Merge branches 'acpi_pad', 'acpica', 'apei-bugzilla-43282', 'battery', 'cpuidle-coupl...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / mmzone.h
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3
4 #ifndef __ASSEMBLY__
5 #ifndef __GENERATING_BOUNDS_H
6
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/bitops.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <linux/nodemask.h>
17 #include <linux/pageblock-flags.h>
18 #include <generated/bounds.h>
19 #include <linux/atomic.h>
20 #include <asm/page.h>
21
22 /* Free memory management - zoned buddy allocator. */
23 #ifndef CONFIG_FORCE_MAX_ZONEORDER
24 #define MAX_ORDER 11
25 #else
26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27 #endif
28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
29
30 /*
31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32 * costly to service. That is between allocation orders which should
33 * coalesce naturally under reasonable reclaim pressure and those which
34 * will not.
35 */
36 #define PAGE_ALLOC_COSTLY_ORDER 3
37
38 enum {
39 MIGRATE_UNMOVABLE,
40 MIGRATE_RECLAIMABLE,
41 MIGRATE_MOVABLE,
42 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
43 MIGRATE_RESERVE = MIGRATE_PCPTYPES,
44 #ifdef CONFIG_CMA
45 /*
46 * MIGRATE_CMA migration type is designed to mimic the way
47 * ZONE_MOVABLE works. Only movable pages can be allocated
48 * from MIGRATE_CMA pageblocks and page allocator never
49 * implicitly change migration type of MIGRATE_CMA pageblock.
50 *
51 * The way to use it is to change migratetype of a range of
52 * pageblocks to MIGRATE_CMA which can be done by
53 * __free_pageblock_cma() function. What is important though
54 * is that a range of pageblocks must be aligned to
55 * MAX_ORDER_NR_PAGES should biggest page be bigger then
56 * a single pageblock.
57 */
58 MIGRATE_CMA,
59 #endif
60 MIGRATE_ISOLATE, /* can't allocate from here */
61 MIGRATE_TYPES
62 };
63
64 #ifdef CONFIG_CMA
65 # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
66 # define cma_wmark_pages(zone) zone->min_cma_pages
67 #else
68 # define is_migrate_cma(migratetype) false
69 # define cma_wmark_pages(zone) 0
70 #endif
71
72 #define for_each_migratetype_order(order, type) \
73 for (order = 0; order < MAX_ORDER; order++) \
74 for (type = 0; type < MIGRATE_TYPES; type++)
75
76 extern int page_group_by_mobility_disabled;
77
78 static inline int get_pageblock_migratetype(struct page *page)
79 {
80 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
81 }
82
83 struct free_area {
84 struct list_head free_list[MIGRATE_TYPES];
85 unsigned long nr_free;
86 };
87
88 struct pglist_data;
89
90 /*
91 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
92 * So add a wild amount of padding here to ensure that they fall into separate
93 * cachelines. There are very few zone structures in the machine, so space
94 * consumption is not a concern here.
95 */
96 #if defined(CONFIG_SMP)
97 struct zone_padding {
98 char x[0];
99 } ____cacheline_internodealigned_in_smp;
100 #define ZONE_PADDING(name) struct zone_padding name;
101 #else
102 #define ZONE_PADDING(name)
103 #endif
104
105 enum zone_stat_item {
106 /* First 128 byte cacheline (assuming 64 bit words) */
107 NR_FREE_PAGES,
108 NR_LRU_BASE,
109 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
110 NR_ACTIVE_ANON, /* " " " " " */
111 NR_INACTIVE_FILE, /* " " " " " */
112 NR_ACTIVE_FILE, /* " " " " " */
113 NR_UNEVICTABLE, /* " " " " " */
114 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
115 NR_ANON_PAGES, /* Mapped anonymous pages */
116 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
117 only modified from process context */
118 NR_FILE_PAGES,
119 NR_FILE_DIRTY,
120 NR_WRITEBACK,
121 NR_SLAB_RECLAIMABLE,
122 NR_SLAB_UNRECLAIMABLE,
123 NR_PAGETABLE, /* used for pagetables */
124 NR_KERNEL_STACK,
125 /* Second 128 byte cacheline */
126 NR_UNSTABLE_NFS, /* NFS unstable pages */
127 NR_BOUNCE,
128 NR_VMSCAN_WRITE,
129 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
130 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
131 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
132 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
133 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
134 NR_DIRTIED, /* page dirtyings since bootup */
135 NR_WRITTEN, /* page writings since bootup */
136 #ifdef CONFIG_NUMA
137 NUMA_HIT, /* allocated in intended node */
138 NUMA_MISS, /* allocated in non intended node */
139 NUMA_FOREIGN, /* was intended here, hit elsewhere */
140 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
141 NUMA_LOCAL, /* allocation from local node */
142 NUMA_OTHER, /* allocation from other node */
143 #endif
144 NR_ANON_TRANSPARENT_HUGEPAGES,
145 NR_VM_ZONE_STAT_ITEMS };
146
147 /*
148 * We do arithmetic on the LRU lists in various places in the code,
