net: remove mm.h inclusion from netdevice.h
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / netdevice.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the Interfaces handler.
7 *
8 * Version: @(#)dev.h 1.0.10 08/12/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
15 * Bjorn Ekwall. <bj0rn@blox.se>
16 * Pekka Riikonen <priikone@poseidon.pspt.fi>
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 *
23 * Moved to /usr/include/linux for NET3
24 */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27
28 #include <linux/if.h>
29 #include <linux/if_ether.h>
30 #include <linux/if_packet.h>
31 #include <linux/if_link.h>
32
33 #ifdef __KERNEL__
34 #include <linux/pm_qos_params.h>
35 #include <linux/timer.h>
36 #include <linux/delay.h>
37 #include <asm/atomic.h>
38 #include <asm/cache.h>
39 #include <asm/byteorder.h>
40
41 #include <linux/device.h>
42 #include <linux/percpu.h>
43 #include <linux/rculist.h>
44 #include <linux/dmaengine.h>
45 #include <linux/workqueue.h>
46
47 #include <linux/ethtool.h>
48 #include <net/net_namespace.h>
49 #include <net/dsa.h>
50 #ifdef CONFIG_DCB
51 #include <net/dcbnl.h>
52 #endif
53
54 struct vlan_group;
55 struct netpoll_info;
56 struct phy_device;
57 /* 802.11 specific */
58 struct wireless_dev;
59 /* source back-compat hooks */
60 #define SET_ETHTOOL_OPS(netdev,ops) \
61 ( (netdev)->ethtool_ops = (ops) )
62
63 #define HAVE_ALLOC_NETDEV /* feature macro: alloc_xxxdev
64 functions are available. */
65 #define HAVE_FREE_NETDEV /* free_netdev() */
66 #define HAVE_NETDEV_PRIV /* netdev_priv() */
67
68 /* hardware address assignment types */
69 #define NET_ADDR_PERM 0 /* address is permanent (default) */
70 #define NET_ADDR_RANDOM 1 /* address is generated randomly */
71 #define NET_ADDR_STOLEN 2 /* address is stolen from other device */
72
73 /* Backlog congestion levels */
74 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
75 #define NET_RX_DROP 1 /* packet dropped */
76
77 /*
78 * Transmit return codes: transmit return codes originate from three different
79 * namespaces:
80 *
81 * - qdisc return codes
82 * - driver transmit return codes
83 * - errno values
84 *
85 * Drivers are allowed to return any one of those in their hard_start_xmit()
86 * function. Real network devices commonly used with qdiscs should only return
87 * the driver transmit return codes though - when qdiscs are used, the actual
88 * transmission happens asynchronously, so the value is not propagated to
89 * higher layers. Virtual network devices transmit synchronously, in this case
90 * the driver transmit return codes are consumed by dev_queue_xmit(), all
91 * others are propagated to higher layers.
92 */
93
94 /* qdisc ->enqueue() return codes. */
95 #define NET_XMIT_SUCCESS 0x00
96 #define NET_XMIT_DROP 0x01 /* skb dropped */
97 #define NET_XMIT_CN 0x02 /* congestion notification */
98 #define NET_XMIT_POLICED 0x03 /* skb is shot by police */
99 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
100
101 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
102 * indicates that the device will soon be dropping packets, or already drops
103 * some packets of the same priority; prompting us to send less aggressively. */
104 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
105 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
106
107 /* Driver transmit return codes */
108 #define NETDEV_TX_MASK 0xf0
109
110 enum netdev_tx {
111 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
112 NETDEV_TX_OK = 0x00, /* driver took care of packet */
113 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
114 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */
115 };
116 typedef enum netdev_tx netdev_tx_t;
117
118 /*
119 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
120 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
121 */
122 static inline bool dev_xmit_complete(int rc)
123 {
124 /*
125 * Positive cases with an skb consumed by a driver:
126 * - successful transmission (rc == NETDEV_TX_OK)
127 * - error while transmitting (rc < 0)
128 * - error while queueing to a different device (rc & NET_XMIT_MASK)
129 */
130 if (likely(rc < NET_XMIT_MASK))
131 return true;
132
133 return false;
134 }
135
136 #endif
137
138 #define MAX_ADDR_LEN 32 /* Largest hardware address length */
139
140 /* Initial net device group. All devices belong to group 0 by default. */
141 #define INIT_NETDEV_GROUP 0
142
143 #ifdef __KERNEL__
144 /*
145 * Compute the worst case header length according to the protocols
146 * used.
147 */
148
149 #if defined(CONFIG_WLAN) || defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
150 # if defined(CONFIG_MAC80211_MESH)
151 # define LL_MAX_HEADER 128
152 # else
153 # define LL_MAX_HEADER 96
154 # endif
155 #elif defined(CONFIG_TR) || defined(CONFIG_TR_MODULE)
156 # define LL_MAX_HEADER 48
157 #else
158 # define LL_MAX_HEADER 32
159 #endif
160
161 #if !defined(CONFIG_NET_IPIP) && !defined(CONFIG_NET_IPIP_MODULE) && \
162 !defined(CONFIG_NET_IPGRE) && !defined(CONFIG_NET_IPGRE_MODULE) && \
163 !defined(CONFIG_IPV6_SIT) && !defined(CONFIG_IPV6_SIT_MODULE) && \
164 !defined(CONFIG_IPV6_TUNNEL) && !defined(CONFIG_IPV6_TUNNEL_MODULE)
165 #define MAX_HEADER LL_MAX_HEADER
166 #else
167 #define MAX_HEADER (LL_MAX_HEADER + 48)
168 #endif
169
170 /*
171 * Old network device statistics. Fields are native words
172 * (unsigned long) so they can be read and written atomically.
173 */
174
175 struct net_device_stats {
176 unsigned long rx_packets;
177 unsigned long tx_packets;
178 unsigned long rx_bytes;
179 unsigned long tx_bytes;
180 unsigned long rx_errors;
181 unsigned long tx_errors;
182 unsigned long rx_dropped;
183 unsigned long tx_dropped;
184 unsigned long multicast;
185 unsigned long collisions;
186 unsigned long rx_length_errors;
187 unsigned long rx_over_errors;
188 unsigned long rx_crc_errors;
189 unsigned long rx_frame_errors;
190 unsigned long rx_fifo_errors;
191 unsigned long rx_missed_errors;
192 unsigned long tx_aborted_errors;
193 unsigned long tx_carrier_errors;
194 unsigned long tx_fifo_errors;
195 unsigned long tx_heartbeat_errors;
196 unsigned long tx_window_errors;
197 unsigned long rx_compressed;
198 unsigned long tx_compressed;
199 };
200
201 #endif /* __KERNEL__ */
202
203
204 /* Media selection options. */
205 enum {
206 IF_PORT_UNKNOWN = 0,
207 IF_PORT_10BASE2,
208 IF_PORT_10BASET,
209 IF_PORT_AUI,
210 IF_PORT_100BASET,
211 IF_PORT_100BASETX,
212 IF_PORT_100BASEFX
213 };
214
215 #ifdef __KERNEL__
216
217 #include <linux/cache.h>
218 #include <linux/skbuff.h>
219
220 struct neighbour;
221 struct neigh_parms;
222 struct sk_buff;
223
224 struct netdev_hw_addr {
225 struct list_head list;
226 unsigned char addr[MAX_ADDR_LEN];
227 unsigned char type;
228 #define NETDEV_HW_ADDR_T_LAN 1
229 #define NETDEV_HW_ADDR_T_SAN 2
230 #define NETDEV_HW_ADDR_T_SLAVE 3
231 #define NETDEV_HW_ADDR_T_UNICAST 4
232 #define NETDEV_HW_ADDR_T_MULTICAST 5
233 bool synced;
234 bool global_use;
235 int refcount;
236 struct rcu_head rcu_head;
237 };
238
239 struct netdev_hw_addr_list {
240 struct list_head list;
241 int count;
242 };
243
244 #define netdev_hw_addr_list_count(l) ((l)->count)
245 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
246 #define netdev_hw_addr_list_for_each(ha, l) \
247 list_for_each_entry(ha, &(l)->list, list)
248
249 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
250 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
251 #define netdev_for_each_uc_addr(ha, dev) \
252 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
253
254 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
255 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
256 #define netdev_for_each_mc_addr(ha, dev) \
257 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
258
259 struct hh_cache {
260 struct hh_cache *hh_next; /* Next entry */
261 atomic_t hh_refcnt; /* number of users */
262 /*
263 * We want hh_output, hh_len, hh_lock and hh_data be a in a separate
264 * cache line on SMP.
265 * They are mostly read, but hh_refcnt may be changed quite frequently,
266 * incurring cache line ping pongs.
267 */
268 __be16 hh_type ____cacheline_aligned_in_smp;
269 /* protocol identifier, f.e ETH_P_IP
270 * NOTE: For VLANs, this will be the
271 * encapuslated type. --BLG
272 */
273 u16 hh_len; /* length of header */
274 int (*hh_output)(struct sk_buff *skb);
275 seqlock_t hh_lock;
276
277 /* cached hardware header; allow for machine alignment needs. */
278 #define HH_DATA_MOD 16
279 #define HH_DATA_OFF(__len) \
280 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
281 #define HH_DATA_ALIGN(__len) \
282 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
283 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
284 };
285
286 static inline void hh_cache_put(struct hh_cache *hh)
287 {
288 if (atomic_dec_and_test(&hh->hh_refcnt))
289 kfree(hh);
290 }
291
292 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
293 * Alternative is:
294 * dev->hard_header_len ? (dev->hard_header_len +
295 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
296 *
297 * We could use other alignment values, but we must maintain the
298 * relationship HH alignment <= LL alignment.
299 *
300 * LL_ALLOCATED_SPACE also takes into account the tailroom the device
301 * may need.
302 */
303 #define LL_RESERVED_SPACE(dev) \
304 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
305 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
306 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
307 #define LL_ALLOCATED_SPACE(dev) \
308 ((((dev)->hard_header_len+(dev)->needed_headroom+(dev)->needed_tailroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
309
310 struct header_ops {
311 int (*create) (struct sk_buff *skb, struct net_device *dev,
312 unsigned short type, const void *daddr,
313 const void *saddr, unsigned len);
314 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
315 int (*rebuild)(struct sk_buff *skb);
316 #define HAVE_HEADER_CACHE
317 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh);
318 void (*cache_update)(struct hh_cache *hh,
319 const struct net_device *dev,
320 const unsigned char *haddr);
321 };
322
323 /* These flag bits are private to the generic network queueing
324 * layer, they may not be explicitly referenced by any other
325 * code.
326 */
327
328 enum netdev_state_t {
329 __LINK_STATE_START,
330 __LINK_STATE_PRESENT,
331 __LINK_STATE_NOCARRIER,
332 __LINK_STATE_LINKWATCH_PENDING,
333 __LINK_STATE_DORMANT,
334 };
335
336
337 /*
338 * This structure holds at boot time configured netdevice settings. They
339 * are then used in the device probing.
340 */
341 struct netdev_boot_setup {
342 char name[IFNAMSIZ];
343 struct ifmap map;
344 };
345 #define NETDEV_BOOT_SETUP_MAX 8
346
347 extern int __init netdev_boot_setup(char *str);
348
349 /*
350 * Structure for NAPI scheduling similar to tasklet but with weighting
351 */
352 struct napi_struct {
353 /* The poll_list must only be managed by the entity which
354 * changes the state of the NAPI_STATE_SCHED bit. This means
355 * whoever atomically sets that bit can add this napi_struct
356 * to the per-cpu poll_list, and whoever clears that bit
357 * can remove from the list right before clearing the bit.
