nlm: Ensure callback code also checks that the files match
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / netdevice.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the Interfaces handler.
7 *
8 * Version: @(#)dev.h 1.0.10 08/12/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
15 * Bjorn Ekwall. <bj0rn@blox.se>
16 * Pekka Riikonen <priikone@poseidon.pspt.fi>
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 *
23 * Moved to /usr/include/linux for NET3
24 */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27
28 #include <linux/pm_qos.h>
29 #include <linux/timer.h>
30 #include <linux/bug.h>
31 #include <linux/delay.h>
32 #include <linux/atomic.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/dmaengine.h>
39 #include <linux/workqueue.h>
40 #include <linux/dynamic_queue_limits.h>
41
42 #include <linux/ethtool.h>
43 #include <net/net_namespace.h>
44 #include <net/dsa.h>
45 #ifdef CONFIG_DCB
46 #include <net/dcbnl.h>
47 #endif
48 #include <net/netprio_cgroup.h>
49
50 #include <linux/netdev_features.h>
51 #include <linux/neighbour.h>
52 #include <uapi/linux/netdevice.h>
53
54 struct netpoll_info;
55 struct device;
56 struct phy_device;
57 /* 802.11 specific */
58 struct wireless_dev;
59 /* source back-compat hooks */
60 #define SET_ETHTOOL_OPS(netdev,ops) \
61 ( (netdev)->ethtool_ops = (ops) )
62
63 extern void netdev_set_default_ethtool_ops(struct net_device *dev,
64 const struct ethtool_ops *ops);
65
66 /* hardware address assignment types */
67 #define NET_ADDR_PERM 0 /* address is permanent (default) */
68 #define NET_ADDR_RANDOM 1 /* address is generated randomly */
69 #define NET_ADDR_STOLEN 2 /* address is stolen from other device */
70 #define NET_ADDR_SET 3 /* address is set using
71 * dev_set_mac_address() */
72
73 /* Backlog congestion levels */
74 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
75 #define NET_RX_DROP 1 /* packet dropped */
76
77 /*
78 * Transmit return codes: transmit return codes originate from three different
79 * namespaces:
80 *
81 * - qdisc return codes
82 * - driver transmit return codes
83 * - errno values
84 *
85 * Drivers are allowed to return any one of those in their hard_start_xmit()
86 * function. Real network devices commonly used with qdiscs should only return
87 * the driver transmit return codes though - when qdiscs are used, the actual
88 * transmission happens asynchronously, so the value is not propagated to
89 * higher layers. Virtual network devices transmit synchronously, in this case
90 * the driver transmit return codes are consumed by dev_queue_xmit(), all
91 * others are propagated to higher layers.
92 */
93
94 /* qdisc ->enqueue() return codes. */
95 #define NET_XMIT_SUCCESS 0x00
96 #define NET_XMIT_DROP 0x01 /* skb dropped */
97 #define NET_XMIT_CN 0x02 /* congestion notification */
98 #define NET_XMIT_POLICED 0x03 /* skb is shot by police */
99 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
100
101 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
102 * indicates that the device will soon be dropping packets, or already drops
103 * some packets of the same priority; prompting us to send less aggressively. */
104 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
105 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
106
107 /* Driver transmit return codes */
108 #define NETDEV_TX_MASK 0xf0
109
110 enum netdev_tx {
111 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
112 NETDEV_TX_OK = 0x00, /* driver took care of packet */
113 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
114 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */
115 };
116 typedef enum netdev_tx netdev_tx_t;
117
118 /*
119 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
120 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
121 */
122 static inline bool dev_xmit_complete(int rc)
123 {
124 /*
125 * Positive cases with an skb consumed by a driver:
126 * - successful transmission (rc == NETDEV_TX_OK)
127 * - error while transmitting (rc < 0)
128 * - error while queueing to a different device (rc & NET_XMIT_MASK)
129 */
130 if (likely(rc < NET_XMIT_MASK))
131 return true;
132
133 return false;
134 }
135
136 /*
137 * Compute the worst case header length according to the protocols
138 * used.
139 */
140
141 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
142 # if defined(CONFIG_MAC80211_MESH)
143 # define LL_MAX_HEADER 128
144 # else
145 # define LL_MAX_HEADER 96
146 # endif
147 #else
148 # define LL_MAX_HEADER 32
149 #endif
150
151 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
152 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
153 #define MAX_HEADER LL_MAX_HEADER
154 #else
155 #define MAX_HEADER (LL_MAX_HEADER + 48)
156 #endif
157
158 /*
159 * Old network device statistics. Fields are native words
160 * (unsigned long) so they can be read and written atomically.
161 */
162
163 struct net_device_stats {
164 unsigned long rx_packets;
165 unsigned long tx_packets;
166 unsigned long rx_bytes;
167 unsigned long tx_bytes;
168 unsigned long rx_errors;
169 unsigned long tx_errors;
170 unsigned long rx_dropped;
171 unsigned long tx_dropped;
172 unsigned long multicast;
173 unsigned long collisions;
174 unsigned long rx_length_errors;
175 unsigned long rx_over_errors;
176 unsigned long rx_crc_errors;
177 unsigned long rx_frame_errors;
178 unsigned long rx_fifo_errors;
179 unsigned long rx_missed_errors;
180 unsigned long tx_aborted_errors;
181 unsigned long tx_carrier_errors;
182 unsigned long tx_fifo_errors;
183 unsigned long tx_heartbeat_errors;
184 unsigned long tx_window_errors;
185 unsigned long rx_compressed;
186 unsigned long tx_compressed;
187 };
188
189
190 #include <linux/cache.h>
191 #include <linux/skbuff.h>
192
193 #ifdef CONFIG_RPS
194 #include <linux/static_key.h>
195 extern struct static_key rps_needed;
196 #endif
197
198 struct neighbour;
199 struct neigh_parms;
200 struct sk_buff;
201
202 struct netdev_hw_addr {
203 struct list_head list;
204 unsigned char addr[MAX_ADDR_LEN];
205 unsigned char type;
206 #define NETDEV_HW_ADDR_T_LAN 1
207 #define NETDEV_HW_ADDR_T_SAN 2
208 #define NETDEV_HW_ADDR_T_SLAVE 3
209 #define NETDEV_HW_ADDR_T_UNICAST 4
210 #define NETDEV_HW_ADDR_T_MULTICAST 5
211 bool global_use;
212 int sync_cnt;
213 int refcount;
214 int synced;
215 struct rcu_head rcu_head;
216 };
217
218 struct netdev_hw_addr_list {
219 struct list_head list;
220 int count;
221 };
222
223 #define netdev_hw_addr_list_count(l) ((l)->count)
224 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
225 #define netdev_hw_addr_list_for_each(ha, l) \
226 list_for_each_entry(ha, &(l)->list, list)
227
228 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
229 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
230 #define netdev_for_each_uc_addr(ha, dev) \
231 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
232
233 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
234 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
235 #define netdev_for_each_mc_addr(ha, dev) \
236 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
237
238 struct hh_cache {
239 u16 hh_len;
240 u16 __pad;
241 seqlock_t hh_lock;
242
243 /* cached hardware header; allow for machine alignment needs. */
244 #define HH_DATA_MOD 16
245 #define HH_DATA_OFF(__len) \
246 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
247 #define HH_DATA_ALIGN(__len) \
248 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
249 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
250 };
251
252 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
253 * Alternative is:
254 * dev->hard_header_len ? (dev->hard_header_len +
255 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
256 *
257 * We could use other alignment values, but we must maintain the
258 * relationship HH alignment <= LL alignment.
259 */
260 #define LL_RESERVED_SPACE(dev) \
261 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
262 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
263 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
264
265 struct header_ops {
266 int (*create) (struct sk_buff *skb, struct net_device *dev,
267 unsigned short type, const void *daddr,
268 const void *saddr, unsigned int len);
269 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
270 int (*rebuild)(struct sk_buff *skb);
271 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
272 void (*cache_update)(struct hh_cache *hh,
273 const struct net_device *dev,
274 const unsigned char *haddr);
275 };
276
277 /* These flag bits are private to the generic network queueing
278 * layer, they may not be explicitly referenced by any other
279 * code.
280 */
281
282 enum netdev_state_t {
283 __LINK_STATE_START,
284 __LINK_STATE_PRESENT,
285 __LINK_STATE_NOCARRIER,
286 __LINK_STATE_LINKWATCH_PENDING,
287 __LINK_STATE_DORMANT,
288 };
289
290
291 /*
292 * This structure holds at boot time configured netdevice settings. They
293 * are then used in the device probing.
294 */
295 struct netdev_boot_setup {
296 char name[IFNAMSIZ];
297 struct ifmap map;
298 };
299 #define NETDEV_BOOT_SETUP_MAX 8
300
301 extern int __init netdev_boot_setup(char *str);
302
303 /*
304 * Structure for NAPI scheduling similar to tasklet but with weighting
305 */
306 struct napi_struct {
307 /* The poll_list must only be managed by the entity which
308 * changes the state of the NAPI_STATE_SCHED bit. This means
309 * whoever atomically sets that bit can add this napi_struct
310 * to the per-cpu poll_list, and whoever clears that bit
311 * can remove from the list right before clearing the bit.
312 */
313 struct list_head poll_list;
314
315 unsigned long state;
316 int weight;
317 unsigned int gro_count;
318 int (*poll)(struct napi_struct *, int);
319 #ifdef CONFIG_NETPOLL
320 spinlock_t poll_lock;
321 int poll_owner;
322 #endif
323 struct net_device *dev;
324 struct sk_buff *gro_list;
325 struct sk_buff *skb;
326 struct list_head dev_list;
327 };
328
329 enum {
330 NAPI_STATE_SCHED, /* Poll is scheduled */
331 NAPI_STATE_DISABLE, /* Disable pending */
332 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
333 };
334
335 enum gro_result {
336 GRO_MERGED,
337 GRO_MERGED_FREE,
338 GRO_HELD,
339 GRO_NORMAL,
340 GRO_DROP,
341 };
342 typedef enum gro_result gro_result_t;
343
344 /*
345 * enum rx_handler_result - Possible return values for rx_handlers.
346 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
347 * further.
348 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
349 * case skb->dev was changed by rx_handler.
350 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
351 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
352 *
353 * rx_handlers are functions called from inside __netif_receive_skb(), to do
354 * special processing of the skb, prior to delivery to protocol handlers.
355 *
356 * Currently, a net_device can only have a single rx_handler registered. Trying
357 * to register a second rx_handler will return -EBUSY.
358 *
359 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
360 * To unregister a rx_handler on a net_device, use
361 * netdev_rx_handler_unregister().
362 *
363 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
364 * do with the skb.
365 *
366 * If the rx_handler consumed to skb in some way, it should return
367 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
368 * the skb to be delivered in some other ways.
369 *
370 * If the rx_handler changed skb->dev, to divert the skb to another
371 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
372 * new device will be called if it exists.
373 *
374 * If the rx_handler consider the skb should be ignored, it should return
375 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
376 * are registered on exact device (ptype->dev == skb->dev).
377 *
378 * If the rx_handler didn't changed skb->dev, but want the skb to be normally
379 * delivered, it should return RX_HANDLER_PASS.
380 *
381 * A device without a registered rx_handler will behave as if rx_handler
382 * returned RX_HANDLER_PASS.
383 */
384
385 enum rx_handler_result {
386 RX_HANDLER_CONSUMED,
387 RX_HANDLER_ANOTHER,
388 RX_HANDLER_EXACT,
389 RX_HANDLER_PASS,
390 };
391 typedef enum rx_handler_result rx_handler_result_t;
392 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
393
394 extern void __napi_schedule(struct napi_struct *n);
395
396 static inline bool napi_disable_pending(struct napi_struct *n)
397 {
398 return test_bit(NAPI_STATE_DISABLE, &n->state);
399 }
400
401 /**
402 * napi_schedule_prep - check if napi can be scheduled
403 * @n: napi context
404 *
405 * Test if NAPI routine is already running, and if not mark
406 * it as running. This is used as a condition variable
407 * insure only one NAPI poll instance runs. We also make
408 * sure there is no pending NAPI disable.
