Merge commit '8700c95adb03' into timers/nohz
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / perf_event.h
1 /*
2 * Performance events:
3 *
4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7 *
8 * Data type definitions, declarations, prototypes.
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16
17 #include <uapi/linux/perf_event.h>
18
19 /*
20 * Kernel-internal data types and definitions:
21 */
22
23 #ifdef CONFIG_PERF_EVENTS
24 # include <asm/perf_event.h>
25 # include <asm/local64.h>
26 #endif
27
28 struct perf_guest_info_callbacks {
29 int (*is_in_guest)(void);
30 int (*is_user_mode)(void);
31 unsigned long (*get_guest_ip)(void);
32 };
33
34 #ifdef CONFIG_HAVE_HW_BREAKPOINT
35 #include <asm/hw_breakpoint.h>
36 #endif
37
38 #include <linux/list.h>
39 #include <linux/mutex.h>
40 #include <linux/rculist.h>
41 #include <linux/rcupdate.h>
42 #include <linux/spinlock.h>
43 #include <linux/hrtimer.h>
44 #include <linux/fs.h>
45 #include <linux/pid_namespace.h>
46 #include <linux/workqueue.h>
47 #include <linux/ftrace.h>
48 #include <linux/cpu.h>
49 #include <linux/irq_work.h>
50 #include <linux/static_key.h>
51 #include <linux/atomic.h>
52 #include <linux/sysfs.h>
53 #include <linux/perf_regs.h>
54 #include <asm/local.h>
55
56 struct perf_callchain_entry {
57 __u64 nr;
58 __u64 ip[PERF_MAX_STACK_DEPTH];
59 };
60
61 struct perf_raw_record {
62 u32 size;
63 void *data;
64 };
65
66 /*
67 * single taken branch record layout:
68 *
69 * from: source instruction (may not always be a branch insn)
70 * to: branch target
71 * mispred: branch target was mispredicted
72 * predicted: branch target was predicted
73 *
74 * support for mispred, predicted is optional. In case it
75 * is not supported mispred = predicted = 0.
76 */
77 struct perf_branch_entry {
78 __u64 from;
79 __u64 to;
80 __u64 mispred:1, /* target mispredicted */
81 predicted:1,/* target predicted */
82 reserved:62;
83 };
84
85 /*
86 * branch stack layout:
87 * nr: number of taken branches stored in entries[]
88 *
89 * Note that nr can vary from sample to sample
90 * branches (to, from) are stored from most recent
91 * to least recent, i.e., entries[0] contains the most
92 * recent branch.
93 */
94 struct perf_branch_stack {
95 __u64 nr;
96 struct perf_branch_entry entries[0];
97 };
98
99 struct perf_regs_user {
100 __u64 abi;
101 struct pt_regs *regs;
102 };
103
104 struct task_struct;
105
106 /*
107 * extra PMU register associated with an event
108 */
109 struct hw_perf_event_extra {
110 u64 config; /* register value */
111 unsigned int reg; /* register address or index */
112 int alloc; /* extra register already allocated */
113 int idx; /* index in shared_regs->regs[] */
114 };
115
116 /**
117 * struct hw_perf_event - performance event hardware details:
118 */
119 struct hw_perf_event {
120 #ifdef CONFIG_PERF_EVENTS
121 union {
122 struct { /* hardware */
123 u64 config;
124 u64 last_tag;
125 unsigned long config_base;
126 unsigned long event_base;
127 int event_base_rdpmc;
128 int idx;
129 int last_cpu;
130 int flags;
131
132 struct hw_perf_event_extra extra_reg;
133 struct hw_perf_event_extra branch_reg;
134 };
135 struct { /* software */
136 struct hrtimer hrtimer;
137 };
138 struct { /* tracepoint */
139 struct task_struct *tp_target;
140 /* for tp_event->class */
141 struct list_head tp_list;
142 };
143 #ifdef CONFIG_HAVE_HW_BREAKPOINT
144 struct { /* breakpoint */
145 /*
146 * Crufty hack to avoid the chicken and egg
147 * problem hw_breakpoint has with context
148 * creation and event initalization.