358 */
359 struct list_head poll_list;
360
361 unsigned long state;
362 int weight;
363 int (*poll)(struct napi_struct *, int);
364 #ifdef CONFIG_NETPOLL
365 spinlock_t poll_lock;
366 int poll_owner;
367 #endif
368
369 unsigned int gro_count;
370
371 struct net_device *dev;
372 struct list_head dev_list;
373 struct sk_buff *gro_list;
374 struct sk_buff *skb;
375 };
376
377 enum {
378 NAPI_STATE_SCHED, /* Poll is scheduled */
379 NAPI_STATE_DISABLE, /* Disable pending */
380 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
381 };
382
383 enum gro_result {
384 GRO_MERGED,
385 GRO_MERGED_FREE,
386 GRO_HELD,
387 GRO_NORMAL,
388 GRO_DROP,
389 };
390 typedef enum gro_result gro_result_t;
391
392 /*
393 * enum rx_handler_result - Possible return values for rx_handlers.
394 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
395 * further.
396 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
397 * case skb->dev was changed by rx_handler.
398 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
399 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
400 *
401 * rx_handlers are functions called from inside __netif_receive_skb(), to do
402 * special processing of the skb, prior to delivery to protocol handlers.
403 *
404 * Currently, a net_device can only have a single rx_handler registered. Trying
405 * to register a second rx_handler will return -EBUSY.
406 *
407 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
408 * To unregister a rx_handler on a net_device, use
409 * netdev_rx_handler_unregister().
410 *
411 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
412 * do with the skb.
413 *
414 * If the rx_handler consumed to skb in some way, it should return
415 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
416 * the skb to be delivered in some other ways.
417 *
418 * If the rx_handler changed skb->dev, to divert the skb to another
419 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
420 * new device will be called if it exists.
421 *
422 * If the rx_handler consider the skb should be ignored, it should return
423 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
424 * are registred on exact device (ptype->dev == skb->dev).
425 *
426 * If the rx_handler didn't changed skb->dev, but want the skb to be normally
427 * delivered, it should return RX_HANDLER_PASS.
428 *
429 * A device without a registered rx_handler will behave as if rx_handler
430 * returned RX_HANDLER_PASS.
431 */
432
433 enum rx_handler_result {
434 RX_HANDLER_CONSUMED,
435 RX_HANDLER_ANOTHER,
436 RX_HANDLER_EXACT,
437 RX_HANDLER_PASS,
438 };
439 typedef enum rx_handler_result rx_handler_result_t;
440 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
441
442 extern void __napi_schedule(struct napi_struct *n);
443
444 static inline int napi_disable_pending(struct napi_struct *n)
445 {
446 return test_bit(NAPI_STATE_DISABLE, &n->state);
447 }
448
449 /**
450 * napi_schedule_prep - check if napi can be scheduled
451 * @n: napi context
452 *
453 * Test if NAPI routine is already running, and if not mark
454 * it as running. This is used as a condition variable
455 * insure only one NAPI poll instance runs. We also make
456 * sure there is no pending NAPI disable.
457 */
458 static inline int napi_schedule_prep(struct napi_struct *n)
459 {
460 return !napi_disable_pending(n) &&
461 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
462 }
463
464 /**
465 * napi_schedule - schedule NAPI poll
466 * @n: napi context
467 *
468 * Schedule NAPI poll routine to be called if it is not already
469 * running.
470 */
471 static inline void napi_schedule(struct napi_struct *n)
472 {
473 if (napi_schedule_prep(n))
474 __napi_schedule(n);
475 }
476
477 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
478 static inline int napi_reschedule(struct napi_struct *napi)
479 {
480 if (napi_schedule_prep(napi)) {
481 __napi_schedule(napi);
482 return 1;
483 }
484 return 0;
485 }
486
487 /**
488 * napi_complete - NAPI processing complete
489 * @n: napi context
490 *
491 * Mark NAPI processing as complete.
492 */
493 extern void __napi_complete(struct napi_struct *n);
494 extern void napi_complete(struct napi_struct *n);
495
496 /**
497 * napi_disable - prevent NAPI from scheduling
498 * @n: napi context
499 *
500 * Stop NAPI from being scheduled on this context.
501 * Waits till any outstanding processing completes.
502 */
503 static inline void napi_disable(struct napi_struct *n)
504 {
505 set_bit(NAPI_STATE_DISABLE, &n->state);
506 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
507 msleep(1);
508 clear_bit(NAPI_STATE_DISABLE, &n->state);
509 }
510
511 /**
512 * napi_enable - enable NAPI scheduling
513 * @n: napi context
514 *
515 * Resume NAPI from being scheduled on this context.
516 * Must be paired with napi_disable.
517 */
518 static inline void napi_enable(struct napi_struct *n)
519 {
520 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
521 smp_mb__before_clear_bit();
522 clear_bit(NAPI_STATE_SCHED, &n->state);
523 }
524
525 #ifdef CONFIG_SMP
526 /**
527 * napi_synchronize - wait until NAPI is not running
528 * @n: napi context
529 *
530 * Wait until NAPI is done being scheduled on this context.
531 * Waits till any outstanding processing completes but
532 * does not disable future activations.
533 */
534 static inline void napi_synchronize(const struct napi_struct *n)
535 {
536 while (test_bit(NAPI_STATE_SCHED, &n->state))
537 msleep(1);
538 }
539 #else
540 # define napi_synchronize(n) barrier()
541 #endif
542
543 enum netdev_queue_state_t {
544 __QUEUE_STATE_XOFF,
545 __QUEUE_STATE_FROZEN,
546 #define QUEUE_STATE_XOFF_OR_FROZEN ((1 << __QUEUE_STATE_XOFF) | \
547 (1 << __QUEUE_STATE_FROZEN))
548 };
549
550 struct netdev_queue {
551 /*
552 * read mostly part
553 */
554 struct net_device *dev;
555 struct Qdisc *qdisc;
556 unsigned long state;
557 struct Qdisc *qdisc_sleeping;
558 #ifdef CONFIG_RPS
559 struct kobject kobj;
560 #endif
561 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
562 int numa_node;
563 #endif
564 /*
565 * write mostly part
566 */
567 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
568 int xmit_lock_owner;
569 /*
570 * please use this field instead of dev->trans_start
571 */
572 unsigned long trans_start;
573 } ____cacheline_aligned_in_smp;
574
575 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
576 {
577 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
578 return q->numa_node;
579 #else
580 return NUMA_NO_NODE;
581 #endif
582 }
583
584 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
585 {
586 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
587 q->numa_node = node;
588 #endif
589 }
590
591 #ifdef CONFIG_RPS
592 /*
593 * This structure holds an RPS map which can be of variable length. The
594 * map is an array of CPUs.
595 */
596 struct rps_map {
597 unsigned int len;
598 struct rcu_head rcu;
599 u16 cpus[0];
600 };
601 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + (_num * sizeof(u16)))
602
603 /*
604 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
605 * tail pointer for that CPU's input queue at the time of last enqueue, and
606 * a hardware filter index.
607 */
608 struct rps_dev_flow {
609 u16 cpu;
610 u16 filter;
611 unsigned int last_qtail;
612 };
613 #define RPS_NO_FILTER 0xffff
614
615 /*
616 * The rps_dev_flow_table structure contains a table of flow mappings.
617 */
618 struct rps_dev_flow_table {
619 unsigned int mask;
620 struct rcu_head rcu;
621 struct work_struct free_work;
622 struct rps_dev_flow flows[0];
623 };
624 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
625 (_num * sizeof(struct rps_dev_flow)))
626
627 /*
628 * The rps_sock_flow_table contains mappings of flows to the last CPU
629 * on which they were processed by the application (set in recvmsg).
630 */
631 struct rps_sock_flow_table {
632 unsigned int mask;
633 u16 ents[0];
634 };
635 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
636 (_num * sizeof(u16)))
637
638 #define RPS_NO_CPU 0xffff
639
640 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
641 u32 hash)
642 {
643 if (table && hash) {
644 unsigned int cpu, index = hash & table->mask;
645
646 /* We only give a hint, preemption can change cpu under us */
647 cpu = raw_smp_processor_id();
648
649 if (table->ents[index] != cpu)
650 table->ents[index] = cpu;
651 }
652 }
653
654 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
655 u32 hash)
656 {
657 if (table && hash)
658 table->ents[hash & table->mask] = RPS_NO_CPU;
659 }
660
661 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
662
663 #ifdef CONFIG_RFS_ACCEL
664 extern bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
665 u32 flow_id, u16 filter_id);
666 #endif
667
668 /* This structure contains an instance of an RX queue. */
669 struct netdev_rx_queue {
670 struct rps_map __rcu *rps_map;
671 struct rps_dev_flow_table __rcu *rps_flow_table;
672 struct kobject kobj;
673 struct net_device *dev;
674 } ____cacheline_aligned_in_smp;
675 #endif /* CONFIG_RPS */
676
677 #ifdef CONFIG_XPS
678 /*
679 * This structure holds an XPS map which can be of variable length. The
680 * map is an array of queues.
681 */
682 struct xps_map {
683 unsigned int len;
684 unsigned int alloc_len;
685 struct rcu_head rcu;
686 u16 queues[0];
687 };
688 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + (_num * sizeof(u16)))
689 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \
690 / sizeof(u16))
691
692 /*
693 * This structure holds all XPS maps for device. Maps are indexed by CPU.
694 */
695 struct xps_dev_maps {
696 struct rcu_head rcu;
697 struct xps_map __rcu *cpu_map[0];
698 };
699 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \
700 (nr_cpu_ids * sizeof(struct xps_map *)))
701 #endif /* CONFIG_XPS */
702
703 #define TC_MAX_QUEUE 16
704 #define TC_BITMASK 15
705 /* HW offloaded queuing disciplines txq count and offset maps */
706 struct netdev_tc_txq {
707 u16 count;
708 u16 offset;
709 };
710
711 /*
712 * This structure defines the management hooks for network devices.
713 * The following hooks can be defined; unless noted otherwise, they are
714 * optional and can be filled with a null pointer.
715 *
716 * int (*ndo_init)(struct net_device *dev);
717 * This function is called once when network device is registered.
718 * The network device can use this to any late stage initializaton
719 * or semantic validattion. It can fail with an error code which will
720 * be propogated back to register_netdev
721 *
722 * void (*ndo_uninit)(struct net_device *dev);
723 * This function is called when device is unregistered or when registration
724 * fails. It is not called if init fails.
725 *
726 * int (*ndo_open)(struct net_device *dev);
727 * This function is called when network device transistions to the up
728 * state.
729 *
730 * int (*ndo_stop)(struct net_device *dev);
731 * This function is called when network device transistions to the down
732 * state.
733 *
734 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
735 * struct net_device *dev);
736 * Called when a packet needs to be transmitted.
737 * Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
738 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
739 * Required can not be NULL.
740 *
741 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb);
742 * Called to decide which queue to when device supports multiple
743 * transmit queues.
744 *
745 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
746 * This function is called to allow device receiver to make
747 * changes to configuration when multicast or promiscious is enabled.
748 *
749 * void (*ndo_set_rx_mode)(struct net_device *dev);
750 * This function is called device changes address list filtering.
751 *
752 * void (*ndo_set_multicast_list)(struct net_device *dev);
753 * This function is called when the multicast address list changes.
754 *
755 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
756 * This function is called when the Media Access Control address
757 * needs to be changed. If this interface is not defined, the
758 * mac address can not be changed.
759 *
760 * int (*ndo_validate_addr)(struct net_device *dev);
761 * Test if Media Access Control address is valid for the device.
762 *
763 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
764 * Called when a user request an ioctl which can't be handled by
765 * the generic interface code. If not defined ioctl's return
766 * not supported error code.
767 *
768 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
769 * Used to set network devices bus interface parameters. This interface
770 * is retained for legacy reason, new devices should use the bus
771 * interface (PCI) for low level management.
772 *
773 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
774 * Called when a user wants to change the Maximum Transfer Unit
775 * of a device. If not defined, any request to change MTU will
776 * will return an error.
777 *
778 * void (*ndo_tx_timeout)(struct net_device *dev);
779 * Callback uses when the transmitter has not made any progress
780 * for dev->watchdog ticks.