409 */
410 static inline bool napi_schedule_prep(struct napi_struct *n)
411 {
412 return !napi_disable_pending(n) &&
413 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
414 }
415
416 /**
417 * napi_schedule - schedule NAPI poll
418 * @n: napi context
419 *
420 * Schedule NAPI poll routine to be called if it is not already
421 * running.
422 */
423 static inline void napi_schedule(struct napi_struct *n)
424 {
425 if (napi_schedule_prep(n))
426 __napi_schedule(n);
427 }
428
429 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
430 static inline bool napi_reschedule(struct napi_struct *napi)
431 {
432 if (napi_schedule_prep(napi)) {
433 __napi_schedule(napi);
434 return true;
435 }
436 return false;
437 }
438
439 /**
440 * napi_complete - NAPI processing complete
441 * @n: napi context
442 *
443 * Mark NAPI processing as complete.
444 */
445 extern void __napi_complete(struct napi_struct *n);
446 extern void napi_complete(struct napi_struct *n);
447
448 /**
449 * napi_disable - prevent NAPI from scheduling
450 * @n: napi context
451 *
452 * Stop NAPI from being scheduled on this context.
453 * Waits till any outstanding processing completes.
454 */
455 static inline void napi_disable(struct napi_struct *n)
456 {
457 set_bit(NAPI_STATE_DISABLE, &n->state);
458 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
459 msleep(1);
460 clear_bit(NAPI_STATE_DISABLE, &n->state);
461 }
462
463 /**
464 * napi_enable - enable NAPI scheduling
465 * @n: napi context
466 *
467 * Resume NAPI from being scheduled on this context.
468 * Must be paired with napi_disable.
469 */
470 static inline void napi_enable(struct napi_struct *n)
471 {
472 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
473 smp_mb__before_clear_bit();
474 clear_bit(NAPI_STATE_SCHED, &n->state);
475 }
476
477 #ifdef CONFIG_SMP
478 /**
479 * napi_synchronize - wait until NAPI is not running
480 * @n: napi context
481 *
482 * Wait until NAPI is done being scheduled on this context.
483 * Waits till any outstanding processing completes but
484 * does not disable future activations.
485 */
486 static inline void napi_synchronize(const struct napi_struct *n)
487 {
488 while (test_bit(NAPI_STATE_SCHED, &n->state))
489 msleep(1);
490 }
491 #else
492 # define napi_synchronize(n) barrier()
493 #endif
494
495 enum netdev_queue_state_t {
496 __QUEUE_STATE_DRV_XOFF,
497 __QUEUE_STATE_STACK_XOFF,
498 __QUEUE_STATE_FROZEN,
499 #define QUEUE_STATE_ANY_XOFF ((1 << __QUEUE_STATE_DRV_XOFF) | \
500 (1 << __QUEUE_STATE_STACK_XOFF))
501 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
502 (1 << __QUEUE_STATE_FROZEN))
503 };
504 /*
505 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
506 * netif_tx_* functions below are used to manipulate this flag. The
507 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
508 * queue independently. The netif_xmit_*stopped functions below are called
509 * to check if the queue has been stopped by the driver or stack (either
510 * of the XOFF bits are set in the state). Drivers should not need to call
511 * netif_xmit*stopped functions, they should only be using netif_tx_*.
512 */
513
514 struct netdev_queue {
515 /*
516 * read mostly part
517 */
518 struct net_device *dev;
519 struct Qdisc *qdisc;
520 struct Qdisc *qdisc_sleeping;
521 #ifdef CONFIG_SYSFS
522 struct kobject kobj;
523 #endif
524 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
525 int numa_node;
526 #endif
527 /*
528 * write mostly part
529 */
530 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
531 int xmit_lock_owner;
532 /*
533 * please use this field instead of dev->trans_start
534 */
535 unsigned long trans_start;
536
537 /*
538 * Number of TX timeouts for this queue
539 * (/sys/class/net/DEV/Q/trans_timeout)
540 */
541 unsigned long trans_timeout;
542
543 unsigned long state;
544
545 #ifdef CONFIG_BQL
546 struct dql dql;
547 #endif
548 } ____cacheline_aligned_in_smp;
549
550 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
551 {
552 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
553 return q->numa_node;
554 #else
555 return NUMA_NO_NODE;
556 #endif
557 }
558
559 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
560 {
561 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
562 q->numa_node = node;
563 #endif
564 }
565
566 #ifdef CONFIG_RPS
567 /*
568 * This structure holds an RPS map which can be of variable length. The
569 * map is an array of CPUs.
570 */
571 struct rps_map {
572 unsigned int len;
573 struct rcu_head rcu;
574 u16 cpus[0];
575 };
576 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
577
578 /*
579 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
580 * tail pointer for that CPU's input queue at the time of last enqueue, and
581 * a hardware filter index.
582 */
583 struct rps_dev_flow {
584 u16 cpu;
585 u16 filter;
586 unsigned int last_qtail;
587 };
588 #define RPS_NO_FILTER 0xffff
589
590 /*
591 * The rps_dev_flow_table structure contains a table of flow mappings.
592 */
593 struct rps_dev_flow_table {
594 unsigned int mask;
595 struct rcu_head rcu;
596 struct rps_dev_flow flows[0];
597 };
598 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
599 ((_num) * sizeof(struct rps_dev_flow)))
600
601 /*
602 * The rps_sock_flow_table contains mappings of flows to the last CPU
603 * on which they were processed by the application (set in recvmsg).
604 */
605 struct rps_sock_flow_table {
606 unsigned int mask;
607 u16 ents[0];
608 };
609 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
610 ((_num) * sizeof(u16)))
611
612 #define RPS_NO_CPU 0xffff
613
614 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
615 u32 hash)
616 {
617 if (table && hash) {
618 unsigned int cpu, index = hash & table->mask;
619
620 /* We only give a hint, preemption can change cpu under us */
621 cpu = raw_smp_processor_id();
622
623 if (table->ents[index] != cpu)
624 table->ents[index] = cpu;
625 }
626 }
627
628 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
629 u32 hash)
630 {
631 if (table && hash)
632 table->ents[hash & table->mask] = RPS_NO_CPU;
633 }
634
635 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
636
637 #ifdef CONFIG_RFS_ACCEL
638 extern bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
639 u32 flow_id, u16 filter_id);
640 #endif
641
642 /* This structure contains an instance of an RX queue. */
643 struct netdev_rx_queue {
644 struct rps_map __rcu *rps_map;
645 struct rps_dev_flow_table __rcu *rps_flow_table;
646 struct kobject kobj;
647 struct net_device *dev;
648 } ____cacheline_aligned_in_smp;
649 #endif /* CONFIG_RPS */
650
651 #ifdef CONFIG_XPS
652 /*
653 * This structure holds an XPS map which can be of variable length. The
654 * map is an array of queues.
655 */
656 struct xps_map {
657 unsigned int len;
658 unsigned int alloc_len;
659 struct rcu_head rcu;
660 u16 queues[0];
661 };
662 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
663 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \
664 / sizeof(u16))
665
666 /*
667 * This structure holds all XPS maps for device. Maps are indexed by CPU.
668 */
669 struct xps_dev_maps {
670 struct rcu_head rcu;
671 struct xps_map __rcu *cpu_map[0];
672 };
673 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \
674 (nr_cpu_ids * sizeof(struct xps_map *)))
675 #endif /* CONFIG_XPS */
676
677 #define TC_MAX_QUEUE 16
678 #define TC_BITMASK 15
679 /* HW offloaded queuing disciplines txq count and offset maps */
680 struct netdev_tc_txq {
681 u16 count;
682 u16 offset;
683 };
684
685 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
686 /*
687 * This structure is to hold information about the device
688 * configured to run FCoE protocol stack.
689 */
690 struct netdev_fcoe_hbainfo {
691 char manufacturer[64];
692 char serial_number[64];
693 char hardware_version[64];
694 char driver_version[64];
695 char optionrom_version[64];
696 char firmware_version[64];
697 char model[256];
698 char model_description[256];
699 };
700 #endif
701
702 /*
703 * This structure defines the management hooks for network devices.
704 * The following hooks can be defined; unless noted otherwise, they are
705 * optional and can be filled with a null pointer.
706 *
707 * int (*ndo_init)(struct net_device *dev);
708 * This function is called once when network device is registered.
709 * The network device can use this to any late stage initializaton
710 * or semantic validattion. It can fail with an error code which will
711 * be propogated back to register_netdev
712 *
713 * void (*ndo_uninit)(struct net_device *dev);
714 * This function is called when device is unregistered or when registration
715 * fails. It is not called if init fails.
716 *
717 * int (*ndo_open)(struct net_device *dev);
718 * This function is called when network device transistions to the up
719 * state.
720 *
721 * int (*ndo_stop)(struct net_device *dev);
722 * This function is called when network device transistions to the down
723 * state.
724 *
725 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
726 * struct net_device *dev);
727 * Called when a packet needs to be transmitted.
728 * Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
729 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
730 * Required can not be NULL.
731 *
732 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb);
733 * Called to decide which queue to when device supports multiple
734 * transmit queues.
735 *
736 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
737 * This function is called to allow device receiver to make
738 * changes to configuration when multicast or promiscious is enabled.
739 *
740 * void (*ndo_set_rx_mode)(struct net_device *dev);
741 * This function is called device changes address list filtering.
742 * If driver handles unicast address filtering, it should set
743 * IFF_UNICAST_FLT to its priv_flags.
744 *
745 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
746 * This function is called when the Media Access Control address
747 * needs to be changed. If this interface is not defined, the
748 * mac address can not be changed.
749 *
750 * int (*ndo_validate_addr)(struct net_device *dev);
751 * Test if Media Access Control address is valid for the device.
752 *
753 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
754 * Called when a user request an ioctl which can't be handled by
755 * the generic interface code. If not defined ioctl's return
756 * not supported error code.
757 *
758 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
759 * Used to set network devices bus interface parameters. This interface
760 * is retained for legacy reason, new devices should use the bus
761 * interface (PCI) for low level management.
762 *
763 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
764 * Called when a user wants to change the Maximum Transfer Unit
765 * of a device. If not defined, any request to change MTU will
766 * will return an error.
767 *
768 * void (*ndo_tx_timeout)(struct net_device *dev);
769 * Callback uses when the transmitter has not made any progress
770 * for dev->watchdog ticks.
771 *
772 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
773 * struct rtnl_link_stats64 *storage);
774 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
775 * Called when a user wants to get the network device usage
776 * statistics. Drivers must do one of the following:
777 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
778 * rtnl_link_stats64 structure passed by the caller.
779 * 2. Define @ndo_get_stats to update a net_device_stats structure
780 * (which should normally be dev->stats) and return a pointer to
781 * it. The structure may be changed asynchronously only if each
782 * field is written atomically.
783 * 3. Update dev->stats asynchronously and atomically, and define
784 * neither operation.
785 *
786 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16t vid);
787 * If device support VLAN filtering this function is called when a
788 * VLAN id is registered.
789 *
790 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid);
791 * If device support VLAN filtering this function is called when a
792 * VLAN id is unregistered.
793 *
794 * void (*ndo_poll_controller)(struct net_device *dev);
795 *
796 * SR-IOV management functions.
797 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
798 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
799 * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate);
800 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
801 * int (*ndo_get_vf_config)(struct net_device *dev,
802 * int vf, struct ifla_vf_info *ivf);
803 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
804 * struct nlattr *port[]);
805 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
806 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
807 * Called to setup 'tc' number of traffic classes in the net device. This
808 * is always called from the stack with the rtnl lock held and netif tx
809 * queues stopped. This allows the netdevice to perform queue management
810 * safely.
811 *
812 * Fiber Channel over Ethernet (FCoE) offload functions.
813 * int (*ndo_fcoe_enable)(struct net_device *dev);
814 * Called when the FCoE protocol stack wants to start using LLD for FCoE
815 * so the underlying device can perform whatever needed configuration or
816 * initialization to support acceleration of FCoE traffic.
817 *
818 * int (*ndo_fcoe_disable)(struct net_device *dev);
819 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
820 * so the underlying device can perform whatever needed clean-ups to
821 * stop supporting acceleration of FCoE traffic.
