Merge tag 'pinctrl-fixes-v3.10-1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/gfp.h>
9 #include <linux/bug.h>
10 #include <linux/list.h>
11 #include <linux/mmzone.h>
12 #include <linux/rbtree.h>
13 #include <linux/atomic.h>
14 #include <linux/debug_locks.h>
15 #include <linux/mm_types.h>
16 #include <linux/range.h>
17 #include <linux/pfn.h>
18 #include <linux/bit_spinlock.h>
19 #include <linux/shrinker.h>
20
21 struct mempolicy;
22 struct anon_vma;
23 struct anon_vma_chain;
24 struct file_ra_state;
25 struct user_struct;
26 struct writeback_control;
27
28 #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
29 extern unsigned long max_mapnr;
30 #endif
31
32 extern unsigned long num_physpages;
33 extern unsigned long totalram_pages;
34 extern void * high_memory;
35 extern int page_cluster;
36
37 #ifdef CONFIG_SYSCTL
38 extern int sysctl_legacy_va_layout;
39 #else
40 #define sysctl_legacy_va_layout 0
41 #endif
42
43 #include <asm/page.h>
44 #include <asm/pgtable.h>
45 #include <asm/processor.h>
46
47 extern unsigned long sysctl_user_reserve_kbytes;
48 extern unsigned long sysctl_admin_reserve_kbytes;
49
50 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
51
52 /* to align the pointer to the (next) page boundary */
53 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
54
55 /*
56 * Linux kernel virtual memory manager primitives.
57 * The idea being to have a "virtual" mm in the same way
58 * we have a virtual fs - giving a cleaner interface to the
59 * mm details, and allowing different kinds of memory mappings
60 * (from shared memory to executable loading to arbitrary
61 * mmap() functions).
62 */
63
64 extern struct kmem_cache *vm_area_cachep;
65
66 #ifndef CONFIG_MMU
67 extern struct rb_root nommu_region_tree;
68 extern struct rw_semaphore nommu_region_sem;
69
70 extern unsigned int kobjsize(const void *objp);
71 #endif
72
73 /*
74 * vm_flags in vm_area_struct, see mm_types.h.
75 */
76 #define VM_NONE 0x00000000
77
78 #define VM_READ 0x00000001 /* currently active flags */
79 #define VM_WRITE 0x00000002
80 #define VM_EXEC 0x00000004
81 #define VM_SHARED 0x00000008
82
83 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
84 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
85 #define VM_MAYWRITE 0x00000020
86 #define VM_MAYEXEC 0x00000040
87 #define VM_MAYSHARE 0x00000080
88
89 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
90 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
91 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
92
93 #define VM_LOCKED 0x00002000
94 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
95
96 /* Used by sys_madvise() */
97 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
98 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
99
100 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
101 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
102 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
103 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
104 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
105 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
106 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
107 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
108
109 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
110 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
111 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
112 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
113
114 #if defined(CONFIG_X86)
115 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
116 #elif defined(CONFIG_PPC)
117 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
118 #elif defined(CONFIG_PARISC)
119 # define VM_GROWSUP VM_ARCH_1
120 #elif defined(CONFIG_METAG)
121 # define VM_GROWSUP VM_ARCH_1
122 #elif defined(CONFIG_IA64)
123 # define VM_GROWSUP VM_ARCH_1
124 #elif !defined(CONFIG_MMU)
125 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
126 #endif
127
128 #ifndef VM_GROWSUP
129 # define VM_GROWSUP VM_NONE
130 #endif
131
132 /* Bits set in the VMA until the stack is in its final location */
133 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
134
135 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
136 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
137 #endif
138
139 #ifdef CONFIG_STACK_GROWSUP
140 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
141 #else
142 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
143 #endif
144
145 #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
146 #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
147 #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
148 #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
149 #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
150
151 /*
152 * Special vmas that are non-mergable, non-mlock()able.
153 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
154 */
155 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP)
156
157 /*
158 * mapping from the currently active vm_flags protection bits (the
159 * low four bits) to a page protection mask..
160 */
161 extern pgprot_t protection_map[16];
162
163 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
164 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
165 #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
166 #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
167 #define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
168 #define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
169 #define FAULT_FLAG_TRIED 0x40 /* second try */
170
171 /*
172 * vm_fault is filled by the the pagefault handler and passed to the vma's
173 * ->fault function. The vma's ->fault is responsible for returning a bitmask
174 * of VM_FAULT_xxx flags that give details about how the fault was handled.
175 *
176 * pgoff should be used in favour of virtual_address, if possible. If pgoff
177 * is used, one may implement ->remap_pages to get nonlinear mapping support.
178 */
179 struct vm_fault {
180 unsigned int flags; /* FAULT_FLAG_xxx flags */
181 pgoff_t pgoff; /* Logical page offset based on vma */
182 void __user *virtual_address; /* Faulting virtual address */
183
184 struct page *page; /* ->fault handlers should return a
185 * page here, unless VM_FAULT_NOPAGE
186 * is set (which is also implied by
187 * VM_FAULT_ERROR).
188 */
189 };
190
191 /*
192 * These are the virtual MM functions - opening of an area, closing and
193 * unmapping it (needed to keep files on disk up-to-date etc), pointer
194 * to the functions called when a no-page or a wp-page exception occurs.
195 */
196 struct vm_operations_struct {
197 void (*open)(struct vm_area_struct * area);
198 void (*close)(struct vm_area_struct * area);
199 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
200
201 /* notification that a previously read-only page is about to become
202 * writable, if an error is returned it will cause a SIGBUS */
203 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
204
205 /* called by access_process_vm when get_user_pages() fails, typically
206 * for use by special VMAs that can switch between memory and hardware
207 */
208 int (*access)(struct vm_area_struct *vma, unsigned long addr,
209 void *buf, int len, int write);
210 #ifdef CONFIG_NUMA
211 /*
212 * set_policy() op must add a reference to any non-NULL @new mempolicy
213 * to hold the policy upon return. Caller should pass NULL @new to
214 * remove a policy and fall back to surrounding context--i.e. do not
215 * install a MPOL_DEFAULT policy, nor the task or system default
216 * mempolicy.
217 */
218 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
219
220 /*
221 * get_policy() op must add reference [mpol_get()] to any policy at
222 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
223 * in mm/mempolicy.c will do this automatically.
224 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
225 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
226 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
227 * must return NULL--i.e., do not "fallback" to task or system default
228 * policy.
