[PATCH] cleanup the usage of SEND_SIG_xxx constants
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 #include <asm/param.h> /* for HZ */
5
6 #include <linux/config.h>
7 #include <linux/capability.h>
8 #include <linux/threads.h>
9 #include <linux/kernel.h>
10 #include <linux/types.h>
11 #include <linux/timex.h>
12 #include <linux/jiffies.h>
13 #include <linux/rbtree.h>
14 #include <linux/thread_info.h>
15 #include <linux/cpumask.h>
16 #include <linux/errno.h>
17 #include <linux/nodemask.h>
18
19 #include <asm/system.h>
20 #include <asm/semaphore.h>
21 #include <asm/page.h>
22 #include <asm/ptrace.h>
23 #include <asm/mmu.h>
24 #include <asm/cputime.h>
25
26 #include <linux/smp.h>
27 #include <linux/sem.h>
28 #include <linux/signal.h>
29 #include <linux/securebits.h>
30 #include <linux/fs_struct.h>
31 #include <linux/compiler.h>
32 #include <linux/completion.h>
33 #include <linux/pid.h>
34 #include <linux/percpu.h>
35 #include <linux/topology.h>
36 #include <linux/seccomp.h>
37
38 #include <linux/auxvec.h> /* For AT_VECTOR_SIZE */
39
40 struct exec_domain;
41
42 /*
43 * cloning flags:
44 */
45 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
46 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
47 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
48 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
49 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
50 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
51 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
52 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
53 #define CLONE_THREAD 0x00010000 /* Same thread group? */
54 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
55 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
56 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
57 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
58 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
59 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
60 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
61 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
62 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */
63
64 /*
65 * List of flags we want to share for kernel threads,
66 * if only because they are not used by them anyway.
67 */
68 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
69
70 /*
71 * These are the constant used to fake the fixed-point load-average
72 * counting. Some notes:
73 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
74 * a load-average precision of 10 bits integer + 11 bits fractional
75 * - if you want to count load-averages more often, you need more
76 * precision, or rounding will get you. With 2-second counting freq,
77 * the EXP_n values would be 1981, 2034 and 2043 if still using only
78 * 11 bit fractions.
79 */
80 extern unsigned long avenrun[]; /* Load averages */
81
82 #define FSHIFT 11 /* nr of bits of precision */
83 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
84 #define LOAD_FREQ (5*HZ) /* 5 sec intervals */
85 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
86 #define EXP_5 2014 /* 1/exp(5sec/5min) */
87 #define EXP_15 2037 /* 1/exp(5sec/15min) */
88
89 #define CALC_LOAD(load,exp,n) \
90 load *= exp; \
91 load += n*(FIXED_1-exp); \
92 load >>= FSHIFT;
93
94 extern unsigned long total_forks;
95 extern int nr_threads;
96 extern int last_pid;
97 DECLARE_PER_CPU(unsigned long, process_counts);
98 extern int nr_processes(void);
99 extern unsigned long nr_running(void);
100 extern unsigned long nr_uninterruptible(void);
101 extern unsigned long nr_iowait(void);
102
103 #include <linux/time.h>
104 #include <linux/param.h>
105 #include <linux/resource.h>
106 #include <linux/timer.h>
107
108 #include <asm/processor.h>
109
110 /*
111 * Task state bitmask. NOTE! These bits are also
112 * encoded in fs/proc/array.c: get_task_state().
113 *
114 * We have two separate sets of flags: task->state
115 * is about runnability, while task->exit_state are
116 * about the task exiting. Confusing, but this way
117 * modifying one set can't modify the other one by
118 * mistake.
119 */
120 #define TASK_RUNNING 0
121 #define TASK_INTERRUPTIBLE 1
122 #define TASK_UNINTERRUPTIBLE 2
123 #define TASK_STOPPED 4
124 #define TASK_TRACED 8
125 /* in tsk->exit_state */
126 #define EXIT_ZOMBIE 16
127 #define EXIT_DEAD 32
128 /* in tsk->state again */
129 #define TASK_NONINTERACTIVE 64
130
131 #define __set_task_state(tsk, state_value) \
132 do { (tsk)->state = (state_value); } while (0)
133 #define set_task_state(tsk, state_value) \
134 set_mb((tsk)->state, (state_value))
135
136 /*
137 * set_current_state() includes a barrier so that the write of current->state
138 * is correctly serialised wrt the caller's subsequent test of whether to
139 * actually sleep:
140 *
141 * set_current_state(TASK_UNINTERRUPTIBLE);
142 * if (do_i_need_to_sleep())
143 * schedule();
144 *
145 * If the caller does not need such serialisation then use __set_current_state()
146 */
147 #define __set_current_state(state_value) \
148 do { current->state = (state_value); } while (0)
149 #define set_current_state(state_value) \
150 set_mb(current->state, (state_value))
151
152 /* Task command name length */
153 #define TASK_COMM_LEN 16
154
155 /*
156 * Scheduling policies
157 */
158 #define SCHED_NORMAL 0
159 #define SCHED_FIFO 1
160 #define SCHED_RR 2
161
162 struct sched_param {
163 int sched_priority;
164 };
165
166 #ifdef __KERNEL__
167
168 #include <linux/spinlock.h>
169
170 /*
171 * This serializes "schedule()" and also protects
172 * the run-queue from deletions/modifications (but
173 * _adding_ to the beginning of the run-queue has
174 * a separate lock).
175 */
176 extern rwlock_t tasklist_lock;
177 extern spinlock_t mmlist_lock;
178
179 typedef struct task_struct task_t;
180
181 extern void sched_init(void);
182 extern void sched_init_smp(void);
183 extern void init_idle(task_t *idle, int cpu);
184
185 extern cpumask_t nohz_cpu_mask;
186
187 extern void show_state(void);
188 extern void show_regs(struct pt_regs *);
189
190 /*
191 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
192 * task), SP is the stack pointer of the first frame that should be shown in the back
193 * trace (or NULL if the entire call-chain of the task should be shown).