822 *
823 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
824 * struct scatterlist *sgl, unsigned int sgc);
825 * Called when the FCoE Initiator wants to initialize an I/O that
826 * is a possible candidate for Direct Data Placement (DDP). The LLD can
827 * perform necessary setup and returns 1 to indicate the device is set up
828 * successfully to perform DDP on this I/O, otherwise this returns 0.
829 *
830 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
831 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
832 * indicated by the FC exchange id 'xid', so the underlying device can
833 * clean up and reuse resources for later DDP requests.
834 *
835 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
836 * struct scatterlist *sgl, unsigned int sgc);
837 * Called when the FCoE Target wants to initialize an I/O that
838 * is a possible candidate for Direct Data Placement (DDP). The LLD can
839 * perform necessary setup and returns 1 to indicate the device is set up
840 * successfully to perform DDP on this I/O, otherwise this returns 0.
841 *
842 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
843 * struct netdev_fcoe_hbainfo *hbainfo);
844 * Called when the FCoE Protocol stack wants information on the underlying
845 * device. This information is utilized by the FCoE protocol stack to
846 * register attributes with Fiber Channel management service as per the
847 * FC-GS Fabric Device Management Information(FDMI) specification.
848 *
849 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
850 * Called when the underlying device wants to override default World Wide
851 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
852 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
853 * protocol stack to use.
854 *
855 * RFS acceleration.
856 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
857 * u16 rxq_index, u32 flow_id);
858 * Set hardware filter for RFS. rxq_index is the target queue index;
859 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
860 * Return the filter ID on success, or a negative error code.
861 *
862 * Slave management functions (for bridge, bonding, etc).
863 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
864 * Called to make another netdev an underling.
865 *
866 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
867 * Called to release previously enslaved netdev.
868 *
869 * Feature/offload setting functions.
870 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
871 * netdev_features_t features);
872 * Adjusts the requested feature flags according to device-specific
873 * constraints, and returns the resulting flags. Must not modify
874 * the device state.
875 *
876 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
877 * Called to update device configuration to new features. Passed
878 * feature set might be less than what was returned by ndo_fix_features()).
879 * Must return >0 or -errno if it changed dev->features itself.
880 *
881 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
882 * struct net_device *dev,
883 * const unsigned char *addr, u16 flags)
884 * Adds an FDB entry to dev for addr.
885 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
886 * struct net_device *dev,
887 * const unsigned char *addr)
888 * Deletes the FDB entry from dev coresponding to addr.
889 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
890 * struct net_device *dev, int idx)
891 * Used to add FDB entries to dump requests. Implementers should add
892 * entries to skb and update idx with the number of entries.
893 *
894 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh)
895 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
896 * struct net_device *dev, u32 filter_mask)
897 *
898 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
899 * Called to change device carrier. Soft-devices (like dummy, team, etc)
900 * which do not represent real hardware may define this to allow their
901 * userspace components to manage their virtual carrier state. Devices
902 * that determine carrier state from physical hardware properties (eg
903 * network cables) or protocol-dependent mechanisms (eg
904 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
905 */
906 struct net_device_ops {
907 int (*ndo_init)(struct net_device *dev);
908 void (*ndo_uninit)(struct net_device *dev);
909 int (*ndo_open)(struct net_device *dev);
910 int (*ndo_stop)(struct net_device *dev);
911 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb,
912 struct net_device *dev);
913 u16 (*ndo_select_queue)(struct net_device *dev,
914 struct sk_buff *skb);
915 void (*ndo_change_rx_flags)(struct net_device *dev,
916 int flags);
917 void (*ndo_set_rx_mode)(struct net_device *dev);
918 int (*ndo_set_mac_address)(struct net_device *dev,
919 void *addr);
920 int (*ndo_validate_addr)(struct net_device *dev);
921 int (*ndo_do_ioctl)(struct net_device *dev,
922 struct ifreq *ifr, int cmd);
923 int (*ndo_set_config)(struct net_device *dev,
924 struct ifmap *map);
925 int (*ndo_change_mtu)(struct net_device *dev,
926 int new_mtu);
927 int (*ndo_neigh_setup)(struct net_device *dev,
928 struct neigh_parms *);
929 void (*ndo_tx_timeout) (struct net_device *dev);
930
931 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
932 struct rtnl_link_stats64 *storage);
933 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
934
935 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
936 __be16 proto, u16 vid);
937 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
938 __be16 proto, u16 vid);
939 #ifdef CONFIG_NET_POLL_CONTROLLER
940 void (*ndo_poll_controller)(struct net_device *dev);
941 int (*ndo_netpoll_setup)(struct net_device *dev,
942 struct netpoll_info *info,
943 gfp_t gfp);
944 void (*ndo_netpoll_cleanup)(struct net_device *dev);
945 #endif
946 int (*ndo_set_vf_mac)(struct net_device *dev,
947 int queue, u8 *mac);
948 int (*ndo_set_vf_vlan)(struct net_device *dev,
949 int queue, u16 vlan, u8 qos);
950 int (*ndo_set_vf_tx_rate)(struct net_device *dev,
951 int vf, int rate);
952 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
953 int vf, bool setting);
954 int (*ndo_get_vf_config)(struct net_device *dev,
955 int vf,
956 struct ifla_vf_info *ivf);
957 int (*ndo_set_vf_port)(struct net_device *dev,
958 int vf,
959 struct nlattr *port[]);
960 int (*ndo_get_vf_port)(struct net_device *dev,
961 int vf, struct sk_buff *skb);
962 int (*ndo_setup_tc)(struct net_device *dev, u8 tc);
963 #if IS_ENABLED(CONFIG_FCOE)
964 int (*ndo_fcoe_enable)(struct net_device *dev);
965 int (*ndo_fcoe_disable)(struct net_device *dev);
966 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
967 u16 xid,
968 struct scatterlist *sgl,
969 unsigned int sgc);
970 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
971 u16 xid);
972 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
973 u16 xid,
974 struct scatterlist *sgl,
975 unsigned int sgc);
976 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
977 struct netdev_fcoe_hbainfo *hbainfo);
978 #endif
979
980 #if IS_ENABLED(CONFIG_LIBFCOE)
981 #define NETDEV_FCOE_WWNN 0
982 #define NETDEV_FCOE_WWPN 1
983 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
984 u64 *wwn, int type);
985 #endif
986
987 #ifdef CONFIG_RFS_ACCEL
988 int (*ndo_rx_flow_steer)(struct net_device *dev,
989 const struct sk_buff *skb,
990 u16 rxq_index,
991 u32 flow_id);
992 #endif
993 int (*ndo_add_slave)(struct net_device *dev,
994 struct net_device *slave_dev);
995 int (*ndo_del_slave)(struct net_device *dev,
996 struct net_device *slave_dev);
997 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
998 netdev_features_t features);
999 int (*ndo_set_features)(struct net_device *dev,
1000 netdev_features_t features);
1001 int (*ndo_neigh_construct)(struct neighbour *n);
1002 void (*ndo_neigh_destroy)(struct neighbour *n);
1003
1004 int (*ndo_fdb_add)(struct ndmsg *ndm,
1005 struct nlattr *tb[],
1006 struct net_device *dev,
1007 const unsigned char *addr,
1008 u16 flags);
1009 int (*ndo_fdb_del)(struct ndmsg *ndm,
1010 struct nlattr *tb[],
1011 struct net_device *dev,
1012 const unsigned char *addr);
1013 int (*ndo_fdb_dump)(struct sk_buff *skb,
1014 struct netlink_callback *cb,
1015 struct net_device *dev,
1016 int idx);
1017
1018 int (*ndo_bridge_setlink)(struct net_device *dev,
1019 struct nlmsghdr *nlh);
1020 int (*ndo_bridge_getlink)(struct sk_buff *skb,
1021 u32 pid, u32 seq,
1022 struct net_device *dev,
1023 u32 filter_mask);
1024 int (*ndo_bridge_dellink)(struct net_device *dev,
1025 struct nlmsghdr *nlh);
1026 int (*ndo_change_carrier)(struct net_device *dev,
1027 bool new_carrier);
1028 };
1029
1030 /*
1031 * The DEVICE structure.
1032 * Actually, this whole structure is a big mistake. It mixes I/O
1033 * data with strictly "high-level" data, and it has to know about
1034 * almost every data structure used in the INET module.
1035 *
1036 * FIXME: cleanup struct net_device such that network protocol info
1037 * moves out.
1038 */
1039
1040 struct net_device {
1041
1042 /*
1043 * This is the first field of the "visible" part of this structure
1044 * (i.e. as seen by users in the "Space.c" file). It is the name
1045 * of the interface.
1046 */
1047 char name[IFNAMSIZ];
1048
1049 /* device name hash chain, please keep it close to name[] */
1050 struct hlist_node name_hlist;
1051
1052 /* snmp alias */
1053 char *ifalias;
1054
1055 /*
1056 * I/O specific fields
1057 * FIXME: Merge these and struct ifmap into one
1058 */
1059 unsigned long mem_end; /* shared mem end */
1060 unsigned long mem_start; /* shared mem start */
1061 unsigned long base_addr; /* device I/O address */
1062 unsigned int irq; /* device IRQ number */
1063
1064 /*
1065 * Some hardware also needs these fields, but they are not
1066 * part of the usual set specified in Space.c.
1067 */
1068
1069 unsigned long state;
1070
1071 struct list_head dev_list;
1072 struct list_head napi_list;
1073 struct list_head unreg_list;
1074 struct list_head upper_dev_list; /* List of upper devices */
1075
1076
1077 /* currently active device features */
1078 netdev_features_t features;
1079 /* user-changeable features */
1080 netdev_features_t hw_features;
1081 /* user-requested features */
1082 netdev_features_t wanted_features;
1083 /* mask of features inheritable by VLAN devices */
1084 netdev_features_t vlan_features;
1085 /* mask of features inherited by encapsulating devices
1086 * This field indicates what encapsulation offloads
1087 * the hardware is capable of doing, and drivers will
1088 * need to set them appropriately.
1089 */
1090 netdev_features_t hw_enc_features;
1091
1092 /* Interface index. Unique device identifier */
1093 int ifindex;
1094 int iflink;
1095
1096 struct net_device_stats stats;
1097 atomic_long_t rx_dropped; /* dropped packets by core network
1098 * Do not use this in drivers.
1099 */
1100
1101 #ifdef CONFIG_WIRELESS_EXT
1102 /* List of functions to handle Wireless Extensions (instead of ioctl).
1103 * See <net/iw_handler.h> for details. Jean II */
1104 const struct iw_handler_def * wireless_handlers;
1105 /* Instance data managed by the core of Wireless Extensions. */
1106 struct iw_public_data * wireless_data;
1107 #endif
1108 /* Management operations */
1109 const struct net_device_ops *netdev_ops;
1110 const struct ethtool_ops *ethtool_ops;
1111
1112 /* Hardware header description */
1113 const struct header_ops *header_ops;
1114
1115 unsigned int flags; /* interface flags (a la BSD) */
1116 unsigned int priv_flags; /* Like 'flags' but invisible to userspace.
1117 * See if.h for definitions. */
1118 unsigned short gflags;
1119 unsigned short padded; /* How much padding added by alloc_netdev() */
1120
1121 unsigned char operstate; /* RFC2863 operstate */
1122 unsigned char link_mode; /* mapping policy to operstate */
1123
1124 unsigned char if_port; /* Selectable AUI, TP,..*/
1125 unsigned char dma; /* DMA channel */
1126
1127 unsigned int mtu; /* interface MTU value */
1128 unsigned short type; /* interface hardware type */
1129 unsigned short hard_header_len; /* hardware hdr length */
1130
1131 /* extra head- and tailroom the hardware may need, but not in all cases
1132 * can this be guaranteed, especially tailroom. Some cases also use
1133 * LL_MAX_HEADER instead to allocate the skb.
