nlm: Ensure callback code also checks that the files match
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / mm_types.h
1 #ifndef _LINUX_MM_TYPES_H
2 #define _LINUX_MM_TYPES_H
3
4 #include <linux/auxvec.h>
5 #include <linux/types.h>
6 #include <linux/threads.h>
7 #include <linux/list.h>
8 #include <linux/spinlock.h>
9 #include <linux/rbtree.h>
10 #include <linux/rwsem.h>
11 #include <linux/completion.h>
12 #include <linux/cpumask.h>
13 #include <linux/page-debug-flags.h>
14 #include <linux/uprobes.h>
15 #include <linux/page-flags-layout.h>
16 #include <asm/page.h>
17 #include <asm/mmu.h>
18
19 #ifndef AT_VECTOR_SIZE_ARCH
20 #define AT_VECTOR_SIZE_ARCH 0
21 #endif
22 #define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1))
23
24 struct address_space;
25
26 #define USE_SPLIT_PTLOCKS (NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS)
27
28 /*
29 * Each physical page in the system has a struct page associated with
30 * it to keep track of whatever it is we are using the page for at the
31 * moment. Note that we have no way to track which tasks are using
32 * a page, though if it is a pagecache page, rmap structures can tell us
33 * who is mapping it.
34 *
35 * The objects in struct page are organized in double word blocks in
36 * order to allows us to use atomic double word operations on portions
37 * of struct page. That is currently only used by slub but the arrangement
38 * allows the use of atomic double word operations on the flags/mapping
39 * and lru list pointers also.
40 */
41 struct page {
42 /* First double word block */
43 unsigned long flags; /* Atomic flags, some possibly
44 * updated asynchronously */
45 struct address_space *mapping; /* If low bit clear, points to
46 * inode address_space, or NULL.
47 * If page mapped as anonymous
48 * memory, low bit is set, and
49 * it points to anon_vma object:
50 * see PAGE_MAPPING_ANON below.
51 */
52 /* Second double word */
53 struct {
54 union {
55 pgoff_t index; /* Our offset within mapping. */
56 void *freelist; /* slub/slob first free object */
57 bool pfmemalloc; /* If set by the page allocator,
58 * ALLOC_NO_WATERMARKS was set
59 * and the low watermark was not
60 * met implying that the system
61 * is under some pressure. The
62 * caller should try ensure
63 * this page is only used to
64 * free other pages.
65 */
66 };
67
68 union {
69 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
70 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
71 /* Used for cmpxchg_double in slub */
72 unsigned long counters;
73 #else
74 /*
75 * Keep _count separate from slub cmpxchg_double data.
76 * As the rest of the double word is protected by
77 * slab_lock but _count is not.
78 */
79 unsigned counters;
80 #endif
81
82 struct {
83
84 union {
85 /*
86 * Count of ptes mapped in
87 * mms, to show when page is
88 * mapped & limit reverse map
89 * searches.
90 *
91 * Used also for tail pages
92 * refcounting instead of
93 * _count. Tail pages cannot
94 * be mapped and keeping the
95 * tail page _count zero at
96 * all times guarantees
97 * get_page_unless_zero() will
98 * never succeed on tail
99 * pages.
100 */
101 atomic_t _mapcount;
102
103 struct { /* SLUB */
104 unsigned inuse:16;
105 unsigned objects:15;
106 unsigned frozen:1;
107 };
108 int units; /* SLOB */
109 };
110 atomic_t _count; /* Usage count, see below. */
111 };
112 };
113 };
114
115 /* Third double word block */
116 union {
117 struct list_head lru; /* Pageout list, eg. active_list
118 * protected by zone->lru_lock !
119 */
120 struct { /* slub per cpu partial pages */
121 struct page *next; /* Next partial slab */
122 #ifdef CONFIG_64BIT
123 int pages; /* Nr of partial slabs left */
124 int pobjects; /* Approximate # of objects */
125 #else
126 short int pages;
127 short int pobjects;
128 #endif
129 };
130
131 struct list_head list; /* slobs list of pages */
132 struct slab *slab_page; /* slab fields */
133 };
134
135 /* Remainder is not double word aligned */
136 union {
137 unsigned long private; /* Mapping-private opaque data:
138 * usually used for buffer_heads
139 * if PagePrivate set; used for
140 * swp_entry_t if PageSwapCache;
141 * indicates order in the buddy
142 * system if PG_buddy is set.