194 */
195 extern void show_stack(struct task_struct *task, unsigned long *sp);
196
197 void io_schedule(void);
198 long io_schedule_timeout(long timeout);
199
200 extern void cpu_init (void);
201 extern void trap_init(void);
202 extern void update_process_times(int user);
203 extern void scheduler_tick(void);
204
205 #ifdef CONFIG_DETECT_SOFTLOCKUP
206 extern void softlockup_tick(struct pt_regs *regs);
207 extern void spawn_softlockup_task(void);
208 extern void touch_softlockup_watchdog(void);
209 #else
210 static inline void softlockup_tick(struct pt_regs *regs)
211 {
212 }
213 static inline void spawn_softlockup_task(void)
214 {
215 }
216 static inline void touch_softlockup_watchdog(void)
217 {
218 }
219 #endif
220
221
222 /* Attach to any functions which should be ignored in wchan output. */
223 #define __sched __attribute__((__section__(".sched.text")))
224 /* Is this address in the __sched functions? */
225 extern int in_sched_functions(unsigned long addr);
226
227 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
228 extern signed long FASTCALL(schedule_timeout(signed long timeout));
229 extern signed long schedule_timeout_interruptible(signed long timeout);
230 extern signed long schedule_timeout_uninterruptible(signed long timeout);
231 asmlinkage void schedule(void);
232
233 struct namespace;
234
235 /* Maximum number of active map areas.. This is a random (large) number */
236 #define DEFAULT_MAX_MAP_COUNT 65536
237
238 extern int sysctl_max_map_count;
239
240 #include <linux/aio.h>
241
242 extern unsigned long
243 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
244 unsigned long, unsigned long);
245 extern unsigned long
246 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
247 unsigned long len, unsigned long pgoff,
248 unsigned long flags);
249 extern void arch_unmap_area(struct mm_struct *, unsigned long);
250 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
251
252 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
253 /*
254 * The mm counters are not protected by its page_table_lock,
255 * so must be incremented atomically.
256 */
257 #ifdef ATOMIC64_INIT
258 #define set_mm_counter(mm, member, value) atomic64_set(&(mm)->_##member, value)
259 #define get_mm_counter(mm, member) ((unsigned long)atomic64_read(&(mm)->_##member))
260 #define add_mm_counter(mm, member, value) atomic64_add(value, &(mm)->_##member)
261 #define inc_mm_counter(mm, member) atomic64_inc(&(mm)->_##member)
262 #define dec_mm_counter(mm, member) atomic64_dec(&(mm)->_##member)
263 typedef atomic64_t mm_counter_t;
264 #else /* !ATOMIC64_INIT */
265 /*
266 * The counters wrap back to 0 at 2^32 * PAGE_SIZE,
267 * that is, at 16TB if using 4kB page size.
268 */
269 #define set_mm_counter(mm, member, value) atomic_set(&(mm)->_##member, value)
270 #define get_mm_counter(mm, member) ((unsigned long)atomic_read(&(mm)->_##member))
271 #define add_mm_counter(mm, member, value) atomic_add(value, &(mm)->_##member)
272 #define inc_mm_counter(mm, member) atomic_inc(&(mm)->_##member)
273 #define dec_mm_counter(mm, member) atomic_dec(&(mm)->_##member)
274 typedef atomic_t mm_counter_t;
275 #endif /* !ATOMIC64_INIT */
276
277 #else /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
278 /*
279 * The mm counters are protected by its page_table_lock,
280 * so can be incremented directly.
281 */
282 #define set_mm_counter(mm, member, value) (mm)->_##member = (value)
283 #define get_mm_counter(mm, member) ((mm)->_##member)
284 #define add_mm_counter(mm, member, value) (mm)->_##member += (value)
285 #define inc_mm_counter(mm, member) (mm)->_##member++
286 #define dec_mm_counter(mm, member) (mm)->_##member--
287 typedef unsigned long mm_counter_t;
288
289 #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
290
291 #define get_mm_rss(mm) \
292 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
293 #define update_hiwater_rss(mm) do { \
294 unsigned long _rss = get_mm_rss(mm); \
295 if ((mm)->hiwater_rss < _rss) \
296 (mm)->hiwater_rss = _rss; \
297 } while (0)
298 #define update_hiwater_vm(mm) do { \
299 if ((mm)->hiwater_vm < (mm)->total_vm) \
300 (mm)->hiwater_vm = (mm)->total_vm; \
301 } while (0)
302
303 struct mm_struct {
304 struct vm_area_struct * mmap; /* list of VMAs */
305 struct rb_root mm_rb;
306 struct vm_area_struct * mmap_cache; /* last find_vma result */
307 unsigned long (*get_unmapped_area) (struct file *filp,
308 unsigned long addr, unsigned long len,
309 unsigned long pgoff, unsigned long flags);
310 void (*unmap_area) (struct mm_struct *mm, unsigned long addr);
311 unsigned long mmap_base; /* base of mmap area */
312 unsigned long cached_hole_size; /* if non-zero, the largest hole below free_area_cache */
313 unsigned long free_area_cache; /* first hole of size cached_hole_size or larger */
314 pgd_t * pgd;
315 atomic_t mm_users; /* How many users with user space? */
316 atomic_t mm_count; /* How many references to "struct mm_struct" (users count as 1) */
317 int map_count; /* number of VMAs */
318 struct rw_semaphore mmap_sem;
319 spinlock_t page_table_lock; /* Protects page tables and some counters */
320
321 struct list_head mmlist; /* List of maybe swapped mm's. These are globally strung
322 * together off init_mm.mmlist, and are protected
323 * by mmlist_lock
324 */
325
326 /* Special counters, in some configurations protected by the
327 * page_table_lock, in other configurations by being atomic.
328 */
329 mm_counter_t _file_rss;
330 mm_counter_t _anon_rss;
331
332 unsigned long hiwater_rss; /* High-watermark of RSS usage */
333 unsigned long hiwater_vm; /* High-water virtual memory usage */
334
335 unsigned long total_vm, locked_vm, shared_vm, exec_vm;
336 unsigned long stack_vm, reserved_vm, def_flags, nr_ptes;
337 unsigned long start_code, end_code, start_data, end_data;
338 unsigned long start_brk, brk, start_stack;
339 unsigned long arg_start, arg_end, env_start, env_end;
340
341 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
342
343 unsigned dumpable:2;
344 cpumask_t cpu_vm_mask;
345
346 /* Architecture-specific MM context */
347 mm_context_t context;
348
349 /* Token based thrashing protection. */
350 unsigned long swap_token_time;
351 char recent_pagein;
352
353 /* coredumping support */
354 int core_waiters;
355 struct completion *core_startup_done, core_done;
356
357 /* aio bits */
358 rwlock_t ioctx_list_lock;
359 struct kioctx *ioctx_list;
360 struct kioctx default_kioctx;
361 };
362
363 struct sighand_struct {
364 atomic_t count;
365 struct k_sigaction action[_NSIG];
366 spinlock_t siglock;
367 };
368
369 /*
370 * NOTE! "signal_struct" does not have it's own
371 * locking, because a shared signal_struct always
372 * implies a shared sighand_struct, so locking
373 * sighand_struct is always a proper superset of
374 * the locking of signal_struct.