229 */
230 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
231 unsigned long addr);
232 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
233 const nodemask_t *to, unsigned long flags);
234 #endif
235 /* called by sys_remap_file_pages() to populate non-linear mapping */
236 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
237 unsigned long size, pgoff_t pgoff);
238 };
239
240 struct mmu_gather;
241 struct inode;
242
243 #define page_private(page) ((page)->private)
244 #define set_page_private(page, v) ((page)->private = (v))
245
246 /* It's valid only if the page is free path or free_list */
247 static inline void set_freepage_migratetype(struct page *page, int migratetype)
248 {
249 page->index = migratetype;
250 }
251
252 /* It's valid only if the page is free path or free_list */
253 static inline int get_freepage_migratetype(struct page *page)
254 {
255 return page->index;
256 }
257
258 /*
259 * FIXME: take this include out, include page-flags.h in
260 * files which need it (119 of them)
261 */
262 #include <linux/page-flags.h>
263 #include <linux/huge_mm.h>
264
265 /*
266 * Methods to modify the page usage count.
267 *
268 * What counts for a page usage:
269 * - cache mapping (page->mapping)
270 * - private data (page->private)
271 * - page mapped in a task's page tables, each mapping
272 * is counted separately
273 *
274 * Also, many kernel routines increase the page count before a critical
275 * routine so they can be sure the page doesn't go away from under them.
276 */
277
278 /*
279 * Drop a ref, return true if the refcount fell to zero (the page has no users)
280 */
281 static inline int put_page_testzero(struct page *page)
282 {
283 VM_BUG_ON(atomic_read(&page->_count) == 0);
284 return atomic_dec_and_test(&page->_count);
285 }
286
287 /*
288 * Try to grab a ref unless the page has a refcount of zero, return false if
289 * that is the case.
290 */
291 static inline int get_page_unless_zero(struct page *page)
292 {
293 return atomic_inc_not_zero(&page->_count);
294 }
295
296 extern int page_is_ram(unsigned long pfn);
297
298 /* Support for virtually mapped pages */
299 struct page *vmalloc_to_page(const void *addr);
300 unsigned long vmalloc_to_pfn(const void *addr);
301
302 /*
303 * Determine if an address is within the vmalloc range
304 *
305 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
306 * is no special casing required.
307 */
308 static inline int is_vmalloc_addr(const void *x)
309 {
310 #ifdef CONFIG_MMU
311 unsigned long addr = (unsigned long)x;
312
313 return addr >= VMALLOC_START && addr < VMALLOC_END;
314 #else
315 return 0;
316 #endif
317 }
318 #ifdef CONFIG_MMU
319 extern int is_vmalloc_or_module_addr(const void *x);
320 #else
321 static inline int is_vmalloc_or_module_addr(const void *x)
322 {
323 return 0;
324 }
325 #endif
326
327 static inline void compound_lock(struct page *page)
328 {
329 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
330 VM_BUG_ON(PageSlab(page));
331 bit_spin_lock(PG_compound_lock, &page->flags);
332 #endif
333 }
334
335 static inline void compound_unlock(struct page *page)
336 {
337 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
338 VM_BUG_ON(PageSlab(page));
339 bit_spin_unlock(PG_compound_lock, &page->flags);
340 #endif
341 }
342
343 static inline unsigned long compound_lock_irqsave(struct page *page)
344 {
345 unsigned long uninitialized_var(flags);
346 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
347 local_irq_save(flags);
348 compound_lock(page);
349 #endif
350 return flags;
351 }
352
353 static inline void compound_unlock_irqrestore(struct page *page,
354 unsigned long flags)
355 {
356 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
357 compound_unlock(page);
358 local_irq_restore(flags);
359 #endif
360 }
361
362 static inline struct page *compound_head(struct page *page)
363 {
364 if (unlikely(PageTail(page)))
365 return page->first_page;
366 return page;
367 }
368
369 /*
370 * The atomic page->_mapcount, starts from -1: so that transitions
371 * both from it and to it can be tracked, using atomic_inc_and_test
372 * and atomic_add_negative(-1).
373 */
374 static inline void page_mapcount_reset(struct page *page)
375 {
376 atomic_set(&(page)->_mapcount, -1);
377 }
378
379 static inline int page_mapcount(struct page *page)
380 {
381 return atomic_read(&(page)->_mapcount) + 1;
382 }
383
384 static inline int page_count(struct page *page)
385 {
386 return atomic_read(&compound_head(page)->_count);
387 }
388
389 static inline void get_huge_page_tail(struct page *page)
390 {
391 /*
392 * __split_huge_page_refcount() cannot run
393 * from under us.
394 */
395 VM_BUG_ON(page_mapcount(page) < 0);
396 VM_BUG_ON(atomic_read(&page->_count) != 0);
397 atomic_inc(&page->_mapcount);
398 }
399
400 extern bool __get_page_tail(struct page *page);
401
402 static inline void get_page(struct page *page)
403 {
404 if (unlikely(PageTail(page)))
405 if (likely(__get_page_tail(page)))
406 return;
407 /*
408 * Getting a normal page or the head of a compound page
409 * requires to already have an elevated page->_count.
410 */
411 VM_BUG_ON(atomic_read(&page->_count) <= 0);
412 atomic_inc(&page->_count);
413 }
414
415 static inline struct page *virt_to_head_page(const void *x)
416 {
417 struct page *page = virt_to_page(x);
418 return compound_head(page);
419 }
420
421 /*
422 * Setup the page count before being freed into the page allocator for
423 * the first time (boot or memory hotplug)
424 */
425 static inline void init_page_count(struct page *page)
426 {
427 atomic_set(&page->_count, 1);
428 }
429
430 /*
431 * PageBuddy() indicate that the page is free and in the buddy system
432 * (see mm/page_alloc.c).
433 *
434 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
435 * -2 so that an underflow of the page_mapcount() won't be mistaken
436 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
437 * efficiently by most CPU architectures.
438 */
439 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
440
441 static inline int PageBuddy(struct page *page)
442 {
443 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
444 }
445
446 static inline void __SetPageBuddy(struct page *page)
447 {
448 VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
449 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
450 }
451
452 static inline void __ClearPageBuddy(struct page *page)
453 {
454 VM_BUG_ON(!PageBuddy(page));
455 atomic_set(&page->_mapcount, -1);
456 }
457
458 void put_page(struct page *page);
459 void put_pages_list(struct list_head *pages);
460
461 void split_page(struct page *page, unsigned int order);
462 int split_free_page(struct page *page);
463
464 /*
465 * Compound pages have a destructor function. Provide a
466 * prototype for that function and accessor functions.
467 * These are _only_ valid on the head of a PG_compound page.
468 */
469 typedef void compound_page_dtor(struct page *);
470
471 static inline void set_compound_page_dtor(struct page *page,
472 compound_page_dtor *dtor)
473 {
474 page[1].lru.next = (void *)dtor;
475 }
476
477 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
478 {
479 return (compound_page_dtor *)page[1].lru.next;
480 }
481
482 static inline int compound_order(struct page *page)
483 {
484 if (!PageHead(page))
485 return 0;
486 return (unsigned long)page[1].lru.prev;
487 }
488
489 static inline int compound_trans_order(struct page *page)
490 {
491 int order;
492 unsigned long flags;
493
494 if (!PageHead(page))
495 return 0;
496
497 flags = compound_lock_irqsave(page);
498 order = compound_order(page);
499 compound_unlock_irqrestore(page, flags);
500 return order;
501 }
502
503 static inline void set_compound_order(struct page *page, unsigned long order)
504 {
505 page[1].lru.prev = (void *)order;
506 }
507
508 #ifdef CONFIG_MMU
509 /*
510 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
511 * servicing faults for write access. In the normal case, do always want
512 * pte_mkwrite. But get_user_pages can cause write faults for mappings
513 * that do not have writing enabled, when used by access_process_vm.