1134 */
1135 unsigned short needed_headroom;
1136 unsigned short needed_tailroom;
1137
1138 /* Interface address info. */
1139 unsigned char perm_addr[MAX_ADDR_LEN]; /* permanent hw address */
1140 unsigned char addr_assign_type; /* hw address assignment type */
1141 unsigned char addr_len; /* hardware address length */
1142 unsigned char neigh_priv_len;
1143 unsigned short dev_id; /* for shared network cards */
1144
1145 spinlock_t addr_list_lock;
1146 struct netdev_hw_addr_list uc; /* Unicast mac addresses */
1147 struct netdev_hw_addr_list mc; /* Multicast mac addresses */
1148 struct netdev_hw_addr_list dev_addrs; /* list of device
1149 * hw addresses
1150 */
1151 #ifdef CONFIG_SYSFS
1152 struct kset *queues_kset;
1153 #endif
1154
1155 bool uc_promisc;
1156 unsigned int promiscuity;
1157 unsigned int allmulti;
1158
1159
1160 /* Protocol specific pointers */
1161
1162 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1163 struct vlan_info __rcu *vlan_info; /* VLAN info */
1164 #endif
1165 #if IS_ENABLED(CONFIG_NET_DSA)
1166 struct dsa_switch_tree *dsa_ptr; /* dsa specific data */
1167 #endif
1168 void *atalk_ptr; /* AppleTalk link */
1169 struct in_device __rcu *ip_ptr; /* IPv4 specific data */
1170 struct dn_dev __rcu *dn_ptr; /* DECnet specific data */
1171 struct inet6_dev __rcu *ip6_ptr; /* IPv6 specific data */
1172 void *ax25_ptr; /* AX.25 specific data */
1173 struct wireless_dev *ieee80211_ptr; /* IEEE 802.11 specific data,
1174 assign before registering */
1175
1176 /*
1177 * Cache lines mostly used on receive path (including eth_type_trans())
1178 */
1179 unsigned long last_rx; /* Time of last Rx
1180 * This should not be set in
1181 * drivers, unless really needed,
1182 * because network stack (bonding)
1183 * use it if/when necessary, to
1184 * avoid dirtying this cache line.
1185 */
1186
1187 /* Interface address info used in eth_type_trans() */
1188 unsigned char *dev_addr; /* hw address, (before bcast
1189 because most packets are
1190 unicast) */
1191
1192
1193 #ifdef CONFIG_RPS
1194 struct netdev_rx_queue *_rx;
1195
1196 /* Number of RX queues allocated at register_netdev() time */
1197 unsigned int num_rx_queues;
1198
1199 /* Number of RX queues currently active in device */
1200 unsigned int real_num_rx_queues;
1201
1202 #endif
1203
1204 rx_handler_func_t __rcu *rx_handler;
1205 void __rcu *rx_handler_data;
1206
1207 struct netdev_queue __rcu *ingress_queue;
1208 unsigned char broadcast[MAX_ADDR_LEN]; /* hw bcast add */
1209
1210
1211 /*
1212 * Cache lines mostly used on transmit path
1213 */
1214 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
1215
1216 /* Number of TX queues allocated at alloc_netdev_mq() time */
1217 unsigned int num_tx_queues;
1218
1219 /* Number of TX queues currently active in device */
1220 unsigned int real_num_tx_queues;
1221
1222 /* root qdisc from userspace point of view */
1223 struct Qdisc *qdisc;
1224
1225 unsigned long tx_queue_len; /* Max frames per queue allowed */
1226 spinlock_t tx_global_lock;
1227
1228 #ifdef CONFIG_XPS
1229 struct xps_dev_maps __rcu *xps_maps;
1230 #endif
1231 #ifdef CONFIG_RFS_ACCEL
1232 /* CPU reverse-mapping for RX completion interrupts, indexed
1233 * by RX queue number. Assigned by driver. This must only be
1234 * set if the ndo_rx_flow_steer operation is defined. */
1235 struct cpu_rmap *rx_cpu_rmap;
1236 #endif
1237
1238 /* These may be needed for future network-power-down code. */
1239
1240 /*
1241 * trans_start here is expensive for high speed devices on SMP,
1242 * please use netdev_queue->trans_start instead.
1243 */
1244 unsigned long trans_start; /* Time (in jiffies) of last Tx */
1245
1246 int watchdog_timeo; /* used by dev_watchdog() */
1247 struct timer_list watchdog_timer;
1248
1249 /* Number of references to this device */
1250 int __percpu *pcpu_refcnt;
1251
1252 /* delayed register/unregister */
1253 struct list_head todo_list;
1254 /* device index hash chain */
1255 struct hlist_node index_hlist;
1256
1257 struct list_head link_watch_list;
1258
1259 /* register/unregister state machine */
1260 enum { NETREG_UNINITIALIZED=0,
1261 NETREG_REGISTERED, /* completed register_netdevice */
1262 NETREG_UNREGISTERING, /* called unregister_netdevice */
1263 NETREG_UNREGISTERED, /* completed unregister todo */
1264 NETREG_RELEASED, /* called free_netdev */
1265 NETREG_DUMMY, /* dummy device for NAPI poll */
1266 } reg_state:8;
1267
1268 bool dismantle; /* device is going do be freed */
1269
1270 enum {
1271 RTNL_LINK_INITIALIZED,
1272 RTNL_LINK_INITIALIZING,
1273 } rtnl_link_state:16;
1274
1275 /* Called from unregister, can be used to call free_netdev */
1276 void (*destructor)(struct net_device *dev);
1277
1278 #ifdef CONFIG_NETPOLL
1279 struct netpoll_info __rcu *npinfo;
1280 #endif
1281
1282 #ifdef CONFIG_NET_NS
1283 /* Network namespace this network device is inside */
1284 struct net *nd_net;
1285 #endif
1286
1287 /* mid-layer private */
1288 union {
1289 void *ml_priv;
1290 struct pcpu_lstats __percpu *lstats; /* loopback stats */
1291 struct pcpu_tstats __percpu *tstats; /* tunnel stats */
1292 struct pcpu_dstats __percpu *dstats; /* dummy stats */
1293 struct pcpu_vstats __percpu *vstats; /* veth stats */
1294 };
1295 /* GARP */
1296 struct garp_port __rcu *garp_port;
1297 /* MRP */
1298 struct mrp_port __rcu *mrp_port;
1299
1300 /* class/net/name entry */
1301 struct device dev;
1302 /* space for optional device, statistics, and wireless sysfs groups */
1303 const struct attribute_group *sysfs_groups[4];
1304
1305 /* rtnetlink link ops */
1306 const struct rtnl_link_ops *rtnl_link_ops;
1307
1308 /* for setting kernel sock attribute on TCP connection setup */
1309 #define GSO_MAX_SIZE 65536
1310 unsigned int gso_max_size;
1311 #define GSO_MAX_SEGS 65535
1312 u16 gso_max_segs;
1313
1314 #ifdef CONFIG_DCB
1315 /* Data Center Bridging netlink ops */
1316 const struct dcbnl_rtnl_ops *dcbnl_ops;
1317 #endif
1318 u8 num_tc;
1319 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1320 u8 prio_tc_map[TC_BITMASK + 1];
1321
1322 #if IS_ENABLED(CONFIG_FCOE)
1323 /* max exchange id for FCoE LRO by ddp */
1324 unsigned int fcoe_ddp_xid;
1325 #endif
1326 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
1327 struct netprio_map __rcu *priomap;
1328 #endif
1329 /* phy device may attach itself for hardware timestamping */
1330 struct phy_device *phydev;
1331
1332 struct lock_class_key *qdisc_tx_busylock;
1333
1334 /* group the device belongs to */
1335 int group;
1336
1337 struct pm_qos_request pm_qos_req;
1338 };
1339 #define to_net_dev(d) container_of(d, struct net_device, dev)
1340
1341 #define NETDEV_ALIGN 32
1342
1343 static inline
1344 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1345 {
1346 return dev->prio_tc_map[prio & TC_BITMASK];
1347 }
1348
1349 static inline
1350 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1351 {
1352 if (tc >= dev->num_tc)
1353 return -EINVAL;
1354
1355 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1356 return 0;
1357 }
1358
1359 static inline
1360 void netdev_reset_tc(struct net_device *dev)
1361 {
1362 dev->num_tc = 0;
1363 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1364 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1365 }
1366
1367 static inline
1368 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1369 {
1370 if (tc >= dev->num_tc)
1371 return -EINVAL;
1372
1373 dev->tc_to_txq[tc].count = count;
1374 dev->tc_to_txq[tc].offset = offset;
1375 return 0;
1376 }
1377
1378 static inline
1379 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1380 {
1381 if (num_tc > TC_MAX_QUEUE)
1382 return -EINVAL;
1383
1384 dev->num_tc = num_tc;
1385 return 0;
1386 }
1387
1388 static inline
1389 int netdev_get_num_tc(struct net_device *dev)
1390 {
1391 return dev->num_tc;
1392 }
1393
1394 static inline
1395 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1396 unsigned int index)
1397 {
1398 return &dev->_tx[index];
1399 }
1400
1401 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1402 void (*f)(struct net_device *,
1403 struct netdev_queue *,
1404 void *),
1405 void *arg)
1406 {
1407 unsigned int i;
1408
1409 for (i = 0; i < dev->num_tx_queues; i++)
1410 f(dev, &dev->_tx[i], arg);
1411 }
1412
1413 extern struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1414 struct sk_buff *skb);
1415 extern u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb);
1416
1417 /*
1418 * Net namespace inlines
1419 */
1420 static inline
1421 struct net *dev_net(const struct net_device *dev)
1422 {
1423 return read_pnet(&dev->nd_net);
1424 }
1425
1426 static inline
1427 void dev_net_set(struct net_device *dev, struct net *net)
1428 {
1429 #ifdef CONFIG_NET_NS
1430 release_net(dev->nd_net);
1431 dev->nd_net = hold_net(net);
1432 #endif
1433 }
1434
1435 static inline bool netdev_uses_dsa_tags(struct net_device *dev)
1436 {
1437 #ifdef CONFIG_NET_DSA_TAG_DSA
1438 if (dev->dsa_ptr != NULL)
1439 return dsa_uses_dsa_tags(dev->dsa_ptr);
1440 #endif
1441
1442 return 0;
1443 }
1444
1445 static inline bool netdev_uses_trailer_tags(struct net_device *dev)
1446 {
1447 #ifdef CONFIG_NET_DSA_TAG_TRAILER
1448 if (dev->dsa_ptr != NULL)
1449 return dsa_uses_trailer_tags(dev->dsa_ptr);
1450 #endif
1451
1452 return 0;
1453 }
1454
1455 /**
1456 * netdev_priv - access network device private data
1457 * @dev: network device
1458 *
1459 * Get network device private data
1460 */
1461 static inline void *netdev_priv(const struct net_device *dev)
1462 {
1463 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1464 }
1465
1466 /* Set the sysfs physical device reference for the network logical device
1467 * if set prior to registration will cause a symlink during initialization.
1468 */
1469 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
1470
1471 /* Set the sysfs device type for the network logical device to allow
1472 * fin grained indentification of different network device types. For
1473 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1474 */
1475 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
1476
1477 /* Default NAPI poll() weight
1478 * Device drivers are strongly advised to not use bigger value
1479 */
1480 #define NAPI_POLL_WEIGHT 64
1481
1482 /**
1483 * netif_napi_add - initialize a napi context
1484 * @dev: network device
1485 * @napi: napi context
1486 * @poll: polling function
1487 * @weight: default weight
1488 *
1489 * netif_napi_add() must be used to initialize a napi context prior to calling
1490 * *any* of the other napi related functions.