149 * so it is important to keep the active lists LRU_ACTIVE higher in
150 * the array than the corresponding inactive lists, and to keep
151 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
152 *
153 * This has to be kept in sync with the statistics in zone_stat_item
154 * above and the descriptions in vmstat_text in mm/vmstat.c
155 */
156 #define LRU_BASE 0
157 #define LRU_ACTIVE 1
158 #define LRU_FILE 2
159
160 enum lru_list {
161 LRU_INACTIVE_ANON = LRU_BASE,
162 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
163 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
164 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
165 LRU_UNEVICTABLE,
166 NR_LRU_LISTS
167 };
168
169 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
170
171 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
172
173 static inline int is_file_lru(enum lru_list lru)
174 {
175 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
176 }
177
178 static inline int is_active_lru(enum lru_list lru)
179 {
180 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
181 }
182
183 static inline int is_unevictable_lru(enum lru_list lru)
184 {
185 return (lru == LRU_UNEVICTABLE);
186 }
187
188 struct zone_reclaim_stat {
189 /*
190 * The pageout code in vmscan.c keeps track of how many of the
191 * mem/swap backed and file backed pages are refeferenced.
192 * The higher the rotated/scanned ratio, the more valuable
193 * that cache is.
194 *
195 * The anon LRU stats live in [0], file LRU stats in [1]
196 */
197 unsigned long recent_rotated[2];
198 unsigned long recent_scanned[2];
199 };
200
201 struct lruvec {
202 struct list_head lists[NR_LRU_LISTS];
203 struct zone_reclaim_stat reclaim_stat;
204 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
205 struct zone *zone;
206 #endif
207 };
208
209 /* Mask used at gathering information at once (see memcontrol.c) */
210 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
211 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
212 #define LRU_ALL_EVICTABLE (LRU_ALL_FILE | LRU_ALL_ANON)
213 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
214
215 /* Isolate clean file */
216 #define ISOLATE_CLEAN ((__force isolate_mode_t)0x1)
217 /* Isolate unmapped file */
218 #define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
219 /* Isolate for asynchronous migration */
220 #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
221
222 /* LRU Isolation modes. */
223 typedef unsigned __bitwise__ isolate_mode_t;
224
225 enum zone_watermarks {
226 WMARK_MIN,
227 WMARK_LOW,
228 WMARK_HIGH,
229 NR_WMARK
230 };
231
232 #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
233 #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
234 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
235
236 struct per_cpu_pages {
237 int count; /* number of pages in the list */
238 int high; /* high watermark, emptying needed */
239 int batch; /* chunk size for buddy add/remove */
240
241 /* Lists of pages, one per migrate type stored on the pcp-lists */
242 struct list_head lists[MIGRATE_PCPTYPES];
243 };
244
245 struct per_cpu_pageset {
246 struct per_cpu_pages pcp;
247 #ifdef CONFIG_NUMA
248 s8 expire;
249 #endif
250 #ifdef CONFIG_SMP
251 s8 stat_threshold;
252 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
253 #endif
254 };
255
256 #endif /* !__GENERATING_BOUNDS.H */
257
258 enum zone_type {
259 #ifdef CONFIG_ZONE_DMA
260 /*
261 * ZONE_DMA is used when there are devices that are not able
262 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
263 * carve out the portion of memory that is needed for these devices.
264 * The range is arch specific.
265 *
266 * Some examples
267 *
268 * Architecture Limit
269 * ---------------------------
270 * parisc, ia64, sparc <4G
271 * s390 <2G
272 * arm Various
273 * alpha Unlimited or 0-16MB.
274 *
275 * i386, x86_64 and multiple other arches
276 * <16M.
277 */
278 ZONE_DMA,
279 #endif
280 #ifdef CONFIG_ZONE_DMA32
281 /*
282 * x86_64 needs two ZONE_DMAs because it supports devices that are
283 * only able to do DMA to the lower 16M but also 32 bit devices that
284 * can only do DMA areas below 4G.
285 */
286 ZONE_DMA32,
287 #endif
288 /*
289 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
290 * performed on pages in ZONE_NORMAL if the DMA devices support
291 * transfers to all addressable memory.
292 */
293 ZONE_NORMAL,
294 #ifdef CONFIG_HIGHMEM
295 /*
296 * A memory area that is only addressable by the kernel through
297 * mapping portions into its own address space. This is for example
298 * used by i386 to allow the kernel to address the memory beyond
299 * 900MB. The kernel will set up special mappings (page
300 * table entries on i386) for each page that the kernel needs to
301 * access.