514 */
515 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
516 {
517 if (likely(vma->vm_flags & VM_WRITE))
518 pte = pte_mkwrite(pte);
519 return pte;
520 }
521 #endif
522
523 /*
524 * Multiple processes may "see" the same page. E.g. for untouched
525 * mappings of /dev/null, all processes see the same page full of
526 * zeroes, and text pages of executables and shared libraries have
527 * only one copy in memory, at most, normally.
528 *
529 * For the non-reserved pages, page_count(page) denotes a reference count.
530 * page_count() == 0 means the page is free. page->lru is then used for
531 * freelist management in the buddy allocator.
532 * page_count() > 0 means the page has been allocated.
533 *
534 * Pages are allocated by the slab allocator in order to provide memory
535 * to kmalloc and kmem_cache_alloc. In this case, the management of the
536 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
537 * unless a particular usage is carefully commented. (the responsibility of
538 * freeing the kmalloc memory is the caller's, of course).
539 *
540 * A page may be used by anyone else who does a __get_free_page().
541 * In this case, page_count still tracks the references, and should only
542 * be used through the normal accessor functions. The top bits of page->flags
543 * and page->virtual store page management information, but all other fields
544 * are unused and could be used privately, carefully. The management of this
545 * page is the responsibility of the one who allocated it, and those who have
546 * subsequently been given references to it.
547 *
548 * The other pages (we may call them "pagecache pages") are completely
549 * managed by the Linux memory manager: I/O, buffers, swapping etc.
550 * The following discussion applies only to them.
551 *
552 * A pagecache page contains an opaque `private' member, which belongs to the
553 * page's address_space. Usually, this is the address of a circular list of
554 * the page's disk buffers. PG_private must be set to tell the VM to call
555 * into the filesystem to release these pages.
556 *
557 * A page may belong to an inode's memory mapping. In this case, page->mapping
558 * is the pointer to the inode, and page->index is the file offset of the page,
559 * in units of PAGE_CACHE_SIZE.
560 *
561 * If pagecache pages are not associated with an inode, they are said to be
562 * anonymous pages. These may become associated with the swapcache, and in that
563 * case PG_swapcache is set, and page->private is an offset into the swapcache.
564 *
565 * In either case (swapcache or inode backed), the pagecache itself holds one
566 * reference to the page. Setting PG_private should also increment the
567 * refcount. The each user mapping also has a reference to the page.
568 *
569 * The pagecache pages are stored in a per-mapping radix tree, which is
570 * rooted at mapping->page_tree, and indexed by offset.
571 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
572 * lists, we instead now tag pages as dirty/writeback in the radix tree.
573 *
574 * All pagecache pages may be subject to I/O:
575 * - inode pages may need to be read from disk,
576 * - inode pages which have been modified and are MAP_SHARED may need
577 * to be written back to the inode on disk,
578 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
579 * modified may need to be swapped out to swap space and (later) to be read
580 * back into memory.
581 */
582
583 /*
584 * The zone field is never updated after free_area_init_core()
585 * sets it, so none of the operations on it need to be atomic.
586 */
587
588 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_NID] | ... | FLAGS | */
589 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
590 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
591 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
592 #define LAST_NID_PGOFF (ZONES_PGOFF - LAST_NID_WIDTH)
593
594 /*
595 * Define the bit shifts to access each section. For non-existent
596 * sections we define the shift as 0; that plus a 0 mask ensures
597 * the compiler will optimise away reference to them.
598 */
599 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
600 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
601 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
602 #define LAST_NID_PGSHIFT (LAST_NID_PGOFF * (LAST_NID_WIDTH != 0))
603
604 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
605 #ifdef NODE_NOT_IN_PAGE_FLAGS
606 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
607 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
608 SECTIONS_PGOFF : ZONES_PGOFF)
609 #else
610 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
611 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
612 NODES_PGOFF : ZONES_PGOFF)
613 #endif
614
615 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
616
617 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
618 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
619 #endif
620
621 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
622 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
623 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
624 #define LAST_NID_MASK ((1UL << LAST_NID_WIDTH) - 1)
625 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
626
627 static inline enum zone_type page_zonenum(const struct page *page)
628 {
629 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
630 }
631
632 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
633 #define SECTION_IN_PAGE_FLAGS
634 #endif
635
636 /*
637 * The identification function is only used by the buddy allocator for
638 * determining if two pages could be buddies. We are not really
639 * identifying a zone since we could be using a the section number
640 * id if we have not node id available in page flags.
641 * We guarantee only that it will return the same value for two
642 * combinable pages in a zone.