781 *
782 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
783 * struct rtnl_link_stats64 *storage);
784 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
785 * Called when a user wants to get the network device usage
786 * statistics. Drivers must do one of the following:
787 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
788 * rtnl_link_stats64 structure passed by the caller.
789 * 2. Define @ndo_get_stats to update a net_device_stats structure
790 * (which should normally be dev->stats) and return a pointer to
791 * it. The structure may be changed asynchronously only if each
792 * field is written atomically.
793 * 3. Update dev->stats asynchronously and atomically, and define
794 * neither operation.
795 *
796 * void (*ndo_vlan_rx_register)(struct net_device *dev, struct vlan_group *grp);
797 * If device support VLAN receive acceleration
798 * (ie. dev->features & NETIF_F_HW_VLAN_RX), then this function is called
799 * when vlan groups for the device changes. Note: grp is NULL
800 * if no vlan's groups are being used.
801 *
802 * void (*ndo_vlan_rx_add_vid)(struct net_device *dev, unsigned short vid);
803 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
804 * this function is called when a VLAN id is registered.
805 *
806 * void (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid);
807 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
808 * this function is called when a VLAN id is unregistered.
809 *
810 * void (*ndo_poll_controller)(struct net_device *dev);
811 *
812 * SR-IOV management functions.
813 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
814 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
815 * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate);
816 * int (*ndo_get_vf_config)(struct net_device *dev,
817 * int vf, struct ifla_vf_info *ivf);
818 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
819 * struct nlattr *port[]);
820 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
821 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
822 * Called to setup 'tc' number of traffic classes in the net device. This
823 * is always called from the stack with the rtnl lock held and netif tx
824 * queues stopped. This allows the netdevice to perform queue management
825 * safely.
826 *
827 * Fiber Channel over Ethernet (FCoE) offload functions.
828 * int (*ndo_fcoe_enable)(struct net_device *dev);
829 * Called when the FCoE protocol stack wants to start using LLD for FCoE
830 * so the underlying device can perform whatever needed configuration or
831 * initialization to support acceleration of FCoE traffic.
832 *
833 * int (*ndo_fcoe_disable)(struct net_device *dev);
834 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
835 * so the underlying device can perform whatever needed clean-ups to
836 * stop supporting acceleration of FCoE traffic.
837 *
838 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
839 * struct scatterlist *sgl, unsigned int sgc);
840 * Called when the FCoE Initiator wants to initialize an I/O that
841 * is a possible candidate for Direct Data Placement (DDP). The LLD can
842 * perform necessary setup and returns 1 to indicate the device is set up
843 * successfully to perform DDP on this I/O, otherwise this returns 0.
844 *
845 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
846 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
847 * indicated by the FC exchange id 'xid', so the underlying device can
848 * clean up and reuse resources for later DDP requests.
849 *
850 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
851 * struct scatterlist *sgl, unsigned int sgc);
852 * Called when the FCoE Target wants to initialize an I/O that
853 * is a possible candidate for Direct Data Placement (DDP). The LLD can
854 * perform necessary setup and returns 1 to indicate the device is set up
855 * successfully to perform DDP on this I/O, otherwise this returns 0.
856 *
857 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
858 * Called when the underlying device wants to override default World Wide
859 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
860 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
861 * protocol stack to use.
862 *
863 * RFS acceleration.
864 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
865 * u16 rxq_index, u32 flow_id);
866 * Set hardware filter for RFS. rxq_index is the target queue index;
867 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
868 * Return the filter ID on success, or a negative error code.
869 *
870 * Slave management functions (for bridge, bonding, etc). User should
871 * call netdev_set_master() to set dev->master properly.
872 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
873 * Called to make another netdev an underling.
874 *
875 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
876 * Called to release previously enslaved netdev.
877 *
878 * Feature/offload setting functions.
879 * u32 (*ndo_fix_features)(struct net_device *dev, u32 features);
880 * Adjusts the requested feature flags according to device-specific
881 * constraints, and returns the resulting flags. Must not modify
882 * the device state.
883 *
884 * int (*ndo_set_features)(struct net_device *dev, u32 features);
885 * Called to update device configuration to new features. Passed
886 * feature set might be less than what was returned by ndo_fix_features()).
887 * Must return >0 or -errno if it changed dev->features itself.
888 *
889 */
890 #define HAVE_NET_DEVICE_OPS
891 struct net_device_ops {
892 int (*ndo_init)(struct net_device *dev);
893 void (*ndo_uninit)(struct net_device *dev);
894 int (*ndo_open)(struct net_device *dev);
895 int (*ndo_stop)(struct net_device *dev);
896 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb,
897 struct net_device *dev);
898 u16 (*ndo_select_queue)(struct net_device *dev,
899 struct sk_buff *skb);
900 void (*ndo_change_rx_flags)(struct net_device *dev,
901 int flags);
902 void (*ndo_set_rx_mode)(struct net_device *dev);
903 void (*ndo_set_multicast_list)(struct net_device *dev);
904 int (*ndo_set_mac_address)(struct net_device *dev,
905 void *addr);
906 int (*ndo_validate_addr)(struct net_device *dev);
907 int (*ndo_do_ioctl)(struct net_device *dev,
908 struct ifreq *ifr, int cmd);
909 int (*ndo_set_config)(struct net_device *dev,
910 struct ifmap *map);
911 int (*ndo_change_mtu)(struct net_device *dev,
912 int new_mtu);
913 int (*ndo_neigh_setup)(struct net_device *dev,
914 struct neigh_parms *);
915 void (*ndo_tx_timeout) (struct net_device *dev);
916
917 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
918 struct rtnl_link_stats64 *storage);
919 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
920
921 void (*ndo_vlan_rx_register)(struct net_device *dev,
922 struct vlan_group *grp);
923 void (*ndo_vlan_rx_add_vid)(struct net_device *dev,
924 unsigned short vid);
925 void (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
926 unsigned short vid);
927 #ifdef CONFIG_NET_POLL_CONTROLLER
928 void (*ndo_poll_controller)(struct net_device *dev);
929 int (*ndo_netpoll_setup)(struct net_device *dev,
930 struct netpoll_info *info);
931 void (*ndo_netpoll_cleanup)(struct net_device *dev);
932 #endif
933 int (*ndo_set_vf_mac)(struct net_device *dev,
934 int queue, u8 *mac);
935 int (*ndo_set_vf_vlan)(struct net_device *dev,
936 int queue, u16 vlan, u8 qos);
937 int (*ndo_set_vf_tx_rate)(struct net_device *dev,
938 int vf, int rate);
939 int (*ndo_get_vf_config)(struct net_device *dev,
940 int vf,
941 struct ifla_vf_info *ivf);
942 int (*ndo_set_vf_port)(struct net_device *dev,
943 int vf,
944 struct nlattr *port[]);
945 int (*ndo_get_vf_port)(struct net_device *dev,
946 int vf, struct sk_buff *skb);
947 int (*ndo_setup_tc)(struct net_device *dev, u8 tc);
948 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
949 int (*ndo_fcoe_enable)(struct net_device *dev);
950 int (*ndo_fcoe_disable)(struct net_device *dev);
951 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
952 u16 xid,
953 struct scatterlist *sgl,
954 unsigned int sgc);
955 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
956 u16 xid);
957 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
958 u16 xid,
959 struct scatterlist *sgl,
960 unsigned int sgc);
961 #define NETDEV_FCOE_WWNN 0
962 #define NETDEV_FCOE_WWPN 1
963 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
964 u64 *wwn, int type);
965 #endif
966 #ifdef CONFIG_RFS_ACCEL
967 int (*ndo_rx_flow_steer)(struct net_device *dev,
968 const struct sk_buff *skb,
969 u16 rxq_index,
970 u32 flow_id);
971 #endif
972 int (*ndo_add_slave)(struct net_device *dev,
973 struct net_device *slave_dev);
974 int (*ndo_del_slave)(struct net_device *dev,
975 struct net_device *slave_dev);
976 u32 (*ndo_fix_features)(struct net_device *dev,
977 u32 features);
978 int (*ndo_set_features)(struct net_device *dev,
979 u32 features);
980 };
981
982 /*
983 * The DEVICE structure.
984 * Actually, this whole structure is a big mistake. It mixes I/O
985 * data with strictly "high-level" data, and it has to know about
986 * almost every data structure used in the INET module.
987 *
988 * FIXME: cleanup struct net_device such that network protocol info
989 * moves out.
990 */
991
992 struct net_device {
993
994 /*
995 * This is the first field of the "visible" part of this structure
996 * (i.e. as seen by users in the "Space.c" file). It is the name
997 * of the interface.
998 */
999 char name[IFNAMSIZ];
1000
1001 struct pm_qos_request_list pm_qos_req;
1002
1003 /* device name hash chain */
1004 struct hlist_node name_hlist;
1005 /* snmp alias */
1006 char *ifalias;
1007
1008 /*
1009 * I/O specific fields
1010 * FIXME: Merge these and struct ifmap into one
1011 */
1012 unsigned long mem_end; /* shared mem end */
1013 unsigned long mem_start; /* shared mem start */
1014 unsigned long base_addr; /* device I/O address */
1015 unsigned int irq; /* device IRQ number */
1016
1017 /*
1018 * Some hardware also needs these fields, but they are not
1019 * part of the usual set specified in Space.c.