302 */
303 ZONE_HIGHMEM,
304 #endif
305 ZONE_MOVABLE,
306 __MAX_NR_ZONES
307 };
308
309 #ifndef __GENERATING_BOUNDS_H
310
311 /*
312 * When a memory allocation must conform to specific limitations (such
313 * as being suitable for DMA) the caller will pass in hints to the
314 * allocator in the gfp_mask, in the zone modifier bits. These bits
315 * are used to select a priority ordered list of memory zones which
316 * match the requested limits. See gfp_zone() in include/linux/gfp.h
317 */
318
319 #if MAX_NR_ZONES < 2
320 #define ZONES_SHIFT 0
321 #elif MAX_NR_ZONES <= 2
322 #define ZONES_SHIFT 1
323 #elif MAX_NR_ZONES <= 4
324 #define ZONES_SHIFT 2
325 #else
326 #error ZONES_SHIFT -- too many zones configured adjust calculation
327 #endif
328
329 struct zone {
330 /* Fields commonly accessed by the page allocator */
331
332 /* zone watermarks, access with *_wmark_pages(zone) macros */
333 unsigned long watermark[NR_WMARK];
334
335 /*
336 * When free pages are below this point, additional steps are taken
337 * when reading the number of free pages to avoid per-cpu counter
338 * drift allowing watermarks to be breached
339 */
340 unsigned long percpu_drift_mark;
341
342 /*
343 * We don't know if the memory that we're going to allocate will be freeable
344 * or/and it will be released eventually, so to avoid totally wasting several
345 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
346 * to run OOM on the lower zones despite there's tons of freeable ram
347 * on the higher zones). This array is recalculated at runtime if the
348 * sysctl_lowmem_reserve_ratio sysctl changes.
349 */
350 unsigned long lowmem_reserve[MAX_NR_ZONES];
351
352 /*
353 * This is a per-zone reserve of pages that should not be
354 * considered dirtyable memory.
355 */
356 unsigned long dirty_balance_reserve;
357
358 #ifdef CONFIG_NUMA
359 int node;
360 /*
361 * zone reclaim becomes active if more unmapped pages exist.
362 */
363 unsigned long min_unmapped_pages;
364 unsigned long min_slab_pages;
365 #endif
366 struct per_cpu_pageset __percpu *pageset;
367 /*
368 * free areas of different sizes
369 */
370 spinlock_t lock;
371 int all_unreclaimable; /* All pages pinned */
372 #ifdef CONFIG_MEMORY_HOTPLUG
373 /* see spanned/present_pages for more description */
374 seqlock_t span_seqlock;
375 #endif
376 #ifdef CONFIG_CMA
377 /*
378 * CMA needs to increase watermark levels during the allocation
379 * process to make sure that the system is not starved.
380 */
381 unsigned long min_cma_pages;
382 #endif
383 struct free_area free_area[MAX_ORDER];
384
385 #ifndef CONFIG_SPARSEMEM
386 /*
387 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
388 * In SPARSEMEM, this map is stored in struct mem_section
389 */
390 unsigned long *pageblock_flags;
391 #endif /* CONFIG_SPARSEMEM */
392
393 #ifdef CONFIG_COMPACTION
394 /*
395 * On compaction failure, 1<<compact_defer_shift compactions
396 * are skipped before trying again. The number attempted since
397 * last failure is tracked with compact_considered.
398 */
399 unsigned int compact_considered;
400 unsigned int compact_defer_shift;
401 int compact_order_failed;
402 #endif
403
404 ZONE_PADDING(_pad1_)
405
406 /* Fields commonly accessed by the page reclaim scanner */
407 spinlock_t lru_lock;
408 struct lruvec lruvec;
409
410 unsigned long pages_scanned; /* since last reclaim */
411 unsigned long flags; /* zone flags, see below */
412
413 /* Zone statistics */
414 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
415
416 /*
417 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
418 * this zone's LRU. Maintained by the pageout code.
419 */
420 unsigned int inactive_ratio;
421
422
423 ZONE_PADDING(_pad2_)
424 /* Rarely used or read-mostly fields */
425
426 /*
427 * wait_table -- the array holding the hash table
428 * wait_table_hash_nr_entries -- the size of the hash table array
429 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
430 *
431 * The purpose of all these is to keep track of the people
432 * waiting for a page to become available and make them
433 * runnable again when possible. The trouble is that this
434 * consumes a lot of space, especially when so few things
435 * wait on pages at a given time. So instead of using
436 * per-page waitqueues, we use a waitqueue hash table.