149 */
150 struct task_struct *bp_target;
151 struct arch_hw_breakpoint info;
152 struct list_head bp_list;
153 };
154 #endif
155 };
156 int state;
157 local64_t prev_count;
158 u64 sample_period;
159 u64 last_period;
160 local64_t period_left;
161 u64 interrupts_seq;
162 u64 interrupts;
163
164 u64 freq_time_stamp;
165 u64 freq_count_stamp;
166 #endif
167 };
168
169 /*
170 * hw_perf_event::state flags
171 */
172 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */
173 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */
174 #define PERF_HES_ARCH 0x04
175
176 struct perf_event;
177
178 /*
179 * Common implementation detail of pmu::{start,commit,cancel}_txn
180 */
181 #define PERF_EVENT_TXN 0x1
182
183 /**
184 * struct pmu - generic performance monitoring unit
185 */
186 struct pmu {
187 struct list_head entry;
188
189 struct device *dev;
190 const struct attribute_group **attr_groups;
191 char *name;
192 int type;
193
194 int * __percpu pmu_disable_count;
195 struct perf_cpu_context * __percpu pmu_cpu_context;
196 int task_ctx_nr;
197
198 /*
199 * Fully disable/enable this PMU, can be used to protect from the PMI
200 * as well as for lazy/batch writing of the MSRs.
201 */
202 void (*pmu_enable) (struct pmu *pmu); /* optional */
203 void (*pmu_disable) (struct pmu *pmu); /* optional */
204
205 /*
206 * Try and initialize the event for this PMU.
207 * Should return -ENOENT when the @event doesn't match this PMU.
208 */
209 int (*event_init) (struct perf_event *event);
210
211 #define PERF_EF_START 0x01 /* start the counter when adding */
212 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */
213 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */
214
215 /*
216 * Adds/Removes a counter to/from the PMU, can be done inside
217 * a transaction, see the ->*_txn() methods.
218 */
219 int (*add) (struct perf_event *event, int flags);
220 void (*del) (struct perf_event *event, int flags);
221
222 /*
223 * Starts/Stops a counter present on the PMU. The PMI handler
224 * should stop the counter when perf_event_overflow() returns
225 * !0. ->start() will be used to continue.
226 */
227 void (*start) (struct perf_event *event, int flags);
228 void (*stop) (struct perf_event *event, int flags);
229
230 /*
231 * Updates the counter value of the event.
232 */
233 void (*read) (struct perf_event *event);
234
235 /*
236 * Group events scheduling is treated as a transaction, add
237 * group events as a whole and perform one schedulability test.
238 * If the test fails, roll back the whole group
239 *
240 * Start the transaction, after this ->add() doesn't need to
241 * do schedulability tests.
242 */
243 void (*start_txn) (struct pmu *pmu); /* optional */
244 /*
245 * If ->start_txn() disabled the ->add() schedulability test
246 * then ->commit_txn() is required to perform one. On success
247 * the transaction is closed. On error the transaction is kept
248 * open until ->cancel_txn() is called.
249 */
250 int (*commit_txn) (struct pmu *pmu); /* optional */
251 /*
252 * Will cancel the transaction, assumes ->del() is called
253 * for each successful ->add() during the transaction.
254 */
255 void (*cancel_txn) (struct pmu *pmu); /* optional */
256
257 /*
258 * Will return the value for perf_event_mmap_page::index for this event,
259 * if no implementation is provided it will default to: event->hw.idx + 1.
260 */
261 int (*event_idx) (struct perf_event *event); /*optional */
262
263 /*
264 * flush branch stack on context-switches (needed in cpu-wide mode)
265 */
266 void (*flush_branch_stack) (void);
267 };
268
269 /**
270 * enum perf_event_active_state - the states of a event
271 */
272 enum perf_event_active_state {
273 PERF_EVENT_STATE_ERROR = -2,
274 PERF_EVENT_STATE_OFF = -1,
275 PERF_EVENT_STATE_INACTIVE = 0,
276 PERF_EVENT_STATE_ACTIVE = 1,
277 };
278
279 struct file;
280 struct perf_sample_data;
281
282 typedef void (*perf_overflow_handler_t)(struct perf_event *,
283 struct perf_sample_data *,
284 struct pt_regs *regs);
285
286 enum perf_group_flag {
287 PERF_GROUP_SOFTWARE = 0x1,
288 };
289
290 #define SWEVENT_HLIST_BITS 8
291 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
292
293 struct swevent_hlist {
294 struct hlist_head heads[SWEVENT_HLIST_SIZE];
295 struct rcu_head rcu_head;
296 };
297
298 #define PERF_ATTACH_CONTEXT 0x01
299 #define PERF_ATTACH_GROUP 0x02
300 #define PERF_ATTACH_TASK 0x04
301
302 struct perf_cgroup;
303 struct ring_buffer;
304
305 /**
306 * struct perf_event - performance event kernel representation:
307 */
308 struct perf_event {
309 #ifdef CONFIG_PERF_EVENTS
310 struct list_head group_entry;
311 struct list_head event_entry;
312 struct list_head sibling_list;
313 struct hlist_node hlist_entry;
314 int nr_siblings;
315 int group_flags;
316 struct perf_event *group_leader;
317 struct pmu *pmu;
318
319 enum perf_event_active_state state;
320 unsigned int attach_state;
321 local64_t count;
322 atomic64_t child_count;
323
324 /*
325 * These are the total time in nanoseconds that the event
326 * has been enabled (i.e. eligible to run, and the task has
327 * been scheduled in, if this is a per-task event)
328 * and running (scheduled onto the CPU), respectively.