1020 */
1021
1022 unsigned long state;
1023
1024 struct list_head dev_list;
1025 struct list_head napi_list;
1026 struct list_head unreg_list;
1027
1028 /* currently active device features */
1029 u32 features;
1030 /* user-changeable features */
1031 u32 hw_features;
1032 /* user-requested features */
1033 u32 wanted_features;
1034 /* mask of features inheritable by VLAN devices */
1035 u32 vlan_features;
1036
1037 /* Net device feature bits; if you change something,
1038 * also update netdev_features_strings[] in ethtool.c */
1039
1040 #define NETIF_F_SG 1 /* Scatter/gather IO. */
1041 #define NETIF_F_IP_CSUM 2 /* Can checksum TCP/UDP over IPv4. */
1042 #define NETIF_F_NO_CSUM 4 /* Does not require checksum. F.e. loopack. */
1043 #define NETIF_F_HW_CSUM 8 /* Can checksum all the packets. */
1044 #define NETIF_F_IPV6_CSUM 16 /* Can checksum TCP/UDP over IPV6 */
1045 #define NETIF_F_HIGHDMA 32 /* Can DMA to high memory. */
1046 #define NETIF_F_FRAGLIST 64 /* Scatter/gather IO. */
1047 #define NETIF_F_HW_VLAN_TX 128 /* Transmit VLAN hw acceleration */
1048 #define NETIF_F_HW_VLAN_RX 256 /* Receive VLAN hw acceleration */
1049 #define NETIF_F_HW_VLAN_FILTER 512 /* Receive filtering on VLAN */
1050 #define NETIF_F_VLAN_CHALLENGED 1024 /* Device cannot handle VLAN packets */
1051 #define NETIF_F_GSO 2048 /* Enable software GSO. */
1052 #define NETIF_F_LLTX 4096 /* LockLess TX - deprecated. Please */
1053 /* do not use LLTX in new drivers */
1054 #define NETIF_F_NETNS_LOCAL 8192 /* Does not change network namespaces */
1055 #define NETIF_F_GRO 16384 /* Generic receive offload */
1056 #define NETIF_F_LRO 32768 /* large receive offload */
1057
1058 /* the GSO_MASK reserves bits 16 through 23 */
1059 #define NETIF_F_FCOE_CRC (1 << 24) /* FCoE CRC32 */
1060 #define NETIF_F_SCTP_CSUM (1 << 25) /* SCTP checksum offload */
1061 #define NETIF_F_FCOE_MTU (1 << 26) /* Supports max FCoE MTU, 2158 bytes*/
1062 #define NETIF_F_NTUPLE (1 << 27) /* N-tuple filters supported */
1063 #define NETIF_F_RXHASH (1 << 28) /* Receive hashing offload */
1064 #define NETIF_F_RXCSUM (1 << 29) /* Receive checksumming offload */
1065 #define NETIF_F_NOCACHE_COPY (1 << 30) /* Use no-cache copyfromuser */
1066 #define NETIF_F_LOOPBACK (1 << 31) /* Enable loopback */
1067
1068 /* Segmentation offload features */
1069 #define NETIF_F_GSO_SHIFT 16
1070 #define NETIF_F_GSO_MASK 0x00ff0000
1071 #define NETIF_F_TSO (SKB_GSO_TCPV4 << NETIF_F_GSO_SHIFT)
1072 #define NETIF_F_UFO (SKB_GSO_UDP << NETIF_F_GSO_SHIFT)
1073 #define NETIF_F_GSO_ROBUST (SKB_GSO_DODGY << NETIF_F_GSO_SHIFT)
1074 #define NETIF_F_TSO_ECN (SKB_GSO_TCP_ECN << NETIF_F_GSO_SHIFT)
1075 #define NETIF_F_TSO6 (SKB_GSO_TCPV6 << NETIF_F_GSO_SHIFT)
1076 #define NETIF_F_FSO (SKB_GSO_FCOE << NETIF_F_GSO_SHIFT)
1077
1078 /* Features valid for ethtool to change */
1079 /* = all defined minus driver/device-class-related */
1080 #define NETIF_F_NEVER_CHANGE (NETIF_F_VLAN_CHALLENGED | \
1081 NETIF_F_LLTX | NETIF_F_NETNS_LOCAL)
1082 #define NETIF_F_ETHTOOL_BITS (0xff3fffff & ~NETIF_F_NEVER_CHANGE)
1083
1084 /* List of features with software fallbacks. */
1085 #define NETIF_F_GSO_SOFTWARE (NETIF_F_TSO | NETIF_F_TSO_ECN | \
1086 NETIF_F_TSO6 | NETIF_F_UFO)
1087
1088
1089 #define NETIF_F_GEN_CSUM (NETIF_F_NO_CSUM | NETIF_F_HW_CSUM)
1090 #define NETIF_F_V4_CSUM (NETIF_F_GEN_CSUM | NETIF_F_IP_CSUM)
1091 #define NETIF_F_V6_CSUM (NETIF_F_GEN_CSUM | NETIF_F_IPV6_CSUM)
1092 #define NETIF_F_ALL_CSUM (NETIF_F_V4_CSUM | NETIF_F_V6_CSUM)
1093
1094 #define NETIF_F_ALL_TSO (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
1095
1096 #define NETIF_F_ALL_FCOE (NETIF_F_FCOE_CRC | NETIF_F_FCOE_MTU | \
1097 NETIF_F_FSO)
1098
1099 #define NETIF_F_ALL_TX_OFFLOADS (NETIF_F_ALL_CSUM | NETIF_F_SG | \
1100 NETIF_F_FRAGLIST | NETIF_F_ALL_TSO | \
1101 NETIF_F_HIGHDMA | \
1102 NETIF_F_SCTP_CSUM | \
1103 NETIF_F_ALL_FCOE)
1104
1105 /*
1106 * If one device supports one of these features, then enable them
1107 * for all in netdev_increment_features.
1108 */
1109 #define NETIF_F_ONE_FOR_ALL (NETIF_F_GSO_SOFTWARE | NETIF_F_GSO_ROBUST | \
1110 NETIF_F_SG | NETIF_F_HIGHDMA | \
1111 NETIF_F_FRAGLIST | NETIF_F_VLAN_CHALLENGED)
1112 /*
1113 * If one device doesn't support one of these features, then disable it
1114 * for all in netdev_increment_features.
1115 */
1116 #define NETIF_F_ALL_FOR_ALL (NETIF_F_NOCACHE_COPY | NETIF_F_FSO)
1117
1118 /* changeable features with no special hardware requirements */
1119 #define NETIF_F_SOFT_FEATURES (NETIF_F_GSO | NETIF_F_GRO)
1120
1121 /* Interface index. Unique device identifier */
1122 int ifindex;
1123 int iflink;
1124
1125 struct net_device_stats stats;
1126 atomic_long_t rx_dropped; /* dropped packets by core network
1127 * Do not use this in drivers.
1128 */
1129
1130 #ifdef CONFIG_WIRELESS_EXT
1131 /* List of functions to handle Wireless Extensions (instead of ioctl).
1132 * See <net/iw_handler.h> for details. Jean II */
1133 const struct iw_handler_def * wireless_handlers;
1134 /* Instance data managed by the core of Wireless Extensions. */
1135 struct iw_public_data * wireless_data;
1136 #endif
1137 /* Management operations */
1138 const struct net_device_ops *netdev_ops;
1139 const struct ethtool_ops *ethtool_ops;
1140
1141 /* Hardware header description */
1142 const struct header_ops *header_ops;
1143
1144 unsigned int flags; /* interface flags (a la BSD) */
1145 unsigned int priv_flags; /* Like 'flags' but invisible to userspace. */
1146 unsigned short gflags;
1147 unsigned short padded; /* How much padding added by alloc_netdev() */
1148
1149 unsigned char operstate; /* RFC2863 operstate */
1150 unsigned char link_mode; /* mapping policy to operstate */
1151
1152 unsigned char if_port; /* Selectable AUI, TP,..*/
1153 unsigned char dma; /* DMA channel */
1154
1155 unsigned int mtu; /* interface MTU value */
1156 unsigned short type; /* interface hardware type */
1157 unsigned short hard_header_len; /* hardware hdr length */
1158
1159 /* extra head- and tailroom the hardware may need, but not in all cases
1160 * can this be guaranteed, especially tailroom. Some cases also use
1161 * LL_MAX_HEADER instead to allocate the skb.
1162 */
1163 unsigned short needed_headroom;
1164 unsigned short needed_tailroom;
1165
1166 /* Interface address info. */
1167 unsigned char perm_addr[MAX_ADDR_LEN]; /* permanent hw address */
1168 unsigned char addr_assign_type; /* hw address assignment type */
1169 unsigned char addr_len; /* hardware address length */
1170 unsigned short dev_id; /* for shared network cards */
1171
1172 spinlock_t addr_list_lock;
1173 struct netdev_hw_addr_list uc; /* Unicast mac addresses */
1174 struct netdev_hw_addr_list mc; /* Multicast mac addresses */
1175 int uc_promisc;
1176 unsigned int promiscuity;
1177 unsigned int allmulti;
1178
1179
1180 /* Protocol specific pointers */
1181
1182 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1183 struct vlan_group __rcu *vlgrp; /* VLAN group */
1184 #endif
1185 #ifdef CONFIG_NET_DSA
1186 void *dsa_ptr; /* dsa specific data */
1187 #endif
1188 void *atalk_ptr; /* AppleTalk link */
1189 struct in_device __rcu *ip_ptr; /* IPv4 specific data */
1190 struct dn_dev __rcu *dn_ptr; /* DECnet specific data */
1191 struct inet6_dev __rcu *ip6_ptr; /* IPv6 specific data */
1192 void *ec_ptr; /* Econet specific data */
1193 void *ax25_ptr; /* AX.25 specific data */
1194 struct wireless_dev *ieee80211_ptr; /* IEEE 802.11 specific data,
1195 assign before registering */
1196
1197 /*
1198 * Cache lines mostly used on receive path (including eth_type_trans())
1199 */
1200 unsigned long last_rx; /* Time of last Rx
1201 * This should not be set in
1202 * drivers, unless really needed,
1203 * because network stack (bonding)
1204 * use it if/when necessary, to
1205 * avoid dirtying this cache line.
1206 */
1207
1208 struct net_device *master; /* Pointer to master device of a group,
1209 * which this device is member of.
1210 */
1211
1212 /* Interface address info used in eth_type_trans() */
1213 unsigned char *dev_addr; /* hw address, (before bcast
1214 because most packets are
1215 unicast) */
1216
1217 struct netdev_hw_addr_list dev_addrs; /* list of device
1218 hw addresses */
1219
1220 unsigned char broadcast[MAX_ADDR_LEN]; /* hw bcast add */
1221
1222 #ifdef CONFIG_RPS
1223 struct kset *queues_kset;
1224
1225 struct netdev_rx_queue *_rx;
1226
1227 /* Number of RX queues allocated at register_netdev() time */
1228 unsigned int num_rx_queues;
1229
1230 /* Number of RX queues currently active in device */
1231 unsigned int real_num_rx_queues;
1232
1233 #ifdef CONFIG_RFS_ACCEL
1234 /* CPU reverse-mapping for RX completion interrupts, indexed
1235 * by RX queue number. Assigned by driver. This must only be
1236 * set if the ndo_rx_flow_steer operation is defined. */
1237 struct cpu_rmap *rx_cpu_rmap;
1238 #endif
1239 #endif
1240
1241 rx_handler_func_t __rcu *rx_handler;
1242 void __rcu *rx_handler_data;
1243
1244 struct netdev_queue __rcu *ingress_queue;
1245
1246 /*
1247 * Cache lines mostly used on transmit path
1248 */
1249 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
1250
1251 /* Number of TX queues allocated at alloc_netdev_mq() time */
1252 unsigned int num_tx_queues;
1253
1254 /* Number of TX queues currently active in device */
1255 unsigned int real_num_tx_queues;
1256
1257 /* root qdisc from userspace point of view */
1258 struct Qdisc *qdisc;
1259
1260 unsigned long tx_queue_len; /* Max frames per queue allowed */
1261 spinlock_t tx_global_lock;
1262
1263 #ifdef CONFIG_XPS
1264 struct xps_dev_maps __rcu *xps_maps;
1265 #endif
1266
1267 /* These may be needed for future network-power-down code. */
1268
1269 /*
1270 * trans_start here is expensive for high speed devices on SMP,
1271 * please use netdev_queue->trans_start instead.