437 *
438 * The bucket discipline is to sleep on the same queue when
439 * colliding and wake all in that wait queue when removing.
440 * When something wakes, it must check to be sure its page is
441 * truly available, a la thundering herd. The cost of a
442 * collision is great, but given the expected load of the
443 * table, they should be so rare as to be outweighed by the
444 * benefits from the saved space.
445 *
446 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
447 * primary users of these fields, and in mm/page_alloc.c
448 * free_area_init_core() performs the initialization of them.
449 */
450 wait_queue_head_t * wait_table;
451 unsigned long wait_table_hash_nr_entries;
452 unsigned long wait_table_bits;
453
454 /*
455 * Discontig memory support fields.
456 */
457 struct pglist_data *zone_pgdat;
458 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
459 unsigned long zone_start_pfn;
460
461 /*
462 * zone_start_pfn, spanned_pages and present_pages are all
463 * protected by span_seqlock. It is a seqlock because it has
464 * to be read outside of zone->lock, and it is done in the main
465 * allocator path. But, it is written quite infrequently.
466 *
467 * The lock is declared along with zone->lock because it is
468 * frequently read in proximity to zone->lock. It's good to
469 * give them a chance of being in the same cacheline.
470 */
471 unsigned long spanned_pages; /* total size, including holes */
472 unsigned long present_pages; /* amount of memory (excluding holes) */
473
474 /*
475 * rarely used fields:
476 */
477 const char *name;
478 } ____cacheline_internodealigned_in_smp;
479
480 typedef enum {
481 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
482 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */
483 ZONE_CONGESTED, /* zone has many dirty pages backed by
484 * a congested BDI
485 */
486 } zone_flags_t;
487
488 static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
489 {
490 set_bit(flag, &zone->flags);
491 }
492
493 static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
494 {
495 return test_and_set_bit(flag, &zone->flags);
496 }
497
498 static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
499 {
500 clear_bit(flag, &zone->flags);
501 }
502
503 static inline int zone_is_reclaim_congested(const struct zone *zone)
504 {
505 return test_bit(ZONE_CONGESTED, &zone->flags);
506 }
507
508 static inline int zone_is_reclaim_locked(const struct zone *zone)
509 {
510 return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
511 }
512
513 static inline int zone_is_oom_locked(const struct zone *zone)
514 {
515 return test_bit(ZONE_OOM_LOCKED, &zone->flags);
516 }
517
518 /*
519 * The "priority" of VM scanning is how much of the queues we will scan in one
520 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
521 * queues ("queue_length >> 12") during an aging round.
522 */
523 #define DEF_PRIORITY 12
524
525 /* Maximum number of zones on a zonelist */
526 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
527
528 #ifdef CONFIG_NUMA
529
530 /*
531 * The NUMA zonelists are doubled because we need zonelists that restrict the
532 * allocations to a single node for GFP_THISNODE.
533 *
534 * [0] : Zonelist with fallback
535 * [1] : No fallback (GFP_THISNODE)
536 */
537 #define MAX_ZONELISTS 2
538
539
540 /*
541 * We cache key information from each zonelist for smaller cache
542 * footprint when scanning for free pages in get_page_from_freelist().
543 *
544 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
545 * up short of free memory since the last time (last_fullzone_zap)
546 * we zero'd fullzones.
547 * 2) The array z_to_n[] maps each zone in the zonelist to its node
548 * id, so that we can efficiently evaluate whether that node is
549 * set in the current tasks mems_allowed.
550 *
551 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
552 * indexed by a zones offset in the zonelist zones[] array.
553 *
554 * The get_page_from_freelist() routine does two scans. During the
555 * first scan, we skip zones whose corresponding bit in 'fullzones'
556 * is set or whose corresponding node in current->mems_allowed (which
557 * comes from cpusets) is not set. During the second scan, we bypass
558 * this zonelist_cache, to ensure we look methodically at each zone.
559 *
560 * Once per second, we zero out (zap) fullzones, forcing us to
561 * reconsider nodes that might have regained more free memory.
562 * The field last_full_zap is the time we last zapped fullzones.
563 *
564 * This mechanism reduces the amount of time we waste repeatedly
565 * reexaming zones for free memory when they just came up low on
566 * memory momentarilly ago.
567 *
568 * The zonelist_cache struct members logically belong in struct
569 * zonelist. However, the mempolicy zonelists constructed for
570 * MPOL_BIND are intentionally variable length (and usually much
571 * shorter). A general purpose mechanism for handling structs with
572 * multiple variable length members is more mechanism than we want
573 * here. We resort to some special case hackery instead.
574 *
575 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
576 * part because they are shorter), so we put the fixed length stuff
577 * at the front of the zonelist struct, ending in a variable length
578 * zones[], as is needed by MPOL_BIND.