1491 */
1492 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1493 int (*poll)(struct napi_struct *, int), int weight);
1494
1495 /**
1496 * netif_napi_del - remove a napi context
1497 * @napi: napi context
1498 *
1499 * netif_napi_del() removes a napi context from the network device napi list
1500 */
1501 void netif_napi_del(struct napi_struct *napi);
1502
1503 struct napi_gro_cb {
1504 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1505 void *frag0;
1506
1507 /* Length of frag0. */
1508 unsigned int frag0_len;
1509
1510 /* This indicates where we are processing relative to skb->data. */
1511 int data_offset;
1512
1513 /* This is non-zero if the packet cannot be merged with the new skb. */
1514 int flush;
1515
1516 /* Number of segments aggregated. */
1517 u16 count;
1518
1519 /* This is non-zero if the packet may be of the same flow. */
1520 u8 same_flow;
1521
1522 /* Free the skb? */
1523 u8 free;
1524 #define NAPI_GRO_FREE 1
1525 #define NAPI_GRO_FREE_STOLEN_HEAD 2
1526
1527 /* jiffies when first packet was created/queued */
1528 unsigned long age;
1529
1530 /* Used in ipv6_gro_receive() */
1531 int proto;
1532
1533 /* used in skb_gro_receive() slow path */
1534 struct sk_buff *last;
1535 };
1536
1537 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1538
1539 struct packet_type {
1540 __be16 type; /* This is really htons(ether_type). */
1541 struct net_device *dev; /* NULL is wildcarded here */
1542 int (*func) (struct sk_buff *,
1543 struct net_device *,
1544 struct packet_type *,
1545 struct net_device *);
1546 bool (*id_match)(struct packet_type *ptype,
1547 struct sock *sk);
1548 void *af_packet_priv;
1549 struct list_head list;
1550 };
1551
1552 struct offload_callbacks {
1553 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
1554 netdev_features_t features);
1555 int (*gso_send_check)(struct sk_buff *skb);
1556 struct sk_buff **(*gro_receive)(struct sk_buff **head,
1557 struct sk_buff *skb);
1558 int (*gro_complete)(struct sk_buff *skb);
1559 };
1560
1561 struct packet_offload {
1562 __be16 type; /* This is really htons(ether_type). */
1563 struct offload_callbacks callbacks;
1564 struct list_head list;
1565 };
1566
1567 #include <linux/notifier.h>
1568
1569 /* netdevice notifier chain. Please remember to update the rtnetlink
1570 * notification exclusion list in rtnetlink_event() when adding new
1571 * types.
1572 */
1573 #define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */
1574 #define NETDEV_DOWN 0x0002
1575 #define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface
1576 detected a hardware crash and restarted
1577 - we can use this eg to kick tcp sessions
1578 once done */
1579 #define NETDEV_CHANGE 0x0004 /* Notify device state change */
1580 #define NETDEV_REGISTER 0x0005
1581 #define NETDEV_UNREGISTER 0x0006
1582 #define NETDEV_CHANGEMTU 0x0007
1583 #define NETDEV_CHANGEADDR 0x0008
1584 #define NETDEV_GOING_DOWN 0x0009
1585 #define NETDEV_CHANGENAME 0x000A
1586 #define NETDEV_FEAT_CHANGE 0x000B
1587 #define NETDEV_BONDING_FAILOVER 0x000C
1588 #define NETDEV_PRE_UP 0x000D
1589 #define NETDEV_PRE_TYPE_CHANGE 0x000E
1590 #define NETDEV_POST_TYPE_CHANGE 0x000F
1591 #define NETDEV_POST_INIT 0x0010
1592 #define NETDEV_UNREGISTER_FINAL 0x0011
1593 #define NETDEV_RELEASE 0x0012
1594 #define NETDEV_NOTIFY_PEERS 0x0013
1595 #define NETDEV_JOIN 0x0014
1596
1597 extern int register_netdevice_notifier(struct notifier_block *nb);
1598 extern int unregister_netdevice_notifier(struct notifier_block *nb);
1599 extern int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
1600
1601
1602 extern rwlock_t dev_base_lock; /* Device list lock */
1603
1604 extern seqcount_t devnet_rename_seq; /* Device rename seq */
1605
1606
1607 #define for_each_netdev(net, d) \
1608 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
1609 #define for_each_netdev_reverse(net, d) \
1610 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
1611 #define for_each_netdev_rcu(net, d) \
1612 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
1613 #define for_each_netdev_safe(net, d, n) \
1614 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
1615 #define for_each_netdev_continue(net, d) \
1616 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
1617 #define for_each_netdev_continue_rcu(net, d) \
1618 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
1619 #define for_each_netdev_in_bond_rcu(bond, slave) \
1620 for_each_netdev_rcu(&init_net, slave) \
1621 if (netdev_master_upper_dev_get_rcu(slave) == bond)
1622 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
1623
1624 static inline struct net_device *next_net_device(struct net_device *dev)
1625 {
1626 struct list_head *lh;
1627 struct net *net;
1628
1629 net = dev_net(dev);
1630 lh = dev->dev_list.next;
1631 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1632 }
1633
1634 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
1635 {
1636 struct list_head *lh;
1637 struct net *net;
1638
1639 net = dev_net(dev);
1640 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
1641 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1642 }
1643
1644 static inline struct net_device *first_net_device(struct net *net)
1645 {
1646 return list_empty(&net->dev_base_head) ? NULL :
1647 net_device_entry(net->dev_base_head.next);
1648 }
1649
1650 static inline struct net_device *first_net_device_rcu(struct net *net)
1651 {
1652 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
1653
1654 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1655 }
1656
1657 extern int netdev_boot_setup_check(struct net_device *dev);
1658 extern unsigned long netdev_boot_base(const char *prefix, int unit);
1659 extern struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1660 const char *hwaddr);
1661 extern struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
1662 extern struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
1663 extern void dev_add_pack(struct packet_type *pt);
1664 extern void dev_remove_pack(struct packet_type *pt);
1665 extern void __dev_remove_pack(struct packet_type *pt);
1666 extern void dev_add_offload(struct packet_offload *po);
1667 extern void dev_remove_offload(struct packet_offload *po);
1668 extern void __dev_remove_offload(struct packet_offload *po);
1669
1670 extern struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short flags,
1671 unsigned short mask);
1672 extern struct net_device *dev_get_by_name(struct net *net, const char *name);
1673 extern struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
1674 extern struct net_device *__dev_get_by_name(struct net *net, const char *name);
1675 extern int dev_alloc_name(struct net_device *dev, const char *name);
1676 extern int dev_open(struct net_device *dev);
1677 extern int dev_close(struct net_device *dev);
1678 extern void dev_disable_lro(struct net_device *dev);
1679 extern int dev_loopback_xmit(struct sk_buff *newskb);
1680 extern int dev_queue_xmit(struct sk_buff *skb);
1681 extern int register_netdevice(struct net_device *dev);
1682 extern void unregister_netdevice_queue(struct net_device *dev,
1683 struct list_head *head);
1684 extern void unregister_netdevice_many(struct list_head *head);
1685 static inline void unregister_netdevice(struct net_device *dev)
1686 {
1687 unregister_netdevice_queue(dev, NULL);
1688 }
1689
1690 extern int netdev_refcnt_read(const struct net_device *dev);
1691 extern void free_netdev(struct net_device *dev);
1692 extern void synchronize_net(void);
1693 extern int init_dummy_netdev(struct net_device *dev);
1694
1695 extern struct net_device *dev_get_by_index(struct net *net, int ifindex);
1696 extern struct net_device *__dev_get_by_index(struct net *net, int ifindex);
1697 extern struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
1698 extern int netdev_get_name(struct net *net, char *name, int ifindex);
1699 extern int dev_restart(struct net_device *dev);
1700 #ifdef CONFIG_NETPOLL_TRAP
1701 extern int netpoll_trap(void);
1702 #endif
1703 extern int skb_gro_receive(struct sk_buff **head,
1704 struct sk_buff *skb);
1705
1706 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
1707 {
1708 return NAPI_GRO_CB(skb)->data_offset;
1709 }
1710
1711 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
1712 {
1713 return skb->len - NAPI_GRO_CB(skb)->data_offset;
1714 }
1715
1716 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
1717 {
1718 NAPI_GRO_CB(skb)->data_offset += len;
1719 }
1720
1721 static inline void *skb_gro_header_fast(struct sk_buff *skb,
1722 unsigned int offset)
1723 {
1724 return NAPI_GRO_CB(skb)->frag0 + offset;
1725 }
1726
1727 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
1728 {
1729 return NAPI_GRO_CB(skb)->frag0_len < hlen;
1730 }
1731
1732 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
1733 {
1734 NAPI_GRO_CB(skb)->frag0 = NULL;
1735 NAPI_GRO_CB(skb)->frag0_len = 0;
1736 }
1737
1738 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
1739 unsigned int offset)
1740 {
1741 if (!pskb_may_pull(skb, hlen))
1742 return NULL;
1743
1744 skb_gro_frag0_invalidate(skb);
1745 return skb->data + offset;
1746 }
1747
1748 static inline void *skb_gro_mac_header(struct sk_buff *skb)
1749 {
1750 return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb);
1751 }
1752
1753 static inline void *skb_gro_network_header(struct sk_buff *skb)
1754 {
1755 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
1756 skb_network_offset(skb);
1757 }
1758
1759 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
1760 unsigned short type,
1761 const void *daddr, const void *saddr,
1762 unsigned int len)
1763 {
1764 if (!dev->header_ops || !dev->header_ops->create)
1765 return 0;
1766
1767 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
1768 }
1769
1770 static inline int dev_parse_header(const struct sk_buff *skb,
1771 unsigned char *haddr)
1772 {
1773 const struct net_device *dev = skb->dev;
1774
1775 if (!dev->header_ops || !dev->header_ops->parse)
1776 return 0;
1777 return dev->header_ops->parse(skb, haddr);
1778 }
1779
1780 static inline int dev_rebuild_header(struct sk_buff *skb)
1781 {
1782 const struct net_device *dev = skb->dev;
1783
1784 if (!dev->header_ops || !dev->header_ops->rebuild)
1785 return 0;
1786 return dev->header_ops->rebuild(skb);
1787 }
1788
1789 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
1790 extern int register_gifconf(unsigned int family, gifconf_func_t * gifconf);
1791 static inline int unregister_gifconf(unsigned int family)
1792 {
1793 return register_gifconf(family, NULL);
1794 }
1795
1796 /*
1797 * Incoming packets are placed on per-cpu queues
1798 */
1799 struct softnet_data {
1800 struct Qdisc *output_queue;
1801 struct Qdisc **output_queue_tailp;
1802 struct list_head poll_list;
1803 struct sk_buff *completion_queue;
1804 struct sk_buff_head process_queue;
1805
1806 /* stats */
1807 unsigned int processed;
1808 unsigned int time_squeeze;
1809 unsigned int cpu_collision;
1810 unsigned int received_rps;
1811
1812 #ifdef CONFIG_RPS
1813 struct softnet_data *rps_ipi_list;
1814
1815 /* Elements below can be accessed between CPUs for RPS */
1816 struct call_single_data csd ____cacheline_aligned_in_smp;
1817 struct softnet_data *rps_ipi_next;
1818 unsigned int cpu;
1819 unsigned int input_queue_head;
1820 unsigned int input_queue_tail;
1821 #endif
1822 unsigned int dropped;
1823 struct sk_buff_head input_pkt_queue;
1824 struct napi_struct backlog;
1825 };
1826
1827 static inline void input_queue_head_incr(struct softnet_data *sd)
1828 {
1829 #ifdef CONFIG_RPS
1830 sd->input_queue_head++;
1831 #endif
1832 }
1833
1834 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
1835 unsigned int *qtail)
1836 {
1837 #ifdef CONFIG_RPS
1838 *qtail = ++sd->input_queue_tail;
1839 #endif
1840 }
1841
1842 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
1843
1844 extern void __netif_schedule(struct Qdisc *q);
1845
1846 static inline void netif_schedule_queue(struct netdev_queue *txq)
1847 {
1848 if (!(txq->state & QUEUE_STATE_ANY_XOFF))
1849 __netif_schedule(txq->qdisc);
1850 }
1851
1852 static inline void netif_tx_schedule_all(struct net_device *dev)
1853 {
1854 unsigned int i;
1855
1856 for (i = 0; i < dev->num_tx_queues; i++)
1857 netif_schedule_queue(netdev_get_tx_queue(dev, i));
1858 }
1859
1860 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
1861 {
1862 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1863 }
1864
1865 /**
1866 * netif_start_queue - allow transmit
1867 * @dev: network device
1868 *
1869 * Allow upper layers to call the device hard_start_xmit routine.