143 */
144 #if USE_SPLIT_PTLOCKS
145 spinlock_t ptl;
146 #endif
147 struct kmem_cache *slab_cache; /* SL[AU]B: Pointer to slab */
148 struct page *first_page; /* Compound tail pages */
149 };
150
151 /*
152 * On machines where all RAM is mapped into kernel address space,
153 * we can simply calculate the virtual address. On machines with
154 * highmem some memory is mapped into kernel virtual memory
155 * dynamically, so we need a place to store that address.
156 * Note that this field could be 16 bits on x86 ... ;)
157 *
158 * Architectures with slow multiplication can define
159 * WANT_PAGE_VIRTUAL in asm/page.h
160 */
161 #if defined(WANT_PAGE_VIRTUAL)
162 void *virtual; /* Kernel virtual address (NULL if
163 not kmapped, ie. highmem) */
164 #endif /* WANT_PAGE_VIRTUAL */
165 #ifdef CONFIG_WANT_PAGE_DEBUG_FLAGS
166 unsigned long debug_flags; /* Use atomic bitops on this */
167 #endif
168
169 #ifdef CONFIG_KMEMCHECK
170 /*
171 * kmemcheck wants to track the status of each byte in a page; this
172 * is a pointer to such a status block. NULL if not tracked.
173 */
174 void *shadow;
175 #endif
176
177 #ifdef LAST_NID_NOT_IN_PAGE_FLAGS
178 int _last_nid;
179 #endif
180 }
181 /*
182 * The struct page can be forced to be double word aligned so that atomic ops
183 * on double words work. The SLUB allocator can make use of such a feature.
184 */
185 #ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE
186 __aligned(2 * sizeof(unsigned long))
187 #endif
188 ;
189
190 struct page_frag {
191 struct page *page;
192 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
193 __u32 offset;
194 __u32 size;
195 #else
196 __u16 offset;
197 __u16 size;
198 #endif
199 };
200
201 typedef unsigned long __nocast vm_flags_t;
202
203 /*
204 * A region containing a mapping of a non-memory backed file under NOMMU
205 * conditions. These are held in a global tree and are pinned by the VMAs that
206 * map parts of them.
207 */
208 struct vm_region {
209 struct rb_node vm_rb; /* link in global region tree */
210 vm_flags_t vm_flags; /* VMA vm_flags */
211 unsigned long vm_start; /* start address of region */
212 unsigned long vm_end; /* region initialised to here */
213 unsigned long vm_top; /* region allocated to here */
214 unsigned long vm_pgoff; /* the offset in vm_file corresponding to vm_start */
215 struct file *vm_file; /* the backing file or NULL */
216
217 int vm_usage; /* region usage count (access under nommu_region_sem) */
218 bool vm_icache_flushed : 1; /* true if the icache has been flushed for
219 * this region */
220 };
221
222 /*
223 * This struct defines a memory VMM memory area. There is one of these
224 * per VM-area/task. A VM area is any part of the process virtual memory
225 * space that has a special rule for the page-fault handlers (ie a shared
226 * library, the executable area etc).
227 */
228 struct vm_area_struct {
229 /* The first cache line has the info for VMA tree walking. */
230
231 unsigned long vm_start; /* Our start address within vm_mm. */
232 unsigned long vm_end; /* The first byte after our end address
233 within vm_mm. */
234
235 /* linked list of VM areas per task, sorted by address */
236 struct vm_area_struct *vm_next, *vm_prev;
237
238 struct rb_node vm_rb;
239
240 /*
241 * Largest free memory gap in bytes to the left of this VMA.
242 * Either between this VMA and vma->vm_prev, or between one of the
243 * VMAs below us in the VMA rbtree and its ->vm_prev. This helps
244 * get_unmapped_area find a free area of the right size.
245 */
246 unsigned long rb_subtree_gap;
247
248 /* Second cache line starts here. */
249
250 struct mm_struct *vm_mm; /* The address space we belong to. */
251 pgprot_t vm_page_prot; /* Access permissions of this VMA. */
252 unsigned long vm_flags; /* Flags, see mm.h. */
253
254 /*
255 * For areas with an address space and backing store,
256 * linkage into the address_space->i_mmap interval tree, or
257 * linkage of vma in the address_space->i_mmap_nonlinear list.
258 */
259 union {
260 struct {
261 struct rb_node rb;
262 unsigned long rb_subtree_last;
263 } linear;
264 struct list_head nonlinear;
265 } shared;
266
267 /*
268 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
269 * list, after a COW of one of the file pages. A MAP_SHARED vma
270 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack
271 * or brk vma (with NULL file) can only be in an anon_vma list.