579 *
580 * Then we put the optional zonelist cache on the end of the zonelist
581 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
582 * the fixed length portion at the front of the struct. This pointer
583 * both enables us to find the zonelist cache, and in the case of
584 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
585 * to know that the zonelist cache is not there.
586 *
587 * The end result is that struct zonelists come in two flavors:
588 * 1) The full, fixed length version, shown below, and
589 * 2) The custom zonelists for MPOL_BIND.
590 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
591 *
592 * Even though there may be multiple CPU cores on a node modifying
593 * fullzones or last_full_zap in the same zonelist_cache at the same
594 * time, we don't lock it. This is just hint data - if it is wrong now
595 * and then, the allocator will still function, perhaps a bit slower.
596 */
597
598
599 struct zonelist_cache {
600 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
601 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
602 unsigned long last_full_zap; /* when last zap'd (jiffies) */
603 };
604 #else
605 #define MAX_ZONELISTS 1
606 struct zonelist_cache;
607 #endif
608
609 /*
610 * This struct contains information about a zone in a zonelist. It is stored
611 * here to avoid dereferences into large structures and lookups of tables
612 */
613 struct zoneref {
614 struct zone *zone; /* Pointer to actual zone */
615 int zone_idx; /* zone_idx(zoneref->zone) */
616 };
617
618 /*
619 * One allocation request operates on a zonelist. A zonelist
620 * is a list of zones, the first one is the 'goal' of the
621 * allocation, the other zones are fallback zones, in decreasing
622 * priority.
623 *
624 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
625 * as explained above. If zlcache_ptr is NULL, there is no zlcache.
626 * *
627 * To speed the reading of the zonelist, the zonerefs contain the zone index
628 * of the entry being read. Helper functions to access information given
629 * a struct zoneref are
630 *
631 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
632 * zonelist_zone_idx() - Return the index of the zone for an entry
633 * zonelist_node_idx() - Return the index of the node for an entry
634 */
635 struct zonelist {
636 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
637 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
638 #ifdef CONFIG_NUMA
639 struct zonelist_cache zlcache; // optional ...
640 #endif
641 };
642
643 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
644 struct node_active_region {
645 unsigned long start_pfn;
646 unsigned long end_pfn;
647 int nid;
648 };
649 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
650
651 #ifndef CONFIG_DISCONTIGMEM
652 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
653 extern struct page *mem_map;
654 #endif
655
656 /*
657 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
658 * (mostly NUMA machines?) to denote a higher-level memory zone than the
659 * zone denotes.
660 *
661 * On NUMA machines, each NUMA node would have a pg_data_t to describe
662 * it's memory layout.
663 *
664 * Memory statistics and page replacement data structures are maintained on a
665 * per-zone basis.
666 */
667 struct bootmem_data;
668 typedef struct pglist_data {
669 struct zone node_zones[MAX_NR_ZONES];
670 struct zonelist node_zonelists[MAX_ZONELISTS];
671 int nr_zones;
672 #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
673 struct page *node_mem_map;
674 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
675 struct page_cgroup *node_page_cgroup;
676 #endif
677 #endif
678 #ifndef CONFIG_NO_BOOTMEM
679 struct bootmem_data *bdata;
680 #endif
681 #ifdef CONFIG_MEMORY_HOTPLUG
682 /*
683 * Must be held any time you expect node_start_pfn, node_present_pages
684 * or node_spanned_pages stay constant. Holding this will also
685 * guarantee that any pfn_valid() stays that way.
686 *
687 * Nests above zone->lock and zone->size_seqlock.