375 */
376 struct signal_struct {
377 atomic_t count;
378 atomic_t live;
379
380 wait_queue_head_t wait_chldexit; /* for wait4() */
381
382 /* current thread group signal load-balancing target: */
383 task_t *curr_target;
384
385 /* shared signal handling: */
386 struct sigpending shared_pending;
387
388 /* thread group exit support */
389 int group_exit_code;
390 /* overloaded:
391 * - notify group_exit_task when ->count is equal to notify_count
392 * - everyone except group_exit_task is stopped during signal delivery
393 * of fatal signals, group_exit_task processes the signal.
394 */
395 struct task_struct *group_exit_task;
396 int notify_count;
397
398 /* thread group stop support, overloads group_exit_code too */
399 int group_stop_count;
400 unsigned int flags; /* see SIGNAL_* flags below */
401
402 /* POSIX.1b Interval Timers */
403 struct list_head posix_timers;
404
405 /* ITIMER_REAL timer for the process */
406 struct timer_list real_timer;
407 unsigned long it_real_value, it_real_incr;
408
409 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
410 cputime_t it_prof_expires, it_virt_expires;
411 cputime_t it_prof_incr, it_virt_incr;
412
413 /* job control IDs */
414 pid_t pgrp;
415 pid_t tty_old_pgrp;
416 pid_t session;
417 /* boolean value for session group leader */
418 int leader;
419
420 struct tty_struct *tty; /* NULL if no tty */
421
422 /*
423 * Cumulative resource counters for dead threads in the group,
424 * and for reaped dead child processes forked by this group.
425 * Live threads maintain their own counters and add to these
426 * in __exit_signal, except for the group leader.
427 */
428 cputime_t utime, stime, cutime, cstime;
429 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
430 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
431
432 /*
433 * Cumulative ns of scheduled CPU time for dead threads in the
434 * group, not including a zombie group leader. (This only differs
435 * from jiffies_to_ns(utime + stime) if sched_clock uses something
436 * other than jiffies.)
437 */
438 unsigned long long sched_time;
439
440 /*
441 * We don't bother to synchronize most readers of this at all,
442 * because there is no reader checking a limit that actually needs
443 * to get both rlim_cur and rlim_max atomically, and either one
444 * alone is a single word that can safely be read normally.
445 * getrlimit/setrlimit use task_lock(current->group_leader) to
446 * protect this instead of the siglock, because they really
447 * have no need to disable irqs.
448 */
449 struct rlimit rlim[RLIM_NLIMITS];
450
451 struct list_head cpu_timers[3];
452
453 /* keep the process-shared keyrings here so that they do the right
454 * thing in threads created with CLONE_THREAD */
455 #ifdef CONFIG_KEYS
456 struct key *session_keyring; /* keyring inherited over fork */
457 struct key *process_keyring; /* keyring private to this process */
458 #endif
459 };
460
461 /* Context switch must be unlocked if interrupts are to be enabled */
462 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
463 # define __ARCH_WANT_UNLOCKED_CTXSW
464 #endif
465
466 /*
467 * Bits in flags field of signal_struct.
468 */
469 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
470 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
471 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
472 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
473
474
475 /*
476 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
477 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL tasks are
478 * in the range MAX_RT_PRIO..MAX_PRIO-1. Priority values
479 * are inverted: lower p->prio value means higher priority.
480 *
481 * The MAX_USER_RT_PRIO value allows the actual maximum
482 * RT priority to be separate from the value exported to
483 * user-space. This allows kernel threads to set their
484 * priority to a value higher than any user task. Note:
485 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
486 */
487
488 #define MAX_USER_RT_PRIO 100
489 #define MAX_RT_PRIO MAX_USER_RT_PRIO
490
491 #define MAX_PRIO (MAX_RT_PRIO + 40)
492
493 #define rt_task(p) (unlikely((p)->prio < MAX_RT_PRIO))
494
495 /*
496 * Some day this will be a full-fledged user tracking system..
497 */
498 struct user_struct {
499 atomic_t __count; /* reference count */
500 atomic_t processes; /* How many processes does this user have? */
501 atomic_t files; /* How many open files does this user have? */
502 atomic_t sigpending; /* How many pending signals does this user have? */
503 #ifdef CONFIG_INOTIFY
504 atomic_t inotify_watches; /* How many inotify watches does this user have? */
505 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
506 #endif
507 /* protected by mq_lock */
508 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
509 unsigned long locked_shm; /* How many pages of mlocked shm ? */
510
511 #ifdef CONFIG_KEYS
512 struct key *uid_keyring; /* UID specific keyring */
513 struct key *session_keyring; /* UID's default session keyring */
514 #endif
515
516 /* Hash table maintenance information */
517 struct list_head uidhash_list;
518 uid_t uid;
519 };
520
521 extern struct user_struct *find_user(uid_t);
522
523 extern struct user_struct root_user;
524 #define INIT_USER (&root_user)
525
526 typedef struct prio_array prio_array_t;
527 struct backing_dev_info;
528 struct reclaim_state;
529
530 #ifdef CONFIG_SCHEDSTATS
531 struct sched_info {
532 /* cumulative counters */
533 unsigned long cpu_time, /* time spent on the cpu */
534 run_delay, /* time spent waiting on a runqueue */
535 pcnt; /* # of timeslices run on this cpu */
536
537 /* timestamps */
538 unsigned long last_arrival, /* when we last ran on a cpu */
539 last_queued; /* when we were last queued to run */
540 };
541
542 extern struct file_operations proc_schedstat_operations;
543 #endif
544
545 enum idle_type
546 {
547 SCHED_IDLE,
548 NOT_IDLE,
549 NEWLY_IDLE,
550 MAX_IDLE_TYPES
551 };
552
553 /*
554 * sched-domains (multiprocessor balancing) declarations:
555 */
556 #ifdef CONFIG_SMP
557 #define SCHED_LOAD_SCALE 128UL /* increase resolution of load */
558
559 #define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */
560 #define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */
561 #define SD_BALANCE_EXEC 4 /* Balance on exec */
562 #define SD_BALANCE_FORK 8 /* Balance on fork, clone */
563 #define SD_WAKE_IDLE 16 /* Wake to idle CPU on task wakeup */
564 #define SD_WAKE_AFFINE 32 /* Wake task to waking CPU */
565 #define SD_WAKE_BALANCE 64 /* Perform balancing at task wakeup */
566 #define SD_SHARE_CPUPOWER 128 /* Domain members share cpu power */
567
568 struct sched_group {
569 struct sched_group *next; /* Must be a circular list */
570 cpumask_t cpumask;
571
572 /*
573 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
574 * single CPU. This is read only (except for setup, hotplug CPU).