643 */
644 static inline int page_zone_id(struct page *page)
645 {
646 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
647 }
648
649 static inline int zone_to_nid(struct zone *zone)
650 {
651 #ifdef CONFIG_NUMA
652 return zone->node;
653 #else
654 return 0;
655 #endif
656 }
657
658 #ifdef NODE_NOT_IN_PAGE_FLAGS
659 extern int page_to_nid(const struct page *page);
660 #else
661 static inline int page_to_nid(const struct page *page)
662 {
663 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
664 }
665 #endif
666
667 #ifdef CONFIG_NUMA_BALANCING
668 #ifdef LAST_NID_NOT_IN_PAGE_FLAGS
669 static inline int page_nid_xchg_last(struct page *page, int nid)
670 {
671 return xchg(&page->_last_nid, nid);
672 }
673
674 static inline int page_nid_last(struct page *page)
675 {
676 return page->_last_nid;
677 }
678 static inline void page_nid_reset_last(struct page *page)
679 {
680 page->_last_nid = -1;
681 }
682 #else
683 static inline int page_nid_last(struct page *page)
684 {
685 return (page->flags >> LAST_NID_PGSHIFT) & LAST_NID_MASK;
686 }
687
688 extern int page_nid_xchg_last(struct page *page, int nid);
689
690 static inline void page_nid_reset_last(struct page *page)
691 {
692 int nid = (1 << LAST_NID_SHIFT) - 1;
693
694 page->flags &= ~(LAST_NID_MASK << LAST_NID_PGSHIFT);
695 page->flags |= (nid & LAST_NID_MASK) << LAST_NID_PGSHIFT;
696 }
697 #endif /* LAST_NID_NOT_IN_PAGE_FLAGS */
698 #else
699 static inline int page_nid_xchg_last(struct page *page, int nid)
700 {
701 return page_to_nid(page);
702 }
703
704 static inline int page_nid_last(struct page *page)
705 {
706 return page_to_nid(page);
707 }
708
709 static inline void page_nid_reset_last(struct page *page)
710 {
711 }
712 #endif
713
714 static inline struct zone *page_zone(const struct page *page)
715 {
716 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
717 }
718
719 #ifdef SECTION_IN_PAGE_FLAGS
720 static inline void set_page_section(struct page *page, unsigned long section)
721 {
722 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
723 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
724 }
725
726 static inline unsigned long page_to_section(const struct page *page)
727 {
728 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
729 }
730 #endif
731
732 static inline void set_page_zone(struct page *page, enum zone_type zone)
733 {
734 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
735 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
736 }
737
738 static inline void set_page_node(struct page *page, unsigned long node)
739 {
740 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
741 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
742 }
743
744 static inline void set_page_links(struct page *page, enum zone_type zone,
745 unsigned long node, unsigned long pfn)
746 {
747 set_page_zone(page, zone);
748 set_page_node(page, node);
749 #ifdef SECTION_IN_PAGE_FLAGS
750 set_page_section(page, pfn_to_section_nr(pfn));
751 #endif
752 }
753
754 /*
755 * Some inline functions in vmstat.h depend on page_zone()
756 */
757 #include <linux/vmstat.h>
758
759 static __always_inline void *lowmem_page_address(const struct page *page)
760 {
761 return __va(PFN_PHYS(page_to_pfn(page)));
762 }
763
764 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
765 #define HASHED_PAGE_VIRTUAL
766 #endif
767
768 #if defined(WANT_PAGE_VIRTUAL)
769 #define page_address(page) ((page)->virtual)
770 #define set_page_address(page, address) \
771 do { \
772 (page)->virtual = (address); \
773 } while(0)
774 #define page_address_init() do { } while(0)
775 #endif
776
777 #if defined(HASHED_PAGE_VIRTUAL)
778 void *page_address(const struct page *page);
779 void set_page_address(struct page *page, void *virtual);
780 void page_address_init(void);
781 #endif
782
783 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
784 #define page_address(page) lowmem_page_address(page)
785 #define set_page_address(page, address) do { } while(0)
786 #define page_address_init() do { } while(0)
787 #endif
788
789 /*
790 * On an anonymous page mapped into a user virtual memory area,
791 * page->mapping points to its anon_vma, not to a struct address_space;
792 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
793 *
794 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
795 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
796 * and then page->mapping points, not to an anon_vma, but to a private
797 * structure which KSM associates with that merged page. See ksm.h.
798 *
799 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
800 *
801 * Please note that, confusingly, "page_mapping" refers to the inode
802 * address_space which maps the page from disk; whereas "page_mapped"
803 * refers to user virtual address space into which the page is mapped.
804 */
805 #define PAGE_MAPPING_ANON 1
806 #define PAGE_MAPPING_KSM 2
807 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
808
809 extern struct address_space *page_mapping(struct page *page);
810
811 /* Neutral page->mapping pointer to address_space or anon_vma or other */
812 static inline void *page_rmapping(struct page *page)
813 {
814 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
815 }
816
817 extern struct address_space *__page_file_mapping(struct page *);
818
819 static inline
820 struct address_space *page_file_mapping(struct page *page)
821 {
822 if (unlikely(PageSwapCache(page)))
823 return __page_file_mapping(page);
824
825 return page->mapping;
826 }
827
828 static inline int PageAnon(struct page *page)
829 {
830 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
831 }
832
833 /*
834 * Return the pagecache index of the passed page. Regular pagecache pages
835 * use ->index whereas swapcache pages use ->private
836 */
837 static inline pgoff_t page_index(struct page *page)
838 {
839 if (unlikely(PageSwapCache(page)))
840 return page_private(page);
841 return page->index;
842 }
843
844 extern pgoff_t __page_file_index(struct page *page);
845
846 /*
847 * Return the file index of the page. Regular pagecache pages use ->index
848 * whereas swapcache pages use swp_offset(->private)
849 */
850 static inline pgoff_t page_file_index(struct page *page)
851 {
852 if (unlikely(PageSwapCache(page)))
853 return __page_file_index(page);
854
855 return page->index;
856 }
857
858 /*
859 * Return true if this page is mapped into pagetables.
860 */
861 static inline int page_mapped(struct page *page)
862 {
863 return atomic_read(&(page)->_mapcount) >= 0;
864 }
865
866 /*
867 * Different kinds of faults, as returned by handle_mm_fault().
868 * Used to decide whether a process gets delivered SIGBUS or
869 * just gets major/minor fault counters bumped up.
870 */
871
872 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
873
874 #define VM_FAULT_OOM 0x0001
875 #define VM_FAULT_SIGBUS 0x0002
876 #define VM_FAULT_MAJOR 0x0004
877 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
878 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
879 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
880
881 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
882 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
883 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
884
885 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
886
887 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
888 VM_FAULT_HWPOISON_LARGE)
889
890 /* Encode hstate index for a hwpoisoned large page */
891 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
892 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
893
894 /*
895 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
896 */
897 extern void pagefault_out_of_memory(void);
898
899 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
900
901 /*
902 * Flags passed to show_mem() and show_free_areas() to suppress output in
903 * various contexts.
904 */
905 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
906 #define SHOW_MEM_FILTER_PAGE_COUNT (0x0002u) /* page type count */
907
908 extern void show_free_areas(unsigned int flags);
909 extern bool skip_free_areas_node(unsigned int flags, int nid);
910
911 int shmem_zero_setup(struct vm_area_struct *);
912
913 extern int can_do_mlock(void);
914 extern int user_shm_lock(size_t, struct user_struct *);
915 extern void user_shm_unlock(size_t, struct user_struct *);
916
917 /*
918 * Parameter block passed down to zap_pte_range in exceptional cases.
919 */
920 struct zap_details {
921 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
922 struct address_space *check_mapping; /* Check page->mapping if set */
923 pgoff_t first_index; /* Lowest page->index to unmap */
924 pgoff_t last_index; /* Highest page->index to unmap */
925 };
926
927 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
928 pte_t pte);
929
930 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
931 unsigned long size);
932 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
933 unsigned long size, struct zap_details *);
934 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
935 unsigned long start, unsigned long end);
936
937 /**
938 * mm_walk - callbacks for walk_page_range
939 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
940 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
941 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
942 * this handler is required to be able to handle
943 * pmd_trans_huge() pmds. They may simply choose to
944 * split_huge_page() instead of handling it explicitly.
945 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
946 * @pte_hole: if set, called for each hole at all levels
947 * @hugetlb_entry: if set, called for each hugetlb entry
948 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
949 * is used.
