1414 struct reclaim_state *reclaim_state;
1415
1416 struct backing_dev_info *backing_dev_info;
1417
1418 struct io_context *io_context;
1419
1420 unsigned long ptrace_message;
1421 siginfo_t *last_siginfo; /* For ptrace use. */
1422 struct task_io_accounting ioac;
1423 #if defined(CONFIG_TASK_XACCT)
1424 u64 acct_rss_mem1; /* accumulated rss usage */
1425 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1426 cputime_t acct_timexpd; /* stime + utime since last update */
1427 #endif
1428 #ifdef CONFIG_CPUSETS
1429 nodemask_t mems_allowed; /* Protected by alloc_lock */
1430 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
1431 int cpuset_mem_spread_rotor;
1432 int cpuset_slab_spread_rotor;
1433 #endif
1434 #ifdef CONFIG_CGROUPS
1435 /* Control Group info protected by css_set_lock */
1436 struct css_set __rcu *cgroups;
1437 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1438 struct list_head cg_list;
1439 #endif
1440 #ifdef CONFIG_FUTEX
1441 struct robust_list_head __user *robust_list;
1442 #ifdef CONFIG_COMPAT
1443 struct compat_robust_list_head __user *compat_robust_list;
1444 #endif
1445 struct list_head pi_state_list;
1446 struct futex_pi_state *pi_state_cache;
1447 #endif
1448 #ifdef CONFIG_PERF_EVENTS
1449 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1450 struct mutex perf_event_mutex;
1451 struct list_head perf_event_list;
1452 #endif
1453 #ifdef CONFIG_NUMA
1454 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1455 short il_next;
1456 short pref_node_fork;
1457 #endif
1458 #ifdef CONFIG_NUMA_BALANCING
1459 int numa_scan_seq;
1460 int numa_migrate_seq;
1461 unsigned int numa_scan_period;
1462 u64 node_stamp; /* migration stamp */
1463 struct callback_head numa_work;
1464 #endif /* CONFIG_NUMA_BALANCING */
1465
1466 struct rcu_head rcu;
1467
1468 /*
1469 * cache last used pipe for splice
1470 */
1471 struct pipe_inode_info *splice_pipe;
1472
1473 struct page_frag task_frag;
1474
1475 #ifdef CONFIG_TASK_DELAY_ACCT
1476 struct task_delay_info *delays;
1477 #endif
1478 #ifdef CONFIG_FAULT_INJECTION
1479 int make_it_fail;
1480 #endif
1481 /*
1482 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1483 * balance_dirty_pages() for some dirty throttling pause
1484 */
1485 int nr_dirtied;
1486 int nr_dirtied_pause;
1487 unsigned long dirty_paused_when; /* start of a write-and-pause period */
1488
1489 #ifdef CONFIG_LATENCYTOP
1490 int latency_record_count;
1491 struct latency_record latency_record[LT_SAVECOUNT];
1492 #endif
1493 /*
1494 * time slack values; these are used to round up poll() and
1495 * select() etc timeout values. These are in nanoseconds.
1496 */
1497 unsigned long timer_slack_ns;
1498 unsigned long default_timer_slack_ns;
1499
1500 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1501 /* Index of current stored address in ret_stack */
1502 int curr_ret_stack;
1503 /* Stack of return addresses for return function tracing */
1504 struct ftrace_ret_stack *ret_stack;
1505 /* time stamp for last schedule */
1506 unsigned long long ftrace_timestamp;
1507 /*
1508 * Number of functions that haven't been traced
1509 * because of depth overrun.
1510 */
1511 atomic_t trace_overrun;
1512 /* Pause for the tracing */
1513 atomic_t tracing_graph_pause;
1514 #endif
1515 #ifdef CONFIG_TRACING
1516 /* state flags for use by tracers */
1517 unsigned long trace;
1518 /* bitmask and counter of trace recursion */
1519 unsigned long trace_recursion;
1520 #endif /* CONFIG_TRACING */
1521 #ifdef CONFIG_MEMCG /* memcg uses this to do batch job */
1522 struct memcg_batch_info {
1523 int do_batch; /* incremented when batch uncharge started */
1524 struct mem_cgroup *memcg; /* target memcg of uncharge */
1525 unsigned long nr_pages; /* uncharged usage */
1526 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
1527 } memcg_batch;
1528 unsigned int memcg_kmem_skip_account;
1529 struct memcg_oom_info {
1530 struct mem_cgroup *memcg;
1531 gfp_t gfp_mask;
1532 int order;
1533 unsigned int may_oom:1;
1534 } memcg_oom;
1535 #endif
1536 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1537 atomic_t ptrace_bp_refcnt;
1538 #endif
1539 #ifdef CONFIG_UPROBES
1540 struct uprobe_task *utask;
1541 #endif
1542 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1543 unsigned int sequential_io;
1544 unsigned int sequential_io_avg;
1545 #endif
1546 };
1547
1548 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1549 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1550
1551 #ifdef CONFIG_NUMA_BALANCING
1552 extern void task_numa_fault(int node, int pages, bool migrated);
1553 extern void set_numabalancing_state(bool enabled);
1554 #else
1555 static inline void task_numa_fault(int node, int pages, bool migrated)
1556 {
1557 }
1558 static inline void set_numabalancing_state(bool enabled)
1559 {
1560 }
1561 #endif
1562
1563 static inline struct pid *task_pid(struct task_struct *task)
1564 {
1565 return task->pids[PIDTYPE_PID].pid;
1566 }
1567
1568 static inline struct pid *task_tgid(struct task_struct *task)
1569 {
1570 return task->group_leader->pids[PIDTYPE_PID].pid;
1571 }
1572
1573 /*
1574 * Without tasklist or rcu lock it is not safe to dereference
1575 * the result of task_pgrp/task_session even if task == current,
1576 * we can race with another thread doing sys_setsid/sys_setpgid.