688 */
689 spinlock_t node_size_lock;
690 #endif
691 unsigned long node_start_pfn;
692 unsigned long node_present_pages; /* total number of physical pages */
693 unsigned long node_spanned_pages; /* total size of physical page
694 range, including holes */
695 int node_id;
696 wait_queue_head_t kswapd_wait;
697 struct task_struct *kswapd; /* Protected by lock_memory_hotplug() */
698 int kswapd_max_order;
699 enum zone_type classzone_idx;
700 } pg_data_t;
701
702 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
703 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
704 #ifdef CONFIG_FLAT_NODE_MEM_MAP
705 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
706 #else
707 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
708 #endif
709 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
710
711 #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
712
713 #define node_end_pfn(nid) ({\
714 pg_data_t *__pgdat = NODE_DATA(nid);\
715 __pgdat->node_start_pfn + __pgdat->node_spanned_pages;\
716 })
717
718 #include <linux/memory_hotplug.h>
719
720 extern struct mutex zonelists_mutex;
721 void build_all_zonelists(void *data);
722 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
723 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
724 int classzone_idx, int alloc_flags);
725 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
726 int classzone_idx, int alloc_flags);
727 enum memmap_context {
728 MEMMAP_EARLY,
729 MEMMAP_HOTPLUG,
730 };
731 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
732 unsigned long size,
733 enum memmap_context context);
734
735 extern void lruvec_init(struct lruvec *lruvec, struct zone *zone);
736
737 static inline struct zone *lruvec_zone(struct lruvec *lruvec)
738 {
739 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
740 return lruvec->zone;
741 #else
742 return container_of(lruvec, struct zone, lruvec);
743 #endif
744 }
745
746 #ifdef CONFIG_HAVE_MEMORY_PRESENT
747 void memory_present(int nid, unsigned long start, unsigned long end);
748 #else
749 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
750 #endif
751
752 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
753 int local_memory_node(int node_id);
754 #else
755 static inline int local_memory_node(int node_id) { return node_id; };
756 #endif
757
758 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
759 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
760 #endif
761
762 /*
763 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
764 */
765 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
766
767 static inline int populated_zone(struct zone *zone)
768 {
769 return (!!zone->present_pages);
770 }
771
772 extern int movable_zone;
773
774 static inline int zone_movable_is_highmem(void)
775 {
776 #if defined(CONFIG_HIGHMEM) && defined(CONFIG_HAVE_MEMBLOCK_NODE)
777 return movable_zone == ZONE_HIGHMEM;
778 #else
779 return 0;
780 #endif
781 }
782
783 static inline int is_highmem_idx(enum zone_type idx)
784 {
785 #ifdef CONFIG_HIGHMEM
786 return (idx == ZONE_HIGHMEM ||
787 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
788 #else
789 return 0;
790 #endif
791 }
792
793 static inline int is_normal_idx(enum zone_type idx)
794 {
795 return (idx == ZONE_NORMAL);
796 }
797
798 /**
799 * is_highmem - helper function to quickly check if a struct zone is a
800 * highmem zone or not. This is an attempt to keep references
801 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
802 * @zone - pointer to struct zone variable
803 */
804 static inline int is_highmem(struct zone *zone)
805 {
806 #ifdef CONFIG_HIGHMEM
807 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
808 return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
809 (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
810 zone_movable_is_highmem());
811 #else
812 return 0;
813 #endif
814 }
815
816 static inline int is_normal(struct zone *zone)
817 {
818 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
819 }
820
821 static inline int is_dma32(struct zone *zone)
822 {
823 #ifdef CONFIG_ZONE_DMA32
824 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
825 #else
826 return 0;
827 #endif
828 }
829
830 static inline int is_dma(struct zone *zone)
831 {
832 #ifdef CONFIG_ZONE_DMA
833 return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
834 #else
835 return 0;
836 #endif
837 }
838
839 /* These two functions are used to setup the per zone pages min values */
840 struct ctl_table;
841 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
842 void __user *, size_t *, loff_t *);
843 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
844 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
845 void __user *, size_t *, loff_t *);
846 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
847 void __user *, size_t *, loff_t *);
848 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
849 void __user *, size_t *, loff_t *);
850 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
851 void __user *, size_t *, loff_t *);
852
853 extern int numa_zonelist_order_handler(struct ctl_table *, int,
854 void __user *, size_t *, loff_t *);
855 extern char numa_zonelist_order[];
856 #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
857
858 #ifndef CONFIG_NEED_MULTIPLE_NODES
859
860 extern struct pglist_data contig_page_data;
861 #define NODE_DATA(nid) (&contig_page_data)
862 #define NODE_MEM_MAP(nid) mem_map
863
864 #else /* CONFIG_NEED_MULTIPLE_NODES */
865
866 #include <asm/mmzone.h>
867
868 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
869
870 extern struct pglist_data *first_online_pgdat(void);
871 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
872 extern struct zone *next_zone(struct zone *zone);
873
874 /**
875 * for_each_online_pgdat - helper macro to iterate over all online nodes
876 * @pgdat - pointer to a pg_data_t variable
877 */
878 #define for_each_online_pgdat(pgdat) \
879 for (pgdat = first_online_pgdat(); \
880 pgdat; \
881 pgdat = next_online_pgdat(pgdat))
882 /**
883 * for_each_zone - helper macro to iterate over all memory zones
884 * @zone - pointer to struct zone variable
885 *
886 * The user only needs to declare the zone variable, for_each_zone
887 * fills it in.