575 */
576 unsigned long cpu_power;
577 };
578
579 struct sched_domain {
580 /* These fields must be setup */
581 struct sched_domain *parent; /* top domain must be null terminated */
582 struct sched_group *groups; /* the balancing groups of the domain */
583 cpumask_t span; /* span of all CPUs in this domain */
584 unsigned long min_interval; /* Minimum balance interval ms */
585 unsigned long max_interval; /* Maximum balance interval ms */
586 unsigned int busy_factor; /* less balancing by factor if busy */
587 unsigned int imbalance_pct; /* No balance until over watermark */
588 unsigned long long cache_hot_time; /* Task considered cache hot (ns) */
589 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
590 unsigned int per_cpu_gain; /* CPU % gained by adding domain cpus */
591 unsigned int busy_idx;
592 unsigned int idle_idx;
593 unsigned int newidle_idx;
594 unsigned int wake_idx;
595 unsigned int forkexec_idx;
596 int flags; /* See SD_* */
597
598 /* Runtime fields. */
599 unsigned long last_balance; /* init to jiffies. units in jiffies */
600 unsigned int balance_interval; /* initialise to 1. units in ms. */
601 unsigned int nr_balance_failed; /* initialise to 0 */
602
603 #ifdef CONFIG_SCHEDSTATS
604 /* load_balance() stats */
605 unsigned long lb_cnt[MAX_IDLE_TYPES];
606 unsigned long lb_failed[MAX_IDLE_TYPES];
607 unsigned long lb_balanced[MAX_IDLE_TYPES];
608 unsigned long lb_imbalance[MAX_IDLE_TYPES];
609 unsigned long lb_gained[MAX_IDLE_TYPES];
610 unsigned long lb_hot_gained[MAX_IDLE_TYPES];
611 unsigned long lb_nobusyg[MAX_IDLE_TYPES];
612 unsigned long lb_nobusyq[MAX_IDLE_TYPES];
613
614 /* Active load balancing */
615 unsigned long alb_cnt;
616 unsigned long alb_failed;
617 unsigned long alb_pushed;
618
619 /* SD_BALANCE_EXEC stats */
620 unsigned long sbe_cnt;
621 unsigned long sbe_balanced;
622 unsigned long sbe_pushed;
623
624 /* SD_BALANCE_FORK stats */
625 unsigned long sbf_cnt;
626 unsigned long sbf_balanced;
627 unsigned long sbf_pushed;
628
629 /* try_to_wake_up() stats */
630 unsigned long ttwu_wake_remote;
631 unsigned long ttwu_move_affine;
632 unsigned long ttwu_move_balance;
633 #endif
634 };
635
636 extern void partition_sched_domains(cpumask_t *partition1,
637 cpumask_t *partition2);
638 #endif /* CONFIG_SMP */
639
640
641 struct io_context; /* See blkdev.h */
642 void exit_io_context(void);
643 struct cpuset;
644
645 #define NGROUPS_SMALL 32
646 #define NGROUPS_PER_BLOCK ((int)(PAGE_SIZE / sizeof(gid_t)))
647 struct group_info {
648 int ngroups;
649 atomic_t usage;
650 gid_t small_block[NGROUPS_SMALL];
651 int nblocks;
652 gid_t *blocks[0];
653 };
654
655 /*
656 * get_group_info() must be called with the owning task locked (via task_lock())
657 * when task != current. The reason being that the vast majority of callers are
658 * looking at current->group_info, which can not be changed except by the
659 * current task. Changing current->group_info requires the task lock, too.
660 */
661 #define get_group_info(group_info) do { \
662 atomic_inc(&(group_info)->usage); \
663 } while (0)
664
665 #define put_group_info(group_info) do { \
666 if (atomic_dec_and_test(&(group_info)->usage)) \
667 groups_free(group_info); \
668 } while (0)
669
670 extern struct group_info *groups_alloc(int gidsetsize);
671 extern void groups_free(struct group_info *group_info);
672 extern int set_current_groups(struct group_info *group_info);
673 extern int groups_search(struct group_info *group_info, gid_t grp);
674 /* access the groups "array" with this macro */
675 #define GROUP_AT(gi, i) \
676 ((gi)->blocks[(i)/NGROUPS_PER_BLOCK][(i)%NGROUPS_PER_BLOCK])
677
678 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
679 extern void prefetch_stack(struct task_struct*);
680 #else
681 static inline void prefetch_stack(struct task_struct *t) { }
682 #endif
683
684 struct audit_context; /* See audit.c */
685 struct mempolicy;
686
687 struct task_struct {
688 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
689 struct thread_info *thread_info;
690 atomic_t usage;
691 unsigned long flags; /* per process flags, defined below */
692 unsigned long ptrace;
693
694 int lock_depth; /* BKL lock depth */
695
696 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
697 int oncpu;
698 #endif
699 int prio, static_prio;
700 struct list_head run_list;
701 prio_array_t *array;
702
703 unsigned short ioprio;
704
705 unsigned long sleep_avg;
706 unsigned long long timestamp, last_ran;
707 unsigned long long sched_time; /* sched_clock time spent running */
708 int activated;
709
710 unsigned long policy;
711 cpumask_t cpus_allowed;
712 unsigned int time_slice, first_time_slice;
713
714 #ifdef CONFIG_SCHEDSTATS
715 struct sched_info sched_info;
716 #endif
717
718 struct list_head tasks;
719 /*
720 * ptrace_list/ptrace_children forms the list of my children
721 * that were stolen by a ptracer.