1577 */
1578 static inline struct pid *task_pgrp(struct task_struct *task)
1579 {
1580 return task->group_leader->pids[PIDTYPE_PGID].pid;
1581 }
1582
1583 static inline struct pid *task_session(struct task_struct *task)
1584 {
1585 return task->group_leader->pids[PIDTYPE_SID].pid;
1586 }
1587
1588 struct pid_namespace;
1589
1590 /*
1591 * the helpers to get the task's different pids as they are seen
1592 * from various namespaces
1593 *
1594 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1595 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1596 * current.
1597 * task_xid_nr_ns() : id seen from the ns specified;
1598 *
1599 * set_task_vxid() : assigns a virtual id to a task;
1600 *
1601 * see also pid_nr() etc in include/linux/pid.h
1602 */
1603 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1604 struct pid_namespace *ns);
1605
1606 static inline pid_t task_pid_nr(struct task_struct *tsk)
1607 {
1608 return tsk->pid;
1609 }
1610
1611 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1612 struct pid_namespace *ns)
1613 {
1614 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1615 }
1616
1617 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1618 {
1619 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1620 }
1621
1622
1623 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1624 {
1625 return tsk->tgid;
1626 }
1627
1628 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1629
1630 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1631 {
1632 return pid_vnr(task_tgid(tsk));
1633 }
1634
1635
1636 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1637 struct pid_namespace *ns)
1638 {
1639 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1640 }
1641
1642 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1643 {
1644 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1645 }
1646
1647
1648 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1649 struct pid_namespace *ns)
1650 {
1651 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1652 }
1653
1654 static inline pid_t task_session_vnr(struct task_struct *tsk)
1655 {
1656 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1657 }
1658
1659 /* obsolete, do not use */
1660 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1661 {
1662 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1663 }
1664
1665 /**
1666 * pid_alive - check that a task structure is not stale
1667 * @p: Task structure to be checked.
1668 *
1669 * Test if a process is not yet dead (at most zombie state)
1670 * If pid_alive fails, then pointers within the task structure
1671 * can be stale and must not be dereferenced.
1672 */
1673 static inline int pid_alive(struct task_struct *p)
1674 {
1675 return p->pids[PIDTYPE_PID].pid != NULL;
1676 }
1677
1678 /**
1679 * is_global_init - check if a task structure is init
1680 * @tsk: Task structure to be checked.
1681 *
1682 * Check if a task structure is the first user space task the kernel created.
1683 */
1684 static inline int is_global_init(struct task_struct *tsk)
1685 {
1686 return tsk->pid == 1;
1687 }
1688
1689 extern struct pid *cad_pid;
1690
1691 extern void free_task(struct task_struct *tsk);
1692 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1693
1694 extern void __put_task_struct(struct task_struct *t);
1695
1696 static inline void put_task_struct(struct task_struct *t)
1697 {
1698 if (atomic_dec_and_test(&t->usage))
1699 __put_task_struct(t);
1700 }
1701
1702 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1703 extern void task_cputime(struct task_struct *t,
1704 cputime_t *utime, cputime_t *stime);
1705 extern void task_cputime_scaled(struct task_struct *t,
1706 cputime_t *utimescaled, cputime_t *stimescaled);
1707 extern cputime_t task_gtime(struct task_struct *t);
1708 #else
1709 static inline void task_cputime(struct task_struct *t,
1710 cputime_t *utime, cputime_t *stime)
1711 {
1712 if (utime)
1713 *utime = t->utime;
1714 if (stime)
1715 *stime = t->stime;
1716 }
1717
1718 static inline void task_cputime_scaled(struct task_struct *t,
1719 cputime_t *utimescaled,
1720 cputime_t *stimescaled)
1721 {
1722 if (utimescaled)
1723 *utimescaled = t->utimescaled;
1724 if (stimescaled)
1725 *stimescaled = t->stimescaled;
1726 }
1727
1728 static inline cputime_t task_gtime(struct task_struct *t)
1729 {
1730 return t->gtime;
1731 }
1732 #endif
1733 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1734 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1735
1736 extern int task_free_register(struct notifier_block *n);
1737 extern int task_free_unregister(struct notifier_block *n);
1738
1739 /*
1740 * Per process flags
1741 */
1742 #define PF_EXITING 0x00000004 /* getting shut down */
1743 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1744 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1745 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1746 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1747 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1748 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1749 #define PF_DUMPCORE 0x00000200 /* dumped core */
1750 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1751 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1752 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1753 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1754 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
1755 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1756 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1757 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1758 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1759 #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
1760 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1761 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1762 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1763 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1764 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1765 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1766 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
1767 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1768 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1769 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1770 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1771 #define PF_MTKPASR 0x80000000 /* I am in MTKPASR process */
1772
1773 #define task_in_mtkpasr(task) unlikely(task->flags & PF_MTKPASR)
1774
1775 /*
1776 * Only the _current_ task can read/write to tsk->flags, but other
1777 * tasks can access tsk->flags in readonly mode for example
1778 * with tsk_used_math (like during threaded core dumping).
1779 * There is however an exception to this rule during ptrace
1780 * or during fork: the ptracer task is allowed to write to the
1781 * child->flags of its traced child (same goes for fork, the parent
1782 * can write to the child->flags), because we're guaranteed the
1783 * child is not running and in turn not changing child->flags
1784 * at the same time the parent does it.
1785 */
1786 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1787 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1788 #define clear_used_math() clear_stopped_child_used_math(current)
1789 #define set_used_math() set_stopped_child_used_math(current)
1790 #define conditional_stopped_child_used_math(condition, child) \
1791 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1792 #define conditional_used_math(condition) \
1793 conditional_stopped_child_used_math(condition, current)
1794 #define copy_to_stopped_child_used_math(child) \
1795 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1796 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1797 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1798 #define used_math() tsk_used_math(current)
1799
1800 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags
1801 * __GFP_FS is also cleared as it implies __GFP_IO.