950 *
951 * (see walk_page_range for more details)
952 */
953 struct mm_walk {
954 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
955 int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
956 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
957 int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
958 int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
959 int (*hugetlb_entry)(pte_t *, unsigned long,
960 unsigned long, unsigned long, struct mm_walk *);
961 struct mm_struct *mm;
962 void *private;
963 };
964
965 int walk_page_range(unsigned long addr, unsigned long end,
966 struct mm_walk *walk);
967 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
968 unsigned long end, unsigned long floor, unsigned long ceiling);
969 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
970 struct vm_area_struct *vma);
971 void unmap_mapping_range(struct address_space *mapping,
972 loff_t const holebegin, loff_t const holelen, int even_cows);
973 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
974 unsigned long *pfn);
975 int follow_phys(struct vm_area_struct *vma, unsigned long address,
976 unsigned int flags, unsigned long *prot, resource_size_t *phys);
977 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
978 void *buf, int len, int write);
979
980 static inline void unmap_shared_mapping_range(struct address_space *mapping,
981 loff_t const holebegin, loff_t const holelen)
982 {
983 unmap_mapping_range(mapping, holebegin, holelen, 0);
984 }
985
986 extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
987 extern void truncate_setsize(struct inode *inode, loff_t newsize);
988 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
989 int truncate_inode_page(struct address_space *mapping, struct page *page);
990 int generic_error_remove_page(struct address_space *mapping, struct page *page);
991 int invalidate_inode_page(struct page *page);
992
993 #ifdef CONFIG_MMU
994 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
995 unsigned long address, unsigned int flags);
996 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
997 unsigned long address, unsigned int fault_flags);
998 #else
999 static inline int handle_mm_fault(struct mm_struct *mm,
1000 struct vm_area_struct *vma, unsigned long address,
1001 unsigned int flags)
1002 {
1003 /* should never happen if there's no MMU */
1004 BUG();
1005 return VM_FAULT_SIGBUS;
1006 }
1007 static inline int fixup_user_fault(struct task_struct *tsk,
1008 struct mm_struct *mm, unsigned long address,
1009 unsigned int fault_flags)
1010 {
1011 /* should never happen if there's no MMU */
1012 BUG();
1013 return -EFAULT;
1014 }
1015 #endif
1016
1017 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1018 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1019 void *buf, int len, int write);
1020
1021 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1022 unsigned long start, unsigned long nr_pages,
1023 unsigned int foll_flags, struct page **pages,
1024 struct vm_area_struct **vmas, int *nonblocking);
1025 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1026 unsigned long start, unsigned long nr_pages,
1027 int write, int force, struct page **pages,
1028 struct vm_area_struct **vmas);
1029 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1030 struct page **pages);
1031 struct kvec;
1032 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1033 struct page **pages);
1034 int get_kernel_page(unsigned long start, int write, struct page **pages);
1035 struct page *get_dump_page(unsigned long addr);
1036
1037 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1038 extern void do_invalidatepage(struct page *page, unsigned long offset);
1039
1040 int __set_page_dirty_nobuffers(struct page *page);
1041 int __set_page_dirty_no_writeback(struct page *page);
1042 int redirty_page_for_writepage(struct writeback_control *wbc,
1043 struct page *page);
1044 void account_page_dirtied(struct page *page, struct address_space *mapping);
1045 void account_page_writeback(struct page *page);
1046 int set_page_dirty(struct page *page);
1047 int set_page_dirty_lock(struct page *page);
1048 int clear_page_dirty_for_io(struct page *page);
1049
1050 /* Is the vma a continuation of the stack vma above it? */
1051 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1052 {
1053 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1054 }
1055
1056 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1057 unsigned long addr)
1058 {
1059 return (vma->vm_flags & VM_GROWSDOWN) &&
1060 (vma->vm_start == addr) &&
1061 !vma_growsdown(vma->vm_prev, addr);
1062 }
1063
1064 /* Is the vma a continuation of the stack vma below it? */
1065 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1066 {
1067 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1068 }
1069
1070 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1071 unsigned long addr)
1072 {
1073 return (vma->vm_flags & VM_GROWSUP) &&
1074 (vma->vm_end == addr) &&
1075 !vma_growsup(vma->vm_next, addr);
1076 }
1077
1078 extern pid_t
1079 vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
1080
1081 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1082 unsigned long old_addr, struct vm_area_struct *new_vma,
1083 unsigned long new_addr, unsigned long len,
1084 bool need_rmap_locks);
1085 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1086 unsigned long end, pgprot_t newprot,
1087 int dirty_accountable, int prot_numa);
1088 extern int mprotect_fixup(struct vm_area_struct *vma,
1089 struct vm_area_struct **pprev, unsigned long start,
1090 unsigned long end, unsigned long newflags);
1091
1092 /*
1093 * doesn't attempt to fault and will return short.
1094 */
1095 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1096 struct page **pages);
1097 /*
1098 * per-process(per-mm_struct) statistics.
1099 */
1100 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1101 {
1102 long val = atomic_long_read(&mm->rss_stat.count[member]);
1103
1104 #ifdef SPLIT_RSS_COUNTING
1105 /*
1106 * counter is updated in asynchronous manner and may go to minus.
1107 * But it's never be expected number for users.
1108 */
1109 if (val < 0)
1110 val = 0;
1111 #endif
1112 return (unsigned long)val;
1113 }
1114
1115 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1116 {
1117 atomic_long_add(value, &mm->rss_stat.count[member]);
1118 }
1119
1120 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1121 {
1122 atomic_long_inc(&mm->rss_stat.count[member]);
1123 }
1124
1125 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1126 {
1127 atomic_long_dec(&mm->rss_stat.count[member]);
1128 }
1129
1130 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1131 {
1132 return get_mm_counter(mm, MM_FILEPAGES) +
1133 get_mm_counter(mm, MM_ANONPAGES);
1134 }
1135
1136 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1137 {
1138 return max(mm->hiwater_rss, get_mm_rss(mm));
1139 }
1140
1141 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1142 {
1143 return max(mm->hiwater_vm, mm->total_vm);
1144 }
1145
1146 static inline void update_hiwater_rss(struct mm_struct *mm)
1147 {
1148 unsigned long _rss = get_mm_rss(mm);
1149
1150 if ((mm)->hiwater_rss < _rss)
1151 (mm)->hiwater_rss = _rss;
1152 }
1153
1154 static inline void update_hiwater_vm(struct mm_struct *mm)
1155 {
1156 if (mm->hiwater_vm < mm->total_vm)
1157 mm->hiwater_vm = mm->total_vm;
1158 }
1159
1160 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1161 struct mm_struct *mm)
1162 {
1163 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1164
1165 if (*maxrss < hiwater_rss)
1166 *maxrss = hiwater_rss;
1167 }
1168
1169 #if defined(SPLIT_RSS_COUNTING)
1170 void sync_mm_rss(struct mm_struct *mm);
1171 #else
1172 static inline void sync_mm_rss(struct mm_struct *mm)
1173 {
1174 }
1175 #endif
1176
1177 int vma_wants_writenotify(struct vm_area_struct *vma);
1178
1179 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1180 spinlock_t **ptl);
1181 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1182 spinlock_t **ptl)
1183 {
1184 pte_t *ptep;
1185 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1186 return ptep;
1187 }
1188
1189 #ifdef __PAGETABLE_PUD_FOLDED
1190 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1191 unsigned long address)
1192 {
1193 return 0;
1194 }
1195 #else
1196 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1197 #endif
1198
1199 #ifdef __PAGETABLE_PMD_FOLDED
1200 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1201 unsigned long address)
1202 {
1203 return 0;
1204 }
1205 #else
1206 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1207 #endif
1208
1209 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1210 pmd_t *pmd, unsigned long address);
1211 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1212
1213 /*
1214 * The following ifdef needed to get the 4level-fixup.h header to work.