329 *
330 * They are computed from tstamp_enabled, tstamp_running and
331 * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
332 */
333 u64 total_time_enabled;
334 u64 total_time_running;
335
336 /*
337 * These are timestamps used for computing total_time_enabled
338 * and total_time_running when the event is in INACTIVE or
339 * ACTIVE state, measured in nanoseconds from an arbitrary point
340 * in time.
341 * tstamp_enabled: the notional time when the event was enabled
342 * tstamp_running: the notional time when the event was scheduled on
343 * tstamp_stopped: in INACTIVE state, the notional time when the
344 * event was scheduled off.
345 */
346 u64 tstamp_enabled;
347 u64 tstamp_running;
348 u64 tstamp_stopped;
349
350 /*
351 * timestamp shadows the actual context timing but it can
352 * be safely used in NMI interrupt context. It reflects the
353 * context time as it was when the event was last scheduled in.
354 *
355 * ctx_time already accounts for ctx->timestamp. Therefore to
356 * compute ctx_time for a sample, simply add perf_clock().
357 */
358 u64 shadow_ctx_time;
359
360 struct perf_event_attr attr;
361 u16 header_size;
362 u16 id_header_size;
363 u16 read_size;
364 struct hw_perf_event hw;
365
366 struct perf_event_context *ctx;
367 atomic_long_t refcount;
368
369 /*
370 * These accumulate total time (in nanoseconds) that children
371 * events have been enabled and running, respectively.
372 */
373 atomic64_t child_total_time_enabled;
374 atomic64_t child_total_time_running;
375
376 /*
377 * Protect attach/detach and child_list:
378 */
379 struct mutex child_mutex;
380 struct list_head child_list;
381 struct perf_event *parent;
382
383 int oncpu;
384 int cpu;
385
386 struct list_head owner_entry;
387 struct task_struct *owner;
388
389 /* mmap bits */
390 struct mutex mmap_mutex;
391 atomic_t mmap_count;
392 int mmap_locked;
393 struct user_struct *mmap_user;
394 struct ring_buffer *rb;
395 struct list_head rb_entry;
396
397 /* poll related */
398 wait_queue_head_t waitq;
399 struct fasync_struct *fasync;
400
401 /* delayed work for NMIs and such */
402 int pending_wakeup;
403 int pending_kill;
404 int pending_disable;
405 struct irq_work pending;
406
407 atomic_t event_limit;
408
409 void (*destroy)(struct perf_event *);
410 struct rcu_head rcu_head;
411
412 struct pid_namespace *ns;
413 u64 id;
414
415 perf_overflow_handler_t overflow_handler;
416 void *overflow_handler_context;
417
418 #ifdef CONFIG_EVENT_TRACING
419 struct ftrace_event_call *tp_event;
420 struct event_filter *filter;
421 #ifdef CONFIG_FUNCTION_TRACER
422 struct ftrace_ops ftrace_ops;
423 #endif
424 #endif
425
426 #ifdef CONFIG_CGROUP_PERF
427 struct perf_cgroup *cgrp; /* cgroup event is attach to */
428 int cgrp_defer_enabled;
429 #endif
430
431 #endif /* CONFIG_PERF_EVENTS */
432 };
433
434 enum perf_event_context_type {
435 task_context,
436 cpu_context,
437 };
438
439 /**
440 * struct perf_event_context - event context structure
441 *
442 * Used as a container for task events and CPU events as well:
443 */
444 struct perf_event_context {
445 struct pmu *pmu;
446 enum perf_event_context_type type;
447 /*
448 * Protect the states of the events in the list,
449 * nr_active, and the list:
450 */
451 raw_spinlock_t lock;
452 /*
453 * Protect the list of events. Locking either mutex or lock
454 * is sufficient to ensure the list doesn't change; to change
455 * the list you need to lock both the mutex and the spinlock.