722 */
723 struct list_head ptrace_children;
724 struct list_head ptrace_list;
725
726 struct mm_struct *mm, *active_mm;
727
728 /* task state */
729 struct linux_binfmt *binfmt;
730 long exit_state;
731 int exit_code, exit_signal;
732 int pdeath_signal; /* The signal sent when the parent dies */
733 /* ??? */
734 unsigned long personality;
735 unsigned did_exec:1;
736 pid_t pid;
737 pid_t tgid;
738 /*
739 * pointers to (original) parent process, youngest child, younger sibling,
740 * older sibling, respectively. (p->father can be replaced with
741 * p->parent->pid)
742 */
743 struct task_struct *real_parent; /* real parent process (when being debugged) */
744 struct task_struct *parent; /* parent process */
745 /*
746 * children/sibling forms the list of my children plus the
747 * tasks I'm ptracing.
748 */
749 struct list_head children; /* list of my children */
750 struct list_head sibling; /* linkage in my parent's children list */
751 struct task_struct *group_leader; /* threadgroup leader */
752
753 /* PID/PID hash table linkage. */
754 struct pid pids[PIDTYPE_MAX];
755
756 struct completion *vfork_done; /* for vfork() */
757 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
758 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
759
760 unsigned long rt_priority;
761 cputime_t utime, stime;
762 unsigned long nvcsw, nivcsw; /* context switch counts */
763 struct timespec start_time;
764 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
765 unsigned long min_flt, maj_flt;
766
767 cputime_t it_prof_expires, it_virt_expires;
768 unsigned long long it_sched_expires;
769 struct list_head cpu_timers[3];
770
771 /* process credentials */
772 uid_t uid,euid,suid,fsuid;
773 gid_t gid,egid,sgid,fsgid;
774 struct group_info *group_info;
775 kernel_cap_t cap_effective, cap_inheritable, cap_permitted;
776 unsigned keep_capabilities:1;
777 struct user_struct *user;
778 #ifdef CONFIG_KEYS
779 struct key *thread_keyring; /* keyring private to this thread */
780 unsigned char jit_keyring; /* default keyring to attach requested keys to */
781 #endif
782 int oomkilladj; /* OOM kill score adjustment (bit shift). */
783 char comm[TASK_COMM_LEN]; /* executable name excluding path
784 - access with [gs]et_task_comm (which lock
785 it with task_lock())
786 - initialized normally by flush_old_exec */
787 /* file system info */
788 int link_count, total_link_count;
789 /* ipc stuff */
790 struct sysv_sem sysvsem;
791 /* CPU-specific state of this task */
792 struct thread_struct thread;
793 /* filesystem information */
794 struct fs_struct *fs;
795 /* open file information */
796 struct files_struct *files;
797 /* namespace */
798 struct namespace *namespace;
799 /* signal handlers */
800 struct signal_struct *signal;
801 struct sighand_struct *sighand;
802
803 sigset_t blocked, real_blocked;
804 struct sigpending pending;
805
806 unsigned long sas_ss_sp;
807 size_t sas_ss_size;
808 int (*notifier)(void *priv);
809 void *notifier_data;
810 sigset_t *notifier_mask;
811
812 void *security;
813 struct audit_context *audit_context;
814 seccomp_t seccomp;
815
816 /* Thread group tracking */
817 u32 parent_exec_id;
818 u32 self_exec_id;
819 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings */
820 spinlock_t alloc_lock;
821 /* Protection of proc_dentry: nesting proc_lock, dcache_lock, write_lock_irq(&tasklist_lock); */
822 spinlock_t proc_lock;
823
824 /* journalling filesystem info */
825 void *journal_info;
826
827 /* VM state */
828 struct reclaim_state *reclaim_state;
829
830 struct dentry *proc_dentry;
831 struct backing_dev_info *backing_dev_info;
832
833 struct io_context *io_context;
834
835 unsigned long ptrace_message;
836 siginfo_t *last_siginfo; /* For ptrace use. */
837 /*
838 * current io wait handle: wait queue entry to use for io waits
839 * If this thread is processing aio, this points at the waitqueue
840 * inside the currently handled kiocb. It may be NULL (i.e. default
841 * to a stack based synchronous wait) if its doing sync IO.
842 */
843 wait_queue_t *io_wait;
844 /* i/o counters(bytes read/written, #syscalls */
845 u64 rchar, wchar, syscr, syscw;
846 #if defined(CONFIG_BSD_PROCESS_ACCT)
847 u64 acct_rss_mem1; /* accumulated rss usage */
848 u64 acct_vm_mem1; /* accumulated virtual memory usage */
849 clock_t acct_stimexpd; /* clock_t-converted stime since last update */
850 #endif
851 #ifdef CONFIG_NUMA
852 struct mempolicy *mempolicy;
853 short il_next;
854 #endif
855 #ifdef CONFIG_CPUSETS
856 struct cpuset *cpuset;
857 nodemask_t mems_allowed;
858 int cpuset_mems_generation;
859 #endif
860 atomic_t fs_excl; /* holding fs exclusive resources */
861 };
862
863 static inline pid_t process_group(struct task_struct *tsk)
864 {
865 return tsk->signal->pgrp;
866 }
867
868 /**
869 * pid_alive - check that a task structure is not stale
870 * @p: Task structure to be checked.
871 *
872 * Test if a process is not yet dead (at most zombie state)
873 * If pid_alive fails, then pointers within the task structure
874 * can be stale and must not be dereferenced.
875 */
876 static inline int pid_alive(struct task_struct *p)
877 {
878 return p->pids[PIDTYPE_PID].nr != 0;
879 }
880
881 extern void free_task(struct task_struct *tsk);
882 extern void __put_task_struct(struct task_struct *tsk);
883 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
884 #define put_task_struct(tsk) \
885 do { if (atomic_dec_and_test(&(tsk)->usage)) __put_task_struct(tsk); } while(0)
886
887 /*
888 * Per process flags
889 */
890 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */
891 /* Not implemented yet, only for 486*/
892 #define PF_STARTING 0x00000002 /* being created */
893 #define PF_EXITING 0x00000004 /* getting shut down */
894 #define PF_DEAD 0x00000008 /* Dead */
895 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
896 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
897 #define PF_DUMPCORE 0x00000200 /* dumped core */
898 #define PF_SIGNALED 0x00000400 /* killed by a signal */
899 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
900 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */
901 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
902 #define PF_FREEZE 0x00004000 /* this task is being frozen for suspend now */
903 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
904 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
905 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
906 #define PF_KSWAPD 0x00040000 /* I am kswapd */
907 #define PF_SWAPOFF 0x00080000 /* I am in swapoff */
908 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
909 #define PF_SYNCWRITE 0x00200000 /* I am doing a sync write */
910 #define PF_BORROWED_MM 0x00400000 /* I am a kthread doing use_mm */
911 #define PF_RANDOMIZE 0x00800000 /* randomize virtual address space */
912
913 /*
914 * Only the _current_ task can read/write to tsk->flags, but other
915 * tasks can access tsk->flags in readonly mode for example
916 * with tsk_used_math (like during threaded core dumping).