1215 * Remove it when 4level-fixup.h has been removed.
1216 */
1217 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1218 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1219 {
1220 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1221 NULL: pud_offset(pgd, address);
1222 }
1223
1224 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1225 {
1226 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1227 NULL: pmd_offset(pud, address);
1228 }
1229 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1230
1231 #if USE_SPLIT_PTLOCKS
1232 /*
1233 * We tuck a spinlock to guard each pagetable page into its struct page,
1234 * at page->private, with BUILD_BUG_ON to make sure that this will not
1235 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1236 * When freeing, reset page->mapping so free_pages_check won't complain.
1237 */
1238 #define __pte_lockptr(page) &((page)->ptl)
1239 #define pte_lock_init(_page) do { \
1240 spin_lock_init(__pte_lockptr(_page)); \
1241 } while (0)
1242 #define pte_lock_deinit(page) ((page)->mapping = NULL)
1243 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
1244 #else /* !USE_SPLIT_PTLOCKS */
1245 /*
1246 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1247 */
1248 #define pte_lock_init(page) do {} while (0)
1249 #define pte_lock_deinit(page) do {} while (0)
1250 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
1251 #endif /* USE_SPLIT_PTLOCKS */
1252
1253 static inline void pgtable_page_ctor(struct page *page)
1254 {
1255 pte_lock_init(page);
1256 inc_zone_page_state(page, NR_PAGETABLE);
1257 }
1258
1259 static inline void pgtable_page_dtor(struct page *page)
1260 {
1261 pte_lock_deinit(page);
1262 dec_zone_page_state(page, NR_PAGETABLE);
1263 }
1264
1265 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1266 ({ \
1267 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1268 pte_t *__pte = pte_offset_map(pmd, address); \
1269 *(ptlp) = __ptl; \
1270 spin_lock(__ptl); \
1271 __pte; \
1272 })
1273
1274 #define pte_unmap_unlock(pte, ptl) do { \
1275 spin_unlock(ptl); \
1276 pte_unmap(pte); \
1277 } while (0)
1278
1279 #define pte_alloc_map(mm, vma, pmd, address) \
1280 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1281 pmd, address))? \
1282 NULL: pte_offset_map(pmd, address))
1283
1284 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1285 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1286 pmd, address))? \
1287 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1288
1289 #define pte_alloc_kernel(pmd, address) \
1290 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1291 NULL: pte_offset_kernel(pmd, address))
1292
1293 extern void free_area_init(unsigned long * zones_size);
1294 extern void free_area_init_node(int nid, unsigned long * zones_size,
1295 unsigned long zone_start_pfn, unsigned long *zholes_size);
1296 extern void free_initmem(void);
1297
1298 /*
1299 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1300 * into the buddy system. The freed pages will be poisoned with pattern
1301 * "poison" if it's non-zero.
1302 * Return pages freed into the buddy system.
1303 */
1304 extern unsigned long free_reserved_area(unsigned long start, unsigned long end,
1305 int poison, char *s);
1306 #ifdef CONFIG_HIGHMEM
1307 /*
1308 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1309 * and totalram_pages.
1310 */
1311 extern void free_highmem_page(struct page *page);
1312 #endif
1313
1314 static inline void adjust_managed_page_count(struct page *page, long count)
1315 {
1316 totalram_pages += count;
1317 }
1318
1319 /* Free the reserved page into the buddy system, so it gets managed. */
1320 static inline void __free_reserved_page(struct page *page)
1321 {
1322 ClearPageReserved(page);
1323 init_page_count(page);
1324 __free_page(page);
1325 }
1326
1327 static inline void free_reserved_page(struct page *page)
1328 {
1329 __free_reserved_page(page);
1330 adjust_managed_page_count(page, 1);
1331 }
1332
1333 static inline void mark_page_reserved(struct page *page)
1334 {
1335 SetPageReserved(page);
1336 adjust_managed_page_count(page, -1);
1337 }
1338
1339 /*
1340 * Default method to free all the __init memory into the buddy system.
1341 * The freed pages will be poisoned with pattern "poison" if it is
1342 * non-zero. Return pages freed into the buddy system.
1343 */
1344 static inline unsigned long free_initmem_default(int poison)
1345 {
1346 extern char __init_begin[], __init_end[];
1347
1348 return free_reserved_area(PAGE_ALIGN((unsigned long)&__init_begin) ,
1349 ((unsigned long)&__init_end) & PAGE_MASK,
1350 poison, "unused kernel");
1351 }
1352
1353 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1354 /*
1355 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1356 * zones, allocate the backing mem_map and account for memory holes in a more
1357 * architecture independent manner. This is a substitute for creating the
1358 * zone_sizes[] and zholes_size[] arrays and passing them to
1359 * free_area_init_node()
1360 *
1361 * An architecture is expected to register range of page frames backed by
1362 * physical memory with memblock_add[_node]() before calling
1363 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1364 * usage, an architecture is expected to do something like
1365 *
1366 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1367 * max_highmem_pfn};
1368 * for_each_valid_physical_page_range()
1369 * memblock_add_node(base, size, nid)
1370 * free_area_init_nodes(max_zone_pfns);
1371 *
1372 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1373 * registered physical page range. Similarly
1374 * sparse_memory_present_with_active_regions() calls memory_present() for
1375 * each range when SPARSEMEM is enabled.