1870 */
1871 static inline void netif_start_queue(struct net_device *dev)
1872 {
1873 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
1874 }
1875
1876 static inline void netif_tx_start_all_queues(struct net_device *dev)
1877 {
1878 unsigned int i;
1879
1880 for (i = 0; i < dev->num_tx_queues; i++) {
1881 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1882 netif_tx_start_queue(txq);
1883 }
1884 }
1885
1886 static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue)
1887 {
1888 #ifdef CONFIG_NETPOLL_TRAP
1889 if (netpoll_trap()) {
1890 netif_tx_start_queue(dev_queue);
1891 return;
1892 }
1893 #endif
1894 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state))
1895 __netif_schedule(dev_queue->qdisc);
1896 }
1897
1898 /**
1899 * netif_wake_queue - restart transmit
1900 * @dev: network device
1901 *
1902 * Allow upper layers to call the device hard_start_xmit routine.
1903 * Used for flow control when transmit resources are available.
1904 */
1905 static inline void netif_wake_queue(struct net_device *dev)
1906 {
1907 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
1908 }
1909
1910 static inline void netif_tx_wake_all_queues(struct net_device *dev)
1911 {
1912 unsigned int i;
1913
1914 for (i = 0; i < dev->num_tx_queues; i++) {
1915 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1916 netif_tx_wake_queue(txq);
1917 }
1918 }
1919
1920 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
1921 {
1922 if (WARN_ON(!dev_queue)) {
1923 pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
1924 return;
1925 }
1926 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1927 }
1928
1929 /**
1930 * netif_stop_queue - stop transmitted packets
1931 * @dev: network device
1932 *
1933 * Stop upper layers calling the device hard_start_xmit routine.
1934 * Used for flow control when transmit resources are unavailable.
1935 */
1936 static inline void netif_stop_queue(struct net_device *dev)
1937 {
1938 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
1939 }
1940
1941 static inline void netif_tx_stop_all_queues(struct net_device *dev)
1942 {
1943 unsigned int i;
1944
1945 for (i = 0; i < dev->num_tx_queues; i++) {
1946 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1947 netif_tx_stop_queue(txq);
1948 }
1949 }
1950
1951 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
1952 {
1953 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1954 }
1955
1956 /**
1957 * netif_queue_stopped - test if transmit queue is flowblocked
1958 * @dev: network device
1959 *
1960 * Test if transmit queue on device is currently unable to send.
1961 */
1962 static inline bool netif_queue_stopped(const struct net_device *dev)
1963 {
1964 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
1965 }
1966
1967 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
1968 {
1969 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
1970 }
1971
1972 static inline bool netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
1973 {
1974 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
1975 }
1976
1977 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
1978 unsigned int bytes)
1979 {
1980 #ifdef CONFIG_BQL
1981 dql_queued(&dev_queue->dql, bytes);
1982
1983 if (likely(dql_avail(&dev_queue->dql) >= 0))
1984 return;
1985
1986 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
1987
1988 /*
1989 * The XOFF flag must be set before checking the dql_avail below,
1990 * because in netdev_tx_completed_queue we update the dql_completed
1991 * before checking the XOFF flag.
1992 */
1993 smp_mb();
1994
1995 /* check again in case another CPU has just made room avail */
1996 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
1997 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
1998 #endif
1999 }
2000
2001 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2002 {
2003 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2004 }
2005
2006 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2007 unsigned int pkts, unsigned int bytes)
2008 {
2009 #ifdef CONFIG_BQL
2010 if (unlikely(!bytes))
2011 return;
2012
2013 dql_completed(&dev_queue->dql, bytes);
2014
2015 /*
2016 * Without the memory barrier there is a small possiblity that
2017 * netdev_tx_sent_queue will miss the update and cause the queue to
2018 * be stopped forever
2019 */
2020 smp_mb();
2021
2022 if (dql_avail(&dev_queue->dql) < 0)
2023 return;
2024
2025 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2026 netif_schedule_queue(dev_queue);
2027 #endif
2028 }
2029
2030 static inline void netdev_completed_queue(struct net_device *dev,
2031 unsigned int pkts, unsigned int bytes)
2032 {
2033 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2034 }
2035
2036 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2037 {
2038 #ifdef CONFIG_BQL
2039 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
2040 dql_reset(&q->dql);
2041 #endif
2042 }
2043
2044 static inline void netdev_reset_queue(struct net_device *dev_queue)
2045 {
2046 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
2047 }
2048
2049 /**
2050 * netif_running - test if up
2051 * @dev: network device
2052 *
2053 * Test if the device has been brought up.
2054 */
2055 static inline bool netif_running(const struct net_device *dev)
2056 {
2057 return test_bit(__LINK_STATE_START, &dev->state);
2058 }
2059
2060 /*
2061 * Routines to manage the subqueues on a device. We only need start
2062 * stop, and a check if it's stopped. All other device management is
2063 * done at the overall netdevice level.
2064 * Also test the device if we're multiqueue.
2065 */
2066
2067 /**
2068 * netif_start_subqueue - allow sending packets on subqueue
2069 * @dev: network device
2070 * @queue_index: sub queue index
2071 *
2072 * Start individual transmit queue of a device with multiple transmit queues.
2073 */
2074 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2075 {
2076 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2077
2078 netif_tx_start_queue(txq);
2079 }
2080
2081 /**
2082 * netif_stop_subqueue - stop sending packets on subqueue
2083 * @dev: network device
2084 * @queue_index: sub queue index
2085 *
2086 * Stop individual transmit queue of a device with multiple transmit queues.
2087 */
2088 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2089 {
2090 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2091 #ifdef CONFIG_NETPOLL_TRAP
2092 if (netpoll_trap())
2093 return;
2094 #endif
2095 netif_tx_stop_queue(txq);
2096 }
2097
2098 /**
2099 * netif_subqueue_stopped - test status of subqueue
2100 * @dev: network device
2101 * @queue_index: sub queue index
2102 *
2103 * Check individual transmit queue of a device with multiple transmit queues.
2104 */
2105 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2106 u16 queue_index)
2107 {
2108 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2109
2110 return netif_tx_queue_stopped(txq);
2111 }
2112
2113 static inline bool netif_subqueue_stopped(const struct net_device *dev,
2114 struct sk_buff *skb)
2115 {
2116 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2117 }
2118
2119 /**
2120 * netif_wake_subqueue - allow sending packets on subqueue
2121 * @dev: network device
2122 * @queue_index: sub queue index
2123 *
2124 * Resume individual transmit queue of a device with multiple transmit queues.
2125 */
2126 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2127 {
2128 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2129 #ifdef CONFIG_NETPOLL_TRAP
2130 if (netpoll_trap())
2131 return;
2132 #endif
2133 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state))
2134 __netif_schedule(txq->qdisc);
2135 }
2136
2137 #ifdef CONFIG_XPS
2138 extern int netif_set_xps_queue(struct net_device *dev, struct cpumask *mask,
2139 u16 index);
2140 #else
2141 static inline int netif_set_xps_queue(struct net_device *dev,
2142 struct cpumask *mask,
2143 u16 index)
2144 {
2145 return 0;
2146 }
2147 #endif
2148
2149 /*
2150 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2151 * as a distribution range limit for the returned value.
2152 */
2153 static inline u16 skb_tx_hash(const struct net_device *dev,
2154 const struct sk_buff *skb)
2155 {
2156 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2157 }
2158
2159 /**
2160 * netif_is_multiqueue - test if device has multiple transmit queues
2161 * @dev: network device
2162 *
2163 * Check if device has multiple transmit queues
2164 */
2165 static inline bool netif_is_multiqueue(const struct net_device *dev)
2166 {
2167 return dev->num_tx_queues > 1;
2168 }
2169
2170 extern int netif_set_real_num_tx_queues(struct net_device *dev,
2171 unsigned int txq);
2172
2173 #ifdef CONFIG_RPS
2174 extern int netif_set_real_num_rx_queues(struct net_device *dev,
2175 unsigned int rxq);
2176 #else
2177 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2178 unsigned int rxq)
2179 {
2180 return 0;
2181 }
2182 #endif
2183
2184 static inline int netif_copy_real_num_queues(struct net_device *to_dev,
2185 const struct net_device *from_dev)
2186 {
2187 int err;
2188
2189 err = netif_set_real_num_tx_queues(to_dev,
2190 from_dev->real_num_tx_queues);
2191 if (err)
2192 return err;
2193 #ifdef CONFIG_RPS
2194 return netif_set_real_num_rx_queues(to_dev,
2195 from_dev->real_num_rx_queues);
2196 #else
2197 return 0;
2198 #endif
2199 }
2200
2201 #define DEFAULT_MAX_NUM_RSS_QUEUES (8)
2202 extern int netif_get_num_default_rss_queues(void);
2203
2204 /* Use this variant when it is known for sure that it
2205 * is executing from hardware interrupt context or with hardware interrupts
2206 * disabled.
2207 */
2208 extern void dev_kfree_skb_irq(struct sk_buff *skb);
2209
2210 /* Use this variant in places where it could be invoked
2211 * from either hardware interrupt or other context, with hardware interrupts
2212 * either disabled or enabled.
2213 */
2214 extern void dev_kfree_skb_any(struct sk_buff *skb);
2215
2216 extern int netif_rx(struct sk_buff *skb);
2217 extern int netif_rx_ni(struct sk_buff *skb);
2218 extern int netif_receive_skb(struct sk_buff *skb);
2219 extern gro_result_t napi_gro_receive(struct napi_struct *napi,
2220 struct sk_buff *skb);
2221 extern void napi_gro_flush(struct napi_struct *napi, bool flush_old);
2222 extern struct sk_buff * napi_get_frags(struct napi_struct *napi);
2223 extern gro_result_t napi_gro_frags(struct napi_struct *napi);
2224
2225 static inline void napi_free_frags(struct napi_struct *napi)
2226 {
2227 kfree_skb(napi->skb);
2228 napi->skb = NULL;
2229 }
2230
2231 bool netdev_is_rx_handler_busy(struct net_device *dev);
2232 extern int netdev_rx_handler_register(struct net_device *dev,
2233 rx_handler_func_t *rx_handler,
2234 void *rx_handler_data);
2235 extern void netdev_rx_handler_unregister(struct net_device *dev);
2236
2237 extern bool dev_valid_name(const char *name);
2238 extern int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2239 extern int dev_ethtool(struct net *net, struct ifreq *);
2240 extern unsigned int dev_get_flags(const struct net_device *);
2241 extern int __dev_change_flags(struct net_device *, unsigned int flags);
2242 extern int dev_change_flags(struct net_device *, unsigned int);
2243 extern void __dev_notify_flags(struct net_device *, unsigned int old_flags);
2244 extern int dev_change_name(struct net_device *, const char *);
2245 extern int dev_set_alias(struct net_device *, const char *, size_t);
2246 extern int dev_change_net_namespace(struct net_device *,
2247 struct net *, const char *);
2248 extern int dev_set_mtu(struct net_device *, int);
2249 extern void dev_set_group(struct net_device *, int);
2250 extern int dev_set_mac_address(struct net_device *,
2251 struct sockaddr *);
2252 extern int dev_change_carrier(struct net_device *,
2253 bool new_carrier);
2254 extern int dev_hard_start_xmit(struct sk_buff *skb,
2255 struct net_device *dev,
2256 struct netdev_queue *txq);
2257 extern int dev_forward_skb(struct net_device *dev,
2258 struct sk_buff *skb);
2259
2260 extern int netdev_budget;
2261
2262 /* Called by rtnetlink.c:rtnl_unlock() */
2263 extern void netdev_run_todo(void);
2264
2265 /**
2266 * dev_put - release reference to device
2267 * @dev: network device
2268 *
2269 * Release reference to device to allow it to be freed.
2270 */
2271 static inline void dev_put(struct net_device *dev)
2272 {
2273 this_cpu_dec(*dev->pcpu_refcnt);
2274 }
2275
2276 /**
2277 * dev_hold - get reference to device
2278 * @dev: network device
2279 *
2280 * Hold reference to device to keep it from being freed.
2281 */
2282 static inline void dev_hold(struct net_device *dev)
2283 {
2284 this_cpu_inc(*dev->pcpu_refcnt);
2285 }
2286
2287 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
2288 * and _off may be called from IRQ context, but it is caller
2289 * who is responsible for serialization of these calls.