888 */
889 #define for_each_zone(zone) \
890 for (zone = (first_online_pgdat())->node_zones; \
891 zone; \
892 zone = next_zone(zone))
893
894 #define for_each_populated_zone(zone) \
895 for (zone = (first_online_pgdat())->node_zones; \
896 zone; \
897 zone = next_zone(zone)) \
898 if (!populated_zone(zone)) \
899 ; /* do nothing */ \
900 else
901
902 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
903 {
904 return zoneref->zone;
905 }
906
907 static inline int zonelist_zone_idx(struct zoneref *zoneref)
908 {
909 return zoneref->zone_idx;
910 }
911
912 static inline int zonelist_node_idx(struct zoneref *zoneref)
913 {
914 #ifdef CONFIG_NUMA
915 /* zone_to_nid not available in this context */
916 return zoneref->zone->node;
917 #else
918 return 0;
919 #endif /* CONFIG_NUMA */
920 }
921
922 /**
923 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
924 * @z - The cursor used as a starting point for the search
925 * @highest_zoneidx - The zone index of the highest zone to return
926 * @nodes - An optional nodemask to filter the zonelist with
927 * @zone - The first suitable zone found is returned via this parameter
928 *
929 * This function returns the next zone at or below a given zone index that is
930 * within the allowed nodemask using a cursor as the starting point for the
931 * search. The zoneref returned is a cursor that represents the current zone
932 * being examined. It should be advanced by one before calling
933 * next_zones_zonelist again.
934 */
935 struct zoneref *next_zones_zonelist(struct zoneref *z,
936 enum zone_type highest_zoneidx,
937 nodemask_t *nodes,
938 struct zone **zone);
939
940 /**
941 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
942 * @zonelist - The zonelist to search for a suitable zone
943 * @highest_zoneidx - The zone index of the highest zone to return
944 * @nodes - An optional nodemask to filter the zonelist with
945 * @zone - The first suitable zone found is returned via this parameter
946 *
947 * This function returns the first zone at or below a given zone index that is
948 * within the allowed nodemask. The zoneref returned is a cursor that can be
949 * used to iterate the zonelist with next_zones_zonelist by advancing it by
950 * one before calling.
951 */
952 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
953 enum zone_type highest_zoneidx,
954 nodemask_t *nodes,
955 struct zone **zone)
956 {
957 return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
958 zone);
959 }
960
961 /**
962 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
963 * @zone - The current zone in the iterator
964 * @z - The current pointer within zonelist->zones being iterated
965 * @zlist - The zonelist being iterated
966 * @highidx - The zone index of the highest zone to return
967 * @nodemask - Nodemask allowed by the allocator
968 *
969 * This iterator iterates though all zones at or below a given zone index and
970 * within a given nodemask
971 */
972 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
973 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
974 zone; \
975 z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \
976
977 /**
978 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
979 * @zone - The current zone in the iterator
980 * @z - The current pointer within zonelist->zones being iterated
981 * @zlist - The zonelist being iterated
982 * @highidx - The zone index of the highest zone to return
983 *
984 * This iterator iterates though all zones at or below a given zone index.
985 */
986 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
987 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
988
989 #ifdef CONFIG_SPARSEMEM
990 #include <asm/sparsemem.h>
991 #endif
992
993 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
994 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
995 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
996 {
997 return 0;
998 }
999 #endif
1000
1001 #ifdef CONFIG_FLATMEM
1002 #define pfn_to_nid(pfn) (0)
1003 #endif
1004
1005 #ifdef CONFIG_SPARSEMEM
1006
1007 /*
1008 * SECTION_SHIFT #bits space required to store a section #
1009 *
1010 * PA_SECTION_SHIFT physical address to/from section number
1011 * PFN_SECTION_SHIFT pfn to/from section number
1012 */
1013 #define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
1014
1015 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1016 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1017
1018 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1019
1020 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1021 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1022
1023 #define SECTION_BLOCKFLAGS_BITS \
1024 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1025
1026 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1027 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1028 #endif
1029
1030 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
1031 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
1032
1033 #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1034 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1035
1036 struct page;
1037 struct page_cgroup;
1038 struct mem_section {
1039 /*
1040 * This is, logically, a pointer to an array of struct
1041 * pages. However, it is stored with some other magic.
1042 * (see sparse.c::sparse_init_one_section())
1043 *
1044 * Additionally during early boot we encode node id of
1045 * the location of the section here to guide allocation.
1046 * (see sparse.c::memory_present())
1047 *
1048 * Making it a UL at least makes someone do a cast
1049 * before using it wrong.
1050 */
1051 unsigned long section_mem_map;
1052
1053 /* See declaration of similar field in struct zone */
1054 unsigned long *pageblock_flags;
1055 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1056 /*
1057 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
1058 * section. (see memcontrol.h/page_cgroup.h about this.)