1802 */
1803 static inline gfp_t memalloc_noio_flags(gfp_t flags)
1804 {
1805 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
1806 flags &= ~(__GFP_IO | __GFP_FS);
1807 return flags;
1808 }
1809
1810 static inline unsigned int memalloc_noio_save(void)
1811 {
1812 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
1813 current->flags |= PF_MEMALLOC_NOIO;
1814 return flags;
1815 }
1816
1817 static inline void memalloc_noio_restore(unsigned int flags)
1818 {
1819 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
1820 }
1821
1822 /* Per-process atomic flags. */
1823 #define PFA_NO_NEW_PRIVS 0x00000001 /* May not gain new privileges. */
1824
1825 static inline bool task_no_new_privs(struct task_struct *p)
1826 {
1827 return test_bit(PFA_NO_NEW_PRIVS, &p->atomic_flags);
1828 }
1829
1830 static inline void task_set_no_new_privs(struct task_struct *p)
1831 {
1832 set_bit(PFA_NO_NEW_PRIVS, &p->atomic_flags);
1833 }
1834
1835 /*
1836 * task->jobctl flags
1837 */
1838 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
1839
1840 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
1841 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
1842 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
1843 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
1844 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
1845 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
1846 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
1847
1848 #define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT)
1849 #define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT)
1850 #define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT)
1851 #define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT)
1852 #define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT)
1853 #define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT)
1854 #define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT)
1855
1856 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
1857 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
1858
1859 extern bool task_set_jobctl_pending(struct task_struct *task,
1860 unsigned int mask);
1861 extern void task_clear_jobctl_trapping(struct task_struct *task);
1862 extern void task_clear_jobctl_pending(struct task_struct *task,
1863 unsigned int mask);
1864
1865 #ifdef CONFIG_PREEMPT_RCU
1866
1867 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1868 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1869
1870 static inline void rcu_copy_process(struct task_struct *p)
1871 {
1872 p->rcu_read_lock_nesting = 0;
1873 p->rcu_read_unlock_special = 0;
1874 #ifdef CONFIG_TREE_PREEMPT_RCU
1875 p->rcu_blocked_node = NULL;
1876 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1877 #ifdef CONFIG_RCU_BOOST
1878 p->rcu_boost_mutex = NULL;
1879 #endif /* #ifdef CONFIG_RCU_BOOST */
1880 INIT_LIST_HEAD(&p->rcu_node_entry);
1881 }
1882
1883 #else
1884
1885 static inline void rcu_copy_process(struct task_struct *p)
1886 {
1887 }
1888
1889 #endif
1890
1891 static inline void tsk_restore_flags(struct task_struct *task,
1892 unsigned long orig_flags, unsigned long flags)
1893 {
1894 task->flags &= ~flags;
1895 task->flags |= orig_flags & flags;
1896 }
1897
1898 #ifdef CONFIG_SMP
1899 extern void do_set_cpus_allowed(struct task_struct *p,
1900 const struct cpumask *new_mask);
1901
1902 extern int set_cpus_allowed_ptr(struct task_struct *p,
1903 const struct cpumask *new_mask);
1904 #else
1905 static inline void do_set_cpus_allowed(struct task_struct *p,
1906 const struct cpumask *new_mask)
1907 {
1908 }
1909 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1910 const struct cpumask *new_mask)
1911 {
1912 if (!cpumask_test_cpu(0, new_mask))
1913 return -EINVAL;
1914 return 0;
1915 }
1916 #endif
1917
1918 #ifdef CONFIG_NO_HZ_COMMON
1919 void calc_load_enter_idle(void);
1920 void calc_load_exit_idle(void);
1921 #else
1922 static inline void calc_load_enter_idle(void) { }
1923 static inline void calc_load_exit_idle(void) { }
1924 #endif /* CONFIG_NO_HZ_COMMON */
1925
1926 #ifndef CONFIG_CPUMASK_OFFSTACK
1927 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1928 {
1929 return set_cpus_allowed_ptr(p, &new_mask);
1930 }
1931 #endif
1932
1933 /*
1934 * Do not use outside of architecture code which knows its limitations.
1935 *
1936 * sched_clock() has no promise of monotonicity or bounded drift between
1937 * CPUs, use (which you should not) requires disabling IRQs.
1938 *
1939 * Please use one of the three interfaces below.
1940 */
1941 extern unsigned long long notrace sched_clock(void);
1942 /*
1943 * See the comment in kernel/sched/clock.c
1944 */
1945 extern u64 cpu_clock(int cpu);
1946 extern u64 local_clock(void);
1947 extern u64 sched_clock_cpu(int cpu);
1948
1949
1950 extern void sched_clock_init(void);
1951
1952 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1953 static inline void sched_clock_tick(void)
1954 {
1955 }
1956
1957 static inline void sched_clock_idle_sleep_event(void)
1958 {
1959 }
1960
1961 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1962 {
1963 }
1964 #else
1965 /*
1966 * Architectures can set this to 1 if they have specified
1967 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1968 * but then during bootup it turns out that sched_clock()
1969 * is reliable after all:
1970 */
1971 extern int sched_clock_stable;
1972
1973 extern void sched_clock_tick(void);
1974 extern void sched_clock_idle_sleep_event(void);
1975 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1976 #endif
1977
1978 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1979 /*
1980 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
1981 * The reason for this explicit opt-in is not to have perf penalty with
1982 * slow sched_clocks.