456 */
457 struct mutex mutex;
458
459 struct list_head pinned_groups;
460 struct list_head flexible_groups;
461 struct list_head event_list;
462 int nr_events;
463 int nr_active;
464 int is_active;
465 int nr_stat;
466 int nr_freq;
467 int rotate_disable;
468 atomic_t refcount;
469 struct task_struct *task;
470
471 /*
472 * Context clock, runs when context enabled.
473 */
474 u64 time;
475 u64 timestamp;
476
477 /*
478 * These fields let us detect when two contexts have both
479 * been cloned (inherited) from a common ancestor.
480 */
481 struct perf_event_context *parent_ctx;
482 u64 parent_gen;
483 u64 generation;
484 int pin_count;
485 int nr_cgroups; /* cgroup evts */
486 int nr_branch_stack; /* branch_stack evt */
487 struct rcu_head rcu_head;
488 };
489
490 /*
491 * Number of contexts where an event can trigger:
492 * task, softirq, hardirq, nmi.
493 */
494 #define PERF_NR_CONTEXTS 4
495
496 /**
497 * struct perf_event_cpu_context - per cpu event context structure
498 */
499 struct perf_cpu_context {
500 struct perf_event_context ctx;
501 struct perf_event_context *task_ctx;
502 int active_oncpu;
503 int exclusive;
504 struct list_head rotation_list;
505 int jiffies_interval;
506 struct pmu *unique_pmu;
507 struct perf_cgroup *cgrp;
508 };
509
510 struct perf_output_handle {
511 struct perf_event *event;
512 struct ring_buffer *rb;
513 unsigned long wakeup;
514 unsigned long size;
515 void *addr;
516 int page;
517 };
518
519 #ifdef CONFIG_PERF_EVENTS
520
521 extern int perf_pmu_register(struct pmu *pmu, char *name, int type);
522 extern void perf_pmu_unregister(struct pmu *pmu);
523
524 extern int perf_num_counters(void);
525 extern const char *perf_pmu_name(void);
526 extern void __perf_event_task_sched_in(struct task_struct *prev,
527 struct task_struct *task);
528 extern void __perf_event_task_sched_out(struct task_struct *prev,
529 struct task_struct *next);
530 extern int perf_event_init_task(struct task_struct *child);
531 extern void perf_event_exit_task(struct task_struct *child);
532 extern void perf_event_free_task(struct task_struct *task);
533 extern void perf_event_delayed_put(struct task_struct *task);
534 extern void perf_event_print_debug(void);
535 extern void perf_pmu_disable(struct pmu *pmu);
536 extern void perf_pmu_enable(struct pmu *pmu);
537 extern int perf_event_task_disable(void);
538 extern int perf_event_task_enable(void);
539 extern int perf_event_refresh(struct perf_event *event, int refresh);
540 extern void perf_event_update_userpage(struct perf_event *event);
541 extern int perf_event_release_kernel(struct perf_event *event);
542 extern struct perf_event *
543 perf_event_create_kernel_counter(struct perf_event_attr *attr,
544 int cpu,
545 struct task_struct *task,
546 perf_overflow_handler_t callback,
547 void *context);
548 extern void perf_pmu_migrate_context(struct pmu *pmu,
549 int src_cpu, int dst_cpu);
550 extern u64 perf_event_read_value(struct perf_event *event,
551 u64 *enabled, u64 *running);
552
553
554 struct perf_sample_data {
555 u64 type;
556
557 u64 ip;
558 struct {
559 u32 pid;
560 u32 tid;
561 } tid_entry;
562 u64 time;
563 u64 addr;
564 u64 id;
565 u64 stream_id;
566 struct {
567 u32 cpu;
568 u32 reserved;
569 } cpu_entry;
570 u64 period;
571 union perf_mem_data_src data_src;
572 struct perf_callchain_entry *callchain;
573 struct perf_raw_record *raw;
574 struct perf_branch_stack *br_stack;
575 struct perf_regs_user regs_user;
576 u64 stack_user_size;
577 u64 weight;
578 };
579
580 static inline void perf_sample_data_init(struct perf_sample_data *data,
581 u64 addr, u64 period)
582 {
583 /* remaining struct members initialized in perf_prepare_sample() */
584 data->addr = addr;
585 data->raw = NULL;
586 data->br_stack = NULL;
587 data->period = period;
588 data->regs_user.abi = PERF_SAMPLE_REGS_ABI_NONE;
589 data->regs_user.regs = NULL;
590 data->stack_user_size = 0;
591 data->weight = 0;
592 data->data_src.val = 0;
593 }
594
595 extern void perf_output_sample(struct perf_output_handle *handle,
596 struct perf_event_header *header,
597 struct perf_sample_data *data,
598 struct perf_event *event);
599 extern void perf_prepare_sample(struct perf_event_header *header,
600 struct perf_sample_data *data,
601 struct perf_event *event,
602 struct pt_regs *regs);