1272 */
1273 unsigned long trans_start; /* Time (in jiffies) of last Tx */
1274
1275 int watchdog_timeo; /* used by dev_watchdog() */
1276 struct timer_list watchdog_timer;
1277
1278 /* Number of references to this device */
1279 int __percpu *pcpu_refcnt;
1280
1281 /* delayed register/unregister */
1282 struct list_head todo_list;
1283 /* device index hash chain */
1284 struct hlist_node index_hlist;
1285
1286 struct list_head link_watch_list;
1287
1288 /* register/unregister state machine */
1289 enum { NETREG_UNINITIALIZED=0,
1290 NETREG_REGISTERED, /* completed register_netdevice */
1291 NETREG_UNREGISTERING, /* called unregister_netdevice */
1292 NETREG_UNREGISTERED, /* completed unregister todo */
1293 NETREG_RELEASED, /* called free_netdev */
1294 NETREG_DUMMY, /* dummy device for NAPI poll */
1295 } reg_state:8;
1296
1297 bool dismantle; /* device is going do be freed */
1298
1299 enum {
1300 RTNL_LINK_INITIALIZED,
1301 RTNL_LINK_INITIALIZING,
1302 } rtnl_link_state:16;
1303
1304 /* Called from unregister, can be used to call free_netdev */
1305 void (*destructor)(struct net_device *dev);
1306
1307 #ifdef CONFIG_NETPOLL
1308 struct netpoll_info *npinfo;
1309 #endif
1310
1311 #ifdef CONFIG_NET_NS
1312 /* Network namespace this network device is inside */
1313 struct net *nd_net;
1314 #endif
1315
1316 /* mid-layer private */
1317 union {
1318 void *ml_priv;
1319 struct pcpu_lstats __percpu *lstats; /* loopback stats */
1320 struct pcpu_tstats __percpu *tstats; /* tunnel stats */
1321 struct pcpu_dstats __percpu *dstats; /* dummy stats */
1322 };
1323 /* GARP */
1324 struct garp_port __rcu *garp_port;
1325
1326 /* class/net/name entry */
1327 struct device dev;
1328 /* space for optional device, statistics, and wireless sysfs groups */
1329 const struct attribute_group *sysfs_groups[4];
1330
1331 /* rtnetlink link ops */
1332 const struct rtnl_link_ops *rtnl_link_ops;
1333
1334 /* for setting kernel sock attribute on TCP connection setup */
1335 #define GSO_MAX_SIZE 65536
1336 unsigned int gso_max_size;
1337
1338 #ifdef CONFIG_DCB
1339 /* Data Center Bridging netlink ops */
1340 const struct dcbnl_rtnl_ops *dcbnl_ops;
1341 #endif
1342 u8 num_tc;
1343 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1344 u8 prio_tc_map[TC_BITMASK + 1];
1345
1346 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
1347 /* max exchange id for FCoE LRO by ddp */
1348 unsigned int fcoe_ddp_xid;
1349 #endif
1350 /* phy device may attach itself for hardware timestamping */
1351 struct phy_device *phydev;
1352
1353 /* group the device belongs to */
1354 int group;
1355 };
1356 #define to_net_dev(d) container_of(d, struct net_device, dev)
1357
1358 #define NETDEV_ALIGN 32
1359
1360 static inline
1361 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1362 {
1363 return dev->prio_tc_map[prio & TC_BITMASK];
1364 }
1365
1366 static inline
1367 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1368 {
1369 if (tc >= dev->num_tc)
1370 return -EINVAL;
1371
1372 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1373 return 0;
1374 }
1375
1376 static inline
1377 void netdev_reset_tc(struct net_device *dev)
1378 {
1379 dev->num_tc = 0;
1380 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1381 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1382 }
1383
1384 static inline
1385 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1386 {
1387 if (tc >= dev->num_tc)
1388 return -EINVAL;
1389
1390 dev->tc_to_txq[tc].count = count;
1391 dev->tc_to_txq[tc].offset = offset;
1392 return 0;
1393 }
1394
1395 static inline
1396 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1397 {
1398 if (num_tc > TC_MAX_QUEUE)
1399 return -EINVAL;
1400
1401 dev->num_tc = num_tc;
1402 return 0;
1403 }
1404
1405 static inline
1406 int netdev_get_num_tc(struct net_device *dev)
1407 {
1408 return dev->num_tc;
1409 }
1410
1411 static inline
1412 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1413 unsigned int index)
1414 {
1415 return &dev->_tx[index];
1416 }
1417
1418 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1419 void (*f)(struct net_device *,
1420 struct netdev_queue *,
1421 void *),
1422 void *arg)
1423 {
1424 unsigned int i;
1425
1426 for (i = 0; i < dev->num_tx_queues; i++)
1427 f(dev, &dev->_tx[i], arg);
1428 }
1429
1430 /*
1431 * Net namespace inlines
1432 */
1433 static inline
1434 struct net *dev_net(const struct net_device *dev)
1435 {
1436 return read_pnet(&dev->nd_net);
1437 }
1438
1439 static inline
1440 void dev_net_set(struct net_device *dev, struct net *net)
1441 {
1442 #ifdef CONFIG_NET_NS
1443 release_net(dev->nd_net);
1444 dev->nd_net = hold_net(net);
1445 #endif
1446 }
1447
1448 static inline bool netdev_uses_dsa_tags(struct net_device *dev)
1449 {
1450 #ifdef CONFIG_NET_DSA_TAG_DSA
1451 if (dev->dsa_ptr != NULL)
1452 return dsa_uses_dsa_tags(dev->dsa_ptr);
1453 #endif
1454
1455 return 0;
1456 }
1457
1458 #ifndef CONFIG_NET_NS
1459 static inline void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1460 {
1461 skb->dev = dev;
1462 }
1463 #else /* CONFIG_NET_NS */
1464 void skb_set_dev(struct sk_buff *skb, struct net_device *dev);
1465 #endif
1466
1467 static inline bool netdev_uses_trailer_tags(struct net_device *dev)
1468 {
1469 #ifdef CONFIG_NET_DSA_TAG_TRAILER
1470 if (dev->dsa_ptr != NULL)
1471 return dsa_uses_trailer_tags(dev->dsa_ptr);
1472 #endif
1473
1474 return 0;
1475 }
1476
1477 /**
1478 * netdev_priv - access network device private data
1479 * @dev: network device
1480 *
1481 * Get network device private data
1482 */
1483 static inline void *netdev_priv(const struct net_device *dev)
1484 {
1485 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1486 }
1487
1488 /* Set the sysfs physical device reference for the network logical device
1489 * if set prior to registration will cause a symlink during initialization.
1490 */
1491 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
1492
1493 /* Set the sysfs device type for the network logical device to allow
1494 * fin grained indentification of different network device types. For
1495 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1496 */
1497 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
1498
1499 /**
1500 * netif_napi_add - initialize a napi context
1501 * @dev: network device
1502 * @napi: napi context
1503 * @poll: polling function
1504 * @weight: default weight
1505 *
1506 * netif_napi_add() must be used to initialize a napi context prior to calling
1507 * *any* of the other napi related functions.
1508 */
1509 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1510 int (*poll)(struct napi_struct *, int), int weight);
1511
1512 /**
1513 * netif_napi_del - remove a napi context
1514 * @napi: napi context
1515 *
1516 * netif_napi_del() removes a napi context from the network device napi list
1517 */
1518 void netif_napi_del(struct napi_struct *napi);
1519
1520 struct napi_gro_cb {
1521 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1522 void *frag0;
1523
1524 /* Length of frag0. */
1525 unsigned int frag0_len;
1526
1527 /* This indicates where we are processing relative to skb->data. */
1528 int data_offset;
1529
1530 /* This is non-zero if the packet may be of the same flow. */
1531 int same_flow;
1532
1533 /* This is non-zero if the packet cannot be merged with the new skb. */
1534 int flush;
1535
1536 /* Number of segments aggregated. */
1537 int count;
1538
1539 /* Free the skb? */
1540 int free;
1541 };
1542
1543 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1544
1545 struct packet_type {
1546 __be16 type; /* This is really htons(ether_type). */
1547 struct net_device *dev; /* NULL is wildcarded here */
1548 int (*func) (struct sk_buff *,
1549 struct net_device *,
1550 struct packet_type *,
1551 struct net_device *);
1552 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
1553 u32 features);
1554 int (*gso_send_check)(struct sk_buff *skb);
1555 struct sk_buff **(*gro_receive)(struct sk_buff **head,
1556 struct sk_buff *skb);
1557 int (*gro_complete)(struct sk_buff *skb);
1558 void *af_packet_priv;
1559 struct list_head list;
1560 };
1561
1562 #include <linux/notifier.h>
1563
1564 extern rwlock_t dev_base_lock; /* Device list lock */
1565
1566
1567 #define for_each_netdev(net, d) \
1568 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
1569 #define for_each_netdev_reverse(net, d) \
1570 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
1571 #define for_each_netdev_rcu(net, d) \
1572 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
1573 #define for_each_netdev_safe(net, d, n) \
1574 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
1575 #define for_each_netdev_continue(net, d) \
1576 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
1577 #define for_each_netdev_continue_rcu(net, d) \
1578 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
1579 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
1580
1581 static inline struct net_device *next_net_device(struct net_device *dev)
1582 {
1583 struct list_head *lh;
1584 struct net *net;
1585
1586 net = dev_net(dev);
1587 lh = dev->dev_list.next;
1588 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1589 }
1590
1591 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
1592 {
1593 struct list_head *lh;
1594 struct net *net;
1595
1596 net = dev_net(dev);
1597 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
1598 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1599 }
1600
1601 static inline struct net_device *first_net_device(struct net *net)
1602 {
1603 return list_empty(&net->dev_base_head) ? NULL :
1604 net_device_entry(net->dev_base_head.next);
1605 }
1606
1607 static inline struct net_device *first_net_device_rcu(struct net *net)
1608 {
1609 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
1610
1611 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1612 }
1613
1614 extern int netdev_boot_setup_check(struct net_device *dev);
1615 extern unsigned long netdev_boot_base(const char *prefix, int unit);
1616 extern struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1617 const char *hwaddr);
1618 extern struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
1619 extern struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
1620 extern void dev_add_pack(struct packet_type *pt);
1621 extern void dev_remove_pack(struct packet_type *pt);
1622 extern void __dev_remove_pack(struct packet_type *pt);
1623
1624 extern struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short flags,
1625 unsigned short mask);
1626 extern struct net_device *dev_get_by_name(struct net *net, const char *name);
1627 extern struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
1628 extern struct net_device *__dev_get_by_name(struct net *net, const char *name);
1629 extern int dev_alloc_name(struct net_device *dev, const char *name);
1630 extern int dev_open(struct net_device *dev);
1631 extern int dev_close(struct net_device *dev);
1632 extern void dev_disable_lro(struct net_device *dev);
1633 extern int dev_queue_xmit(struct sk_buff *skb);
1634 extern int register_netdevice(struct net_device *dev);
1635 extern void unregister_netdevice_queue(struct net_device *dev,
1636 struct list_head *head);
1637 extern void unregister_netdevice_many(struct list_head *head);
1638 static inline void unregister_netdevice(struct net_device *dev)
1639 {
1640 unregister_netdevice_queue(dev, NULL);
1641 }
1642
1643 extern int netdev_refcnt_read(const struct net_device *dev);
1644 extern void free_netdev(struct net_device *dev);
1645 extern void synchronize_net(void);
1646 extern int register_netdevice_notifier(struct notifier_block *nb);
1647 extern int unregister_netdevice_notifier(struct notifier_block *nb);
1648 extern int init_dummy_netdev(struct net_device *dev);
1649 extern void netdev_resync_ops(struct net_device *dev);
1650
1651 extern int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
1652 extern struct net_device *dev_get_by_index(struct net *net, int ifindex);
1653 extern struct net_device *__dev_get_by_index(struct net *net, int ifindex);
1654 extern struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
1655 extern int dev_restart(struct net_device *dev);
1656 #ifdef CONFIG_NETPOLL_TRAP
1657 extern int netpoll_trap(void);
1658 #endif
1659 extern int skb_gro_receive(struct sk_buff **head,
1660 struct sk_buff *skb);
1661 extern void skb_gro_reset_offset(struct sk_buff *skb);
1662
1663 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
1664 {
1665 return NAPI_GRO_CB(skb)->data_offset;
1666 }
1667
1668 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
1669 {
1670 return skb->len - NAPI_GRO_CB(skb)->data_offset;
1671 }
1672
1673 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
1674 {
1675 NAPI_GRO_CB(skb)->data_offset += len;
1676 }
1677
1678 static inline void *skb_gro_header_fast(struct sk_buff *skb,
1679 unsigned int offset)
1680 {
1681 return NAPI_GRO_CB(skb)->frag0 + offset;
1682 }
1683
1684 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
1685 {
1686 return NAPI_GRO_CB(skb)->frag0_len < hlen;
1687 }
1688
1689 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
1690 unsigned int offset)
1691 {
1692 NAPI_GRO_CB(skb)->frag0 = NULL;
1693 NAPI_GRO_CB(skb)->frag0_len = 0;
1694 return pskb_may_pull(skb, hlen) ? skb->data + offset : NULL;
1695 }
1696
1697 static inline void *skb_gro_mac_header(struct sk_buff *skb)
1698 {
1699 return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb);
1700 }
1701
1702 static inline void *skb_gro_network_header(struct sk_buff *skb)
1703 {
1704 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
1705 skb_network_offset(skb);
1706 }
1707
1708 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
1709 unsigned short type,
1710 const void *daddr, const void *saddr,
1711 unsigned len)
1712 {
1713 if (!dev->header_ops || !dev->header_ops->create)
1714 return 0;
1715
1716 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
1717 }
1718
1719 static inline int dev_parse_header(const struct sk_buff *skb,
1720 unsigned char *haddr)
1721 {
1722 const struct net_device *dev = skb->dev;
1723
1724 if (!dev->header_ops || !dev->header_ops->parse)
1725 return 0;
1726 return dev->header_ops->parse(skb, haddr);
1727 }
1728
1729 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
1730 extern int register_gifconf(unsigned int family, gifconf_func_t * gifconf);
1731 static inline int unregister_gifconf(unsigned int family)
1732 {
1733 return register_gifconf(family, NULL);
1734 }
1735
1736 /*
1737 * Incoming packets are placed on per-cpu queues
1738 */
1739 struct softnet_data {
1740 struct Qdisc *output_queue;
1741 struct Qdisc **output_queue_tailp;
1742 struct list_head poll_list;
1743 struct sk_buff *completion_queue;
1744 struct sk_buff_head process_queue;
1745
1746 /* stats */
1747 unsigned int processed;
1748 unsigned int time_squeeze;
1749 unsigned int cpu_collision;
1750 unsigned int received_rps;
1751
1752 #ifdef CONFIG_RPS
1753 struct softnet_data *rps_ipi_list;
1754
1755 /* Elements below can be accessed between CPUs for RPS */
1756 struct call_single_data csd ____cacheline_aligned_in_smp;
1757 struct softnet_data *rps_ipi_next;
1758 unsigned int cpu;
1759 unsigned int input_queue_head;
1760 unsigned int input_queue_tail;
1761 #endif
1762 unsigned dropped;
1763 struct sk_buff_head input_pkt_queue;
1764 struct napi_struct backlog;
1765 };
1766
1767 static inline void input_queue_head_incr(struct softnet_data *sd)
1768 {
1769 #ifdef CONFIG_RPS
1770 sd->input_queue_head++;
1771 #endif
1772 }
1773
1774 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
1775 unsigned int *qtail)
1776 {
1777 #ifdef CONFIG_RPS
1778 *qtail = ++sd->input_queue_tail;
1779 #endif
1780 }
1781
1782 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
1783
1784 #define HAVE_NETIF_QUEUE
1785
1786 extern void __netif_schedule(struct Qdisc *q);
1787
1788 static inline void netif_schedule_queue(struct netdev_queue *txq)
1789 {
1790 if (!test_bit(__QUEUE_STATE_XOFF, &txq->state))
1791 __netif_schedule(txq->qdisc);
1792 }
1793
1794 static inline void netif_tx_schedule_all(struct net_device *dev)
1795 {
1796 unsigned int i;
1797
1798 for (i = 0; i < dev->num_tx_queues; i++)
1799 netif_schedule_queue(netdev_get_tx_queue(dev, i));
1800 }
1801
1802 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
1803 {
1804 clear_bit(__QUEUE_STATE_XOFF, &dev_queue->state);
1805 }
1806
1807 /**
1808 * netif_start_queue - allow transmit
1809 * @dev: network device
1810 *
1811 * Allow upper layers to call the device hard_start_xmit routine.