1983 */
1984 extern void enable_sched_clock_irqtime(void);
1985 extern void disable_sched_clock_irqtime(void);
1986 #else
1987 static inline void enable_sched_clock_irqtime(void) {}
1988 static inline void disable_sched_clock_irqtime(void) {}
1989 #endif
1990
1991 extern unsigned long long
1992 task_sched_runtime(struct task_struct *task);
1993
1994 /* sched_exec is called by processes performing an exec */
1995 #ifdef CONFIG_SMP
1996 extern void sched_exec(void);
1997 #else
1998 #define sched_exec() {}
1999 #endif
2000
2001 extern void sched_clock_idle_sleep_event(void);
2002 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2003
2004 #ifdef CONFIG_HOTPLUG_CPU
2005 extern void idle_task_exit(void);
2006 #else
2007 static inline void idle_task_exit(void) {}
2008 #endif
2009
2010 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
2011 extern void wake_up_nohz_cpu(int cpu);
2012 #else
2013 static inline void wake_up_nohz_cpu(int cpu) { }
2014 #endif
2015
2016 #ifdef CONFIG_NO_HZ_FULL
2017 extern bool sched_can_stop_tick(void);
2018 extern u64 scheduler_tick_max_deferment(void);
2019 #else
2020 static inline bool sched_can_stop_tick(void) { return false; }
2021 #endif
2022
2023 #ifdef CONFIG_SCHED_AUTOGROUP
2024 extern void sched_autogroup_create_attach(struct task_struct *p);
2025 extern void sched_autogroup_detach(struct task_struct *p);
2026 extern void sched_autogroup_fork(struct signal_struct *sig);
2027 extern void sched_autogroup_exit(struct signal_struct *sig);
2028 #ifdef CONFIG_PROC_FS
2029 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2030 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
2031 #endif
2032 #else
2033 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2034 static inline void sched_autogroup_detach(struct task_struct *p) { }
2035 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2036 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2037 #endif
2038
2039 extern bool yield_to(struct task_struct *p, bool preempt);
2040 extern void set_user_nice(struct task_struct *p, long nice);
2041 extern int task_prio(const struct task_struct *p);
2042 extern int task_nice(const struct task_struct *p);
2043 extern int can_nice(const struct task_struct *p, const int nice);
2044 extern int task_curr(const struct task_struct *p);
2045 extern int idle_cpu(int cpu);
2046 extern int sched_setscheduler(struct task_struct *, int,
2047 const struct sched_param *);
2048 extern int sched_setscheduler_nocheck(struct task_struct *, int,
2049 const struct sched_param *);
2050
2051 #ifdef CONFIG_MT_PRIO_TRACER
2052 extern void set_user_nice_core(struct task_struct *p, long nice);
2053 extern int sched_setscheduler_core(struct task_struct *, int,
2054 const struct sched_param *);
2055 extern int sched_setscheduler_nocheck_core(struct task_struct *, int,
2056 const struct sched_param *);
2057 #endif
2058
2059 extern struct task_struct *idle_task(int cpu);
2060 /**
2061 * is_idle_task - is the specified task an idle task?
2062 * @p: the task in question.
2063 */
2064 static inline bool is_idle_task(const struct task_struct *p)
2065 {
2066 return p->pid == 0;
2067 }
2068 extern struct task_struct *curr_task(int cpu);
2069 extern void set_curr_task(int cpu, struct task_struct *p);
2070
2071 void yield(void);
2072
2073 /*
2074 * The default (Linux) execution domain.
2075 */
2076 extern struct exec_domain default_exec_domain;
2077
2078 union thread_union {
2079 struct thread_info thread_info;
2080 unsigned long stack[THREAD_SIZE/sizeof(long)];
2081 };
2082
2083 #ifndef __HAVE_ARCH_KSTACK_END
2084 static inline int kstack_end(void *addr)
2085 {
2086 /* Reliable end of stack detection:
2087 * Some APM bios versions misalign the stack
2088 */
2089 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2090 }
2091 #endif
2092
2093 extern union thread_union init_thread_union;
2094 extern struct task_struct init_task;
2095
2096 extern struct mm_struct init_mm;
2097
2098 extern struct pid_namespace init_pid_ns;
2099
2100 /*
2101 * find a task by one of its numerical ids
2102 *
2103 * find_task_by_pid_ns():
2104 * finds a task by its pid in the specified namespace
2105 * find_task_by_vpid():
2106 * finds a task by its virtual pid
2107 *
2108 * see also find_vpid() etc in include/linux/pid.h
2109 */
2110
2111 extern struct task_struct *find_task_by_vpid(pid_t nr);
2112 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2113 struct pid_namespace *ns);
2114
2115 extern void __set_special_pids(struct pid *pid);
2116
2117 /* per-UID process charging. */
2118 extern struct user_struct * alloc_uid(kuid_t);
2119 static inline struct user_struct *get_uid(struct user_struct *u)
2120 {
2121 atomic_inc(&u->__count);
2122 return u;
2123 }
2124 extern void free_uid(struct user_struct *);
2125
2126 #include <asm/current.h>
2127
2128 extern void xtime_update(unsigned long ticks);
2129
2130 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2131 extern int wake_up_process(struct task_struct *tsk);
2132 extern void wake_up_new_task(struct task_struct *tsk);
2133 #ifdef CONFIG_SMP
2134 extern void kick_process(struct task_struct *tsk);
2135 #else
2136 static inline void kick_process(struct task_struct *tsk) { }
2137 #endif
2138 extern void sched_fork(struct task_struct *p);
2139 extern void sched_dead(struct task_struct *p);
2140
2141 extern void proc_caches_init(void);
2142 extern void flush_signals(struct task_struct *);
2143 extern void __flush_signals(struct task_struct *);
2144 extern void ignore_signals(struct task_struct *);
2145 extern void flush_signal_handlers(struct task_struct *, int force_default);
2146 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2147
2148 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2149 {
2150 unsigned long flags;
2151 int ret;
2152
2153 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2154 ret = dequeue_signal(tsk, mask, info);
2155 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2156
2157 return ret;
2158 }
2159
2160 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2161 sigset_t *mask);
2162 extern void unblock_all_signals(void);
2163 extern void release_task(struct task_struct * p);
2164 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2165 extern int force_sigsegv(int, struct task_struct *);