1376 *
1377 * See mm/page_alloc.c for more information on each function exposed by
1378 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1379 */
1380 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1381 unsigned long node_map_pfn_alignment(void);
1382 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1383 unsigned long end_pfn);
1384 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1385 unsigned long end_pfn);
1386 extern void get_pfn_range_for_nid(unsigned int nid,
1387 unsigned long *start_pfn, unsigned long *end_pfn);
1388 extern unsigned long find_min_pfn_with_active_regions(void);
1389 extern void free_bootmem_with_active_regions(int nid,
1390 unsigned long max_low_pfn);
1391 extern void sparse_memory_present_with_active_regions(int nid);
1392
1393 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1394
1395 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1396 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1397 static inline int __early_pfn_to_nid(unsigned long pfn)
1398 {
1399 return 0;
1400 }
1401 #else
1402 /* please see mm/page_alloc.c */
1403 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1404 #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1405 /* there is a per-arch backend function. */
1406 extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1407 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1408 #endif
1409
1410 extern void set_dma_reserve(unsigned long new_dma_reserve);
1411 extern void memmap_init_zone(unsigned long, int, unsigned long,
1412 unsigned long, enum memmap_context);
1413 extern void setup_per_zone_wmarks(void);
1414 extern int __meminit init_per_zone_wmark_min(void);
1415 extern void mem_init(void);
1416 extern void __init mmap_init(void);
1417 extern void show_mem(unsigned int flags);
1418 extern void si_meminfo(struct sysinfo * val);
1419 extern void si_meminfo_node(struct sysinfo *val, int nid);
1420
1421 extern __printf(3, 4)
1422 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1423
1424 extern void setup_per_cpu_pageset(void);
1425
1426 extern void zone_pcp_update(struct zone *zone);
1427 extern void zone_pcp_reset(struct zone *zone);
1428
1429 /* page_alloc.c */
1430 extern int min_free_kbytes;
1431
1432 /* nommu.c */
1433 extern atomic_long_t mmap_pages_allocated;
1434 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1435
1436 /* interval_tree.c */
1437 void vma_interval_tree_insert(struct vm_area_struct *node,
1438 struct rb_root *root);
1439 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1440 struct vm_area_struct *prev,
1441 struct rb_root *root);
1442 void vma_interval_tree_remove(struct vm_area_struct *node,
1443 struct rb_root *root);
1444 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1445 unsigned long start, unsigned long last);
1446 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1447 unsigned long start, unsigned long last);
1448
1449 #define vma_interval_tree_foreach(vma, root, start, last) \
1450 for (vma = vma_interval_tree_iter_first(root, start, last); \
1451 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1452
1453 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1454 struct list_head *list)
1455 {
1456 list_add_tail(&vma->shared.nonlinear, list);
1457 }
1458
1459 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1460 struct rb_root *root);
1461 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1462 struct rb_root *root);
1463 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1464 struct rb_root *root, unsigned long start, unsigned long last);
1465 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1466 struct anon_vma_chain *node, unsigned long start, unsigned long last);
1467 #ifdef CONFIG_DEBUG_VM_RB
1468 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1469 #endif
1470
1471 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
1472 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1473 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1474
1475 /* mmap.c */
1476 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1477 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1478 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1479 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1480 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1481 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1482 struct mempolicy *);
1483 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1484 extern int split_vma(struct mm_struct *,
1485 struct vm_area_struct *, unsigned long addr, int new_below);
1486 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1487 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1488 struct rb_node **, struct rb_node *);
1489 extern void unlink_file_vma(struct vm_area_struct *);
1490 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1491 unsigned long addr, unsigned long len, pgoff_t pgoff,
1492 bool *need_rmap_locks);
1493 extern void exit_mmap(struct mm_struct *);
1494
1495 extern int mm_take_all_locks(struct mm_struct *mm);
1496 extern void mm_drop_all_locks(struct mm_struct *mm);
1497
1498 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1499 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1500
1501 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1502 extern int install_special_mapping(struct mm_struct *mm,
1503 unsigned long addr, unsigned long len,
1504 unsigned long flags, struct page **pages);
1505
1506 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1507
1508 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1509 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1510 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1511 unsigned long len, unsigned long prot, unsigned long flags,
1512 unsigned long pgoff, unsigned long *populate);
1513 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1514
1515 #ifdef CONFIG_MMU
1516 extern int __mm_populate(unsigned long addr, unsigned long len,
1517 int ignore_errors);
1518 static inline void mm_populate(unsigned long addr, unsigned long len)
1519 {
1520 /* Ignore errors */
1521 (void) __mm_populate(addr, len, 1);
1522 }
1523 #else
1524 static inline void mm_populate(unsigned long addr, unsigned long len) {}
1525 #endif
1526
1527 /* These take the mm semaphore themselves */
1528 extern unsigned long vm_brk(unsigned long, unsigned long);
1529 extern int vm_munmap(unsigned long, size_t);
1530 extern unsigned long vm_mmap(struct file *, unsigned long,
1531 unsigned long, unsigned long,
1532 unsigned long, unsigned long);
1533
1534 struct vm_unmapped_area_info {
1535 #define VM_UNMAPPED_AREA_TOPDOWN 1
1536 unsigned long flags;
1537 unsigned long length;
1538 unsigned long low_limit;
1539 unsigned long high_limit;
1540 unsigned long align_mask;
1541 unsigned long align_offset;
1542 };
1543
1544 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1545 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1546
1547 /*
1548 * Search for an unmapped address range.
1549 *
1550 * We are looking for a range that:
1551 * - does not intersect with any VMA;
1552 * - is contained within the [low_limit, high_limit) interval;
1553 * - is at least the desired size.