1812 */
1813 static inline void netif_start_queue(struct net_device *dev)
1814 {
1815 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
1816 }
1817
1818 static inline void netif_tx_start_all_queues(struct net_device *dev)
1819 {
1820 unsigned int i;
1821
1822 for (i = 0; i < dev->num_tx_queues; i++) {
1823 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1824 netif_tx_start_queue(txq);
1825 }
1826 }
1827
1828 static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue)
1829 {
1830 #ifdef CONFIG_NETPOLL_TRAP
1831 if (netpoll_trap()) {
1832 netif_tx_start_queue(dev_queue);
1833 return;
1834 }
1835 #endif
1836 if (test_and_clear_bit(__QUEUE_STATE_XOFF, &dev_queue->state))
1837 __netif_schedule(dev_queue->qdisc);
1838 }
1839
1840 /**
1841 * netif_wake_queue - restart transmit
1842 * @dev: network device
1843 *
1844 * Allow upper layers to call the device hard_start_xmit routine.
1845 * Used for flow control when transmit resources are available.
1846 */
1847 static inline void netif_wake_queue(struct net_device *dev)
1848 {
1849 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
1850 }
1851
1852 static inline void netif_tx_wake_all_queues(struct net_device *dev)
1853 {
1854 unsigned int i;
1855
1856 for (i = 0; i < dev->num_tx_queues; i++) {
1857 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1858 netif_tx_wake_queue(txq);
1859 }
1860 }
1861
1862 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
1863 {
1864 if (WARN_ON(!dev_queue)) {
1865 pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
1866 return;
1867 }
1868 set_bit(__QUEUE_STATE_XOFF, &dev_queue->state);
1869 }
1870
1871 /**
1872 * netif_stop_queue - stop transmitted packets
1873 * @dev: network device
1874 *
1875 * Stop upper layers calling the device hard_start_xmit routine.
1876 * Used for flow control when transmit resources are unavailable.
1877 */
1878 static inline void netif_stop_queue(struct net_device *dev)
1879 {
1880 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
1881 }
1882
1883 static inline void netif_tx_stop_all_queues(struct net_device *dev)
1884 {
1885 unsigned int i;
1886
1887 for (i = 0; i < dev->num_tx_queues; i++) {
1888 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1889 netif_tx_stop_queue(txq);
1890 }
1891 }
1892
1893 static inline int netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
1894 {
1895 return test_bit(__QUEUE_STATE_XOFF, &dev_queue->state);
1896 }
1897
1898 /**
1899 * netif_queue_stopped - test if transmit queue is flowblocked
1900 * @dev: network device
1901 *
1902 * Test if transmit queue on device is currently unable to send.
1903 */
1904 static inline int netif_queue_stopped(const struct net_device *dev)
1905 {
1906 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
1907 }
1908
1909 static inline int netif_tx_queue_frozen_or_stopped(const struct netdev_queue *dev_queue)
1910 {
1911 return dev_queue->state & QUEUE_STATE_XOFF_OR_FROZEN;
1912 }
1913
1914 /**
1915 * netif_running - test if up
1916 * @dev: network device
1917 *
1918 * Test if the device has been brought up.
1919 */
1920 static inline int netif_running(const struct net_device *dev)
1921 {
1922 return test_bit(__LINK_STATE_START, &dev->state);
1923 }
1924
1925 /*
1926 * Routines to manage the subqueues on a device. We only need start
1927 * stop, and a check if it's stopped. All other device management is
1928 * done at the overall netdevice level.
1929 * Also test the device if we're multiqueue.
1930 */
1931
1932 /**
1933 * netif_start_subqueue - allow sending packets on subqueue
1934 * @dev: network device
1935 * @queue_index: sub queue index
1936 *
1937 * Start individual transmit queue of a device with multiple transmit queues.
1938 */
1939 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
1940 {
1941 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1942
1943 netif_tx_start_queue(txq);
1944 }
1945
1946 /**
1947 * netif_stop_subqueue - stop sending packets on subqueue
1948 * @dev: network device
1949 * @queue_index: sub queue index
1950 *
1951 * Stop individual transmit queue of a device with multiple transmit queues.
1952 */
1953 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
1954 {
1955 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1956 #ifdef CONFIG_NETPOLL_TRAP
1957 if (netpoll_trap())
1958 return;
1959 #endif
1960 netif_tx_stop_queue(txq);
1961 }
1962
1963 /**
1964 * netif_subqueue_stopped - test status of subqueue
1965 * @dev: network device
1966 * @queue_index: sub queue index
1967 *
1968 * Check individual transmit queue of a device with multiple transmit queues.
1969 */
1970 static inline int __netif_subqueue_stopped(const struct net_device *dev,
1971 u16 queue_index)
1972 {
1973 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1974
1975 return netif_tx_queue_stopped(txq);
1976 }
1977
1978 static inline int netif_subqueue_stopped(const struct net_device *dev,
1979 struct sk_buff *skb)
1980 {
1981 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
1982 }
1983
1984 /**
1985 * netif_wake_subqueue - allow sending packets on subqueue
1986 * @dev: network device
1987 * @queue_index: sub queue index
1988 *
1989 * Resume individual transmit queue of a device with multiple transmit queues.
1990 */
1991 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
1992 {
1993 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1994 #ifdef CONFIG_NETPOLL_TRAP
1995 if (netpoll_trap())
1996 return;
1997 #endif
1998 if (test_and_clear_bit(__QUEUE_STATE_XOFF, &txq->state))
1999 __netif_schedule(txq->qdisc);
2000 }
2001
2002 /*
2003 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2004 * as a distribution range limit for the returned value.
2005 */
2006 static inline u16 skb_tx_hash(const struct net_device *dev,
2007 const struct sk_buff *skb)
2008 {
2009 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2010 }
2011
2012 /**
2013 * netif_is_multiqueue - test if device has multiple transmit queues
2014 * @dev: network device
2015 *
2016 * Check if device has multiple transmit queues
2017 */
2018 static inline int netif_is_multiqueue(const struct net_device *dev)
2019 {
2020 return dev->num_tx_queues > 1;
2021 }
2022
2023 extern int netif_set_real_num_tx_queues(struct net_device *dev,
2024 unsigned int txq);
2025
2026 #ifdef CONFIG_RPS
2027 extern int netif_set_real_num_rx_queues(struct net_device *dev,
2028 unsigned int rxq);
2029 #else
2030 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2031 unsigned int rxq)
2032 {
2033 return 0;
2034 }
2035 #endif
2036
2037 static inline int netif_copy_real_num_queues(struct net_device *to_dev,
2038 const struct net_device *from_dev)
2039 {
2040 netif_set_real_num_tx_queues(to_dev, from_dev->real_num_tx_queues);
2041 #ifdef CONFIG_RPS
2042 return netif_set_real_num_rx_queues(to_dev,
2043 from_dev->real_num_rx_queues);
2044 #else
2045 return 0;
2046 #endif
2047 }
2048
2049 /* Use this variant when it is known for sure that it
2050 * is executing from hardware interrupt context or with hardware interrupts
2051 * disabled.
2052 */
2053 extern void dev_kfree_skb_irq(struct sk_buff *skb);
2054
2055 /* Use this variant in places where it could be invoked
2056 * from either hardware interrupt or other context, with hardware interrupts
2057 * either disabled or enabled.
2058 */
2059 extern void dev_kfree_skb_any(struct sk_buff *skb);
2060
2061 #define HAVE_NETIF_RX 1
2062 extern int netif_rx(struct sk_buff *skb);
2063 extern int netif_rx_ni(struct sk_buff *skb);
2064 #define HAVE_NETIF_RECEIVE_SKB 1
2065 extern int netif_receive_skb(struct sk_buff *skb);
2066 extern gro_result_t dev_gro_receive(struct napi_struct *napi,
2067 struct sk_buff *skb);
2068 extern gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb);
2069 extern gro_result_t napi_gro_receive(struct napi_struct *napi,
2070 struct sk_buff *skb);
2071 extern void napi_gro_flush(struct napi_struct *napi);
2072 extern struct sk_buff * napi_get_frags(struct napi_struct *napi);
2073 extern gro_result_t napi_frags_finish(struct napi_struct *napi,
2074 struct sk_buff *skb,
2075 gro_result_t ret);
2076 extern struct sk_buff * napi_frags_skb(struct napi_struct *napi);
2077 extern gro_result_t napi_gro_frags(struct napi_struct *napi);
2078
2079 static inline void napi_free_frags(struct napi_struct *napi)
2080 {
2081 kfree_skb(napi->skb);
2082 napi->skb = NULL;
2083 }
2084
2085 extern int netdev_rx_handler_register(struct net_device *dev,
2086 rx_handler_func_t *rx_handler,
2087 void *rx_handler_data);
2088 extern void netdev_rx_handler_unregister(struct net_device *dev);
2089
2090 extern int dev_valid_name(const char *name);
2091 extern int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2092 extern int dev_ethtool(struct net *net, struct ifreq *);
2093 extern unsigned dev_get_flags(const struct net_device *);
2094 extern int __dev_change_flags(struct net_device *, unsigned int flags);
2095 extern int dev_change_flags(struct net_device *, unsigned);
2096 extern void __dev_notify_flags(struct net_device *, unsigned int old_flags);
2097 extern int dev_change_name(struct net_device *, const char *);
2098 extern int dev_set_alias(struct net_device *, const char *, size_t);
2099 extern int dev_change_net_namespace(struct net_device *,
2100 struct net *, const char *);
2101 extern int dev_set_mtu(struct net_device *, int);
2102 extern void dev_set_group(struct net_device *, int);
2103 extern int dev_set_mac_address(struct net_device *,
2104 struct sockaddr *);
2105 extern int dev_hard_start_xmit(struct sk_buff *skb,
2106 struct net_device *dev,
2107 struct netdev_queue *txq);
2108 extern int dev_forward_skb(struct net_device *dev,
2109 struct sk_buff *skb);
2110
2111 extern int netdev_budget;
2112
2113 /* Called by rtnetlink.c:rtnl_unlock() */
2114 extern void netdev_run_todo(void);
2115
2116 /**
2117 * dev_put - release reference to device
2118 * @dev: network device
2119 *
2120 * Release reference to device to allow it to be freed.