2290 *
2291 * The name carrier is inappropriate, these functions should really be
2292 * called netif_lowerlayer_*() because they represent the state of any
2293 * kind of lower layer not just hardware media.
2294 */
2295
2296 extern void linkwatch_init_dev(struct net_device *dev);
2297 extern void linkwatch_fire_event(struct net_device *dev);
2298 extern void linkwatch_forget_dev(struct net_device *dev);
2299
2300 /**
2301 * netif_carrier_ok - test if carrier present
2302 * @dev: network device
2303 *
2304 * Check if carrier is present on device
2305 */
2306 static inline bool netif_carrier_ok(const struct net_device *dev)
2307 {
2308 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
2309 }
2310
2311 extern unsigned long dev_trans_start(struct net_device *dev);
2312
2313 extern void __netdev_watchdog_up(struct net_device *dev);
2314
2315 extern void netif_carrier_on(struct net_device *dev);
2316
2317 extern void netif_carrier_off(struct net_device *dev);
2318
2319 /**
2320 * netif_dormant_on - mark device as dormant.
2321 * @dev: network device
2322 *
2323 * Mark device as dormant (as per RFC2863).
2324 *
2325 * The dormant state indicates that the relevant interface is not
2326 * actually in a condition to pass packets (i.e., it is not 'up') but is
2327 * in a "pending" state, waiting for some external event. For "on-
2328 * demand" interfaces, this new state identifies the situation where the
2329 * interface is waiting for events to place it in the up state.
2330 *
2331 */
2332 static inline void netif_dormant_on(struct net_device *dev)
2333 {
2334 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
2335 linkwatch_fire_event(dev);
2336 }
2337
2338 /**
2339 * netif_dormant_off - set device as not dormant.
2340 * @dev: network device
2341 *
2342 * Device is not in dormant state.
2343 */
2344 static inline void netif_dormant_off(struct net_device *dev)
2345 {
2346 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
2347 linkwatch_fire_event(dev);
2348 }
2349
2350 /**
2351 * netif_dormant - test if carrier present
2352 * @dev: network device
2353 *
2354 * Check if carrier is present on device
2355 */
2356 static inline bool netif_dormant(const struct net_device *dev)
2357 {
2358 return test_bit(__LINK_STATE_DORMANT, &dev->state);
2359 }
2360
2361
2362 /**
2363 * netif_oper_up - test if device is operational
2364 * @dev: network device
2365 *
2366 * Check if carrier is operational
2367 */
2368 static inline bool netif_oper_up(const struct net_device *dev)
2369 {
2370 return (dev->operstate == IF_OPER_UP ||
2371 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
2372 }
2373
2374 /**
2375 * netif_device_present - is device available or removed
2376 * @dev: network device
2377 *
2378 * Check if device has not been removed from system.
2379 */
2380 static inline bool netif_device_present(struct net_device *dev)
2381 {
2382 return test_bit(__LINK_STATE_PRESENT, &dev->state);
2383 }
2384
2385 extern void netif_device_detach(struct net_device *dev);
2386
2387 extern void netif_device_attach(struct net_device *dev);
2388
2389 /*
2390 * Network interface message level settings
2391 */
2392
2393 enum {
2394 NETIF_MSG_DRV = 0x0001,
2395 NETIF_MSG_PROBE = 0x0002,
2396 NETIF_MSG_LINK = 0x0004,
2397 NETIF_MSG_TIMER = 0x0008,
2398 NETIF_MSG_IFDOWN = 0x0010,
2399 NETIF_MSG_IFUP = 0x0020,
2400 NETIF_MSG_RX_ERR = 0x0040,
2401 NETIF_MSG_TX_ERR = 0x0080,
2402 NETIF_MSG_TX_QUEUED = 0x0100,
2403 NETIF_MSG_INTR = 0x0200,
2404 NETIF_MSG_TX_DONE = 0x0400,
2405 NETIF_MSG_RX_STATUS = 0x0800,
2406 NETIF_MSG_PKTDATA = 0x1000,
2407 NETIF_MSG_HW = 0x2000,
2408 NETIF_MSG_WOL = 0x4000,
2409 };
2410
2411 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
2412 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
2413 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
2414 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
2415 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
2416 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
2417 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
2418 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
2419 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
2420 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
2421 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
2422 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
2423 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
2424 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
2425 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
2426
2427 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
2428 {
2429 /* use default */
2430 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
2431 return default_msg_enable_bits;
2432 if (debug_value == 0) /* no output */
2433 return 0;
2434 /* set low N bits */
2435 return (1 << debug_value) - 1;
2436 }
2437
2438 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
2439 {
2440 spin_lock(&txq->_xmit_lock);
2441 txq->xmit_lock_owner = cpu;
2442 }
2443
2444 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
2445 {
2446 spin_lock_bh(&txq->_xmit_lock);
2447 txq->xmit_lock_owner = smp_processor_id();
2448 }
2449
2450 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
2451 {
2452 bool ok = spin_trylock(&txq->_xmit_lock);
2453 if (likely(ok))
2454 txq->xmit_lock_owner = smp_processor_id();
2455 return ok;
2456 }
2457
2458 static inline void __netif_tx_unlock(struct netdev_queue *txq)
2459 {
2460 txq->xmit_lock_owner = -1;
2461 spin_unlock(&txq->_xmit_lock);
2462 }
2463
2464 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
2465 {
2466 txq->xmit_lock_owner = -1;
2467 spin_unlock_bh(&txq->_xmit_lock);
2468 }
2469
2470 static inline void txq_trans_update(struct netdev_queue *txq)
2471 {
2472 if (txq->xmit_lock_owner != -1)
2473 txq->trans_start = jiffies;
2474 }
2475
2476 /**
2477 * netif_tx_lock - grab network device transmit lock
2478 * @dev: network device
2479 *
2480 * Get network device transmit lock
2481 */
2482 static inline void netif_tx_lock(struct net_device *dev)
2483 {
2484 unsigned int i;
2485 int cpu;
2486
2487 spin_lock(&dev->tx_global_lock);
2488 cpu = smp_processor_id();
2489 for (i = 0; i < dev->num_tx_queues; i++) {
2490 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2491
2492 /* We are the only thread of execution doing a
2493 * freeze, but we have to grab the _xmit_lock in
2494 * order to synchronize with threads which are in
2495 * the ->hard_start_xmit() handler and already
2496 * checked the frozen bit.
2497 */
2498 __netif_tx_lock(txq, cpu);
2499 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
2500 __netif_tx_unlock(txq);
2501 }
2502 }
2503
2504 static inline void netif_tx_lock_bh(struct net_device *dev)
2505 {
2506 local_bh_disable();
2507 netif_tx_lock(dev);
2508 }
2509
2510 static inline void netif_tx_unlock(struct net_device *dev)
2511 {
2512 unsigned int i;
2513
2514 for (i = 0; i < dev->num_tx_queues; i++) {
2515 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2516
2517 /* No need to grab the _xmit_lock here. If the
2518 * queue is not stopped for another reason, we
2519 * force a schedule.
2520 */
2521 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
2522 netif_schedule_queue(txq);
2523 }
2524 spin_unlock(&dev->tx_global_lock);
2525 }
2526
2527 static inline void netif_tx_unlock_bh(struct net_device *dev)
2528 {
2529 netif_tx_unlock(dev);
2530 local_bh_enable();
2531 }
2532
2533 #define HARD_TX_LOCK(dev, txq, cpu) { \
2534 if ((dev->features & NETIF_F_LLTX) == 0) { \
2535 __netif_tx_lock(txq, cpu); \
2536 } \
2537 }
2538
2539 #define HARD_TX_UNLOCK(dev, txq) { \
2540 if ((dev->features & NETIF_F_LLTX) == 0) { \
2541 __netif_tx_unlock(txq); \
2542 } \
2543 }
2544
2545 static inline void netif_tx_disable(struct net_device *dev)
2546 {
2547 unsigned int i;
2548 int cpu;
2549
2550 local_bh_disable();
2551 cpu = smp_processor_id();
2552 for (i = 0; i < dev->num_tx_queues; i++) {
2553 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2554
2555 __netif_tx_lock(txq, cpu);
2556 netif_tx_stop_queue(txq);
2557 __netif_tx_unlock(txq);
2558 }
2559 local_bh_enable();
2560 }
2561
2562 static inline void netif_addr_lock(struct net_device *dev)
2563 {
2564 spin_lock(&dev->addr_list_lock);
2565 }
2566
2567 static inline void netif_addr_lock_nested(struct net_device *dev)
2568 {
2569 spin_lock_nested(&dev->addr_list_lock, SINGLE_DEPTH_NESTING);
2570 }
2571
2572 static inline void netif_addr_lock_bh(struct net_device *dev)
2573 {
2574 spin_lock_bh(&dev->addr_list_lock);
2575 }
2576
2577 static inline void netif_addr_unlock(struct net_device *dev)
2578 {
2579 spin_unlock(&dev->addr_list_lock);
2580 }
2581
2582 static inline void netif_addr_unlock_bh(struct net_device *dev)
2583 {
2584 spin_unlock_bh(&dev->addr_list_lock);
2585 }
2586
2587 /*
2588 * dev_addrs walker. Should be used only for read access. Call with
2589 * rcu_read_lock held.