2166 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2167 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2168 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2169 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2170 const struct cred *, u32);
2171 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2172 extern int kill_pid(struct pid *pid, int sig, int priv);
2173 extern int kill_proc_info(int, struct siginfo *, pid_t);
2174 extern __must_check bool do_notify_parent(struct task_struct *, int);
2175 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2176 extern void force_sig(int, struct task_struct *);
2177 extern int send_sig(int, struct task_struct *, int);
2178 extern int zap_other_threads(struct task_struct *p);
2179 extern struct sigqueue *sigqueue_alloc(void);
2180 extern void sigqueue_free(struct sigqueue *);
2181 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2182 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2183
2184 static inline void restore_saved_sigmask(void)
2185 {
2186 if (test_and_clear_restore_sigmask())
2187 __set_current_blocked(&current->saved_sigmask);
2188 }
2189
2190 static inline sigset_t *sigmask_to_save(void)
2191 {
2192 sigset_t *res = &current->blocked;
2193 if (unlikely(test_restore_sigmask()))
2194 res = &current->saved_sigmask;
2195 return res;
2196 }
2197
2198 static inline int kill_cad_pid(int sig, int priv)
2199 {
2200 return kill_pid(cad_pid, sig, priv);
2201 }
2202
2203 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2204 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2205 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2206 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2207
2208 /*
2209 * True if we are on the alternate signal stack.
2210 */
2211 static inline int on_sig_stack(unsigned long sp)
2212 {
2213 #ifdef CONFIG_STACK_GROWSUP
2214 return sp >= current->sas_ss_sp &&
2215 sp - current->sas_ss_sp < current->sas_ss_size;
2216 #else
2217 return sp > current->sas_ss_sp &&
2218 sp - current->sas_ss_sp <= current->sas_ss_size;
2219 #endif
2220 }
2221
2222 static inline int sas_ss_flags(unsigned long sp)
2223 {
2224 return (current->sas_ss_size == 0 ? SS_DISABLE
2225 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2226 }
2227
2228 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2229 {
2230 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2231 #ifdef CONFIG_STACK_GROWSUP
2232 return current->sas_ss_sp;
2233 #else
2234 return current->sas_ss_sp + current->sas_ss_size;
2235 #endif
2236 return sp;
2237 }
2238
2239 /*
2240 * Routines for handling mm_structs
2241 */
2242 extern struct mm_struct * mm_alloc(void);
2243
2244 /* mmdrop drops the mm and the page tables */
2245 extern void __mmdrop(struct mm_struct *);
2246 static inline void mmdrop(struct mm_struct * mm)
2247 {
2248 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2249 __mmdrop(mm);
2250 }
2251
2252 /* mmput gets rid of the mappings and all user-space */
2253 extern void mmput(struct mm_struct *);
2254 /* Grab a reference to a task's mm, if it is not already going away */
2255 extern struct mm_struct *get_task_mm(struct task_struct *task);
2256 /*
2257 * Grab a reference to a task's mm, if it is not already going away
2258 * and ptrace_may_access with the mode parameter passed to it
2259 * succeeds.
2260 */
2261 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2262 /* Remove the current tasks stale references to the old mm_struct */
2263 extern void mm_release(struct task_struct *, struct mm_struct *);
2264 /* Allocate a new mm structure and copy contents from tsk->mm */
2265 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2266
2267 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2268 struct task_struct *);
2269 extern void flush_thread(void);
2270 extern void exit_thread(void);
2271
2272 extern void exit_files(struct task_struct *);
2273 extern void __cleanup_sighand(struct sighand_struct *);
2274
2275 extern void exit_itimers(struct signal_struct *);
2276 extern void flush_itimer_signals(void);
2277
2278 extern void do_group_exit(int);
2279
2280 extern int allow_signal(int);
2281 extern int disallow_signal(int);
2282
2283 extern int do_execve(const char *,
2284 const char __user * const __user *,
2285 const char __user * const __user *);
2286 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2287 struct task_struct *fork_idle(int);
2288 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2289
2290 extern void set_task_comm(struct task_struct *tsk, char *from);
2291 extern char *get_task_comm(char *to, struct task_struct *tsk);
2292
2293 #ifdef CONFIG_SMP
2294 void scheduler_ipi(void);
2295 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2296 #else
2297 static inline void scheduler_ipi(void) { }
2298 static inline unsigned long wait_task_inactive(struct task_struct *p,
2299 long match_state)
2300 {
2301 return 1;
2302 }
2303 #endif
2304
2305 #define next_task(p) \
2306 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2307
2308 #define for_each_process(p) \
2309 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2310
2311 extern bool current_is_single_threaded(void);
2312
2313 /*
2314 * Careful: do_each_thread/while_each_thread is a double loop so
2315 * 'break' will not work as expected - use goto instead.
2316 */
2317 #define do_each_thread(g, t) \
2318 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2319
2320 #define while_each_thread(g, t) \
2321 while ((t = next_thread(t)) != g)
2322
2323 #define __for_each_thread(signal, t) \
2324 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
2325
2326 #define for_each_thread(p, t) \
2327 __for_each_thread((p)->signal, t)
2328
2329 /* Careful: this is a double loop, 'break' won't work as expected. */
2330 #define for_each_process_thread(p, t) \
2331 for_each_process(p) for_each_thread(p, t)
2332
2333 static inline int get_nr_threads(struct task_struct *tsk)
2334 {
2335 return tsk->signal->nr_threads;
2336 }
2337
2338 static inline bool thread_group_leader(struct task_struct *p)
2339 {
2340 return p->exit_signal >= 0;
2341 }
2342
2343 /* Do to the insanities of de_thread it is possible for a process
2344 * to have the pid of the thread group leader without actually being
2345 * the thread group leader. For iteration through the pids in proc
2346 * all we care about is that we have a task with the appropriate
2347 * pid, we don't actually care if we have the right task.