603
604 extern int perf_event_overflow(struct perf_event *event,
605 struct perf_sample_data *data,
606 struct pt_regs *regs);
607
608 static inline bool is_sampling_event(struct perf_event *event)
609 {
610 return event->attr.sample_period != 0;
611 }
612
613 /*
614 * Return 1 for a software event, 0 for a hardware event
615 */
616 static inline int is_software_event(struct perf_event *event)
617 {
618 return event->pmu->task_ctx_nr == perf_sw_context;
619 }
620
621 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
622
623 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
624
625 #ifndef perf_arch_fetch_caller_regs
626 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
627 #endif
628
629 /*
630 * Take a snapshot of the regs. Skip ip and frame pointer to
631 * the nth caller. We only need a few of the regs:
632 * - ip for PERF_SAMPLE_IP
633 * - cs for user_mode() tests
634 * - bp for callchains
635 * - eflags, for future purposes, just in case
636 */
637 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
638 {
639 memset(regs, 0, sizeof(*regs));
640
641 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
642 }
643
644 static __always_inline void
645 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
646 {
647 struct pt_regs hot_regs;
648
649 if (static_key_false(&perf_swevent_enabled[event_id])) {
650 if (!regs) {
651 perf_fetch_caller_regs(&hot_regs);
652 regs = &hot_regs;
653 }
654 __perf_sw_event(event_id, nr, regs, addr);
655 }
656 }
657
658 extern struct static_key_deferred perf_sched_events;
659
660 static inline void perf_event_task_sched_in(struct task_struct *prev,
661 struct task_struct *task)
662 {
663 if (static_key_false(&perf_sched_events.key))
664 __perf_event_task_sched_in(prev, task);
665 }
666
667 static inline void perf_event_task_sched_out(struct task_struct *prev,
668 struct task_struct *next)
669 {
670 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, NULL, 0);
671
672 if (static_key_false(&perf_sched_events.key))
673 __perf_event_task_sched_out(prev, next);
674 }
675
676 extern void perf_event_mmap(struct vm_area_struct *vma);
677 extern struct perf_guest_info_callbacks *perf_guest_cbs;
678 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
679 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
680
681 extern void perf_event_comm(struct task_struct *tsk);
682 extern void perf_event_fork(struct task_struct *tsk);
683
684 /* Callchains */
685 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
686
687 extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs);
688 extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs);
689
690 static inline void perf_callchain_store(struct perf_callchain_entry *entry, u64 ip)
691 {
692 if (entry->nr < PERF_MAX_STACK_DEPTH)
693 entry->ip[entry->nr++] = ip;
694 }
695
696 extern int sysctl_perf_event_paranoid;
697 extern int sysctl_perf_event_mlock;
698 extern int sysctl_perf_event_sample_rate;
699
700 extern int perf_proc_update_handler(struct ctl_table *table, int write,
701 void __user *buffer, size_t *lenp,
702 loff_t *ppos);
703
704 static inline bool perf_paranoid_tracepoint_raw(void)
705 {
706 return sysctl_perf_event_paranoid > -1;
707 }
708
709 static inline bool perf_paranoid_cpu(void)
710 {
711 return sysctl_perf_event_paranoid > 0;
712 }
713
714 static inline bool perf_paranoid_kernel(void)
715 {
716 return sysctl_perf_event_paranoid > 1;
717 }
718
719 extern void perf_event_init(void);
720 extern void perf_tp_event(u64 addr, u64 count, void *record,
721 int entry_size, struct pt_regs *regs,
722 struct hlist_head *head, int rctx,
723 struct task_struct *task);
724 extern void perf_bp_event(struct perf_event *event, void *data);
725
726 #ifndef perf_misc_flags
727 # define perf_misc_flags(regs) \
728 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
729 # define perf_instruction_pointer(regs) instruction_pointer(regs)
730 #endif
731
732 static inline bool has_branch_stack(struct perf_event *event)
733 {
734 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
735 }
736
737 extern int perf_output_begin(struct perf_output_handle *handle,
738 struct perf_event *event, unsigned int size);
739 extern void perf_output_end(struct perf_output_handle *handle);
740 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