1554 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1555 */
1556 static inline unsigned long
1557 vm_unmapped_area(struct vm_unmapped_area_info *info)
1558 {
1559 if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1560 return unmapped_area(info);
1561 else
1562 return unmapped_area_topdown(info);
1563 }
1564
1565 /* truncate.c */
1566 extern void truncate_inode_pages(struct address_space *, loff_t);
1567 extern void truncate_inode_pages_range(struct address_space *,
1568 loff_t lstart, loff_t lend);
1569
1570 /* generic vm_area_ops exported for stackable file systems */
1571 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1572 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1573
1574 /* mm/page-writeback.c */
1575 int write_one_page(struct page *page, int wait);
1576 void task_dirty_inc(struct task_struct *tsk);
1577
1578 /* readahead.c */
1579 #define VM_MAX_READAHEAD 128 /* kbytes */
1580 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1581
1582 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1583 pgoff_t offset, unsigned long nr_to_read);
1584
1585 void page_cache_sync_readahead(struct address_space *mapping,
1586 struct file_ra_state *ra,
1587 struct file *filp,
1588 pgoff_t offset,
1589 unsigned long size);
1590
1591 void page_cache_async_readahead(struct address_space *mapping,
1592 struct file_ra_state *ra,
1593 struct file *filp,
1594 struct page *pg,
1595 pgoff_t offset,
1596 unsigned long size);
1597
1598 unsigned long max_sane_readahead(unsigned long nr);
1599 unsigned long ra_submit(struct file_ra_state *ra,
1600 struct address_space *mapping,
1601 struct file *filp);
1602
1603 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1604 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1605
1606 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1607 extern int expand_downwards(struct vm_area_struct *vma,
1608 unsigned long address);
1609 #if VM_GROWSUP
1610 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1611 #else
1612 #define expand_upwards(vma, address) do { } while (0)
1613 #endif
1614
1615 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1616 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1617 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1618 struct vm_area_struct **pprev);
1619
1620 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1621 NULL if none. Assume start_addr < end_addr. */
1622 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1623 {
1624 struct vm_area_struct * vma = find_vma(mm,start_addr);
1625
1626 if (vma && end_addr <= vma->vm_start)
1627 vma = NULL;
1628 return vma;
1629 }
1630
1631 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1632 {
1633 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1634 }
1635
1636 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1637 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1638 unsigned long vm_start, unsigned long vm_end)
1639 {
1640 struct vm_area_struct *vma = find_vma(mm, vm_start);
1641
1642 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1643 vma = NULL;
1644
1645 return vma;
1646 }
1647
1648 #ifdef CONFIG_MMU
1649 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1650 #else
1651 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1652 {
1653 return __pgprot(0);
1654 }
1655 #endif
1656
1657 #ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE
1658 unsigned long change_prot_numa(struct vm_area_struct *vma,
1659 unsigned long start, unsigned long end);
1660 #endif
1661
1662 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1663 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1664 unsigned long pfn, unsigned long size, pgprot_t);
1665 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1666 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1667 unsigned long pfn);
1668 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1669 unsigned long pfn);
1670 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
1671
1672
1673 struct page *follow_page_mask(struct vm_area_struct *vma,
1674 unsigned long address, unsigned int foll_flags,
1675 unsigned int *page_mask);
1676
1677 static inline struct page *follow_page(struct vm_area_struct *vma,
1678 unsigned long address, unsigned int foll_flags)
1679 {
1680 unsigned int unused_page_mask;
1681 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
1682 }
1683
1684 #define FOLL_WRITE 0x01 /* check pte is writable */
1685 #define FOLL_TOUCH 0x02 /* mark page accessed */
1686 #define FOLL_GET 0x04 /* do get_page on page */
1687 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
1688 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
1689 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
1690 * and return without waiting upon it */
1691 #define FOLL_MLOCK 0x40 /* mark page as mlocked */
1692 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
1693 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
1694 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
1695 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
1696
1697 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1698 void *data);
1699 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1700 unsigned long size, pte_fn_t fn, void *data);
1701
1702 #ifdef CONFIG_PROC_FS
1703 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1704 #else
1705 static inline void vm_stat_account(struct mm_struct *mm,
1706 unsigned long flags, struct file *file, long pages)
1707 {
1708 mm->total_vm += pages;
1709 }
1710 #endif /* CONFIG_PROC_FS */
1711
1712 #ifdef CONFIG_DEBUG_PAGEALLOC
1713 extern void kernel_map_pages(struct page *page, int numpages, int enable);
1714 #ifdef CONFIG_HIBERNATION
1715 extern bool kernel_page_present(struct page *page);
1716 #endif /* CONFIG_HIBERNATION */
1717 #else
1718 static inline void
1719 kernel_map_pages(struct page *page, int numpages, int enable) {}
1720 #ifdef CONFIG_HIBERNATION
1721 static inline bool kernel_page_present(struct page *page) { return true; }
1722 #endif /* CONFIG_HIBERNATION */
1723 #endif
1724
1725 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
1726 #ifdef __HAVE_ARCH_GATE_AREA
1727 int in_gate_area_no_mm(unsigned long addr);
1728 int in_gate_area(struct mm_struct *mm, unsigned long addr);
1729 #else
1730 int in_gate_area_no_mm(unsigned long addr);
1731 #define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1732 #endif /* __HAVE_ARCH_GATE_AREA */
1733
1734 #ifdef CONFIG_SYSCTL
1735 extern int sysctl_drop_caches;
1736 int drop_caches_sysctl_handler(struct ctl_table *, int,
1737 void __user *, size_t *, loff_t *);
1738 #endif
1739
1740 unsigned long shrink_slab(struct shrink_control *shrink,
1741 unsigned long nr_pages_scanned,
1742 unsigned long lru_pages);
1743
1744 #ifndef CONFIG_MMU
1745 #define randomize_va_space 0
1746 #else
1747 extern int randomize_va_space;
1748 #endif
1749
1750 const char * arch_vma_name(struct vm_area_struct *vma);
1751 void print_vma_addr(char *prefix, unsigned long rip);
1752
1753 void sparse_mem_maps_populate_node(struct page **map_map,
1754 unsigned long pnum_begin,
1755 unsigned long pnum_end,
1756 unsigned long map_count,
1757 int nodeid);
1758
1759 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
1760 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1761 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1762 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1763 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
1764 void *vmemmap_alloc_block(unsigned long size, int node);
1765 void *vmemmap_alloc_block_buf(unsigned long size, int node);
1766 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
1767 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
1768 int node);
1769 int vmemmap_populate(unsigned long start, unsigned long end, int node);
1770 void vmemmap_populate_print_last(void);
1771 #ifdef CONFIG_MEMORY_HOTPLUG
1772 void vmemmap_free(unsigned long start, unsigned long end);
1773 #endif
1774 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
1775 unsigned long size);
1776
1777 enum mf_flags {
1778 MF_COUNT_INCREASED = 1 << 0,
1779 MF_ACTION_REQUIRED = 1 << 1,
1780 MF_MUST_KILL = 1 << 2,
1781 };
1782 extern int memory_failure(unsigned long pfn, int trapno, int flags);
1783 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
1784 extern int unpoison_memory(unsigned long pfn);
1785 extern int sysctl_memory_failure_early_kill;
1786 extern int sysctl_memory_failure_recovery;
1787 extern void shake_page(struct page *p, int access);
1788 extern atomic_long_t num_poisoned_pages;
1789 extern int soft_offline_page(struct page *page, int flags);
1790
1791 extern void dump_page(struct page *page);
1792
1793 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
1794 extern void clear_huge_page(struct page *page,
1795 unsigned long addr,
1796 unsigned int pages_per_huge_page);
1797 extern void copy_user_huge_page(struct page *dst, struct page *src,
1798 unsigned long addr, struct vm_area_struct *vma,
1799 unsigned int pages_per_huge_page);
1800 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
1801
1802 #ifdef CONFIG_DEBUG_PAGEALLOC
1803 extern unsigned int _debug_guardpage_minorder;
1804
1805 static inline unsigned int debug_guardpage_minorder(void)
1806 {
1807 return _debug_guardpage_minorder;
1808 }
1809
1810 static inline bool page_is_guard(struct page *page)
1811 {
1812 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
1813 }
1814 #else
1815 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
1816 static inline bool page_is_guard(struct page *page) { return false; }
1817 #endif /* CONFIG_DEBUG_PAGEALLOC */
1818
1819 #if MAX_NUMNODES > 1
1820 void __init setup_nr_node_ids(void);
1821 #else
1822 static inline void setup_nr_node_ids(void) {}
1823 #endif
1824
1825 #endif /* __KERNEL__ */
1826 #endif /* _LINUX_MM_H */