2348 */
2349 static inline bool has_group_leader_pid(struct task_struct *p)
2350 {
2351 return task_pid(p) == p->signal->leader_pid;
2352 }
2353
2354 static inline
2355 bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
2356 {
2357 return p1->signal == p2->signal;
2358 }
2359
2360 static inline struct task_struct *next_thread(const struct task_struct *p)
2361 {
2362 return list_entry_rcu(p->thread_group.next,
2363 struct task_struct, thread_group);
2364 }
2365
2366 static inline int thread_group_empty(struct task_struct *p)
2367 {
2368 return list_empty(&p->thread_group);
2369 }
2370
2371 #define delay_group_leader(p) \
2372 (thread_group_leader(p) && !thread_group_empty(p))
2373
2374 /*
2375 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2376 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2377 * pins the final release of task.io_context. Also protects ->cpuset and
2378 * ->cgroup.subsys[]. And ->vfork_done.
2379 *
2380 * Nests both inside and outside of read_lock(&tasklist_lock).
2381 * It must not be nested with write_lock_irq(&tasklist_lock),
2382 * neither inside nor outside.
2383 */
2384 static inline void task_lock(struct task_struct *p)
2385 {
2386 spin_lock(&p->alloc_lock);
2387 }
2388
2389 static inline void task_unlock(struct task_struct *p)
2390 {
2391 spin_unlock(&p->alloc_lock);
2392 }
2393
2394 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2395 unsigned long *flags);
2396
2397 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2398 unsigned long *flags)
2399 {
2400 struct sighand_struct *ret;
2401
2402 ret = __lock_task_sighand(tsk, flags);
2403 (void)__cond_lock(&tsk->sighand->siglock, ret);
2404 return ret;
2405 }
2406
2407 static inline void unlock_task_sighand(struct task_struct *tsk,
2408 unsigned long *flags)
2409 {
2410 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2411 }
2412
2413 #ifdef CONFIG_CGROUPS
2414 static inline void threadgroup_change_begin(struct task_struct *tsk)
2415 {
2416 down_read(&tsk->signal->group_rwsem);
2417 }
2418 static inline void threadgroup_change_end(struct task_struct *tsk)
2419 {
2420 up_read(&tsk->signal->group_rwsem);
2421 }
2422
2423 /**
2424 * threadgroup_lock - lock threadgroup
2425 * @tsk: member task of the threadgroup to lock
2426 *
2427 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter
2428 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
2429 * change ->group_leader/pid. This is useful for cases where the threadgroup
2430 * needs to stay stable across blockable operations.
2431 *
2432 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2433 * synchronization. While held, no new task will be added to threadgroup
2434 * and no existing live task will have its PF_EXITING set.
2435 *
2436 * de_thread() does threadgroup_change_{begin|end}() when a non-leader
2437 * sub-thread becomes a new leader.
2438 */
2439 static inline void threadgroup_lock(struct task_struct *tsk)
2440 {
2441 down_write(&tsk->signal->group_rwsem);
2442 }
2443
2444 /**
2445 * threadgroup_unlock - unlock threadgroup
2446 * @tsk: member task of the threadgroup to unlock
2447 *
2448 * Reverse threadgroup_lock().
2449 */
2450 static inline void threadgroup_unlock(struct task_struct *tsk)
2451 {
2452 up_write(&tsk->signal->group_rwsem);
2453 }
2454 #else
2455 static inline void threadgroup_change_begin(struct task_struct *tsk) {}
2456 static inline void threadgroup_change_end(struct task_struct *tsk) {}
2457 static inline void threadgroup_lock(struct task_struct *tsk) {}
2458 static inline void threadgroup_unlock(struct task_struct *tsk) {}
2459 #endif
2460
2461 #ifndef __HAVE_THREAD_FUNCTIONS
2462
2463 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2464 #define task_stack_page(task) ((task)->stack)
2465
2466 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2467 {
2468 *task_thread_info(p) = *task_thread_info(org);
2469 task_thread_info(p)->task = p;
2470 }
2471
2472 static inline unsigned long *end_of_stack(struct task_struct *p)
2473 {
2474 return (unsigned long *)(task_thread_info(p) + 1);
2475 }
2476
2477 #endif
2478
2479 static inline int object_is_on_stack(void *obj)
2480 {
2481 void *stack = task_stack_page(current);
2482
2483 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2484 }
2485
2486 extern void thread_info_cache_init(void);
2487
2488 #ifdef CONFIG_DEBUG_STACK_USAGE
2489 static inline unsigned long stack_not_used(struct task_struct *p)
2490 {
2491 unsigned long *n = end_of_stack(p);
2492
2493 do { /* Skip over canary */
2494 n++;
2495 } while (!*n);
2496
2497 return (unsigned long)n - (unsigned long)end_of_stack(p);
2498 }
2499 #endif
2500
2501 /* set thread flags in other task's structures
2502 * - see asm/thread_info.h for TIF_xxxx flags available
2503 */
2504 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2505 {
2506 set_ti_thread_flag(task_thread_info(tsk), flag);
2507 }
2508
2509 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2510 {
2511 clear_ti_thread_flag(task_thread_info(tsk), flag);
2512 }
2513
2514 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2515 {
2516 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2517 }
2518
2519 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2520 {
2521 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2522 }
2523