741 const void *buf, unsigned int len);
742 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
743 unsigned int len);
744 extern int perf_swevent_get_recursion_context(void);
745 extern void perf_swevent_put_recursion_context(int rctx);
746 extern void perf_event_enable(struct perf_event *event);
747 extern void perf_event_disable(struct perf_event *event);
748 extern int __perf_event_disable(void *info);
749 extern void perf_event_task_tick(void);
750 #else
751 static inline void
752 perf_event_task_sched_in(struct task_struct *prev,
753 struct task_struct *task) { }
754 static inline void
755 perf_event_task_sched_out(struct task_struct *prev,
756 struct task_struct *next) { }
757 static inline int perf_event_init_task(struct task_struct *child) { return 0; }
758 static inline void perf_event_exit_task(struct task_struct *child) { }
759 static inline void perf_event_free_task(struct task_struct *task) { }
760 static inline void perf_event_delayed_put(struct task_struct *task) { }
761 static inline void perf_event_print_debug(void) { }
762 static inline int perf_event_task_disable(void) { return -EINVAL; }
763 static inline int perf_event_task_enable(void) { return -EINVAL; }
764 static inline int perf_event_refresh(struct perf_event *event, int refresh)
765 {
766 return -EINVAL;
767 }
768
769 static inline void
770 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { }
771 static inline void
772 perf_bp_event(struct perf_event *event, void *data) { }
773
774 static inline int perf_register_guest_info_callbacks
775 (struct perf_guest_info_callbacks *callbacks) { return 0; }
776 static inline int perf_unregister_guest_info_callbacks
777 (struct perf_guest_info_callbacks *callbacks) { return 0; }
778
779 static inline void perf_event_mmap(struct vm_area_struct *vma) { }
780 static inline void perf_event_comm(struct task_struct *tsk) { }
781 static inline void perf_event_fork(struct task_struct *tsk) { }
782 static inline void perf_event_init(void) { }
783 static inline int perf_swevent_get_recursion_context(void) { return -1; }
784 static inline void perf_swevent_put_recursion_context(int rctx) { }
785 static inline void perf_event_enable(struct perf_event *event) { }
786 static inline void perf_event_disable(struct perf_event *event) { }
787 static inline int __perf_event_disable(void *info) { return -1; }
788 static inline void perf_event_task_tick(void) { }
789 #endif
790
791 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_NO_HZ_FULL)
792 extern bool perf_event_can_stop_tick(void);
793 #else
794 static inline bool perf_event_can_stop_tick(void) { return true; }
795 #endif
796
797 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
798 extern void perf_restore_debug_store(void);
799 #else
800 static inline void perf_restore_debug_store(void) { }
801 #endif
802
803 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
804
805 /*
806 * This has to have a higher priority than migration_notifier in sched.c.
807 */
808 #define perf_cpu_notifier(fn) \
809 do { \
810 static struct notifier_block fn##_nb __cpuinitdata = \
811 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \
812 unsigned long cpu = smp_processor_id(); \
813 unsigned long flags; \
814 fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE, \
815 (void *)(unsigned long)cpu); \
816 local_irq_save(flags); \
817 fn(&fn##_nb, (unsigned long)CPU_STARTING, \
818 (void *)(unsigned long)cpu); \
819 local_irq_restore(flags); \
820 fn(&fn##_nb, (unsigned long)CPU_ONLINE, \
821 (void *)(unsigned long)cpu); \
822 register_cpu_notifier(&fn##_nb); \
823 } while (0)
824
825
826 struct perf_pmu_events_attr {
827 struct device_attribute attr;
828 u64 id;
829 const char *event_str;
830 };
831
832 #define PMU_EVENT_ATTR(_name, _var, _id, _show) \
833 static struct perf_pmu_events_attr _var = { \
834 .attr = __ATTR(_name, 0444, _show, NULL), \
835 .id = _id, \
836 };
837
838 #define PMU_FORMAT_ATTR(_name, _format) \
839 static ssize_t \
840 _name##_show(struct device *dev, \
841 struct device_attribute *attr, \
842 char *page) \
843 { \
844 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \
845 return sprintf(page, _format "\n"); \
846 } \
847 \
848 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
849
850 #endif /* _LINUX_PERF_EVENT_H */