272 */
273 struct list_head anon_vma_chain; /* Serialized by mmap_sem &
274 * page_table_lock */
275 struct anon_vma *anon_vma; /* Serialized by page_table_lock */
276
277 /* Function pointers to deal with this struct. */
278 const struct vm_operations_struct *vm_ops;
279
280 /* Information about our backing store: */
281 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE
282 units, *not* PAGE_CACHE_SIZE */
283 struct file * vm_file; /* File we map to (can be NULL). */
284 void * vm_private_data; /* was vm_pte (shared mem) */
285
286 #ifndef CONFIG_MMU
287 struct vm_region *vm_region; /* NOMMU mapping region */
288 #endif
289 #ifdef CONFIG_NUMA
290 struct mempolicy *vm_policy; /* NUMA policy for the VMA */
291 #endif
292 };
293
294 struct core_thread {
295 struct task_struct *task;
296 struct core_thread *next;
297 };
298
299 struct core_state {
300 atomic_t nr_threads;
301 struct core_thread dumper;
302 struct completion startup;
303 };
304
305 enum {
306 MM_FILEPAGES,
307 MM_ANONPAGES,
308 MM_SWAPENTS,
309 NR_MM_COUNTERS
310 };
311
312 #if USE_SPLIT_PTLOCKS && defined(CONFIG_MMU)
313 #define SPLIT_RSS_COUNTING
314 /* per-thread cached information, */
315 struct task_rss_stat {
316 int events; /* for synchronization threshold */
317 int count[NR_MM_COUNTERS];
318 };
319 #endif /* USE_SPLIT_PTLOCKS */
320
321 struct mm_rss_stat {
322 atomic_long_t count[NR_MM_COUNTERS];
323 };
324
325 struct mm_struct {
326 struct vm_area_struct * mmap; /* list of VMAs */
327 struct rb_root mm_rb;
328 struct vm_area_struct * mmap_cache; /* last find_vma result */
329 #ifdef CONFIG_MMU
330 unsigned long (*get_unmapped_area) (struct file *filp,
331 unsigned long addr, unsigned long len,
332 unsigned long pgoff, unsigned long flags);
333 void (*unmap_area) (struct mm_struct *mm, unsigned long addr);
334 #endif
335 unsigned long mmap_base; /* base of mmap area */
336 unsigned long mmap_legacy_base; /* base of mmap area in bottom-up allocations */
337 unsigned long task_size; /* size of task vm space */
338 unsigned long cached_hole_size; /* if non-zero, the largest hole below free_area_cache */
339 unsigned long free_area_cache; /* first hole of size cached_hole_size or larger */
340 unsigned long highest_vm_end; /* highest vma end address */
341 pgd_t * pgd;
342 atomic_t mm_users; /* How many users with user space? */
343 atomic_t mm_count; /* How many references to "struct mm_struct" (users count as 1) */
344 int map_count; /* number of VMAs */
345
346 spinlock_t page_table_lock; /* Protects page tables and some counters */
347 struct rw_semaphore mmap_sem;
348
349 struct list_head mmlist; /* List of maybe swapped mm's. These are globally strung
350 * together off init_mm.mmlist, and are protected
351 * by mmlist_lock
352 */
353
354
355 unsigned long hiwater_rss; /* High-watermark of RSS usage */
356 unsigned long hiwater_vm; /* High-water virtual memory usage */
357
358 unsigned long total_vm; /* Total pages mapped */
359 unsigned long locked_vm; /* Pages that have PG_mlocked set */
360 unsigned long pinned_vm; /* Refcount permanently increased */
361 unsigned long shared_vm; /* Shared pages (files) */
362 unsigned long exec_vm; /* VM_EXEC & ~VM_WRITE */
363 unsigned long stack_vm; /* VM_GROWSUP/DOWN */
364 unsigned long def_flags;
365 unsigned long nr_ptes; /* Page table pages */
366 unsigned long start_code, end_code, start_data, end_data;
367 unsigned long start_brk, brk, start_stack;
368 unsigned long arg_start, arg_end, env_start, env_end;
369
370 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
371
372 /*
373 * Special counters, in some configurations protected by the
374 * page_table_lock, in other configurations by being atomic.