917 * There is however an exception to this rule during ptrace
918 * or during fork: the ptracer task is allowed to write to the
919 * child->flags of its traced child (same goes for fork, the parent
920 * can write to the child->flags), because we're guaranteed the
921 * child is not running and in turn not changing child->flags
922 * at the same time the parent does it.
923 */
924 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
925 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
926 #define clear_used_math() clear_stopped_child_used_math(current)
927 #define set_used_math() set_stopped_child_used_math(current)
928 #define conditional_stopped_child_used_math(condition, child) \
929 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
930 #define conditional_used_math(condition) \
931 conditional_stopped_child_used_math(condition, current)
932 #define copy_to_stopped_child_used_math(child) \
933 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
934 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
935 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
936 #define used_math() tsk_used_math(current)
937
938 #ifdef CONFIG_SMP
939 extern int set_cpus_allowed(task_t *p, cpumask_t new_mask);
940 #else
941 static inline int set_cpus_allowed(task_t *p, cpumask_t new_mask)
942 {
943 if (!cpu_isset(0, new_mask))
944 return -EINVAL;
945 return 0;
946 }
947 #endif
948
949 extern unsigned long long sched_clock(void);
950 extern unsigned long long current_sched_time(const task_t *current_task);
951
952 /* sched_exec is called by processes performing an exec */
953 #ifdef CONFIG_SMP
954 extern void sched_exec(void);
955 #else
956 #define sched_exec() {}
957 #endif
958
959 #ifdef CONFIG_HOTPLUG_CPU
960 extern void idle_task_exit(void);
961 #else
962 static inline void idle_task_exit(void) {}
963 #endif
964
965 extern void sched_idle_next(void);
966 extern void set_user_nice(task_t *p, long nice);
967 extern int task_prio(const task_t *p);
968 extern int task_nice(const task_t *p);
969 extern int can_nice(const task_t *p, const int nice);
970 extern int task_curr(const task_t *p);
971 extern int idle_cpu(int cpu);
972 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
973 extern task_t *idle_task(int cpu);
974 extern task_t *curr_task(int cpu);
975 extern void set_curr_task(int cpu, task_t *p);
976
977 void yield(void);
978
979 /*
980 * The default (Linux) execution domain.
981 */
982 extern struct exec_domain default_exec_domain;
983
984 union thread_union {
985 struct thread_info thread_info;
986 unsigned long stack[THREAD_SIZE/sizeof(long)];
987 };
988
989 #ifndef __HAVE_ARCH_KSTACK_END
990 static inline int kstack_end(void *addr)
991 {
992 /* Reliable end of stack detection:
993 * Some APM bios versions misalign the stack
994 */
995 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
996 }
997 #endif
998
999 extern union thread_union init_thread_union;
1000 extern struct task_struct init_task;
1001
1002 extern struct mm_struct init_mm;
1003
1004 #define find_task_by_pid(nr) find_task_by_pid_type(PIDTYPE_PID, nr)
1005 extern struct task_struct *find_task_by_pid_type(int type, int pid);
1006 extern void set_special_pids(pid_t session, pid_t pgrp);
1007 extern void __set_special_pids(pid_t session, pid_t pgrp);
1008
1009 /* per-UID process charging. */
1010 extern struct user_struct * alloc_uid(uid_t);
1011 static inline struct user_struct *get_uid(struct user_struct *u)
1012 {
1013 atomic_inc(&u->__count);
1014 return u;
1015 }
1016 extern void free_uid(struct user_struct *);
1017 extern void switch_uid(struct user_struct *);
1018
1019 #include <asm/current.h>
1020
1021 extern void do_timer(struct pt_regs *);
1022
1023 extern int FASTCALL(wake_up_state(struct task_struct * tsk, unsigned int state));
1024 extern int FASTCALL(wake_up_process(struct task_struct * tsk));
1025 extern void FASTCALL(wake_up_new_task(struct task_struct * tsk,
1026 unsigned long clone_flags));
1027 #ifdef CONFIG_SMP
1028 extern void kick_process(struct task_struct *tsk);
1029 #else
1030 static inline void kick_process(struct task_struct *tsk) { }
1031 #endif
1032 extern void FASTCALL(sched_fork(task_t * p, int clone_flags));
1033 extern void FASTCALL(sched_exit(task_t * p));
1034
1035 extern int in_group_p(gid_t);
1036 extern int in_egroup_p(gid_t);
1037
1038 extern void proc_caches_init(void);
1039 extern void flush_signals(struct task_struct *);
1040 extern void flush_signal_handlers(struct task_struct *, int force_default);
1041 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1042
1043 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1044 {
1045 unsigned long flags;
1046 int ret;
1047
1048 spin_lock_irqsave(&tsk->sighand->siglock, flags);
1049 ret = dequeue_signal(tsk, mask, info);
1050 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1051
1052 return ret;
1053 }
1054
1055 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
1056 sigset_t *mask);
1057 extern void unblock_all_signals(void);
1058 extern void release_task(struct task_struct * p);
1059 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1060 extern int send_group_sig_info(int, struct siginfo *, struct task_struct *);
1061 extern int force_sigsegv(int, struct task_struct *);
1062 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
1063 extern int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp);
1064 extern int kill_pg_info(int, struct siginfo *, pid_t);
1065 extern int kill_proc_info(int, struct siginfo *, pid_t);
1066 extern int kill_proc_info_as_uid(int, struct siginfo *, pid_t, uid_t, uid_t);
1067 extern void do_notify_parent(struct task_struct *, int);