2590 */
2591 #define for_each_dev_addr(dev, ha) \
2592 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
2593
2594 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
2595
2596 extern void ether_setup(struct net_device *dev);
2597
2598 /* Support for loadable net-drivers */
2599 extern struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
2600 void (*setup)(struct net_device *),
2601 unsigned int txqs, unsigned int rxqs);
2602 #define alloc_netdev(sizeof_priv, name, setup) \
2603 alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1)
2604
2605 #define alloc_netdev_mq(sizeof_priv, name, setup, count) \
2606 alloc_netdev_mqs(sizeof_priv, name, setup, count, count)
2607
2608 extern int register_netdev(struct net_device *dev);
2609 extern void unregister_netdev(struct net_device *dev);
2610
2611 /* General hardware address lists handling functions */
2612 extern int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
2613 struct netdev_hw_addr_list *from_list,
2614 int addr_len, unsigned char addr_type);
2615 extern void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
2616 struct netdev_hw_addr_list *from_list,
2617 int addr_len, unsigned char addr_type);
2618 extern int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
2619 struct netdev_hw_addr_list *from_list,
2620 int addr_len);
2621 extern void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
2622 struct netdev_hw_addr_list *from_list,
2623 int addr_len);
2624 extern void __hw_addr_flush(struct netdev_hw_addr_list *list);
2625 extern void __hw_addr_init(struct netdev_hw_addr_list *list);
2626
2627 /* Functions used for device addresses handling */
2628 extern int dev_addr_add(struct net_device *dev, const unsigned char *addr,
2629 unsigned char addr_type);
2630 extern int dev_addr_del(struct net_device *dev, const unsigned char *addr,
2631 unsigned char addr_type);
2632 extern int dev_addr_add_multiple(struct net_device *to_dev,
2633 struct net_device *from_dev,
2634 unsigned char addr_type);
2635 extern int dev_addr_del_multiple(struct net_device *to_dev,
2636 struct net_device *from_dev,
2637 unsigned char addr_type);
2638 extern void dev_addr_flush(struct net_device *dev);
2639 extern int dev_addr_init(struct net_device *dev);
2640
2641 /* Functions used for unicast addresses handling */
2642 extern int dev_uc_add(struct net_device *dev, const unsigned char *addr);
2643 extern int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
2644 extern int dev_uc_del(struct net_device *dev, const unsigned char *addr);
2645 extern int dev_uc_sync(struct net_device *to, struct net_device *from);
2646 extern int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
2647 extern void dev_uc_unsync(struct net_device *to, struct net_device *from);
2648 extern void dev_uc_flush(struct net_device *dev);
2649 extern void dev_uc_init(struct net_device *dev);
2650
2651 /* Functions used for multicast addresses handling */
2652 extern int dev_mc_add(struct net_device *dev, const unsigned char *addr);
2653 extern int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
2654 extern int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
2655 extern int dev_mc_del(struct net_device *dev, const unsigned char *addr);
2656 extern int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
2657 extern int dev_mc_sync(struct net_device *to, struct net_device *from);
2658 extern int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
2659 extern void dev_mc_unsync(struct net_device *to, struct net_device *from);
2660 extern void dev_mc_flush(struct net_device *dev);
2661 extern void dev_mc_init(struct net_device *dev);
2662
2663 /* Functions used for secondary unicast and multicast support */
2664 extern void dev_set_rx_mode(struct net_device *dev);
2665 extern void __dev_set_rx_mode(struct net_device *dev);
2666 extern int dev_set_promiscuity(struct net_device *dev, int inc);
2667 extern int dev_set_allmulti(struct net_device *dev, int inc);
2668 extern void netdev_state_change(struct net_device *dev);
2669 extern void netdev_notify_peers(struct net_device *dev);
2670 extern void netdev_features_change(struct net_device *dev);
2671 /* Load a device via the kmod */
2672 extern void dev_load(struct net *net, const char *name);
2673 extern struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
2674 struct rtnl_link_stats64 *storage);
2675 extern void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
2676 const struct net_device_stats *netdev_stats);
2677
2678 extern int netdev_max_backlog;
2679 extern int netdev_tstamp_prequeue;
2680 extern int weight_p;
2681 extern int bpf_jit_enable;
2682
2683 extern bool netdev_has_upper_dev(struct net_device *dev,
2684 struct net_device *upper_dev);
2685 extern bool netdev_has_any_upper_dev(struct net_device *dev);
2686 extern struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
2687 extern struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
2688 extern int netdev_upper_dev_link(struct net_device *dev,
2689 struct net_device *upper_dev);
2690 extern int netdev_master_upper_dev_link(struct net_device *dev,
2691 struct net_device *upper_dev);
2692 extern void netdev_upper_dev_unlink(struct net_device *dev,
2693 struct net_device *upper_dev);
2694 extern int skb_checksum_help(struct sk_buff *skb);
2695 extern struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2696 netdev_features_t features, bool tx_path);
2697 extern struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2698 netdev_features_t features);
2699
2700 static inline
2701 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
2702 {
2703 return __skb_gso_segment(skb, features, true);
2704 }
2705 __be16 skb_network_protocol(struct sk_buff *skb);
2706
2707 static inline bool can_checksum_protocol(netdev_features_t features,
2708 __be16 protocol)
2709 {
2710 return ((features & NETIF_F_GEN_CSUM) ||
2711 ((features & NETIF_F_V4_CSUM) &&
2712 protocol == htons(ETH_P_IP)) ||
2713 ((features & NETIF_F_V6_CSUM) &&
2714 protocol == htons(ETH_P_IPV6)) ||
2715 ((features & NETIF_F_FCOE_CRC) &&
2716 protocol == htons(ETH_P_FCOE)));
2717 }
2718
2719 #ifdef CONFIG_BUG
2720 extern void netdev_rx_csum_fault(struct net_device *dev);
2721 #else
2722 static inline void netdev_rx_csum_fault(struct net_device *dev)
2723 {
2724 }
2725 #endif
2726 /* rx skb timestamps */
2727 extern void net_enable_timestamp(void);
2728 extern void net_disable_timestamp(void);
2729
2730 #ifdef CONFIG_PROC_FS
2731 extern int __init dev_proc_init(void);
2732 #else
2733 #define dev_proc_init() 0
2734 #endif
2735
2736 extern int netdev_class_create_file(struct class_attribute *class_attr);
2737 extern void netdev_class_remove_file(struct class_attribute *class_attr);
2738
2739 extern struct kobj_ns_type_operations net_ns_type_operations;
2740
2741 extern const char *netdev_drivername(const struct net_device *dev);
2742
2743 extern void linkwatch_run_queue(void);
2744
2745 static inline netdev_features_t netdev_get_wanted_features(
2746 struct net_device *dev)
2747 {
2748 return (dev->features & ~dev->hw_features) | dev->wanted_features;
2749 }
2750 netdev_features_t netdev_increment_features(netdev_features_t all,
2751 netdev_features_t one, netdev_features_t mask);
2752
2753 /* Allow TSO being used on stacked device :
2754 * Performing the GSO segmentation before last device
2755 * is a performance improvement.
2756 */
2757 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
2758 netdev_features_t mask)
2759 {
2760 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
2761 }
2762
2763 int __netdev_update_features(struct net_device *dev);
2764 void netdev_update_features(struct net_device *dev);
2765 void netdev_change_features(struct net_device *dev);
2766
2767 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
2768 struct net_device *dev);
2769
2770 netdev_features_t netif_skb_dev_features(struct sk_buff *skb,
2771 const struct net_device *dev);
2772 static inline netdev_features_t netif_skb_features(struct sk_buff *skb)
2773 {
2774 return netif_skb_dev_features(skb, skb->dev);
2775 }
2776
2777 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
2778 {
2779 netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
2780
2781 /* check flags correspondence */
2782 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
2783 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
2784 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
2785 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
2786 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
2787 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
2788
2789 return (features & feature) == feature;
2790 }
2791
2792 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
2793 {
2794 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
2795 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
2796 }
2797
2798 static inline bool netif_needs_gso(struct sk_buff *skb,
2799 netdev_features_t features)
2800 {
2801 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
2802 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
2803 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
2804 }
2805
2806 static inline void netif_set_gso_max_size(struct net_device *dev,
2807 unsigned int size)
2808 {
2809 dev->gso_max_size = size;
2810 }
2811
2812 static inline bool netif_is_bond_master(struct net_device *dev)
2813 {
2814 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
2815 }
2816
2817 static inline bool netif_is_bond_slave(struct net_device *dev)
2818 {
2819 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
2820 }
2821
2822 static inline bool netif_supports_nofcs(struct net_device *dev)
2823 {
2824 return dev->priv_flags & IFF_SUPP_NOFCS;
2825 }
2826
2827 extern struct pernet_operations __net_initdata loopback_net_ops;
2828
2829 /* Logging, debugging and troubleshooting/diagnostic helpers. */
2830
2831 /* netdev_printk helpers, similar to dev_printk */
2832
2833 static inline const char *netdev_name(const struct net_device *dev)
2834 {
2835 if (dev->reg_state != NETREG_REGISTERED)
2836 return "(unregistered net_device)";
2837 return dev->name;
2838 }
2839
2840 extern __printf(3, 4)
2841 int netdev_printk(const char *level, const struct net_device *dev,
2842 const char *format, ...);
2843 extern __printf(2, 3)
2844 int netdev_emerg(const struct net_device *dev, const char *format, ...);
2845 extern __printf(2, 3)
2846 int netdev_alert(const struct net_device *dev, const char *format, ...);
2847 extern __printf(2, 3)
2848 int netdev_crit(const struct net_device *dev, const char *format, ...);
2849 extern __printf(2, 3)
2850 int netdev_err(const struct net_device *dev, const char *format, ...);
2851 extern __printf(2, 3)
2852 int netdev_warn(const struct net_device *dev, const char *format, ...);
2853 extern __printf(2, 3)
2854 int netdev_notice(const struct net_device *dev, const char *format, ...);
2855 extern __printf(2, 3)
2856 int netdev_info(const struct net_device *dev, const char *format, ...);
2857
2858 #define MODULE_ALIAS_NETDEV(device) \
2859 MODULE_ALIAS("netdev-" device)
2860
2861 #if defined(CONFIG_DYNAMIC_DEBUG)
2862 #define netdev_dbg(__dev, format, args...) \
2863 do { \
2864 dynamic_netdev_dbg(__dev, format, ##args); \
2865 } while (0)
2866 #elif defined(DEBUG)
2867 #define netdev_dbg(__dev, format, args...) \
2868 netdev_printk(KERN_DEBUG, __dev, format, ##args)
2869 #else
2870 #define netdev_dbg(__dev, format, args...) \
2871 ({ \
2872 if (0) \
2873 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
2874 0; \
2875 })
2876 #endif
2877
2878 #if defined(VERBOSE_DEBUG)
2879 #define netdev_vdbg netdev_dbg
2880 #else
2881
2882 #define netdev_vdbg(dev, format, args...) \
2883 ({ \
2884 if (0) \
2885 netdev_printk(KERN_DEBUG, dev, format, ##args); \
2886 0; \
2887 })
2888 #endif
2889
2890 /*
2891 * netdev_WARN() acts like dev_printk(), but with the key difference
2892 * of using a WARN/WARN_ON to get the message out, including the
2893 * file/line information and a backtrace.
2894 */
2895 #define netdev_WARN(dev, format, args...) \
2896 WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args);
2897
2898 /* netif printk helpers, similar to netdev_printk */
2899
2900 #define netif_printk(priv, type, level, dev, fmt, args...) \
2901 do { \
2902 if (netif_msg_##type(priv)) \
2903 netdev_printk(level, (dev), fmt, ##args); \
2904 } while (0)
2905
2906 #define netif_level(level, priv, type, dev, fmt, args...) \
2907 do { \
2908 if (netif_msg_##type(priv)) \
2909 netdev_##level(dev, fmt, ##args); \
2910 } while (0)
2911
2912 #define netif_emerg(priv, type, dev, fmt, args...) \
2913 netif_level(emerg, priv, type, dev, fmt, ##args)
2914 #define netif_alert(priv, type, dev, fmt, args...) \
2915 netif_level(alert, priv, type, dev, fmt, ##args)
2916 #define netif_crit(priv, type, dev, fmt, args...) \
2917 netif_level(crit, priv, type, dev, fmt, ##args)
2918 #define netif_err(priv, type, dev, fmt, args...) \
2919 netif_level(err, priv, type, dev, fmt, ##args)
2920 #define netif_warn(priv, type, dev, fmt, args...) \
2921 netif_level(warn, priv, type, dev, fmt, ##args)
2922 #define netif_notice(priv, type, dev, fmt, args...) \
2923 netif_level(notice, priv, type, dev, fmt, ##args)
2924 #define netif_info(priv, type, dev, fmt, args...) \
2925 netif_level(info, priv, type, dev, fmt, ##args)
2926
2927 #if defined(CONFIG_DYNAMIC_DEBUG)
2928 #define netif_dbg(priv, type, netdev, format, args...) \
2929 do { \
2930 if (netif_msg_##type(priv)) \
2931 dynamic_netdev_dbg(netdev, format, ##args); \
2932 } while (0)
2933 #elif defined(DEBUG)
2934 #define netif_dbg(priv, type, dev, format, args...) \
2935 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
2936 #else
2937 #define netif_dbg(priv, type, dev, format, args...) \
2938 ({ \
2939 if (0) \
2940 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2941 0; \
2942 })
2943 #endif
2944
2945 #if defined(VERBOSE_DEBUG)
2946 #define netif_vdbg netif_dbg
2947 #else
2948 #define netif_vdbg(priv, type, dev, format, args...) \
2949 ({ \
2950 if (0) \
2951 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2952 0; \
2953 })
2954 #endif
2955
2956 /*
2957 * The list of packet types we will receive (as opposed to discard)
2958 * and the routines to invoke.
2959 *
2960 * Why 16. Because with 16 the only overlap we get on a hash of the
2961 * low nibble of the protocol value is RARP/SNAP/X.25.
2962 *
2963 * NOTE: That is no longer true with the addition of VLAN tags. Not
2964 * sure which should go first, but I bet it won't make much
2965 * difference if we are running VLANs. The good news is that
2966 * this protocol won't be in the list unless compiled in, so
2967 * the average user (w/out VLANs) will not be adversely affected.
2968 * --BLG
2969 *
2970 * 0800 IP
2971 * 8100 802.1Q VLAN
2972 * 0001 802.3
2973 * 0002 AX.25
2974 * 0004 802.2
2975 * 8035 RARP
2976 * 0005 SNAP
2977 * 0805 X.25
2978 * 0806 ARP
2979 * 8137 IPX
2980 * 0009 Localtalk
2981 * 86DD IPv6
2982 */
2983 #define PTYPE_HASH_SIZE (16)
2984 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
2985
2986 #endif /* _LINUX_NETDEVICE_H */