2524 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2525 {
2526 return test_ti_thread_flag(task_thread_info(tsk), flag);
2527 }
2528
2529 static inline void set_tsk_need_resched(struct task_struct *tsk)
2530 {
2531 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2532 }
2533
2534 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2535 {
2536 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2537 }
2538
2539 static inline int test_tsk_need_resched(struct task_struct *tsk)
2540 {
2541 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2542 }
2543
2544 #if defined(CONFIG_MT_RT_SCHED) || defined(CONFIG_MT_RT_SCHED_LOG)
2545 static inline void set_tsk_need_released(struct task_struct *tsk)
2546 {
2547 set_tsk_thread_flag(tsk, TIF_NEED_RELEASED);
2548 }
2549
2550 static inline void clear_tsk_need_released(struct task_struct *tsk)
2551 {
2552 clear_tsk_thread_flag(tsk,TIF_NEED_RELEASED);
2553 }
2554
2555 static inline int test_tsk_need_released(struct task_struct *tsk)
2556 {
2557 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RELEASED));
2558 }
2559 #endif
2560
2561 static inline int restart_syscall(void)
2562 {
2563 set_tsk_thread_flag(current, TIF_SIGPENDING);
2564 return -ERESTARTNOINTR;
2565 }
2566
2567 static inline int signal_pending(struct task_struct *p)
2568 {
2569 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2570 }
2571
2572 static inline int __fatal_signal_pending(struct task_struct *p)
2573 {
2574 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2575 }
2576
2577 static inline int fatal_signal_pending(struct task_struct *p)
2578 {
2579 return signal_pending(p) && __fatal_signal_pending(p);
2580 }
2581
2582 static inline int signal_pending_state(long state, struct task_struct *p)
2583 {
2584 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2585 return 0;
2586 if (!signal_pending(p))
2587 return 0;
2588
2589 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2590 }
2591
2592 static inline int need_resched(void)
2593 {
2594 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2595 }
2596
2597 /*
2598 * cond_resched() and cond_resched_lock(): latency reduction via
2599 * explicit rescheduling in places that are safe. The return
2600 * value indicates whether a reschedule was done in fact.
2601 * cond_resched_lock() will drop the spinlock before scheduling,
2602 * cond_resched_softirq() will enable bhs before scheduling.
2603 */
2604 extern int _cond_resched(void);
2605
2606 #define cond_resched() ({ \
2607 __might_sleep(__FILE__, __LINE__, 0); \
2608 _cond_resched(); \
2609 })
2610
2611 extern int __cond_resched_lock(spinlock_t *lock);
2612
2613 #ifdef CONFIG_PREEMPT_COUNT
2614 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
2615 #else
2616 #define PREEMPT_LOCK_OFFSET 0
2617 #endif
2618
2619 #define cond_resched_lock(lock) ({ \
2620 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2621 __cond_resched_lock(lock); \
2622 })
2623
2624 extern int __cond_resched_softirq(void);
2625
2626 #define cond_resched_softirq() ({ \
2627 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
2628 __cond_resched_softirq(); \
2629 })
2630
2631 /*
2632 * Does a critical section need to be broken due to another
2633 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2634 * but a general need for low latency)
2635 */
2636 static inline int spin_needbreak(spinlock_t *lock)
2637 {
2638 #ifdef CONFIG_PREEMPT
2639 return spin_is_contended(lock);
2640 #else
2641 return 0;
2642 #endif
2643 }
2644
2645 /*
2646 * Idle thread specific functions to determine the need_resched
2647 * polling state. We have two versions, one based on TS_POLLING in
2648 * thread_info.status and one based on TIF_POLLING_NRFLAG in
2649 * thread_info.flags
2650 */
2651 #ifdef TS_POLLING
2652 static inline int tsk_is_polling(struct task_struct *p)
2653 {
2654 return task_thread_info(p)->status & TS_POLLING;
2655 }
2656 static inline void __current_set_polling(void)
2657 {
2658 current_thread_info()->status |= TS_POLLING;
2659 }
2660
2661 static inline bool __must_check current_set_polling_and_test(void)
2662 {
2663 __current_set_polling();
2664
2665 /*
2666 * Polling state must be visible before we test NEED_RESCHED,
2667 * paired by resched_task()
2668 */
2669 smp_mb();
2670
2671 return unlikely(tif_need_resched());
2672 }
2673
2674 static inline void __current_clr_polling(void)
2675 {
2676 current_thread_info()->status &= ~TS_POLLING;
2677 }
2678
2679 static inline bool __must_check current_clr_polling_and_test(void)
2680 {
2681 __current_clr_polling();
2682
2683 /*
2684 * Polling state must be visible before we test NEED_RESCHED,
2685 * paired by resched_task()
2686 */
2687 smp_mb();
2688
2689 return unlikely(tif_need_resched());
2690 }
2691 #elif defined(TIF_POLLING_NRFLAG)
2692 static inline int tsk_is_polling(struct task_struct *p)
2693 {
2694 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
2695 }
2696
2697 static inline void __current_set_polling(void)
2698 {
2699 set_thread_flag(TIF_POLLING_NRFLAG);
2700 }
2701
2702 static inline bool __must_check current_set_polling_and_test(void)
2703 {
2704 __current_set_polling();
2705
2706 /*
2707 * Polling state must be visible before we test NEED_RESCHED,
2708 * paired by resched_task()
2709 *
2710 * XXX: assumes set/clear bit are identical barrier wise.