375 */
376 struct mm_rss_stat rss_stat;
377
378 struct linux_binfmt *binfmt;
379
380 cpumask_var_t cpu_vm_mask_var;
381
382 /* Architecture-specific MM context */
383 mm_context_t context;
384
385 unsigned long flags; /* Must use atomic bitops to access the bits */
386
387 struct core_state *core_state; /* coredumping support */
388 #ifdef CONFIG_AIO
389 spinlock_t ioctx_lock;
390 struct hlist_head ioctx_list;
391 #endif
392 #ifdef CONFIG_MM_OWNER
393 /*
394 * "owner" points to a task that is regarded as the canonical
395 * user/owner of this mm. All of the following must be true in
396 * order for it to be changed:
397 *
398 * current == mm->owner
399 * current->mm != mm
400 * new_owner->mm == mm
401 * new_owner->alloc_lock is held
402 */
403 struct task_struct __rcu *owner;
404 #endif
405
406 /* store ref to file /proc/<pid>/exe symlink points to */
407 struct file *exe_file;
408 #ifdef CONFIG_MMU_NOTIFIER
409 struct mmu_notifier_mm *mmu_notifier_mm;
410 #endif
411 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
412 pgtable_t pmd_huge_pte; /* protected by page_table_lock */
413 #endif
414 #ifdef CONFIG_CPUMASK_OFFSTACK
415 struct cpumask cpumask_allocation;
416 #endif
417 #ifdef CONFIG_NUMA_BALANCING
418 /*
419 * numa_next_scan is the next time that the PTEs will be marked
420 * pte_numa. NUMA hinting faults will gather statistics and migrate
421 * pages to new nodes if necessary.
422 */
423 unsigned long numa_next_scan;
424
425 /* numa_next_reset is when the PTE scanner period will be reset */
426 unsigned long numa_next_reset;
427
428 /* Restart point for scanning and setting pte_numa */
429 unsigned long numa_scan_offset;
430
431 /* numa_scan_seq prevents two threads setting pte_numa */
432 int numa_scan_seq;
433
434 /*
435 * The first node a task was scheduled on. If a task runs on
436 * a different node than Make PTE Scan Go Now.
437 */
438 int first_nid;
439 #endif
440 #if defined(CONFIG_NUMA_BALANCING) || defined(CONFIG_COMPACTION)
441 /*
442 * An operation with batched TLB flushing is going on. Anything that
443 * can move process memory needs to flush the TLB when moving a
444 * PROT_NONE or PROT_NUMA mapped page.
445 */
446 bool tlb_flush_pending;
447 #endif
448 struct uprobes_state uprobes_state;
449 };
450
451 /* first nid will either be a valid NID or one of these values */
452 #define NUMA_PTE_SCAN_INIT -1
453 #define NUMA_PTE_SCAN_ACTIVE -2
454
455 static inline void mm_init_cpumask(struct mm_struct *mm)
456 {
457 #ifdef CONFIG_CPUMASK_OFFSTACK
458 mm->cpu_vm_mask_var = &mm->cpumask_allocation;
459 #endif
460 }
461
462 /* Future-safe accessor for struct mm_struct's cpu_vm_mask. */
463 static inline cpumask_t *mm_cpumask(struct mm_struct *mm)
464 {
465 return mm->cpu_vm_mask_var;
466 }
467
468 #if defined(CONFIG_NUMA_BALANCING) || defined(CONFIG_COMPACTION)
469 /*
470 * Memory barriers to keep this state in sync are graciously provided by
471 * the page table locks, outside of which no page table modifications happen.
472 * The barriers below prevent the compiler from re-ordering the instructions
473 * around the memory barriers that are already present in the code.
474 */
475 static inline bool mm_tlb_flush_pending(struct mm_struct *mm)
476 {
477 barrier();
478 return mm->tlb_flush_pending;
479 }
480 static inline void set_tlb_flush_pending(struct mm_struct *mm)
481 {
482 mm->tlb_flush_pending = true;
483
484 /*
485 * Guarantee that the tlb_flush_pending store does not leak into the
486 * critical section updating the page tables
487 */
488 smp_mb__before_spinlock();
489 }
490 /* Clearing is done after a TLB flush, which also provides a barrier. */
491 static inline void clear_tlb_flush_pending(struct mm_struct *mm)
492 {
493 barrier();
494 mm->tlb_flush_pending = false;
495 }
496 #else
497 static inline bool mm_tlb_flush_pending(struct mm_struct *mm)
498 {
499 return false;
500 }
501 static inline void set_tlb_flush_pending(struct mm_struct *mm)
502 {
503 }
504 static inline void clear_tlb_flush_pending(struct mm_struct *mm)
505 {
506 }
507 #endif
508
509 #endif /* _LINUX_MM_TYPES_H */