2121 */
2122 static inline void dev_put(struct net_device *dev)
2123 {
2124 irqsafe_cpu_dec(*dev->pcpu_refcnt);
2125 }
2126
2127 /**
2128 * dev_hold - get reference to device
2129 * @dev: network device
2130 *
2131 * Hold reference to device to keep it from being freed.
2132 */
2133 static inline void dev_hold(struct net_device *dev)
2134 {
2135 irqsafe_cpu_inc(*dev->pcpu_refcnt);
2136 }
2137
2138 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
2139 * and _off may be called from IRQ context, but it is caller
2140 * who is responsible for serialization of these calls.
2141 *
2142 * The name carrier is inappropriate, these functions should really be
2143 * called netif_lowerlayer_*() because they represent the state of any
2144 * kind of lower layer not just hardware media.
2145 */
2146
2147 extern void linkwatch_fire_event(struct net_device *dev);
2148 extern void linkwatch_forget_dev(struct net_device *dev);
2149
2150 /**
2151 * netif_carrier_ok - test if carrier present
2152 * @dev: network device
2153 *
2154 * Check if carrier is present on device
2155 */
2156 static inline int netif_carrier_ok(const struct net_device *dev)
2157 {
2158 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
2159 }
2160
2161 extern unsigned long dev_trans_start(struct net_device *dev);
2162
2163 extern void __netdev_watchdog_up(struct net_device *dev);
2164
2165 extern void netif_carrier_on(struct net_device *dev);
2166
2167 extern void netif_carrier_off(struct net_device *dev);
2168
2169 extern void netif_notify_peers(struct net_device *dev);
2170
2171 /**
2172 * netif_dormant_on - mark device as dormant.
2173 * @dev: network device
2174 *
2175 * Mark device as dormant (as per RFC2863).
2176 *
2177 * The dormant state indicates that the relevant interface is not
2178 * actually in a condition to pass packets (i.e., it is not 'up') but is
2179 * in a "pending" state, waiting for some external event. For "on-
2180 * demand" interfaces, this new state identifies the situation where the
2181 * interface is waiting for events to place it in the up state.
2182 *
2183 */
2184 static inline void netif_dormant_on(struct net_device *dev)
2185 {
2186 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
2187 linkwatch_fire_event(dev);
2188 }
2189
2190 /**
2191 * netif_dormant_off - set device as not dormant.
2192 * @dev: network device
2193 *
2194 * Device is not in dormant state.
2195 */
2196 static inline void netif_dormant_off(struct net_device *dev)
2197 {
2198 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
2199 linkwatch_fire_event(dev);
2200 }
2201
2202 /**
2203 * netif_dormant - test if carrier present
2204 * @dev: network device
2205 *
2206 * Check if carrier is present on device
2207 */
2208 static inline int netif_dormant(const struct net_device *dev)
2209 {
2210 return test_bit(__LINK_STATE_DORMANT, &dev->state);
2211 }
2212
2213
2214 /**
2215 * netif_oper_up - test if device is operational
2216 * @dev: network device
2217 *
2218 * Check if carrier is operational
2219 */
2220 static inline int netif_oper_up(const struct net_device *dev)
2221 {
2222 return (dev->operstate == IF_OPER_UP ||
2223 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
2224 }
2225
2226 /**
2227 * netif_device_present - is device available or removed
2228 * @dev: network device
2229 *
2230 * Check if device has not been removed from system.
2231 */
2232 static inline int netif_device_present(struct net_device *dev)
2233 {
2234 return test_bit(__LINK_STATE_PRESENT, &dev->state);
2235 }
2236
2237 extern void netif_device_detach(struct net_device *dev);
2238
2239 extern void netif_device_attach(struct net_device *dev);
2240
2241 /*
2242 * Network interface message level settings
2243 */
2244 #define HAVE_NETIF_MSG 1
2245
2246 enum {
2247 NETIF_MSG_DRV = 0x0001,
2248 NETIF_MSG_PROBE = 0x0002,
2249 NETIF_MSG_LINK = 0x0004,
2250 NETIF_MSG_TIMER = 0x0008,
2251 NETIF_MSG_IFDOWN = 0x0010,
2252 NETIF_MSG_IFUP = 0x0020,
2253 NETIF_MSG_RX_ERR = 0x0040,
2254 NETIF_MSG_TX_ERR = 0x0080,
2255 NETIF_MSG_TX_QUEUED = 0x0100,
2256 NETIF_MSG_INTR = 0x0200,
2257 NETIF_MSG_TX_DONE = 0x0400,
2258 NETIF_MSG_RX_STATUS = 0x0800,
2259 NETIF_MSG_PKTDATA = 0x1000,
2260 NETIF_MSG_HW = 0x2000,
2261 NETIF_MSG_WOL = 0x4000,
2262 };
2263
2264 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
2265 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
2266 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
2267 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
2268 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
2269 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
2270 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
2271 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
2272 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
2273 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
2274 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
2275 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
2276 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
2277 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
2278 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
2279
2280 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
2281 {
2282 /* use default */
2283 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
2284 return default_msg_enable_bits;
2285 if (debug_value == 0) /* no output */
2286 return 0;
2287 /* set low N bits */
2288 return (1 << debug_value) - 1;
2289 }
2290
2291 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
2292 {
2293 spin_lock(&txq->_xmit_lock);
2294 txq->xmit_lock_owner = cpu;
2295 }
2296
2297 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
2298 {
2299 spin_lock_bh(&txq->_xmit_lock);
2300 txq->xmit_lock_owner = smp_processor_id();
2301 }
2302
2303 static inline int __netif_tx_trylock(struct netdev_queue *txq)
2304 {
2305 int ok = spin_trylock(&txq->_xmit_lock);
2306 if (likely(ok))
2307 txq->xmit_lock_owner = smp_processor_id();
2308 return ok;
2309 }
2310
2311 static inline void __netif_tx_unlock(struct netdev_queue *txq)
2312 {
2313 txq->xmit_lock_owner = -1;
2314 spin_unlock(&txq->_xmit_lock);
2315 }
2316
2317 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
2318 {
2319 txq->xmit_lock_owner = -1;
2320 spin_unlock_bh(&txq->_xmit_lock);
2321 }
2322
2323 static inline void txq_trans_update(struct netdev_queue *txq)
2324 {
2325 if (txq->xmit_lock_owner != -1)
2326 txq->trans_start = jiffies;
2327 }
2328
2329 /**
2330 * netif_tx_lock - grab network device transmit lock
2331 * @dev: network device
2332 *
2333 * Get network device transmit lock
2334 */
2335 static inline void netif_tx_lock(struct net_device *dev)
2336 {
2337 unsigned int i;
2338 int cpu;
2339
2340 spin_lock(&dev->tx_global_lock);
2341 cpu = smp_processor_id();
2342 for (i = 0; i < dev->num_tx_queues; i++) {
2343 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2344
2345 /* We are the only thread of execution doing a
2346 * freeze, but we have to grab the _xmit_lock in
2347 * order to synchronize with threads which are in
2348 * the ->hard_start_xmit() handler and already
2349 * checked the frozen bit.
2350 */
2351 __netif_tx_lock(txq, cpu);
2352 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
2353 __netif_tx_unlock(txq);
2354 }
2355 }
2356
2357 static inline void netif_tx_lock_bh(struct net_device *dev)
2358 {
2359 local_bh_disable();
2360 netif_tx_lock(dev);
2361 }
2362
2363 static inline void netif_tx_unlock(struct net_device *dev)
2364 {
2365 unsigned int i;
2366
2367 for (i = 0; i < dev->num_tx_queues; i++) {
2368 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2369
2370 /* No need to grab the _xmit_lock here. If the
2371 * queue is not stopped for another reason, we
2372 * force a schedule.
2373 */
2374 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
2375 netif_schedule_queue(txq);
2376 }
2377 spin_unlock(&dev->tx_global_lock);
2378 }
2379
2380 static inline void netif_tx_unlock_bh(struct net_device *dev)
2381 {
2382 netif_tx_unlock(dev);
2383 local_bh_enable();
2384 }
2385
2386 #define HARD_TX_LOCK(dev, txq, cpu) { \
2387 if ((dev->features & NETIF_F_LLTX) == 0) { \
2388 __netif_tx_lock(txq, cpu); \
2389 } \
2390 }
2391
2392 #define HARD_TX_UNLOCK(dev, txq) { \
2393 if ((dev->features & NETIF_F_LLTX) == 0) { \
2394 __netif_tx_unlock(txq); \
2395 } \
2396 }
2397
2398 static inline void netif_tx_disable(struct net_device *dev)
2399 {
2400 unsigned int i;
2401 int cpu;
2402
2403 local_bh_disable();
2404 cpu = smp_processor_id();
2405 for (i = 0; i < dev->num_tx_queues; i++) {
2406 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2407
2408 __netif_tx_lock(txq, cpu);
2409 netif_tx_stop_queue(txq);
2410 __netif_tx_unlock(txq);
2411 }
2412 local_bh_enable();
2413 }
2414
2415 static inline void netif_addr_lock(struct net_device *dev)
2416 {
2417 spin_lock(&dev->addr_list_lock);
2418 }
2419
2420 static inline void netif_addr_lock_bh(struct net_device *dev)
2421 {
2422 spin_lock_bh(&dev->addr_list_lock);
2423 }
2424
2425 static inline void netif_addr_unlock(struct net_device *dev)
2426 {
2427 spin_unlock(&dev->addr_list_lock);
2428 }
2429
2430 static inline void netif_addr_unlock_bh(struct net_device *dev)
2431 {
2432 spin_unlock_bh(&dev->addr_list_lock);
2433 }
2434
2435 /*
2436 * dev_addrs walker. Should be used only for read access. Call with
2437 * rcu_read_lock held.