1068 extern void force_sig(int, struct task_struct *);
1069 extern void force_sig_specific(int, struct task_struct *);
1070 extern int send_sig(int, struct task_struct *, int);
1071 extern void zap_other_threads(struct task_struct *p);
1072 extern int kill_pg(pid_t, int, int);
1073 extern int kill_sl(pid_t, int, int);
1074 extern int kill_proc(pid_t, int, int);
1075 extern struct sigqueue *sigqueue_alloc(void);
1076 extern void sigqueue_free(struct sigqueue *);
1077 extern int send_sigqueue(int, struct sigqueue *, struct task_struct *);
1078 extern int send_group_sigqueue(int, struct sigqueue *, struct task_struct *);
1079 extern int do_sigaction(int, const struct k_sigaction *, struct k_sigaction *);
1080 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
1081
1082 /* These can be the second arg to send_sig_info/send_group_sig_info. */
1083 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
1084 #define SEND_SIG_PRIV ((struct siginfo *) 1)
1085 #define SEND_SIG_FORCED ((struct siginfo *) 2)
1086
1087 static inline int is_si_special(const struct siginfo *info)
1088 {
1089 return info <= SEND_SIG_FORCED;
1090 }
1091
1092 /* True if we are on the alternate signal stack. */
1093
1094 static inline int on_sig_stack(unsigned long sp)
1095 {
1096 return (sp - current->sas_ss_sp < current->sas_ss_size);
1097 }
1098
1099 static inline int sas_ss_flags(unsigned long sp)
1100 {
1101 return (current->sas_ss_size == 0 ? SS_DISABLE
1102 : on_sig_stack(sp) ? SS_ONSTACK : 0);
1103 }
1104
1105
1106 #ifdef CONFIG_SECURITY
1107 /* code is in security.c */
1108 extern int capable(int cap);
1109 #else
1110 static inline int capable(int cap)
1111 {
1112 if (cap_raised(current->cap_effective, cap)) {
1113 current->flags |= PF_SUPERPRIV;
1114 return 1;
1115 }
1116 return 0;
1117 }
1118 #endif
1119
1120 /*
1121 * Routines for handling mm_structs
1122 */
1123 extern struct mm_struct * mm_alloc(void);
1124
1125 /* mmdrop drops the mm and the page tables */
1126 extern void FASTCALL(__mmdrop(struct mm_struct *));
1127 static inline void mmdrop(struct mm_struct * mm)
1128 {
1129 if (atomic_dec_and_test(&mm->mm_count))
1130 __mmdrop(mm);
1131 }
1132
1133 /* mmput gets rid of the mappings and all user-space */
1134 extern void mmput(struct mm_struct *);
1135 /* Grab a reference to a task's mm, if it is not already going away */
1136 extern struct mm_struct *get_task_mm(struct task_struct *task);
1137 /* Remove the current tasks stale references to the old mm_struct */
1138 extern void mm_release(struct task_struct *, struct mm_struct *);
1139
1140 extern int copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *);
1141 extern void flush_thread(void);
1142 extern void exit_thread(void);
1143
1144 extern void exit_files(struct task_struct *);
1145 extern void exit_signal(struct task_struct *);
1146 extern void __exit_signal(struct task_struct *);
1147 extern void exit_sighand(struct task_struct *);
1148 extern void __exit_sighand(struct task_struct *);
1149 extern void exit_itimers(struct signal_struct *);
1150
1151 extern NORET_TYPE void do_group_exit(int);
1152
1153 extern void daemonize(const char *, ...);
1154 extern int allow_signal(int);
1155 extern int disallow_signal(int);
1156 extern task_t *child_reaper;
1157
1158 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
1159 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
1160 task_t *fork_idle(int);
1161
1162 extern void set_task_comm(struct task_struct *tsk, char *from);
1163 extern void get_task_comm(char *to, struct task_struct *tsk);
1164
1165 #ifdef CONFIG_SMP
1166 extern void wait_task_inactive(task_t * p);
1167 #else
1168 #define wait_task_inactive(p) do { } while (0)
1169 #endif
1170
1171 #define remove_parent(p) list_del_init(&(p)->sibling)
1172 #define add_parent(p, parent) list_add_tail(&(p)->sibling,&(parent)->children)
1173
1174 #define REMOVE_LINKS(p) do { \
1175 if (thread_group_leader(p)) \
1176 list_del_init(&(p)->tasks); \
1177 remove_parent(p); \
1178 } while (0)
1179
1180 #define SET_LINKS(p) do { \
1181 if (thread_group_leader(p)) \
1182 list_add_tail(&(p)->tasks,&init_task.tasks); \
1183 add_parent(p, (p)->parent); \
1184 } while (0)
1185
1186 #define next_task(p) list_entry((p)->tasks.next, struct task_struct, tasks)
1187 #define prev_task(p) list_entry((p)->tasks.prev, struct task_struct, tasks)
1188
1189 #define for_each_process(p) \
1190 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
1191
1192 /*
1193 * Careful: do_each_thread/while_each_thread is a double loop so
1194 * 'break' will not work as expected - use goto instead.
1195 */
1196 #define do_each_thread(g, t) \
1197 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
1198
1199 #define while_each_thread(g, t) \
1200 while ((t = next_thread(t)) != g)
1201
1202 extern task_t * FASTCALL(next_thread(const task_t *p));
1203
1204 #define thread_group_leader(p) (p->pid == p->tgid)
1205
1206 static inline int thread_group_empty(task_t *p)
1207 {
1208 return list_empty(&p->pids[PIDTYPE_TGID].pid_list);
1209 }
1210
1211 #define delay_group_leader(p) \
1212 (thread_group_leader(p) && !thread_group_empty(p))
1213
1214 extern void unhash_process(struct task_struct *p);
1215
1216 /*
1217 * Protects ->fs, ->files, ->mm, ->ptrace, ->group_info, ->comm, keyring
1218 * subscriptions and synchronises with wait4(). Also used in procfs. Also
1219 * pins the final release of task.io_context. Also protects ->cpuset.
1220 *
1221 * Nests both inside and outside of read_lock(&tasklist_lock).
1222 * It must not be nested with write_lock_irq(&tasklist_lock),
1223 * neither inside nor outside.