1059 */
1060 struct page_cgroup *page_cgroup;
1061 unsigned long pad;
1062 #endif
1063 };
1064
1065 #ifdef CONFIG_SPARSEMEM_EXTREME
1066 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1067 #else
1068 #define SECTIONS_PER_ROOT 1
1069 #endif
1070
1071 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1072 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1073 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
1074
1075 #ifdef CONFIG_SPARSEMEM_EXTREME
1076 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
1077 #else
1078 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1079 #endif
1080
1081 static inline struct mem_section *__nr_to_section(unsigned long nr)
1082 {
1083 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1084 return NULL;
1085 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1086 }
1087 extern int __section_nr(struct mem_section* ms);
1088 extern unsigned long usemap_size(void);
1089
1090 /*
1091 * We use the lower bits of the mem_map pointer to store
1092 * a little bit of information. There should be at least
1093 * 3 bits here due to 32-bit alignment.
1094 */
1095 #define SECTION_MARKED_PRESENT (1UL<<0)
1096 #define SECTION_HAS_MEM_MAP (1UL<<1)
1097 #define SECTION_MAP_LAST_BIT (1UL<<2)
1098 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
1099 #define SECTION_NID_SHIFT 2
1100
1101 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1102 {
1103 unsigned long map = section->section_mem_map;
1104 map &= SECTION_MAP_MASK;
1105 return (struct page *)map;
1106 }
1107
1108 static inline int present_section(struct mem_section *section)
1109 {
1110 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1111 }
1112
1113 static inline int present_section_nr(unsigned long nr)
1114 {
1115 return present_section(__nr_to_section(nr));
1116 }
1117
1118 static inline int valid_section(struct mem_section *section)
1119 {
1120 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1121 }
1122
1123 static inline int valid_section_nr(unsigned long nr)
1124 {
1125 return valid_section(__nr_to_section(nr));
1126 }
1127
1128 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1129 {
1130 return __nr_to_section(pfn_to_section_nr(pfn));
1131 }
1132
1133 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1134 static inline int pfn_valid(unsigned long pfn)
1135 {
1136 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1137 return 0;
1138 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1139 }
1140 #endif
1141
1142 static inline int pfn_present(unsigned long pfn)
1143 {
1144 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1145 return 0;
1146 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1147 }
1148
1149 /*
1150 * These are _only_ used during initialisation, therefore they
1151 * can use __initdata ... They could have names to indicate
1152 * this restriction.
1153 */
1154 #ifdef CONFIG_NUMA
1155 #define pfn_to_nid(pfn) \
1156 ({ \
1157 unsigned long __pfn_to_nid_pfn = (pfn); \
1158 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1159 })
1160 #else
1161 #define pfn_to_nid(pfn) (0)
1162 #endif
1163
1164 #define early_pfn_valid(pfn) pfn_valid(pfn)
1165 void sparse_init(void);
1166 #else
1167 #define sparse_init() do {} while (0)
1168 #define sparse_index_init(_sec, _nid) do {} while (0)
1169 #endif /* CONFIG_SPARSEMEM */
1170
1171 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1172 bool early_pfn_in_nid(unsigned long pfn, int nid);
1173 #else
1174 #define early_pfn_in_nid(pfn, nid) (1)
1175 #endif
1176
1177 #ifndef early_pfn_valid
1178 #define early_pfn_valid(pfn) (1)
1179 #endif
1180
1181 void memory_present(int nid, unsigned long start, unsigned long end);
1182 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1183
1184 /*
1185 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1186 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1187 * pfn_valid_within() should be used in this case; we optimise this away
1188 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1189 */
1190 #ifdef CONFIG_HOLES_IN_ZONE
1191 #define pfn_valid_within(pfn) pfn_valid(pfn)
1192 #else
1193 #define pfn_valid_within(pfn) (1)
1194 #endif
1195
1196 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1197 /*
1198 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1199 * associated with it or not. In FLATMEM, it is expected that holes always
1200 * have valid memmap as long as there is valid PFNs either side of the hole.
1201 * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1202 * entire section.
1203 *
1204 * However, an ARM, and maybe other embedded architectures in the future
1205 * free memmap backing holes to save memory on the assumption the memmap is
1206 * never used. The page_zone linkages are then broken even though pfn_valid()
1207 * returns true. A walker of the full memmap must then do this additional
1208 * check to ensure the memmap they are looking at is sane by making sure
1209 * the zone and PFN linkages are still valid. This is expensive, but walkers
1210 * of the full memmap are extremely rare.
1211 */
1212 int memmap_valid_within(unsigned long pfn,
1213 struct page *page, struct zone *zone);
1214 #else
1215 static inline int memmap_valid_within(unsigned long pfn,
1216 struct page *page, struct zone *zone)
1217 {
1218 return 1;
1219 }
1220 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1221
1222 #endif /* !__GENERATING_BOUNDS.H */
1223 #endif /* !__ASSEMBLY__ */
1224 #endif /* _LINUX_MMZONE_H */