2438 */
2439 #define for_each_dev_addr(dev, ha) \
2440 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
2441
2442 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
2443
2444 extern void ether_setup(struct net_device *dev);
2445
2446 /* Support for loadable net-drivers */
2447 extern struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
2448 void (*setup)(struct net_device *),
2449 unsigned int txqs, unsigned int rxqs);
2450 #define alloc_netdev(sizeof_priv, name, setup) \
2451 alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1)
2452
2453 #define alloc_netdev_mq(sizeof_priv, name, setup, count) \
2454 alloc_netdev_mqs(sizeof_priv, name, setup, count, count)
2455
2456 extern int register_netdev(struct net_device *dev);
2457 extern void unregister_netdev(struct net_device *dev);
2458
2459 /* General hardware address lists handling functions */
2460 extern int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
2461 struct netdev_hw_addr_list *from_list,
2462 int addr_len, unsigned char addr_type);
2463 extern void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
2464 struct netdev_hw_addr_list *from_list,
2465 int addr_len, unsigned char addr_type);
2466 extern int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
2467 struct netdev_hw_addr_list *from_list,
2468 int addr_len);
2469 extern void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
2470 struct netdev_hw_addr_list *from_list,
2471 int addr_len);
2472 extern void __hw_addr_flush(struct netdev_hw_addr_list *list);
2473 extern void __hw_addr_init(struct netdev_hw_addr_list *list);
2474
2475 /* Functions used for device addresses handling */
2476 extern int dev_addr_add(struct net_device *dev, unsigned char *addr,
2477 unsigned char addr_type);
2478 extern int dev_addr_del(struct net_device *dev, unsigned char *addr,
2479 unsigned char addr_type);
2480 extern int dev_addr_add_multiple(struct net_device *to_dev,
2481 struct net_device *from_dev,
2482 unsigned char addr_type);
2483 extern int dev_addr_del_multiple(struct net_device *to_dev,
2484 struct net_device *from_dev,
2485 unsigned char addr_type);
2486 extern void dev_addr_flush(struct net_device *dev);
2487 extern int dev_addr_init(struct net_device *dev);
2488
2489 /* Functions used for unicast addresses handling */
2490 extern int dev_uc_add(struct net_device *dev, unsigned char *addr);
2491 extern int dev_uc_del(struct net_device *dev, unsigned char *addr);
2492 extern int dev_uc_sync(struct net_device *to, struct net_device *from);
2493 extern void dev_uc_unsync(struct net_device *to, struct net_device *from);
2494 extern void dev_uc_flush(struct net_device *dev);
2495 extern void dev_uc_init(struct net_device *dev);
2496
2497 /* Functions used for multicast addresses handling */
2498 extern int dev_mc_add(struct net_device *dev, unsigned char *addr);
2499 extern int dev_mc_add_global(struct net_device *dev, unsigned char *addr);
2500 extern int dev_mc_del(struct net_device *dev, unsigned char *addr);
2501 extern int dev_mc_del_global(struct net_device *dev, unsigned char *addr);
2502 extern int dev_mc_sync(struct net_device *to, struct net_device *from);
2503 extern void dev_mc_unsync(struct net_device *to, struct net_device *from);
2504 extern void dev_mc_flush(struct net_device *dev);
2505 extern void dev_mc_init(struct net_device *dev);
2506
2507 /* Functions used for secondary unicast and multicast support */
2508 extern void dev_set_rx_mode(struct net_device *dev);
2509 extern void __dev_set_rx_mode(struct net_device *dev);
2510 extern int dev_set_promiscuity(struct net_device *dev, int inc);
2511 extern int dev_set_allmulti(struct net_device *dev, int inc);
2512 extern void netdev_state_change(struct net_device *dev);
2513 extern int netdev_bonding_change(struct net_device *dev,
2514 unsigned long event);
2515 extern void netdev_features_change(struct net_device *dev);
2516 /* Load a device via the kmod */
2517 extern void dev_load(struct net *net, const char *name);
2518 extern void dev_mcast_init(void);
2519 extern struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
2520 struct rtnl_link_stats64 *storage);
2521
2522 extern int netdev_max_backlog;
2523 extern int netdev_tstamp_prequeue;
2524 extern int weight_p;
2525 extern int bpf_jit_enable;
2526 extern int netdev_set_master(struct net_device *dev, struct net_device *master);
2527 extern int netdev_set_bond_master(struct net_device *dev,
2528 struct net_device *master);
2529 extern int skb_checksum_help(struct sk_buff *skb);
2530 extern struct sk_buff *skb_gso_segment(struct sk_buff *skb, u32 features);
2531 #ifdef CONFIG_BUG
2532 extern void netdev_rx_csum_fault(struct net_device *dev);
2533 #else
2534 static inline void netdev_rx_csum_fault(struct net_device *dev)
2535 {
2536 }
2537 #endif
2538 /* rx skb timestamps */
2539 extern void net_enable_timestamp(void);
2540 extern void net_disable_timestamp(void);
2541
2542 #ifdef CONFIG_PROC_FS
2543 extern void *dev_seq_start(struct seq_file *seq, loff_t *pos);
2544 extern void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2545 extern void dev_seq_stop(struct seq_file *seq, void *v);
2546 #endif
2547
2548 extern int netdev_class_create_file(struct class_attribute *class_attr);
2549 extern void netdev_class_remove_file(struct class_attribute *class_attr);
2550
2551 extern struct kobj_ns_type_operations net_ns_type_operations;
2552
2553 extern const char *netdev_drivername(const struct net_device *dev);
2554
2555 extern void linkwatch_run_queue(void);
2556
2557 static inline u32 netdev_get_wanted_features(struct net_device *dev)
2558 {
2559 return (dev->features & ~dev->hw_features) | dev->wanted_features;
2560 }
2561 u32 netdev_increment_features(u32 all, u32 one, u32 mask);
2562 u32 netdev_fix_features(struct net_device *dev, u32 features);
2563 int __netdev_update_features(struct net_device *dev);
2564 void netdev_update_features(struct net_device *dev);
2565 void netdev_change_features(struct net_device *dev);
2566
2567 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
2568 struct net_device *dev);
2569
2570 u32 netif_skb_features(struct sk_buff *skb);
2571
2572 static inline int net_gso_ok(u32 features, int gso_type)
2573 {
2574 int feature = gso_type << NETIF_F_GSO_SHIFT;
2575 return (features & feature) == feature;
2576 }
2577
2578 static inline int skb_gso_ok(struct sk_buff *skb, u32 features)
2579 {
2580 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
2581 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
2582 }
2583
2584 static inline int netif_needs_gso(struct sk_buff *skb, int features)
2585 {
2586 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
2587 unlikely(skb->ip_summed != CHECKSUM_PARTIAL));
2588 }
2589
2590 static inline void netif_set_gso_max_size(struct net_device *dev,
2591 unsigned int size)
2592 {
2593 dev->gso_max_size = size;
2594 }
2595
2596 static inline int netif_is_bond_slave(struct net_device *dev)
2597 {
2598 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
2599 }
2600
2601 extern struct pernet_operations __net_initdata loopback_net_ops;
2602
2603 int dev_ethtool_get_settings(struct net_device *dev,
2604 struct ethtool_cmd *cmd);
2605
2606 static inline u32 dev_ethtool_get_rx_csum(struct net_device *dev)
2607 {
2608 if (dev->features & NETIF_F_RXCSUM)
2609 return 1;
2610 if (!dev->ethtool_ops || !dev->ethtool_ops->get_rx_csum)
2611 return 0;
2612 return dev->ethtool_ops->get_rx_csum(dev);
2613 }
2614
2615 static inline u32 dev_ethtool_get_flags(struct net_device *dev)
2616 {
2617 if (!dev->ethtool_ops || !dev->ethtool_ops->get_flags)
2618 return 0;
2619 return dev->ethtool_ops->get_flags(dev);
2620 }
2621
2622 /* Logging, debugging and troubleshooting/diagnostic helpers. */
2623
2624 /* netdev_printk helpers, similar to dev_printk */
2625
2626 static inline const char *netdev_name(const struct net_device *dev)
2627 {
2628 if (dev->reg_state != NETREG_REGISTERED)
2629 return "(unregistered net_device)";
2630 return dev->name;
2631 }
2632
2633 extern int netdev_printk(const char *level, const struct net_device *dev,
2634 const char *format, ...)
2635 __attribute__ ((format (printf, 3, 4)));
2636 extern int netdev_emerg(const struct net_device *dev, const char *format, ...)
2637 __attribute__ ((format (printf, 2, 3)));
2638 extern int netdev_alert(const struct net_device *dev, const char *format, ...)
2639 __attribute__ ((format (printf, 2, 3)));
2640 extern int netdev_crit(const struct net_device *dev, const char *format, ...)
2641 __attribute__ ((format (printf, 2, 3)));
2642 extern int netdev_err(const struct net_device *dev, const char *format, ...)
2643 __attribute__ ((format (printf, 2, 3)));
2644 extern int netdev_warn(const struct net_device *dev, const char *format, ...)
2645 __attribute__ ((format (printf, 2, 3)));
2646 extern int netdev_notice(const struct net_device *dev, const char *format, ...)
2647 __attribute__ ((format (printf, 2, 3)));
2648 extern int netdev_info(const struct net_device *dev, const char *format, ...)
2649 __attribute__ ((format (printf, 2, 3)));
2650
2651 #define MODULE_ALIAS_NETDEV(device) \
2652 MODULE_ALIAS("netdev-" device)
2653
2654 #if defined(DEBUG)
2655 #define netdev_dbg(__dev, format, args...) \
2656 netdev_printk(KERN_DEBUG, __dev, format, ##args)
2657 #elif defined(CONFIG_DYNAMIC_DEBUG)
2658 #define netdev_dbg(__dev, format, args...) \
2659 do { \
2660 dynamic_dev_dbg((__dev)->dev.parent, "%s: " format, \
2661 netdev_name(__dev), ##args); \
2662 } while (0)
2663 #else
2664 #define netdev_dbg(__dev, format, args...) \
2665 ({ \
2666 if (0) \
2667 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
2668 0; \
2669 })
2670 #endif
2671
2672 #if defined(VERBOSE_DEBUG)
2673 #define netdev_vdbg netdev_dbg
2674 #else
2675
2676 #define netdev_vdbg(dev, format, args...) \
2677 ({ \
2678 if (0) \
2679 netdev_printk(KERN_DEBUG, dev, format, ##args); \
2680 0; \
2681 })
2682 #endif
2683
2684 /*
2685 * netdev_WARN() acts like dev_printk(), but with the key difference
2686 * of using a WARN/WARN_ON to get the message out, including the
2687 * file/line information and a backtrace.
2688 */
2689 #define netdev_WARN(dev, format, args...) \
2690 WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args);
2691
2692 /* netif printk helpers, similar to netdev_printk */
2693
2694 #define netif_printk(priv, type, level, dev, fmt, args...) \
2695 do { \
2696 if (netif_msg_##type(priv)) \
2697 netdev_printk(level, (dev), fmt, ##args); \
2698 } while (0)
2699
2700 #define netif_level(level, priv, type, dev, fmt, args...) \
2701 do { \
2702 if (netif_msg_##type(priv)) \
2703 netdev_##level(dev, fmt, ##args); \
2704 } while (0)
2705
2706 #define netif_emerg(priv, type, dev, fmt, args...) \
2707 netif_level(emerg, priv, type, dev, fmt, ##args)
2708 #define netif_alert(priv, type, dev, fmt, args...) \
2709 netif_level(alert, priv, type, dev, fmt, ##args)
2710 #define netif_crit(priv, type, dev, fmt, args...) \
2711 netif_level(crit, priv, type, dev, fmt, ##args)
2712 #define netif_err(priv, type, dev, fmt, args...) \
2713 netif_level(err, priv, type, dev, fmt, ##args)
2714 #define netif_warn(priv, type, dev, fmt, args...) \
2715 netif_level(warn, priv, type, dev, fmt, ##args)
2716 #define netif_notice(priv, type, dev, fmt, args...) \
2717 netif_level(notice, priv, type, dev, fmt, ##args)
2718 #define netif_info(priv, type, dev, fmt, args...) \
2719 netif_level(info, priv, type, dev, fmt, ##args)
2720
2721 #if defined(DEBUG)
2722 #define netif_dbg(priv, type, dev, format, args...) \
2723 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
2724 #elif defined(CONFIG_DYNAMIC_DEBUG)
2725 #define netif_dbg(priv, type, netdev, format, args...) \
2726 do { \
2727 if (netif_msg_##type(priv)) \
2728 dynamic_dev_dbg((netdev)->dev.parent, \
2729 "%s: " format, \
2730 netdev_name(netdev), ##args); \
2731 } while (0)
2732 #else
2733 #define netif_dbg(priv, type, dev, format, args...) \
2734 ({ \
2735 if (0) \
2736 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2737 0; \
2738 })
2739 #endif
2740
2741 #if defined(VERBOSE_DEBUG)
2742 #define netif_vdbg netif_dbg
2743 #else
2744 #define netif_vdbg(priv, type, dev, format, args...) \
2745 ({ \
2746 if (0) \
2747 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2748 0; \
2749 })
2750 #endif
2751
2752 #endif /* __KERNEL__ */
2753
2754 #endif /* _LINUX_NETDEVICE_H */