2711 */
2712 smp_mb__after_clear_bit();
2713
2714 return unlikely(tif_need_resched());
2715 }
2716
2717 static inline void __current_clr_polling(void)
2718 {
2719 clear_thread_flag(TIF_POLLING_NRFLAG);
2720 }
2721
2722 static inline bool __must_check current_clr_polling_and_test(void)
2723 {
2724 __current_clr_polling();
2725
2726 /*
2727 * Polling state must be visible before we test NEED_RESCHED,
2728 * paired by resched_task()
2729 */
2730 smp_mb__after_clear_bit();
2731
2732 return unlikely(tif_need_resched());
2733 }
2734
2735 #else
2736 static inline int tsk_is_polling(struct task_struct *p) { return 0; }
2737 static inline void __current_set_polling(void) { }
2738 static inline void __current_clr_polling(void) { }
2739
2740 static inline bool __must_check current_set_polling_and_test(void)
2741 {
2742 return unlikely(tif_need_resched());
2743 }
2744 static inline bool __must_check current_clr_polling_and_test(void)
2745 {
2746 return unlikely(tif_need_resched());
2747 }
2748 #endif
2749
2750 /*
2751 * Thread group CPU time accounting.
2752 */
2753 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2754 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2755
2756 static inline void thread_group_cputime_init(struct signal_struct *sig)
2757 {
2758 raw_spin_lock_init(&sig->cputimer.lock);
2759 }
2760
2761 /*
2762 * Reevaluate whether the task has signals pending delivery.
2763 * Wake the task if so.
2764 * This is required every time the blocked sigset_t changes.
2765 * callers must hold sighand->siglock.
2766 */
2767 extern void recalc_sigpending_and_wake(struct task_struct *t);
2768 extern void recalc_sigpending(void);
2769
2770 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
2771
2772 static inline void signal_wake_up(struct task_struct *t, bool resume)
2773 {
2774 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
2775 }
2776 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
2777 {
2778 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
2779 }
2780
2781 /*
2782 * Wrappers for p->thread_info->cpu access. No-op on UP.
2783 */
2784 #ifdef CONFIG_SMP
2785
2786 static inline unsigned int task_cpu(const struct task_struct *p)
2787 {
2788 return task_thread_info(p)->cpu;
2789 }
2790
2791 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2792
2793 #else
2794
2795 static inline unsigned int task_cpu(const struct task_struct *p)
2796 {
2797 return 0;
2798 }
2799
2800 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2801 {
2802 }
2803
2804 #endif /* CONFIG_SMP */
2805
2806 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2807 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2808
2809 #ifdef CONFIG_CGROUP_SCHED
2810 extern struct task_group root_task_group;
2811 #endif /* CONFIG_CGROUP_SCHED */
2812
2813 extern int task_can_switch_user(struct user_struct *up,
2814 struct task_struct *tsk);
2815
2816 #ifdef CONFIG_TASK_XACCT
2817 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2818 {
2819 tsk->ioac.rchar += amt;
2820 }
2821
2822 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2823 {
2824 tsk->ioac.wchar += amt;
2825 }
2826
2827 static inline void inc_syscr(struct task_struct *tsk)
2828 {
2829 tsk->ioac.syscr++;
2830 }
2831
2832 static inline void inc_syscw(struct task_struct *tsk)
2833 {
2834 tsk->ioac.syscw++;
2835 }
2836 #else
2837 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2838 {
2839 }
2840
2841 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2842 {
2843 }
2844
2845 static inline void inc_syscr(struct task_struct *tsk)
2846 {
2847 }
2848
2849 static inline void inc_syscw(struct task_struct *tsk)
2850 {
2851 }
2852 #endif
2853
2854 #ifndef TASK_SIZE_OF
2855 #define TASK_SIZE_OF(tsk) TASK_SIZE
2856 #endif
2857
2858 #ifdef CONFIG_MM_OWNER
2859 extern void mm_update_next_owner(struct mm_struct *mm);
2860 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2861 #else
2862 static inline void mm_update_next_owner(struct mm_struct *mm)
2863 {
2864 }
2865
2866 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2867 {
2868 }
2869 #endif /* CONFIG_MM_OWNER */
2870
2871 static inline unsigned long task_rlimit(const struct task_struct *tsk,
2872 unsigned int limit)
2873 {
2874 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2875 }
2876
2877 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2878 unsigned int limit)
2879 {
2880 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2881 }
2882
2883 static inline unsigned long rlimit(unsigned int limit)
2884 {
2885 return task_rlimit(current, limit);
2886 }
2887
2888 static inline unsigned long rlimit_max(unsigned int limit)
2889 {
2890 return task_rlimit_max(current, limit);
2891 }
2892
2893 #ifdef CONFIG_MTK_SCHED_RQAVG_US
2894 /*
2895 * @cpu: cpu id
2896 * @reset: reset the statistic start time after this time query
2897 * @use_maxfreq: caculate cpu loading with max cpu max frequency
2898 * return: cpu loading as percentage (0~100)
2899 */
2900 extern unsigned int sched_get_percpu_load(int cpu, bool reset, bool use_maxfreq);
2901
2902 /*
2903 * return: heavy task(loading>90%) number in the system
2904 */
2905 extern unsigned int sched_get_nr_heavy_task(void);
2906
2907 /*
2908 * @threshold: heavy task loading threshold (0~1023)
2909 * return: heavy task(loading>threshold) number in the system
2910 */
2911 extern unsigned int sched_get_nr_heavy_task_by_threshold(unsigned int threshold);
2912 #endif /* CONFIG_MTK_SCHED_RQAVG_US */
2913
2914 #ifdef CONFIG_MTK_SCHED_RQAVG_KS
2915 extern void sched_update_nr_prod(int cpu, unsigned long nr, bool inc);
2916 extern void sched_get_nr_running_avg(int *avg, int *iowait_avg);
2917 #endif /* CONFIG_MTK_SCHED_RQAVG_KS */
2918
2919 extern void sched_get_big_little_cpus(struct cpumask *big, struct cpumask *little);
2920
2921 #endif