1224 */
1225 static inline void task_lock(struct task_struct *p)
1226 {
1227 spin_lock(&p->alloc_lock);
1228 }
1229
1230 static inline void task_unlock(struct task_struct *p)
1231 {
1232 spin_unlock(&p->alloc_lock);
1233 }
1234
1235 /* set thread flags in other task's structures
1236 * - see asm/thread_info.h for TIF_xxxx flags available
1237 */
1238 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1239 {
1240 set_ti_thread_flag(tsk->thread_info,flag);
1241 }
1242
1243 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1244 {
1245 clear_ti_thread_flag(tsk->thread_info,flag);
1246 }
1247
1248 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1249 {
1250 return test_and_set_ti_thread_flag(tsk->thread_info,flag);
1251 }
1252
1253 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1254 {
1255 return test_and_clear_ti_thread_flag(tsk->thread_info,flag);
1256 }
1257
1258 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1259 {
1260 return test_ti_thread_flag(tsk->thread_info,flag);
1261 }
1262
1263 static inline void set_tsk_need_resched(struct task_struct *tsk)
1264 {
1265 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1266 }
1267
1268 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1269 {
1270 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1271 }
1272
1273 static inline int signal_pending(struct task_struct *p)
1274 {
1275 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
1276 }
1277
1278 static inline int need_resched(void)
1279 {
1280 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
1281 }
1282
1283 /*
1284 * cond_resched() and cond_resched_lock(): latency reduction via
1285 * explicit rescheduling in places that are safe. The return
1286 * value indicates whether a reschedule was done in fact.
1287 * cond_resched_lock() will drop the spinlock before scheduling,
1288 * cond_resched_softirq() will enable bhs before scheduling.
1289 */
1290 extern int cond_resched(void);
1291 extern int cond_resched_lock(spinlock_t * lock);
1292 extern int cond_resched_softirq(void);
1293
1294 /*
1295 * Does a critical section need to be broken due to another
1296 * task waiting?:
1297 */
1298 #if defined(CONFIG_PREEMPT) && defined(CONFIG_SMP)
1299 # define need_lockbreak(lock) ((lock)->break_lock)
1300 #else
1301 # define need_lockbreak(lock) 0
1302 #endif
1303
1304 /*
1305 * Does a critical section need to be broken due to another
1306 * task waiting or preemption being signalled:
1307 */
1308 static inline int lock_need_resched(spinlock_t *lock)
1309 {
1310 if (need_lockbreak(lock) || need_resched())
1311 return 1;
1312 return 0;
1313 }
1314
1315 /* Reevaluate whether the task has signals pending delivery.
1316 This is required every time the blocked sigset_t changes.
1317 callers must hold sighand->siglock. */
1318
1319 extern FASTCALL(void recalc_sigpending_tsk(struct task_struct *t));
1320 extern void recalc_sigpending(void);
1321
1322 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
1323
1324 /*
1325 * Wrappers for p->thread_info->cpu access. No-op on UP.
1326 */
1327 #ifdef CONFIG_SMP
1328
1329 static inline unsigned int task_cpu(const struct task_struct *p)
1330 {
1331 return p->thread_info->cpu;
1332 }
1333
1334 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1335 {
1336 p->thread_info->cpu = cpu;
1337 }
1338
1339 #else
1340
1341 static inline unsigned int task_cpu(const struct task_struct *p)
1342 {
1343 return 0;
1344 }
1345
1346 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1347 {
1348 }
1349
1350 #endif /* CONFIG_SMP */
1351
1352 #ifdef HAVE_ARCH_PICK_MMAP_LAYOUT
1353 extern void arch_pick_mmap_layout(struct mm_struct *mm);
1354 #else
1355 static inline void arch_pick_mmap_layout(struct mm_struct *mm)
1356 {
1357 mm->mmap_base = TASK_UNMAPPED_BASE;
1358 mm->get_unmapped_area = arch_get_unmapped_area;
1359 mm->unmap_area = arch_unmap_area;
1360 }
1361 #endif
1362
1363 extern long sched_setaffinity(pid_t pid, cpumask_t new_mask);
1364 extern long sched_getaffinity(pid_t pid, cpumask_t *mask);
1365
1366 #ifdef CONFIG_MAGIC_SYSRQ
1367
1368 extern void normalize_rt_tasks(void);
1369
1370 #endif
1371
1372 #ifdef CONFIG_PM
1373 /*
1374 * Check if a process has been frozen
1375 */
1376 static inline int frozen(struct task_struct *p)
1377 {
1378 return p->flags & PF_FROZEN;
1379 }
1380
1381 /*
1382 * Check if there is a request to freeze a process
1383 */
1384 static inline int freezing(struct task_struct *p)
1385 {
1386 return p->flags & PF_FREEZE;
1387 }
1388
1389 /*
1390 * Request that a process be frozen
1391 * FIXME: SMP problem. We may not modify other process' flags!
1392 */
1393 static inline void freeze(struct task_struct *p)
1394 {
1395 p->flags |= PF_FREEZE;
1396 }
1397
1398 /*
1399 * Wake up a frozen process
1400 */
1401 static inline int thaw_process(struct task_struct *p)
1402 {
1403 if (frozen(p)) {
1404 p->flags &= ~PF_FROZEN;
1405 wake_up_process(p);
1406 return 1;
1407 }
1408 return 0;
1409 }
1410
1411 /*
1412 * freezing is complete, mark process as frozen
1413 */
1414 static inline void frozen_process(struct task_struct *p)
1415 {
1416 p->flags = (p->flags & ~PF_FREEZE) | PF_FROZEN;
1417 }
1418
1419 extern void refrigerator(void);
1420 extern int freeze_processes(void);
1421 extern void thaw_processes(void);
1422
1423 static inline int try_to_freeze(void)
1424 {
1425 if (freezing(current)) {
1426 refrigerator();
1427 return 1;
1428 } else
1429 return 0;
1430 }
1431 #else
1432 static inline int frozen(struct task_struct *p) { return 0; }
1433 static inline int freezing(struct task_struct *p) { return 0; }
1434 static inline void freeze(struct task_struct *p) { BUG(); }
1435 static inline int thaw_process(struct task_struct *p) { return 1; }
1436 static inline void frozen_process(struct task_struct *p) { BUG(); }
1437
1438 static inline void refrigerator(void) {}
1439 static inline int freeze_processes(void) { BUG(); return 0; }
1440 static inline void thaw_processes(void) {}
1441
1442 static inline int try_to_freeze(void) { return 0; }
1443
1444 #endif /* CONFIG_PM */
1445 #endif /* __KERNEL__ */
1446
1447 #endif